WorldWideScience

Sample records for double beta-propeller motif

  1. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families

    Directory of Open Access Journals (Sweden)

    Quistgaard Esben M

    2009-07-01

    Full Text Available Abstract Background The Asp-box is a short sequence and structure motif that folds as a well-defined β-hairpin. It is present in different folds, but occurs most prominently as repeats in β-propellers. Asp-box β-propellers are known to be characteristically irregular and to occur in many medically important proteins, most of which are glycosidase enzymes, but they are otherwise not well characterized and are only rarely treated as a distinct β-propeller family. We have analyzed the sequence, structure, function and occurrence of the Asp-box and s-Asp-box -a related shorter variant, and provide a comprehensive classification and computational analysis of the Asp-box β-propeller family. Results We find that all conserved residues of the Asp-box support its structure, whereas the residues in variable positions are generally used for other purposes. The Asp-box clearly has a structural role in β-propellers and is highly unlikely to be involved in ligand binding. Sequence analysis of the Asp-box β-propeller family reveals it to be very widespread especially in bacteria and suggests a wide functional range. Disregarding the Asp-boxes, sequence conservation of the propeller blades is very low, but a distinct pattern of residues with specific properties have been identified. Interestingly, Asp-boxes are occasionally found very close to other propeller-associated repeats in extensive mixed-motif stretches, which strongly suggests the existence of a novel class of hybrid β-propellers. Structural analysis reveals that the top and bottom faces of Asp-box β-propellers have striking and consistently different loop properties; the bottom is structurally conserved whereas the top shows great structural variation. Interestingly, only the top face is used for functional purposes in known structures. A structural analysis of the 10-bladed β-propeller fold, which has so far only been observed in the Asp-box family, reveals that the inner strands of the

  2. DR1769, a protein with N-terminal beta propeller repeats and a low-complexity hydrophilic tail, plays a role in desiccation tolerance of Deinococcus radiodurans.

    Science.gov (United States)

    Rajpurohit, Yogendra S; Misra, Hari S

    2013-09-01

    The Deinococcus radiodurans genome encodes five putative quinoproteins. Among these, the Δdr2518 and Δdr1769 mutants became sensitive to gamma radiation. DR2518 with beta propeller repeats in the C-terminal domain was characterized as a radiation-responsive serine/threonine protein kinase in this bacterium. DR1769 contains beta propeller repeats at the N terminus, while its C-terminal domain is a proline-rich disordered structure and constitutes a low-complexity hydrophilic region with aliphatic-proline dipeptide motifs. The Δdr1769 mutant showed nearly a 3-log cycle sensitivity to desiccation at 5% humidity compared to that of the wild type. Interestingly, the gamma radiation and mitomycin C (MMC) resistance in mutant cells also dropped by ∼1-log cycle at 10 kGy and ∼1.5-fold, respectively, compared to those in wild-type cells. But there was no effect of UV (254 nm) exposure up to 800 J · m(-2). These cells showed defective DNA double-strand break repair, and the average size of the nucleoid in desiccated wild-type and Δdr1769 cells was reduced by approximately 2-fold compared to that of respective controls. However, the nucleoid in wild-type cells returned to a size almost similar to that of the untreated control, which did not happen in mutant cells, at least up to 24 h postdesiccation. These results suggest that DR1769 plays an important role in desiccation and radiation resistance of D. radiodurans, possibly by protecting genome integrity under extreme conditions.

  3. Reconstructing the history of a WD40 beta-propeller tandem repeat using a phylogenetically informed algorithm

    Directory of Open Access Journals (Sweden)

    Philippe Lavoie-Mongrain

    2015-05-01

    Full Text Available Tandem repeat sequences have been found in great numbers in proteins that are conserved in a wide range of living species. In order to reconstruct the evolutionary history of such sequences, it is necessary to develop algorithms and methods that can work with highly divergent motifs. Here we propose a reconstruction algorithm that uses, in parallel, ortholog tandem repeat sequences from n species whose phylogeny is known, allowing it to distinguish mutations that occurred before and after the first speciation. At each step of the reconstruction, both the boundaries and the length of the duplicated segment are recalculated, making the approach suitable for sequences for which the fixed boundary hypothesis may not hold. We use this algorithm to reconstruct a 4-bladed ancestor of the 7-bladed WD40 beta-propeller, using orthologs of the GNB1 human protein in plants, yeasts, nematodes, insects and fishes. The results obtained for the WD40 repeats are very encouraging, as the noise in the duplication reconstruction is significantly reduced.

  4. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation

    Institute of Scientific and Technical Information of China (English)

    Zhenbao Yu; Gillian Vogel; Yan Coulombe; Danielle Dubeau; Elizabeth Spehalski; Josée Hébert; David O Ferguson; Jean Yves Masson; Stéphane Richard

    2012-01-01

    The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs).MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif.In this study,we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11RK protein devoid of methylated arginines.The Mre11RK/RK mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability.Moreover,the Mre11RK/RK MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites.The MRKRN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR.The MRKRN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR.Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair,and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing,as well as the ATR/CHK1 checkpoint signaling.

  5. G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA.

    Science.gov (United States)

    Dhakal, Soma; Yu, Zhongbo; Konik, Ryan; Cui, Yunxi; Koirala, Deepak; Mao, Hanbin

    2012-06-06

    G-quadruplex has demonstrated its biological functions in vivo. Although G-quadruplex in single-stranded DNA (ssDNA) has been well characterized, investigation of this species in double-stranded DNA (dsDNA) lags behind. Here we use chemical footprinting and laser-tweezers-based single-molecule approaches to demonstrate that a dsDNA fragment found in the insulin-linked polymorphic region (ILPR), 5'-(ACA GGGG TGT GGGG)2 TGT, can fold into a G-quadruplex at pH 7.4 with 100 mM K+, and an i-motif at pH 5.5 with 100 mM Li+. Surprisingly, under a condition that favors the formation of both G-quadruplex and i-motif (pH 5.5, 100 mM K+), a unique determination of change in the free energy of unfolding (ΔGunfold) by laser-tweezers experiments provides compelling evidence that only one species is present in each dsDNA. Under this condition, molecules containing G-quadruplex are more stable than those with i-motif. These two species have mechanical stabilities (rupture force≥17 pN) comparable to the stall force of RNA polymerases, which, from a mechanical perspective alone, could justify a regulatory mechanism for tetraplex structures in the expression of human insulin. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. The diversity and abundance of phytase genes (beta-propeller phytases) in bacterial communities of the maize rhizosphere

    NARCIS (Netherlands)

    Cotta, S.R.; Cavalcante Franco Dias, A.; Seldin, L.; Andreote, F. D.; van Elsas, J. D.

    2016-01-01

    The ecology of microbial communities associated with organic phosphorus (P) mineralization in soils is still understudied. Here, we assessed the abundance and diversity of bacteria harbouring genes encoding beta-propeller phytases (BPP) in the rhizosphere of traditional and transgenic maize cultivat

  7. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta.

    Science.gov (United States)

    El-Sayed, Walid; Parry, David A; Shore, Roger C; Ahmed, Mushtaq; Jafri, Hussain; Rashid, Yasmin; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2009-11-01

    Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative beta propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation.

  8. A novel human tectonin protein with multivalent beta-propeller folds interacts with ficolin and binds bacterial LPS.

    Directory of Open Access Journals (Sweden)

    Diana Hooi Ping Low

    Full Text Available BACKGROUND: Although the human genome database has been completed a decade ago, approximately 50% of the proteome remains hypothetical as their functions are unknown. The elucidation of the functions of these hypothetical proteins can lead to additional protein pathways and revelation of new cascades. However, many of these inferences are limited to proteins with substantial sequence similarity. Of particular interest here is the Tectonin domain-containing family of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have identified hTectonin, a hypothetical protein in the human genome database, as a distant ortholog of the limulus galactose binding protein (GBP. Phylogenetic analysis revealed strong evolutionary conservation of hTectonin homologues from parasite to human. By computational analysis, we showed that both the hTectonin and GBP form beta-propeller structures with multiple Tectonin domains, each containing beta-sheets of 4 strands per beta-sheet. hTectonin is present in the human leukocyte cDNA library and immune-related cell lines. It interacts with M-ficolin, a known human complement protein whose ancient homolog, carcinolectin (CL5, is the functional protein partner of GBP during infection. Yeast 2-hybrid assay showed that only the Tectonin domains of hTectonin recognize the fibrinogen-like domain of the M-ficolin. Surface plasmon resonance analysis showed real-time interaction between the Tectonin domains 6 & 11 and bacterial LPS, indicating that despite forming 2 beta-propellers with its different Tectonin domains, the hTectonin molecule could precisely employ domains 6 & 11 to recognise bacteria. CONCLUSIONS/SIGNIFICANCE: By virtue of a recent finding of another Tectonin protein, leukolectin, in the human leukocyte, and our structure-function analysis of the hypothetical hTectonin, we propose that Tectonin domains of proteins could play a vital role in innate immune defense, and that this function has been conserved over several

  9. Competition among fcc-like, double-layered flat, tubular cage, and close-packed structural motifs for medium-sized Au n (n = 21-28) clusters.

    Science.gov (United States)

    Tian, Dongxu; Zhao, Jijun

    2008-04-10

    Using density functional theory calculations, we compared four kinds of possible structural motifs of the medium-sized Aun (n = 21-28) clusters, i.e., fcc-like, double-layered flat, tubular cage, and close-packed. Our results show strong competition between those structural motifs in the medium-sized gold clusters. Aun (n = 21-23) adopt fcc-like structure owing to the high stability of tetrahedral Au20. A structural transition from fcc-like to tubular occurs at Au24, and the tubular motif continues at Au27 and Au28. Meanwhile, a double-layered flat structure was found at Au25, and a pyramid-based structure at Au26. The relationship between electronic properties and cluster geometry was also discussed.

  10. Optimization of five environmental factors to increase beta-propeller phytase production in Pichia pastoris and impact on the physiological response of the host.

    Science.gov (United States)

    Viader-Salvadó, José M; Castillo-Galván, Miguel; Fuentes-Garibay, José A; Iracheta-Cárdenas, María M; Guerrero-Olazarán, Martha

    2013-01-01

    Recently, we engineered Pichia pastoris Mut(s) strains to produce several beta-propeller phytases, one from Bacillus subtilis and the others designed by a structure-guided consensus approach. Furthermore, we demonstrated the ability of P. pastoris to produce and secrete these phytases in an active form in shake-flask cultures. In the present work, we used a design of experiments strategy (Simplex optimization method) to optimize five environmental factors that define the culture conditions in the induction step to increase beta-propeller phytase production in P. pastoris bioreactor cultures. With the optimization process, up to 347,682 U (82,814 U/L or 6.4 g/L culture medium) of phytase at 68 h of induction was achieved. In addition, the impact of the optimization process on the physiological response of the host was evaluated. The results indicate that the increase in extracellular phytase production through the optimization process was correlated with an increase in metabolic activity of P. pastoris, shown by an increase in oxygen demand and methanol consumption, that increase the specific growth rate. The increase in extracellular phytase production also occurred with a decrease in extracellular protease activity. Moreover, the optimized culture conditions increased the recombinant protein secretion by up to 88%, along with the extracellular phytase production efficiency per cell.

  11. Steady-State Fluorescence and Lifetime Emission Study of pH-Sensitive Probes Based on i-motif Forming Oligonucleotides Single and Double Labeled with Pyrene

    Directory of Open Access Journals (Sweden)

    Anna Dembska

    2015-09-01

    Full Text Available Cytosine-rich nucleic acids undergo pH-stimulated structural transitions leading to formation of an i-motif architecture at an acidic pH. Thus, i-motifs are good foundation for designing simple pH-sensitive fluorescent probes. We report here steady-state and time-resolved fluorescence studies of pyrene-labeled probes based on RET sequence: C4GC4GC4GC4TA (RET21, AC4GC4GC4GC4TA (RET21A and C4GC4GC4GC4T (RET20. Comparative studies with single- and double-labeled i-motif probes were carried out. For each probe, we have measured fluorescence spectra and decays for emission wavelength of 390 nm over a wide range of pH (from 4.0 to 8.0. Effect of the oligonucleotide sequence and the number of pyrene labels on the spectral characteristics of probes were discussed.

  12. Hitchcock's Motifs

    NARCIS (Netherlands)

    Walker, Michael

    2005-01-01

    Among the abundant Alfred Hitchcock literature, Hitchcock's Motifs has found a fresh angle. Starting from recurring objects, settings, character-types and events, Michael Walker tracks some forty motifs, themes and clusters across the whole of Hitchcock's oeuvre, including not only all his 52 extant

  13. Investigating actinomycin D binding to G-quadruplex, i-motif and double-stranded DNA in 27-nt segment of c-MYC gene promoter.

    Science.gov (United States)

    Niknezhad, Zhila; Hassani, Leila; Norouzi, Davood

    2016-01-01

    c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Expression of fully assembled TCR-CD3 complex on double positive thymocytes: synergistic role for the PRS and ER retention motifs in the intra-cytoplasmic tail of CD3epsilon.

    Science.gov (United States)

    Brodeur, Jean-Francois; Li, Samantha; Damlaj, Ousama; Dave, Vibhuti P

    2009-12-01

    TCR expression on double-positive (DP) thymocytes is a prerequisite for thymic selection that results in the generation of mature CD4(+) and CD8(+) single-positive T cells. TCR is expressed at very low level on preselection DP thymocytes and is dramatically up-regulated on positively selected thymocytes. However, mechanism governing TCR expression on developing thymocytes is not understood. In the present report, we demonstrate that the intra-cytoplasmic (IC) domain of CD3epsilon plays a critical role in regulating TCR expression on DP thymocytes. We provide genetic and biochemical evidence to show that the CD3epsilon IC domain mutations result in elevated expression of fully assembled TCR on DP thymocytes. We also demonstrate that TCR up-regulation on DP thymocytes in these transgenic mice occurs in a ligand-independent manner. Further, we show that the proline-rich sequence and endoplasmic reticulum (ER) retention motifs in the IC domain of CD3epsilon play synergistic role in regulating TCR surface expression on DP thymocytes.

  15. The Motif Tracking Algorithm

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper, we introduce the motif tracking algorithm (MTA), a novel immune inspired (IS) pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases, the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilization of an intuitive symbolic representation.The resulting population of motifs is shown to have considerable potential value for other applications such as forecasting and algorithm seeding.

  16. The Motif Tracking Algorithm

    CERN Document Server

    Wilson, William; Aickelin, Uwe; 10.1007/s11633.008.0032.0

    2010-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper we introduce the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilisation of an intuitive symbolic representation. The resulting population of motifs is shown to have considerable potential value for other ap...

  17. Visibility graph motifs

    CERN Document Server

    Iacovacci, Jacopo

    2015-01-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of visibility graph motifs, smaller substructures that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification a...

  18. 1-t-motifs

    CERN Document Server

    Taelman, Lenny

    2009-01-01

    We show that the module of rational points on an abelian t-module E is canonically isomorphic with the module Ext^1(M_E, K[t]) of extensions of the trivial t-motif K[t] by the t-motif M_E associated with E. This generalizes prior results of Anderson and Thakur and of Papanikolas and Ramachandran. In case E is uniformizable then we show that this extension module is canonically isomorphic with the corresponding extension module of Pink-Hodge structures. This situation is formally very similar to Deligne's theory of 1-motifs and we have tried to build up the theory in a way that makes this analogy as clear as possible.

  19. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...... viewer, that allows the display of the likely binding motif for all human class I proteins of the loci HLA A, B, C, and E and for MHC class I molecules from chimpanzee (Pan troglodytes), rhesus monkey (Macaca mulatta), and mouse (Mus musculus). Furthermore, it covers all HLA-DR protein sequences...

  20. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  1. Network motifs in music sequences

    CERN Document Server

    Zanette, Damian H

    2010-01-01

    In this note, I summarize ongoing research on motif distribution in networks built up out of symbolic sequences of Western musical origin. Their motif significance profiles exhibit remarkable consistency over different styles and periods, and define a class that cannot be identified with any of the four "superfamilies" to which most real networks seem to belong. Networks from music sequences possess an unusual abundance of bidirectional connections, due to the inherent reversibility of short musical note patterns. This property contributes to motif significance from both local and large-scale features of musical structure.

  2. Motif Yggdrasil: sampling sequence motifs from a tree mixture model.

    Science.gov (United States)

    Andersson, Samuel A; Lagergren, Jens

    2007-06-01

    In phylogenetic foot-printing, putative regulatory elements are found in upstream regions of orthologous genes by searching for common motifs. Motifs in different upstream sequences are subject to mutations along the edges of the corresponding phylogenetic tree, consequently taking advantage of the tree in the motif search is an appealing idea. We describe the Motif Yggdrasil sampler; the first Gibbs sampler based on a general tree that uses unaligned sequences. Previous tree-based Gibbs samplers have assumed a star-shaped tree or partially aligned upstream regions. We give a probabilistic model (MY model) describing upstream sequences with regulatory elements and build a Gibbs sampler with respect to this model. The model allows toggling, i.e., the restriction of a position to a subset of nucleotides, but does not require aligned sequences nor edge lengths, which may be difficult to come by. We apply the collapsing technique to eliminate the need to sample nuisance parameters, and give a derivation of the predictive update formula. We show that the MY model improves the modeling of difficult motif instances and that the use of the tree achieves a substantial increase in nucleotide level correlation coefficient both for synthetic data and 37 bacterial lexA genes. We investigate the sensitivity to errors in the tree and show that using random trees MY sampler still has a performance similar to the original version.

  3. The network motif architecture of dominance hierarchies.

    Science.gov (United States)

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies.

  4. Network motifs provide signatures that characterize metabolism†

    OpenAIRE

    Shellman, Erin R.; Burant, Charles F.; Schnell, Santiago

    2013-01-01

    Motifs are repeating patterns that determine the local properties of networks. In this work, we characterized all 3-node motifs using enzyme commission numbers of the International Union of Biochemistry and Molecular Biology to show that motif abundance is related to biochemical function. Further, we present a comparative analysis of motif distributions in the metabolic networks of 21 species across six kingdoms of life. We found the distribution of motif abundances to be similar between spec...

  5. Reference: TCA1MOTIF [PLACE

    Lifescience Database Archive (English)

    Full Text Available TCA1MOTIF Goldsbrough AP, Albrecht H, Stratford R Salicylic acid-inducible binding ...of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3:563-571 (1993) PubMed: 8220463; ...

  6. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  7. The value of position-specific priors in motif discovery using MEME.

    Science.gov (United States)

    Bailey, Timothy L; Bodén, Mikael; Whitington, Tom; Machanick, Philip

    2010-04-09

    Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types-including sequence conservation, nucleosome positioning, and negative examples-can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM). We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF) motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior. We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.

  8. The value of position-specific priors in motif discovery using MEME

    Directory of Open Access Journals (Sweden)

    Whitington Tom

    2010-04-01

    Full Text Available Abstract Background Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types–including sequence conservation, nucleosome positioning, and negative examples–can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM. Results We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior. Conclusions We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.

  9. Parametric bootstrapping for biological sequence motifs.

    Science.gov (United States)

    O'Neill, Patrick K; Erill, Ivan

    2016-10-06

    Biological sequence motifs drive the specific interactions of proteins and nucleic acids. Accordingly, the effective computational discovery and analysis of such motifs is a central theme in bioinformatics. Many practical questions about the properties of motifs can be recast as random sampling problems. In this light, the task is to determine for a given motif whether a certain feature of interest is statistically unusual among relevantly similar alternatives. Despite the generality of this framework, its use has been frustrated by the difficulties of defining an appropriate reference class of motifs for comparison and of sampling from it effectively. We define two distributions over the space of all motifs of given dimension. The first is the maximum entropy distribution subject to mean information content, and the second is the truncated uniform distribution over all motifs having information content within a given interval. We derive exact sampling algorithms for each. As a proof of concept, we employ these sampling methods to analyze a broad collection of prokaryotic and eukaryotic transcription factor binding site motifs. In addition to positional information content, we consider the informational Gini coefficient of the motif, a measure of the degree to which information is evenly distributed throughout a motif's positions. We find that both prokaryotic and eukaryotic motifs tend to exhibit higher informational Gini coefficients (IGC) than would be expected by chance under either reference distribution. As a second application, we apply maximum entropy sampling to the motif p-value problem and use it to give elementary derivations of two new estimators. Despite the historical centrality of biological sequence motif analysis, this study constitutes to our knowledge the first use of principled null hypotheses for sequence motifs given information content. Through their use, we are able to characterize for the first time differerences in global motif statistics

  10. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    Science.gov (United States)

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-12-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences.

  11. Main: TCA1MOTIF [PLACE

    Lifescience Database Archive (English)

    Full Text Available TCA1MOTIF S000159 17-May-1998 (last modified) kehi TCA-1 (tobacco nuclear protein 1...) binding site; Related to salicylic acid-inducible expression of many genes; Found in barley beta-1,3-gluca...nase and over 30 different plant genes which are known to be induced by one or more forms of stress; A similar sequence (TCA... et al., 1997); SA; salicylic acid; stress; TCA-1; barley (Hordeum vulgare); tobacco (Nicotiana tabacum); TCATCTTCTT ...

  12. Insights into the motif preference of APOBEC3 enzymes.

    Directory of Open Access Journals (Sweden)

    Diako Ebrahimi

    Full Text Available We used a multivariate data analysis approach to identify motifs associated with HIV hypermutation by different APOBEC3 enzymes. The analysis showed that APOBEC3G targets G mainly within GG, TG, TGG, GGG, TGGG and also GGGT. The G nucleotides flanked by a C at the 3' end (in +1 and +2 positions were indicated as disfavoured targets by APOBEC3G. The G nucleotides within GGGG were found to be targeted at a frequency much less than what is expected. We found that the infrequent G-to-A mutation within GGGG is not limited to the inaccessibility, to APOBEC3, of poly Gs in the central and 3'polypurine tracts (PPTs which remain double stranded during the HIV reverse transcription. GGGG motifs outside the PPTs were also disfavoured. The motifs GGAG and GAGG were also found to be disfavoured targets for APOBEC3. The motif-dependent mutation of G within the HIV genome by members of the APOBEC3 family other than APOBEC3G was limited to GA→AA changes. The results did not show evidence of other types of context dependent G-to-A changes in the HIV genome.

  13. Insights into the motif preference of APOBEC3 enzymes.

    Science.gov (United States)

    Ebrahimi, Diako; Alinejad-Rokny, Hamid; Davenport, Miles P

    2014-01-01

    We used a multivariate data analysis approach to identify motifs associated with HIV hypermutation by different APOBEC3 enzymes. The analysis showed that APOBEC3G targets G mainly within GG, TG, TGG, GGG, TGGG and also GGGT. The G nucleotides flanked by a C at the 3' end (in +1 and +2 positions) were indicated as disfavoured targets by APOBEC3G. The G nucleotides within GGGG were found to be targeted at a frequency much less than what is expected. We found that the infrequent G-to-A mutation within GGGG is not limited to the inaccessibility, to APOBEC3, of poly Gs in the central and 3'polypurine tracts (PPTs) which remain double stranded during the HIV reverse transcription. GGGG motifs outside the PPTs were also disfavoured. The motifs GGAG and GAGG were also found to be disfavoured targets for APOBEC3. The motif-dependent mutation of G within the HIV genome by members of the APOBEC3 family other than APOBEC3G was limited to GA→AA changes. The results did not show evidence of other types of context dependent G-to-A changes in the HIV genome.

  14. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.

    Science.gov (United States)

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/.

  15. seeMotif: exploring and visualizing sequence motifs in 3D structures

    OpenAIRE

    2009-01-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D st...

  16. Detecting correlations among functional-sequence motifs

    Science.gov (United States)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  17. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  18. rMotifGen: random motif generator for DNA and protein sequences

    Directory of Open Access Journals (Sweden)

    Hardin C Timothy

    2007-08-01

    Full Text Available Abstract Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM. Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  19. Discovering novel sequence motifs with MEME.

    Science.gov (United States)

    Bailey, Timothy L

    2002-11-01

    This unit illustrates how to use MEME to discover motifs in a group of related nucleotide or peptide sequences. A MEME motif is a sequence pattern that occurs repeatedly in one or more sequences in the input group. MEME can be used to discover novel patterns because it bases its discoveries only on the input sequences, not on any prior knowledge (such as databases of known motifs). The input to MEME is a set of unaligned sequences of the same type (peptide or nucleotide). For each motif it discovers, MEME reports the occurrences (sites), consensus sequence, and the level of conservation (information content) at each position in the pattern. MEME also produces block diagrams showing where all of the discovered motifs occur in the training set sequences. MEME's hypertext (HTML) output also contains buttons that allow for the convenient use of the motifs in other searches.

  20. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  1. Assessment of composite motif discovery methods

    Directory of Open Access Journals (Sweden)

    Johansen Jostein

    2008-02-01

    Full Text Available Abstract Background Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery – discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. Results We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Conclusion Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual

  2. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...

  3. Helix-packing motifs in membrane proteins.

    Science.gov (United States)

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  4. [Psychopathological study of lie motif in schizophrenia].

    Science.gov (United States)

    Otsuka, Koichiro; Kato, Satoshi

    2006-01-01

    The theme of a statement is called "lie motif" by the authors when schizophrenic patients say "I have lied to anybody". We tried to analyse of the psychopathological characteristics and anthropological meanings of the lie motifs in schizophrenia, which has not been thematically examined until now, based on 4 cases, and contrasting with the lie motif (Lügenmotiv) in depression taken up by A. Kraus (1989). We classified the lie motifs in schizophrenia into the following two types: a) the past directive lie motif: the patients speak about their real lie regarding it as a 'petty fault' in their distant past with self-guilty feeling, b) the present directive lie motif: the patients say repeatedly 'I have lied' (about their present speech and behavior), retreating from their previous commitments. The observed false confessions of innocent fault by the patients seem to belong to the present directed lie motif. In comparison with the lie motif in depression, it is characteristic for the lie motif in schizophrenia that the patients feel themselves to already have been caught out by others before they confess the lie. The lie motif in schizophrenia seems to come into being through the attribution process of taking the others' blame on ones' own shoulders, which has been pointed out to be common in the guilt experience in schizophrenia. The others' blame on this occasion is due to "the others' gaze" in the experience of the initial self-centralization (i.e. non delusional self-referential experience) in the early stage of schizophrenia (S. Kato 1999). The others' gaze is supposed to bring about the feeling of amorphous self-revelation which could also be regarded as the guilt feeling without content, to the patients. When the guilt feeling is bound with a past concrete fault, the patients tell the past directive lie motif. On the other hand, when the patients cannot find a past fixed content, and feel their present actions as uncertain and experience them as lies, the

  5. Importance of NPA motifs in the expression and function of water channel aquaporin-1

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong; MA TongHui

    2007-01-01

    The asparagine-proline-alanine sequences (NPA motifs) are highly conserved in aquaporin water channel family. Crystallographic studies of AQP1 structure demonstrated that the two NPA motifs are in the narrow central constriction of the channel, serving to bind water molecules for selective and efficient water passage. To investigate the importance of the two NPA motifs in the structure, function and biogenesis of aquaporin water channels, we generated AQP1 mutations with NPA1 deletion, NPA2 deletion and NPA1,2 double deletion. The coding sequences of the three mutated cDNAs were subcloned into the mammalian expression vector pcDNA3.1 to form expression plasmids. We established stably transfected CHO cell lines expressing these AQP1 mutants. Immunofluorescence indicated that all the three mutated AQP1 proteins are expressed normally on the plasma membrane of stably transfected CHO cells, suggesting that deletion of NPA motifs does not influence the expression and intracellular processing of AQP1. Functional analysis demonstrated that NPA1 or NPA2 deletion reduced AQP1 water permeability by 49.6% and 46.7%, respectively, while NPA1,2 double deletion had little effect on AQP1 water permeability. These results provide evidence that NPA motifs are important for water per-meation but not essential for the expression, intracellular processing and the basic structure of AQP1 water channel.

  6. VARUN: discovering extensible motifs under saturation constraints.

    Science.gov (United States)

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2010-01-01

    The discovery of motifs in biosequences is frequently torn between the rigidity of the model on one hand and the abundance of candidates on the other hand. In particular, motifs that include wild cards or "don't cares" escalate exponentially with their number, and this gets only worse if a don't care is allowed to stretch up to some prescribed maximum length. In this paper, a notion of extensible motif in a sequence is introduced and studied, which tightly combines the structure of the motif pattern, as described by its syntactic specification, with the statistical measure of its occurrence count. It is shown that a combination of appropriate saturation conditions and the monotonicity of probabilistic scores over regions of constant frequency afford us significant parsimony in the generation and testing of candidate overrepresented motifs. A suite of software programs called Varun is described, implementing the discovery of extensible motifs of the type considered. The merits of the method are then documented by results obtained in a variety of experiments primarily targeting protein sequence families. Of equal importance seems the fact that the sets of all surprising motifs returned in each experiment are extracted faster and come in much more manageable sizes than would be obtained in the absence of saturation constraints.

  7. Detecting Motifs in System Call Sequences

    CERN Document Server

    Wilson, William O; Aickelin, Uwe

    2010-01-01

    The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed, and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system's user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A...

  8. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  9. seeMotif: exploring and visualizing sequence motifs in 3D structures

    Science.gov (United States)

    Chang, Darby Tien-Hao; Chien, Ting-Ying; Chen, Chien-Yu

    2009-01-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D structures that have also been accumulated at an astounding rate in recent years. This article reports the development of the web service seeMotif, which provides users with an interactive interface for visualizing sequence motifs on protein structures from the Protein Data Bank (PDB). Researchers can quickly see the locations and conformation of multiple motifs among a number of related structures simultaneously. Considering the fact that PDB sequences are usually shorter than those in sequence databases and/or may have missing residues, seeMotif has two complementary approaches for selecting structures and mapping motifs to protein chains in structures. As more and more structures belonging to previously uncharacterized protein families become available, combining sequence and structure information gives good opportunities to facilitate understanding of protein functions in large-scale genome projects. Available at: http://seemotif.csie.ntu.edu.tw,http://seemotif.ee.ncku.edu.tw or http://seemotif.csbb.ntu.edu.tw. PMID:19477961

  10. seeMotif: exploring and visualizing sequence motifs in 3D structures.

    Science.gov (United States)

    Chang, Darby Tien-Hao; Chien, Ting-Ying; Chen, Chien-Yu

    2009-07-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D structures that have also been accumulated at an astounding rate in recent years. This article reports the development of the web service seeMotif, which provides users with an interactive interface for visualizing sequence motifs on protein structures from the Protein Data Bank (PDB). Researchers can quickly see the locations and conformation of multiple motifs among a number of related structures simultaneously. Considering the fact that PDB sequences are usually shorter than those in sequence databases and/or may have missing residues, seeMotif has two complementary approaches for selecting structures and mapping motifs to protein chains in structures. As more and more structures belonging to previously uncharacterized protein families become available, combining sequence and structure information gives good opportunities to facilitate understanding of protein functions in large-scale genome projects. Available at: http://seemotif.csie.ntu.edu.tw,http://seemotif.ee.ncku.edu.tw or http://seemotif.csbb.ntu.edu.tw.

  11. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    Science.gov (United States)

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  12. Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15.

    Science.gov (United States)

    Pei, Shermin; Slinger, Betty L; Meyer, Michelle M

    2017-06-06

    Proteins recognize many different aspects of RNA ranging from single stranded regions to discrete secondary or tertiary structures. High-throughput sequencing (HTS) of in vitro selected populations offers a large scale method to study RNA-proteins interactions. However, most existing analysis methods require that the binding motifs are enriched in the population relative to earlier rounds, and that motifs are found in a loop or single stranded region of the potential RNA secondary structure. Such methods do not generalize to all RNA-protein interaction as some RNA binding proteins specifically recognize more complex structures such as double stranded RNA. In this study, we use HT-SELEX derived populations to study the landscape of RNAs that interact with Geobacillus kaustophilus ribosomal protein S15. Our data show high sequence and structure diversity and proved intractable to existing methods. Conventional programs identified some sequence motifs, but these are found in less than 5-10% of the total sequence pool. Therefore, we developed a novel framework to analyze HT-SELEX data. Our process accounts for both sequence and structure components by abstracting the overall secondary structure into smaller substructures composed of a single base-pair stack, which allows us to leverage existing approaches already used in k-mer analysis to identify enriched motifs. By focusing on secondary structure motifs composed of specific two base-pair stacks, we identified significantly enriched or depleted structure motifs relative to earlier rounds. Discrete substructures are likely to be important to RNA-protein interactions, but they are difficult to elucidate. Substructures can help make highly diverse sequence data more tractable. The structure motifs provide limited accuracy in predicting enrichment suggesting that G. kaustophilus S15 can either recognize many different secondary structure motifs or some aspects of the interaction are not captured by the analysis. This

  13. Chaotic motifs in gene regulatory networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  14. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches.

    Science.gov (United States)

    Romer, Katherine A; Kayombya, Guy-Richard; Fraenkel, Ernest

    2007-07-01

    WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply these strategies. Using a single submission form, users can run several motif discovery programs and score, cluster and visualize the results. In addition, the Bayesian motif discovery program THEME can be used to determine the class of transcription factors that is most likely to regulate a set of sequences. Input can be provided as a list of gene or probe identifiers. Used with the default settings, WebMOTIFS accurately identifies biologically relevant motifs from diverse data in several species. WebMOTIFS is freely available at http://fraenkel.mit.edu/webmotifs.

  15. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  16. Structural motifs are closed into cycles in proteins.

    Science.gov (United States)

    Efimov, Alexander V

    2010-08-27

    Beta-hairpins, triple-strand beta-sheets and betaalphabeta-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into large cycles by means of different superhelices, split beta-hairpins or SS-bridges results in the formation of more complex structural motifs having unique overall folds and unique handedness such as abcd-units, phi-motifs, five- and seven-segment alpha/beta-motifs. Apparently, the complex structural motifs are more cooperative and stable and this may be one of the main reasons of high frequencies of occurrence of the motifs in proteins.

  17. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  18. Sublinear Time Motif Discovery from Multiple Sequences

    Directory of Open Access Journals (Sweden)

    Yunhui Fu

    2013-10-01

    Full Text Available In this paper, a natural probabilistic model for motif discovery has been used to experimentally test the quality of motif discovery programs. In this model, there are k background sequences, and each character in a background sequence is a random character from an alphabet, Σ. A motif G = g1g2 ... gm is a string of m characters. In each background sequence is implanted a probabilistically-generated approximate copy of G. For a probabilistically-generated approximate copy b1b2 ... bm of G, every character, bi, is probabilistically generated, such that the probability for bi ≠ gi is at most α. We develop two new randomized algorithms and one new deterministic algorithm. They make advancements in the following aspects: (1 The algorithms are much faster than those before. Our algorithms can even run in sublinear time. (2 They can handle any motif pattern. (3 The restriction for the alphabet size is a lower bound of four. This gives them potential applications in practical problems, since gene sequences have an alphabet size of four. (4 All algorithms have rigorous proofs about their performances. The methods developed in this paper have been used in the software implementation. We observed some encouraging results that show improved performance for motif detection compared with other software.

  19. Hitchcock’s queer doubles

    Directory of Open Access Journals (Sweden)

    Alessandra Brandão

    2013-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2013n65p17   The “double” is a well-known Hitchcockian motif. Widelyreviewed under a psychoanalytical perspective, the issue ofthe double still presents other important challenges and thisarticle aims at discussing the queer doubles in Hitchcock’s films as “falsifiers” who are opposed to non-queer doubles thatemphasise narrative coherence and legibility. In films such asRebeca, Rope, Vertigo, The Birds, Psycho, and Frenzy, a doublecondenses impulses that are well described by Lee Edelman: “theviolent undoing of meaning, the loss of identity and coherence,the unnatural access to jouissance” (132. These doubles releasethe powers of the false as they complicate the return to an “order”.Therefore, we could argue that such characters are closer tobeing Deleuzian simulacra than psychoanalytical doppelgängers.

  20. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.

    Science.gov (United States)

    Tong, Hao; Schliekelman, Paul; Mrázek, Jan

    2017-01-05

    DNA sequences contain repetitive motifs which have various functions in the physiology of the organism. A number of methods have been developed for discovery of such sequence motifs with a primary focus on detection of regulatory motifs and particularly transcription factor binding sites. Most motif-finding methods apply probabilistic models to detect motifs characterized by unusually high number of copies of the motif in the analyzed sequences. We present a novel method for detection of pairs of motifs separated by spacers of variable nucleotide sequence but conserved length. Unlike existing methods for motif discovery, the motifs themselves are not required to occur at unusually high frequency but only to exhibit a significant preference to occur at a specific distance from each other. In the present implementation of the method, motifs are represented by pentamers and all pairs of pentamers are evaluated for statistically significant preference for a specific distance. An important step of the algorithm eliminates motif pairs where the spacers separating the two motifs exhibit a high degree of sequence similarity; such motif pairs likely arise from duplications of the whole segment including the motifs and the spacer rather than due to selective constraints indicative of a functional importance of the motif pair. The method was used to scan 569 complete prokaryotic genomes for novel sequence motifs. Some motifs detected were previously known but other motifs found in the search appear to be novel. Selected motif pairs were subjected to further investigation and in some cases their possible biological functions were proposed. We present a new motif-finding technique that is applicable to scanning complete genomes for sequence motifs. The results from analysis of 569 genomes suggest that the method detects previously known motifs that are expected to be found as well as new motifs that are unlikely to be discovered by traditional motif-finding methods. We conclude

  1. Sequential motif profile of natural visibility graphs

    CERN Document Server

    Iacovacci, Jacopo

    2016-01-01

    The concept of sequential visibility graph motifs -subgraphs appearing with characteristic frequencies in the visibility graphs associated to time series- has been advanced recently along with a theoretical framework to compute analytically the motif profiles associated to Horizontal Visibility Graphs (HVGs). Here we develop a theory to compute the profile of sequential visibility graph motifs in the context of Natural Visibility Graphs (VGs). This theory gives exact results for deterministic aperiodic processes with a smooth invariant density or stochastic processes that fulfil the Markov property and have a continuous marginal distribution. The framework also allows for a linear time numerical estimation in the case of empirical time series. A comparison between the HVG and the VG case (including evaluation of their robustness for short series polluted with measurement noise) is also presented.

  2. Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

    Directory of Open Access Journals (Sweden)

    Yaron Orenstein

    Full Text Available The new technology of protein binding microarrays (PBMs allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.

  3. MEME SUITE: tools for motif discovery and searching.

    Science.gov (United States)

    Bailey, Timothy L; Boden, Mikael; Buske, Fabian A; Frith, Martin; Grant, Charles E; Clementi, Luca; Ren, Jingyuan; Li, Wilfred W; Noble, William S

    2009-07-01

    The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms--MAST, FIMO and GLAM2SCAN--allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm TOMTOM. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and TOMTOM), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.

  4. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  5. Bioactive motifs of agouti signal protein.

    Science.gov (United States)

    Virador, V M; Santis, C; Furumura, M; Kalbacher, H; Hearing, V J

    2000-08-25

    The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain(s) of ASP. To identify such bioactive motif(s), we synthesized 15-mer peptides that spanned the primary sequence of ASP and determined their effects on the melanogenic activities of murine melanocytes. Northern and Western blotting were used, together with chemical analysis of melanins and enzymatic assays, to identify three distinct bioactive regions of ASP that down-regulate eumelanogenesis. The decrease in eumelanin production was mediated by down-regulation of mRNA levels for tyrosinase and other melanogenic enzymes, as occurs in vivo, and these effects were comparable to those elicited by intact recombinant ASP. Shorter peptides in those motifs were synthesized and their effects on melanogenesis were further investigated. The amino acid arginine, which is present in the MSH peptide pharmacophore (HFRW), is also in the most active domain of ASP (KVARP). Our data suggest that lysines and an arginine (in motifs such as KxxxxKxxR or KxxRxxxxK) are important for the bioactivity of ASP. Identification of the specific ASP epitope that interacts with the MC1R has potential pharmacological applications in treating dysfunctions of skin pigmentation.

  6. Identifying motifs in folktales using topic models

    NARCIS (Netherlands)

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well a

  7. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  8. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  9. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  10. A discriminative approach for unsupervised clustering of DNA sequence motifs.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering. Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent common or distinct binding specificities.

  11. A Caenorhabditis motif compendium for studying transcriptional gene regulation

    Science.gov (United States)

    Dieterich, Christoph; Sommer, Ralf J

    2008-01-01

    Background Controlling gene expression is fundamental to biological complexity. The nematode Caenorhabditis elegans is an important model for studying principles of gene regulation in multi-cellular organisms. A comprehensive parts list of putative regulatory motifs was yet missing for this model system. In this study, we compile a set of putative regulatory motifs by combining evidence from conservation and expression data. Description We present an unbiased comparative approach to a regulatory motif compendium for Caenorhabditis species. This involves the assembly of a new nematode genome, whole genome alignments and assessment of conserved k-mers counts. Candidate motifs are selected from a set of 9,500 randomly picked genes by three different motif discovery strategies. Motif candidates have to pass a conservation enrichment filter. Motif degeneracy and length are optimized. Retained motif descriptions are evaluated by expression data using a non-parametric test, which assesses expression changes due to the presence/absence of individual motifs. Finally, we also provide condition-specific motif ensembles by conditional tree analysis. Conclusion The nematode genomes align surprisingly well despite high neutral substitution rates. Our pipeline delivers motif sets by three alternative strategies. Each set contains less than 400 motifs, which are significantly conserved and correlated with 214 out of 270 tested gene expression conditions. This motif compendium is an entry point to comprehensive studies on nematode gene regulation. The website: http://corg.eb.tuebingen.mpg.de/CMC has extensive query capabilities, supplements this article and supports the experimental list. PMID:18215260

  12. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    DNA regulatory motif selection based on support vector machine (SVM) and its application in microarray ... African Journal of Biotechnology ... experiments to explore the underlying relationships between motif types and gene functions.

  13. Using SCOPE to identify potential regulatory motifs in coregulated genes.

    Science.gov (United States)

    Martyanov, Viktor; Gross, Robert H

    2011-05-31

    SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data. In this article, we utilize a web version of SCOPE to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs and has been used in other studies. The three algorithms that comprise SCOPE are BEAM, which finds non-degenerate motifs (ACCGGT), PRISM, which finds degenerate motifs (ASCGWT), and SPACER, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from

  14. Bases of motifs for generating repeated patterns with wild cards

    OpenAIRE

    Pisanti, Nadia; Crochemore, Maxime; Grossi, Roberto; Sagot, Marie-France

    2005-01-01

    Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones. Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature: matrices (of letter frequency per position in the motif) and patterns. There is no conclusive e...

  15. Anticipated synchronization in neuronal network motifs

    Science.gov (United States)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  16. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    Directory of Open Access Journals (Sweden)

    Bálint Gál

    2016-11-01

    Full Text Available While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation.

  17. Trading networks, abnormal motifs and stock manipulation

    OpenAIRE

    2012-01-01

    We study trade-based manipulation of stock prices from the perspective of complex trading networks constructed by using detailed information of trades. A stock trading network consists of nodes and directed links, where every trader is a node and a link is formed from one trader to the other if the former sells shares to the latter. Specifically, three abnormal network motifs are investigated, which are found to be formed by a few traders, implying potential intention of price manipulation. W...

  18. MENGUNGKAP SEJARAH DAN MOTIF BATIK SEMARANGAN

    Directory of Open Access Journals (Sweden)

    Dewi Yuliati

    2011-10-01

    Full Text Available Batik Semarang was born in line with the needs of the people of Hyderabad of the material with a new motif or style tailored to the taste, intention, and creativity of the craftsmen. Batik is a combination of several countries influence developing in Indonesian culture. Based on its shape, Batik designs can be divided into two major groups, namely geometric and non-Geometric. The development of Semarangan batik was due to the fact that certain motif of batik can only be worn by certain people, not for all group of people. Batik semarangan craftments are found in coastal regions. It displays the design composing of ornaments plucked from marine environment. Indonesian Batik develops not only to display a blending of court Batik designs with the coastal Batik technique, but also to incorporate other ornaments which come from many various ethnic groups in Indonesia.   Key words: batik, history, ornaments, marine environment, designs   Batik Semarang lahirkan sejalan dengan kebutuhan dari orang-orang dari Hyderabad akan bahan dengan motif atau gaya baru yang berdasarkan pada rasa, niat, dan kreatifitas dari pembuatnya. Batik merupakan perpaduan dari pengaruh beberapa negara yang berkembang dalam budaya Indonesia. Ditinjau dari desainnya, desain batik dapat dibagi menjadi dua kelompok utama, yakni geometrik dan nongeometrik. Pengembangan yang dilakukan terhadap batik semarangan disebabkan adanya beberapa motif batik yang hanya digunakan oleh kalangan tertentu, dan tidak boleh untuk kalangan umum. Pengrajin batik Semarangan berkembang di kawasan pesisir. Ia menampilkan desain yang terdiri atas berbagai ornamen yang menunjukkan ciri khas kemaritiman. Batik ini dikembangakan tidak hanya menampilkan desain batik khas pesisiran, tetapi juga memasukkan berbagai ornament dari beragam kelompok etnis di Indonesia.   Kata kunci: batik, sejarah, ragam hias, lingkungan pesisir, desain  

  19. Social Network Analysis Based on Network Motifs

    OpenAIRE

    2014-01-01

    Based on the community structure characteristics, theory, and methods of frequent subgraph mining, network motifs findings are firstly introduced into social network analysis; the tendentiousness evaluation function and the importance evaluation function are proposed for effectiveness assessment. Compared with the traditional way based on nodes centrality degree, the new approach can be used to analyze the properties of social network more fully and judge the roles of the nodes effectively. I...

  20. MINER: software for phylogenetic motif identification

    OpenAIRE

    La, David; Livesay, Dennis R.

    2005-01-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at . ...

  1. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  2. Multilayer motif analysis of brain networks

    CERN Document Server

    Battiston, Federico; Chavez, Mario; Latora, Vito

    2016-01-01

    In the last decade network science has shed new light on the anatomical connectivity and on correlations in the activity of different areas of the human brain. The study of brain networks has made possible in fact to detect the central areas of a neural system, and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on structural and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows to perform a multiplex analysis of the human brain where the structural and functional layers are considered at the same time. In this work we describe how to classify subgraphs in multiplex networks, and we extend motif analysis to networks with many layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, respectively obtained from diffusion and functional magnetic resonance imaging. Results i...

  3. HeliCis: a DNA motif discovery tool for colocalized motif pairs with periodic spacing

    Directory of Open Access Journals (Sweden)

    Mostad Petter

    2007-10-01

    Full Text Available Abstract Background Correct temporal and spatial gene expression during metazoan development relies on combinatorial interactions between different transcription factors. As a consequence, cis-regulatory elements often colocalize in clusters termed cis-regulatory modules. These may have requirements on organizational features such as spacing, order and helical phasing (periodic spacing between binding sites. Due to the turning of the DNA helix, a small modification of the distance between a pair of sites may sometimes drastically disrupt function, while insertion of a full helical turn of DNA (10–11 bp between cis elements may cause functionality to be restored. Recently, de novo motif discovery methods which incorporate organizational properties such as colocalization and order preferences have been developed, but there are no tools which incorporate periodic spacing into the model. Results We have developed a web based motif discovery tool, HeliCis, which features a flexible model which allows de novo detection of motifs with periodic spacing. Depending on the parameter settings it may also be used for discovering colocalized motifs without periodicity or motifs separated by a fixed gap of known or unknown length. We show on simulated data that it can efficiently capture the synergistic effects of colocalization and periodic spacing to improve detection of weak DNA motifs. It provides a simple to use web interface which interactively visualizes the current settings and thereby makes it easy to understand the parameters and the model structure. Conclusion HeliCis provides simple and efficient de novo discovery of colocalized DNA motif pairs, with or without periodic spacing. Our evaluations show that it can detect weak periodic patterns which are not easily discovered using a sequential approach, i.e. first finding the binding sites and second analyzing the properties of their pairwise distances.

  4. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  5. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    Science.gov (United States)

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound.

  6. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  7. No tradeoff between versatility and robustness in gene circuit motifs

    Science.gov (United States)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  8. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    Science.gov (United States)

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html.

  9. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  10. RNA structural motif recognition based on least-squares distance.

    Science.gov (United States)

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  11. AISMOTIF-An Artificial Immune System for DNA Motif Discovery

    CERN Document Server

    Seeja, K R

    2011-01-01

    Discovery of transcription factor binding sites is a much explored and still exploring area of research in functional genomics. Many computational tools have been developed for finding motifs and each of them has their own advantages as well as disadvantages. Most of these algorithms need prior knowledge about the data to construct background models. However there is not a single technique that can be considered as best for finding regulatory motifs. This paper proposes an artificial immune system based algorithm for finding the transcription factor binding sites or motifs and two new weighted scores for motif evaluation. The algorithm is enumerative, but sufficient pruning of the pattern search space has been incorporated using immune system concepts. The performance of AISMOTIF has been evaluated by comparing it with eight state of art composite motif discovery algorithms and found that AISMOTIF predicts known motifs as well as new motifs from the benchmark dataset without any prior knowledge about the data...

  12. Chaotic motif sampler: detecting motifs from biological sequences by using chaotic neurodynamics

    Science.gov (United States)

    Matsuura, Takafumi; Ikeguchi, Tohru

    Identification of a region in biological sequences, motif extraction problem (MEP) is solved in bioinformatics. However, the MEP is an NP-hard problem. Therefore, it is almost impossible to obtain an optimal solution within a reasonable time frame. To find near optimal solutions for NP-hard combinatorial optimization problems such as traveling salesman problems, quadratic assignment problems, and vehicle routing problems, chaotic search, which is one of the deterministic approaches, has been proposed and exhibits better performance than stochastic approaches. In this paper, we propose a new alignment method that employs chaotic dynamics to solve the MEPs. It is called the Chaotic Motif Sampler. We show that the performance of the Chaotic Motif Sampler is considerably better than that of the conventional methods such as the Gibbs Site Sampler and the Neighborhood Optimization for Multiple Alignment Discovery.

  13. Assessing the Exceptionality of Coloured Motifs in Networks

    Directory of Open Access Journals (Sweden)

    Lacroix Vincent

    2009-01-01

    Full Text Available Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound Poisson and Gaussian approximations for the motif count distribution in Erdös-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erdös-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.

  14. Bases of motifs for generating repeated patterns with wild cards.

    Science.gov (United States)

    Pisanti, Nadia; Crochemore, Maxime; Grossi, Roberto; Sagot, Marie-France

    2005-01-01

    Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones. Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature: matrices (of letter frequency per position in the motif) and patterns. There is no conclusive evidence in favor of either, and recent work has attempted to integrate the two types into a single model. In this paper, we address the formal issue in relation to motifs as patterns. This is essential to get at a better understanding of motifs in general. In particular, we consider a promising idea that was recently proposed, which attempted to avoid the combinatorial explosion in the number of motifs by means of a generator set for the motifs. Instead of exhibiting a complete list of motifs satisfying some input constraints, what is produced is a basis of such motifs from which all the other ones can be generated. We study the computational cost of determining such a basis of repeated motifs with wild cards in a sequence. We give new upper and lower bounds on such a cost, introducing a notion of basis that is provably contained in (and, thus, smaller) than previously defined ones. Our basis can be computed in less time and space, and is still able to generate the same set of motifs. We also prove that the number of motifs in all bases defined so far grows exponentially with the quorum, that is, with the minimal number of times a motif must appear in a sequence, something unnoticed in previous work. We show that there is no hope to efficiently compute such bases unless the quorum is fixed.

  15. Design and development of three-dimensional DNA crystals utilizing CGAA parallel base paired motifs

    Science.gov (United States)

    Muser, Stephanie Elizabeth

    Three-dimensional (3D) DNA crystals hold great potential for various applications such as the development of molecular scaffolds for use in protein structure determination by x-ray crystallography. The programmability and predictability of DNA make it a powerful tool for self-assembly but it is hindered by the linearity of the duplex structure. Predictable noncanonical base pairs and motifs have the potential to connect linear double-helical DNA segments into complex 3D structures. The sequence d(GCGAAAGCT) has been observed to form 3D crystals containing both noncanonical parallel pairs and canonical Watson-Crick pairs. This provided a template structure that we used in expanding the design and development of 3D DNA crystals along with exploring the use of predictable noncanonical motifs. The structures we determined contained all but one or two of the designed secondary structure interactions, depending on pH.

  16. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  17. Double Trouble

    NARCIS (Netherlands)

    Elsaesser, Thomas; Kievit, Robert; Simons, Jan

    1994-01-01

    Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime impo

  18. Double Trouble

    NARCIS (Netherlands)

    Elsaesser, Thomas; Kievit, Robert; Simons, Jan

    1994-01-01

    Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime

  19. DNA motif elucidation using belief propagation

    OpenAIRE

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the ...

  20. MINER: software for phylogenetic motif identification.

    Science.gov (United States)

    La, David; Livesay, Dennis R

    2005-07-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at http://www.pmap.csupomona.edu/MINER/. Source code is available to the academic community on request.

  1. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  2. Protein functional-group 3D motif and its applications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Representing and recognizing protein active sites sequence motif (1D motif) and structural motif (3D motif) is an important topic for predicting and designing protein function. Prevalent methods for extracting and searching 3D motif always consider residue as the minimal unit, which have limited sensitivity. Here we present a new spatial representation of protein active sites, called "functional-group 3D motif ", based on the fact that the functional groups inside a residue contribute mostly to its function. Relevant algorithm and computer program are developed, which could be widely used in the function prediction and the study of structural-function relationship of proteins. As a test, we defined a functional-group 3D motif of the catalytic triad and oxyanion hole with the structure of porcine trypsin (PDB code: 1mct) as the template. With our motif-searching program, we successfully found similar sub-structures in trypsins, subtilisins and a/b hydrolases, which show distinct folds but share similar catalytic mechanism. Moreover, this motif can be used to elucidate the structural basis of other proteins with variant catalytic triads by comparing it to those proteins. Finally, we scanned this motif against a non-redundant protein structure database to find its matches, and the results demonstrated the potential application of functional group 3D motif in function prediction. Above all, compared with the other 3D-motif representations on residues, the functional group 3D motif achieves better representation of protein active region, which is more sensitive for protein function prediction.

  3. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Science.gov (United States)

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683

  4. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  5. Brickworx builds recurrent RNA and DNA structural motifs into medium- and low-resolution electron-density maps

    Energy Technology Data Exchange (ETDEWEB)

    Chojnowski, Grzegorz, E-mail: gchojnowski@genesilico.pl [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Waleń, Tomasz [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); University of Warsaw, Banacha 2, 02-097 Warsaw (Poland); Piątkowski, Paweł; Potrzebowski, Wojciech [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Bujnicki, Janusz M. [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Adam Mickiewicz University, Umultowska 89, 61-614 Poznan (Poland)

    2015-03-01

    A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure is RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx.

  6. Parole, Sintagmatik, dan Paradigmatik Motif Batik Mega Mendung

    Directory of Open Access Journals (Sweden)

    Rudi - Nababan

    2012-04-01

    Full Text Available ABSTRACT   Discussing traditional batik is related a lot to the organization system of fine arts element ac- companying it, either the pattern of the motif or the technique of the making. In this case, the motif of Mega Mendung Cirebon certainly has patterns and rules which are traditionally different from the other motifs in other areas. Through  semiotics analysis especially with Saussure and Pierce concept, it can be traced that batik with Cirebon motif, in this case Mega Mendung motif, has parole and langue system, as unique fine arts language in batik, and structure of visual syntagmatic and paradigmatic. In the context of batik motif as fine arts language, it is surely related to sign system as symbol and icon.       Keywords: visual semiotic, Cirebon’s batik.

  7. An Affinity Propagation-Based DNA Motif Discovery Algorithm

    Directory of Open Access Journals (Sweden)

    Chunxiao Sun

    2015-01-01

    Full Text Available The planted (l,d motif search (PMS is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  8. An Affinity Propagation-Based DNA Motif Discovery Algorithm.

    Science.gov (United States)

    Sun, Chunxiao; Huo, Hongwei; Yu, Qiang; Guo, Haitao; Sun, Zhigang

    2015-01-01

    The planted (l, d) motif search (PMS) is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs) in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP) clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM) refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  9. Probabilistic models for semisupervised discriminative motif discovery in DNA sequences.

    Science.gov (United States)

    Kim, Jong Kyoung; Choi, Seungjin

    2011-01-01

    Methods for discriminative motif discovery in DNA sequences identify transcription factor binding sites (TFBSs), searching only for patterns that differentiate two sets (positive and negative sets) of sequences. On one hand, discriminative methods increase the sensitivity and specificity of motif discovery, compared to generative models. On the other hand, generative models can easily exploit unlabeled sequences to better detect functional motifs when labeled training samples are limited. In this paper, we develop a hybrid generative/discriminative model which enables us to make use of unlabeled sequences in the framework of discriminative motif discovery, leading to semisupervised discriminative motif discovery. Numerical experiments on yeast ChIP-chip data for discovering DNA motifs demonstrate that the best performance is obtained between the purely-generative and the purely-discriminative and the semisupervised learning improves the performance when labeled sequences are limited.

  10. Triadic motifs in the dependence networks of virtual societies

    CERN Document Server

    Xie, Wen-Jie; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (${\\rm{M}}_9$) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks...

  11. Identification and characterization of four novel peptide motifs that recognize distinct regions of the transcription factor CP2.

    Science.gov (United States)

    Kang, Ho Chul; Chung, Bo Mee; Chae, Ji Hyung; Yang, Sung-Il; Kim, Chan Gil; Kim, Chul Geun

    2005-03-01

    Although ubiquitously expressed, the transcriptional factor CP2 also exhibits some tissue- or stage-specific activation toward certain genes such as globin in red blood cells and interleukin-4 in T helper cells. Because this specificity may be achieved by interaction with other proteins, we screened a peptide display library and identified four consensus motifs in numerous CP2-binding peptides: HXPR, PHL, ASR and PXHXH. Protein-database searching revealed that RE-1 silencing factor (REST), Yin-Yang1 (YY1) and five other proteins have one or two of these CP2-binding motifs. Glutathione S-transferase pull-down and coimmunoprecipitation assays showed that two HXPR motif-containing proteins REST and YY1 indeed were able to bind CP2. Importantly, this binding to CP2 was almost abolished when a double amino acid substitution was made on the HXPR sequence of REST and YY1 proteins. The suppressing effect of YY1 on CP2's transcriptional activity was lost by this point mutation on the HXPR sequence of YY1 and reduced by an HXPR-containing peptide, further supporting the interaction between CP2 and YY1 via the HXPR sequence. Mapping the sites on CP2 for interaction with the four distinct CP2-binding motifs revealed at least three different regions on CP2. This suggests that CP2 recognizes several distinct binding motifs by virtue of employing different regions, thus being able to interact with and regulate many cellular partners.

  12. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    Energy Technology Data Exchange (ETDEWEB)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  13. STEME: a robust, accurate motif finder for large data sets.

    Directory of Open Access Journals (Sweden)

    John E Reid

    Full Text Available Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface.

  14. Motif content comparison between monocot and dicot species

    Directory of Open Access Journals (Sweden)

    Matyas Cserhati

    2015-03-01

    Full Text Available While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5′ and 3′ UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3′ UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice.

  15. An RNA motif that binds ATP

    Science.gov (United States)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  16. Modeling Network Evolution Using Graph Motifs

    CERN Document Server

    Conway, Drew

    2011-01-01

    Network structures are extremely important to the study of political science. Much of the data in its subfields are naturally represented as networks. This includes trade, diplomatic and conflict relationships. The social structure of several organization is also of interest to many researchers, such as the affiliations of legislators or the relationships among terrorist. A key aspect of studying social networks is understanding the evolutionary dynamics and the mechanism by which these structures grow and change over time. While current methods are well suited to describe static features of networks, they are less capable of specifying models of change and simulating network evolution. In the following paper I present a new method for modeling network growth and evolution. This method relies on graph motifs to generate simulated network data with particular structural characteristic. This technique departs notably from current methods both in form and function. Rather than a closed-form model, or stochastic ...

  17. Complex lasso: new entangled motifs in proteins

    Science.gov (United States)

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-11-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.

  18. Rekayasa Pengembangan Desain Motif Batik Khas Melayu

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKPengembangan desain batik melalui rancang bangun perekayasaan desain menurut ragam hias Melayu meliputi pengembangan motif dan proses, termasuk pemilihan komposisi warna. Proses yang sering dilakukan yaitu proses celup, penghilangan lilin dan celup warna tumpangan atau proses colet, celup, penghilangan lilin atau celup kemudian penghilangan lilin yang disebut Batik Kelengan. Setiap pulau di Indonesia mempunyai ciri khas budaya dan kesenian yang dikenal dengan corak/ragam hias khas daerah, juga ornamen yang diminati oleh masyarakat dari daerah tersebut atau dari daerah lain. Kondisi demikian mendorong pertumbuhan industri kerajinan yang memanfaatkan unsur–unsur seni. Adapun motif yang diperoleh adalah: Ayam Berlaga, Bungo Matahari, Kuntum Bersanding, Lancang Kuning, Encong Kerinci, Durian Pecah, Bungo Bintang, Bungo Pauh Kecil, Riang-riang, Bungo Nagaro. Pengembangan desain tersebut dipilih 3 produk terbaik yang dinilai oleh 5 penilai yang ahli di bidang desain batik, yaitu motif Durian Pecah, Ayam Berlaga, dan Bungo Matahari. Rancang bangun diversifikasi desain dengan memanfaatkan unsur–unsur seni dan ketrampilan etnis Melayu yaitu pemilihan ragam hias dan motif batik Melayu untuk diterapkan ke bahan sandang dengan komposisi warna yang menarik, sehingga produk memenuhi selera konsumen. Memperbaiki keberagaman batik dengan meningkatkan desain produk antara lain menuangkan ragam hias Melayu ke dalam proses batik yang menggunakan berbagai macam warna sehingga komposisi warna memadai. Diperoleh hasil produk batik dengan ragam hias Melayu yang berkualitas dan komposisi warna yang sesuai dengan karakter ragam hias Melayu. Rancang bangun desain produk untuk mendapatkan formulasi desain serta kelayakan prosesnya dengan penekanan pada teknologi akrab lingkungan dilaksanakan dengan alternatif pendekatan yaitu penciptaan desain bentuk baru.Kata kunci: desain, batik, rancang bangun, ragam hias, MelayuABSTRACTDevelopment of batik design through

  19. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  20. EXTREME: an online EM algorithm for motif discovery

    Science.gov (United States)

    Quang, Daniel; Xie, Xiaohui

    2014-01-01

    Motivation: Identifying regulatory elements is a fundamental problem in the field of gene transcription. Motif discovery—the task of identifying the sequence preference of transcription factor proteins, which bind to these elements—is an important step in this challenge. MEME is a popular motif discovery algorithm. Unfortunately, MEME’s running time scales poorly with the size of the dataset. Experiments such as ChIP-Seq and DNase-Seq are providing a rich amount of information on the binding preference of transcription factors. MEME cannot discover motifs in data from these experiments in a practical amount of time without a compromising strategy such as discarding a majority of the sequences. Results: We present EXTREME, a motif discovery algorithm designed to find DNA-binding motifs in ChIP-Seq and DNase-Seq data. Unlike MEME, which uses the expectation-maximization algorithm for motif discovery, EXTREME uses the online expectation-maximization algorithm to discover motifs. EXTREME can discover motifs in large datasets in a practical amount of time without discarding any sequences. Using EXTREME on ChIP-Seq and DNase-Seq data, we discover many motifs, including some novel and infrequent motifs that can only be discovered by using the entire dataset. Conservation analysis of one of these novel infrequent motifs confirms that it is evolutionarily conserved and possibly functional. Availability and implementation: All source code is available at the Github repository http://github.com/uci-cbcl/EXTREME. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24532725

  1. Encoded expansion: an efficient algorithm to discover identical string motifs.

    Directory of Open Access Journals (Sweden)

    Aqil M Azmi

    Full Text Available A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009 Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963 devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms.

  2. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  3. Small circular DNA molecules act as rigid motifs to build DNA nanotubes.

    Science.gov (United States)

    Zheng, Hongning; Xiao, Minyu; Yan, Qin; Ma, Yinzhou; Xiao, Shou-Jun

    2014-07-23

    Small circular DNA molecules with designed lengths, for example 64 and 96 nucleotides (nt), after hybridization with a few 32-nt staple strands respectively, can act as rigid motifs for the construction of DNA nanotubes with excellent uniformity in ring diameter. Unlike most native DNA nanotubes, which consist of longitudinal double helices, nanotubes assembled from circular DNAs are constructed from lateral double helices. Of the five types of DNA nanotubes designed here, four are built by alternating two different rings of the same ring size, while one is composed of all the same 96-nt rings. Nanotubes constructed from the same 96-nt rings are 10-100 times shorter than those constructed from two different 96-nt rings, because there are fewer hinge joints on the rings.

  4. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  5. The effect of orthology and coregulation on detecting regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Valerie Storms

    Full Text Available BACKGROUND: Computational de novo discovery of transcription factor binding sites is still a challenging problem. The growing number of sequenced genomes allows integrating orthology evidence with coregulation information when searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous information. In this study, we evaluated the conditions under which complementing coregulation with orthologous information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary model. METHODOLOGY: We designed datasets (real and synthetic covering different degrees of coregulation and orthologous information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs independently. RESULTS AND CONCLUSIONS: Under certain conditions detecting motifs in the combined coregulation-orthology space is indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE.

  6. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  7. Discovering large network motifs from a complex biological network

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Aika; Sese, Jun, E-mail: terada@sel.is.ocha.ac.j, E-mail: sesejun@is.ocha.ac.j [Department of Computer Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2009-12-01

    Graph structures representing relationships between entries have been studied in statistical analysis, and the results of these studies have been applied to biological networks, whose nodes and edges represent proteins and the relationships between them, respectively. Most of the studies have focused on only graph structures such as scale-free properties and cliques, but the relationships between nodes are also important features since most of the proteins perform their functions by connecting to other proteins. In order to determine such relationships, the problem of network motif discovery has been addressed; network motifs are frequently appearing graph structures in a given graph. However, the methods for network motif discovery are highly restrictive for the application to biological network because they can only be used to find small network motifs or they do not consider noise and uncertainty in observations. In this study, we introduce a new index to measure network motifs called AR index and develop a novel algorithm called ARIANA for finding large motifs even when the network has noise. Experiments using a synthetic network verify that our method can find better network motifs than an existing algorithm. By applying ARIANA to a real complex biological network, we find network motifs associated with regulations of start time of cell functions and generation of cell energies and discover that the cell cycle proteins can be categorized into two different groups.

  8. Aztec, Incan and Mayan Motifs...Lead to Distinctive Designs.

    Science.gov (United States)

    Shields, Joanne

    2001-01-01

    Describes an art project for seventh-grade students in which they choose motifs based on Incan, Aztec, and Mayan Indian materials to incorporate into two-dimensional designs. Explains that the activity objective is to create a unified, balanced and pleasing composition using a minimum of three motifs. (CMK)

  9. MotifCombinator: a web-based tool to search for combinations of cis-regulatory motifs

    Directory of Open Access Journals (Sweden)

    Tsunoda Tatsuhiko

    2007-03-01

    Full Text Available Abstract Background A combination of multiple types of transcription factors and cis-regulatory elements is often required for gene expression in eukaryotes, and the combinatorial regulation confers specific gene expression to tissues or environments. To reveal the combinatorial regulation, computational methods are developed that efficiently infer combinations of cis-regulatory motifs that are important for gene expression as measured by DNA microarrays. One promising type of computational method is to utilize regression analysis between expression levels and scores of motifs in input sequences. This type takes full advantage of information on expression levels because it does not require that the expression level of each gene be dichotomized according to whether or not it reaches a certain threshold level. However, there is no web-based tool that employs regression methods to systematically search for motif combinations and that practically handles combinations of more than two or three motifs. Results We here introduced MotifCombinator, an online tool with a user-friendly interface, to systematically search for combinations composed of any number of motifs based on regression methods. The tool utilizes well-known regression methods (the multivariate linear regression, the multivariate adaptive regression spline or MARS, and the multivariate logistic regression method for this purpose, and uses the genetic algorithm to search for combinations composed of any desired number of motifs. The visualization systems in this tool help users to intuitively grasp the process of the combination search, and the backup system allows users to easily stop and restart calculations that are expected to require large computational time. This tool also provides preparatory steps needed for systematic combination search – i.e., selecting single motifs to constitute combinations and cutting out redundant similar motifs based on clustering analysis. Conclusion

  10. Identification of sequence motifs significantly associated with antisense activity

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. Results We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. Conclusion The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic

  11. Dynamic motifs of strategies in prisoner's dilemma games

    Science.gov (United States)

    Kim, Young Jin; Roh, Myungkyoon; Jeong, Seon-Young; Son, Seung-Woo

    2014-12-01

    We investigate the win-lose relations between strategies of iterated prisoner's dilemma games by using a directed network concept to display the replicator dynamics results. In the giant strongly-connected component of the win/lose network, we find win-lose circulations similar to rock-paper-scissors and analyze the fixed point and its stability. Applying the network motif concept, we introduce dynamic motifs, which describe the population dynamics relations among the three strategies. Through exact enumeration, we find 22 dynamic motifs and display their phase portraits. Visualization using directed networks and motif analysis is a useful method to make complex dynamic behavior simple in order to understand it more intuitively. Dynamic motifs can be building blocks for dynamic behavior among strategies when they are applied to other types of games.

  12. Dynamic Motifs of Strategies in Prisoner's Dilemma Games

    CERN Document Server

    Kim, Young Jin; Jeong, Seon-Young; Son, Seung-Woo

    2014-01-01

    We investigate the win-lose relations between strategies of iterated prisoner's dilemma games by using a directed network concept to display the replicator dynamics results. In the giant strongly-connected component of the win/lose network, we find win-lose circulations similar to rock-paper-scissors and analyze the fixed point and its stability. Applying the network motif concept, we introduce dynamic motifs, which describe the population dynamics relations among the three strategies. Through exact enumeration, we find 22 dynamic motifs and display their phase portraits. Visualization using directed networks and motif analysis is a useful method to make complex dynamic behavior simple in order to understand it more intuitively. Dynamic motifs can be building blocks for dynamic behavior among strategies when they are applied to other types of games.

  13. An algorithm for motif-based network design

    CERN Document Server

    Mäki-Marttunen, Tuomo

    2016-01-01

    A determinant property of the structure of a biological network is the distribution of local connectivity patterns, i.e., network motifs. In this work, a method for creating directed, unweighted networks while promoting a certain combination of motifs is presented. This motif-based network algorithm starts with an empty graph and randomly connects the nodes by advancing or discouraging the formation of chosen motifs. The in- or out-degree distribution of the generated networks can be explicitly chosen. The algorithm is shown to perform well in producing networks with high occurrences of the targeted motifs, both ones consisting of 3 nodes as well as ones consisting of 4 nodes. Moreover, the algorithm can also be tuned to bring about global network characteristics found in many natural networks, such as small-worldness and modularity.

  14. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  15. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes.

    Science.gov (United States)

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved.

  16. Motif-specific sampling of phosphoproteomes.

    Science.gov (United States)

    Ruse, Cristian I; McClatchy, Daniel B; Lu, Bingwen; Cociorva, Daniel; Motoyama, Akira; Park, Sung Kyu; Yates, John R

    2008-05-01

    Phosphoproteomics, the targeted study of a subfraction of the proteome which is modified by phosphorylation, has become an indispensable tool to study cell signaling dynamics. We described a methodology that linked phosphoproteome and proteome analysis based on Ba2+ binding properties of amino acids. This technology selected motif-specific phosphopeptides independent of the system under analysis. MudPIT (Multidimensional Identification Technology) identified 1037 precipitated phosphopeptides from as little as 250 microg of proteins. To extend coverage of the phosphoproteome, we sampled the nuclear extract of HeLa cells with three values of Ba2+ ions molarity. The presence of more than 70% of identified phosphoproteins was further substantiated by their nonmodified peptides. Upon isoproterenol stimulation of HEK cells, we identified an increasing number of phosphoproteins from MAPK cascades and AKAP signaling hubs. We quantified changes in both protein and phosphorylation levels of 197 phosphoproteins including a critical kinase, MAPK1. Integration of differential phosphorylation of MAPK1 with knowledge bases constructed modules that correlated well with its role as node in cross-talk of canonical pathways.

  17. Tripartite motif 32 prevents pathological cardiac hypertrophy.

    Science.gov (United States)

    Chen, Lijuan; Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan; Li, Hongliang

    2016-05-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. © 2016 The Author(s).

  18. MEME: discovering and analyzing DNA and protein sequence motifs.

    Science.gov (United States)

    Bailey, Timothy L; Williams, Nadya; Misleh, Chris; Li, Wilfred W

    2006-07-01

    MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel 'signals' in sets of biological sequences. Applications include the discovery of new transcription factor binding sites and protein domains. MEME works by searching for repeated, ungapped sequence patterns that occur in the DNA or protein sequences provided by the user. Users can perform MEME searches via the web server hosted by the National Biomedical Computation Resource (http://meme.nbcr.net) and several mirror sites. Through the same web server, users can also access the Motif Alignment and Search Tool to search sequence databases for matches to motifs encoded in several popular formats. By clicking on buttons in the MEME output, users can compare the motifs discovered in their input sequences with databases of known motifs, search sequence databases for matches to the motifs and display the motifs in various formats. This article describes the freely accessible web server and its architecture, and discusses ways to use MEME effectively to find new sequence patterns in biological sequences and analyze their significance.

  19. Profile-based short linear protein motif discovery

    Science.gov (United States)

    2012-01-01

    Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods. PMID:22607209

  20. Profile-based short linear protein motif discovery

    Directory of Open Access Journals (Sweden)

    Haslam Niall J

    2012-05-01

    Full Text Available Abstract Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.

  1. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  2. Triadic motifs in the dependence networks of virtual societies

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  3. Strategi Mengenali Motif Khas Kain Tenun Cual Bangka Dengan AHP

    Directory of Open Access Journals (Sweden)

    Hilyah Magdalena

    2016-12-01

    Full Text Available Woven fabric cual Bangka currently used as one of the identity of community pride in Bangka Belitung Islands. The specificity of this fart cual fabric interesting to study because of the motives that have similarities with songket palembang. Woven fabric cual Bangka and Palembang songket cloth looks similar because the same cloth-making techniques - both using techniques sungkit. The purpose of this research is how to recognize a particular motif woven fabric cual fart. This research using Analytical Hierarchy Process ( AHP to classify some specific motifs that exist in woven fabric cual fart. Experts in the field of woven fabric cual is to inform you that the woven fabric cual farts have tabled motif, motifs or patterns, motifs fabric edge, motif gold thread, fabric base material, as well as the specific color. The research involved four experts that the results of the questionnaires is processed by software Expert Choice 2000. The results showed that the main peculiarity of the woven fabric cual fart is in a pattern or motif with a percentage of 31.5, and is the chosen alternative product is songket with a percentage of 25.4.

  4. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  5. MEME-ChIP: motif analysis of large DNA datasets.

    Science.gov (United States)

    Machanick, Philip; Bailey, Timothy L

    2011-06-15

    Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets. The MEME-ChIP web service is designed to analyze ChIP-seq 'peak regions'--short genomic regions surrounding declared ChIP-seq 'peaks'. Given a set of genomic regions, it performs (i) ab initio motif discovery, (ii) motif enrichment analysis, (iii) motif visualization, (iv) binding affinity analysis and (v) motif identification. It runs two complementary motif discovery algorithms on the input data--MEME and DREME--and uses the motifs they discover in subsequent visualization, binding affinity and identification steps. MEME-ChIP also performs motif enrichment analysis using the AME algorithm, which can detect very low levels of enrichment of binding sites for TFs with known DNA-binding motifs. Importantly, unlike with the MEME web service, there is no restriction on the size or number of uploaded sequences, allowing very large ChIP-seq datasets to be analyzed. The analyses performed by MEME-ChIP provide the user with a varied view of the binding and regulatory activity of the ChIP-ed TF, as well as the possible involvement of other DNA-binding TFs. MEME-ChIP is available as part of the MEME Suite at http://meme.nbcr.net.

  6. Double supergeometry

    CERN Document Server

    Cederwall, Martin

    2016-01-01

    A geometry of superspace corresponding to double field theory is developed, with type II supergravity in D=10 as the main example. The formalism is based on an orthosymplectic extension OSp(d,d|2s) of the continuous T-duality group. Covariance under generalised super-diffeomorphisms is manifest. Ordinary superspace is obtained as a solution of the orthosymplectic section condition. A systematic study of curved superspace Bianchi identities is performed, and a relation to a double pure spinor superfield cohomology is established. A Ramond-Ramond superfield is constructed as an infinite-dimensional orthosymplectic spinor. Such objects in minimal orbits under the OSp supergroup ("pure spinors") define super-sections.

  7. Double screening

    Energy Technology Data Exchange (ETDEWEB)

    Gratia, Pierre [Department of Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Hu, Wayne [Department of Astronomy and Astrophysics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Ribeiro, Raquel H. [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London, E1 4NS (United Kingdom)

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  8. Exploitation of peptide motif sequences and their use in nanobiotechnology.

    Science.gov (United States)

    Shiba, Kiyotaka

    2010-08-01

    Short amino acid sequences extracted from natural proteins or created using in vitro evolution systems are sometimes associated with particular biological functions. These peptides, called peptide motifs, can serve as functional units for the creation of various tools for nanobiotechnology. In particular, peptide motifs that have the ability to specifically recognize the surfaces of solid materials and to mineralize certain inorganic materials have been linking biological science to material science. Here, I review how these peptide motifs have been isolated from natural proteins or created using in vitro evolution systems, and how they have been used in the nanobiotechnology field.

  9. BlockLogo: Visualization of peptide and sequence motif conservation

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian

    2013-01-01

    , selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes...... and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms...

  10. Identification of protein superfamily from structure- based sequence motif

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) Ⅰ and Ⅱ superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitution patterns of residues in common sequence conserved regions. And the phosphatases Ⅰ and Ⅱ can be correctly identified together by the structure-based PTP sequence motif from SWISS-PROT and TrEBML databases. The results show that the correct rates of identification are over 98%. This is the first time to identify PTP Ⅰ and Ⅱ together by this motif.

  11. ROMANIAN FOLKLORE MOTIFS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    MOCENCO Alexandra

    2014-05-01

    Full Text Available The traditional Romanian costume such as the entire popular art (architecture, woodcarvins, pottery etc. was born and lasted in our country since ancient times. Closely related to human existence, the traditional costume reflected over the years as reflected nowadays, the mentality and artistic conception of the people. Today the traditional Romanian costume became an inspiration source to the wholesale fashion production industry designers, both Romanian and international. Although the contemporary designers are working in accordance with a vision, using a wide area of styles, methods and current technology, they usually return to traditional techniques and ethnic folklore motifs, which converts and resize them, integrating them in their contemporary space. Adrian Oianu is a very appreciated Romanian designer who launched two collections inspired by his native’s country traditional costumes: “Suflecata pan’ la brau” (“Turned up ‘til the belt” and “Bucurie” (“Joy”. Dorin Negrau had as inspiration for his “Lost” collection the traditional costume from the Bihor region. Yves Saint Laurent had a collection inspired by the Romanian traditional flax blouses called “La blouse roumaine”. The paper presents the traditional Romanian values throw fashion collections. The research activity will create innovative concepts to support the garment industry in order to develop their own brand and to bring the design activities in Romania at an international level. The research was conducted during the initial stage of a project, financed through national founds, consisting in a documentary study on ethnographic characteristics of the popular costume from different regions of the country.

  12. Targeting functional motifs of a protein family

    Science.gov (United States)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  13. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs.

    Science.gov (United States)

    Pan, Zhu; Zhu, Jinwei; Shang, Yuan; Wei, Zhiyi; Jia, Min; Xia, Caihao; Wen, Wenyu; Wang, Wenning; Zhang, Mingjie

    2013-06-01

    LGN plays essential roles in asymmetric cell divisions via its N-terminal TPR-motif-mediated binding to mInsc and NuMA. This scaffolding activity requires the release of the autoinhibited conformation of LGN by binding of Gα(i) to its C-terminal GoLoco (GL) motifs. The interaction between the GL and TPR motifs of LGN represents a distinct GL/target binding mode with an unknown mechanism. Here, we show that two consecutive GL motifs of LGN form a minimal TPR-motif-binding unit. GL12 and GL34 bind to TPR0-3 and TPR4-7, respectively. The crystal structure of a truncated LGN reveals that GL34 forms a pair of parallel α helices and binds to the concave surface of TPR4-7, thereby preventing LGN from binding to other targets. Importantly, the GLs bind to TPR motifs with a mode distinct from that observed in the GL/Gα(i)·GDP complexes. Our results also indicate that multiple and orphan GL motif proteins likely respond to G proteins with distinct mechanisms.

  14. Automatic Network Fingerprinting through Single-Node Motifs

    CERN Document Server

    Echtermeyer, Christoph; Rodrigues, Francisco A; Kaiser, Marcus; 10.1371/journal.pone.0015765

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes...

  15. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-02-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  16. A combinatorial code for splicing silencing: UAGG and GGGG motifs

    National Research Council Canada - National Science Library

    Han, Kyoungha; Yeo, Gene; An, Ping; Burge, Christopher B; Grabowski, Paula J

    2005-01-01

    .... Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19...

  17. Direct vs 2-stage approaches to structured motif finding

    Directory of Open Access Journals (Sweden)

    Federico Maria

    2012-08-01

    Full Text Available Abstract Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct

  18. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    Institute of Scientific and Technical Information of China (English)

    XU Feng-Dan; LIU Zeng-Rong; ZHANG Zhi-Yong; SHEN Jian-Wei

    2009-01-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  19. The Origin of Motif Families in Food Webs

    OpenAIRE

    Klaise, Janis; Johnson, Samuel

    2016-01-01

    Food webs have been found to exhibit remarkable motif profiles, patterns in the relative prevalences of all possible three-species sub-graphs, and this has been related to ecosystem properties such as stability and robustness. Analysing 46 food webs of various kinds, we find that most food webs fall into one of two distinct motif families. The separation between the families is well predicted by a global measure of hierarchical order in directed networks - trophic coherence. We find that trop...

  20. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.

    Science.gov (United States)

    Tian, Cheng; Zhang, Chuan

    2017-01-01

    Tile-based DNA self-assembly is a promising method in DNA nanotechnology and has produced a wide range of nanostructures by using a small set of unique DNA strands. DNA star motif, as one of DNA tiles, has been employed to assemble varieties of symmetric one-, two-, three-dimensional (1, 2, 3D) DNA nanostructures. Herein, we describe the design principles, assembly methods, and characterization methods of 3D DNA nanostructures assembled from the DNA star motifs.

  1. Double Imbalance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The government has been introducing a string of policies to stabilize the economy and cushion the impact of the global eco-nomic slowdown since October.These policies are generally deemed"timely"and"necessary,"but not a long-term cure for problems in China’s economy.Renowned economist Wu Jinglian says the country must address its"double imbalance"and further reform its economic growth mode.He made his comments at the First Annual Global Management Forum on December 6 in Shanghai.Excerptsf ollow:

  2. Transcriptional Network growing Models using Motif-based Preferential Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk Abdelzaher

    2015-10-01

    Full Text Available Understanding relationships between architectural properties of gene-regulatory networks (GRNs has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs--i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent ``building blocks'' of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops, its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  3. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment.

    Science.gov (United States)

    Abdelzaher, Ahmed F; Al-Musawi, Ahmad F; Ghosh, Preetam; Mayo, Michael L; Perkins, Edward J

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs - i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent "building blocks" of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  4. A novel pro-Arg motif recognized by WW domains.

    Science.gov (United States)

    Bedford, M T; Sarbassova, D; Xu, J; Leder, P; Yaffe, M B

    2000-04-07

    WW domains mediate protein-protein interactions through binding to short proline-rich sequences. Two distinct sequence motifs, PPXY and PPLP, are recognized by different classes of WW domains, and another class binds to phospho-Ser-Pro sequences. We now describe a novel Pro-Arg sequence motif recognized by a different class of WW domains using data from oriented peptide library screening, expression cloning, and in vitro binding experiments. The prototype member of this group is the WW domain of formin-binding protein 30 (FBP30), a p53-regulated molecule whose WW domains bind to Pro-Arg-rich cellular proteins. This new Pro-Arg sequence motif re-classifies the organization of WW domains based on ligand specificity, and the Pro-Arg class now includes the WW domains of FBP21 and FE65. A structural model is presented which rationalizes the distinct motifs selected by the WW domains of YAP, Pin1, and FBP30. The Pro-Arg motif identified for WW domains often overlaps with SH3 domain motifs within protein sequences, suggesting that the same extended proline-rich sequence could form discrete SH3 or WW domain complexes to transduce distinct cellular signals.

  5. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  6. The distribution of RNA motifs in natural sequences.

    Science.gov (United States)

    Bourdeau, V; Ferbeyre, G; Pageau, M; Paquin, B; Cedergren, R

    1999-11-15

    Functional analysis of genome sequences has largely ignored RNA genes and their structures. We introduce here the notion of 'ribonomics' to describe the search for the distribution of and eventually the determination of the physiological roles of these RNA structures found in the sequence databases. The utility of this approach is illustrated here by the identification in the GenBank database of RNA motifs having known binding or chemical activity. The frequency of these motifs indicates that most have originated from evolutionary drift and are selectively neutral. On the other hand, their distribution among species and their location within genes suggest that the destiny of these motifs may be more elaborate. For example, the hammerhead motif has a skewed organismal presence, is phylogenetically stable and recent work on a schistosome version confirms its in vivo biological activity. The under-representation of the valine-binding motif and the Rev-binding element in GenBank hints at a detrimental effect on cell growth or viability. Data on the presence and the location of these motifs may provide critical guidance in the design of experiments directed towards the understanding and the manipulation of RNA complexes and activities in vivo.

  7. Assessing the effects of symmetry on motif discovery and modeling.

    Directory of Open Access Journals (Sweden)

    Lala M Motlhabi

    Full Text Available BACKGROUND: Identifying the DNA binding sites for transcription factors is a key task in modeling the gene regulatory network of a cell. Predicting DNA binding sites computationally suffers from high false positives and false negatives due to various contributing factors, including the inaccurate models for transcription factor specificity. One source of inaccuracy in the specificity models is the assumption of asymmetry for symmetric models. METHODOLOGY/PRINCIPAL FINDINGS: Using simulation studies, so that the correct binding site model is known and various parameters of the process can be systematically controlled, we test different motif finding algorithms on both symmetric and asymmetric binding site data. We show that if the true binding site is asymmetric the results are unambiguous and the asymmetric model is clearly superior to the symmetric model. But if the true binding specificity is symmetric commonly used methods can infer, incorrectly, that the motif is asymmetric. The resulting inaccurate motifs lead to lower sensitivity and specificity than would the correct, symmetric models. We also show how the correct model can be obtained by the use of appropriate measures of statistical significance. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the most commonly used motif-finding approaches usually model symmetric motifs incorrectly, which leads to higher than necessary false prediction errors. It also demonstrates how alternative motif-finding methods can correct the problem, providing more accurate motif models and reducing the errors. Furthermore, it provides criteria for determining whether a symmetric or asymmetric model is the most appropriate for any experimental dataset.

  8. Discovering motifs in ranked lists of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Eran Eden

    2007-03-01

    Full Text Available Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP-chip (chromatin immuno-precipitation on a microarray measurements. Several major challenges in sequence motif discovery still require consideration: (i the need for a principled approach to partitioning the data into target and background sets; (ii the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii the need for an appropriate framework for accounting for motif multiplicity; (iv the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs, which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP-chip and CpG methylation data and obtained the following results. (i Identification of 50 novel putative transcription factor (TF binding sites in yeast ChIP-chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked

  9. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  10. Fitting a mixture model by expectation maximization to discover motifs in biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T.L.; Elkan, C. [Univ. of California, La Jolla, CA (United States)

    1994-12-31

    The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expectation maximization to fit a two-component finite mixture model to the set of sequences. Multiple motifs are found by fitting a mixture model to the data, probabilistically erasing the occurrences of the motif thus found, and repeating the process to find successive motifs. The algorithm requires only a set of unaligned sequences and a number specifying the width of the motifs as input. It returns a model of each motif and a threshold which together can be used as a Bayes-optimal classifier for searching for occurrences of the motif in other databases. The algorithm estimates how many times each motif occurs in each sequence in the dataset and outputs an alignment of the occurrences of the motif. The algorithm is capable of discovering several different motifs with differing numbers of occurrences in a single dataset.

  11. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  12. Motifs in Triadic Random Graphs based on Steiner Triple Systems

    CERN Document Server

    Winkler, Marco

    2013-01-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high attention. It has been hypothesized, these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graphs (ERGMs) to define novel models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obst...

  13. Network Motifs in Object-Oriented Software Systems

    CERN Document Server

    Ma, Yutao; Liu, Jing

    2008-01-01

    Nowadays, software has become a complex piece of work that may be beyond our control. Understanding how software evolves over time plays an important role in controlling software development processes. Recently, a few researchers found the quantitative evidence of structural duplication in software systems or web applications, which is similar to the evolutionary trend found in biological systems. To investigate the principles or rules of software evolution, we introduce the relevant theories and methods of complex networks into structural evolution and change of software systems. According to the results of our experiment on network motifs, we find that the stability of a motif shows positive correlation with its abundance and a motif with high Z score tends to have stable structure. These findings imply that the evolution of software systems is based on functional cloning as well as structural duplication and tends to be structurally stable. So, the work presented in this paper will be useful for the analys...

  14. [Specific motifs in the genomes of the family Chlamydiaceae].

    Science.gov (United States)

    Demkin, V V; Kirillova, N V

    2012-01-01

    Specific motifs in the genomes of the family Chlamydiaceae were discussed. The search for genetic markers ofbacteria identification and typing is an urgent problem. The progress in sequencing technology resulted in compilation of the database of genomic nucleotide sequences of bacteria. This raised the problem of the search and selection of genetic targets for identification and typing in bacterial genes based on comparative analysis of complete genomic sequences. The goal of this work was to implement comparative genetic analysis of different species of the family Chlamydiaceae. This analysis was focused to detection of specific motifs capable of serving as genetic marker of this family. The consensus domains were detected using the Visual Basic for Application software for MS Excel. Complete coincidence of segments 25 nucleotide long was used as the test for consensus domain selection. One complete genomic sequence for each of 8 bacterial species was taken for the experiment. The experimental sample did not contain complete sequence of C. suis, because at the moment of this research this species was absence in the database GenBank. Comparative assay of the sequences of the C. trachomatis and other representatives of the family Chlamydiaceae revealed 41 common motifs for 8 Chlamydiaceae species tested in this work. The maximal number of consensus motifs was observed in genes of ribosomal RNA and t-RNA. In addition to genes of r-RNA and t-RNA consensus motifs were observed in 5 genes and 6 intergene segments. The gene CTL0299, CTLO800, dagA, and hctA consensus motifs detected in this work can be regarded as identification domains of the family Chlamydiaceae.

  15. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants

    Directory of Open Access Journals (Sweden)

    Ahmad A. Malik

    2017-05-01

    Full Text Available Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine. The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid, suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity.

  16. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  17. Some results on more flexible versions of Graph Motif

    CERN Document Server

    Rizzi, Romeo

    2012-01-01

    The problems studied in this paper originate from Graph Motif, a problem introduced in 2006 in the context of biological networks. Informally speaking, it consists in deciding if a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the high rate of noise in the biological data, more flexible definitions of the problem have been outlined. We present in this paper two inapproximability results for two different optimization variants of Graph Motif. We also study another definition of the problem, when the connectivity constraint is replaced by modularity. While the problem stays NP-complete, it allows algorithms in FPT for biologically relevant parameterizations.

  18. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...

  19. Double Conditional Expectation

    Institute of Scientific and Technical Information of China (English)

    HU Di-he

    2004-01-01

    The concept of double conditional expectation is introduced. A series of properties for the double conditional expectation are obtained several convergence theorems and Jensen inequality are proved. Finally we discuss the special cases and application for double conditional expectation.

  20. The promoter competition assay (PCA): a new approach to identify motifs involved in the transcriptional activity of reporter genes.

    Science.gov (United States)

    Hube, Florent; Myal, Yvonne; Leygue, Etienne

    2006-05-01

    Identifying particular motifs responsible for promoter activity is a crucial step toward the development of new gene-based preventive and therapeutic strategies. However, to date, experimental methods to study promoter activity remain limited. We present in this report a promoter competition assay designed to identify, within a given promoter region, motifs critical for its activity. This assay consists in co-transfecting the promoter to be analyzed and double-stranded oligonucleotides which will compete for the binding of transcription factors. Using the recently characterized SBEM promoter as model, we first delineated the feasibility of the method and optimized the experimental conditions. We then identified, within an 87-bp region responsible for a strong expression of the reporter gene, an octamer-binding site essential for its transcriptional regulation. The importance of this motif has been confirmed by site-directed mutagenesis. The promoter competition assay appears to be a fast and efficient approach to identify, within a given promoter sequence, sites critical for its activity.

  1. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  2. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    Science.gov (United States)

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers.

  3. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F;

    2008-01-01

    Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently...... sequence models of linear motifs. The atlas is available as a community resource (http://netphorest.info)....

  4. How curved membranes recruit amphipathic helices and protein anchoring motifs

    DEFF Research Database (Denmark)

    Hatzakis, Nikos; Bhatia, Vikram Kjøller; Larsen, Jannik;

    2009-01-01

    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing...

  5. RNA recognition motif (RRM)-containing proteins in Bombyx mori

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... containing proteins in B. mori and may serve as a basis ... and domain structures, and then orthologous proteins were assigned with similar .... DQ648521. CG10466. RNA binding motif protein,. X-linked. 2. (RBMX2). 1RRM. 1 ... Polymerase delta ... tion or initiation, 8 in transcription, and 3 in apoptosis. For.

  6. Mother goddesses with boat motifs on stone sculptures from Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, R.; Gaur, A.S.

    in temples made of laterite dressed stone blocks, which might have been a tradition of the post-Kadamba period. At Savarde, a few architectural members lying Fig.4. Fragmented sculpture with boat motif from Guleli in the vicinity suggest that a temple...

  7. Motifs in triadic random graphs based on Steiner triple systems

    Science.gov (United States)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  8. Variable structure motifs for transcription factor binding sites.

    Science.gov (United States)

    Reid, John E; Evans, Kenneth J; Dyer, Nigel; Wernisch, Lorenz; Ott, Sascha

    2010-01-14

    Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable

  9. Variable structure motifs for transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Wernisch Lorenz

    2010-01-01

    Full Text Available Abstract Background Classically, models of DNA-transcription factor binding sites (TFBSs have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs. Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does

  10. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  11. Phosphorylation of the SQ H2A.X motif is required for proper meiosis and mitosis in Tetrahymena thermophila.

    Science.gov (United States)

    Song, Xiaoyuan; Gjoneska, Elizabeta; Ren, Qinghu; Taverna, Sean D; Allis, C David; Gorovsky, Martin A

    2007-04-01

    Phosphorylation of the C terminus SQ motif that defines H2A.X variants is required for efficient DNA double-strand break (DSB) repair in diverse organisms but has not been studied in ciliated protozoa. Tetrahymena H2A.X is one of two similarly expressed major H2As, thereby differing both from mammals, where H2A.X is a quantitatively minor component, and from Saccharomyces cerevisiae where it is the only type of major H2A. Tetrahymena H2A.X is phosphorylated in the SQ motif in both the mitotic micronucleus and the amitotic macronucleus in response to DSBs induced by chemical agents and in the micronucleus during prophase of meiosis, which occurs in the absence of a synaptonemal complex. H2A.X is phosphorylated when programmed DNA rearrangements occur in developing macronuclei, as for immunoglobulin gene rearrangements in mammals, but not during the DNA fragmentation that accompanies breakdown of the parental macronucleus during conjugation, correcting the previous interpretation that this process is apoptosis-like. Using strains containing a mutated (S134A) SQ motif, we demonstrate that phosphorylation of this motif is important for Tetrahymena cells to recover from exogenous DNA damage and is required for normal micronuclear meiosis and mitosis and, to a lesser extent, for normal amitotic macronuclear division; its absence, while not lethal, leads to the accumulation of DSBs in both micro- and macronuclei. These results demonstrate multiple roles of H2A.X phosphorylation in maintaining genomic integrity in different phases of the Tetrahymena life cycle.

  12. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  13. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic acid...

  14. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase.

    Science.gov (United States)

    Ahmad, Zulfiqar; Tayou, Junior; Laughlin, Thomas F

    2015-04-01

    This study demonstrates the requirement of Asp-380 and Asp-386 in the βDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants βD380A/βD386A, βD380Q/βD386Q, or βD380R/βD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of βD380 and βD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of βDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, βD380 and βD386, are essential for proper peptide binding and inhibition of ATP synthase. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Differential evolutionary conservation of motif modes in the yeast protein interaction network

    Directory of Open Access Journals (Sweden)

    Yu Chang-Yung

    2006-04-01

    Full Text Available Abstract Background The importance of a network motif (a recurring interconnected pattern of special topology which is over-represented in a biological network lies in its position in the hierarchy between the protein molecule and the module in a protein-protein interaction network. Until now, however, the methods available have greatly restricted the scope of research. While they have focused on the analysis in the resolution of a motif topology, they have not been able to distinguish particular motifs of the same topology in a protein-protein interaction network. Results We have been able to assign the molecular function annotations of Gene Ontology to each protein in the protein-protein interactions of Saccharomyces cerevisiae. For various motif topologies, we have developed an algorithm, enabling us to unveil one million "motif modes", each of which features a unique topological combination of molecular functions. To our surprise, the conservation ratio, i.e., the extent of the evolutionary constraints upon the motif modes of the same motif topology, varies significantly, clearly indicative of distinct differences in the evolutionary constraints upon motifs of the same motif topology. Equally important, for all motif modes, we have found a power-law distribution of the motif counts on each motif mode. We postulate that motif modes may very well represent the evolutionary-conserved topological units of a protein interaction network. Conclusion For the first time, the motifs of a protein interaction network have been investigated beyond the scope of motif topology. The motif modes determined in this study have not only enabled us to differentiate among different evolutionary constraints on motifs of the same topology but have also opened up new avenues through which protein interaction networks can be analyzed.

  16. Application of a double-enrichment procedure for microsatellite isolation and the use of tailed primers for high throughput genotyping

    Directory of Open Access Journals (Sweden)

    Fábio Mendonça Diniz

    2007-03-01

    Full Text Available The number of microsatellite loci and their allelic diversity contribute to increase accuracy and informativity of genetic estimates, however, the isolation of microsatellite loci is not only laborious but also quite expensive. We used (GATAn and (GACAn tetranucleotide probes and single- and double-enrichment hybridization to construct and screen a genomic library with an increased proportion of DNA fragments containing repeat motifs. Repeats were found using both types of hybridization but the double-enrichment procedure recovered sequences of which 100% contained (GATAn and (GACAn motifs. Microsatellite loci primers were then designed with an M13R-tail or CAG-tag to produce scorable PCR products with minimal stutter. The approach used in this study suggests that double-enrichment is a worthwhile strategy when isolating repeat motifs from eukaryotic genomes. Moreover, the use of tailed microsatellite primers provides increased resolution for compound microsatellite loci, with a significant decrease in costs.

  17. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

    Science.gov (United States)

    Romero, José R.; Carballido, Jessica A.; Garbus, Ingrid; Echenique, Viviana C.; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka. PMID:27812277

  18. MEME-LaB: motif analysis in clusters.

    Science.gov (United States)

    Brown, Paul; Baxter, Laura; Hickman, Richard; Beynon, Jim; Moore, Jonathan D; Ott, Sascha

    2013-07-01

    Genome-wide expression analysis can result in large numbers of clusters of co-expressed genes. Although there are tools for ab initio discovery of transcription factor-binding sites, most do not provide a quick and easy way to study large numbers of clusters. To address this, we introduce a web tool called MEME-LaB. The tool wraps MEME (an ab initio motif finder), providing an interface for users to input multiple gene clusters, retrieve promoter sequences, run motif finding and then easily browse and condense the results, facilitating better interpretation of the results from large-scale datasets. MEME-LaB is freely accessible at: http://wsbc.warwick.ac.uk/wsbcToolsWebpage/. Supplementary data are available at Bioinformatics online.

  19. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R

    2006-01-01

    tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin......-null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation......Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta...

  20. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    Science.gov (United States)

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon.

  1. A Cooperative Approach for the Extraction of Protein Motifs

    Institute of Scientific and Technical Information of China (English)

    Chao CHEN; Yuan Xin TIAN; Xiao Yong ZOU; Pei Xiang CAI; Jin Yuan MO

    2006-01-01

    By integrating the concept of cooperative approach, an extension of the fast annealing coevolutionary algorithm is presented in this paper. It outperformed the original algorithm in the domain of function optimization, especially in terms of convergence rate. It was also applied to a real optimization problem, protein motif extraction. And a satisfactory result has been obtained with the accuracy of prediction achieving 67.0%, which is in agreement with the result in the PROSITE database.

  2. Neoanalysis, Orality, and Intertextuality: An Examination of Homeric Motif Transference

    Directory of Open Access Journals (Sweden)

    Jonathan Burgess

    2006-03-01

    Full Text Available In Homeric studies scholars have speculated on the influence of (non-surviving preHomeric material on the Iliad. This article expands this line of argument from an oralist perspective, with reference to modern intertextual theory. It concludes that preHomeric and nonHomeric motifs from oral traditions were transferred into the epic poem, creating an intertextually allusive poetics that would have been recognizable to an early Greek audience informed of mythological traditions.

  3. Motif Analysis in the Amazon Product Co-Purchasing Network

    OpenAIRE

    Srivastava, Abhishek

    2010-01-01

    Online stores like Amazon and Ebay are growing by the day. Fewer people go to departmental stores as opposed to the convenience of purchasing from stores online. These stores may employ a number of techniques to advertise and recommend the appropriate product to the appropriate buyer profile. This article evaluates various 3-node and 4-node motifs occurring in such networks. Community structures are evaluated too.These results may provide interesting insights into user behavior and a better u...

  4. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  5. Characterizing regulatory path motifs in integrated networks using perturbational data

    OpenAIRE

    Joshi, Anagha Madhusudan; Van Parys, Thomas; de Peer, Yves Van; Michoel, Tom

    2010-01-01

    We introduce Pathicular http://bioinformatics.psb.ugent.be/software/details/Pathicular, a Cytoscape plugin for studying the cellular response to perturbations of transcription factors by integrating perturbational expression data with transcriptional, protein-protein and phosphorylation networks. Pathicular searches for 'regulatory path motifs', short paths in the integrated physical networks which occur significantly more often than expected between transcription factors and their targets in...

  6. A combinatorial code for splicing silencing: UAGG and GGGG motifs.

    Directory of Open Access Journals (Sweden)

    Kyoungha Han

    2005-05-01

    Full Text Available Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-specific mRNA isoforms. Few regulatory mechanisms are understood at the level of combinatorial control despite numerous sequences, distinct from splice sites, that have been shown to play roles in splicing enhancement or silencing. Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19 of the glutamate NMDA R1 receptor (GRIN1 transcript. Disruption of three components of the motif pattern converted the CI cassette into a constitutive exon, while predominant skipping was conferred when the same components were introduced, de novo, into a heterologous constitutive exon. Predominant exon silencing was directed by the motif pattern in the presence of six competing exonic splicing enhancers, and this effect was retained after systematically repositioning the two exonic UAGGs within the CI cassette. In this system, hnRNP A1 was shown to mediate silencing while hnRNP H antagonized silencing. Genome-wide computational analysis combined with RT-PCR testing showed that a class of skipped human and mouse exons can be identified by searches that preserve the sequence and spatial configuration of the UAGG and GGGG motifs. This analysis suggests that the multi-component silencing code may play an important role in the tissue-specific regulation of the CI cassette exon, and that it may serve more generally as a molecular language to allow for intricate adjustments and the coordination of splicing patterns from different genes.

  7. A combinatorial code for splicing silencing: UAGG and GGGG motifs.

    Science.gov (United States)

    Han, Kyoungha; Yeo, Gene; An, Ping; Burge, Christopher B; Grabowski, Paula J

    2005-05-01

    Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-specific mRNA isoforms. Few regulatory mechanisms are understood at the level of combinatorial control despite numerous sequences, distinct from splice sites, that have been shown to play roles in splicing enhancement or silencing. Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19) of the glutamate NMDA R1 receptor (GRIN1) transcript. Disruption of three components of the motif pattern converted the CI cassette into a constitutive exon, while predominant skipping was conferred when the same components were introduced, de novo, into a heterologous constitutive exon. Predominant exon silencing was directed by the motif pattern in the presence of six competing exonic splicing enhancers, and this effect was retained after systematically repositioning the two exonic UAGGs within the CI cassette. In this system, hnRNP A1 was shown to mediate silencing while hnRNP H antagonized silencing. Genome-wide computational analysis combined with RT-PCR testing showed that a class of skipped human and mouse exons can be identified by searches that preserve the sequence and spatial configuration of the UAGG and GGGG motifs. This analysis suggests that the multi-component silencing code may play an important role in the tissue-specific regulation of the CI cassette exon, and that it may serve more generally as a molecular language to allow for intricate adjustments and the coordination of splicing patterns from different genes.

  8. The leitmotif racket in Lolita—marginal notes on Nabokov’s use of motifs

    OpenAIRE

    2013-01-01

    This is a study of Nabokov’s use of leitmotifs in Lolita, a study of how they intertwine and interact, and the problems Nabokov’s stylistic dexterity pose to the reader and critic. It traces prominent occurrences of the toilet and telephone motifs, and their connection with motifs like the slipper and the racket motif.

  9. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  10. Process-based network decomposition reveals backbone motif structure.

    Science.gov (United States)

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-06-08

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated).

  11. STEME: efficient EM to find motifs in large data sets

    Science.gov (United States)

    Reid, John E.; Wernisch, Lorenz

    2011-01-01

    MEME and many other popular motif finders use the expectation–maximization (EM) algorithm to optimize their parameters. Unfortunately, the running time of EM is linear in the length of the input sequences. This can prohibit its application to data sets of the size commonly generated by high-throughput biological techniques. A suffix tree is a data structure that can efficiently index a set of sequences. We describe an algorithm, Suffix Tree EM for Motif Elicitation (STEME), that approximates EM using suffix trees. To the best of our knowledge, this is the first application of suffix trees to EM. We provide an analysis of the expected running time of the algorithm and demonstrate that STEME runs an order of magnitude more quickly than the implementation of EM used by MEME. We give theoretical bounds for the quality of the approximation and show that, in practice, the approximation has a negligible effect on the outcome. We provide an open source implementation of the algorithm that we hope will be used to speed up existing and future motif search algorithms. PMID:21785132

  12. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  13. Motif structure and cooperation in real-world complex networks

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  14. THE MOTIF OF THE PRODIGAL SON IN IVAN TURGENEV'S NOVELS

    Directory of Open Access Journals (Sweden)

    Valentina Ivanovna Gabdullina

    2013-11-01

    Full Text Available The author questions the perception of Ivan Turgenev as a “non- Christian writer” and studies the problem of the prodigal son motif functioning in a series of his novels. In his novels, Turgenev pictured different phases of the archetypal story, originating from the Gospel parable of the prodigal son. In the novel Rudin he depicted the phase of spiritual wanderings of the hero who had lost touch with his native land — Russia. In his next novels (Home of the Gentry, Fathers and Sons and Smoke, after leading his hero in circles and sending him back to his paternal home, Turgenev reconstructs the model of human behavior, represented in the parable, thereby recognizing the immutability of the idea formalized in the Gospel. The motif of the return to Russian land gets its completion in Turgenev's last novel Virgin Soil, in which the author paradoxically connects the Westernist idea with the Gospel imperative. Solomin, the son of a deacon, sent by his wise father out to Europe “to get education”, studies in England, masters the European knowledge and returns back “to his native land” to establish his own business in inland Russia. Thus, a series of Turgenev's novels, in which he portrayed different phases of social life, are interlinked with the motif of the prodigal son, who is represented by novels' main characters.

  15. ROMANIAN TRADITIONAL MOTIF ELEMENT OF MODERNITY IN CLOTHING

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius Darius

    2017-05-01

    Full Text Available In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the T-shirt for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the University of Oradea and traditional motif was selected from a collection comprising a number of Romanian traditional motifs from different parts of the country and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. The embroidery was done using BERNINA Embroidery Software Designer Plus Software. This software allows you to export the model to any domestic or industrial embroidery machine regardless of brand. Finally we observed the resistance of the printed and embroided model to various: elasticity, resistance to abrasion and a sensory analysis on the preservation of color. After testing we noticed the imprint resistance applied to the fabric, resulting in a quality that makes possible to keep the Romanian traditional motif from generation to generation.

  16. MAR characteristic motifs mediate episomal vector in CHO cells.

    Science.gov (United States)

    Lin, Yan; Li, Zhaoxi; Wang, Tianyun; Wang, Xiaoyin; Wang, Li; Dong, Weihua; Jing, Changqin; Yang, Xianjun

    2015-04-01

    An ideal gene therapy vector should enable persistent transgene expression without limitations in safety and reproducibility. Recent researches' insight into the ability of chromosomal matrix attachment regions (MARs) to mediate episomal maintenance of genetic elements allowed the development of a circular episomal vector. Although a MAR-mediated engineered vector has been developed, little is known on which motifs of MAR confer this function during interaction with the host genome. Here, we report an artificially synthesized DNA fragment containing only characteristic motif sequences that served as an alternative to human beta-interferon matrix attachment region sequence. The potential of the vector to mediate gene transfer in CHO cells was investigated. The short synthetic MAR motifs were found to mediate episomal vector at a low copy number for many generations without integration into the host genome. Higher transgene expression was maintained for at least 4 months. In addition, MAR was maintained episomally and conferred sustained EGFP expression even in nonselective CHO cells. All the results demonstrated that MAR characteristic sequence-based vector can function as stable episomes in CHO cells, supporting long-term and effective transgene expression.

  17. Event Networks and the Identification of Crime Pattern Motifs.

    Directory of Open Access Journals (Sweden)

    Toby Davies

    Full Text Available In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible.

  18. Mutagenic scan of the H-N-H motif of colicin E9: implications for the mechanistic enzymology of colicins, homing enzymes and apoptotic endonucleases

    Science.gov (United States)

    Walker, David C.; Georgiou, Theonie; Pommer, Ansgar J.; Walker, Daniel; Moore, Geoffrey R.; Kleanthous, Colin; James, Richard

    2002-01-01

    Colicin E9 is a microbial toxin that kills bacteria through random degradation of chromosomal DNA. Within the active site of the cytotoxic endonuclease domain of colicin E9 (the E9 DNase) is a 32 amino acid motif found in the H-N-H group of homing endonucleases. Crystal structures of the E9 DNase have implicated several conserved residues of the H-N-H motif in the mechanism of DNA hydrolysis. We have used mutagenesis to test the involvement of these key residues in colicin toxicity, metal ion binding and catalysis. Our data show, for the first time, that the H-N-H motif is the site of DNA binding and that Mg2+-dependent cleavage of double-stranded DNA is responsible for bacterial cell death. We demonstrate that more active site residues are required for catalysis in the presence of Mg2+ ions than transition metals, consistent with the recent hypothesis that the E9 DNase hydrolyses DNA by two distinct, cation-dependent catalytic mechanisms. The roles of individual amino acids within the H-N-H motif are discussed in the context of the available structural information on this and related DNases and we address the possible mechanistic similarities between caspase-activated DNases, responsible for the degradation of chromatin in eukaryotic apoptosis, and H-N-H DNases. PMID:12136104

  19. The double identity of linguistic doubling.

    Science.gov (United States)

    Berent, Iris; Bat-El, Outi; Brentari, Diane; Dupuis, Amanda; Vaknin-Nusbaum, Vered

    2016-11-29

    Does knowledge of language consist of abstract principles, or is it fully embodied in the sensorimotor system? To address this question, we investigate the double identity of doubling (e.g., slaflaf, or generally, XX; where X stands for a phonological constituent). Across languages, doubling is known to elicit conflicting preferences at different levels of linguistic analysis (phonology vs. morphology). Here, we show that these preferences are active in the brains of individual speakers, and they are demonstrably distinct from sensorimotor pressures. We first demonstrate that doubling in novel English words elicits divergent percepts: Viewed as meaningless (phonological) forms, doubling is disliked (e.g., slaflaf linguistic preferences doubly dissociate from sensorimotor demands: A single stimulus can elicit diverse percepts, yet these percepts are invariant across stimulus modality--for speech and signs. These conclusions are in line with the possibility that some linguistic principles are abstract, and they apply broadly across language modality.

  20. A novel Bayesian DNA motif comparison method for clustering and retrieval.

    Directory of Open Access Journals (Sweden)

    Naomi Habib

    2008-02-01

    Full Text Available Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.

  1. The PSAP motif within the ORF3 protein of an avian strain of the hepatitis E virus is not critical for viral infectivity in vivo but plays a role in virus release.

    Science.gov (United States)

    Kenney, Scott P; Pudupakam, R S; Huang, Yao-Wei; Pierson, F William; LeRoith, Tanya; Meng, Xiang-Jin

    2012-05-01

    The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or "late domains" involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.

  2. The Land of the Dead – International Motifs in the Oldest Work of Japanese Literature

    OpenAIRE

    Danijela Vasić

    2010-01-01

    Il existe dans le Kojiki (712), la plus ancienne œuvre littéraire du Japon, une abondance de motifs que l’on peut retrouver dans les cultures de nombreux peuples dans le monde entier. Cet article traite des motifs internationaux tissés dans deux mythes du premier tome, formant une image poétique du Pays des morts, la partie souterraine d’une structure cosmique tripartite. Sont abordés, entre autres, le motif largement connu de Perséphone, le motif orphique ou encore le motif de la fuite du Pa...

  3. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L;

    1998-01-01

    amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  4. The Cambridge Double Star Atlas

    Science.gov (United States)

    MacEvoy, Bruce; Tirion, Wil

    2015-12-01

    Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.

  5. Double outlet right ventricle

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007328.htm Double outlet right ventricle To use the sharing features on this page, please enable JavaScript. Double outlet right ventricle (DORV) is a heart disease that is ...

  6. Motif-based analysis of large nucleotide data sets using MEME-ChIP.

    Science.gov (United States)

    Ma, Wenxiu; Noble, William S; Bailey, Timothy L

    2014-01-01

    MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by CLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix-based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP's interactive HTML output groups and aligns significant motifs to ease interpretation. This protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods.

  7. Chromosome doubling method

    Science.gov (United States)

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  8. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif.

    Science.gov (United States)

    Chimura, Takahiko; Launey, Thomas; Ito, Masao

    2011-06-08

    The interactions between PDZ (PSD-95, Dlg, ZO-1) domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C-) terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V) or type-II (x-x-V-x-I/V) PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode). We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA) bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  9. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  10. DNA nanotechnology based on i-motif structures.

    Science.gov (United States)

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  11. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  12. Analysis of septins across kingdoms reveals orthology and new motifs

    Directory of Open Access Journals (Sweden)

    Malmberg Russell L

    2007-07-01

    Full Text Available Abstract Background Septins are cytoskeletal GTPase proteins first discovered in the fungus Saccharomyces cerevisiae where they organize the septum and link nuclear division with cell division. More recently septins have been found in animals where they are important in processes ranging from actin and microtubule organization to embryonic patterning and where defects in septins have been implicated in human disease. Previous studies suggested that many animal septins fell into independent evolutionary groups, confounding cross-kingdom comparison. Results In the current work, we identified 162 septins from fungi, microsporidia and animals and analyzed their phylogenetic relationships. There was support for five groups of septins with orthology between kingdoms. Group 1 (which includes S. cerevisiae Cdc10p and human Sept9 and Group 2 (which includes S. cerevisiae Cdc3p and human Sept7 contain sequences from fungi and animals. Group 3 (which includes S. cerevisiae Cdc11p and Group 4 (which includes S. cerevisiae Cdc12p contain sequences from fungi and microsporidia. Group 5 (which includes Aspergillus nidulans AspE contains sequences from filamentous fungi. We suggest a modified nomenclature based on these phylogenetic relationships. Comparative sequence alignments revealed septin derivatives of already known G1, G3 and G4 GTPase motifs, four new motifs from two to twelve amino acids long and six conserved single amino acid positions. One of these new motifs is septin-specific and several are group specific. Conclusion Our studies provide an evolutionary history for this important family of proteins and a framework and consistent nomenclature for comparison of septin orthologs across kingdoms.

  13. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  14. Identification of imine reductase-specific sequence motifs.

    Science.gov (United States)

    Fademrecht, Silvia; Scheller, Philipp N; Nestl, Bettina M; Hauer, Bernhard; Pleiss, Jürgen

    2016-05-01

    Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence-function relationships, the Imine Reductase Engineering Database (www.IRED.BioCatNet.de) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R-IRED-Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED-specific motifs were identified, the cofactor binding motif GLGxMGx(5 )[ATS]x(4) Gx(4) [VIL]WNR[TS]x(2) [KR] and the active site motif Gx[DE]x[GDA]x[APS]x(3){K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β-hydroxyacid dehydrogenases (β-HADs), no conversion of β-hydroxyacids has been observed. Superfamily-specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily-specifically conserved and differ in R- and S-selective enzymes. © 2016 Wiley Periodicals, Inc.

  15. Evolving DNA motifs to predict GeneChip probe performance

    Directory of Open Access Journals (Sweden)

    Harrison AP

    2009-03-01

    Full Text Available Abstract Background Affymetrix High Density Oligonuclotide Arrays (HDONA simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe. Results Regular expressions can be automatically created from a Backus-Naur form (BNF context-free grammar using strongly typed genetic programming. Conclusion The automatically produced motif is better at predicting poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided.

  16. Indonesian Traditional Toys and the Development of Batik Motifs

    Directory of Open Access Journals (Sweden)

    Bagus Indrayana

    2016-06-01

    Full Text Available There is a wide array of traditional toys in Indonesia. In the past, traditional toys played an important role for skill and creativity development of children. Today, the position of traditional toys in the society is displaced by toys from large-scale manufacturers. Given the critical role of traditional toys for children’s motoric and social development, there is a need to develop media that can be used to promote these traditional products and strengthen their position in the public. We propose to use Batik as a way to effectively disseminate and promote traditional toys to the general public. Apart from this, using traditional toys to create new Batik motifs can have an economic value for the producers of Batik, promote Indonesian products and enrich the Indonesian Batik. This study aims to explore the variety of traditional toys, mainly from Klaten and Magelang, in the Central Java province of Indonesia, and use them as the basis for the development of Batik motif creation. This study used Trilogi Keseimbangan (or Harmony Trilogy aesthetic theory analytical approach that explains the creation of craft consists of the following phases: exploration, design, and materialization. The creation method in this study adopts Tiga Tahap Enam Langkah (Three Phases, Six Steps method offered in the theory. The finding in the field found that the traditional toys material used in Klaten and Magelang, mostly made from waste wood, plywood, and zinc. The manufacturing process is done manually by two or three craftsmen using a simple technology. The traditional toys are designed by the artisans mostly, although there may be designs from the clients. In addition, we also found that the traditional toys have never been used as a Batik motif. The traditional toys Batik motif presented in this work is researcher’s design. For the purposes of this study, we first research the variety of traditional toys available in the market today in Indonesia. We look

  17. Core signalling motif displaying multistability through multi-state enzymes

    DEFF Research Database (Denmark)

    Feng, Song; Saez Cornellana, Meritxell; Wiuf, Carsten Henrik

    2016-01-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology......-state kinases and the described competition-based motif are part of several natural signalling systems and thereby could enable them to implement complex information processing through multistability. These results indicate that multi-state kinases in signalling systems are readily exploited by natural...

  18. Present status of quinoxaline motifs: excellent pathfinders in therapeutic medicine.

    Science.gov (United States)

    Ajani, Olayinka Oyewale

    2014-10-01

    Quinoxalines belong to a class of excellent heterocyclic scaffolds owing to their wide biological properties and diverse therapeutic applications in medicinal research. They are complementary in shapes and charges to numerous biomolecules they interact with, thereby resulting in increased binding affinity. The pharmacokinetic properties of drugs bearing quinoxaline cores have shown them to be relatively easy to administer either as intramuscular solutions, oral capsules or rectal suppositories. This work deals with recent advances in the synthesis and pharmacological diversities of quinoxaline motifs which might pave ways for novel drugs development.

  19. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    Science.gov (United States)

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-02

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  20. Recurring sequence-structure motifs in (βα)8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs.

    Science.gov (United States)

    Wang, Jichao; Zhang, Tongchuan; Liu, Ruicun; Song, Meilin; Wang, Juncheng; Hong, Jiong; Chen, Quan; Liu, Haiyan

    2017-02-01

    An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Isolation of a Δ5 desaturase gene from Euglena gracilis and functional dissection of its HPGG and HDASH motifs.

    Science.gov (United States)

    Walters Pollak, Dana; Bostick, Michael W; Yoon, Hyeryoung; Wang, Jamie; Hollerbach, Dieter H; He, Hongxian; Damude, Howard G; Zhang, Hongxiang; Yadav, Narendra S; Hong, Seung-Pyo; Sharpe, Pamela; Xue, Zhixiong; Zhu, Quinn

    2012-09-01

    Delta (Δ) 5 desaturase is a key enzyme for the biosynthesis of health-beneficial long chain polyunsaturated fatty acids such as arachidonic acid (ARA, C20:4n-6), eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) via the "desaturation and elongation" pathways. A full length Δ5 desaturase gene from Euglena gracilis (EgΔ5D) was isolated by cloning the products of polymerase chain reaction with degenerate oligonucleotides as primers, followed by 5' and 3' rapid amplification of cDNA ends. The whole coding region of EgΔ5D was 1,350 nucleotides in length and encoded a polypeptide of 449 amino acids. BlastP search showed that EgΔ5D has about 39 % identity with a Δ5 desaturase of Phaeodactylum tricornutum. In a genetically modified dihomo-gamma-linoleic acid (DGLA, C20:3n-6) producing Yarrowia lipolytica strain, EgΔ5D had strong Δ5 desaturase activity with DGLA to ARA conversion of more than 24 %. Functional dissection of its HPGG and HDASH motifs demonstrated that both motifs were important, but not necessary in the exact form as encoded for the enzyme activity of EgΔ5D. A double mutant EgΔ5D-34G158G with altered sequences within both HPGG and HDASH motifs was generated and exhibited Δ5 desaturase activity similar to the wild type EgΔ5D. Codon optimization of the N-terminal region of EgΔ5D-34G158G and substitution of the arginine with serine at residue 347 improved substrate conversion to 27.6 %.

  2. Fast and Accurate Discovery of Degenerate Linear Motifs in Protein Sequences

    Science.gov (United States)

    Levy, Emmanuel D.; Michnick, Stephen W.

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or “wildcard” positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  3. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  4. Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy.

    Science.gov (United States)

    Petrović, Dejan M; Leenhouts, Kees; van Roosmalen, Maarten L; Kleinjan, Fenneke; Broos, Jaap

    2012-09-15

    The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a tryptophan analog fluorescence spectroscopy approach is presented to monitor the LysM-ligand interaction using the LysM of the N-acetylglucosaminidase enzyme of Lactococcus lactis. A three-dimensional model of this LysM protein was built based on available structural information of a homolog. This model allowed choosing the amino acid positions to be labeled with a Trp analog. Four functional single-Trp LysM mutants and one double-Trp LysM mutant were constructed and biosynthetically labeled with 7-azatryptophan or 5-hydroxytryptophan. These Trp analogs feature red-shifted absorption spectra, enabling the monitoring of the LysM-ligand interaction in media with a Trp background. The emission intensities of four of the five LysM constructs were found to change markedly on exposure to either L. lactis bacterium-like particles or peptidoglycan as ligands. The method reported here is suitable to monitor LysM-ligand interactions at (sub)micromolar LysM concentrations and can be used for the detection of low levels of peptidoglycan or microbes in solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Transcription factor motif quality assessment requires systematic comparative analysis [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Caleb Kipkurui Kibet

    2016-03-01

    Full Text Available Transcription factor (TF binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis.

  6. HIGEDA: a hierarchical gene-set genetics based algorithm for finding subtle motifs in biological sequences.

    Science.gov (United States)

    Le, Thanh; Altman, Tom; Gardiner, Katheleen

    2010-02-01

    Identification of motifs in biological sequences is a challenging problem because such motifs are often short, degenerate, and may contain gaps. Most algorithms that have been developed for motif-finding use the expectation-maximization (EM) algorithm iteratively. Although EM algorithms can converge quickly, they depend strongly on initialization parameters and can converge to local sub-optimal solutions. In addition, they cannot generate gapped motifs. The effectiveness of EM algorithms in motif finding can be improved by incorporating methods that choose different sets of initial parameters to enable escape from local optima, and that allow gapped alignments within motif models. We have developed HIGEDA, an algorithm that uses the hierarchical gene-set genetic algorithm (HGA) with EM to initiate and search for the best parameters for the motif model. In addition, HIGEDA can identify gapped motifs using a position weight matrix and dynamic programming to generate an optimal gapped alignment of the motif model with sequences from the dataset. We show that HIGEDA outperforms MEME and other motif-finding algorithms on both DNA and protein sequences. Source code and test datasets are available for download at http://ouray.cudenver.edu/~tnle/, implemented in C++ and supported on Linux and MS Windows.

  7. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  8. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    States David

    2007-01-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  9. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  10. Transduction motif analysis of gastric cancer based on a human signaling network

    Directory of Open Access Journals (Sweden)

    G. Liu

    2014-05-01

    Full Text Available To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  11. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.

    Directory of Open Access Journals (Sweden)

    Bryan M Zhao

    Full Text Available Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P residue, but also the Ser(P and Thr(P residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7, atypical (DUSP3, DUSP14, DUSP22 and DUSP27, viral (variola VH1, and Cdc25 (A-C. Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets.

  12. The discodermolide hairpin structure flows from conformationally stable modular motifs.

    Science.gov (United States)

    Jogalekar, Ashutosh S; Kriel, Frederik H; Shi, Qi; Cornett, Ben; Cicero, Daniel; Snyder, James P

    2010-01-14

    (+)-Discodermolide (DDM), a polyketide macrolide from marine sponge, is a potent microtubule assembly promoter. Reported solid-state, solution, and protein-bound DDM conformations reveal the unusual result that a common hairpin conformational motif exists in all three microenvironments. No other flexible microtubule binding agent exhibits such constancy of conformation. In the present study, we combine force-field conformational searches with NMR deconvolution in different solvents to compare DDM conformers with those observed in other environments. While several conformational families are perceived, the hairpin form dominates. The stability of this motif is dictated primarily by steric factors arising from repeated modular segments in DDM composed of the C(Me)-CHX-C(Me) fragment. Furthermore, docking protocols were utilized to probe the DDM binding mode in beta-tubulin. A previously suggested pose is substantiated (Pose-1), while an alternative (Pose-2) has been identified. SAR analysis for DDM analogues differentiates the two poses and suggests that Pose-2 is better able to accommodate the biodata.

  13. A simple motif for protein recognition in DNA secondary structures.

    Science.gov (United States)

    Landt, Stephen G; Ramirez, Alejandro; Daugherty, Matthew D; Frankel, Alan D

    2005-09-02

    DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.

  14. The Origin of Motif Families in Food Webs

    CERN Document Server

    Klaise, Janis

    2016-01-01

    Food webs have been found to exhibit remarkable motif profiles, patterns in the relative prevalences of all possible three-species sub-graphs, and this has been related to ecosystem properties such as stability and robustness. Analysing 46 food webs of various kinds, we find that most food webs fall into one of two distinct motif families. The separation between the families is well predicted by a global measure of hierarchical order in directed networks - trophic coherence. We find that trophic coherence is also a good predictor for the extent of omnivory, defined as the tendency of species to feed on multiple trophic levels. We compare our results to a network assembly model that admits tunable trophic coherence via a single free parameter. The model is able to generate food webs in either of the two families by varying this parameter, and correctly classifies almost all the food webs in our database. This establishes a link between global order and local preying patterns in food webs.

  15. Synchronization patterns: from network motifs to hierarchical networks

    Science.gov (United States)

    Krishnagopal, Sanjukta; Lehnert, Judith; Poel, Winnie; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    We investigate complex synchronization patterns such as cluster synchronization and partial amplitude death in networks of coupled Stuart-Landau oscillators with fractal connectivities. The study of fractal or self-similar topology is motivated by the network of neurons in the brain. This fractal property is well represented in hierarchical networks, for which we present three different models. In addition, we introduce an analytical eigensolution method and provide a comprehensive picture of the interplay of network topology and the corresponding network dynamics, thus allowing us to predict the dynamics of arbitrarily large hierarchical networks simply by analysing small network motifs. We also show that oscillation death can be induced in these networks, even if the coupling is symmetric, contrary to previous understanding of oscillation death. Our results show that there is a direct correlation between topology and dynamics: hierarchical networks exhibit the corresponding hierarchical dynamics. This helps bridge the gap between mesoscale motifs and macroscopic networks. This article is part of the themed issue 'Horizons of cybernetical physics'.

  16. Graph animals, subgraph sampling and motif search in large networks

    CERN Document Server

    Baskerville, Kim; Paczuski, Maya

    2007-01-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for `graph animals', i.e. connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan et al., Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of super-exponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the TAP high throughput method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs (Z-scores >10) or anti-motifs (Z-scores <-10) when the null model is the...

  17. Prevalent RNA recognition motif duplication in the human genome.

    Science.gov (United States)

    Tsai, Yihsuan S; Gomez, Shawn M; Wang, Zefeng

    2014-05-01

    The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner.

  18. Results of de-novo and Motif activity analyses - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us FANTOM5 Results of de-novo and Motif activity analyses Data detail Data name Results of de-n...S motif near TSS de-novo motif analysis with HOMER etc. Significance of the corre.../extra/Motifs/ File size: 6.2 GB Simple search URL - Data acquisition method - Data anal...ysis method JASPER motif search HOMER motif analysis Number of data entries 400 files - About This Da...tabase Database Description Download License Update History of This Database Site Policy | Contact Us Results of de-novo and Motif activity analyses - FANTOM5 | LSDB Archive ...

  19. Structure-activity relationship of the peptide binding-motif mediating the BRCA2:RAD51 protein-protein interaction.

    Science.gov (United States)

    Scott, Duncan E; Marsh, May; Blundell, Tom L; Abell, Chris; Hyvönen, Marko

    2016-04-01

    RAD51 is a recombinase involved in the homologous recombination of double-strand breaks in DNA. RAD51 forms oligomers by binding to another molecule of RAD51 via an 'FxxA' motif, and the same recognition sequence is similarly utilised to bind BRCA2. We have tabulated the effects of mutation of this sequence, across a variety of experimental methods and from relevant mutations observed in the clinic. We use mutants of a tetrapeptide sequence to probe the binding interaction, using both isothermal titration calorimetry and X-ray crystallography. Where possible, comparison between our tetrapeptide mutational study and the previously reported mutations is made, discrepancies are discussed and the importance of secondary structure in interpreting alanine scanning and mutational data of this nature is considered.

  20. Sequence Length Limits for Controlling False Positives in Discovering Nucleotide Sequence Motifs

    Institute of Scientific and Technical Information of China (English)

    CHEN Lei; QiAN Zi-liang

    2008-01-01

    In the study of motif discovery, especially the transcription factor DNA binding sites discovery, a too long input sequence would return non-informative motifs rather than those biological functional motifs. This paper gave theoretical analyses and computational experiments to suggest the length limits of the input sequence. When the sequence length exceeds a certain critical point, the probability of discovering the motif decreases sharply. The work not only gave an explanation on the unsatisfying results of the existed motif discovery problems that the input sequence length might be too long and exceed the point, but also provided an estimation of input sequence length we should accept to get more meaningful and reliable results in motif discovery.

  1. Exhaustive Search for Over-represented DNA Sequence Motifs with CisFinder

    Science.gov (United States)

    Sharov, Alexei A.; Ko, Minoru S.H.

    2009-01-01

    We present CisFinder software, which generates a comprehensive list of motifs enriched in a set of DNA sequences and describes them with position frequency matrices (PFMs). A new algorithm was designed to estimate PFMs directly from counts of n-mer words with and without gaps; then PFMs are extended over gaps and flanking regions and clustered to generate non-redundant sets of motifs. The algorithm successfully identified binding motifs for 12 transcription factors (TFs) in embryonic stem cells based on published chromatin immunoprecipitation sequencing data. Furthermore, CisFinder successfully identified alternative binding motifs of TFs (e.g. POU5F1, ESRRB, and CTCF) and motifs for known and unknown co-factors of genes associated with the pluripotent state of ES cells. CisFinder also showed robust performance in the identification of motifs that were only slightly enriched in a set of DNA sequences. PMID:19740934

  2. Unintegrated double parton distributions

    CERN Document Server

    Golec-Biernat, K

    2016-01-01

    We present the construction of unintegrated double parton distribution functions which include dependence on transverse momenta of partons. We extend the formulation which was used to obtain the single unintegrated parton distributions from the standard, integrated parton distribution functions. Starting from the homogeneous part of the evolution equations for the integrated double parton distributions, we construct the unintegrated double parton distributions as the convolutions of the integrated double distributions and the splitting functions, multiplied by the Sudakov form factors. We show that there exist three domains of external hard scales which require three distinct forms of the unintegrated double distributions. The additional transverse momentum dependence which arises through the Sudakov form factors leads to non-trivial correlations in the parton momenta. We also discuss the non-homogeneous contribution to the unintegrated double parton distributions, which arises due to the splitting of a singl...

  3. On Double Vector Bundles

    Institute of Scientific and Technical Information of China (English)

    Zhuo CHEN; Zhang Ju LIU; Yun He SHENG

    2014-01-01

    In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.

  4. On Double Vector Bundles

    OpenAIRE

    Chen, Zhuo; Liu, Zhangju; Sheng, Yunhe

    2011-01-01

    In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.

  5. UNILATERAL INCOMPLETE DOUBLE URETER

    Directory of Open Access Journals (Sweden)

    Kaini

    2013-04-01

    Full Text Available ABSTRACT: Double ureter is a result of premature division of t he ureteric bud. The ureters may join in the lower third of their course and open thr ough a common orifice into the bladder. If they open independently into the bladder, the ureter draining the upper pelvis opens into the bladder below the opening of the other ureter. Patie nts with double ureter or double pelvis are more likely to develop urinary infection and calculi .

  6. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  7. NestedMICA as an ab initio protein motif discovery tool

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2008-01-01

    Full Text Available Abstract Background Discovering overrepresented patterns in amino acid sequences is an important step in protein functional element identification. We adapted and extended NestedMICA, an ab initio motif finder originally developed for finding transcription binding site motifs, to find short protein signals, and compared its performance with another popular protein motif finder, MEME. NestedMICA, an open source protein motif discovery tool written in Java, is driven by a Monte Carlo technique called Nested Sampling. It uses multi-class sequence background models to represent different "uninteresting" parts of sequences that do not contain motifs of interest. In order to assess NestedMICA as a protein motif finder, we have tested it on synthetic datasets produced by spiking instances of known motifs into a randomly selected set of protein sequences. NestedMICA was also tested using a biologically-authentic test set, where we evaluated its performance with respect to varying sequence length. Results Generally NestedMICA recovered most of the short (3–9 amino acid long test protein motifs spiked into a test set of sequences at different frequencies. We showed that it can be used to find multiple motifs at the same time, too. In all the assessment experiments we carried out, its overall motif discovery performance was better than that of MEME. Conclusion NestedMICA proved itself to be a robust and sensitive ab initio protein motif finder, even for relatively short motifs that exist in only a small fraction of sequences. Availability NestedMICA is available under the Lesser GPL open-source license from: http://www.sanger.ac.uk/Software/analysis/nmica/

  8. Exhaustive Search for Over-represented DNA Sequence Motifs with CisFinder

    OpenAIRE

    Sharov, Alexei A; Minoru S.H. Ko

    2009-01-01

    We present CisFinder software, which generates a comprehensive list of motifs enriched in a set of DNA sequences and describes them with position frequency matrices (PFMs). A new algorithm was designed to estimate PFMs directly from counts of n-mer words with and without gaps; then PFMs are extended over gaps and flanking regions and clustered to generate non-redundant sets of motifs. The algorithm successfully identified binding motifs for 12 transcription factors (TFs) in embryonic stem cel...

  9. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  10. Mapping network motif tunability and robustness in the design of synthetic signaling circuits.

    Directory of Open Access Journals (Sweden)

    Sergio Iadevaia

    Full Text Available Cellular networks are highly dynamic in their function, yet evolutionarily conserved in their core network motifs or topologies. Understanding functional tunability and robustness of network motifs to small perturbations in function and structure is vital to our ability to synthesize controllable circuits. In establishing core sets of network motifs, we selected topologies that are overrepresented in mammalian networks, including the linear, feedback, feed-forward, and bifan circuits. Static and dynamic tunability of network motifs were defined as the motif ability to respectively attain steady-state or transient outputs in response to pre-defined input stimuli. Detailed computational analysis suggested that static tunability is insensitive to the circuit topology, since all of the motifs displayed similar ability to attain predefined steady-state outputs in response to constant inputs. Dynamic tunability, in contrast, was tightly dependent on circuit topology, with some motifs performing superiorly in achieving observed time-course outputs. Finally, we mapped dynamic tunability onto motif topologies to determine robustness of motif structures to changes in topology and identify design principles for the rational assembly of robust synthetic networks.

  11. A motif extraction algorithm based on hashing and modulo-4 arithmetic.

    Science.gov (United States)

    Sheng, Huitao; Mehrotra, Kishan; Mohan, Chilukuri; Raina, Ramesh

    2008-01-01

    We develop an algorithm to identify cis-elements in promoter regions of coregulated genes. This algorithm searches for subsequences of desired length whose frequency of occurrence is relatively high, while accounting for slightly perturbed variants using hash table and modulo arithmetic. Motifs are evaluated using profile matrices and higher-order Markov background model. Simulation results show that our algorithm discovers more motifs present in the test sequences, when compared with two well-known motif-discovery tools (MDScan and AlignACE). The algorithm produces very promising results on real data set; the output of the algorithm contained many known motifs.

  12. Bacteria-mimicking nanoparticle surface functionalization with targeting motifs

    Science.gov (United States)

    Lai, Mei-Hsiu; Clay, Nicholas E.; Kim, Dong Hyun; Kong, Hyunjoon

    2015-04-01

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargo to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host's antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between the micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the mixing of SpA-PA-coupled micelles with antibodies resulted in the coating of micelles with antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated with antibodies to VCAM-1 or integrin αv displayed a higher binding affinity to substrates coated with VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage that this bacteria-inspired protein immobilization approach will be useful to improve the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers.In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various

  13. Topological defect motifs in two-dimensional Coulomb clusters

    CERN Document Server

    Radzvilavičius, A; 10.1088/0953-8984/23/38/385301

    2012-01-01

    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...

  14. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  15. Discovering sequence motifs in quantitative and qualitative pepetide data

    DEFF Research Database (Denmark)

    Andreatta, Massimo

    -dimensional, as binding sites normally consist of a pocket or a groove on the protein surface. However, in many cases such interactions contain a linear component and can be more conveniently represented, or approximated, by a protein-peptide interaction. Whereas time-consuming structural studies are necessary in systems...... of interactions in a single experiment, with virtually unlimited choice of potential targets and variants of these targets. However, the amount and complexity of data produced by high-throughput techniques poses serious challenges to researchers of limited bioinformatics expertise who need to analyze...... with the presence of multiple motifs, due to the experimental setup or the actual poly-specificity of the receptor, in peptide data. A new algorithm, based on Gibbs sampling, identifies multiple specificities by performing two tasks simultaneously: alignment and clustering of peptide data. The method, available...

  16. A cooperative fast annealing coevolutionary algorithm for protein motif extraction

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; TIAN YuanXin; ZOU XiaoYong; CAI PeiXiang; MO JinYuan

    2007-01-01

    By integrating the cooperative approach with the fast annealing coevolutionary algorithm (FAEA), a so-called cooperative fast annealing coevolutionary algorithm (CFACA) is presented in this paper for the purpose of solving high-dimensional problems. After the partition of the search space in CFACA, each smaller one is then searched by a separate FAEA. The fitness function is evaluated by combining sub-solutions found by each of the FAEAs. It demonstrates that the CFACA outperforms the FAEA in the domain of function optimization, especially in terms of convergence rate. The current algorithm is also applied to a real optimization problem of protein motif extraction. And a satisfactory result has been obtained with the accuracy of prediction achieving 67.0%, which is in agreement with the result in the PROSITE database.

  17. Study on online community user motif using web usage mining

    Science.gov (United States)

    Alphy, Meera; Sharma, Ajay

    2016-04-01

    The Web usage mining is the application of data mining, which is used to extract useful information from the online community. The World Wide Web contains at least 4.73 billion pages according to Indexed Web and it contains at least 228.52 million pages according Dutch Indexed web on 6th august 2015, Thursday. It’s difficult to get needed data from these billions of web pages in World Wide Web. Here is the importance of web usage mining. Personalizing the search engine helps the web user to identify the most used data in an easy way. It reduces the time consumption; automatic site search and automatic restore the useful sites. This study represents the old techniques to latest techniques used in pattern discovery and analysis in web usage mining from 1996 to 2015. Analyzing user motif helps in the improvement of business, e-commerce, personalisation and improvement of websites.

  18. The sword motif 'n Matthew 10:34

    Directory of Open Access Journals (Sweden)

    David C. Sim

    2000-01-01

    Full Text Available 'n Mathew 10:34 Jesus uters a very dificult saying. He claims that he has not come to bring peace, but a sword. The form of this saying does not trace back to the historical Jesus; it is the product of Matthew's redaction of a Q passage which is found 'n a more original form 'n Luke 12:51. What did the evangelist mean when he wrote that Jesus brought a sword? 'n the Hebrew scriptures the sword was acommon symbol for the judgement and punishment of God, and 'n later times it represented a number of themes associated with the eschaton. It is argued 'n this study that Mathew, who was fully immersed 'n the apocalyptic-eschatological traditions of his day, probably used the sword motif 'n Matthew 10:34 to symbolise anumber of important eschatological events.

  19. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  20. Dynamic properties of network motifs contribute to biological network organization.

    Directory of Open Access Journals (Sweden)

    Robert J Prill

    2005-11-01

    Full Text Available Biological networks, such as those describing gene regulation, signal transduction, and neural synapses, are representations of large-scale dynamic systems. Discovery of organizing principles of biological networks can be enhanced by embracing the notion that there is a deep interplay between network structure and system dynamics. Recently, many structural characteristics of these non-random networks have been identified, but dynamical implications of the features have not been explored comprehensively. We demonstrate by exhaustive computational analysis that a dynamical property--stability or robustness to small perturbations--is highly correlated with the relative abundance of small subnetworks (network motifs in several previously determined biological networks. We propose that robust dynamical stability is an influential property that can determine the non-random structure of biological networks.

  1. Polyproline and triple helix motifs in host-pathogen recognition.

    Science.gov (United States)

    Berisio, Rita; Vitagliano, Luigi

    2012-12-01

    Secondary structure elements often mediate protein-protein interactions. Despite their low abundance in folded proteins, polyproline II (PPII) and its variant, the triple helix, are frequently involved in protein-protein interactions, likely due to their peculiar propensity to be solvent-exposed. We here review the role of PPII and triple helix in mediating hostpathogen interactions, with a particular emphasis to the structural aspects of these processes. After a brief description of the basic structural features of these elements, examples of host-pathogen interactions involving these motifs are illustrated. Literature data suggest that the role played by PPII motif in these processes is twofold. Indeed, PPII regions may directly mediate interactions between proteins of the host and the pathogen. Alternatively, PPII may act as structural spacers needed for the correct positioning of the elements needed for adhesion and infectivity. Recent investigations have highlighted that collagen triple helix is also a common target for bacterial adhesins. Although structural data on complexes between adhesins and collagen models are rather limited, experimental and theoretical studies have unveiled some interesting clues of the recognition process. Interestingly, very recent data show that not only is the triple helix used by pathogens as a target in the host-pathogen interaction but it may also act as a bait in these processes since bacterial proteins containing triple helix regions have been shown to interact with host proteins. As both PPII and triple helix expose several main chain non-satisfied hydrogen bond acceptors and donors, both elements are highly solvated. The preservation of the solvation state of both PPII and triple helix upon protein-protein interaction is an emerging aspect that will be here thoroughly discussed.

  2. Double beta decay experiments

    CERN Document Server

    Barabash, A S

    2011-01-01

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  3. Dual doubled geometry

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Riccioni, Fabio; Alvarez-Gaumé, L.

    2011-01-01

    We probe doubled geometry with dual fundamental branes. i.e. solitons. Restricting ourselves first to solitonic branes with more than two transverse directions we find that the doubled geometry requires an effective wrapping rule for the solitonic branes which is dual to the wrapping rule for fundam

  4. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  5. Assembly of supramolecular DNA complexes containing both G-quadruplexes and i-motifs by enhancing the G-repeat-bearing capacity of i-motifs

    Science.gov (United States)

    Cao, Yanwei; Gao, Shang; Yan, Yuting; Bruist, Michael F.; Wang, Bing; Guo, Xinhua

    2017-01-01

    The single-step assembly of supramolecular complexes containing both i-motifs and G-quadruplexes (G4s) is demonstrated. This can be achieved because the formation of four-stranded i-motifs appears to be little affected by certain terminal residues: a five-cytosine tetrameric i-motif can bear ten-base flanking residues. However, things become complex when different lengths of guanine-repeats are added at the 3′ or 5′ ends of the cytosine-repeats. Here, a series of oligomers d(XGiXC5X) and d(XC5XGiX) (X = A, T or none; i < 5) are designed to study the impact of G-repeats on the formation of tetrameric i-motifs. Our data demonstrate that tetramolecular i-motif structure can tolerate specific flanking G-repeats. Assemblies of these oligonucleotides are polymorphic, but may be controlled by solution pH and counter ion species. Importantly, we find that the sequences d(TGiAC5) can form the tetrameric i-motif in large quantities. This leads to the design of two oligonucleotides d(TG4AC7) and d(TGBrGGBrGAC7) that self-assemble to form quadruplex supramolecules under certain conditions. d(TG4AC7) forms supramolecules under acidic conditions in the presence of K+ that are mainly V-shaped or ring-like containing parallel G4s and antiparallel i-motifs. d(TGBrGGBrGAC7) forms long linear quadruplex wires under acidic conditions in the presence of Na+ that consist of both antiparallel G4s and i-motifs. PMID:27899568

  6. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  7. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    Science.gov (United States)

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  8. Construction of DNA logic gates utilizing a H+/Ag+ induced i-motif structure.

    Science.gov (United States)

    Shi, Yunhua; Sun, Hongxia; Xiang, Junfeng; Chen, Hongbo; Yang, Qianfan; Guan, Aijiao; Li, Qian; Yu, Lijia; Tang, Yalin

    2014-12-18

    A simple technology to construct diverse DNA logic gates (OR and INHIBIT) has been designed utilizing a H(+) and/or Ag(+) induced i-motif structure. The logic gates are easily controlled and also show a real time response towards inputs. The research provides a new insight for designing DNA logic gates using an i-motif DNA structure.

  9. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  10. Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor.

    NARCIS (Netherlands)

    H.J. Dubbink (Erik Jan); R. Hersmus (Remko); C.S. Verma (Chandra); H.A.G.M. van der Korput (Hetty); C.A. Berrevoets (Cor); J. van Tol (Judith); A.C.J. Ziel-van der Made (Angelique); A.O. Brinkmann (Albert); A.C. Pike (Ashley); J. Trapman (Jan)

    2004-01-01

    textabstractAmong nuclear receptors, the androgen receptor (AR) is unique in that its ligand-binding domain (LBD) interacts with the FXXLF motif in the N-terminal domain, resembling coactivator LXXLL motifs. We compared AR- and estrogen receptor alpha-LBD interactions of the wild-t

  11. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif

    NARCIS (Netherlands)

    Senchou, V.; Weide, R.L.; Carrasco, A.; Bouyssou, H.; Pont-Lezica, R.; Govers, F.; Canut, H.

    2004-01-01

    The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and pl

  12. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  13. MOMFER: A Search Engine of Thompson's Motif-Index of Folk Literature

    NARCIS (Netherlands)

    Karsdorp, F.B.; van der Meulen, Marten; Meder, Theo; van den Bosch, Antal

    2015-01-01

    More than fifty years after the first edition of Thompson's seminal Motif-Indexof Folk Literature, we present an online search engine tailored to fully disclose the index digitally. This search engine, called MOMFER, greatly enhances the searchability of the Motif-Index and provides exciting new way

  14. Mining minimal motif pair sets maximally covering interactions in a protein-protein interaction network

    NARCIS (Netherlands)

    Boyen, P.; Neven, F.; Valentim, F.L.; Dijk, van A.D.J.

    2013-01-01

    Correlated motif covering (CMC) is the problem of finding a set of motif pairs, i.e., pairs of patterns, in the sequences of proteins from a protein-protein interaction network (PPI-network) that describe the interactions in the network as concisely as possible. In other words, a perfect solution fo

  15. Wayward Warriors: The Viking Motif in Swedish and English Children's Literature

    Science.gov (United States)

    Sundmark, Björn

    2014-01-01

    In this article the Viking motif in children's literature is explored--from its roots in (adult) nationalist and antiquarian discourse, over pedagogical and historical texts for children, to the eventual diversification (or dissolution) of the motif into different genres and forms. The focus is on Swedish Viking narratives, but points of…

  16. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  17. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  18. Observed and predicted hydrogen bond motifs in crystal structures of hydantoins, dihydrouracils and uracils

    NARCIS (Netherlands)

    Cruz-Cabeza, A.J.; Schwalbe, C.H.

    2012-01-01

    A survey of crystal structures containing hydantoin, dihydrouracil and uracil derivatives in the Cambridge Structural Database revealed four main types of hydrogen bond motifs when derivatives with extra substituents able to interfere with the main motif are excluded. All these molecules contain two

  19. Mutational analysis of the SDD sequence motif of a PRRSV RNA-dependent RNA polymerase.

    Science.gov (United States)

    Zhou, Yan; Zheng, Haihong; Gao, Fei; Tian, Debin; Yuan, Shishan

    2011-09-01

    The subgenomic mRNA transcription and genomic replication of the porcine reproductive and respiratory syndrome virus (PRRSV) are directed by the viral replicase. The replicase is expressed in the form of two polyproteins and is subsequently processed into smaller nonstructural proteins (nsps). nsp9, containing the viral replicase, has characteristic sequence motifs conserved among the RNA-dependent RNA polymerases (RdRp) of positive-strand (PS) RNA viruses. To test whether the conserved SDD motif can tolerate other conserved motifs of RNA viruses and the influence of every residue on RdRp catalytic activity, many amino acids substitutions were introduced into it. Only one nsp9 substitution, of serine by glycine (S3050G), could rescue mutant viruses. The rescued virus was genetically stable. Alteration of either aspartate residue was not tolerated, destroyed the polymerase activity, and abolished virus transcription, but did not eliminate virus replication. We also found that the SDD motif was essentially invariant for the signature sequence of PRRSV RdRp. It could not accommodate other conserved motifs found in other RNA viral polymerases, except the GDD motif, which is conserved in all the other PS RNA viruses. These findings indicated that nidoviruses are evolutionarily related to other PS RNA viruses. Our studies support the idea that the two aspartate residues of the SDD motif are critical and essential for PRRSV transcription and represent a sequence variant of the GDD motif in PS RNA viruses.

  20. Topological Quantum Double

    Science.gov (United States)

    Bonneau, Philippe

    Following a preceding paper showing how the introduction of a t.v.s. topology on quantum groups led to a remarkable unification and rigidification of the different definitions, we adapt here, in the same way, the definition of quantum double. This topological double is dualizable and reflexive (even for infinite dimensional algebras). In a simple case we show, considering the double as the "zero class" of an extension theory, the uniqueness of the double structure as a quasi-Hopf algebra. A la suite d'un précédent article montrant comment l'introduction d'une topologie d'e.v.t. sur les groupes quantiques permet une unification et une rigidification remarquables des différentes définitions, on adapte ici de la même manière la définition du double quantique. Ce double topologique est alors dualisable et reflexif (même pour des algèbres de dimension infinie). Dans un cas simple on montre, en considérant le double comme la "classe zéro" d'une théorie d'extensions, l'unicité de cette structure comme algèbre quasi-Hopf.

  1. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  2. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  3. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    Science.gov (United States)

    Disney, Matthew D. (Inventor); Childs-Disney, Jessica L. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  4. Selection for the G4 DNA motif at the 5' end of human genes.

    Science.gov (United States)

    Eddy, Johanna; Maizels, Nancy

    2009-04-01

    Formation of G4 DNA may occur in the course of replication and transcription, and contribute to genomic instability. We have quantitated abundance of G4 motifs and potential for G4 DNA formation of the nontemplate strand of 5' exons and introns of transcripts of human genes. We find that, for all human genes, G4 motifs are enriched in 5' regions of transcripts relative to downstream regions; and in 5' regulatory regions relative to coding regions. Notably, although tumor suppressor genes are depleted and proto-oncogenes enriched in G4 motifs, abundance of G4 motifs in the 5' regions of transcripts of genes in these categories does not differ. These results support the hypothesis that G4 motifs are under selection in the human genome. They further show that for tumor suppressor genes and proto-oncogenes, independent selection determines potential for G4 DNA formation of 5' regulatory regions of transcripts and downstream coding regions.

  5. Study on "double dawn

    Institute of Scientific and Technical Information of China (English)

    刘次沅; 李建科; 周晓陆

    1999-01-01

    The ancient record, "During the first year of King Yi, the day dawned twice at Zheng", has provided important clues to early Chinese chronicles. The astronomical conditions and visible area distributions related to such a "double dawn" event are discussed, and the precision and current problems in the calculations of ancient astronomical phenomena are shown. On such a basis, all the solar eclipses from 1000 BC to 840 BC are calculated and their associated "double dawn" features investigated. The conclusion that the "double dawn" was a solar eclipse occurring on April 21st, 899 BC is corfirmed to be the most reasonable.

  6. Double stripe reconstruction of the Pt(111) surface

    Indian Academy of Sciences (India)

    Raghani Pushpa; Shobhana Narasimhan

    2003-01-01

    We have studied the reconstruction of the Pt(111) surface theoretically, using a 2D generalization of the Frenkel–Kontorova model. The parameters in the model are obtained by performing ab initio density functional theory calculations. The Pt(111) surface does not reconstruct under normal conditions but experiments have shown that there are two ways to induce the reconstruction: by increasing the temperature, or by depositing adatoms on the surface. The basic motif of this reconstruction is a `double stripe’ with an increased surface density and alternating hcp and fcc domains, arranged to form a honeycomb pattern with a very large repeat distance of 100–300 Å. In this paper, we have studied the `double stripe’ reconstruction of the Pt(111) surface. In agreement with experiment, we find that it is favourable for the surface to reconstruct in the presence of adatoms, but not otherwise.

  7. Sequence, structure, and cooperativity in folding of elementary protein structural motifs.

    Science.gov (United States)

    Lai, Jason K; Kubelka, Ginka S; Kubelka, Jan

    2015-08-11

    Residue-level unfolding of two helix-turn-helix proteins--one naturally occurring and one de novo designed--is reconstructed from multiple sets of site-specific (13)C isotopically edited infrared (IR) and circular dichroism (CD) data using Ising-like statistical-mechanical models. Several model variants are parameterized to test the importance of sequence-specific interactions (approximated by Miyazawa-Jernigan statistical potentials), local structural flexibility (derived from the ensemble of NMR structures), interhelical hydrogen bonds, and native contacts separated by intervening disordered regions (through the Wako-Saitô-Muñoz-Eaton scheme, which disallows such configurations). The models are optimized by directly simulating experimental observables: CD ellipticity at 222 nm for model proteins and their fragments and (13)C-amide I' bands for multiple isotopologues of each protein. We find that data can be quantitatively reproduced by the model that allows two interacting segments flanking a disordered loop (double sequence approximation) and incorporates flexibility in the native contact maps, but neither sequence-specific interactions nor hydrogen bonds are required. The near-identical free energy profiles as a function of the global order parameter are consistent with expected similar folding kinetics for nearly identical structures. However, the predicted folding mechanism for the two motifs is different, reflecting the order of local stability. We introduce free energy profiles for "experimental" reaction coordinates--namely, the degree of local folding as sensed by site-specific (13)C-edited IR, which highlight folding heterogeneity and contrast its overall, average description with the detailed, local picture.

  8. Solution structure of the octamer motif in immunoglobulin genes via restrained molecular dynamics calculations.

    Science.gov (United States)

    Weisz, K; Shafer, R H; Egan, W; James, T L

    1994-01-11

    The solution structure of the DNA decamer d(CATTTGCATC)-d(GATGCAAATG), comprising the octamer motif of immunoglobulin genes, is determined by restrained molecular dynamics (rMD) simulations. The restraint data set includes interproton distances and torsion angles for the deoxyribose sugar ring which were previously obtained by a complete relaxation matrix analysis of the two-dimensional nuclear Overhauser enhancement (2D NOE) intensities and by the quantitative simulation of cross-peaks in double-quantum-filtered correlated (2QF-COSY) spectra. The influence of torsion angles and the number of experimental distance restraints on the structural refinement has been systematically examined. Omitting part of the experimental NOE-derived distances results in reduced restraint violations and lower R factors but impairs structural convergence in the rMD refinement. Eight separate restrained molecular dynamics simulations were carried out for 20 ps each, starting from either energy-minimized A- or B-DNA. Mutual atomic root-mean-square (rms) differences among the refined structures are well below 1 A and comparable to the rms fluctuations of the atoms about their average position, indicating convergence to essentially identical structures. The average refined structure was subjected to an additional 100 ps of rMD simulations and analyzed in terms of average torsion angles and helical parameters. The B-type duplex exhibits clear sequence-dependent variations in its geometry with a narrow minor groove at the T3.A3 tract and a large positive roll at the subsequent TG.CA step. This is accompanied by a noticeable bend of the global helix axis into the major groove. There is also evidence of significant flexibility of the sugar-phosphate backbone with rapid interconversion among different conformers.

  9. The Land of the Dead – International Motifs in the Oldest Work of Japanese Literature

    Directory of Open Access Journals (Sweden)

    Danijela Vasić

    2010-02-01

    Full Text Available Il existe dans le Kojiki (712, la plus ancienne œuvre littéraire du Japon, une abondance de motifs que l’on peut retrouver dans les cultures de nombreux peuples dans le monde entier. Cet article traite des motifs internationaux tissés dans deux mythes du premier tome, formant une image poétique du Pays des morts, la partie souterraine d’une structure cosmique tripartite. Sont abordés, entre autres, le motif largement connu de Perséphone, le motif orphique ou encore le motif de la fuite du Pays des morts.In the Kojiki (712, the oldest literary work of Japan, there is a plethora of motifs which could be found in the cultures of many peoples all over the world. This paper deals with the international motifs interwoven in two myths from the first volume, forming a poetic picture of the Land of the Dead, the underworld part of the trichotomic cosmic structure. Among other things, we find the widely known Persephone motif, the Orphic motif or the motif of the successful escape from the Land of the Dead.En Kojiki (712, la obra literaria más antigua de Japón, abundan motivos que pueden encontrarse en numerosas culturas de todo el mundo. Este artículo analiza los motivos internacionales entretejidos en dos mitos del primer volumen, los cuales forman una imagen poética del País de los Muertos, la sección subterránea de una estructura cósmica tripartita. Se abordan, entre otros, el famoso motivo de Perséfone, el motivo órfico de la huída exitosa del País de los Muertos.

  10. Characterization of protein hubs by inferring interacting motifs from protein interactions.

    Directory of Open Access Journals (Sweden)

    Ramon Aragues

    2007-09-01

    Full Text Available The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues. Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins. The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP. The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks.

  11. Bioinformatics Study of Cancer-Related Mutations within p53 Phosphorylation Site Motifs

    Directory of Open Access Journals (Sweden)

    Xiaona Ji

    2014-07-01

    Full Text Available p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.

  12. Dual hydrogen-bonding motifs in complexes formed between tropolone and formic acid

    Science.gov (United States)

    Nemchick, Deacon J.; Cohen, Michael K.; Vaccaro, Patrick H.

    2016-11-01

    The near-ultraviolet π*←π absorption system of weakly bound complexes formed between tropolone (TrOH) and formic acid (FA) under cryogenic free-jet expansion conditions has been interrogated by exploiting a variety of fluorescence-based laser-spectroscopic probes, with synergistic quantum-chemical calculations built upon diverse model chemistries being enlisted to unravel the structural and dynamical properties of the pertinent ground [X˜ 1A'] and excited [A˜ 1A'(" separators="π*π )] electronic states. For binary TrOH ṡ FA adducts, the presence of dual hydrogen-bond linkages gives rise to three low-lying isomers designated (in relative energy order) as INT, EXT1, and EXT2 depending on whether docking of the FA ligand to the TrOH substrate takes place internal or external to the five-membered reaction cleft of tropolone. While the symmetric double-minimum topography predicted for the INT potential surface mediates an intermolecular double proton-transfer event, the EXT1 and EXT2 structures are interconverted by an asymmetric single proton-transfer process that is TrOH-centric in nature. The A ˜ -X ˜ origin of TrOH ṡ FA at ν˜ 00=27 484 .45 cm-1 is displaced by δ ν˜ 00=+466 .76 cm-1 with respect to the analogous feature for bare tropolone and displays a hybrid type - a/b rotational contour that reflects the configuration of binding. A comprehensive analysis of vibrational landscapes supported by the optically connected X˜ 1A' and A˜ 1A'(" separators="π*π ) manifolds, including the characteristic isotopic shifts incurred by partial deuteration of the labile TrOH and FA protons, has been performed leading to the uniform assignment of numerous intermolecular (viz., modulating hydrogen-bond linkages) and intramolecular (viz., localized on monomer subunits) degrees of freedom. The holistic interpretation of all experimental and computational findings affords compelling evidence that an external-binding motif (attributed to EXT1), rather than the

  13. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    Science.gov (United States)

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.

  14. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  15. Double conjoining vas deferens.

    Science.gov (United States)

    Gravesen, R G

    1980-03-01

    The importance of careful palpation of the scrotal contents and follow-up semen analysis when performing vasectomies is proved by this case report of a double vas deferens conjoining into a single vas.

  16. VAMP subfamilies identified by specific R-SNARE motifs.

    Science.gov (United States)

    Rossi, Valeria; Picco, Raffaella; Vacca, Marcella; D'Esposito, Maurizio; D'Urso, Michele; Galli, Thierry; Filippini, Francesco

    2004-05-01

    In eukaryotes, interactions among the alpha-helical coiled-coil domains (CCDs) of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a pivotal role in mediating the fusion among vesicles and target membranes. Surface residues of such CCDs are major candidates to regulate the specificity of membrane fusion, as they may alter local charge at the interaction layers and surface of the fusion complex, possibly modulating its formation and/or the binding of non-SNARE regulatory factors. Based on alternate patterns in surface residues, we have identified two motifs which group vesicular SNAREs in two novel subfamilies: RG-SNAREs and RD-SNAREs. The RG-SNARE CCD is common to all members of the widely conserved family of long VAMPs or longins and to yeast and non-neuronal VAMPs, possibly mediating "basic" fusion mechanisms; instead, only synaptobrevins from Bilateria share an RD-SNARE CCD, which is likely to mediate interactions to specific, yet unknown, regulatory factors and/or be the landmark of rapid fusion reactions like that mediating the release of neurotransmitters.

  17. Peptide motif analysis predicts alphaviruses as triggers for rheumatoid arthritis.

    Science.gov (United States)

    Hogeboom, Charissa

    2015-12-01

    Rheumatoid arthritis (RA) develops in response to both genetic and environmental factors. The strongest genetic determinant is HLA-DR, where polymorphisms within the P4 and P6 binding pockets confer elevated risk. However, low disease concordance across monozygotic twin pairs underscores the importance of an environmental factor, probably infectious. The goal of this investigation was to predict the microorganism most likely to interact with HLA-DR to trigger RA under the molecular mimicry hypothesis. A set of 185 structural proteins from viruses or intracellular bacteria was scanned for regions of sequence homology with a collagen peptide that binds preferentially to DR4; candidates were then evaluated against a motif required for T cell cross-reactivity. The plausibility of the predicted agent was evaluated by comparison of microbial prevalence patterns to epidemiological characteristics of RA. Peptides from alphavirus capsid proteins provided the closest fit. Variations in the P6 position suggest that the HLA binding preference may vary by species, with Ross River virus, Chikungunya virus, and Mayaro virus peptides binding preferentially to DR4, and peptides from Sindbis/Ockelbo virus showing stronger affinity to DR1. The predicted HLA preference is supported by epidemiological studies of post-infection chronic arthralgia. Parallels between the cytokine profiles of RA and chronic alphavirus infection are discussed.

  18. Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs.

    Science.gov (United States)

    Cervera, Amelia; De la Peña, Marcos

    2014-11-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The bridge: suggestions about the meaning of a pictorial motif

    Directory of Open Access Journals (Sweden)

    Omar Calabrese

    2011-12-01

    Full Text Available Developing research begun at the Warburg Institute in 1983, this paper reflects on the construction of meaning in a work of art, through the analysis of the bridge’s function in painting. It tries to reply to some objections the author received there from Gombrich, about the chance of finding a stable content in the configuration of the bridge. Hence, the study reconsiders the concept of ‘motif’ applied to this structure. In a semiotic perspective a motif is partially independent as regards to a single textual organization, because it has a mobile and migrant feature. However, it is also partially flexible as it depends upon the same organization. The inquiry shows that bridge’s internal structure corresponds to the category of a ‘junction’, with two opposite items, ‘conjunction’ and ‘disjunction’. The development of this theoretical object can be carried out also by figures that are not ‘bridges’, in the natural sense of the word. Furthermore, its meaning does not depend upon the number of examples we can find but only upon their relevance for constructing a ‘grammar of cases’. Differently from the traditional iconographical approach, but also from panofskian iconology, the analysis moves not only towards the simple or complex content of a figure but also towards its description.

  20. Complexe de Poids, Dualit\\'e et Motifs de Beilinson

    CERN Document Server

    Hébert, David

    2010-01-01

    In the article [GS96], Gillet and Soul\\'e define a weight complex on the category of Voevodsky motives over a field of characteristic 0. In [Bon07], Bondarko generalizes this construction for any f-category with a bounded weight structure, as is the case for Beilinson motives (following Cisinski-D\\'eglise ; [CD09]). The first purpose of this note is to generalize [GS96, thm. 2] in the world of Beilinson motives. This done, we will naturally be led to define the motivic Euler characteristic dual to that considered by Bondarko in [Bon10]. This fact will motivate the second line of this note : proving that the duality operation exchanges the weight as is the case for t-structure ([BBD, 5.1.14.(iii)]). ----- Dans l'article [GS96], Gillet et Soul\\'e d\\'efinissent un complexe de poids sur la cat\\'egorie des motifs de Voevodsky d\\'efinie sur un corps de caract\\'eristique 0. Dans [Bon07], Bondarko g\\'en\\'eralise cette construction pour toute f-cat\\'egorie munie d'une structure de poids born\\'ee, comme c'est le cas po...

  1. Ab initio coordination chemistry for nickel chelation motifs.

    Science.gov (United States)

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  2. Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Directory of Open Access Journals (Sweden)

    Winder Steve J

    2010-02-01

    Full Text Available Abstract Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular α-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane β-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatio-temporal regulation.

  3. Ab initio coordination chemistry for nickel chelation motifs.

    Directory of Open Access Journals (Sweden)

    R Jesu Jaya Sudan

    Full Text Available Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  4. Tyrosine motifs are required for prestin basolateral membrane targeting

    Directory of Open Access Journals (Sweden)

    Yifan Zhang

    2015-01-01

    Full Text Available Prestin is targeted to the lateral wall of outer hair cells (OHCs where its electromotility is critical for cochlear amplification. Using MDCK cells as a model system for polarized epithelial sorting, we demonstrate that prestin uses tyrosine residues, in a YXXΦ motif, to target the basolateral surface. Both Y520 and Y667 are important for basolateral targeting of prestin. Mutation of these residues to glutamine or alanine resulted in retention within the Golgi and delayed egress from the Golgi in Y667Q. Basolateral targeting is restored upon mutation to phenylalanine suggesting the importance of a phenol ring in the tyrosine side chain. We also demonstrate that prestin targeting to the basolateral surface is dependent on AP1B (μ1B, and that prestin uses transferrin containing early endosomes in its passage from the Golgi to the basolateral plasma membrane. The presence of AP1B (μ1B in OHCs, and parallels between prestin targeting to the basolateral surface of OHCs and polarized epithelial cells suggest that outer hair cells resemble polarized epithelia rather than neurons in this important phenotypic measure.

  5. Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2009-05-01

    Full Text Available Abstract Background Host protein-protein interaction networks are altered by invading virus proteins, which create new interactions, and modify or destroy others. The resulting network topology favors excessive amounts of virus production in a stressed host cell network. Short linear peptide motifs common to both virus and host provide the basis for host network modification. Methods We focused our host-pathogen study on the binding and competing interactions of HIV-1 and human proteins. We showed that peptide motifs conserved across 70% of HIV-1 subtype B and C samples occurred in similar positions on HIV-1 proteins, and we documented protein domains that interact with these conserved motifs. We predicted which human proteins may be targeted by HIV-1 by taking pairs of human proteins that may interact via a motif conserved in HIV-1 and the corresponding interacting protein domain. Results Our predictions were enriched with host proteins known to interact with HIV-1 proteins ENV, NEF, and TAT (p-value Conclusion A list of host proteins highly enriched with those targeted by HIV-1 proteins can be obtained by searching for host protein motifs along virus protein sequences. The resulting set of host proteins predicted to be targeted by virus proteins will become more accurate with better annotations of motifs and domains. Nevertheless, our study validates the role of linear binding motifs shared by virus and host proteins as an important part of the crosstalk between virus and host.

  6. CircularLogo: A lightweight web application to visualize intra-motif dependencies.

    Science.gov (United States)

    Ye, Zhenqing; Ma, Tao; Kalmbach, Michael T; Dasari, Surendra; Kocher, Jean-Pierre A; Wang, Liguo

    2017-05-22

    The sequence logo has been widely used to represent DNA or RNA motifs for more than three decades. Despite its intelligibility and intuitiveness, the traditional sequence logo is unable to display the intra-motif dependencies and therefore is insufficient to fully characterize nucleotide motifs. Many methods have been developed to quantify the intra-motif dependencies, but fewer tools are available for visualization. We developed CircularLogo, a web-based interactive application, which is able to not only visualize the position-specific nucleotide consensus and diversity but also display the intra-motif dependencies. Applying CircularLogo to HNF6 binding sites and tRNA sequences demonstrated its ability to show intra-motif dependencies and intuitively reveal biomolecular structure. CircularLogo is implemented in JavaScript and Python based on the Django web framework. The program's source code and user's manual are freely available at http://circularlogo.sourceforge.net . CircularLogo web server can be accessed from http://bioinformaticstools.mayo.edu/circularlogo/index.html . CircularLogo is an innovative web application that is specifically designed to visualize and interactively explore intra-motif dependencies.

  7. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  8. Introducing Dunaliella LIP promoter containing light-inducible motifs improves transgenic expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Baek, Kwangryul; Lee, Yew; Nam, Onyou; Park, Seunghye; Sim, Sang Jun; Jin, EonSeon

    2016-03-01

    Promoter of the light-inducible protein gene (LIP) of Dunaliella was recently isolated in our laboratory. The aim of this work is to find the light-inducible motif in the Dunaliella LIP promoter and verify its regulatory motif with a Gaussia luciferase reporter gene transformed in Chlamydomonas reinhardtii. 400 bp upstream to the translational start site of the Dunaliella LIP gene was gradually truncated and analyzed for the luciferase expression. Furthermore, this promoter comprising duplicated or triplicated light-responsive motifs was tested for its augmentation of light response. Two putative light-responsive motifs, GT-1 binding motif and sequences over-represented in light-repressed promoters (SORLIP) located in the 200 bp LIP promoter fragment were analyzed for their light responsibility. It is turned out that SORLIP was responsible for the light-inducible activity. With the copy number of SORLIP up to three showed stronger high light response compared with the native LIP promoter fragment. Therefore, we found a light-responsive DNA motif operating in Chlamydomonas and confirm a synthetic promoter including this motif displayed light inducibility in heterologously transformed green algae for the first time. This light-inducible expression system will be applied to various area of algal research including algal biotechnology.

  9. Recurrent motifs as resonant attractor states in the narrative field: a testable model of archetype.

    Science.gov (United States)

    Goodwyn, Erik

    2013-06-01

    At the most basic level, archetypes represented Jung's attempt to explain the phenomenon of recurrent myths and folktale motifs (Jung 1956, 1959, para. 99). But the archetype remains controversial as an explanation of recurrent motifs, as the existence of recurrent motifs does not prove that archetypes exist. Thus, the challenge for contemporary archetype theory is not merely to demonstrate that recurrent motifs exist, since that is not disputed, but to demonstrate that archetypes exist and cause recurrent motifs. The present paper proposes a new model which is unlike others in that it postulates how the archetype creates resonant motifs. This model necessarily clarifies and adapts some of Jung's seminal ideas on archetype in order to provide a working framework grounded in contemporary practice and methodologies. For the first time, a model of archetype is proposed that can be validated on empirical, rather than theoretical grounds. This is achieved by linking the archetype to the hard data of recurrent motifs rather than academic trends in other fields.

  10. Comparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, these existing methods, based on different computational algorithms, show diverse motif prediction efficiency in non-coding DNA sequences. Therefore, understanding the similarities and differences of computational algorithms and enriching the motif discovery literatures are important for users to choose the most appropriate one among the online available tools. Moreover, there still lacks credible criterion to assess motif discovery tools and instructions for researchers to choose the best according to their own projects. Thus integration of the related resources might be a good approach to improve accuracy of the application. Recent studies integrate regulatory motif discovery tools with experimental methods to offer a complementary approach for researchers, and also provide a much-needed model for current researches on transcriptional regulatory networks. Here we present a comparative analysis of regulatory motif discovery tools for TFBSs.

  11. Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R; McCallen, S; Almaas, E

    2007-05-28

    Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motif mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.

  12. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  13. Miz-1 activates gene expression via a novel consensus DNA binding motif.

    Directory of Open Access Journals (Sweden)

    Bonnie L Barrilleaux

    Full Text Available The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences--ATCGGTAATC and ATCGAT (Mizm1 and Mizm2--bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate.

  14. Characterization of the tandem CWCH2 sequence motif: a hallmark of inter-zinc finger interactions

    Directory of Open Access Journals (Sweden)

    Aruga Jun

    2010-02-01

    Full Text Available Abstract Background The C2H2 zinc finger (ZF domain is widely conserved among eukaryotic proteins. In Zic/Gli/Zap1 C2H2 ZF proteins, the two N-terminal ZFs form a single structural unit by sharing a hydrophobic core. This structural unit defines a new motif comprised of two tryptophan side chains at the center of the hydrophobic core. Because each tryptophan residue is located between the two cysteine residues of the C2H2 motif, we have named this structure the tandem CWCH2 (tCWCH2 motif. Results Here, we characterized 587 tCWCH2-containing genes using data derived from public databases. We categorized genes into 11 classes including Zic/Gli/Glis, Arid2/Rsc9, PacC, Mizf, Aebp2, Zap1/ZafA, Fungl, Zfp106, Twincl, Clr1, and Fungl-4ZF, based on sequence similarity, domain organization, and functional similarities. tCWCH2 motifs are mostly found in organisms belonging to the Opisthokonta (metazoa, fungi, and choanoflagellates and Amoebozoa (amoeba, Dictyostelium discoideum. By comparison, the C2H2 ZF motif is distributed widely among the eukaryotes. The structure and organization of the tCWCH2 motif, its phylogenetic distribution, and molecular phylogenetic analysis suggest that prototypical tCWCH2 genes existed in the Opisthokonta ancestor. Within-group or between-group comparisons of the tCWCH2 amino acid sequence identified three additional sequence features (site-specific amino acid frequencies, longer linker sequence between two C2H2 ZFs, and frequent extra-sequences within C2H2 ZF motifs. Conclusion These features suggest that the tCWCH2 motif is a specialized motif involved in inter-zinc finger interactions.

  15. Evidence for the concerted evolution between short linear protein motifs and their flanking regions.

    Directory of Open Access Journals (Sweden)

    Claudia Chica

    Full Text Available BACKGROUND: Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein-protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids. RESULTS: The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co-evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif-mediated interaction has been shown to depend on the modifications (e.g. phosphorylation at neighbouring positions or is thought to benefit from the binding versatility of disordered regions. CONCLUSION: The results suggest that flanking regions are relevant for linear motif-mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network

  16. Minimal motif peptide structure of metzincin clan zinc peptidases in micelles.

    Science.gov (United States)

    Onoda, Akira; Suzuki, Takako; Ishizuka, Hiroaki; Sugiyama, Rumiko; Ariyasu, Shinya; Yamamura, Takeshi

    2009-12-01

    It is well known that the functions of metalloproteins generally originate from their metal-binding motifs. However, the intrinsic nature of individual motifs remains unknown, particularly the details about metal-binding effects on the folding of motifs; the converse is also unknown, although there is no doubt that the motif is the core of the reactivity for each metalloprotein. In this study, we focused our attention on the zinc-binding motif of the metzincin clan family, HEXXHXXGXXH; this family contains the general zinc-binding sequence His-Glu-Xaa-Xaa-His (HEXXH) and the extended GXXH region. We adopted the motif sequence of stromelysin-1 and investigated the folding properties of the Trp-labeled peptides WAHEIAHSLGLFHA (STR-W1), AWHEIAHSLGLFHA (STR-W2), AHEIAHSLGWFHA (STR-W11), and AHEIAHSLGLFHWA (STR-W14) in the presence and absence of zinc ions in hydrophobic micellar environments by circular dichroism (CD) measurements. We accessed successful incorporation of these zinc peptides into micelles using quenching of Trp fluorescence. Results of CD studies indicated that two of the Trp-incorporated peptides, STR-W1 and STR-W14, exhibited helical folding in the hydrophobic region of cetyltrimethylammonium chloride micelle. The NMR structural analysis of the apo STR-W14 revealed that the conformation in the C-terminus GXXH region significantly differred between the apo state in the micelle and the reported Zn-bound state of stromelysin-1 in crystal structures. The structural analyses of the qualitative Zn-binding properties of this motif peptide provide an interesting Zn-binding mechanism: the minimum consensus motif in the metzincin clan, a basic zinc-binding motif with an extended GXXH region, has the potential to serve as a preorganized Zn binding scaffold in a hydrophobic environment.

  17. Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites

    Directory of Open Access Journals (Sweden)

    Lim Carmay

    2007-03-01

    Full Text Available Abstract Background For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg2+, one of the most versatile metal cofactors in cellular biochemistry. Even when Mg2+-proteins share insufficient sequence homology to identify Mg2+-specific sequence motifs, they may still share similarity in the Mg2+-binding site structure. However, no structural motifs characteristic of Mg2+-binding sites have been reported. Thus, our aims are (i to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii to apply it to Mg2+-proteins sharing 2+-structural motifs are identified as recurring structural patterns. Results The structural alphabet-based motif discovery method has revealed the structural preference of Mg2+-binding sites for certain local/secondary structures: compared to all residues in the Mg2+-proteins, both first and second-shell Mg2+-ligands prefer loops to helices. Even when the Mg2+-proteins share no significant sequence homology, some of them share a similar Mg2+-binding site structure: 4 Mg2+-structural motifs, comprising 21% of the binding sites, were found. In particular, one of the Mg2+-structural motifs found maps to a specific functional group, namely, hydrolases. Furthermore, 2 of the motifs were not found in non metalloproteins or in Ca2+-binding proteins. The structural motifs discovered thus capture some essential biochemical and/or evolutionary properties, and hence may be useful for discovering proteins where Mg2+ plays an important biological role. Conclusion The structural motif discovery method presented herein is general and can be applied to any set of proteins with known 3D structures. This new method is timely considering the increasing number of structures for

  18. Evaluation of subgraph searching algorithms for detecting network motifs in biological networks

    Institute of Scientific and Technical Information of China (English)

    Jialu HU; Lin GAO; Guimin QIN

    2009-01-01

    Despite several algorithms for searching sub-graphs in motif detection presented in the literature, no ef-fort has been done for characterizing their performance till now. This paper presents a methodology to evaluate the performance of three algorithms: edge sampling algorithm (ESA), enumerate subgraphs (ESU) and randomly enumer-ate subgraphs (RAND-ESU). A series of experiments are performed to test sampling speed and sampling quality. The results show that RAND-ESU is more efficient and has less computational cost than other algorithms for large-size mo-tif detection, and ESU has its own advantage in small-size motif detection.

  19. ELM 2016—data update and new functionality of the eukaryotic linear motif resource

    Science.gov (United States)

    Dinkel, Holger; Van Roey, Kim; Michael, Sushama; Kumar, Manjeet; Uyar, Bora; Altenberg, Brigitte; Milchevskaya, Vladislava; Schneider, Melanie; Kühn, Helen; Behrendt, Annika; Dahl, Sophie Luise; Damerell, Victoria; Diebel, Sandra; Kalman, Sara; Klein, Steffen; Knudsen, Arne C.; Mäder, Christina; Merrill, Sabina; Staudt, Angelina; Thiel, Vera; Welti, Lukas; Davey, Norman E.; Diella, Francesca; Gibson, Toby J.

    2016-01-01

    The Eukaryotic Linear Motif (ELM) resource (http://elm.eu.org) is a manually curated database of short linear motifs (SLiMs). In this update, we present the latest additions to this resource, along with more improvements to the web interface. ELM 2016 contains more than 240 different motif classes with over 2700 experimentally validated instances, manually curated from more than 2400 scientific publications. In addition, more data have been made available as individually searchable pages and are downloadable in various formats. PMID:26615199

  20. Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression.

    Science.gov (United States)

    Datson, N A; Polman, J A E; de Jonge, R T; van Boheemen, P T M; van Maanen, E M T; Welten, J; McEwen, B S; Meiland, H C; Meijer, O C

    2011-10-01

    The glucocorticoid receptor (GR) is an ubiquitously expressed ligand-activated transcription factor that mediates effects of cortisol in relation to adaptation to stress. In the brain, GR affects the hippocampus to modulate memory processes through direct binding to glucocorticoid response elements (GREs) in the DNA. However, its effects are to a high degree cell specific, and its target genes in different cell types as well as the mechanisms conferring this specificity are largely unknown. To gain insight in hippocampal GR signaling, we characterized to which GRE GR binds in the rat hippocampus. Using a position-specific scoring matrix, we identified evolutionary-conserved putative GREs from a microarray based set of hippocampal target genes. Using chromatin immunoprecipitation, we were able to confirm GR binding to 15 out of a selection of 32 predicted sites (47%). The majority of these 15 GREs are previously undescribed and thus represent novel GREs that bind GR and therefore may be functional in the rat hippocampus. GRE nucleotide composition was not predictive for binding of GR to a GRE. A search for conserved flanking sequences that may predict GR-GRE interaction resulted in the identification of GC-box associated motifs, such as Myc-associated zinc finger protein 1, within 2 kb of GREs with GR binding in the hippocampus. This enrichment was not present around nonbinding GRE sequences nor around proven GR-binding sites from a mesenchymal stem-like cell dataset that we analyzed. GC-binding transcription factors therefore may be unique partners for DNA-bound GR and may in part explain cell-specific transcriptional regulation by glucocorticoids in the context of the hippocampus.

  1. Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction.

    Directory of Open Access Journals (Sweden)

    Tianquan Jin

    2009-12-01

    Full Text Available Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i in a compaction of protein matrix subunit dimensions, (ii reduced conformational variability, (iii an increase in polyproline II helices, and (iv promotion of apatite crystal length. Together, these findings establish a direct relationship between polyproline tandem

  2. Bessarabian Danube Motifs in the Lyrics of the Land

    Directory of Open Access Journals (Sweden)

    Reva-Lievshakova Liudmyla

    2016-08-01

    Full Text Available Danube poetic circle edge includes many names creative people of all ages. They are more or less known as Bessarabia. The history of poetry edge associated with the activities of the Association of Writers of Bessarabia «Budjak» which is hipidstrukturnym union the National Union of Writers of Ukraine. Members of this association is Ismail authors: V. Reva B., O. Kartelyan, L. Oliynyk, T. Kibkalo, A. Gurieva, N. Parshyhina, V. Vorobiev et al. These authors are members Izmail literary association named after M. Vasilyuk. By Ismail litob'yednannya creative individuals drawn from Bolgrad, Reni, Kiliya, Vylkove, Saratov, Tarutino, Tatarbunary – almost the entire south of Odessa region. In lyric poets of Bessarabia, in addition to general themes of signs of life, sense, philosophy is the theme of his native land, which borders the Danube is geographically defined. In verses Danube notable poets motifs steppe landscapes, river horizon, lush greenery on the banks of freshwater – that living, bright, colorful, causing a certain emotional state that is displayed in the lyrical lines. Each of the authors of the style and manner, his subtle strings of verbal and sensory impact on the reader, your experience and related experience. Song Bessarabia grounds cover a huge color landscape beauty and related areas of geographical names (Budjak, Steppe of Budzhatsk, lakes (Katlabuh, Yalpug, Kugurluy, names of settlements (Dolukioy, historical names Danube city of Izmail (Smil, Tuchkov. They are widely used artistic palette of each of Danube poets znakuyuchy native land and its nature, conveying deep patriotic feelings. These names as symbols of «small» country characterized by an individual, a kind of complex sensory images and associations.

  3. The GTP binding motif: variations on a theme.

    Science.gov (United States)

    Kjeldgaard, M; Nyborg, J; Clark, B F

    1996-10-01

    GTP binding proteins (G-proteins) have wide-ranging functions in biology, being involved in cell proliferation, signal transduction, protein synthesis, and protein targeting. Common to their functioning is that they are active in the GTP-bound form and inactive in the GDP-bound form. The protein synthesis elongation factor EF-Tu was the first G-protein whose nucleotide binding domain was solved structurally by X-ray crystallography to yield a structural definition of the GDP-bound form, but a still increasing number of new structures of G-proteins are appearing in the literature, in both GDP and GTP bound forms. A common structural core for nucleotide binding is present in all these structures, and this core has long been known to include common consensus sequence elements involved in binding of the nucleotide. Nevertheless, subtle changes in the common sequences reflect functional differences. Therefore, it becomes increasingly important to focus on how these differences are reflected in the structures, and how these structural differences are related to function. The aim of this review is to describe to what extent this structural motif for GDP/GTP binding is common to other known structures of this class of proteins. We first describe the common structural core of the G-proteins. Next, examples are based on information available on the Ras protein superfamily, the targeting protein ARF, elongation factors EF-Tu and EF-G, and the heterotrimeric G-proteins. Finally, we discuss the important structures of complexes between GTP binding proteins and their substrates that have appeared in the literature recently.

  4. Project Half Double

    DEFF Research Database (Denmark)

    Ehlers, Michael; Adland, Karoline Thorp; Boston, Nicolai Elborough

    Project Half Double has a clear mission to succeed in finding a project methodology that can increase the success rate of our projects while increasing the speed at which we generate new ideas and develop new products and services. Chaos and complexity should be seen as a basic condition...... and as an opportunity rather than a threat and a risk. We are convinced that by doing so, we can strengthen Denmark’s competitiveness and play an important role in the battle for jobs and future welfare. The overall goal is to deliver “projects in half the time with double the impact”, where projects in half the time...... should be understood as half the time to impact (benefit realisation, effect is achieved) and not as half the time for project execution. The purpose of Project Half Double is to improve Danish industrial competitiveness by radically increasing the pace and impact of the development and innovation...

  5. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Joshi NV

    2009-01-01

    Full Text Available Abstract Background Regulation of gene expression in Plasmodium falciparum (Pf remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS; this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.

  6. Double arch mirror study

    Science.gov (United States)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  7. John Deakin: Double Exposures

    Directory of Open Access Journals (Sweden)

    Paul Rousseau

    2015-11-01

    Full Text Available In this series of short films made by Jonathan Law, the art historian James Boaden, and the curator of The John Deakin Archive, Paul Rousseau, discuss the double-exposure images made by the photographer John Deakin (1912-1972 in the 1950s and 1960s. The films ask you, firstly, to look closely at the images being discussed. Each one begins with a sustained and intense shot of a single image before opening up to a wide-ranging discussion about Deakin, double exposures, and photography.

  8. Double Beta Decay

    CERN Document Server

    Elliott, Steven R

    2011-01-01

    At least one neutrino has a mass of about 50 meV or larger. However, the absolute mass scale for the neutrino remains unknown. Furthermore, the critical question: Is the neutrino its own antiparticle? is unanswered. Studies of double beta decay offer hope for determining the absolute mass scale. In particular, zero-neutrino double beta decay (\\BBz) can address the issues of lepton number conservation, the particle-antiparticle nature of the neutrino, and its mass. A summary of the recent results in \\BBz, and the related technologies will be discussed in the context of the future \\BBz\\ program.

  9. Double-helix stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications.

  10. Project Half Double

    DEFF Research Database (Denmark)

    Svejvig, Per; Gerstrøm, Anna; Frederiksen, Signe Hedeboe

    The Half Double mission: Project Half Double has a clear mission. We want to succeed in finding a project methodology that can increase the success rate of our projects while increasing the development speed of new products and services. We are convinced that by doing so we can strengthen...... projects and to document their development. The purpose of this addendum is thus to document the development in the pilot projects from June 2016 to January 2017 with particular focus on the impact they have created. This Addendum is a supplement and should be read in conjunction with the Phase 1 report...

  11. Reflection Positive Doubles

    CERN Document Server

    Jaffe, Arthur

    2016-01-01

    Here we introduce reflection positive doubles, a general framework for reflection positivity, covering a wide variety of systems in statistical physics and quantum field theory. These systems may be bosonic, fermionic, or parafermionic in nature. Within the framework of reflection positive doubles, we give necessary and sufficient conditions for reflection positivity. We use a reflection-invariant cone to implement our construction. Our characterization allows for a direct interpretation in terms of coupling constants, making it easy to check in concrete situations. We illustrate our methods with numerous examples.

  12. Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs.

    Science.gov (United States)

    Chan, Allen W; Mohajerani, Majid H; LeDue, Jeffrey M; Wang, Yu Tian; Murphy, Timothy H

    2015-07-20

    Neuroimaging of spontaneous, resting-state infraslow (regional connectivity that are analogous to cortical motifs observed from higher-frequency spontaneous activity and reflect the underlying framework of intracortical axonal projections.

  13. Rice bZIP protein, REB, interacts with GCN4 motif in promoter of Waxy gene

    Institute of Scientific and Technical Information of China (English)

    程世军; 王宗阳; 洪孟民

    2002-01-01

    A bifactorial endosperm box (EB), which contains an endosperm motif (EM) and a GCN4 motif, was found in rice Wx promoter. EB was found in 5′ upstream region of many seed storage protein genes accounting for these genes expression exclusive in endosperm among various cereals. Many reports demonstrated that the bZIP transcription activators isolated from wheat, barley and maize, etc. regulate the gene expression through binding to the GCN4 motif. In this research, we showed that GCN4 sequence could be recognized by nuclear proteins extracted from immature rice seeds. Furthermore, a rice bZIP protein, REB was isolated by using PCR method and REB fusion protein was expressed in E. coli. The results of gel shift analysis showed that REB could recognize and bind to the GCN4 motif in the Wx gene in addition to binding to the target sequence in the promoter of α-globulin.

  14. Correlating overrepresented upstream motifs to gene expression a computational approach to regulatory element discovery in eukaryotes

    CERN Document Server

    Caselle, M; Provero, P

    2002-01-01

    Gene regulation in eukaryotes is mainly effected through transcription factors binding to rather short recognition motifs generally located upstream of the coding region. We present a novel computational method to identify regulatory elements in the upstream region of eukaryotic genes. The genes are grouped in sets sharing an overrepresented short motif in their upstream sequence. For each set, the average expression level from a microarray experiment is determined: If this level is significantly higher or lower than the average taken over the whole genome, then the overerpresented motif shared by the genes in the set is likely to play a role in their regulation. The method was tested by applying it to the genome of Saccharomyces cerevisiae, using the publicly available results of a DNA microarray experiment, in which expression levels for virtually all the genes were measured during the diauxic shift from fermentation to respiration. Several known motifs were correctly identified, and a new candidate regulat...

  15. The “conflict between good and evil” a motif in Shahnameh and the narrative archetype

    Directory of Open Access Journals (Sweden)

    طالبيان/صرفي/بصيري/جعفري طالبيان/صرفي/بصيري/جعفري

    2008-07-01

    Full Text Available In the classification and structural analysis of Shahnameh, the authors of the article consider the conflict between good and evil (from now on C.G.E. as the main motif of this great epic. This motif has spread all over the epic. The number of the stories being influenced by the myth of C.G.E. is at least twice as many as every other motif in the epic. Considering the antiquity of the myth and motif of C.G.E. in the man’s culture and the definition of structuralists -under the influence of this myth- for the narration, the authors introduce the C.G.E. as the narrative archetype; because this myth is the deep structure of narrative pattern in collective unconscious of mankind. Keywords: Shahnameh, Structuralism, myth, conflict between good and evil, narrative archetype.

  16. A Combinatorial Code for Splicing Silencing: UAGG and GGGG Motifs: e158

    National Research Council Canada - National Science Library

    Kyoungha Han; Gene Yeo; Ping An; Christopher B Burge; Paula J Grabowski

    2005-01-01

    .... Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19...

  17. Strategic Lean Organizational Design: Towards Lean World-Small World Configurations through Discrete Dynamic Organizational Motifs

    Directory of Open Access Journals (Sweden)

    Javier Villalba-Diez

    2016-01-01

    Full Text Available Organizations face strong international competition in the global market arena in achieving strategic goals such as high quality of product or service at lower cost while increasing their ability to respond quickly to requirements of the market. These challenges concern strategically designing organizations that can meet global challenges and specialize locally to meet performance constraints. After introducing the concept of organizational functional and structural motifs as small organizational building block, our findings suggest the hypothesis that a strategic organizational design (SOD approach to meet these challenges involves maximizing the number and diversity of functional motifs, while minimizing the repertoire of structural motifs. By detecting characteristic structural motifs, we provide organizational leaders with specific Lean SOD solutions with which to meet local and global challenges simultaneously. As a matter of application, we show the implementation of such an SOD approach in nine US hospitals that form one large health care holding.

  18. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...... the kinase domain, promoting zipper-like association of the tail with the kinase domain, serving to stabilize the HM in its kinase-activating binding site. We present a molecular model for allosteric activation of AGC kinases by the turn motif phosphate via HM-mediated stabilization of the alphaC helix. In S......6K and MSK, the turn motif phosphate thereby also protects the HM from dephosphorylation. Our results suggest that the mechanism described is a key feature in activation of upto 26 human AGC kinases....

  19. Makna Motif Mirong Bangsal Witana dan Bangsal Manguntur Tangkil Keraton Yogyakarta

    Directory of Open Access Journals (Sweden)

    Sukirman Sukirman

    2016-04-01

    Full Text Available ABSTRAKMirong adalah satu di antara macam motif ragam hias pada tiang Bangsal Witana, Bangsa Manguntur Tangkil, dan beberapa bangsal lainnya di dalam Keraton Yogyakarta. Mirong ikut memperindah tampilan tiang bangsal. Mirong berfungsi sebagai ornamen penambah keindahan, dan simbol tentang makna tertentu. Para interpreter memaknainya dari sudut pandang bentuk, kepercayaan dan agama, yaitu mirong sebagai bentuk kaligrafi huruf Arab Alif-lam-mim atau Alif-lam-mim-ra, gambaran sosok Kanjeng Ratu Kidul, dan gambaran Kalifatullah. Di balik sejumlah makna yang ada, ternyata terdapat makna-makna yang tersembunyi yang dapat diungkap. Hubungan antar makna yang sudah ada, sudut pandang orientasi arah hadap motif, letak dan hierarki, ternyata dapat digunakan untuk mengungkap makna-makna yang baru. Simulasi-simulasi motif dibantu beberapa prinsip korektif, semakin mempermudah membuka makna yang tersembunyi, dan akhirnya dapat diangkat ke permukaan. Semuanya semakin menambah beragamnya makna mirong, tanpa menutup makna yang telah ada. Motif mirong ternyata memiliki makna sebagai status terpenting, yaitu bahwa motif mirong adalah gambaran sosok Sultan. Mirong semestinya juga sebagai tanda tentang hak milik suatu bangunan, bahwa bangunan yang dikenai motif mirong menandai sebagai hak milik Keraton atau atau sebagai milik Sultan. Masyarakat pada umumnya oleh karena itu dapat mempertimbangkan tingkat kelayakan secara etika kemungkinan penerapan mirong pada bangunan miliknya atau bangunan di luar Keraton. Kata kunci: Mirong, Alif-lam-mim-ra, Kalifatullah, Sultan ABSTRACTMirong is decorativ motif on the pillars at Bangsal Witana, Bangsal Manguntur Tangkil, and some other bangsal in Yogyakarta Palace. Mirong embellieshs the appearance of the pillar. Mirong has fungtion ornament to additition esthetic, and symbol of specific meanings. The interpreters deffine its meanings from such as from its shape, belief and religion, that is mirong as shape calligraphy of

  20. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  1. Characterization of human palmitoyl-acyl transferase activity using peptides that mimic distinct palmitoylation motifs.

    OpenAIRE

    Varner, Amanda S; Ducker, Charles E; Xia, Zuping; Zhuang, Yan; De Vos, Mackenzie L; Smith, Charles D.

    2003-01-01

    The covalent attachment of palmitate to proteins commonly occurs on cysteine residues near either N-myristoylated glycine residues or C-terminal farnesylated cysteine residues. It therefore seems likely that multiple palmitoyl-acyl transferase (PAT) activities exist to recognize and modify these distinct palmitoylation motifs. To evaluate this possibility, two synthetic peptides representing these palmitoylation motifs, termed MyrGCK(NBD) and FarnCNRas(NBD), were used to characterize PAT acti...

  2. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    OpenAIRE

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, iso...

  3. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  4. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase

    DEFF Research Database (Denmark)

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E

    2016-01-01

    -exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues...... a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes....

  5. CXC motif chemokine receptor 4 gene polymorphism and cancer risk

    Science.gov (United States)

    Wu, Yang; Zhang, Chun; Xu, Weizhang; Zhang, Jianzhong; Zheng, Yuxiao; Lu, Zipeng; Liu, Dongfang; Jiang, Kuirong

    2016-01-01

    Abstract Background: Previous epidemiological studies have reported the relationship between CXC motif chemokine receptor 4 (CXCR4) synonymous polymorphism (rs2228014), and risk of cancer, but the results remained conflicting and controversial. Therefore, this study was devised to evaluate the genetic effects of the rs2228014 polymorphism on cancer risk in a large meta-analysis. Methods: The computer-based databases (EMBASE, Web of Science, and PubMed) were searched for all relevant studies evaluating rs2228014 and susceptibility to cancer. In the analysis, pooled odds ratios (ORs) with its corresponding 95% confidence intervals (CIs) were calculated in 5 genetic models to assess the genetic risk. Egger regression and Begg funnel plots test were conducted to appraise the publication bias. Results: Data on rs2228014 polymorphism and overall cancer risk were available for 3684 cancer patients and 5114 healthy controls participating in 11 studies. Overall, a significantly increased risk of cancer was associated with rs2228014 polymorphism in homozygote model (OR = 2.01, 95% CI: 1.22–3.33) and in recessive model (OR = 1.97, 95% CI: 1.23–3.16). When stratified by ethnicity, the results were positive only in Asian populations (heterozygote model: OR = 1.36, 95% CI: 1.13–1.65; homozygote model: OR = 2.43, 95% CI: 1.21–4.91; dominant model: OR = 1.47, 95% CI: 1.13–1.90; recessive model: OR = 2.25, 95% CI: 1.13–4.48; and allele model: OR = 1.48, 95% CI: 1.10–1.99). Besides, in the subgroup analysis by source of control, the result was significant only in population-based control (homozygote model: OR = 2.39, 95% CI: 1.06–5.40; recessive model: pooled OR = 2.24, 95% CI: 1.02–4.96). Conclusion: In general, our results first indicated that the rs2228014 polymorphism in CXCR4 gene is correlated with an increased risk of cancer, especially among Asian ethnicity. Large, well-designed epidemiological studies are required to verify the current findings. PMID

  6. Fast revelation of the motif mode for a yeast protein interaction network through intelligent agent-based distributed computing.

    Science.gov (United States)

    Lee, Wei-Po; Tzou, Wen-Shyong

    2010-09-01

    In the yeast protein-protein interaction network, motif mode, a collection of motifs of special combinations of protein nodes annotated by the molecular function terms of the Gene Ontology, has revealed differences in the conservation constraints within the same topology. In this study, by employing an intelligent agent-based distributed computing method, we are able to discover motif modes in a fast and adaptive manner. Moreover, by focusing on the highly evolutionarily conserved motif modes belonging to the same biological function, we find a large downshift in the distance between nodes belonging to the same motif mode compared with the whole, suggesting that nodes with the same motif mode tend to congregate in a network. Several motif modes with a high conservation of the motif constituents were revealed, but from a new perspective, including that with a three-node motif mode engaged in the protein fate and that with three four-node motif modes involved in the genome maintenance, cellular organization, and transcription. The network motif modes discovered from this method can be linked to the wealth of biological data which require further elucidation with regard to biological functions.

  7. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs.

    Science.gov (United States)

    Alam, Tanvir; Alazmi, Meshari; Gao, Xin; Arold, Stefan T

    2014-06-15

    LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.

  8. Pipeline for the Analysis of ChIP-seq Data and New Motif Ranking Procedure

    KAUST Repository

    Ashoor, Haitham

    2011-06-01

    This thesis presents a computational methodology for ab-initio identification of transcription factor binding sites based on ChIP-seq data. This method consists of three main steps, namely ChIP-seq data processing, motif discovery and models selection. A novel method for ranking the models of motifs identified in this process is proposed. This method combines multiple factors in order to rank the provided candidate motifs. It combines the model coverage of the ChIP-seq fragments that contain motifs from which that model is built, the suitable background data made up of shuffled ChIP-seq fragments, and the p-value that resulted from evaluating the model on actual and background data. Two ChIP-seq datasets retrieved from ENCODE project are used to evaluate and demonstrate the ability of the method to predict correct TFBSs with high precision. The first dataset relates to neuron-restrictive silencer factor, NRSF, while the second one corresponds to growth-associated binding protein, GABP. The pipeline system shows high precision prediction for both datasets, as in both cases the top ranked motif closely resembles the known motifs for the respective transcription factors.

  9. What determines the assembly of transcriptional network motifs in Escherichia coli?

    Directory of Open Access Journals (Sweden)

    Francisco M Camas

    Full Text Available Transcriptional networks are constituted by a collection of building blocks known as network motifs. Why do motifs appear? An adaptive model of motif emergence was recently questioned in favor of neutralist scenarios. Here, we provide a new picture of motif assembly in Escherichia coli which partially clarifies these contrasting explanations. This is based on characterizing the linkage between motifs and sensing or response specificity of their constituent transcriptional factors (TFs. We find that sensing specificity influences the distribution of autoregulation, while the tendency of a TF to establish feed-forward loops (FFLs depends on response specificity, i.e., regulon size. Analysis of the latter pattern reveals that coregulation between large regulon-size TFs is common under a network neutral model, leading to the assembly of a great number of FFLs and bifans. In addition, neutral exclusive regulation also leads to a collection of single input modules -the fourth basic motif. On the whole, and even under the conservative neutralist scenario considered, a substantial group of regulatory structures revealed adaptive. These structures visibly function as fully-fledged working units.

  10. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  11. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed Ali; Pedersen, Erik B.; Khaireldin, Nahid Y.

    2016-01-01

    In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion of naphtha......In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion...... of naphthalimide (1H-benzo[de]isoquinoline-1,3(2H)-dione) as the intercalating nucleic acid. The stabilities of i-motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding...... and non-crowding). This study indicated a positive effect of the naphthalimide intercalating nucleotides on the stabilities of the i-motif structures compared to the wild-type structure which is in contrast to a previous observation for a pyrene-intercalating nucleotide showing a decrease in Tm values....

  12. Computational design of model scaffold for anion recognition based on the 'C(α) NN' motif.

    Science.gov (United States)

    Sheet, Tridip; Ghosh, Suvankar; Pal, Debnath; Banerjee, Raja

    2017-01-01

    The 'novel phosphate binding 'C(α) NN' motif', consisting of three consecutive amino acid residues, usually occurs in the protein loop regions preceding a helix. Recent computational and complementary biophysical experiments on a series of chimeric peptides containing the naturally occurring 'C(α) NN' motif at the N-terminus of a designed helix establishes that the motif segment recognizes the anion (sulfate and phosphate ions) through local interaction along with extension of the helical conformation which is thermodynamically favored even in a context-free, nonproteinaceous isolated system. However, the strength of the interaction depends on the amino acid sequence/conformation of the motif. Such a locally-mediated recognition of anions validates its intrinsic affinity towards anions and confirms that the affinity for recognition of anions is embedded within the 'local sequence' of the motif. Based on the knowledge gathered on the sequence/structural aspects of the naturally occurring 'C(α) NN' segment, which provides the guideline for rationally engineering model scaffolds, we have modeled a series of templates and investigated their interactions with anions using computational approach. Two of these designed scaffolds show more efficient anion recognition than those of the naturally occurring 'C(α) NN' motif which have been studied. This may provide an avenue in designing better anion receptors suitable for various biochemical applications.

  13. Motif formation and industry specific topologies in the Japanese business firm network

    Science.gov (United States)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  14. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    Science.gov (United States)

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  15. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Directory of Open Access Journals (Sweden)

    Pooya Zandevakili

    Full Text Available Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  16. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    Science.gov (United States)

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  17. A matterless double slit

    CERN Document Server

    King, B; Keitel, C H; 10.1038/nphoton.2009.261

    2013-01-01

    Double-slits provide incoming photons with a choice. Those that survive the passage have chosen from two possible paths which interfere to distribute them in a wave-like manner. Such wave-particle duality continues to be challenged and investigated in a broad range of disciplines with electrons, neutrons, helium atoms, C60 fullerenes, Bose-Einstein condensates and biological molecules. All variants have hitherto involved material constituents. We present a matterless double-slit scenario in which photons generated from virtual electron-positron pair annihilation in head-on collisions of a probe laser field with two ultra-intense laser beams form a double-slit interference pattern. Such electromagnetic fields are predicted to induce material-like behaviour in the vacuum, supporting elastic scattering between photons. Our double-slit scenario presents on the one hand a realisable method to observe photon-photon scattering, and demonstrates on the other, the possibility of both controlling light with light and n...

  18. The Double Nine Festival

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    THE Double Nine Festival,which falls on theninth day of the ninth lunar month,is anancient tradition among Han Chinese.TheBook of Changes,a famous classic in ancient China,designates the number 9 as yang(the masculine orpositive principle in nature).Thus Double Nine isknown as Chongyang in Chinese,meaning doubleyang.In The Western Capital Miscellancy,Ge Hong(281-341)of the Eastern Jin Dynasty described onetraditional custom of the Western Han Dynasty (206B.C.-A.D.24):″Wearing medicinal comel (Cornusofficinalis),eating double yang cake and drinking chry-santhemum wine on the ninth day of the ninth lunarmonth all help to prolong life.″Therefore the DoubleNine Festival is also celebrated as a festival for the old.People often wear medicinal cornel and climb to ahigh place to drink chrysanthemum wine.The customcomes from a legend:Huan Jing was a student ofnecromancer Fei Changfang in the Eastern Han Dy-nasty (25-220). One day Fei warned Huan that thelatter’s family was in danger of suffering a diaster ont

  19. Chaotic period doubling

    NARCIS (Netherlands)

    Chandramouli, V. V. M. S.; Martens, M.; De Melo, W.; Tresser, C. P.

    2009-01-01

    The period doubling renormalization operator was introduced by Feigenbaum and by Coullet and Tresser in the 1970s to study the asymptotic small-scale geometry of the attractor of one-dimensional systems that are at the transition from simple to chaotic dynamics. This geometry turns out not to depend

  20. Aristotle and Double Effect

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2014-01-01

    There are some interesting similarities between Aristotle’s ‘mixed actions’ in Book III of the Nicomachean Ethics and the actions often thought to be justifiable with the Doctrine of Double Effect. Here I analyse these similarities by comparing Aristotle’s examples of mixed actions with standard ...

  1. Bridging of anions by hydrogen bonds in nest motifs and its significance for Schellman loops and other larger motifs within proteins.

    Science.gov (United States)

    Afzal, Avid M; Al-Shubailly, Fawzia; Leader, David P; Milner-White, E James

    2014-11-01

    The nest is a protein motif of three consecutive amino acid residues with dihedral angles 1,2-αR αL (RL nests) or 1,2-αL αR (LR nests). Many nests form a depression in which an anion or δ-negative acceptor atom is bound by hydrogen bonds from the main chain NH groups. We have determined the extent and nature of this bridging in a database of protein structures using a computer program written for the purpose. Acceptor anions are bound by a pair of bridging hydrogen bonds in 40% of RL nests and 20% of LR nests. Two thirds of the bridges are between the NH groups at Positions 1 and 3 of the motif (N1N3-bridging)-which confers a concavity to the nest; one third are of the N2N3 type-which does not. In bridged LR nests N2N3-bridging predominates (14% N1N3: 75% N2N3), whereas in bridged RL nests the reverse is true (69% N1N3: 25% N2N3). Most bridged nests occur within larger motifs: 45% in (hexapeptide) Schellman loops with an additional 4 → 0 hydrogen bond (N1N3), 11% in Schellman loops with an additional 5 → 1 hydrogen bond (N2N3), 12% in a composite structure including a type 1β-bulge loop and an asx- or ST- motif (N1N3)-remarkably homologous to the N1N3-bridged Schellman loop-and 3% in a composite structure including a type 2β-bulge loop and an asx-motif (N2N3). A third hydrogen bond is a previously unrecognized feature of Schellman loops as those lacking bridged nests have an additional 4 → 0 hydrogen bond.

  2. Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPα and CREB Proteins

    Science.gov (United States)

    Chatterjee, Raghunath; Zhao, Jianfei; He, Ximiao; Shlyakhtenko, Andrey; Mann, Ishminder; Waterfall, Joshua J.; Meltzer, Paul; Sathyanarayana, B. K.; FitzGerald, Peter C.; Vinson, Charles

    2012-01-01

    Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X4-N1-30-X4) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif (C/GCCGGAAGCGGAA) and the ETS⇔CRE motif (C/GCGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif. PMID:23050235

  3. Identification of Biomarker and Co-Regulatory Motifs in Lung Adenocarcinoma Based on Differential Interactions.

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    Full Text Available Changes in intermolecular interactions (differential interactions may influence the progression of cancer. Specific genes and their regulatory networks may be more closely associated with cancer when taking their transcriptional and post-transcriptional levels and dynamic and static interactions into account simultaneously. In this paper, a differential interaction analysis was performed to detect lung adenocarcinoma-related genes. Furthermore, a miRNA-TF (transcription factor synergistic regulation network was constructed to identify three kinds of co-regulated motifs, namely, triplet, crosstalk and joint. Not only were the known cancer-related miRNAs and TFs (let-7, miR-15a, miR-17, TP53, ETS1, and so on were detected in the motifs, but also the miR-15, let-7 and miR-17 families showed a tendency to regulate the triplet, crosstalk and joint motifs, respectively. Moreover, several biological functions (i.e., cell cycle, signaling pathways and hemopoiesis associated with the three motifs were found to be frequently targeted by the drugs for lung adenocarcinoma. Specifically, the two 4-node motifs (crosstalk and joint based on co-expression and interaction had a closer relationship to lung adenocarcinoma, and so further research was performed on them. A 10-gene biomarker (UBC, SRC, SP1, MYC, STAT3, JUN, NR3C1, RB1, GRB2 and MAPK1 was selected from the joint motif, and a survival analysis indicated its significant association with survival. Among the ten genes, JUN, NR3C1 and GRB2 are our newly detected candidate lung adenocarcinoma-related genes. The genes, regulators and regulatory motifs detected in this work will provide potential drug targets and new strategies for individual therapy.

  4. Molecular diversity of LysM carbohydrate-binding motifs in fungi.

    Science.gov (United States)

    Akcapinar, Gunseli Bayram; Kappel, Lisa; Sezerman, Osman Ugur; Seidl-Seiboth, Verena

    2015-05-01

    LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They bind to N-acetylglucosamine-containing carbohydrates, such as chitin, chitio-oligosaccharides and peptidoglycan. In this review, we summarize the features of the protein architecture of LysM-containing proteins in fungi and discuss their so far known biochemical properties, transcriptional profiles and biological functions. Further, based on data from evolutionary analyses and consensus pattern profiling of fungal LysM motifs, we show that they can be classified into a fungal-specific group and a fungal/bacterial group. This facilitates the classification and selection of further LysM proteins for detailed analyses and will contribute to widening our understanding of the functional spectrum of this protein family in fungi. Fungal LysM motifs are predominantly found in subgroup C chitinases and in LysM effector proteins, which are secreted proteins with LysM motifs but no catalytic domains. In enzymes, LysM motifs mediate the attachment to insoluble carbon sources. In plants, receptors containing LysM motifs are responsible for the perception of chitin-oligosaccharides and are involved in beneficial symbiotic interactions between plants and bacteria or fungi, as well as plant defence responses. In plant pathogenic fungi, LysM effector proteins have already been shown to have important functions in the dampening of host defence responses as well as protective functions of fungal hyphae against chitinases. However, the large number and diversity of proteins with LysM motifs that are being unravelled in fungal genome sequencing projects suggest that the functional repertoire of LysM effector proteins in fungi is only partially discovered so far.

  5. The Human Pendrin Promoter Contains two N4 GAS Motifs with Different Functional Relevance

    Directory of Open Access Journals (Sweden)

    Simone Vanoni

    2013-12-01

    Full Text Available Background: Pendrin, an anion exchanger associated with the inner ear, thyroid and kidney, plays a significant role in respiratory tissues and diseases, where its expression is increased following IL-4 and IL-13 exposure. The mechanism leading to increased pendrin expression is in part due to binding of STAT6 to a consensus sequence (N4 GAS motif located in the pendrin promoter. As retrospective analyses of the 5' upstream sequence of the human pendrin promoter revealed an additional N4 GAS motif (1660 base pairs upstream of the one previously identified, we set out to define its contribution to IL-4 stimulated changes in pendrin promoter activity. Methods and Results: Electrophoretic mobility shift assays showed that STAT6 bound to oligonucleotides corresponding to both N4 GAS motifs in vitro, while dual luciferase promoter assays revealed that only one of the N4 GAS motifs was necessary for IL-4 -stimulated increases in pendrin promoter activity in living cells. We then examined the ability of STAT6 to bind each of the N4 GAS motifs in vivo with a site-specific ChIP assay, the results of which showed that STAT6 interacted with only the N4 GAS motif that was functionally implicated in increasing the activity of the pendrin promoter following IL-4 treatment. Conclusions: Of the two N4 GAS motifs located in the human pendrin promoter region analyzed in this study (nucleotides -3906 to +7, only the one located nearest to the first coding ATG participates in IL-4 stimulated increases in promoter activity.

  6. Distinct cagA EPIYA motifs are associated with ethnic diversity in Malaysia and Singapore.

    Science.gov (United States)

    Schmidt, Heather-Marie A; Goh, Khean-Lee; Fock, Kwong Ming; Hilmi, Ida; Dhamodaran, Subbiah; Forman, David; Mitchell, Hazel

    2009-08-01

    In vitro studies have shown that the biologic activity of CagA is influenced by the number and class of EPIYA motifs present in its variable region as these motifs correspond to the CagA phosphorylation sites. It has been hypothesized that strains possessing specific combinations of these motifs may be responsible for gastric cancer development. This study investigated the prevalence of cagA and the EPIYA motifs with regard to number, class, and patterns in strains from the three major ethnic groups within the Malaysian and Singaporean populations in relation to disease development. Helicobacter pylori isolates from 49 Chinese, 43 Indian, and 14 Malay patients with functional dyspepsia (FD) and 21 gastric cancer (GC) cases were analyzed using polymerase chain reaction for the presence of cagA and the number, type, and pattern of EPIYA motifs. Additionally, the EPIYA motifs of 47 isolates were sequenced. All 126 isolates possessed cagA, with the majority encoding EPIYA-A (97.6%) and all encoding EPIYA-B. However, while the cagA of 93.0% of Indian FD isolates encoded EPIYA-C as the third motif, 91.8% of Chinese FD isolates and 81.7% of Chinese GC isolates encoded EPIYA-D (p Malaysia and Singapore, these genotypes appear unassociated with the development of GC in the ethnic Chinese population. The phenomenon of distinct strains circulating within different ethnic groups, in combination with host and certain environmental factors, may help to explain the rates of GC development in Malaysia.

  7. Fibril-forming motifs are essential and sufficient for the fibrillization of human Tau.

    Science.gov (United States)

    Meng, Sheng-Rong; Zhu, Ying-Zhu; Guo, Tong; Liu, Xiao-Ling; Chen, Jie; Liang, Yi

    2012-01-01

    The misfolding of amyloidogenic proteins including human Tau protein, human prion protein, and human α-synuclein is involved in neurodegenerative diseases such as Alzheimer disease, prion disease, and Parkinson disease. Although a lot of research on such amyloidogenic proteins has been done, we do not know the determinants that drive these proteins to form fibrils and thereby induce neurodegenerative diseases. In this study, we want to know the role of fibril-forming motifs from such amyloidogenic proteins in the fibrillization of human Tau protein. As evidenced by thioflavin T binding and turbidity assays, transmission electron microscopy, and circular dichroism, fibril-forming motifs are essential and sufficient for the fibrillization of microtubule-associated protein Tau: only when both of its fibril-forming motifs, PHF6 and PHF6*, are deleted can recombinant human Tau fragment Tau(244-372) lose its ability to form fibrils, and the insertion of unrelated fibril-forming motifs from other amyloidogenic proteins, such as human prion protein, yeast prion protein, human α-synuclein, and human amyloid β, into the disabled Tau protein can retrieve its ability to form fibrils. Furthermore, this retrieval is independent of the insertion location on Tau(244-372). We demonstrate for the first time that insertion of fibril-forming motifs can replace PHF6/PHF6* motifs, driving human Tau protein to form fibrils with different morphologies and different kinetic parameters. Our results suggest that fibril-forming motifs play a key role in the fibrillization of human Tau protein and could be the determinants of amyloidogenic proteins tending to misfold, thereby causing the initiation and development of neurodegenerative diseases. Our study also touches on the importance of amyloid "strains": changes to the amyloidgenic driver region results in altered structural morphologies at the macromolecular level.

  8. Fibril-forming motifs are essential and sufficient for the fibrillization of human Tau.

    Directory of Open Access Journals (Sweden)

    Sheng-Rong Meng

    Full Text Available BACKGROUND: The misfolding of amyloidogenic proteins including human Tau protein, human prion protein, and human α-synuclein is involved in neurodegenerative diseases such as Alzheimer disease, prion disease, and Parkinson disease. Although a lot of research on such amyloidogenic proteins has been done, we do not know the determinants that drive these proteins to form fibrils and thereby induce neurodegenerative diseases. In this study, we want to know the role of fibril-forming motifs from such amyloidogenic proteins in the fibrillization of human Tau protein. METHODOLOGY/PRINCIPAL FINDINGS: As evidenced by thioflavin T binding and turbidity assays, transmission electron microscopy, and circular dichroism, fibril-forming motifs are essential and sufficient for the fibrillization of microtubule-associated protein Tau: only when both of its fibril-forming motifs, PHF6 and PHF6*, are deleted can recombinant human Tau fragment Tau(244-372 lose its ability to form fibrils, and the insertion of unrelated fibril-forming motifs from other amyloidogenic proteins, such as human prion protein, yeast prion protein, human α-synuclein, and human amyloid β, into the disabled Tau protein can retrieve its ability to form fibrils. Furthermore, this retrieval is independent of the insertion location on Tau(244-372. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time that insertion of fibril-forming motifs can replace PHF6/PHF6* motifs, driving human Tau protein to form fibrils with different morphologies and different kinetic parameters. Our results suggest that fibril-forming motifs play a key role in the fibrillization of human Tau protein and could be the determinants of amyloidogenic proteins tending to misfold, thereby causing the initiation and development of neurodegenerative diseases. Our study also touches on the importance of amyloid "strains": changes to the amyloidgenic driver region results in altered structural morphologies at the

  9. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    Science.gov (United States)

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  10. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff A.; Mejino, Jose; Sahoo, Satya S.

    2012-11-24

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions. MOCH represents patterns of multitype interaction as small labeled sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology (OWL, RDF and SPARQL) and Virtuoso, we performed exhaustive analyses of three 2-node motifs, resulting in 638 matching FMA configurations; twelve 3-node motifs, resulting in 202,960 configurations. Using the Principal Ideal Explorer (PIE) methodology as an extension of MOCH, we were able to identify 755 root nodes with 4,100 respective descendants with opposing antonyms in their class names for arbitrary-length motifs. With possible disjointness implied by antonyms, we performed manual inspection of a subset of the resulting FMA fragments and tracked down a source of abnormal inferred conclusions (captured by the motifs), coming from a gender-neutral class being modeled as a part of gender-specific class, such as “Urinary system” is a part of “Female human body.” Our results demonstrate that MOCH and PIE provide a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  11. LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage

    Directory of Open Access Journals (Sweden)

    Bishop Paul N

    2008-12-01

    Full Text Available Abstract Background The small leucine-rich repeat proteins and proteoglycans (SLRPs form an important family of regulatory molecules that participate in many essential functions. They typically control the correct assembly of collagen fibrils, regulate mineral deposition in bone, and modulate the activity of potent cellular growth factors through many signalling cascades. SLRPs belong to the group of extracellular leucine-rich repeat proteins that are flanked at both ends by disulphide-bonded caps that protect the hydrophobic core of the terminal repeats. A capping motif specific to SLRPs has been recently described in the crystal structures of the core proteins of decorin and biglycan. This motif, designated as LRRCE, differs in both sequence and structure from other, more widespread leucine-rich capping motifs. To investigate if the LRRCE motif is a common structural feature found in other leucine-rich repeat proteins, we have defined characteristic sequence patterns and used them in genome-wide searches. Results The LRRCE motif is a structural element exclusive to the main group of SLRPs. It appears to have evolved during early chordate evolution and is not found in protein sequences from non-chordate genomes. Our search has expanded the family of SLRPs to include new predicted protein sequences, mainly in fishes but with intriguing putative orthologs in mammals. The chromosomal locations of the newly predicted SLRP genes would support the large-scale genome or gene duplications that are thought to have occurred during vertebrate evolution. From this expanded list we describe a new class of SLRP sequences that could be representative of an ancestral SLRP gene. Conclusion Given its exclusivity the LRRCE motif is a useful annotation tool for the identification and classification of new SLRP sequences in genome databases. The expanded list of members of the SLRP family offers interesting insights into early vertebrate evolution and suggests an

  12. Structural basis for the binding of tryptophan-based motifs by δ-COP.

    Science.gov (United States)

    Suckling, Richard J; Poon, Pak Phi; Travis, Sophie M; Majoul, Irina V; Hughson, Frederick M; Evans, Philip R; Duden, Rainer; Owen, David J

    2015-11-17

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.

  13. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  14. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile.

    Science.gov (United States)

    Oberstaller, Jenna; Joseph, Sandeep J; Kissinger, Jessica C

    2013-07-29

    There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5'-TGGCGCCA-3'); G-box (5'-G.GGGG-3'); a well-documented ApiAP2 binding motif (5'-TGCAT-3'), and an unknown motif (5'-[A/C] AACTA-3'). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.

  15. Lipid motif of a bacterial antigen mediates immune responses via TLR2 signaling.

    Directory of Open Access Journals (Sweden)

    Amit A Lugade

    Full Text Available The cross-talk between the innate and the adaptive immune system is facilitated by the initial interaction of antigen with dendritic cells. As DCs express a large array of TLRs, evidence has accumulated that engagement of these molecules contributes to the activation of adaptive immunity. We have evaluated the immunostimulatory role of the highly-conserved outer membrane lipoprotein P6 from non-typeable Haemophilus influenzae (NTHI to determine whether the presence of the lipid motif plays a critical role on its immunogenicity. We undertook a systematic analysis of the role that the lipid motif plays in the activation of DCs and the subsequent stimulation of antigen-specific T and B cells. To facilitate our studies, recombinant P6 protein that lacked the lipid motif was generated. Mice immunized with non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of the lipid motif on P6 was also required for proliferation and cytokine secretion by antigen-specific T cells. Upregulation of T cell costimulatory molecules was abrogated in DCs exposed to non-lipidated rP6 and in TLR2(-/- DCs exposed to native P6, thereby resulting in diminished adaptive immune responses. Absence of either the lipid motif on the antigen or TLR2 expression resulted in diminished cytokine production from stimulated DCs. Collectively, our data suggest that the lipid motif of the lipoprotein antigen is essential for triggering TLR2 signaling and effective stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid motif on activating both innate and adaptive immune responses to an otherwise poorly immunogenic protein antigen.

  16. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  17. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2014-05-29

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  18. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  19. APOCALYPTIC MOTIFS IN THE CYCLE OF STORIES BY M.A. BULGAKOV «NOTES OF A YOUNG DOCTOR»

    Directory of Open Access Journals (Sweden)

    Evgeniy Igorevich Erokhov

    2015-10-01

    Full Text Available The motif analysis of a cycle of stories by M.A. Bulgakov «Notes of a Young Doctor» from the point of view of their apocalyptic problematics was first performed in this article. To identify apocalyptic motifs the method of motif analysis, developed by B.M. Gasparov, was used which will also help to prove the interpenetration of motifs in the cycle of stories. The result of the research work is the identification of apocalyptic motifs which are manifested in the experiences of the main character and the events taking place around him and passing through the prism of physician’s perception of the world. Our identified motifs show that the stories in the cycle are united not only thematically and with the help of the image of the main character, but with the help of the motifs which reflect interpenetration of apocalyptic motifs in the stories of one cycle. There are the following apocalyptic motifs in the cycle of stories by Bulgakov: diseases, darkness (as part of the landscape, resurrection from the dead and beast. They all belong to the biblical type which is allocated on the basis of the associative bond of these motifs with the biblical texts.

  20. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.

    Science.gov (United States)

    Pugalenthi, Ganesan; Kandaswamy, Krishna Kumar; Suganthan, P N; Sowdhamini, R; Martinetz, Thomas; Kolatkar, Prasanna R

    2010-12-01

    Knowledge of three dimensional structure is essential to understand the function of a protein. Although the overall fold is made from the whole details of its sequence, a small group of residues, often called as structural motifs, play a crucial role in determining the protein fold and its stability. Identification of such structural motifs requires sufficient number of sequence and structural homologs to define conservation and evolutionary information. Unfortunately, there are many structures in the protein structure databases have no homologous structures or sequences. In this work, we report an SVM method, SMpred, to identify structural motifs from single protein structure without using sequence and structural homologs. SMpred method was trained and tested using 132 proteins domains containing 581 motifs. SMpred method achieved 78.79% accuracy with 79.06% sensitivity and 78.53% specificity. The performance of SMpred was evaluated with MegaMotifBase using 188 proteins containing 1161 motifs. Out of 1161 motifs, SMpred correctly identified 1503 structural motifs reported in MegaMotifBase. Further, we showed that SMpred is useful approach for the length deviant superfamilies and single member superfamilies. This result suggests the usefulness of our approach for facilitating the identification of structural motifs in protein structure in the absence of sequence and structural homologs. The dataset and executable for the SMpred algorithm is available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/SMpred.htm.

  1. Double-Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena

    difficulties experienced by scientists when attempting to model DSF thermal and energy performance were examined. In addition, the lack of experimental studies and empirical validation of models was realized, many numerical models have not been empirically validated and most of them require an expert knowledge...... IEA Annex 34/43, subtask E "Double-Skin Facade". The results of empirical validation are discussed in this work. Discussion and analysis of experimental results is carried out. It has lead to hypothesis of recirculation flow phenomenon in the DSF cavity. Finally, a suggestion of a new numerical model......Double-Skin Facades (DSF) are gaining popularity that, in fact, appears to be independent from sturdy critics of the concept in the past years. DSF buildings are being built in Europe and worldwide, DSF concept is being taught at schools of architecture and fully glazed office buildings are being...

  2. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  3. Double Cortex Syndrome

    OpenAIRE

    1999-01-01

    The incidence of mutations in the X-linked gene doublecortin in patients with “double cortex” syndrome (DC; also called subcortical band heterotopia or laminar heterotopia) and familial DC with lissencephaly was investigated in a cohort of 8 pedigrees and 47 sporadic patients with DC examined at the Division of Neurogenics, Beth Israel Deaconess Medical Center, Boston, and multiple centers in the US and abroad.

  4. Twisted quantum doubles

    Directory of Open Access Journals (Sweden)

    Daijiro Fukuda

    2004-01-01

    Full Text Available Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗ℛλA** twisted by an element ℛλ∈A*⊗Aop corresponding to a Hopf algebra morphism λ:A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming from ℛλ when λ2=idA, generalizing the quantum double construction which corresponds to the case λ=idA.

  5. Double-Glazing Interferometry

    OpenAIRE

    Toal, Vincent; Mihaylova, Emilia

    2009-01-01

    This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for white light. Obtaining such fringes in a Michelson interferometer is not a trivial task.1 The interferometer is typically illuminated with a monochroma...

  6. Double pendulum contact problem

    Directory of Open Access Journals (Sweden)

    Špička J.

    2014-06-01

    Full Text Available The work concerns contact problems focused on biomechanical systems modelled by a multibody approach. The example is modelling of impact between a body and an infrastructure. The paper firstly presents algorithm for minimum distance calculation. An analytical approach using a tangential plain perpendicular to an initial one is applied. Contact force generated during impact is compared by three different continuous force models, namely the Hertz’s model, the spring-dashpot model and the non-linear damping model. In order to identify contact parameters of these particular models, the method of numerical optimization is used. Purpose of this method is to find the most corresponding results of numerical simulation to the original experiment. Numerical optimization principle is put upon a bouncing ball example for the purpose of evaluation of desirable contact force parameters. The contact modelling is applied to a double pendulum problem. The equation of motion of the double pendulum system is derived using Lagrange equation of the second kind with multipliers, respecting the contact phenomena. Applications in biomechanical research are hinted at arm gravity motion and a double pendulum impact example.

  7. Doubles everywhere: literary contributions to the study of the bodily self.

    Science.gov (United States)

    Dieguez, Sebastian

    2013-01-01

    The topic of the double is a hallmark of romantic, gothic, and fantastic literature. In the guise of the second self, the alter ego or the doppelgänger, fictional doubles have long fascinated critics, clinicians, and scientists. We review classical approaches to the theme and propose a broad clinical and neurocognitive framework from which to examine major instances of the motif in literature. Based on neurological disorders of the bodily self (including unilateral and whole body illusions and duplications), as well as related experimental approaches, we provide examples of literary depictions of bodily fragmentation and splitting; autoscopic hallucinations; the classical doppelgänger, second self, or heautoscopic double; the feeling of a presence; out-of-body experiences; and so-called near-death experiences. Examples include works from Guy de Maupassant, E.T.A. Hoffman, Edgar Allan Poe, Robert Louis Stevenson, Fyodor Dostoevsky, Rudyard Kipling, and others. We discuss these literary cases of doubles from a neurocognitive perspective, and suggest that common mechanisms of the bodily self are involved in the emergence of pathological illusory doubles, literary creations of the double, as well as widespread cultural and religious beliefs about the existence of doubles and the soul.

  8. Crystal Structures of the Scaffolding Protein LGN Reveal the General Mechanism by Which GoLoco Binding Motifs Inhibit the Release of GDP from Gαi *

    Science.gov (United States)

    Jia, Min; Li, Jianchao; Zhu, Jinwei; Wen, Wenyu; Zhang, Mingjie; Wang, Wenning

    2012-01-01

    GoLoco (GL) motif-containing proteins regulate G protein signaling by binding to Gα subunit and acting as guanine nucleotide dissociation inhibitors. GLs of LGN are also known to bind the GDP form of Gαi/o during asymmetric cell division. Here, we show that the C-terminal GL domain of LGN binds four molecules of Gαi·GDP. The crystal structures of Gαi·GDP in complex with LGN GL3 and GL4, respectively, reveal distinct GL/Gαi interaction features when compared with the only high resolution structure known with GL/Gαi interaction between RGS14 and Gαi1. Only a few residues C-terminal to the conserved GL sequence are required for LGN GLs to bind to Gαi·GDP. A highly conserved “double Arg finger” sequence (RΨ(D/E)(D/E)QR) is responsible for LGN GL to bind to GDP bound to Gαi. Together with the sequence alignment, we suggest that the LGN GL/Gαi interaction represents a general binding mode between GL motifs and Gαi. We also show that LGN GLs are potent guanine nucleotide dissociation inhibitors. PMID:22952234

  9. What is Double Parton Scattering?

    CERN Document Server

    Manohar, Aneesh V

    2012-01-01

    Processes such as double Drell-Yan and same-sign WW production have contributions from double parton scattering, which are not well-defined because of a delta(z_\\perp=0) singularity that is generated by QCD evolution. We study the single and double parton contributions to these processes, and show how to handle the singularity using factorization and operator renormalization.

  10. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  11. Network motif identification and structure detection with exponential random graph models

    Directory of Open Access Journals (Sweden)

    Munni Begum

    2014-12-01

    Full Text Available Local regulatory motifs are identified in the transcription regulatory network of the most studied model organism Escherichia coli (E. coli through graphical models. Network motifs are small structures in a network that appear more frequently than expected by chance alone. We apply social network methodologies such as p* models, also known as Exponential Random Graph Models (ERGMs, to identify statistically significant network motifs. In particular, we generate directed graphical models that can be applied to study interaction networks in a broad range of databases. The Markov Chain Monte Carlo (MCMC computational algorithms are implemented to obtain the estimates of model parameters to the corresponding network statistics. A variety of ERGMs are fitted to identify statistically significant network motifs in transcription regulatory networks of E. coli. A total of nine ERGMs are fitted to study the transcription factor - transcription factor interactions and eleven ERGMs are fitted for the transcription factor-operon interactions. For both of these interaction networks, arc (a directed edge in a directed network and k-istar (or incoming star structures, for values of k between 2 and 10, are found to be statistically significant local structures or network motifs. The goodness of fit statistics are provided to determine the quality of these models.

  12. A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA.

    Science.gov (United States)

    Zhang, Bing; Gunawardane, Lalith; Niazi, Farshad; Jahanbani, Fereshteh; Chen, Xin; Valadkhan, Saba

    2014-06-01

    The ubiquitous presence of long noncoding RNAs (lncRNAs) in eukaryotes points to the importance of understanding how their sequences impact function. As many lncRNAs regulate nuclear events and thus must localize to nuclei, we analyzed the sequence requirements for nuclear localization in an intergenic lncRNA named BORG (BMP2-OP1-responsive gene), which is both spliced and polyadenylated but is strictly localized in nuclei. Subcellular localization of BORG was not dependent on the context or level of its expression or decay but rather depended on the sequence of the mature, spliced transcript. Mutational analyses indicated that nuclear localization of BORG was mediated through a novel RNA motif consisting of the pentamer sequence AGCCC with sequence restrictions at positions -8 (T or A) and -3 (G or C) relative to the first nucleotide of the pentamer. Mutation of the motif to a scrambled sequence resulted in complete loss of nuclear localization, while addition of even a single copy of the motif to a cytoplasmically localized RNA was sufficient to impart nuclear localization. Further, the presence of this motif in other cellular RNAs showed a direct correlation with nuclear localization, suggesting that the motif may act as a general nuclear localization signal for cellular RNAs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  14. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Science.gov (United States)

    Gendoo, Deena MA; El-Hefnawi, Mahmoud M; Werner, Mark; Siam, Rania

    2008-01-01

    Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites. PMID:18681973

  15. Effects of rate-limiting steps in transcription initiation on genetic filter motifs.

    Science.gov (United States)

    Häkkinen, Antti; Tran, Huy; Yli-Harja, Olli; Ribeiro, Andre S

    2013-01-01

    The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs. These results constitute an assessment of the range of behaviors of genetic motifs as a function of the kinetics of transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their protein products.

  16. A Simple Decision Rule for Recognition of Poly(A) Tail Signal Motifs in Human Genome

    KAUST Repository

    AbouEisha, Hassan M.

    2015-05-12

    Background is the numerous attempts were made to predict motifs in genomic sequences that correspond to poly (A) tail signals. Vast portion of this effort has been directed to a plethora of nonlinear classification methods. Even when such approaches yield good discriminant results, identifying dominant features of regulatory mechanisms nevertheless remains a challenge. In this work, we look at decision rules that may help identifying such features. Findings are we present a simple decision rule for classification of candidate poly (A) tail signal motifs in human genomic sequence obtained by evaluating features during the construction of gradient boosted trees. We found that values of a single feature based on the frequency of adenine in the genomic sequence surrounding candidate signal and the number of consecutive adenine molecules in a well-defined region immediately following the motif displays good discriminative potential in classification of poly (A) tail motifs for samples covered by the rule. Conclusions is the resulting simple rule can be used as an efficient filter in construction of more complex poly(A) tail motifs classification algorithms.

  17. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal Matoq Saeed

    2011-11-15

    Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. The Author(s) 2011. Published by Oxford University Press. All rights reserved.

  18. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  19. Spodoptera frugiperda FKBP-46 is a consensus p53 motif binding protein.

    Science.gov (United States)

    Mohareer, Krishnaveni; Sahdev, Sudhir; Hasnain, Seyed E

    2013-04-01

    p53 protein, the central molecule of the apoptosis pathway, is mutated in 50% of the human cancers. Of late, p53 homologues have been identified from different invertebrates including Drosophila melanogaster, Caenorhabditis elegans, Squid, and Clams. We report the identification of a p53-like protein in Spodoptera frugiperda (Sf9) insect cells, which is activated during oxidative stress, caused by exposure to UV-B or H(2) O(2) , and binds to p53 consensus DNA binding motifs as well as other p53 cognate motifs. Sf9 p53 motif-binding protein is similar to murine and Drosophila p53 in terms of molecular size, which is around 50-60 kDa, as evident from UV cross-linking, and displays DNA binding characteristics similar to both insect and vertebrate p53 as seen from electrophoretic mobility shift assays. The N-terminal sequencing of the purified Sf9 p53 motif-binding protein reveals extensive homology to the pro-apoptotic FK-506 binding protein (FKBP-46), earlier identified in Sf9 cells as a factor which interacts with murine casein kinase. FKBP, an evolutionarily conserved protein of mammalian origin functions as a pro-apoptotic factor. Identification of FKBP-46 as a novel p53 motif-binding protein in insect cells adds a new facet to our understanding of the mechanisms of apoptosis under oxidative stress in the absence of a typical p53 homologue.

  20. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  1. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.

    Science.gov (United States)

    Bandyopadhyay, Deepak; Huan, Jun; Liu, Jinze; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2010-09-01

    We describe a new approach for inferring the functional relationships between nonhomologous protein families by looking at statistical enrichment of alternative function predictions in classification hierarchies such as Gene Ontology (GO) and Structural Classification of Proteins (SCOP). Protein structures are represented by robust graph representations, and the fast frequent subgraph mining algorithm is applied to protein families to generate sets of family-specific packing motifs, i.e., amino acid residue-packing patterns shared by most family members but infrequent in other proteins. The function of a protein is inferred by identifying in it motifs characteristic of a known family. We employ these family-specific motifs to elucidate functional relationships between families in the GO and SCOP hierarchies. Specifically, we postulate that two families are functionally related if one family is statistically enriched by motifs characteristic of another family, i.e., if the number of proteins in a family containing a motif from another family is greater than expected by chance. This function-inference method can help annotate proteins of unknown function, establish functional neighbors of existing families, and help specify alternate functions for known proteins.

  2. RNA tertiary interactions in the large ribosomal subunit: The A-minor motif

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Poul; Ippolito, Joseph A.; Ban, Nenad; Moore, Peter B.; Steitz, Thomas A. (Yale University); (Yale University); (Yale Unversity)

    2009-10-07

    Analysis of the 2.4-{angstrom} resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helices, preferentially at C-G base pairs, where they form hydrogen bonds with one or both of the 2' OHs of those pairs. A-minor motifs stabilize contacts between RNA helices, interactions between loops and helices, and the conformations of junctions and tight turns. The interactions between the 3' terminal adenine of tRNAs bound in either the A site or the P site with 23S rRNA are examples of functionally significant A-minor interactions. The A-minor motif is by far the most abundant tertiary structure interaction in the large ribosomal subunit; 186 adenines in 23S and 5S rRNA participate, 68 of which are conserved. It may prove to be the universally most important long-range interaction in large RNA structures.

  3. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif.

    Science.gov (United States)

    Senchou, V; Weide, R; Carrasco, A; Bouyssou, H; Pont-Lezica, R; Govers, F; Canut, H

    2004-02-01

    The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and plasma membrane. Photoaffinity cross-linking of [125I]-azido-RGD heptapeptide in the presence of purified plasma membrane vesicles of Arabidopsis thaliana led to label incorporation into a single protein with an apparent molecular mass of 80 kDa. Incorporation could be prevented by excess RGD peptides, but also by the IPI-O protein, an RGD-containing protein secreted by the oomycete plant pathogen Phytophthora infestans. Hydrophobic cluster analysis revealed that the RGD motif of IPI-O (positions 53-56) is readily accessible for interactions. Single amino acid mutations in the RGD motif in IPI-O (of Asp56 into Glu or Ala) resulted in the loss of protection of the 80-kDa protein from labelling. Thus, the interaction between the two proteins is mediated through RGD recognition and the 80-kDa RGD-binding protein has the characteristics of a receptor for IPI-O. The IPI-O protein also disrupted cell wall-plasma membrane adhesions in plasmolysed A. thaliana cells, whereas IPI-O proteins mutated in the RGD motif (D56A and D56E) did not.

  4. DXD Motif-Dependent and -Independent Effects of the Chlamydia trachomatis Cytotoxin CT166

    Directory of Open Access Journals (Sweden)

    Miriam Bothe

    2015-02-01

    Full Text Available The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5 antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia.

  5. Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs

    Directory of Open Access Journals (Sweden)

    Delihas Nicholas

    2009-03-01

    Full Text Available Abstract Background Borrelia species are unusual in that they contain a large number of linear and circular plasmids. Many of these plasmids have long intergenic regions. These regions have many fragmented genes, repeated sequences and appear to be in a state of flux, but they may serve as reservoirs for evolutionary change and/or maintain stable motifs such as small RNA genes. Results In an in silico study, intergenic regions of Borrelia plasmids were scanned for phylogenetically conserved stem loop structures that may represent functional units at the RNA level. Five repeat sequences were found that could fold into stable RNA-type stem loop structures, three of which are closely linked to protein genes, one of which is a member of the Borrelia lipoprotein_1 super family genes and another is the complement regulator-acquiring surface protein_1 (CRASP-1 family. Modeled secondary structures of repeat sequences display numerous base-pair compensatory changes in stem regions, including C-G→A-U transversions when orthologous sequences are compared. Base-pair compensatory changes constitute strong evidence for phylogenetic conservation of secondary structure. Conclusion Intergenic regions of Borrelia species carry evolutionarily stable RNA secondary structure motifs. Of major interest is that some motifs are associated with protein genes that show large sequence variability. The cell may conserve these RNA motifs whereas allow a large flux in amino acid sequence, possibly to create new virulence factors but with associated RNA motifs intact.

  6. Role of Motif III in Catalysis by Acetyl-CoA Synthetase

    Directory of Open Access Journals (Sweden)

    Cheryl Ingram-Smith

    2012-01-01

    Full Text Available The acyl-adenylate-forming enzyme superfamily, consisting of acyl- and aryl-CoA synthetases, the adenylation domain of the nonribosomal peptide synthetases, and luciferase, has three signature motifs (I–III and ten conserved core motifs (A1–A10, some of which overlap the signature motifs. The consensus sequence for signature motif III (core motif A7 in acetyl-CoA synthetase is Y-X-S/T/A-G-D, with an invariant fifth position, highly conserved first and fourth positions, and variable second and third positions. Kinetic studies of enzyme variants revealed that an alteration at any position resulted in a strong decrease in the catalytic rate, although the most deleterious effects were observed when the first or fifth positions were changed. Structural modeling suggests that the highly conserved Tyr in the first position plays a key role in active site architecture through interaction with a highly conserved active-site Gln, and the invariant Asp in the fifth position plays a critical role in ATP binding and catalysis through interaction with the 2′- and 3′-OH groups of the ribose moiety. Interactions between these Asp and ATP are observed in all structures available for members of the superfamily, consistent with a critical role in substrate binding and catalysis for this invariant residue.

  7. Motif finding in DNA sequences based on skipping nonconserved positions in background Markov chains.

    Science.gov (United States)

    Zhao, Xiaoyan; Sze, Sing-Hoi

    2011-05-01

    One strategy to identify transcription factor binding sites is through motif finding in upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts, none of the existing algorithms perform very well. We consider a string representation that allows arbitrary ignored positions within the nonconserved portion of single motifs, and use O(2(l)) Markov chains to model the background distributions of motifs of length l while skipping these positions within each Markov chain. By focusing initially on positions that have fixed nucleotides to define core occurrences, we develop an algorithm to identify motifs of moderate lengths. We compare the performance of our algorithm to other motif finding algorithms on a few benchmark data sets, and show that significant improvement in accuracy can be obtained when the sites are sufficiently conserved within a given sample, while comparable performance is obtained when the site conservation rate is low. A software program (PosMotif ) and detailed results are available online at http://faculty.cse.tamu.edu/shsze/posmotif.

  8. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2016-11-28

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.

  9. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    Science.gov (United States)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  10. Distribution of hammerhead and hammerhead-like RNA motifs through the GenBank.

    Science.gov (United States)

    Ferbeyre, G; Bourdeau, V; Pageau, M; Miramontes, P; Cedergren, R

    2000-07-01

    Hammerhead ribozymes previously were found in satellite RNAs from plant viroids and in repetitive DNA from certain species of newts and schistosomes. To determine if this catalytic RNA motif has a wider distribution, we decided to scrutinize the GenBank database for RNAs that contain hammerhead or hammerhead-like motifs. The search shows a widespread distribution of this kind of RNA motif in different sequences suggesting that they might have a more general role in RNA biology. The frequency of the hammerhead motif is half of that expected from a random distribution, but this fact comes from the low CpG representation in vertebrate sequences and the bias of the GenBank for those sequences. Intriguing motifs include those found in several families of repetitive sequences, in the satellite RNA from the carrot red leaf luteovirus, in plant viruses like the spinach latent virus and the elm mottle virus, in animal viruses like the hepatitis E virus and the caprine encephalitis virus, and in mRNAs such as those coding for cytochrome P450 oxidoreductase in the rat and the hamster.

  11. DXD motif-dependent and -independent effects of the chlamydia trachomatis cytotoxin CT166.

    Science.gov (United States)

    Bothe, Miriam; Dutow, Pavel; Pich, Andreas; Genth, Harald; Klos, Andreas

    2015-02-17

    The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia.

  12. qPMS9: An Efficient Algorithm for Quorum Planted Motif Search

    Science.gov (United States)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2015-01-01

    Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

  13. Through the Portal: Viking Motifs Incorporated in the Romanesque Style in Telemark, Norway

    Directory of Open Access Journals (Sweden)

    Kristine Ødeby

    2013-09-01

    Full Text Available This paper presents the results of an analysis of motifs identified on six carved wooden Romanesque portal panels from the Norwegian county of Telemark. The findings suggest that animal motifs in the Late Viking style survived long into the Late Medieval period and were reused on these medieval portals. Stylistically, late expressions of Viking animal art do not differ a great deal from those of the subsequent Romanesque style. However, their symbolical differences are considered to be significant. The motifs themselves, and the issue of whether the Romanesque style adopted motifs from pre-Christian art, have attracted less attention. The motif portraying Sigurd slaying the dragon is considered in depth. It will be suggested that Sigurd, serving as a mediator between the old and the new beliefs when he appeared in late Viking contexts, was given a new role when portrayed in Christian art. Metaphor and liminality are a central part of this paper, and the theories of Alfred Gell and Margrete Andås suggest that the portal itself affects those who pass through it, and that the iconography is meaningful from a liminal perspective.

  14. A Conserved Di-Basic Motif of Drosophila Crumbs Contributes to Efficient ER Export.

    Science.gov (United States)

    Kumichel, Alexandra; Kapp, Katja; Knust, Elisabeth

    2015-06-01

    The Drosophila type I transmembrane protein Crumbs is an apical determinant required for the maintenance of apico-basal epithelial cell polarity. The level of Crumbs at the plasma membrane is crucial, but how it is regulated is poorly understood. In a genetic screen for regulators of Crumbs protein trafficking we identified Sar1, the core component of the coat protein complex II transport vesicles. sar1 mutant embryos show a reduced plasma membrane localization of Crumbs, a defect similar to that observed in haunted and ghost mutant embryos, which lack Sec23 and Sec24CD, respectively. By pulse-chase assays in Drosophila Schneider cells and analysis of protein transport kinetics based on Endoglycosidase H resistance we identified an RNKR motif in Crumbs, which contributes to efficient ER export. The motif identified fits the highly conserved di-basic RxKR motif and mediates interaction with Sar1. The RNKR motif is also required for plasma membrane delivery of transgene-encoded Crumbs in epithelial cells of Drosophila embryos. Our data are the first to show that a di-basic motif acts as a signal for ER exit of a type I plasma membrane protein in a metazoan organism. © 2015 The Authors. Traffic published by John Wiley & Sons Ltd.

  15. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing.

    Science.gov (United States)

    Strub, Marie Paule; Hoh, François; Sanchez, Jean Frédéric; Strub, Jean Marc; Böck, August; Aumelas, André; Dumas, Christian

    2003-11-01

    A protocol for the quantitative incorporation of both selenomethionine and selenocysteine into recombinant proteins overexpressed in Escherichia coli is described. This methodology is based on the use of a suitable cysteine auxotrophic strain and a minimal medium supplemented with selenium-labeled methionine and cysteine. The proteins chosen for these studies are the cathelin-like motif of protegrin-3 and a nucleoside-diphosphate kinase. Analysis of the purified proteins by electrospray mass spectrometry and X-ray crystallography revealed that both cysteine and methionine residues were isomorphously replaced by selenocysteine and selenomethionine. Moreover, selenocysteines allowed the formation of unstrained and stable diselenide bridges in place of the canonical disulfide bonds. In addition, we showed that NDP kinase contains a selenocysteine adduct on Cys122. This novel selenium double-labeling method is proposed as a general approach to increase the efficiency of the MAD technique used for phase determination in protein crystallography.

  16. Feedback through graph motifs relates structure and function in complex networks

    CERN Document Server

    Hu, Yu; Cain, Nicholas; Mihalas, Stefan; Kutz, J Nathan; Shea-Brown, Eric

    2016-01-01

    How does the connectivity of a network system combine with the behavior of its individual components to determine its collective function? We approach this question by relating the internal network feedback to the statistical prevalence of connectivity motifs, a set of surprisingly simple and local statistics on the network topology. The resulting motif description provides a reduced order model of the network input-output dynamics and it relates the overall network function to feedback control theory. For example, this new formulation dramatically simplifies the classic Erdos-Renyi graph, reducing the overall graph behavior to a simple proportional feedback wrapped around the dynamics of a single node. Higher-order motifs systematically provide further layers and types of feedback to regulate the network response. Thus, the local connectivity shapes temporal and spectral processing by the network as a whole, and we show how this enables robust, yet tunable, functionality such as extending the time constant w...

  17. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem.

    Science.gov (United States)

    Tanaka, Shunji

    2014-01-01

    In this paper efficient exact algorithms are proposed for the planted ( l, d)-motif search problem. This problem is to find all motifs of length l that are planted in each input string with at most d mismatches. The "quorum" version of this problem is also treated in this paper to find motifs planted not in all input strings but in at least q input strings. The proposed algorithms are based on the previous algorithms called qPMSPruneI and qPMS7 that traverse a search tree starting from a l-length substring of an input string. To improve these previous algorithms, several techniques are introduced, which contribute to reducing the computation time for the traversal. In computational experiments, it will be shown that the proposed algorithms outperform the previous algorithms.

  18. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  19. Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco

    Science.gov (United States)

    Yanagawa, Yuki; Yoda, Hiroshi; Osaki, Kohei; Amano, Yuta; Aono, Mitsuko; Seo, Shigemi; Kuchitsu, Kazuyuki; Mitsuhara, Ichiro

    2016-01-01

    The mitogen-activated protein kinases (MAPKs/MPKs) are important factors in the regulation of signal transduction in response to biotic and abiotic stresses. Previously, we characterized a MAPK from tobacco, Nicotiana tabacum MPK4 (NtMPK4). Here, we found a highly homologous gene, NtMPK4-like (NtMPK4L), in tobacco as well as other species in Solanaceae and Gramineae. Deduced amino acid sequences of their translation products carried MEY motifs instead of conserved TXY motifs of the MAPK family. We isolated the full length NtMPK4L gene and examined the physiological functions of NtMPK4L. We revealed that NtMPK4L was activated by wounding, like NtMPK4. However, a constitutively active salicylic acid-induced protein kinase kinase (SIPKKEE), which phosphorylates NtMPK4, did not phosphorylate NtMPK4L. Moreover, a tyrosine residue in the MEY motif was not involved in NtMPK4L activation. We also found that NtMPK4L-silenced plants showed rapid transpiration caused by remarkably open stomata. In addition, NtMPK4L-silenced plants completely lost the ability to close stomata upon ozone treatment and were highly sensitive to ozone, suggesting that this atypical MAPK plays a role in ozone tolerance through stomatal regulation. PMID:27126796

  20. A Biochemical Double Slit

    Science.gov (United States)

    Kominis, Iannis

    2011-03-01

    Radical-ion-pair reactions, fundamental in photosynthesis and at the basis of the avian magnetic compass mechanism, have been recently shown to offer a rich playground for applying methods and concepts from quantum measurement/quantum information science. We will demonstrate that radical-ion-pair reactions are almost the exact analog of the optical double slit experiment, i.e. Nature has already engineered biochemical reactions performing the act of quantum interference. We will further elaborate on the non-trivial quantum effects pertaining in these reactions and the recent debate on their fundamental theoretical description that these effects have sparked.

  1. Electromagnetic Field Seems to Not Influence Transcription via CTCT Motif in Three Plant Promoters

    Science.gov (United States)

    Sztafrowski, Dariusz; Aksamit-Stachurska, Anna; Kostyn, Kamil; Mackiewicz, Paweł; Łukaszewicz, Marcin

    2017-01-01

    It was proposed that magnetic fields (MFs) can influence gene transcription via CTCT motif located in human HSP70 promoter. To check the universality of this mechanism, we estimated the potential role of this motif on plant gene transcription in response to MFs using both bioinformatics and experimental studies. We searched potential promoter sequences (1000 bp upstream) in the potato Solanum tuberosum and thale cress Arabidopsis thaliana genomes for the CTCT sequence. The motif was found, on average, 3.6 and 4.3 times per promoter (148,487 and 134,361 motifs in total) in these two species, respectively; however, the CTCT sequences were not randomly distributed in the promoter regions but were preferentially located near the transcription initiation site and were closely packed. The closer these CTCT sequences to the transcription initiation site, the smaller distance between them in both plants. One can assume that genes with many CTCT motifs in their promoter regions can be potentially regulated by MFs. To check this assumption, we tested the influence of MFs on gene expression in a transgenic potato with three promoters (16R, 20R, and 5UGT) containing from 3 to 12 CTCT sequences and starting expression of β-glucuronidase as a reported gene. The potatoes were exposed to a 50 Hz 60–70 A/m MF for 30 min and the reporter gene activity was measured for up to 24 h. Although other factors induced the reporter gene activity, the MF did not. It implies the CTCT motif does not mediate in response to MF in the tested plant promoters. PMID:28326086

  2. Motif-guided sparse decomposition of gene expression data for regulatory module identification

    Directory of Open Access Journals (Sweden)

    Hoffman Eric P

    2011-03-01

    Full Text Available Abstract Background Genes work coordinately as gene modules or gene networks. Various computational approaches have been proposed to find gene modules based on gene expression data; for example, gene clustering is a popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-expressed but not necessarily co-regulated. Results We propose a novel approach, motif-guided sparse decomposition (mSD, to identify gene regulatory modules by integrating gene expression data and DNA sequence motif information. The mSD approach is implemented as a two-step algorithm comprising estimates of (1 transcription factor activity and (2 the strength of the predicted gene regulation event(s. Specifically, a motif-guided clustering method is first developed to estimate the transcription factor activity of a gene module; sparse component analysis is then applied to estimate the regulation strength, and so predict the target genes of the transcription factors. The mSD approach was first tested for its improved performance in finding regulatory modules using simulated and real yeast data, revealing functionally distinct gene modules enriched with biologically validated transcription factors. We then demonstrated the efficacy of the mSD approach on breast cancer cell line data and uncovered several important gene regulatory modules related to endocrine therapy of breast cancer. Conclusion We have developed a new integrated strategy, namely motif-guided sparse decomposition (mSD of gene expression data, for regulatory module identification. The mSD method features a novel motif-guided clustering method for transcription factor activity estimation by finding a balance between co-regulation and co-expression. The mSD method further utilizes a sparse decomposition method for regulation strength estimation. The

  3. iTriplet, a rule-based nucleic acid sequence motif finder

    Directory of Open Access Journals (Sweden)

    Gunderson Samuel I

    2009-10-01

    Full Text Available Abstract Background With the advent of high throughput sequencing techniques, large amounts of sequencing data are readily available for analysis. Natural biological signals are intrinsically highly variable making their complete identification a computationally challenging problem. Many attempts in using statistical or combinatorial approaches have been made with great success in the past. However, identifying highly degenerate and long (>20 nucleotides motifs still remains an unmet challenge as high degeneracy will diminish statistical significance of biological signals and increasing motif size will cause combinatorial explosion. In this report, we present a novel rule-based method that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet, avoids costly enumeration present in existing combinatorial methods and is amenable to parallel processing. Results We have conducted a comprehensive assessment on the performance and sensitivity-specificity of iTriplet in analyzing artificial and real biological sequences in various genomic regions. The results show that iTriplet is able to solve challenging cases. Furthermore we have confirmed the utility of iTriplet by showing it accurately predicts polyA-site-related motifs using a dual Luciferase reporter assay. Conclusion iTriplet is a novel rule-based combinatorial or enumerative motif finding method that is able to process highly degenerate and long motifs that have resisted analysis by other methods. In addition, iTriplet is distinguished from other methods of the same family by its parallelizability, which allows it to leverage the power of today's readily available high-performance computing systems.

  4. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  5. Functional diversification of paralogous transcription factors via divergence in DNA binding site motif and in expression.

    Directory of Open Access Journals (Sweden)

    Larry N Singh

    Full Text Available BACKGROUND: Gene duplication is a major driver of evolutionary innovation as it allows for an organism to elaborate its existing biological functions via specialization or diversification of initially redundant gene paralogs. Gene function can diversify in several ways. Transcription factor gene paralogs in particular, can diversify either by changes in their tissue-specific expression pattern or by changes in the DNA binding site motif recognized by their protein product, which in turn alters their gene targets. The relationship between these two modes of functional diversification of transcription factor paralogs has not been previously investigated, and is essential for understanding adaptive evolution of transcription factor gene families. FINDINGS: Based on a large set of human paralogous transcription factor pairs, we show that when the DNA binding site motifs of transcription factor paralogs are similar, the expressions of the genes that encode the paralogs have diverged, so in general, at most one of the paralogs is highly expressed in a tissue. Moreover, paralogs with diverged DNA binding site motifs tend to be diverged in their function. Conversely, two paralogs that are highly expressed in a tissue tend to have dissimilar DNA binding site motifs. We have also found that in general, within a paralogous family, tissue-specific decrease in gene expression is more frequent than what is expected by chance. CONCLUSIONS: While previous investigations of paralogous gene diversification have only considered coding sequence divergence, by explicitly quantifying divergence in DNA binding site motif, our work presents a new paradigm for investigating functional diversification. Consistent with evolutionary expectation, our quantitative analysis suggests that paralogous transcription factors have survived extinction in part, either through diversification of their DNA binding site motifs or through alterations in their tissue-specific expression

  6. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  7. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  8. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    Science.gov (United States)

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  9. Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs.

    Directory of Open Access Journals (Sweden)

    Alexandre Wohlkönig

    Full Text Available BACKGROUND: Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily. RESULTS: Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46 share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism. CONCLUSIONS: The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily.

  10. Learning "graph-mer" motifs that predict gene expression trajectories in development.

    Directory of Open Access Journals (Sweden)

    Xuejing Li

    2010-04-01

    Full Text Available A key problem in understanding transcriptional regulatory networks is deciphering what cis regulatory logic is encoded in gene promoter sequences and how this sequence information maps to expression. A typical computational approach to this problem involves clustering genes by their expression profiles and then searching for overrepresented motifs in the promoter sequences of genes in a cluster. However, genes with similar expression profiles may be controlled by distinct regulatory programs. Moreover, if many gene expression profiles in a data set are highly correlated, as in the case of whole organism developmental time series, it may be difficult to resolve fine-grained clusters in the first place. We present a predictive framework for modeling the natural flow of information, from promoter sequence to expression, to learn cis regulatory motifs and characterize gene expression patterns in developmental time courses. We introduce a cluster-free algorithm based on a graph-regularized version of partial least squares (PLS regression to learn sequence patterns--represented by graphs of k-mers, or "graph-mers"--that predict gene expression trajectories. Applying the approach to wildtype germline development in Caenorhabditis elegans, we found that the first and second latent PLS factors mapped to expression profiles for oocyte and sperm genes, respectively. We extracted both known and novel motifs from the graph-mers associated to these germline-specific patterns, including novel CG-rich motifs specific to oocyte genes. We found evidence supporting the functional relevance of these putative regulatory elements through analysis of positional bias, motif conservation and in situ gene expression. This study demonstrates that our regression model can learn biologically meaningful latent structure and identify potentially functional motifs from subtle developmental time course expression data.

  11. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    Directory of Open Access Journals (Sweden)

    Roberts Richard J

    2008-05-01

    Full Text Available Abstract Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360, cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases.

  12. PhyloGibbs-MP: module prediction and discriminative motif-finding by Gibbs sampling.

    Science.gov (United States)

    Siddharthan, Rahul

    2008-08-29

    PhyloGibbs, our recent Gibbs-sampling motif-finder, takes phylogeny into account in detecting binding sites for transcription factors in DNA and assigns posterior probabilities to its predictions obtained by sampling the entire configuration space. Here, in an extension called PhyloGibbs-MP, we widen the scope of the program, addressing two major problems in computational regulatory genomics. First, PhyloGibbs-MP can localise predictions to small, undetermined regions of a large input sequence, thus effectively predicting cis-regulatory modules (CRMs) ab initio while simultaneously predicting binding sites in those modules-tasks that are usually done by two separate programs. PhyloGibbs-MP's performance at such ab initio CRM prediction is comparable with or superior to dedicated module-prediction software that use prior knowledge of previously characterised transcription factors. Second, PhyloGibbs-MP can predict motifs that differentiate between two (or more) different groups of regulatory regions, that is, motifs that occur preferentially in one group over the others. While other "discriminative motif-finders" have been published in the literature, PhyloGibbs-MP's implementation has some unique features and flexibility. Benchmarks on synthetic and actual genomic data show that this algorithm is successful at enhancing predictions of differentiating sites and suppressing predictions of common sites and compares with or outperforms other discriminative motif-finders on actual genomic data. Additional enhancements include significant performance and speed improvements, the ability to use "informative priors" on known transcription factors, and the ability to output annotations in a format that can be visualised with the Generic Genome Browser. In stand-alone motif-finding, PhyloGibbs-MP remains competitive, outperforming PhyloGibbs-1.0 and other programs on benchmark data.

  13. PhyloGibbs-MP: module prediction and discriminative motif-finding by Gibbs sampling.

    Directory of Open Access Journals (Sweden)

    Rahul Siddharthan

    Full Text Available PhyloGibbs, our recent Gibbs-sampling motif-finder, takes phylogeny into account in detecting binding sites for transcription factors in DNA and assigns posterior probabilities to its predictions obtained by sampling the entire configuration space. Here, in an extension called PhyloGibbs-MP, we widen the scope of the program, addressing two major problems in computational regulatory genomics. First, PhyloGibbs-MP can localise predictions to small, undetermined regions of a large input sequence, thus effectively predicting cis-regulatory modules (CRMs ab initio while simultaneously predicting binding sites in those modules-tasks that are usually done by two separate programs. PhyloGibbs-MP's performance at such ab initio CRM prediction is comparable with or superior to dedicated module-prediction software that use prior knowledge of previously characterised transcription factors. Second, PhyloGibbs-MP can predict motifs that differentiate between two (or more different groups of regulatory regions, that is, motifs that occur preferentially in one group over the others. While other "discriminative motif-finders" have been published in the literature, PhyloGibbs-MP's implementation has some unique features and flexibility. Benchmarks on synthetic and actual genomic data show that this algorithm is successful at enhancing predictions of differentiating sites and suppressing predictions of common sites and compares with or outperforms other discriminative motif-finders on actual genomic data. Additional enhancements include significant performance and speed improvements, the ability to use "informative priors" on known transcription factors, and the ability to output annotations in a format that can be visualised with the Generic Genome Browser. In stand-alone motif-finding, PhyloGibbs-MP remains competitive, outperforming PhyloGibbs-1.0 and other programs on benchmark data.

  14. Motif trie: An efficient text index for pattern discovery with don't cares

    DEFF Research Database (Denmark)

    Grossi, Roberto; Menconi, Giulia; Pisanti, Nadia

    2017-01-01

    We introduce the motif trie data structure, which has applications in pattern matching and discovery in genomic analysis, plagiarism detection, data mining, intrusion detection, spam fighting and time series analysis, to name a few. Here the extraction of recurring patterns in sequential and text......We introduce the motif trie data structure, which has applications in pattern matching and discovery in genomic analysis, plagiarism detection, data mining, intrusion detection, spam fighting and time series analysis, to name a few. Here the extraction of recurring patterns in sequential...

  15. Poly(A) motif prediction using spectral latent features from human DNA sequences

    KAUST Repository

    Xie, Bo

    2013-06-21

    Motivation: Polyadenylation is the addition of a poly(A) tail to an RNA molecule. Identifying DNA sequence motifs that signal the addition of poly(A) tails is essential to improved genome annotation and better understanding of the regulatory mechanisms and stability of mRNA.Existing poly(A) motif predictors demonstrate that information extracted from the surrounding nucleotide sequences of candidate poly(A) motifs can differentiate true motifs from the false ones to a great extent. A variety of sophisticated features has been explored, including sequential, structural, statistical, thermodynamic and evolutionary properties. However, most of these methods involve extensive manual feature engineering, which can be time-consuming and can require in-depth domain knowledge.Results: We propose a novel machine-learning method for poly(A) motif prediction by marrying generative learning (hidden Markov models) and discriminative learning (support vector machines). Generative learning provides a rich palette on which the uncertainty and diversity of sequence information can be handled, while discriminative learning allows the performance of the classification task to be directly optimized. Here, we used hidden Markov models for fitting the DNA sequence dynamics, and developed an efficient spectral algorithm for extracting latent variable information from these models. These spectral latent features were then fed into support vector machines to fine-tune the classification performance.We evaluated our proposed method on a comprehensive human poly(A) dataset that consists of 14 740 samples from 12 of the most abundant variants of human poly(A) motifs. Compared with one of the previous state-of-the-art methods in the literature (the random forest model with expert-crafted features), our method reduces the average error rate, false-negative rate and false-positive rate by 26, 15 and 35%, respectively. Meanwhile, our method makes ?30% fewer error predictions relative to the other

  16. The conjugal-bed motif in the Alcestis Barcinonensis: two notes

    Directory of Open Access Journals (Sweden)

    Rosario Moreno Soldevila

    2011-06-01

    Full Text Available This paper focuses on the centrality occupied by the conjugal-bed motif in the anonymous poem known as Alcestis Barcinonensis, in the light of which two new interpretations of lines 21-22 and 83-85 are provided. In the first passage, beato … toro should be read as a subtle allusion to marital love, one of the central themes of the poem; in the second, uestigia alludes to a well-known literary motif related to the bed of love, thus providing a more accurate interpretation of the post mortem fidelity which Alcestis demands from her husband.

  17. Pyrimidone-based series of glucokinase activators with alternative donor-acceptor motif.

    Science.gov (United States)

    Filipski, Kevin J; Guzman-Perez, Angel; Bian, Jianwei; Perreault, Christian; Aspnes, Gary E; Didiuk, Mary T; Dow, Robert L; Hank, Richard F; Jones, Christopher S; Maguire, Robert J; Tu, Meihua; Zeng, Dongxiang; Liu, Shenping; Knafels, John D; Litchfield, John; Atkinson, Karen; Derksen, David R; Bourbonais, Francis; Gajiwala, Ketan S; Hickey, Michael; Johnson, Theodore O; Humphries, Paul S; Pfefferkorn, Jeffrey A

    2013-08-15

    Glucokinase activators are a class of experimental agents under investigation as a therapy for Type 2 diabetes mellitus. An X-ray crystal structure of a modestly potent agent revealed the potential to substitute the common heterocyclic amide donor-acceptor motif for a pyridone moiety. We have successfully demonstrated that both pyridone and pyrimidone heterocycles can be used as a potent donor-acceptor substituent. Several sub-micromolar analogs that possess the desired partial activator profile were synthesized and characterized. Unfortunately, the most potent activators suffered from sub-optimal pharmacokinetic properties. Nonetheless, these donor-acceptor motifs may find utility in other glucokinase activator series or beyond.

  18. BetaSearch: a new method for querying β-residue motifs

    Directory of Open Access Journals (Sweden)

    Ho Hui

    2012-07-01

    Full Text Available Abstract Background Searching for structural motifs across known protein structures can be useful for identifying unrelated proteins with similar function and characterising secondary structures such as β-sheets. This is infeasible using conventional sequence alignment because linear protein sequences do not contain spatial information. β-residue motifs are β-sheet substructures that can be represented as graphs and queried using existing graph indexing methods, however, these approaches are designed for general graphs that do not incorporate the inherent structural constraints of β-sheets and require computationally-expensive filtering and verification procedures. 3D substructure search methods, on the other hand, allow β-residue motifs to be queried in a three-dimensional context but at significant computational costs. Findings We developed a new method for querying β-residue motifs, called BetaSearch, which leverages the natural planar constraints of β-sheets by indexing them as 2D matrices, thus avoiding much of the computational complexities involved with structural and graph querying. BetaSearch exhibits faster filtering, verification, and overall query time than existing graph indexing approaches whilst producing comparable index sizes. Compared to 3D substructure search methods, BetaSearch achieves 33 and 240 times speedups over index-based and pairwise alignment-based approaches, respectively. Furthermore, we have presented case-studies to demonstrate its capability of motif matching in sequentially dissimilar proteins and described a method for using BetaSearch to predict β-strand pairing. Conclusions We have demonstrated that BetaSearch is a fast method for querying substructure motifs. The improvements in speed over existing approaches make it useful for efficiently performing high-volume exploratory querying of possible protein substructural motifs or conformations. BetaSearch was used to identify a nearly identical

  19. Mycobacterial PE_PGRS Proteins Contain Calcium-Binding Motifs with Parallel β-roll Folds

    Institute of Scientific and Technical Information of China (English)

    Nandita; Bachhawat; Balvinder; Singh

    2007-01-01

    The PE_PGRS family of proteins unique to mycobacteria is demonstrated to con- rain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel/3-roll or parallel β-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE_PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE_PGRS proteins in the Ught of macrophage-pathogen interaction and pathogenesis is presented.

  20. Firewalls From Double Purity

    CERN Document Server

    Bousso, Raphael

    2013-01-01

    The firewall paradox is often presented as arising from double entanglement, but I argue that more generally the paradox is double purity. Near-horizon modes are purified by the interior, in the infalling vacuum. Hence they cannot also be pure alone, or in combination with any third system, as demanded by unitarity. This conflict arises independently of the Page time, for entangled and for pure states. It implies that identifications of Hilbert spaces cannot resolve the paradox. Traditional complementarity requires the unitary identification of infalling matter with a scrambled subsystem of the Hawking radiation. Extending this map to the infalling vacuum overdetermines the out-state. More general complementarity maps ("A=R_B", "ER=EPR") founder when the near-horizon zone is pure. I argue that pure-zone states span the microcanonical ensemble, and that this suffices to make the horizon a special place. I advocate that the ability to detect the horizon locally, rather than the degree or probability of violence...

  1. Double Field Theory Inspired Cosmology

    CERN Document Server

    Wu, Houwen

    2014-01-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We find two sets of solutions in double field theory cosmology, respecting or violating the strong (weak) constraint. Both sets of solutions naturally contain the pre- and post-big bang evolutions in one single line element. This novel feature opens a window for possible resolution of the cosmic amnesia. We also demonstrate that the scale factor duality in the standard string cosmology is nothing but the T-duality in double field theory. The scale dual dilatons in the standard string cosmology is simply the usual diffeomorphic scalar dilaton $\\phi$ and dual diffeomorphic scalar dilaton $\\tilde\\phi$ in double field theory. Furthermore, we identify the "sh...

  2. Counting Irreducible Double Occurrence Words

    CERN Document Server

    Burns, Jonathan

    2011-01-01

    A double occurrence word $w$ over a finite alphabet $\\Sigma$ is a word in which each alphabet letter appears exactly twice. Such words arise naturally in the study of topology, graph theory, and combinatorics. Recently, double occurrence words have been used for studying DNA recombination events. We develop formulas for counting and enumerating several elementary classes of double occurrence words such as palindromic, irreducible, and strongly-irreducible words.

  3. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    Directory of Open Access Journals (Sweden)

    Itzell Euridice Hernández-Sánchez

    2015-09-01

    Full Text Available The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  4. Application of motif-based tools on evolutionary analysis of multipartite single-stranded DNA viruses.

    Directory of Open Access Journals (Sweden)

    Hsiang-Iu Wang

    Full Text Available Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV (consisting of 6 genome components and Faba bean necrotic yellows virus (FBNYV (consisting of 8 genome components. Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses.

  5. A conserved upstream motif orchestrates autonomous, germline-enriched expression of Caenorhabditis elegans piRNAs.

    Directory of Open Access Journals (Sweden)

    Allison C Billi

    Full Text Available Piwi-interacting RNAs (piRNAs fulfill a critical, conserved role in defending the genome against foreign genetic elements. In many organisms, piRNAs appear to be derived from processing of a long, polycistronic RNA precursor. Here, we establish that each Caenorhabditis elegans piRNA represents a tiny, autonomous transcriptional unit. Remarkably, the minimal C. elegans piRNA cassette requires only a 21 nucleotide (nt piRNA sequence and an ∼50 nt upstream motif with limited genomic context for expression. Combining computational analyses with a novel, in vivo transgenic system, we demonstrate that this upstream motif is necessary for independent expression of a germline-enriched, Piwi-dependent piRNA. We further show that a single nucleotide position within this motif directs differential germline enrichment. Accordingly, over 70% of C. elegans piRNAs are selectively expressed in male or female germline, and comparison of the genes they target suggests that these two populations have evolved independently. Together, our results indicate that C. elegans piRNA upstream motifs act as independent promoters to specify which sequences are expressed as piRNAs, how abundantly they are expressed, and in what germline. As the genome encodes well over 15,000 unique piRNA sequences, our study reveals that the number of transcriptional units encoding piRNAs rivals the number of mRNA coding genes in the C. elegans genome.

  6. Absolute Phosphorylation Stoichiometry Analysis by Motif-Targeting Quantitative Mass Spectrometry.

    Science.gov (United States)

    Tsai, Chia-Feng; Ku, Wei-Chi; Chen, Yu-Ju; Ishihama, Yasushi

    2017-01-01

    Direct measurement of site-specific phosphorylation stoichiometry can unambiguously distinguish whether the degree of phosphorylation is regulated by upstream kinase/phosphatase activity or by transcriptional regulation to alter protein expression level. Here, we describe a motif-targeting quantitative proteomic approach that integrates dephosphorylation, isotope tag labeling, and enzymatic kinase reaction for large-scale phosphorylation stoichiometry measurement of the human proteome.

  7. Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling.

    Science.gov (United States)

    Halpern, David; Chiapello, Hélène; Schbath, Sophie; Robin, Stéphane; Hennequet-Antier, Christelle; Gruss, Alexandra; El Karoui, Meriem

    2007-09-01

    Bacterial biodiversity at the species level, in terms of gene acquisition or loss, is so immense that it raises the question of how essential chromosomal regions are spared from uncontrolled rearrangements. Protection of the genome likely depends on specific DNA motifs that impose limits on the regions that undergo recombination. Although most such motifs remain unidentified, they are theoretically predictable based on their genomic distribution properties. We examined the distribution of the "crossover hotspot instigator," or Chi, in Escherichia coli, and found that its exceptional distribution is restricted to the core genome common to three strains. We then formulated a set of criteria that were incorporated in a statistical model to search core genomes for motifs potentially involved in genome stability in other species. Our strategy led us to identify and biologically validate two distinct heptamers that possess Chi properties, one in Staphylococcus aureus, and the other in several streptococci. This strategy paves the way for wide-scale discovery of other important functional noncoding motifs that distinguish core genomes from the strain-variable regions.

  8. LysM, a widely distributed protein motif for binding to (peptido)glycans

    NARCIS (Netherlands)

    Buist, Girbe; Steen, Anton; Kok, Jan; Kuipers, Oscar P.

    Bacteria retain certain proteins at their cell envelopes by attaching them in a non-covalent manner to peptidoglycan, using specific protein domains, such as the prominent LysM (Lysin Motif) domain. More than 4000 (Pfam PF01476) proteins of both prokaryotes and eukaryotes have been found to contain

  9. Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Leenhouts, Kees; van Roosmalen, Maarten; Kok, Jan; Buist, Girbe

    The lysin motif (LysM) was first identified by Garvey et al. in 1986 and, in subsequent studies, has been shown to bind noncovalently to peptidoglycan and chitin by interacting with N-acetylglucosamine moieties. The LysM sequence is present singly or repeatedly in a large number of proteins of

  10. Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy

    NARCIS (Netherlands)

    Petrovic, Dejan M.; Leenhouts, Kees; van Roosmalen, Maarten L.; KleinJan, Fenneke; Broos, Jaap

    2012-01-01

    The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a

  11. FOLKLORE MOTIF OF A WOMAN’S ABDUCTION BY A SERPENT IN THE LITERARY TRADITION

    Directory of Open Access Journals (Sweden)

    Lyzlova A. S.

    2008-11-01

    Full Text Available This article examines a motif of a woman’s abduction by a Serpent, widely spread in Russian fairy tales, which also appears in the apocryphal "Heroic Deeds of Theodore Tiron". The author tries to compare this Old Russian apocryphal work with folk fairy-tale texts.

  12. Application of motif-based tools on evolutionary analysis of multipartite single-stranded DNA viruses.

    Science.gov (United States)

    Wang, Hsiang-Iu; Chang, Chih-Hung; Lin, Po-Heng; Fu, Hui-Chuan; Tang, Chuanyi; Yeh, Hsin-Hung

    2013-01-01

    Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV) (consisting of 6 genome components) and Faba bean necrotic yellows virus (FBNYV) (consisting of 8 genome components). Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses.

  13. Exploiting publicly available biological and biochemical information for the discovery of novel short linear motifs.

    KAUST Repository

    Sayadi, Ahmed

    2011-07-20

    The function of proteins is often mediated by short linear segments of their amino acid sequence, called Short Linear Motifs or SLiMs, the identification of which can provide important information about a protein function. However, the short length of the motifs and their variable degree of conservation makes their identification hard since it is difficult to correctly estimate the statistical significance of their occurrence. Consequently, only a small fraction of them have been discovered so far. We describe here an approach for the discovery of SLiMs based on their occurrence in evolutionarily unrelated proteins belonging to the same biological, signalling or metabolic pathway and give specific examples of its effectiveness in both rediscovering known motifs and in discovering novel ones. An automatic implementation of the procedure, available for download, allows significant motifs to be identified, automatically annotated with functional, evolutionary and structural information and organized in a database that can be inspected and queried. An instance of the database populated with pre-computed data on seven organisms is accessible through a publicly available server and we believe it constitutes by itself a useful resource for the life sciences (http://www.biocomputing.it/modipath).

  14. Finding Common Sequence and Structure Motifs in a set of RNA sequences

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Heyer, Laurie J.; Stormo, Gary D.

    1997-01-01

    We present a computational scheme to search for the most common motif, composed of a combination of sequence and structure constraints, among a collection of RNA sequences. The method uses a simplified version of the Sankoff algorithm for simultaneous folding and alignment of RNA sequences...

  15. Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan.

    Science.gov (United States)

    Berg, Stefan; Starbuck, James; Torrelles, Jordi B; Vissa, Varalakshmi D; Crick, Dean C; Chatterjee, Delphi; Brennan, Patrick J

    2005-02-18

    D-Arabinans, composed of D-arabinofuranose (D-Araf), dominate the structure of mycobacterial cell walls in two settings, as part of lipoarabinomannan (LAM) and arabinogalactan, each with markedly different structures and functions. Little is known of the complexity of their biosynthesis. beta-D-Arabinofuranosyl-1-monophosphoryldecaprenol is the only known sugar donor. EmbA, EmbB, and EmbC, products of the paralogous genes embA, embB, and embC, the sites of resistance to the anti-tuberculosis drug ethambutol (EMB), are the only known implicated enzymes. EmbA and -B apparently contribute to the synthesis of arabinogalactan, whereas EmbC is reserved for the synthesis of LAM. The Emb proteins show no overall similarity to any known proteins beyond Mycobacterium and related genera. However, functional motifs, equivalent to a proline-rich motif of several bacterial polysaccharide co-polymerases and a superfamily of glycosyltransferases, were found. Site-directed mutagenesis in glycosyltransferase superfamily C resulted in complete ablation of LAM synthesis. Point mutations in three amino acids of the proline motif of EmbC resulted in marked reduction of LAM-arabinan synthesis and accumulation of an unknown intermediate and of the known precursor lipomannan. Yet the pattern of the differently linked d-Araf units observed in wild type LAM-arabinan was largely retained in the proline motif mutants. The results allow for the presentation of a unique model of arabinan synthesis.

  16. Introducing tetraCys motifs at two different sites results in a functional dopamine transporter

    DEFF Research Database (Denmark)

    Orun, Oya; Rasmussen, S; Gether, U

    2009-01-01

    We have introduced tetracysteine motifs into different positions of the dopamine transporter (DAT) for specific FlAsH labeling. Two of the constructs expressed at the cell surface and were functional as determined by [3H] dopamine uptake experiments. The N-terminally modified transporter showed...

  17. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous...

  18. The neuronal nitric oxide synthase PDZ motif binds to -G(D,E)XV* carboxyterminal sequences

    NARCIS (Netherlands)

    Schepens, J.; Cuppen, E.; Wieringa, B.; Hendriks, W.

    1997-01-01

    PDZ motifs are small protein-protein interaction modules that are thought to play a role in the clustering of submembranous signalling molecules. The specificity and functional consequences of their associative actions is still largely unknown. Using two-hybrid methodology we here demonstrate that t

  19. Functional importance of motif I of pseudouridine synthases: mutagenesis of aligned lysine and proline residues.

    Science.gov (United States)

    Spedaliere, C J; Hamilton, C S; Mueller, E G

    2000-08-01

    On the basis of sequence alignments, the pseudouridine synthases were grouped into four families that share no statistically significant global sequence similarity, though some common sequence motifs were discovered [Koonin, E. V. (1996) Nucleic Acids. Res. 24, 2411-2415; Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762]. We have investigated the functional significance of these alignments by substituting the nearly invariant lysine and proline residues in Motif I of RluA and TruB, pseudouridine synthases belonging to different families. Contrary to our expectations, the altered enzymes display only very mild kinetic impairment. Substitution of the aligned lysine and proline residues does, however, reduce structural stability, consistent with a temperature sensitive phenotype that results from substitution of the cognate proline residue in Cbf5p, a yeast homologue of TruB [Zerbarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J. (1999) Mol. Cell. Biol. 19, 7461-7472]. Together, our data support a functional role for Motif I, as predicted by sequence alignments, though the effect of substituting the highly conserved residues was milder than we anticipated. By extrapolation, our findings also support the assignment of pseudouridine synthase function to certain physiologically important eukaryotic proteins that contain Motif I, including the human protein dyskerin, alteration of which leads to the disease dyskeratosis congenita.

  20. Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Leenhouts, Kees; van Roosmalen, Maarten; Kok, Jan; Buist, Girbe

    2014-01-01

    The lysin motif (LysM) was first identified by Garvey et al. in 1986 and, in subsequent studies, has been shown to bind noncovalently to peptidoglycan and chitin by interacting with N-acetylglucosamine moieties. The LysM sequence is present singly or repeatedly in a large number of proteins of proka

  1. Potent Inhibition of HIV-1 Reverse Transcriptase and Replication by Nonpseudoknot, "UCAA-motif" RNA Aptamers.

    Science.gov (United States)

    Whatley, Angela S; Ditzler, Mark A; Lange, Margaret J; Biondi, Elisa; Sawyer, Andrew W; Chang, Jonathan L; Franken, Joshua D; Burke, Donald H

    2013-02-05

    RNA aptamers that bind the reverse transcriptase (RT) of human immunodeficiency virus (HIV) compete with nucleic acid primer/template for access to RT, inhibit RT enzymatic activity in vitro, and suppress viral replication when expressed in human cells. Numerous pseudoknot aptamers have been identified by sequence analysis, but relatively few have been confirmed experimentally. In this work, a screen of nearly 100 full-length and >60 truncated aptamer transcripts established the predictive value of the F1Pk and F2Pk pseudoknot signature motifs. The screen also identified a new, nonpseudoknot motif with a conserved unpaired UCAA element. High-throughput sequence (HTS) analysis identified 181 clusters capable of forming this novel element. Comparative sequence analysis, enzymatic probing and RT inhibition by aptamer variants established the essential requirements of the motif, which include two conserved base pairs (AC/GU) on the 5' side of the unpaired UCAA. Aptamers in this family inhibit RT in primer extension assays with IC(50) values in the low nmol/l range, and they suppress viral replication with a potency that is comparable with that of previously studied aptamers. All three known anti-RT aptamer families (pseudoknots, the UCAA element, and the recently described "(6/5)AL" motif) are therefore suitable for developing aptamer-based antiviral gene therapies.Molecular Therapy - Nucleic Acids (2013) 2, e71; doi:10.1038/mtna.2012.62; published online 5 February 2013.

  2. The extended AT-hook is a novel RNA binding motif.

    Science.gov (United States)

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes.

  3. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins.

    Directory of Open Access Journals (Sweden)

    Defne Surujon

    Full Text Available The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species or believed to lack (mammals HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms.

  4. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    Science.gov (United States)

    Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  5. A comparative analysis of the oriental motifs in The fountain of Bakhchisaray

    OpenAIRE

    Pastewka, Paulina Anna

    2015-01-01

    The article is devoted to the comparative analysis of the oriental motifs in the poems of Aleksandr Pushkin and Adam Mickiewicz. The article discusses the key concepts of Russian and Polish Romanticism, and the specific features of the artistic methods of both poets.

  6. STUDYING THE INFLUENCE OF THE PYRENE INTERCALATOR TINA ON THE STABILITY OF DNA i-MOTIFS

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed A.; Pedersen, Erik Bjerregaard; Khaireldin, Nahid A.

    2012-01-01

    Certain cytosine-rich (C-rich) DNA sequences can fold into secondary structures as four-stranded i-motifs with hemiprotonated base pairs. Here we synthesized C-rich TINA-intercalating oligonucleotides by inserting a nonnucleotide pyrene moiety between two C-rich regions. The stability of their i...

  7. MicroRNA sequence motifs reveal asymmetry between the stem arms

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Havgaard, Jakob Hull; Ensterö, M.

    2006-01-01

    RNAs in their genomic contexts. We have compared profiles of mature miRNAs within their genomic context of the 5' and 3' stemloop precursor arms and we find asymmetry between mature sequences of the 5' and 3' stemloop precursor arms. The main observation is that vertebrate organisms have a characteristic motif on the 5......' arm which is in contrast to the 3' arm motif which mainly show the conserved U at the position of the mature start. Also the vertebrate 5' arm motif show a semi-conserved G 13 nucleotides upstream from the first position. We compared the 5' and 3' arm profiles using the average log likelihood ratio...... (ALLR) score, as defined by Wang and Stormo (2003) [Wang T., Stormo, G.D., 2003. Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics 2369-2380.] and computing a p-value we find that the two profiles differs significantly in their 3' end where the 5' arm...

  8. Insect kinin analogs with cis-peptide bond motif 4-aminopyroglutamate: Optimal stereochemistry

    Science.gov (United States)

    The insect kinins are present in a wide variety of insects and function as potent diuretic peptides, though they are subject to rapid degradation by internal peptidases. Insect kinin analogs incorporating stereochemical variants of (2S,4S)-4-aminopyroglutamate (APy), a cis-peptide bond motif, demon...

  9. Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif.

    Science.gov (United States)

    Oka, Tsutomu; Sudol, Marius

    2009-05-01

    The Hippo signaling pathway regulates the intrinsic size of organs by controlling two opposing processes, proliferation and apoptosis. The nuclear effector of this pathway is Yes kinase-associated protein (YAP) which is a WW domain-containing transcriptional co-activator. In addition to WW domains, YAP2 has a Post-synaptic density, Discs large, Zonula occludens-1 (PDZ)-binding motif that is located at its COOH terminus. To determine whether the localization of YAP2 in cells is PDZ-binding motif dependent, we generated a delta C mutant of YAP2 lacking the five most COOH terminal amino acids, -FLTWL, which constitute a well-conserved PDZ-binding motif. We report here that the PDZ-binding motif is necessary for YAP2 localization in the nucleus, for the stabilization of p73, and for promoting apoptosis of HEK293 cells maintained at low concentration of serum. We suggest that an unknown PDZ domain-containing protein (or proteins) functions as a shuttle, facilitating YAP2 translocation from the cytoplasm to the nucleus. Since the Hippo pathway acts as a tumor suppressor pathway, the PDZ complex of YAP represents a potential target of cancer therapy.

  10. Recombinant spider silk with cell binding motifs for specific adherence of cells.

    Science.gov (United States)

    Widhe, Mona; Johansson, Ulrika; Hillerdahl, Carl-Olof; Hedhammar, My

    2013-11-01

    Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types. © 2013 Elsevier Ltd. All rights reserved.

  11. Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling.

    Directory of Open Access Journals (Sweden)

    David Halpern

    2007-09-01

    Full Text Available Bacterial biodiversity at the species level, in terms of gene acquisition or loss, is so immense that it raises the question of how essential chromosomal regions are spared from uncontrolled rearrangements. Protection of the genome likely depends on specific DNA motifs that impose limits on the regions that undergo recombination. Although most such motifs remain unidentified, they are theoretically predictable based on their genomic distribution properties. We examined the distribution of the "crossover hotspot instigator," or Chi, in Escherichia coli, and found that its exceptional distribution is restricted to the core genome common to three strains. We then formulated a set of criteria that were incorporated in a statistical model to search core genomes for motifs potentially involved in genome stability in other species. Our strategy led us to identify and biologically validate two distinct heptamers that possess Chi properties, one in Staphylococcus aureus, and the other in several streptococci. This strategy paves the way for wide-scale discovery of other important functional noncoding motifs that distinguish core genomes from the strain-variable regions.

  12. Recursive Alterations of the Relationship between Simple Membrane Geometry and Insertion of Amphiphilic Motifs

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Herlo, Rasmus

    2017-01-01

    The shape and composition of a membrane directly regulate the localization, activity, and signaling properties of membrane associated proteins. Proteins that both sense and generate membrane curvature, e.g., through amphiphilic insertion motifs, potentially engage in recursive binding dynamics, w...

  13. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins.

    Science.gov (United States)

    Surujon, Defne; Ratner, David I

    2016-01-01

    The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt) domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species) or believed to lack (mammals) HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms.

  14. The PPLA motif of glycogen synthase kinase 3beta is required for interaction with Fe65.

    Science.gov (United States)

    Lee, Eun Jeoung; Hyun, Sunghee; Chun, Jaesun; Shin, Sung Hwa; Lee, Kyung Eun; Yeon, Kwang Hum; Park, Tae Yoon; Kang, Sang Sun

    2008-07-31

    Glycogen synthase kinase 3beta (GSK 3 beta) is a serine/ threonine kinase that phosphorylates substrates such as beta-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK 3beta is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK 3beta catalytic domain also contains a putative WW domain binding motif ((371)PPLA(374)), and we observed, using a pull down approach and co-immuno-precipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK 3beta and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK 3beta.Finally, in transient transfection assays interaction of GSK 3 beta (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK 3beta AALA mutant ((371)AALA(374)) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK 3beta AALA mutant was significantly reduced compared to that of GSK 3beta wild type. Thus, our observations indicate that GSK 3beta binds to Fe65 through its (371)PPLA(374) motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK 3beta.

  15. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    Science.gov (United States)

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  16. ATtRACT-a database of RNA-binding proteins and associated motifs.

    Science.gov (United States)

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es.

  17. [Conserved motifs in the primary and secondary ITS1 structures in bryophytes].

    Science.gov (United States)

    Milyutina, I A; Ignatov, M S

    2015-01-01

    A study of the ITS1 nucleotide sequences of 1000 moss species of 62 families, 11 liverwort species from five orders, and one hornwort Anthoceros agrestis identified five highly conserved motifs (CM1-CM5), which are presumably involved in pre-rRNA processing. Although the ITS1 sequences substantially differ in length and the extent of divergence, the conserved motifs are found in all of them. ITS1 secondary structures were constructed for 76 mosses, and main regularities at conserved motif positioning were observed. The positions of processing sites in the ITS1 secondary structure of the yeast Saccharomyces cerevisiae were found to be similar to the positions of the conserved motifs in the ITS1 secondary structures of mosses and liverworts. In addition, a potential hairpin formation in the putative secondary structure of a pre-rRNA fragment was considered for the region between ITS1 CM4-CM5 and a highly conserved region between hairpins 49 and 50 (H49 and H50) of the 18S rRNA.

  18. Salt-bridge Swapping in the EXXERFXYY Motif of Proton Coupled Oligopeptide Transporters

    DEFF Research Database (Denmark)

    Aduri, Nanda G; Prabhala, Bala K; Ernst, Heidi A

    2015-01-01

    Proton-coupled oligopeptide transporters (POTs) couple the inwards transport of di- or tripeptides with an inwards-directed transport of protons. Evidence from several studies of different POTs have pointed towards involvement of a highly conserved sequence motif, E1XXE2RFXYY (from here on referr...

  19. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase

    DEFF Research Database (Denmark)

    Nielsen, A K; Douthwaite, S; Vester, B

    1999-01-01

    Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S rRNA a...

  20. Position Weight Matrix, Gibbs Sampler, and the Associated Significance Tests in Motif Characterization and Prediction

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    2012-01-01

    Full Text Available Position weight matrix (PWM is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery, present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.