WorldWideScience

Sample records for double barrier dbd

  1. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    Science.gov (United States)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  2. Dyeing mechanism and optimization of polyamide 6,6 functionalized with double barrier discharge (DBD) plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando Ribeiro [Departamento de Engenharia Têxtil, Universidade Federal do Rio Grande do Norte UFRN, 59.072-970 Natal (Brazil); Zille, Andrea, E-mail: azille@2c2t.uminho.pt [2C2T – Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Universidade do Minho, 4800-058 Guimarães (Portugal); Souto, Antonio Pedro [2C2T – Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Universidade do Minho, 4800-058 Guimarães (Portugal)

    2014-02-28

    The physico-chemical improvements occasioned by DBD plasma discharge in dyeing process of polyamide 6,6 (PA66) fibers were investigated. The SEM, fluorescence microscopy, UV–vis spectroscopy, surface energy, FTIR, XPS and pH of aqueous extracts confirm the high polar functionalization of PA66 fibers due to plasma incorporation of oxygen atoms from atmospheric air. DBD plasma-generated reactive species preferentially break the C-N bonds, and not the aliphatic C-C chain of PA66. Formation of low-molecular weight acidic molecules that act as dye “carrier” and creation of micro-channels onto PA66 surface seems to favor dye diffusion into the fiber cores. Plasma treatment allows high level of direct dye diffusion and fixation in PA66 fibers at lower temperatures and shorter dyeing times than traditional dyeing methods.

  3. Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma.

    Science.gov (United States)

    Li, Junguang; Xiang, Qisen; Liu, Xiufang; Ding, Tian; Zhang, Xiangsheng; Zhai, Yafei; Bai, Yanhong

    2017-10-01

    Soybean trypsin inhibitor (STI) is considered as one of the most important anti-nutritional factors in soybeans. The objective of this study was to investigate the impacts and underling mechanisms of dielectric-barrier discharge (DBD) plasma on STI activities. The results shown that DBD plasma treatment significantly induced the inactivation of STI in soymilk and Kunitz-type trypsin inhibitor from soybean (SKTI) in a model system. After exposure to DBD plasma at 51.4W for 21min, the STI activities of soymilk were reduced by 86.1%. Affter being treated by DBD plasma, the intrinsic fluorescence and surface hydrophobicity of SKTI were significantly decreased, while the sulfhydryl contents were increased. It is assumed that DBD plasma-induced conformational changes and oxidative modification might contribute to the inactivation of SKTI. In summary, DBD plasma technology is a potential alternative to heat treatment for the inactivation of anti-nutritional substances in food legumes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Computational Modeling of the Dielectric Barrier Discharge (DBD) Device for Aeronautical Applications

    Science.gov (United States)

    2006-06-01

    Dielectric Barrier Discharge The Dielectric Barrier Discharge (DBD) device has been put to use since 1857 when Werner von Siemens used to produce...x y s t s t x y x ys t s t s t s t x y x y x yn S L t nx + − − Γ − Γ = − − Δ + Δ (18) and 1 1 2 2 , , , , ,, , , , , 1 , 1...driven flux and the thermal flux were oppositely directed. ( ), , , , 1s t s t s t s tadjacent Scharfetter Gummel thermal adjacenttn S L nx − − Δ = Γ

  5. Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD Plasma Treatment of Polypropylene Films

    Directory of Open Access Journals (Sweden)

    Lukas JW Seidelmann

    2017-03-01

    Full Text Available Atmospheric pressure plasma treatment of the surface of a polypropylene film can significantly increase its surface energy and, thereby improve the printability of the film. A laboratory-scale dielectric barrier discharge (DBD system has therefore been developed, which simulates the electrode configuration and reel-to-reel web transport mechanism used in a typical industrial-scale system. By treating the polypropylene in a nitrogen discharge, we have shown that the water contact angle could be reduced by as much as 40° compared to the untreated film, corresponding to an increase in surface energy of 14 mNm−1. Ink pull-off tests showed that the DBD plasma treatment resulted in excellent adhesion of solvent-based inks to the polypropylene film.

  6. Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure

    Science.gov (United States)

    Kostov, K. G.; Hamia, Y. A. A.; Mota, R. P.; dos Santos, A. L. R.; Nascente, P. A. P.

    2014-05-01

    Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.

  7. Surface Modification of Fluororubber Using Atmospheric Pressure Dielectric Barrier Discharge (DBD)

    Institute of Scientific and Technical Information of China (English)

    TONG Wei; LU Canhui; CAI Yongkun; HUANG Yigang

    2007-01-01

    Fluoride rubber F2311 film, an alternating copolymer of CF2-CFC1 (CTFE) and CH2-CF2 (VF2) components, was treated by atmospheric pressure dielectric barrier discharge (DBD) in air. The surface structure, topography and surface chemistry of the treated F2311 films were characterized by contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), respectively. The experimental results showed that a short time air plasma treatment led to morphological, wettability and chemical changes in the F2311 films. The surface hydrophilicity increased greatly after the plasma treatment, the static water contact angle decreased from 98.6° to 32°, and oxygen containing groups (C=O, O-C=O, etc. ) were introduced. Atomic force microscopy revealed that plasma produced by DBD etched F2311 films obviously. The roughness of the samples increased remarkably with the formation of peaks and valleys on the treated surfaces. The increased surface wettability may be correlated with both the introduction of hydrophilic groups due to air plasma oxidation of the surface and the change in surface morphology etched by DBD.

  8. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Judée, F.; Merbahi, N.; Wattieaux, G.; Yousfi, M.

    2016-09-01

    The aim is the comparison of different plasma parameters of single and double dielectric barrier discharge plasma jet configurations (S-DBD and D-DBD) which are potentially usable in biomedical applications. Both configurations are studied in terms of electric field distribution, electrical discharge characteristics, plasma parameters (estimated by optical emission spectroscopy analysis), and hydrodynamics of the plasma jet for electrical parameters of power supplies corresponding to an applied voltage of 10 kV, pulse duration of 1 μs, frequency of 9.69 kHz, and Ar flow of 2 l/min. We observed that the D-DBD configuration requires half the electrical power one needs to provide in the S-DBD case to generate a plasma jet with similar characteristics: excitation temperature around 4700 K, electron density around 2.5 × 1014 cm-3, gas temperature of about 320 K, a relatively high atomic oxygen concentration reaching up to 1000 ppm, the presence of reactive oxygen and nitrogen species (nitric oxide, hydroxyl radical, and atomic oxygen), and an irradiance in the UV-C range of about 20 μW cm-2. Moreover, it has been observed that D-DBD plasma jet is more sensitive to short pulse durations, probably due to the charge accumulation over the dielectric barrier around the internal electrode. This results in a significantly longer plasma length in the D-DBD configuration than in the S-DBD one up to a critical flow rate (2.25 l/min) before the occurrence of turbulence in the D-DBD case. Conversely, ionization wave velocities are significantly higher in the S-DBD setup (3.35 × 105 m/s against 1.02 × 105 m/s for D-DBD), probably due to the higher electrostatic field close to the high voltage electrode in the S-DBD plasma jet.

  9. Removal of caffeine from water by combining dielectric barrier discharge (DBD plasma with goethite

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-07-01

    Full Text Available In this research, dielectric barrier discharge plasma was developed to cooperate with goethite for removing caffeine in aqueous solution. Goethite was characterized by X-ray diffraction and scanning electron microscopy. The effects of input power, initial concentration and catalysts concentration on the removal efficiency of caffeine were evaluated. Furthermore, the degradation pathways of caffeine were also discussed preliminarily. In the case of caffeine concentration at 50 mg L−1, the degradation efficiency of caffeine was improved from 41% to 94% after 24 min on the conditions of input power of 75 W by combining goethite catalysts (2.5 g L−1, while the energy efficiency could be enhanced 1.6–2.3 times compared to the single DBD reactor. The reaction mechanism experiments demonstrated that attack by hydroxyl radical and ozone was the main degradation process of caffeine in aqueous solution. These studies also provided a theoretical and practical basis for the application of DBD-goethite in treatment of caffeine from water.

  10. Hedging Double Barriers with Singles

    NARCIS (Netherlands)

    Sbuelz, A.

    2000-01-01

    Double barrier options provide risk managers with good-deal flexibility in tailoring portfolio returns.Their hedges offer full protection only if unwound along the barriers.This work provides non-dynamic hedges that project the risk of double barriers on to single barriers.Non-dynamic hedges overcom

  11. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    Science.gov (United States)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2016-12-01

    In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm3/m2 day for Al-coated original PE to 138 cm3/m2 day for Al-coated allyamine (C3H7N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  12. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, D. P. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel (Nepal); Tyata, R. B. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Electrical, Khwopa College of Engineering, Libali-2, Bhaktapur (Nepal); Shrestha, R. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Physics, Basu College, Kalighat, Byasi, Bhaktapur (Nepal); Wong, C. S. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup −3} while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  13. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  14. Non-Thermal Dielectric Barrier Discharge (DBD) Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide.

    Science.gov (United States)

    Balzer, Julian; Heuer, Kiara; Demir, Erhan; Hoffmanns, Martin A; Baldus, Sabrina; Fuchs, Paul C; Awakowicz, Peter; Suschek, Christoph V; Opländer, Christian

    2015-01-01

    The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal "cold" atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60-300 s; ~77-66%) or exposure to freshly DBD-treated PBS (60-300 s; ~75-55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well-balanced in

  15. Non-Thermal Dielectric Barrier Discharge (DBD Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Julian Balzer

    Full Text Available The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal "cold" atmospheric plasma (CAP. Dielectric barrier discharge (DBD devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2 and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS led to a treatment time-dependent acidification (pH 6.7; 300 s and coincidently accumulation of nitrite (~300 μM, nitrate (~1 mM and H2O2 (~200 μM. Fibroblast viability was reduced by single DBD treatments (60-300 s; ~77-66% or exposure to freshly DBD-treated PBS (60-300 s; ~75-55%, accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well

  16. Non-Thermal Dielectric Barrier Discharge (DBD) Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide

    Science.gov (United States)

    Demir, Erhan; Hoffmanns, Martin A.; Baldus, Sabrina; Fuchs, Paul C.; Awakowicz, Peter; Suschek, Christoph V.; Opländer, Christian

    2015-01-01

    The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal “cold” atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60–300 s; ~77–66%) or exposure to freshly DBD-treated PBS (60–300 s; ~75–55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well

  17. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?

    CERN Document Server

    Ozkan, A; Bogaerts, A; Reniers, F

    2016-01-01

    Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 ...

  18. Simultaneous labeling of single- and double-strand DNA breaks by DNA breakage detection-FISH (DBD-FISH).

    Science.gov (United States)

    Fernández, José Luis; Cajigal, Dioleyda; Gosálvez, Jaime

    2011-01-01

    DNA Breakage Detection-Fluorescence In Situ Hybridization (DBD-FISH) permits simultaneous and selective labeling of single- and double-strand DNA breaks in individual cells, either in the whole genome or within specific DNA sequences. In this technique, cells are embedded into agarose microgels, lysed and subjected to electrophoresis under nondenaturing conditions. Subsequently, the produced "comets" are exposed to a controlled denaturation step which transforms DNA breaks into single-stranded DNA regions, detected by hybridization with whole genome fluorescent probes or the probes to specific DNA sequences. This makes possible a targeted analysis of various chromatin areas for the presence of DNA breaks. The migration length of the DBD-FISH signal is proportional to the number of double strand breaks, whereas its fluorescence intensity depends on numbers of single-strand breaks.The detailed protocol for detection of two types of DNA breaks produced by ionizing radiation is presented. The technique can be used to determine intragenomic and intercellular heterogeneity in the induction and repair of DNA damage.

  19. Towards In-Flight Applications? - Requirements on the Dielectric Barrier Discharge (DBD) Plasma Actuator (PA)

    Science.gov (United States)

    Kriegseis, Jochen; Simon, Bernhard; Grundmann, Sven

    2016-11-01

    Most of today's flow control (FC) efforts with DBD show a rather one-sided picture. Typically, either the discharge properties are discussed extensively or FC achievements are reported. The former group of contributions only pays limited attention to implications and consequences of most characteristics with respect to subsequent control steps for successful DBD-based FC - the latter group mostly ignores changing discharge properties, thus varying control authority for the respective applications when changes of environment, PA health state or simply a varied angle-of-attack are to be considered. In addition, there still remains a fair bit of uncertainty regarding a universal PA-evaluation metric, such that some of the most promising quantities/characteristics for successful controller operation remain largely untouched from the community. The purpose of the present work is to outline the requirement profile of PAs in one coherent story starting from electrical issues all the way down the road to in-flight FC success, where particular emphasis is placed on the interplay of the involved subtopics. It is hypothesized that such a clear guideline is the only way to advance beyond the present level of lab studies, where there still is an obvious lack of real flight applications.

  20. Dielectric Barrier Discharge (DBD) Plasma Assisted Synthesis of Ag₂O Nanomaterials and Ag₂O/RuO₂ Nanocomposites.

    Science.gov (United States)

    Ananth, Antony; Mok, Young Sun

    2016-02-26

    Silver oxide, ruthenium oxide nanomaterials and its composites are widely used in a variety of applications. Plasma-mediated synthesis is one of the emerging technologies to prepare nanomaterials with desired physicochemical properties. In this study, dielectric barrier discharge (DBD) plasma was used to synthesize Ag₂O and Ag₂O/RuO₂ nanocomposite materials. The prepared materials showed good crystallinity. The surface morphology of the Ag₂O exhibited "garland-like" features, and it changed to "flower-like" and "leaf-like" at different NaOH concentrations. The Ag₂O/RuO₂ composite showed mixed structures of aggregated Ag₂O and sheet-like RuO₂. Mechanisms governing the material's growth under atmospheric pressure plasma were proposed. Chemical analysis was performed using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Thermogravimetric analysis (TGA) showed the thermal decomposition behavior and the oxygen release pattern.

  1. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?

    Science.gov (United States)

    Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F.

    2016-08-01

    Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.

  2. Time resolved Schlieren imaging of DBD actuator flow fields

    Science.gov (United States)

    Nourgostar, Cyrus; Oksuz, Lutfi; Hershkowitz, Noah

    2009-10-01

    Schlieren imaging methods measure the first derivative of density in the direction of a knife-edge spatial filter. It has been used extensively in aerodynamic research to visualize the structure of flow fields. With a single barrier planer dielectric barrier discharge (DBD) actuator, Schlieren images clearly show the absence of significant vertical air flow normal to the surface, and no more than few millimeters thick induced boundary layer flow. A gated intensified CCD camera along with a Schlieren system can not only visualize the flow field induced by the actuator, but also temporarily resolve the images of the flow and plasma field. Our time resolved images with triangular applied voltage waveforms indicate that several separate discharge regimes occur during positive and negative going half cycles of single and double barrier DBD actuators. Time resolved Schlieren imaging of both single and double barrier DBDs with different applied waveforms, discharge parameters and electrode geometries reveal important information on the induced flow structure.

  3. The topical use of non-thermal dielectric barrier discharge (DBD): nitric oxide related effects on human skin.

    Science.gov (United States)

    Heuer, Kiara; Hoffmanns, Martin A; Demir, Erhan; Baldus, Sabrina; Volkmar, Christine M; Röhle, Mirco; Fuchs, Paul C; Awakowicz, Peter; Suschek, Christoph V; Opländer, Christian

    2015-01-30

    Dielectric barrier discharge (DBD) devices generate air plasma above the skin containing active and reactive species including nitric oxide (NO). Since NO plays an essential role in skin physiology, a topical application of NO by plasma may be useful in the treatment of skin infections, impaired microcirculation and wound healing. Thus, after safety assessments of plasma treatment using human skin specimen and substitutes, NO-penetration through the epidermis, the loading of skin tissue with NO-derivates in vitro and the effects on human skin in vivo were determined. After the plasma treatment (0-60 min) of skin specimen or reconstructed epidermis no damaging effects were found (TUNEL/MTT). By Franz diffusion cell experiments plasma-induced NO penetration through epidermis and dermal enrichment with NO related species (nitrite 6-fold, nitrate 7-fold, nitrosothiols 30-fold) were observed. Furthermore, skin surface was acidified (~pH 2.7) by plasma treatment (90 s). Plasma application on the forearms of volunteers increased microcirculation fourfold in 1-2 mm and twofold in 6-8 mm depth in the treated skin areas. Regarding the NO-loading effects, skin acidification and increase in dermal microcirculation, plasma devices represent promising tools against chronic/infected wounds. However, efficacy of plasma treatment needs to be quantified in further studies and clinical trials.

  4. A double barrier memristive device

    Science.gov (United States)

    Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.

    2015-09-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits.

  5. Phonon tunneling through a double barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Villegas, Diosdado [Departamento de Física, Universidad Central “Marta Abreu” de Las Villas, CP 54830, Santa Clara, Villa Clara (Cuba); Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico); León-Pérez, Fernando de [Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, E-50090 Zaragoza (Spain); Pérez-Álvarez, R. [Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca (Mexico); Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico)

    2015-04-15

    The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices.

  6. Plasma induced degradation of Indigo Carmine by bipolar pulsed dielectric barrier discharge(DBD) in the water-air mixture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruo-bing; WU Yan; LI Guo-feng; WANG Ning-hui; LI Jie

    2004-01-01

    Degradation of the Indigo Carmine(IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase O3 and aqueous phase H2O2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor Cp are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.

  7. Double Barrier Coverage in Dense Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Cheng-Dong Jiang; Guo-Liang Chen

    2008-01-01

    When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are detected at some point in their trajectory. If a sensor network guarantees that every penetrating object will be detected by two distinct sensors at the same time somewhere in this area, we say that the network provides double barrier coverage (DBC). In this paper, we propose a new planar structure of Sparse Delaunay Triangulation (SparseDT), and prove some elaborate attributes of it. We develop theoretical foundations for double barrier coverage, and propose efficient algorithms with NS2 simulator using which one can activate the necessary sensors to guarantee double barrier coverage while the other sensors go to sleep. The upper and lower bounds of number of active nodes are determined, and we show that high-speed target will be detected efficiently with this configuration.

  8. Photon-Assisted Transmission through a Double-Barrier Structure

    Energy Technology Data Exchange (ETDEWEB)

    LYO,SUNGKWUN K.

    2000-06-27

    The authors study multi-photon-assisted transmission of electrons through single-step, single-barrier and double-barrier potential-energy structures as a function of the photon energy and the temperature. Sharp resonances in the spectra of the tunneling current through double-barrier structures are relevant to infra-red detectors.

  9. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e

  10. Innovative power supply concepts for DBD excilamps

    Science.gov (United States)

    Piquet, Hubert; Bhosle, Sounil; Díez, Rafael; Toumi, Areski; Zissis, Georges

    2008-01-01

    Excimer and exciplex UV/VUV sources excited by Dielectric Barrier Discharges represent a promising technology for industrial applications where powerful and efficient UV sources are needed. According to previous work, the most suited power supply waveform for coaxial DBD Excilamps is a unipolar pulsed voltage excitation of some kilovolts at some hundred of kilohertz with a duty cycle around one percent. We present here new concepts for energy supplying of coaxial DBDs, based on the direct control of the current in the lamps. These concepts have been tested by means of simulation models developed in our department and the time evolution of the UV radiation is presented for various considered current waveforms. Based on these results, a power supply topology has been designed for an efficient power transfer to the Excilamp. It is based on a converter which controls the current flowing through the DBD. The results concerning the coupling of this converter with a DBD load are commented.

  11. Comparing investigation of pattern formation in glow and streamer DBD

    Science.gov (United States)

    Li, Ben; Ouyang, Jiting

    2016-11-01

    In this paper, we investigate the behaviors of patterns in dielectric barrier discharge (DBD) in glow and streamer regimes under different operating conditions (driving frequency and voltage) and external electric/magnetic field to explore the similarity and difference of pattern formation. It is found that patterns in both glow and streamer DBDs can be homogenized by decreasing the driving frequency to a low level. But filamentary streamers can still appear at low frequency when the voltage is much higher. With an additional lateral electric field, patterns in both regimes can be homogenized. However, an axial magnetic field makes the glow DBD homogeneous, while the streamer DBD decreases in filamentary size. In both regimes, dynamics and distribution of the space charges, rather than the surface charges, play the predominant role in the formation of DBD patterns. But the surface charges may also play an important role in pattern formation, especially in streamer DBD.

  12. Improved power converter for pulsed operation of DBD

    Science.gov (United States)

    Schwarz-Kiene, Peter; Heering, Wolfgang

    2000-04-01

    In this paper an electronic ballast for pulsed operation of dielectric barrier discharges (DBD) is presented. The converter is designed as a transformer coupled square wave power source optimized for capacitive loads like DBD. The special features are the bipolar trapezoid waveform with variable slew rate (dU/dt), duty cycle, frequency and amplitude of the output voltage, which is balanced to ground. The power stage is designed in zero voltage switching technology. The ballast is primarily designed to investigate the discharge characteristics of DBD in dependence on the waveform parameters. A simple electrical DBD model is presented, which allows to predict the external DBD voltage and the discharge power in dependence of slew rate and duty cycle. The paper is closed with some experimental results of pulse XeCl*-excimer lamps.

  13. Quantum dynamics of a particle interacting with a double barrier

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, Ilaria [Istituto di Fisica Applicata ' Nello Carrara' del Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lantieri, Marco [Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche, Sezione di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Moretti, Paolo [Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche, Sezione di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy)

    2007-10-12

    Following a previously developed method, the problem of a particle scattered by a double barrier is studied. Instead of the simple transmission or reflection, the more difficult case of the arrival in the region between the barriers is considered and solved explicitly by using matrix methods.

  14. Application of DBD and DBCD in SO2 Removal

    Institute of Scientific and Technical Information of China (English)

    孙岩洲; 邱毓昌; 余发山; 袁兴成

    2004-01-01

    The dielectric barrier corona discharge(DBCD) in a wire-cylinder configuration and the dielectric barrier discharge(DBD) in a coaxial cylinder configuration are studied. The discharge current in DBD has a higher pulse amplitude than in DBCD. The dissipated power and the gas-gap voltage are calculated by analyzing the measured Lissajous figure. With the increasing applied voltage, the energy utilization factor for SO2 removal increases in DBCD but decreases in DBD because of the difference in their electric field distribution. Experiments of SO2 removal show that in the absence of NH3 the energy utilization factor can reach 31 g/kWh in DBCD and 39 g/kWh in DBD.

  15. Simulation of Flow Around Cylinder Actuated by DBD Plasma

    Science.gov (United States)

    Wang, Yuling; Gao, Chao; Wu, Bin; Hu, Xu

    2016-07-01

    The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (DBD) plasma effect is also presented. The flow streamlines between the numerical simulation and the particle image velocimetry (PIV) experiment are consistent. According to the numerical simulation, DBD plasma can reduce the drag coefficient and change the vortex shedding frequencies of flow around the cylinder.

  16. Pulsed-DC DBD Plasma Actuators

    Science.gov (United States)

    Duong, Alan; McGowan, Ryan; Disser, Katherine; Corke, Thomas; Matlis, Eric

    2016-11-01

    A new powering system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. However instead of an AC voltage input to drive the actuator, the pulsed-DC utilizes a DC voltage source. The DC source is supplied to both electrodes, and remains constant in time for the exposed electrode. The DC source for the covered electrode is periodically grounded for very short instants and then allowed to rise to the source DC level. This process results in a plasma actuator body force that is significantly larger than that with an AC-DBD at the same voltages. The important characteristics used in optimizing the pulsed-DC plasma actuators are presented. Time-resolved velocity measurements near the actuator are further used to understand the underlying physics of its operation compared to the AC-DBD. Supported by NASA Glenn RC.

  17. Conductance of graphene-based double-barrier nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M R [Department of Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jahani, D, E-mail: Rezakord@ipm.co, E-mail: Dariush110@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-12-22

    The effect of a mass gap on the conductance of graphene double-barrier heterojunctions is studied. By obtaining the 2D expression for the electronic transport of the low energy excitations of pure graphene through double-barrier systems, it is found that the conductivity of these structures does not depend on the type of charge carriers in the zones of the electric field. However, a finite induced gap in the graphene spectrum makes conductivity dependent on the energy band index. We also discuss a few controversies concerning double-barrier systems stemming from an improper choice of the scattering angle. Then it is observed that, for some special values of the incident energy and potential's height, graphene junctions behave like left-handed materials, resulting in a maximum value for the conductivity.

  18. Double Transport Barrier Experiments on Alcator C-Mod

    Science.gov (United States)

    Wukitch, S. J.

    2001-10-01

    Double transport barrier modes (core and edge barrier) have been observed with intense, off-axis ICRF heating in Alcator C-Mod. An internal transport barrier (ITB) is routinely produced in enhanced D_α H-mode, 4.5 T, sawtoothing discharges with the minority resonance layer r/a ~ -0.5 to the high field side of the magnetic axis during current flat top. The measured density and calculated \\chi_eff (from TRANSP) profiles suggest the central particle and thermal barriers are formed less than one energy confinement time after the H-mode develops. The density, radiation and \\chi_eff profiles indicate that the foot of the barrier is r/a ~ 0.5. Furthermore, the thermal and particle confinement are improved across the entire region inside the barrier. Interestingly, the central toroidal rotation reverses from co-current direction, typical of H-mode plasmas, to the counter-current direction as the density profile becomes more peaked. Typically, increased core impurity radiation, presumably due to improved particle confinement, leads to a barrier collapse after ~ 10 energy confinement times. A BT scan showed that the double barrier mode was accessed for B_T=4.1-4.5 T with the foot of the ITB remaining at r/a ~ 0.5. Importantly, experiments with additional central ICRF heating maintained the double barrier mode for as long as the ICRF was applied ( ~ 6 confinement times). With the application of central heating, the central rotation reversed back to the co-current direction. In addition, the density peaking and impurity accumulation were arrested with the application of the central heating. Thus, the additional central heating appears to provide a means for controlling this mode.

  19. A High Voltage High Frequency Resonant Inverter for Supplying DBD Devices with Short Discharge Current Pulses

    OpenAIRE

    Bonnin, Xavier; Brandelero, Julio; Videau, Nicolas; Piquet, Hubert; Meynard, Thierry

    2014-01-01

    International audience; In this paper, the merits of a high-frequency resonant converter for supplying dielectric barrier discharges (DBD) devices are established. It is shown that, thanks to its high-frequency operating condition, such a converter allows to supply DBD devices with short discharge current pulses, a high repetition rate, and to control the injected power. In addition, such a topology eliminates the matter of connecting a high-voltage transformer directly across the DBD device ...

  20. Spin-filtering junctions with double ferroelectric barriers

    Institute of Scientific and Technical Information of China (English)

    Ju Yan; Xing Ding-Yu

    2009-01-01

    An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction.

  1. Goos-Hanchen like Shifts in Graphene Double Barriers

    OpenAIRE

    Jellal, Ahmed; Redouani, Ilham; Zahidi, Youness; Bahlouli, Hocine

    2013-01-01

    We study the Goos-Hanchen like shifts for Dirac fermions in graphene scattered by double barrier structures. After obtaining the solution for the energy spectrum, we use the boundary conditions to explicitly determine the Goos-Hanchen like shifts and the associated transmission probability. We analyze these two quantities at resonances by studying their {main} characteristics as a function of the energy and electrostatic potential parameters. To check the validity of our computations we recov...

  2. Effect of Systematic Resonance on DBD Device

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Abnormal phenomena that discharge performance declines with the increase in the frequency of power supply have been observed in many DBD devices. DBD systematic resonance formed by transformer leakage induction and equivalent capacitance of the dielectric layer is a key factor causing such abnormal phenomena. Therefore, the parameters of a DBD device should be optimized to avoid resonance damage and improve DBD discharge characteristics.

  3. About the development of single microdischarges in dielectric barrier discharges in CO2 and CO2/N2 gas mixtures. DBD-MDs in CO2 and CO2/N2

    Science.gov (United States)

    Brandenburg, Ronny; Sarani, Abdollah

    2017-08-01

    The conversion of carbon dioxide as one of the main greenhouse gases into carbon monoxide as a chemical feedstock is considered as so-called carbon capture usage technology. Recently it was shown, that the dissociation of carbon dioxide to carbon monoxide in Dielectric Barrier Discharges can be enhanced by the addition of nitrogen gas. Here, the development of microdischarges in CO2 and CO2/N2 gas mixtures is studied. Therefore, a single filament DBD arrangement operated under sinusoidal high-voltage is investigated by means of spectroscopic and electrical diagnostics with high spatial and temporal resolution and sensitivity. The filament development is similar as in air or other nitrogen-oxygen gas mixtures, but the gas composition influences the duration and other parameters. The higher the CO2 content the weaker the filaments and the faster the quenching of excited molecular states. The optimum power dissipation into single discharge is obtained for a CO2 content between 20 and 30 vol.%.

  4. DBD-Corona Discharge for Degradation of Toxic Gases

    Institute of Scientific and Technical Information of China (English)

    M.PACHECO-PACHECO; J.PACHECO-SOTELO; H.MORENO-SAAVEDRA; J.A.DIAZ-GOMEZ; A.MERCADO-CABRERA; M.YOUSFI

    2007-01-01

    The non-thermal plasma technology is a promising technique to treat SO2 and NOx.Chemical radicals produced with this technology can remove several pollutants at atmospheric pressure in a very short period of time simultaneously.Both theoretical and experimental study on SO2 and NOx removal,by a dielectric barrier discharge (DBD) with corona effect,is presented.

  5. Shock Wave Boundary Layer Interaction Control Using Pulsed DBD Plasma Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active flow control using dielectric barrier discharge (DBD) plasma actuators is an attractive option for both reduction of complexity of aircraft systems required...

  6. Black pepper powder microbiological quality improvement using DBD systems in atmospheric pressure

    Science.gov (United States)

    Grabowski, Maciej; Hołub, Marcin; Balcerak, Michał; Kalisiak, Stanisław; Dąbrowski, Waldemar

    2015-07-01

    Preliminary results are given regarding black pepper powder decontamination using dielectric barrier discharge (DBD) plasma in atmospheric pressure. Three different DBD reactor constructions were investigated, both packaged and unpackaged material was treated. Due to potential, industrial applications, in addition to microbiological results, water activity, loss of mass and the properties of packaging material, regarding barrier properties were investigated. Argon based treatment of packed pepper with DBD reactor configuration is proposed and satisfactory results are presented for treatment time of 5 min or less. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  7. The Rashba effect on a double-barrier spin polarizer

    Science.gov (United States)

    Makler, Sergio S.; Guilherme Zelcovit, João; Boselli, Marco A.; da Cunha Lima, Ivan C.

    2004-12-01

    The Rashba effect on a double-barrier spin polarizer is considered using a formalism that produces accurate results with little computational effort. In previous articles, we proposed a spin polarizer consisting of a well made of a dilute magnetic semiconductor (DMS) enclosed by two non-magnetic barriers. In the absence of Rashba effect, the magnetization of the well produces totally polarized electronic levels separated by 0.15 eV. The highest steady magnetic field obtained in a laboratory could not produce a Zeeman splitting so big. As a consequence the calculated currents are almost totally polarized. The Rashba spin-orbit Hamiltonian produces a spin flip. Therefore, the levels at the well have not well-defined spin polarization and the currents are less polarized. The device presented here would be useful for spintronics because there are DMS ferromagnetic at room temperature. Our tight-binding Hamiltonian, including the Rashba term, is H=HK+HP+HE+HM+H+H+HR . The first term is the kinetic energy. HP describes the double-barrier profile and the third term represent the electric field due to the applied bias. The magnetic HM, the hole-impurity H and the hole-hole H terms are included in the mean field approximation. The profile and the charge distribution are calculated self-consistently. By using a decimation formalism, all these terms are treated exactly. Finally, the Rashba term HR is very small. Therefore, it is treated using second order perturbation theory. The calculation confirm that the Rashba effect on the currents is of second order. Consequently, the resulting depolarization is very small.

  8. The Rashba effect on a double-barrier spin polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Makler, Sergio S. [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, 24210-340 Niteroi-RJ (Brazil)]. E-mail: sergio@if.uff.br; Guilherme Zelcovit, Joao [Instituto de Fisica, Universidade do Estado de Rio de Janeiro, RJ (Brazil); Boselli, Marco A. [Departamento de Fisica, Universidade Federal de Ouro Preto, MG (Brazil); Cunha Lima, Ivan C. da [Instituto de Fisica, Universidade do Estado de Rio de Janeiro, RJ (Brazil)

    2004-12-31

    The Rashba effect on a double-barrier spin polarizer is considered using a formalism that produces accurate results with little computational effort. In previous articles, we proposed a spin polarizer consisting of a well made of a dilute magnetic semiconductor (DMS) enclosed by two non-magnetic barriers. In the absence of Rashba effect, the magnetization of the well produces totally polarized electronic levels separated by 0.15eV. The highest steady magnetic field obtained in a laboratory could not produce a Zeeman splitting so big. As a consequence the calculated currents are almost totally polarized. The Rashba spin-orbit Hamiltonian produces a spin flip. Therefore, the levels at the well have not well-defined spin polarization and the currents are less polarized. The device presented here would be useful for spintronics because there are DMS ferromagnetic at room temperature. Our tight-binding Hamiltonian, including the Rashba term, isH=HK+HP+HE+HM+Hh-i+Hh-h+HR.The first term is the kinetic energy. HP describes the double-barrier profile and the third term represent the electric field due to the applied bias. The magnetic HM, the hole-impurity Hh-i and the hole-hole Hh-h terms are included in the mean field approximation. The profile and the charge distribution are calculated self-consistently.By using a decimation formalism, all these terms are treated exactly. Finally, the Rashba term HR is very small. Therefore, it is treated using second order perturbation theory. The calculation confirm that the Rashba effect on the currents is of second order. Consequently, the resulting depolarization is very small.

  9. Can double gloves improve surgeon-patient barrier efficiency?

    Science.gov (United States)

    Sadat-Ali, Mir; Al-Habdan, Ibrahim; AlBluwi, Mohammed; Corea, J Ran; Al-Othman, Abdallah; Shriyan, Devidas; Moussa, Mohammed; AlDhakheel, Dhakheel; AlOmran, Abdallah

    2006-01-01

    The aim of this study was to compare double gloves (DGs) with single gloves (SGs) during orthopedic and trauma surgery in prevention of blood contact between patients and surgeons. DGs and SGs were collected after orthopedic operations, tested for size, site, and number of perforations. Medical records were reviewed for age, sex, type of operation, duration, and postoperative wound infection. Data were compared using t-test with level of statistical significance at P < 0.05. Five hundred seven operations yielded 1204 DGs and 830 pairs SGs. In DGs, perforations were detected in 220 outer glove and 39 inner glove (10.7%). In SGs, 226 perforations were detected (13.3%). The incidence of perforations in inner gloves of the double indicator glove was 1.6% (P < 0.001). During surgery, perforations were recognized in DGs in 67% compared with 12% in SGs (P < 0.005). This study confirms that DGs form an efficient barrier between patients and surgeons.

  10. A New Type of Photoelectric Response in a Double Barrier Structure with a Wide Quantum Well

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia; ZHENG Hou-Zhi

    2005-01-01

    @@ We have calculated the photoelectric response in a specially designed double barrier structure. It has been verified that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.

  11. Controllable Goos-Hänchen shift in graphene triangular double barrier

    Science.gov (United States)

    Mekkaoui, Miloud; Jellal, Ahmed; Bahlouli, Hocine

    2017-03-01

    We study the Goos-Hänchen (GH) shifts for Dirac fermions in graphene scattered by a triangular double barrier potential. The massless Dirac-like equation was used to describe the scattered fermions by such potential configuration. Our results show that the GH shifts is affected by the geometrical structure of the double barrier. In particular the GH shifts change sign at the transmission zero energies and exhibit enhanced peaks at each bound state associated with the double barrier when the incident angle is less than the critical angle associated with total reflection.

  12. Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The University of Maryland is proposing to use a dielectric barrier discharge (DBD) as a means to dissociate N2O. DBD uses alternating high voltage differences...

  13. Removal of paper microbial contamination by atmospheric pressure DBD discharge

    Science.gov (United States)

    Vrajova, J.; Chalupova, L.; Novotny, O.; Cech, J.; Krcma, F.; Stahel, P.

    2009-08-01

    In this paper the removal of the microbial contamination from paper material using the plasma treatment at atmospheric pressure is investigated. The Aspergillus niger has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Dielectric barrier discharge (DBD) operated at atmospheric pressure was used for the paper sterilization. The working gas (nitrogen, argon and helium), plasma exposition time and the plasma power density were varied in order to see the effect of the plasma treatment on the fungi removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the DBD plasma treatment on fungi removal. Morphological and colorimetric changes of paper substrate after plasma treatment were also investigated.

  14. Power consumption analysis DBD plasma ozone generator

    Science.gov (United States)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  15. Method to quantify the electrical efficiency of a ns-DBD plasma actuator

    NARCIS (Netherlands)

    Avallone, F.; Correale, G.

    2015-01-01

    An experimental investigation was conducted on the effective efficiency of a nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator. Back-current shunt technique and infrared thermography measurements were carried out at the same time on an upside-down flat plate in a quiescent

  16. Method to quantify the electrical efficiency of a ns-DBD plasma actuator

    NARCIS (Netherlands)

    Avallone, F.; Correale, G.

    2015-01-01

    An experimental investigation was conducted on the effective efficiency of a nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator. Back-current shunt technique and infrared thermography measurements were carried out at the same time on an upside-down flat plate in a quiescent environment

  17. A New Limit on the Neutrinoless DBD of 130Te

    OpenAIRE

    Arnaboldi, C.; Artusa, D. R.; Avignone III, F. T.; Balata, M.; Bandac, I.; Barucci, M; Beeman, J. W.; Brofferio, C.; Bucci, C.; Capelli, S.(INFN-Sezione di Milano Bicocca, 20126, Milano, Italy); Carbone, L.; Cebrian, S; Cremonesi, O.; Creswick, R.J.; A. de Waard

    2005-01-01

    We report the present results of CUORICINO a cryogenic experiment on neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62 crystals of TeO2 with a total active mass of 40.7 kg. The array is framed inside of a dilution refrigerator, heavily shielded against environmental radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK in the Gran Sasso Underground Laboratory. Temperature pulses induced by particle interacting in the crystals are recorded and ...

  18. Wave Scattering by Double Slotted Barriers in A Steady Current: Experiments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The adoption of slotted breakwaters can be an ideal option in the protection of very large near-shore floating structures that may extend offshore to a considerable water depth. In this paper, we experimently investigated the behaviour of wave transmission and reflection coefficients of double slotted barriers in the presence of a steady opposing current. The experimental results show that opposing currents have only minor effects on wave reflection, but can significantly reduce the wave transmission through double slotted barriers. The experimental results suggest that coastal currents should be taken into consideration for an economical design of slotted breakwaters.

  19. Crossing the cosmological constant barrier with kinetically interacting double quintessence

    CERN Document Server

    Sur, Sourav

    2009-01-01

    We examine the plausibility of crossing the cosmological constant ($\\L$) barrier in a two-field quintessence model of dark energy, involving a kinetic interaction between the individual fields. Such a kinetic interaction may have its origin in the four dimensional effective two-field version of the Dirac-Born-Infeld action, that describes the motion of a D3-brane in a higher dimensional space-time. We show that this interaction term could indeed enable the dark energy equation of state parameter $\\wx$ to cross the $\\L$-barrier (i.e., $\\wx = -1$), keeping the Hamiltonian well behaved (bounded from below), as well as satisfying the condition of stability of cosmological density perturbations, i.e., the positivity of the squares of the sound speeds corresponding to the adiabatic and entropy modes. The model is found to fit well with the latest Supernova Union data and the WMAP results. The best fit curve for $\\wx$ crosses -1 at red-shift $z$ in the range $\\sim 0.215 - 0.245$, whereas the transition from decelera...

  20. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    RONG Ming-zhe; LIU Ding-xin; WANG Xiao-hua; WANG Jun-hua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO2 removal from indoor air is investigated.In order to improve the removal efficiency,two novel methods are combined in this paper,namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field.For SO2 removal efficiency,different matches of electric field and magnetic field are discussed.And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared.It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted,and electrical field and magnetic field should be applied in an appropriate match.

  1. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    Science.gov (United States)

    Dong, Xiaoyu; Yuan, Yulian; Tang, Qian; Dou, Shaohua; Di, Lanbo; Zhang, Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.

  2. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-01

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  3. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers.

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-04-03

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%.

  4. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  5. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  6. Enhancement of thermal spin transfer torque by double-barrier magnetic tunnel junctions with a nonmagnetic metal spacer

    Science.gov (United States)

    Chen, C. H.; Tseng, P.; Yang, Y. Y.; Hsueh, W. J.

    2017-01-01

    Enhancement of thermal spin transfer torque in a double-barrier magnetic tunnel junction with a nonmagnetic-metal spacer is proposed in this study. The results indicate that, given the same temperature difference, thermal spin transfer torque and charge current density for the proposed double barrier magnetic tunnel junction configuration can be approximately twice as much as that of the traditional single-barrier magnetic tunnel junctions. This enhancement can be attributed to the resonant tunneling mechanism in the double-barrier structure.

  7. Photoluminescence study of InGaN/GaN double quantum wells with varying barrier widths

    CERN Document Server

    Ryu, M Y; Shin, E J; Lee, J I; Yu, S K; Oh, E S; Park, Y J; Park, H S; Kim, T I

    2000-01-01

    We report the results of photoluminescence (PL) and time-resolved PL studies on InGaN/GaN double quantum well (DQW) samples with different barrier widths. The barrier-width dependence of the PL emission energy and intensity are discussed. The PL as a function of excitation density can be well explained in terms of the quantum-confined Stark effect (QCSE). The temporal behavior of the PL was also studied. As the barrier width increases, the decay times tau sub 1 and tau sub 2 , decrease from 1.02 ns and 6.99 ns to 0.32 ns and 1.09 ns, respectively. The PL efficiency and the decay lifetime depend on the barrier width.

  8. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  9. Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators

    Science.gov (United States)

    Singh, Ashish; Little, Jesse

    2016-11-01

    A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).

  10. Decomposition treatment of SO2F2 using packed bed DBD plasma followed by chemical absorption.

    Science.gov (United States)

    Nie, Yong; Zheng, Qifeng; Liang, Xiaojiang; Gu, Dayong; Lu, Meizhen; Min, Min; Ji, Jianbing

    2013-07-16

    The technology of packed bed dielectric barrier discharge (DBD) plasma followed by a chemical absorption has been developed and was found to be an efficient way for decomposition treatment of sulfuryl fluoride (SO2F2) in simulated residual fumigant. The effects of energy density, initial SO2F2 concentration, and residence time on the removal efficiency of SO2F2 for the DBD plasma treatment alone were investigated. It was found that the SO2F2 could be removed completely when initial volume concentration, energy density, and residence time were 0.5%, 33.9 kJ/L, and 5.1 s, respectively. The removal mechanism of SO2F2 in the packed bed DBD reactor was discussed. Based on the detailed analysis of SO2F2 molecular stability and its exhaust products in the DBD plasma reactor, it was concluded that the energetic electrons generated in the packed bed DBD reactor played a key role on the removal of SO2F2, and the major decomposition products of SO2F2 detected were SO2, SiF4, and S (Sulfur). Among these products, SiF4 was formed by the F atom reacted with the filler-quartz glass beads (SiO2) in the packed bed DBD reactor. Aqueous NaOH solution was used as the chemical absorbent for the gaseous products of SO2F2 after plasma pretreatment. It was found that the gaseous products in the plasma exhaust could be absorbed and fixed by the subsequent aqueous NaOH solution.

  11. The different effects of oxygen and air DBD plasma byproducts on the degradation of methyl violet 5BN.

    Science.gov (United States)

    Chen, Guangliang; Zhou, Mingyan; Chen, Shihua; Chen, Wenxing

    2009-12-30

    Through a novel design of the dielectric barrier discharge (DBD) plasma plume used in fabric-fiber surface modification, its discharge byproducts mainly including downstream gases and ultraviolet light were used to treat the dye solution. The different influence of oxygen and air DBD plasmas on the degradation of methyl violet 5BN (MV-5BN), which is widely used in textile industry, was investigated in this paper. The results showed that the cooperation between ultraviolet light and active species generated by the DBD plasma can decolorize MV-5BN effectively, and the chromophore peaks attributed to the -NN- bonds in MV-5BN molecule disappeared entirely when the azo dye solutions were treated for 25 min by the air and oxygen DBD plasmas. The degradation reaction followed an exponential kinetics over time, and the peak of aromatic derivatives at 209 nm in UV-vis spectra increased nearly 2.7 times when the dye solution was treated for 30 min by air DBD plasma. However, the oxygen DBD plasma could deplete the aromatic derivatives entirely. It is found that the formation of O(3) and NO(x) in the downstream gases of air and oxygen plasmas may be responsible for the different effects on the azo dye degradation.

  12. Electrical degradation of double-Schottky barrier in ZnO varistors

    Energy Technology Data Exchange (ETDEWEB)

    He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Cheng, Chenlu; Hu, Jun [The State Key Lab of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  13. Electron Transport in Graphene-Based Double-Barrier Structure under a Time Periodic Field

    Institute of Scientific and Technical Information of China (English)

    LU Wei-Tao; WANG Shun-Jin

    2011-01-01

    The transport property of electron through graphene-based double-barrier under a time periodic field is investigated. We study the influence of the system parameters and external field strength on the transmission probability.The results show that transmission exhibits various kinds of behavior with the change of parameters due to its angular anisotropy. One could control the values of transmission and conductivity as well as their distribution in each band by tuning the parameters.

  14. A New Limit on the Neutrinoless DBD of 130Te

    CERN Document Server

    Arnaboldi, C; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Brofferio, C; Bucci, C; Capelli, S; Carbone, L; Cebrián, S; Cremonesi, O; Creswick, R J; De Waard, A; Farach, H A; Fiorini, Ettore; Frossati, G; Guardincerri, E; Giuliani, A; Gorla, P; Haller, E E; McDonald, J; Norman, E B; Nucciotti, A; Olivieri, E; Pallavicini, M; Palmieri, E; Pasca, E; Pavan, M M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; San Giorgio, S; Sisti, M; Smith, A R; Torres, L; Ventura, G

    2005-01-01

    We report the present results of CUORICINO a cryogenic experiment on neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62 crystals of TeO2 with a total active mass of 40.7 kg. The array is framed inside of a dilution refrigerator, heavily shielded against environmental radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK in the Gran Sasso Underground Laboratory. Temperature pulses induced by particle interacting in the crystals are recorded and measured by means of Neutron Transmutation Doped thermistors. The gain of each bolometer is stabilized with voltage pulses developed by a high stability pulse generator across heater resistors put in thermal contact with the absorber. The calibration is performed by means of two thoriated wires routinely inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of 130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the lifetime of this process. Taking largely into account the uncertain...

  15. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  16. Influence of ultrasonic irradiation on ozone generation in a dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Drews, J.; Leipold, Frank

    2012-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) was generated in an N2/O2 gas mixture at room temperature with and without ultrasonic irradiation to investigate ozone production. Powerful ultrasonic irradiation with the sound pressure level of approximately 150 dB into the DBD can...... enhance ozone production especially when the DBD was driven at a frequency of 15 kHz....

  17. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  18. Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ayan, H; Staack, D; Mukhin, Y; Starikovskii, A; Fridman, A [Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA 19104 (United States); Fridman, G [School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104 (United States); Gutsol, A [Chevron Energy Technology Company, Richmond, CA 94802 (United States); Friedman, G [Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2009-06-21

    Antimicrobial effectiveness of a nanosecond-pulsed dielectric barrier discharge (DBD) was investigated and compared with that of a microsecond-pulsed DBD. Experiments were conducted on the Escherichia coli bacteria covering a topographically non-uniform agar surface acting as one of the DBD electrodes. They reveal that the nanosecond-pulsed DBD can inactivate bacteria in recessed areas whereas the microsecond-pulsed and conventional DBDs fail to do so. Charged species (electrons and ions) appear to play the major role in the bacteria inactivation with the nanosecond-pulsed DBD. Moreover, the nanosecond-pulsed DBD kills bacteria significantly faster than its microsecond-pulsed counterpart.

  19. Dynamic Electric Potential Redistribution And Its Influence On The Development Of A Dielectric Barrier Plasma Jet

    Science.gov (United States)

    2012-05-01

    dielectric barrier discharge (DBD) devices. The dielectric barrier plasma jet represents a hybrid between streamer corona and conventional DBD sources...capillary tip and beyond indicating a transition away from a DBD to what was essentially a classical streamer corona discharge drawing current directly...plasma jet generated in a single-electrode dielectric barrier configuration at atmospheric pressure. The influence of dielectric boundary conditions

  20. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  1. Nonlinear transport of Bose-Einstein condensates in a double barrier potential

    Institute of Scientific and Technical Information of China (English)

    Fang Jian-Shu

    2008-01-01

    The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied.By using the direct perturbation method we have obtained a perturbed solution of Gross-Pitaevskii equation.Theoretical analysis reveals that this perturbed solution is a stable periodic solution,which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport.The corresponding numerical results are in good agreement with the theoretical analytical results.

  2. Reliability enhancement due to in-situ post-oxidation of sputtered MgO barrier in double MgO barrier magnetic tunnel junction

    Science.gov (United States)

    Yoshida, Chikako; Noshiro, Hideyuki; Yamazaki, Yuichi; Sugii, Toshihiro

    2017-06-01

    We have investigated the effects of in-situ post-oxidation (PO) of a sputtered MgO barrier in a double-MgO-barrier magnetic tunnel junction (MTJ) and found that the short error rate was significantly reduced, the magnetoresistance (MR) ratio was increased approximately 18%, and the endurance lifetime was extend. In addition, we found that the distribution of breakdown number (a measure of endurance) exhibits trimodal characteristics, which indicates competition between extrinsic and intrinsic failures. This improvement in reliability might be related to the suppression of Fe and Co diffusion to the MgO barrier, as revealed by electron energy-loss spectroscopy (EELS) analysis.

  3. Solar neutrino interactions with liquid scintillators used for double beta decay experiments

    CERN Document Server

    Ejiri, Hiroyasu

    2016-01-01

    Solar neutrinos interact with double beta decay detectors (DBD) and hence will contribute to backgrounds (BG) for DBD experiments. Background contributions due to solar neutrinos are evaluated for their interactions with atomic electrons and nuclei in liquid scintillation detectors used for DBD experiments. They are shown to be serious backgrounds for high sensitivity DBD experiments to search for the Majorana neutrino masses in the inverted and normal hierarchy regions.

  4. Solar neutrino interactions with liquid scintillators used for double beta-decay experiments

    Science.gov (United States)

    Ejiri, Hiroyasu; Zuber, Kai

    2016-08-01

    Solar neutrinos interact within double-beta-decay (DBD) detectors and hence will contribute to backgrounds (BGs) for DBD experiments. Background contributions due to solar neutrinos are evaluated for their interactions with atomic electrons and nuclei in liquid scintillation detectors used for DBD experiments. They are shown to be serious BGs for high-sensitivity DBD experiments to search for the Majorana neutrino masses in the inverted and normal hierarchy regions.

  5. Photoelectric Characteristics of Double Barrier Quantum Dots-Quantum Well Photodetector

    Directory of Open Access Journals (Sweden)

    M. J. Wang

    2015-01-01

    Full Text Available The photodetector based on double barrier AlAs/GaAs/AlAs heterostructures and a layer self-assembled InAs quantum dots and In0.15Ga0.85As quantum well (QW hybrid structure is demonstrated. The detection sensitivity and detection ability under weak illuminations have been proved. The dark current of the device can remain at 0.1 pA at 100 K, even lower to 3.05×10-15 A, at bias of −1.35 V. Its current responsivity can reach about 6.8×105 A/W when 1 pw 633 nm light power and −4 V bias are added. Meanwhile a peculiar amplitude quantum oscillation characteristic is observed in testing. A simple model is used to qualitatively describe. The results demonstrate that the InAs monolayer can effectively absorb photons and the double barrier hybrid structure with quantum dots in well can be used for low-light-level detection.

  6. Fabrication of Titanium Dioxide Thin Films by DBD-CVD Under Atmosphere

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-wen; GUO Yu; HAN Gao-rong

    2007-01-01

    Titanium dioxide films were firstly deposited on glass substrate by DBD-CVD (dielectric barrier discharge enhanced chemical vapor deposition) technique.The structure of the films was investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM).TiO2 films deposited under atmosphere pressure show preferred orientation,and exhibit columnar-like structure,while TiO2 films deposited under low gas pressure show no preferred orientation.The columnar-like structure with preferred orientation exhibits higher photocatalytic efficiency,since the columnar structure has larger surface area.However,it contributes little to the improvement of hydrophilicity. DBD-CVD is an alternative method to prepare photocatalytic TiO2 for its well-controllable property.

  7. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    Science.gov (United States)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Wandke, Dirk; Viöl, Wolfgang; Awakowicz, Peter

    2009-11-01

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O3) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  8. DBD: a transcription factor prediction database.

    Science.gov (United States)

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2006-01-01

    Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, which detect only those factors similar to known genes, or on functional classification schemes that amalgamate many types of proteins into the category of 'transcription factor'. Using a novel transcription factor identification method, the DBD transcription factor database fills this void, providing genome-wide transcription factor predictions for organisms from across the tree of life. The prediction method behind DBD identifies sequence-specific DNA-binding transcription factors through homology using profile hidden Markov models (HMMs) of domains. Thus, it is limited to factors that are homologus to those HMMs. The collection of HMMs is taken from two existing databases (Pfam and SUPERFAMILY), and is limited to models that exclusively detect transcription factors that specifically recognize DNA sequences. It does not include basal transcription factors or chromatin-associated proteins, for instance. Based on comparison with experimentally verified annotation, the prediction procedure is between 95% and 99% accurate. Between one quarter and one-half of our genome-wide predicted transcription factors represent previously uncharacterized proteins. The DBD (www.transcriptionfactor.org) consists of predicted transcription factor repertoires for 150 completely sequenced genomes, their domain assignments and the hand curated list of DNA-binding domain HMMs. Users can browse, search or download the predictions by genome, domain family or sequence identifier, view families of transcription factors based on domain architecture and receive predictions for a protein sequence.

  9. Autocidal Ovitrap Atraktan Rendaman Jerami sebagai Alternatif Pengendalian Vektor DBD

    OpenAIRE

    Dwinata, Indra; Baskoro, Tri; Indriani, Citra

    2015-01-01

    ABSTRAK Kabupaten Gunungkidul adalah daerah endemis DBD di Provinsi Yogyakarta. Salah satu alternatif dalam pengendalian vektor DBD adalah dengan memasang autocidal ovitrap dengan menambahkan zat atraktan berupa air rendaman jerami. Penelitian ini bertujuan mengetahui pengaruh pemasangan autocidal ovitrap dengan atraktan air rendaman jerami terhadap jumlah nyamuk Aedes yang terperangkap dan index kepadatan larva. Design penelitian ini adalah quasi eksperimental dengan rancangan crossover d...

  10. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.; Diény, B. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, INAC-SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Ducruet, C. [Crocus-Technology, 5, Place Robert Schuman, F-38054 Grenoble (France); Vila, L. [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France)

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  11. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Clément, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diény, B.

    2015-09-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  12. Mechanisms governing the interfacial delamination of thermal barrier coating system with double ceramic layers

    Science.gov (United States)

    Xu, Rong; Fan, Xueling; Wang, T. J.

    2016-05-01

    A systematic study of factors affecting the interfacial delamination of thermal barrier coating system (TBCs) with double ceramic layers (DCL) is presented. Crack driving forces for delaminations at two weak interfaces are examined. The results show that a thicker outermost ceramic layer can induce dramatic increase in crack driving force and make the interface between two ceramic coatings become more prone to delamination. The behavior is shown to be more prominent in TBCs with stiffer outmost coating. The thickness ratio of two ceramic layers is an important parameter for controlling the failure mechanisms and determining the lifetime of DCL TBCs under inservice condition. By accounting for the influences of thickness ratio of two ceramic layers and interfacial fracture toughnesses of two involved interfaces, the fracture mechanism map of DCL TBCs has been constructed, in which different failure mechanisms are identified. The results quanlitatively agree with the aviliable experimental data.

  13. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  14. The Solubility of Natural Cellulose After DBD Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    WU Jun; ZENG Fengcai; CHEN Bingqiang

    2008-01-01

    Natural cellulose was treated by an atmospheric DBD plasma. The solubility of cel-lulose in a diluted alkaline solution after the plasma treatment was investigated. The properties were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spec-troscopy (FTIR) and scanning electron microscopy (SEM). The results indicated that the surface of cellulose treated by the argon DBD plasma was significantly etched, and the relevant force of hy-drogen bonding was decreased. This might be the essential reason for the solubility improvement of natural cellulose in the diluted alkaline solution. Through a comparison of two discharge modes, the atmospheric DBD plasma gun and the parallel plate capacitively coupled DBD plasma, it wasfound that the atmospheric DBD plasma gun was more effective in fragmentizing the cellulose due to its production of a high energy plasma based on its special structure [6] .

  15. A Comparative Study between the Filamentary and Glow Modes of DBD Plasma in the Treatment of Wool Fibers

    Directory of Open Access Journals (Sweden)

    Doaa. M. El-Zeer

    2014-03-01

    Full Text Available In the present research it has been studied the effect of the DBD plasma on the treatment and modification of the surface a printing properities of the wool. Two types of DBD plasma have been investigated namely; the filamentary mode FDBD plasma and the glow mode GDBD plasma to reach the best condition of the treatment. Two discharge cells have been constructed one of them is for the generation of Atmospheric pressure glow discharge APGD and the other is for the generation of filamentary dielectric barrier discharge FDBD plasma. These two cells have the same dimensions except for the type of the dielectric barrier. In the APGD cell the dielectric barrier is a commercial porous fiber while in the FDBD cell the barrier is a Pyrex glass. It has been found that changing the type of the dielectric barriers acquires the discharge different properties. The efficiencies of these two types of discharge in the treatment of the textiles has been examined by treating the wool fabric with these two types of DBD plasma at different conditions of the current and treatment time. The induced changes in wool properties, such as whiteness index, wettability, tensile strength, elongation %, surface morphology, printability and fastness properties, have been investigated. The surface characterization was performed using FTIR and SEM imaging. It has been discovered that GDBD plasma is more efficient than FDBD because of not only its homogeneity but also the high concentration of nitrogen excited species that are the responsible for the surface activation of the textile.

  16. The role of ion transport phenomena in memristive double barrier devices

    Science.gov (United States)

    Dirkmann, Sven; Hansen, Mirko; Ziegler, Martin; Kohlstedt, Hermann; Mussenbrock, Thomas

    2016-10-01

    In this work we report on the role of ion transport for the dynamic behavior of a double barrier quantum mechanical Al/Al2O3/NbxOy/Au memristive device based on numerical simulations in conjunction with experimental measurements. The device consists of an ultra-thin NbxOy solid state electrolyte between an Al2O3 tunnel barrier and a semiconductor metal interface at an Au electrode. It is shown that the device provides a number of interesting features such as an intrinsic current compliance, a relatively long retention time, and no need for an initialization step. Therefore, it is particularly attractive for applications in highly dense random access memories or neuromorphic mixed signal circuits. However, the underlying physical mechanisms of the resistive switching are still not completely understood yet. To investigate the interplay between the current transport mechanisms and the inner atomistic device structure a lumped element circuit model is consistently coupled with 3D kinetic Monte Carlo model for the ion transport. The simulation results indicate that the drift of charged point defects within the NbxOy is the key factor for the resistive switching behavior. It is shown in detail that the diffusion of oxygen modifies the local electronic interface states resulting in a change of the interface properties.

  17. Resonant magneto-tunnelling in GaAs/AlGaAs double-barrier heterostructures

    CERN Document Server

    Reker, T

    2001-01-01

    bottleneck for tunnelling of electrons and how this could account for the observed enhancement of the pseudogap around filling factor v = 1. Resonant magneto-tunnelling in GaAs/AlGaAs double-barrier heterostructures is studied at low temperatures. Magnetic fields aligned parallel to the barriers are used to map out the in-plane dispersion of the GAMMA-conduction band in GaAs/AlGaAs quantum wells. By rotating the magnetic field direction in the plane of the quantum well, it is demonstrated that the effective mass of confined GAMMA-conduction band electrons becomes anisotropic along the two orthogonal in-plane directions when an electric field is applied perpendicular to the interfaces. On a qualitative level, the anisotropy can be understood by the orthogonal orientations of bond-planes at opposite interfaces of the quantum well, whereby the symmetry is broken either by an electric field along [001] or by differences in interface roughness. On the quantitative level, a quantum mechanical model involving inte...

  18. Transmission and Goos-Hänchen like shifts through a graphene double barrier in an inhomogeneous magnetic field

    Science.gov (United States)

    Mekkaoui, Miloud; Jellal, Ahmed; Bahlouli, Hocine

    2016-01-01

    We studied the transport properties of electrons in graphene as they are scattered by a double barrier potential in the presence of an inhomogeneous magnetic field. We computed the transmission coefficient and Goos-Hänchen like shifts for our system and noticed that transmission is not allowed for certain range of energies. In particular, we found that, in contrast to the electrostatic barriers, the magnetic barriers are able to confine Dirac fermions. We also established some correlation between the electronic transmission properties of Dirac fermions with the Goos-Hänchen like shifts, as reflected in the numerical data.

  19. Lateral shifts of spin electron beams in antiparallel double {delta}-magnetic-barrier nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Kong Yonghong [Department of Electronic Engineering, Hunan University Science and Engineering, Hunan 425100 (China); Lu Maowang, E-mail: m_w_lu@126.com [Department of Electronic Engineering, Hunan University Science and Engineering, Hunan 425100 (China); Chen Saiyan; Zhang Guilian [Department of Electronic Engineering, Hunan University Science and Engineering, Hunan 425100 (China)

    2012-08-15

    We investigate the Goos-Haenchen (GH) effect of spin electron beams in a magnetic-barrier (MB) nanostructure consisting of antiparallel double {delta}-MBs, which can be experimentally realized by depositing two ferromagnetic (FM) stripes on top and bottom of the semiconductor heterostructure. GH shifts for spin electron beams across this type of MB nanostructures, is derived exactly, with the help of the stationary phase method. It is shown that GH shifts depend strongly on the spin directions for double {delta}-MBs with unidentical magnetic strengths, giving rise to a considerable spin polarization effect. It also is shown that spin polarization of GH shifts is closely relative to the separation and magnetic-strength difference of two {delta}-MBs. These interesting properties may provide an alternative scheme to spin-polarize electrons into the semiconductor, and the devices can serve as tunable spin beam splitters. - Highlights: Black-Right-Pointing-Pointer Spin Goos-Haenchen effect of electron beams through a kind of MB nanostructures. Black-Right-Pointing-Pointer GH shift depends greatly on electron-spins, which is used to spin polarize electrons in semiconductor. Black-Right-Pointing-Pointer Spin polarization in GH shift is tunable. Black-Right-Pointing-Pointer A tunable spin beam splitter is achieved.

  20. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps

    Science.gov (United States)

    Liu, Shuhai; Neiger, Manfred

    2003-07-01

    Excitation of dielectric barrier discharge xenon excimer lamps by unipolar short square pulses is studied in this paper. Two discharges with different polarity are excited by each voltage pulse (double discharge phenomenon). The primary discharge occurs at the top or at the rising flank of the applied unipolar square pulse, which is directly energized by the external circuit. The secondary discharge with the reversed polarity occurs at the falling flank or shortly after the falling flank end (zero external voltage) depending on the pulse width, which is energized by the energy stored by memory charges deposited by the primary discharge. Fast-speed ICCD imaging shows the primary discharge has a conic discharge appearance with a channel broadening on the anode side. This channel broadening increases with increasing the pulse top level. Only the anode-side surface discharge is observed in the primary discharge. The surface discharge on the cathode side which is present in bipolar sine voltage excitation is not observed. On the contrary, the secondary discharge has only the cathode-side surface discharge. The surface discharge on the anode side is not observed. The secondary discharge is much more diffuse than the primary discharge. Time-resolved emission measurement of double discharges show the secondary discharge emits more VUV xenon excimer radiation but less infrared (IR) xenon atomic emission than the primary discharge. It was found that the IR xenon atomic emission from the secondary discharge can be reduced by shortening the pulse width. The energy efficiency of unipolar-pulsed xenon excimer lamps (the overall energy efficiency of double discharges) is much higher than that obtained under bipolar sine wave excitation. The output VUV spectrum under unipolar pulse excitation is found to be identical to that under sine wave excitation and independent of injected electric power.

  1. Experimental analysis of DBD plasma jet properties using different gases and two kinds of transfer plate

    CERN Document Server

    Nascimento, Fellype do; Machida, Munemasa

    2015-01-01

    Dielectric Barrier Discharge (DBD) plasma jets has been studied extensively in recent years because of its wide range of applications. DBD plasmas can be produced using many different gases and can be applied to a broad variety of surfaces and substrates. In this work, we provide a comparison of DBD plasmas generated using argon (Ar), helium (He) and nitrogen (N2), as well as their mixtures with water vapor in order to know how some plasma properties are affected by the use of different gases. All plasmas were studied in two different conditions, using a transfer plate made of a conductive material and using a transfer plate made of an insulating one. We observed that the processes of excitation and ionization of nitrogen molecules by direct collisions with Ar or He are more evident and significant in He plasmas, which means that He atoms in metastable states have greater ability to transfer energy to molecules of nitrogen in the plasma. The collisions of He atoms in metastable states with N2 molecules determ...

  2. Reliability enhancement due to in-situ post-oxidation of sputtered MgO barrier in double MgO barrier magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Chikako Yoshida

    2017-06-01

    Full Text Available We have investigated the effects of in-situ post-oxidation (PO of a sputtered MgO barrier in a double-MgO-barrier magnetic tunnel junction (MTJ and found that the short error rate was significantly reduced, the magnetoresistance (MR ratio was increased approximately 18%, and the endurance lifetime was extend. In addition, we found that the distribution of breakdown number (a measure of endurance exhibits trimodal characteristics, which indicates competition between extrinsic and intrinsic failures. This improvement in reliability might be related to the suppression of Fe and Co diffusion to the MgO barrier, as revealed by electron energy-loss spectroscopy (EELS analysis.

  3. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    Science.gov (United States)

    Gao, Jin; Gu, Pingdao; Yuan, Li; Zhong, Fangchuan

    2013-09-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%.

  4. Catalytic oxidation of benzene using DBD corona discharges.

    Science.gov (United States)

    Lu, B; Zhang, X; Yu, X; Feng, T; Yao, S

    2006-09-01

    Plasma oxidation of benzene (C(6)H(6)) in oxygen and nitrogen was investigated using a dielectric barrier discharge (DBD) reactor with or without MnO2 or TiO2 at atmospheric pressure and without external heating except plasma heating. An alternative current power supply was used to generate corona discharges for the plasma oxidation. The energy density was controlled under 200 J/L to keep an increase in gas temperature less than 167 K. C(6)H(6) was oxidized to carbon monoxide (CO) and dioxide (CO(2)). Typically, the energy efficiency at an energy density of 92J/L was about 0.052, 0.039, and 0.024 mol/kWh with MnO2, TiO2, and without MnO2 and TiO2, respectively. Benzene oxidation mechanism was mentioned. A comparison on energy efficiency as a function of initial concentration of hydrocarbons, inorganic sulphur compounds, and chloro (fluoro and bromo) carbons was given.

  5. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xinghua, E-mail: xhzhong@mail.sic.ac.cn; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-04-01

    Highlights: • Gd{sub 2}Zr{sub 2}O{sub 7}/YSZ DCL thermal barrier coating was designed and fabricated. • The Gd{sub 2}Zr{sub 2}O{sub 7} top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd{sub 2}Zr{sub 2}O{sub 7}, GZ) as the top ceramic layer and 4.5 mol% Y{sub 2}O{sub 3} partially-stabilized ZrO{sub 2} (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y{sub 2}O{sub 3} partially-stabilized ZrO{sub 2} (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat.

  6. Shock Generation and Control Using DBD Plasma Actuators

    Science.gov (United States)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple

  7. Titanium Alloy Surface Modification by a Spatio-Temporal Atmospheric Pressure DBD Afterglow

    Institute of Scientific and Technical Information of China (English)

    E.PANOUSIS; F.CLEMENT; J.F.LOISEAU; N.SPYROU; B.HELD1; J.LARRIEU; F.GUERTON

    2007-01-01

    The experimental work reported here is devoted to the study of the modifications inflicted on the surface of titanium alloy specimens by an atmospheric pressure dielectric barrier discharge(DBD) reactor in both spatial and temporal afterglow conditions.A commercially available (AcXys Technologies) modified reactor system was used for the surface treatment of the TiA6V4 titanium alloy that is widely used in the aeronautical industry.Wettability surface characterisation and XPS analyses are performed to give a macroscopic and microscopic insight to the surface modifications.Best operating conditions,at constant input energy,were obtained for a duty cycle equal to 10%.

  8. DBD reactor design and optimization in continuous AP-PECVD from HMDSO/N2/N2O mixture

    Science.gov (United States)

    Hotmar, Petr; Caquineau, Hubert; Cozzolino, Raphaël; Gherardi, Nicolas

    2016-02-01

    Dielectric barrier discharge (DBD) deposition of thin films is increasingly studied as a promising alternative to other non-thermal processes such as low-pressure plasma-enhanced chemical vapor deposition (PECVD) or wet-coating. In this paper we demonstrate how optimizing gas injection in the DBD results in an improvement in the reactor performance. We propose to confine the precursor gas close to the deposition substrate by an additional gas flow. The performance of this design is studied though simulation of mass transport. To optimize the deposited thickness, gas cost and reactor clogging, we assess the influence of the confinement, total gas flow rate and DBD length. The confinement is found to reduce reactor clogging, even for long DBD, and increase the deposit thickness. This increase in thickness requires a proportionate increase in the gas flow-rate, making the gas-cost the main limitation of the proposed design. We show, however, that by fine-tuning the operating conditions a beneficial compromise can be obtained between the three optimization objectives.

  9. Growth of InGaN and double heterojunction structure with InGaN back barrier

    Energy Technology Data Exchange (ETDEWEB)

    Shi Linyu; Zhang Jincheng; Wang Hao; Xue Junshuai; Ou Xinxiu; Fu Xiaofan; Chen Ke; Hao Yue, E-mail: sly_yolanda@163.com [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Institutes of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-12-15

    We study the growth of an InGaN and AlGaN/GaN/InGaN/GaN double heterojunction structure by metal organic chemical vapor deposition (MOCVD). It is found that the crystal quality of the InGaN back barrier layer significantly affects the electronic property of the AlGaN/GaN/InGaN/GaN double heterojunction. A high crystal quality InGaN layer is obtained by optimizing the growth pressure and temperature. Due to the InGaN layer polarization field opposite to that in the AlGaN layer, an additional potential barrier is formed between the GaN and the InGaN layer, which enhances carrier confinement of the 2DEG and reduces the buffer leakage current of devices. The double heterojunction high-electron-mobility transistors with an InGaN back barrier yield a drain induced barrier lowering of 1.5 mV/V and the off-sate source-drain leakage current is as low as 2.6 {mu}A/mm at V{sub DS} = 10 V. (semiconductor materials)

  10. SEMICONDUCTOR MATERIALS Growth of InGaN and double heterojunction structure with InGaN back barrier

    Science.gov (United States)

    Linyu, Shi; Jincheng, Zhang; Hao, Wang; Junshuai, Xue; Xinxiu, Ou; Xiaofan, Fu; Ke, Chen; Yue, Hao

    2010-12-01

    We study the growth of an InGaN and AlGaN/GaN/InGaN/GaN double heterojunction structure by metal organic chemical vapor deposition (MOCVD). It is found that the crystal quality of the InGaN back barrier layer significantly affects the electronic property of the AlGaN/GaN/InGaN/GaN double heterojunction. A high crystal quality InGaN layer is obtained by optimizing the growth pressure and temperature. Due to the InGaN layer polarization field opposite to that in the AlGaN layer, an additional potential barrier is formed between the GaN and the InGaN layer, which enhances carrier confinement of the 2DEG and reduces the buffer leakage current of devices. The double heterojunction high-electron-mobility transistors with an InGaN back barrier yield a drain induced barrier lowering of 1.5 mV/V and the off-sate source-drain leakage current is as low as 2.6 μA/mm at VDS = 10 V.

  11. Resonant spin-transfer torque in asymmetric double barrier magnetic tunnel junctions (MTJs)

    Science.gov (United States)

    Daqiq, Reza; Ghobadi, Nader

    2017-02-01

    The substitution effect of a Ferro-magnet (FM) electrode by a half-metallic FM material La0.7Sr0.3MnO3 (LSMO) on charge current and spin-transfer torque (STT) components is studied in MgO-based double barrier magnetic tunnel junctions (DBMTJs) with a middle non-magnetic metal (NM) layer. Using non-equilibrium Green's function (NEGF) formalism, it is observed that the current and STT components show oscillatory behavior due to quantum well states in the middle NM layer and resonant tunneling effect. We also study effect of difference in the thickness of the MgO insulators. Bias dependence demonstrate the magnitude enhancement of the current and in-plane STT in new asymmetric DBMTJs (A-DBMTJs) compared with symmetric DBMTJs (S-DBMTJs), however, perpendicular STT decreases in the A-DBMTJs. Results also show different behavior compared with conventional asymmetric MTJs and spin valves (SVs). Therefore, one can design new memory devices by means of suitable insulator and FM electrodes with proper thicknesses.

  12. The Heterochromatic Barrier to DNA Double Strand Break Repair: How to Get the Entry Visa

    Directory of Open Access Journals (Sweden)

    Aaron A. Goodarzi

    2012-09-01

    Full Text Available Over recent decades, a deep understanding of pathways that repair DNA double strand breaks (DSB has been gained from biochemical, structural, biophysical and cellular studies. DNA non-homologous end-joining (NHEJ and homologous recombination (HR represent the two major DSB repair pathways, and both processes are now well understood. Recent work has demonstrated that the chromatin environment at a DSB significantly impacts upon DSB repair and that, moreover, dramatic modifications arise in the chromatin surrounding a DSB. Chromatin is broadly divided into open, transcriptionally active, euchromatin (EC and highly compacted, transcriptionally inert, heterochromatin (HC, although these represent extremes of a spectrum. The HC superstructure restricts both DSB repair and damage response signaling. Moreover, DSBs within HC (HC-DSBs are rapidly relocalized to the EC-HC interface. The damage response protein kinase, ataxia telangiectasia mutated (ATM, is required for HC-DSB repair but is dispensable for the relocalization of HC-DSBs. It has been proposed that ATM signaling enhances HC relaxation in the DSB vicinity and that this is a prerequisite for HC-DSB repair. Hence, ATM is essential for repair of HC-DSBs. Here, we discuss how HC impacts upon the response to DSBs and how ATM overcomes the barrier that HC poses to repair.

  13. PETA UPAYA PENCEGAHAN DBD KOTA SUKABUMI TAHUN 2012

    Directory of Open Access Journals (Sweden)

    Heni Prasetyowati

    2015-03-01

    Full Text Available Kota Sukabumi termasuk wilayah dengan besaran masalah Demam Berdarah Dengue yang tergolong paling tinggi di provinsi Jawa Barat. Sampai Bulan November 2012 angka IR mencapai 390/100.000 penduduk. Oleh karena itu perlu dilakukan penelitian untuk memetakan upaya pengendalian penularan DBD di Kota Sukabumi pada tahun 2012. Dalam penelitian dilakukan pengumpulan data upaya pengendalian oleh individu, keluarga, masyarakat dan Pemda kota Sukabumi. Kasus DBD ditentukan secara acak sistematik dari penderita DBD yang dirawat di rumah sakit. Selanjutnya diperoleh data calon responden upaya pengendalian individu, keluarga, dan anggota masyarakat. Upaya pengendalian oleh program dikumpulkan melalui wawancara dengan pengelola program DBD Dinas Kesehatan Kota Sukabumi. Pemetaan lokasi upaya pengendalian dilakukan dengan menggunakan GPS. Hasil menunjukkan bahwa sebaran upaya pengendalian relatif merata diseluruh wilayah Kota Sukabumi. Upaya paling banyak dilakukan adalah menguras, menutup, dan mengubur mencapai 35,8%. Selanjutnya penggunaan insektisida mencapai 31,6%. Sebagian besar responden melakukan kombinasi upaya pengendalian, yang mencapai 40 kombinasi.

  14. PETA UPAYA PENCEGAHAN DBD KOTA SUKABUMI TAHUN 2012

    OpenAIRE

    Heni Prasetyowati; Rohmansyah Rohmansyah; Roy Nusa

    2015-01-01

    Kota Sukabumi termasuk wilayah dengan besaran masalah Demam Berdarah Dengue yang tergolong paling tinggi di provinsi Jawa Barat. Sampai Bulan November 2012 angka IR mencapai 390/100.000 penduduk. Oleh karena itu perlu dilakukan penelitian untuk memetakan upaya pengendalian penularan DBD di Kota Sukabumi pada tahun 2012. Dalam penelitian dilakukan pengumpulan data upaya pengendalian oleh individu, keluarga, masyarakat dan Pemda kota Sukabumi. Kasus DBD ditentukan secara acak sistematik dari pe...

  15. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.

    Science.gov (United States)

    Rico, Víctor J; Hueso, José L; Cotrino, José; Gallardo, Victoria; Sarmiento, Belén; Brey, Javier J; González-Elipe, Agustín R

    2009-11-07

    Dielectric Barrier Discharges (DBD) operated at atmospheric pressure and working at reduced temperatures (T < 115 degrees C) and a copper-manganese oxide catalyst are combined for the direct decomposition and the steam reforming of methanol (SRM) for hydrogen production and for the preferential oxidation of CO (CO-PROX).

  16. Study on SO2 Removal Efficiency by Nanosecond Rising Edge Pulse DBD Under Different Environmental Conditions

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; SU Biao; LIU Ding-xin; WANG Jun-hua; RONG Ming-zhe

    2007-01-01

    In this paper,an experimental study on SO2 removal by nanosecond rising edge pulse dielectric barrier discharge (DBD) plasma,generated by multi-needle-to-plane electrodes,is carried out.The mechanism of the effect of various factors,such as gap size between dielectric barrier and discharge needles,environmental humidity,and inlet speed of gas flow upon the removal efficiency of air purification is analyzed.The studies show that SO2 removal efficiency improves with the increase in the gap size between dielectric barrier and discharge needles in the case of a fixed space between two electrodes,and also improves with the increase in the environmental humidity.For a mixed gas with a fixed concentration,there is an optimal inlet speed of gas flow,which leads to the best removal efficiency.

  17. Mutational analysis of DBD*--a unique antileukemic gene sequence.

    Science.gov (United States)

    Ji, Yan-shan; Johnson, Betty H; Webb, M Scott; Thompson, E Brad

    2002-01-01

    DBD* is a novel gene encoding an 89 amino acid peptide that is constitutively lethal to leukemic cells. DBD* was derived from the DNA binding domain of the human glucocorticoid receptor by a frameshift that replaces the final 21 C-terminal amino acids of the domain. Previous studies suggested that DBD* no longer acted as the natural DNA binding domain. To confirm and extend these results, we mutated DBD* in 29 single amino acid positions, critical for the function in the native domain or of possible functional significance in the novel 21 amino acid C-terminal sequence. Steroid-resistant leukemic ICR-27-4 cells were transiently transfected by electroporation with each of the 29 mutants. Cell kill was evaluated by trypan blue dye exclusion, a WST-1 tetrazolium-based assay for cell respiration, propidium iodide exclusion, and Hoechst 33258 staining of chromatin. Eleven of the 29 point mutants increased, whereas four decreased antileukemic activity. The remainder had no effect on activity. The nonconcordances between these effects and native DNA binding domain function strongly suggest that the lethality of DBD* is distinct from that of the glucocorticoid receptor. Transfections of fragments of DBD* showed that optimal activity localized to the sequence for its C-terminal 32 amino acids.

  18. Correlation between Barrier Width, Barrier Height, and DC Bias Voltage Dependences on the Magnetoresistance Ratio in Ir-Mn Exchange Biased Single and Double Tunnel Junctions

    Science.gov (United States)

    Saito, Yoshiaki; Amano, Minoru; Nakajima, Kentaro; Takahashi, Shigeki; Sagoi, Masayuki; Inomata, Koichiro

    2000-10-01

    Dual spin-valve-type double tunnel junctions (DTJs) of Ir-Mn/CoFe/AlOx/Co90Fe10/AlOx/CoFe/Ir-Mn and spin-valve-type single tunnel junctions (STJs) of Ir-Mn/CoFe/AlOx/CoFe/Ni-Fe were fabricated using an ultrahigh vacuum sputtering system, conventional photolithography and ion-beam milling. The STJs could be fabricated with various barrier heights by changing the oxidization conditions during deposition and changing the annealing temperature after deposition, while the AlOx layer thickness remained unchanged. There was a correlation between barrier width, height estimated using Simmons’ expressions, and dc bias voltage dependence on the MR ratio. The VB dependence on the tunneling magnetoresistance (TMR) ratio was mainly related to the barrier width, and the decrease in the TMR ratio with increasing bias voltage is well explained, taking into account the spin-independent two-step tunneling via defect states in the barrier, as a main mechanism, at room temperature. Under optimized oxidization and annealing conditions, the maximum TMR ratio at a low bias voltage, and the dc bias voltage value at which the TMR ratio decreases in value by half (V1/2) were 42.4% and 952 mV in DTJs, and 49.0% and 425 mV in STJs, respectively.

  19. Investigation of a double barrier resonant tunnelling structure which incorporates an optical window layer in the top contact

    Energy Technology Data Exchange (ETDEWEB)

    Henini, M.; Eaves, L.; Maude, D.K.; Hughes, O.H. (Dept. of Physics, Univ. of Nottingham (UK)); White, C.R.H. (Dept. of Physics, Univ. of Nottingham (UK) RSRE, Great Malvern (UK)); Simmonds, P.E. (Royal Signals and Radar Establishment, Great Malvern (UK) Dept. of Physics, Univ. of Nottingham (UK)); Skolnick, M.S. (Royal Signals and Radar Establishment, Great Malvern (UK)); Portal, J.C. (SNCI-CNRS, 38 - Grenoble (France) LPS-INSA, 31 - Toulouse (France))

    1991-05-01

    The electrical and optical properties of a double barrier resonant tunnelling device based on n-GaAs/(AlGa)As and incorporating a heavily doped (AlGa)As window layer are described. The window layer is located between the quantum well and the top surface and has a band gap which exceeds the energy of the quantum well photoluminescence. The incorporation of this layer does not impair the electrical properties of the device. (orig.).

  20. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties

    Science.gov (United States)

    Ren, Yu; Ding, Zhirong; Wang, Chunxia; Zang, Chuanfeng; Zhang, Yin; Xu, Lin

    2017-02-01

    The combination treatment of dielectric barrier discharge (DBD) plasma and chitosan coatings was performed on ultrahigh molecular weight polyethylene (UHMWPE) fibers in order to improve the wettability, dyeability and adhesion properties. The properties of UHMWPE fibers coated with chitosan, after being pretreated by DBD plasma, were evaluated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The interfacial shear strength (IFSS) between the fiber and the epoxy resin was determined using the single fiber pull-out test technique. The modified UHMWPE fibers were dyed with reactive dyes after the combined treatment. Surface wettability and dyeability were investigated by water contact angle and K/S measurement, respectively. SEM images confirmed that the chitosan was induced onto the surfaces of the UHMWPE fibers after the combined treatment. The XPS analysis showed that the oxygen and nitrogen contents of the UHMWPE fiber surfaces after the combined treatment were higher than that of the fiber modified by chitosan without DBD plasma pretreatment. Meanwhile, the UHMWPE fibers treated with combination of DBD plasma and chitosan treatment had better wettability, dyeability and adhesion property than those of the non-plasma pretreated surfaces, indicating that DBD plasma pretreatment facilitated the deposition of chitosan onto the UHMWPE surfaces.

  1. Deposition of SiOx on Metal Surface with a DBD Plasma Gun at Atmospheric Pressure for Corrosion Prevention

    Institute of Scientific and Technical Information of China (English)

    HAN Erli; CHEN Qiang; ZHANG Yuefei; CHEN Fei; GE Yuanjing

    2007-01-01

    In this study,SiOx films were deposited by a dielectric barrier discharge(DBD)plasma gun at an atmospheric pressure.The relationship of the film structures with plasma powers Was investigated by Fourier transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM).It was shown that an uniform and cross-linking structure film was formed by the DBD gun.As an application,the SiOx films were deposited on a carbon steel surface for the anti-corrosion purpose.The experiment was carried out in a 0.1 M NaC1 solution.It Was found that a very good anti-corrosive property was obtained,i.e.,the corrosion rate Was decreased c.a.15 times in 5% NaC1 solution compared to the non-SiOx coated steel,as detected by the potentiodynamic polarization measurement.

  2. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  3. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge

    Science.gov (United States)

    Eto, Hiroyuki; Ono, Yoshihito; Ogino, Akihisa; Nagatsu, Masaaki

    2008-12-01

    A flexible sheet-type dielectric barrier discharge (DBD) was studied for the low-temperature sterilization of medical instruments wrapped with Tyvek packaging. Sterilization experiments using Geobacillus stearothermophilus spores with a population of 106 were carried out with various mixtures of nitrogen and oxygen. We confirmed the inactivation of spores after 4.5 min of DBD irradiation at a temperature of 28.4 °C and relative humidity of 64.4%. The main sterilizing factors of this method are the ozone and UV emissions generated by DBD in dry air and synergistic OH radicals generated by DBD in moist air.

  4. The Experimental Investigations of Dielectric Barrier Discharge and Pulse Corona Discharge in Air Cleaning

    Institute of Scientific and Technical Information of China (English)

    左莉; 侯立安; 杨林松

    2003-01-01

    The dielectric barrier discharge (DBD) and pulse corona discharge(PCD) plasmagenerator was used to remove NH3, H2S, C7Hs etc. from atmosphere. The principle and charac-teristic of the two ways was discussed in the article. The test shows the result of PCD is betterthan that of DBD.

  5. Spin asymmetry calculations of the TMR-V curves in single and double-barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2011-10-01

    Spin-polarization asymmetry is the key parameter in asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) in magnetic tunnel junctions. In this paper, we study the value of the TMR as a function of the applied voltage Va in the single as well as double barrier magnetic tunnel junctions (SMTJ & DMTJ, which are constructed from CoFeB/MgO interfaces) and numerically estimate the possible difference of the TMR-V a curves for negative and positive voltages in the homojunctions. As a result, we found that AVB may help to determine the exact values of Fermi wave vectors for minority and majority conducting spin sub-bands. Moreover, significant asymmetry of the experimental TMR-Va curves, which arises due to different annealing regimes, is explained by different heights of the tunnel barriers and values of the spin asymmetry. The numerical TMR-V a data are in good agreement with experimental ones. © 2011 IEEE.

  6. Coal Liquefaction by Using Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Wang, Qiuying; Wu, Peng; Gu, Fan

    2013-07-01

    An innovative method for coal liquefaction by using dielectric barrier discharge (DBD) plasma in a short reaction time was developed. Using tetralin as the reaction medium, DBD plasma as the energy source, and a reaction time of 10 min at 140°C, up to 10% of coal was converted to liquid material. The results showed the feasibility of coal's liquefaction by DBD plasma under relatively moderate conditions. Simultaneously, it was clarified that the effect of DBD plasma treatment was opposed to the thermal effect of heating. An acid plasma sheath could be formed on the coal powder surface in DBD conditions, liquefied reactions could be carried out in the absence of inorganic acid, and the products were nearly neutral and with low causticity.

  7. Quantum compact model for thin-body double-gate Schottky barrier MOSFETs

    Institute of Scientific and Technical Information of China (English)

    Luan Su-Zhen; Liu Hong-Xia

    2008-01-01

    Nanoscale Schottky barrier metal oxide semiconductor field-effect transistors (MOSFETs) are explored by using quantum mechanism effects for thin-body devices. The results suggest that for small nonnegative Schottky barrier heights, even for zero barrier height, the tunnelling current also plays a role in the total on-state current. Owing to the thin body of device, quantum confinement raises the electron energy levels in the silicon, and the tradeoff takes place between the quantum confinement energy and Schottky barrier lowering (SBL). It is concluded that the inclusion of the quantum mechanism effect in this model, which considers an infinite rectangular well with a first-order perturbation in the channel, can lead to the good agreement with numerical result for thin silicon film. The error increases with silicon thickness increasing.

  8. DBD in burst mode: solution for more efficient CO2 conversion?

    CERN Document Server

    Ozkan, A; Silva, T; Britun, N; Snyders, R; Reniers, F; Bogaerts, A

    2016-01-01

    CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the conversion from 16--26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the proc...

  9. Decontamination Efficiency of a DBD Lamp Containing an UV-C Emitting Phosphor.

    Science.gov (United States)

    Caillier, Bruno; Caiut, José Maurício Almeida; Muja, Cristina; Demoucron, Julien; Mauricot, Robert; Dexpert-Ghys, Jeanette; Guillot, Philippe

    2015-01-01

    Among different physical and chemical agents, the UV radiation appears to be an important route for inactivation of resistant microorganisms. The present study introduces a new mercury-free Dielectric Barrier Discharge (DBD) flat lamp, where the biocide action comes from the UV emission produced by rare-earth phosphor obtained by spray pyrolysis, following plasma excitation. In this study, the emission intensity of the prototype lamp is tuned by controlling gas pressure and electrical power, 500 mbar and 15 W, corresponding to optimal conditions. In order to characterize the prototype lamp, the energetic output, temperature increase following lamp ignition and ozone production of the source were measured. The bactericidal experiments carried out showed excellent results for several gram-positive and gram-negative bacterial strains, thus demonstrating the high decontamination efficiency of the DBD flat lamp. Finally, the study of the external morphology of the microorganisms after the exposure to the UV emission suggested that other mechanisms than the bacterial DNA damage could be involved in the inactivation process.

  10. Active Control of Airfoil Boundary Layer Separation and Wake using Ns-DBD Plasma Actuators

    Science.gov (United States)

    Durasiewicz, Claudia; Castro Maldonado, Jorge; Little, Jesse

    2016-11-01

    Nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuators are employed to control boundary layer separation and the wake of a NACA 0012 airfoil having aspect ratio of three. Ns-DBD plasma actuators are known to operate via a thermal mechanism in contrast to ac-DBDs which are momentum-based devices. Nominally 2D forcing is applied to the airfoil leading edge with pulse energy of 0.35 mJ/cm. Experiments are conducted at a Reynolds number of 0 . 74 ×106 primarily at 18° incidence which is well within the stalled regime. Baseline and controlled flow fields are studied using surface pressure measurements, constant temperature anemometry (CTA) and PIV. Forcing at a dimensionless frequency of F+ = fc /U∞ = 1 . 14 results in reattachment of nominally separated flow to the airfoil surface. Lower frequency forcing is less optimal for separation control, but produces strong fluctuations in the wake which are intended for use in the study of vortex body interaction in the future. Actuation below F+ = 0 . 23 shows behavior consistent with an impulse-like response while forcing in the range 0 . 23

  11. Selective cytotoxic effect of non-thermal micro-DBD plasma

    Science.gov (United States)

    Kwon, Byung-Su; Choi, Eun Ha; Chang, Boksoon; Choi, Jeong-Hyun; Kim, Kyung Sook; Park, Hun-Kuk

    2016-10-01

    Non-thermal plasma has been extensively researched as a new cancer treatment technology. We investigated the selective cytotoxic effects of non-thermal micro-dielectric barrier discharge (micro-DBD) plasma in cervical cancer cells. Two human cervical cancer cell lines (HeLa and SiHa) and one human fibroblast (HFB) cell line were treated with micro-DBD plasma. All cells underwent apoptotic death induced by plasma in a dose-dependent manner. The plasma showed selective inhibition of cell proliferation in cervical cancer cells compared to HFBs. The selective effects of the plasma were also observed between the different cervical cancer cell lines. Plasma treatment significantly inhibited the proliferation of SiHa cells in comparison to HeLa cells. The changes in gene expression were significant in the cervical cancer cells in comparison to HFBs. Among the cancer cells, apoptosis-related genes were significantly enriched in SiHa cells. These changes were consistent with the differential cytotoxic effects observed in different cell lines.

  12. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    Science.gov (United States)

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.

  13. The use of DBD plasma treatment and polymerization for the enhancement of biomedical UHMWPE

    Energy Technology Data Exchange (ETDEWEB)

    Cools, Pieter, E-mail: Pieter.cools@ugent.be; Van Vrekhem, Stijn; De Geyter, Nathalie; Morent, Rino

    2014-12-01

    Surface modification of polymers for biomedical applications is a thoroughly studied area. The goal of this paper is to show the use of atmospheric pressure plasma technology for the treatment of polyethylene shoulder implants. Atmospheric pressure plasma polymerization of methyl methacrylate will be performed on PE samples to increase the adhesion between the polymer and a PMMA bone cement. For the plasma polymerization, a dielectric barrier discharge is used, operating in a helium atmosphere at an ambient pressure. Parameters such as treatment time, monomer gas flow and discharge power are varied one at a time. Chemical and physical changes at the sample surface are studied making use of X-ray photoelectron spectroscopy and atomic force microscopy measurements. Coating thicknesses are determined by making use of optical reflectance spectroscopy. After characterization, the coated samples are incubated into a phosphate buffered saline solution for a minimum of one week at 37 °C, testing the coating stability when exposed to implant conditions. The results show that PMMA coatings can be deposited with a high degree of control in terms of chemical composition and layer thickness. - Highlights: • Medium pressure DBD successfully activates UHMWPE substrates. • Deposition of PMMA like film via atmospheric pressure DBD on activated UHMWPE • Fast deposition rate is confirmed via optical reflectance spectroscopy. • Relative stable coating found after tests in PBS solution and analysed via FT-IR.

  14. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Science.gov (United States)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  15. Direct electron-impact mechanism of excitation of mercury monobromide in a double-pulse dielectric-barrier-discharge HgBr lamp

    Science.gov (United States)

    Datsyuk, V. V.; Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.

    2016-08-01

    In a nonequlibrium plasma of a gas-discharge HgBr lamp, the terminal electronic state of the HgBr(B-X) radiative transition with a peak wavelength of 502 nm remains populated for a relatively long time and is repeatedly excited to the B state in collisions with plasma electrons. This transfer of the HgBr molecules from the ground state X to the excited state B is the main mechanism of formation of the light-emitting molecules especially when the lamp is excited by double current pulses. According to our simulations, due to the electron-induced transitions between HgBr(X) and HgBr(B), the output characteristics of the DBD lamp operating in a double-pulse regime are better than those of the lamp operating in a single-pulse regime. In the considered case, the peak power is calculated to increase by a factor of about 2 and the lamp efficiency increases by about 50%.

  16. Scale-Up Synthesis of Hydrogen Peroxide from H2/O2 with Multiple Parallel DBD Tubes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jianli; ZHOU Juncheng; SU Ji; GUO Hongchen; WANG Xiangsheng; GONG Weimin

    2009-01-01

    The scale-up synthesis of H202 from H2/O2 via a dielectric barrier discharge (DBD)under ambient conditions was studied. A plasma reactor consisting of multiple parallel DBD tubes was designed to scale up the H2O2 synthesis. The number of tubes had no significant effect on the discharge mode, and no decay occurred in H2O2 selectivity during the scale-up process.These advantages made this technology more stable and efficient. The reactor's energy efficiency increased with the number of tubes and reached 136 g H2O2/kWh in the four-tube reaction. The total energy efficiency was limited by the extremely low energy transfer efficiency of power supply,and might be enhanced by optimizing the impedance matching between the power supply and the reactor load. As a result, an assembly of multiple DBD tubes may provide a viable route for the scale-up synthesis of H2O2 by a non-equilibrium plasma.

  17. Executive Function Deficits in Preschool Children with ADHD and DBD

    Science.gov (United States)

    Schoemaker, Kim; Bunte, Tessa; Wiebe, Sandra A.; Espy, Kimberly Andrews; Dekovic, Maja; Matthys, Walter

    2012-01-01

    Background: Impairments in executive functions (EF) are consistently associated with attention deficit hyperactivity disorder (ADHD) and to a lesser extent, with disruptive behavior disorder (DBD), that is, oppositional defiant disorder or conduct disorder, in school-aged children. Recently, larger numbers of children with these disorders are…

  18. Modeling and optimization of a double-well double-barrier GaN/AlGaN/GaN/AlGaN resonant tunneling diode

    Science.gov (United States)

    Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying

    2017-06-01

    The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).

  19. Double cuticle barrier in two global pests, the whitefly Trialeurodes vaporariorum and the bedbug Cimex lectularius.

    Science.gov (United States)

    Wang, Yiwen; Carballo, Rocío Gallego; Moussian, Bernard

    2017-04-15

    The integument protects the organism against penetration of xenobiotics and water that would potentially interfere with homeostasis. In insects that play key roles in a variety of agricultural and ecological habitats, this inward barrier has barely been investigated. In order to advance knowledge in this field, we studied integumental barrier (cuticle) permeability in the two global pests Trialeurodes vaporariorum (greenhouse whitefly) and Cimex lectularius (bedbug), applying a simple dye-penetration assay. In agreement with our recent findings in Drosophila melanogaster, we show that the surface of these insects is regionalised. We also show that, in contrast to the single barrier in D. melanogaster, two barriers with distinct temperature-sensitive and lipid-based physico-chemical material properties act in parallel to protect these insects against penetration of hydrophilic molecules. These findings imply the existence of unexplored mechanisms by which the cuticle acts as a protective coat against the penetration of water and xenobiotics, including pollutants and insecticides. © 2017. Published by The Company of Biologists Ltd.

  20. Abatement of trichloroethylene using DBD plasma

    Science.gov (United States)

    Vesali-Naseh, M.; Xu, S.; Xu, L.; Khodadadi, A.; Mortazavi, Y.; Ostrikov, K.

    2014-08-01

    Dielectric barrier discharge plasma was used to oxidize trichloroethylene (TCE) in 21% of O2 in carriers of N2 and He. The degradation products of TCE were analyzed using gas chromatography mass spectrometry. TCE was decomposed completely at optimum energy density of 260 and 300 J/l for He and N2, respectively and its conversion followed zero order reaction. The TCE removal efficiency is decreased in humid air due to interception of reactive intermediates by OH radicals.

  1. ANALISIS KASUS DBD BERDASARKAN UNSUR IKLIM DAN KEPADATAN PENDUDUK MELALUI PENDEKATAN GIS DI TANAH DATAR

    Directory of Open Access Journals (Sweden)

    Masrizal Dt Mangguang

    2016-09-01

    Full Text Available Demam Berdarah Dengue (DBD merupakan satu penyakit menular yang dapat menyebabkan kematian. Salah satu faktor yang berhubungan dengan DBD adalah unsur iklim dan kepadatan penduduk. Penelitian ini bertujuan untuk mengetahui hubungan unsur iklim dan kepadatan penduduk dengan kasus DBD di Kabupaten Tanah Datar tahun 2008-2014. Penelitian ini menggunakan desain ekologi. Sampel dalam penelitian ini adalah seluruh kasus DBD yang tercatat di Dinas Kesehatan Kabupaten Tanah Datar tahun 2008-2014. Sumber data menggunakan data sekunder berupa data kasus DBD, data iklim, dan data kepadatan penduduk. Pengolahan data menggunakan analisis spasial menggunakan Arc Gis dan analisis korelasi regresi. Hasil penelitian menunjukkan rata-rata kasus DBD di Kabupaten Tanah Datar tahun 2008-2014 adalah 16,86 kasus, rata-rata suhu 26,930C, kelembaban 88,06%,curah hujan 332,59 mm, kecepatan angin 5,34 Knot. Hasil analisis kasus DBD dengan unsur iklim yaitu suhu (p =0,655 , curah hujan (p=0,465, kelembaban udara (p=0,20, kecepatan angin (p= 0,001. Hasil analisis kasus DBD de­ngan kepadatan penduduk (p=0,001. Secara spasial distribusi kasus terbanyak terdapat di kecamatan padat penduduk. Variabel faktor risiko dalam kasus DBD yaitu kecepatan angin dan kepadatan penduduk, diharapkan pemberantasan penyakit DBD dapat difokuskan kepada kecamatan padat penduduk. Kata Kunci: DBD, Kepadatan penduduk, suhu

  2. Discharge analysis and electrical modeling for the development of efficient dielectric barrier discharge

    Science.gov (United States)

    Pal, U. N.; Kumar, M.; Tyagi, M. S.; Meena, B. L.; Khatun, H.; Sharma, A. K.

    2010-02-01

    Dielectric-barrier discharges (DBDs) are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an AC/pulse power supply. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. DBDs exist usually in filamentary mode, based on the streamer nature of the discharges. The main advantage of this type of electrical discharges is that nonequilibrium and non-thermal plasma conditions can be established at atmospheric pressure. VUV/UV sources based on DBDs are considered as promising alternatives of conventional mercury-based discharge plasmas, producing highly efficient VUV/UV radiation. The experiments have been performed using two coaxial quartz double barrier DBD tubes, which are filled with Xe/Ar at different pressures. A sinusoidal voltage up to 2.4 kV peak with frequencies from 20 to 100 kHz has been applied to the discharge electrodes for the generation of microdischarges. A stable and uniform discharge is produced in the gas gap between the dielectric barrier electrodes. By comparisons of visual images and electrical waveforms, the filamentary discharges for Ar tube while homogeneous discharge for Xe tube at the same conditions have been confirmed. The electrical modeling has been carried out to understand DBD phenomenon in variation of applied voltage waveforms. The simulated discharge characteristics have been validated by the experimental results.

  3. Double ferromagnetic metal/semiconductor schottky barrier confined quasi-ballistic transport channel as spin polarizer

    Institute of Scientific and Technical Information of China (English)

    Wen Wu

    2007-01-01

    Spin polarizer is one of the most important devices for the newly developing field of spintronics, which may revolute the popular information techniques. Here we present a phenomenal model for a novel spin polarizer, which utilizes two back to back ferromagnetic metal/semiconductor Schottky barriers to define a semiconductor transport channel whose length is less than the spin decoherence length of the host semiconductor. Along this channel, conducting electrons move diffusively in momentum space while they keep ballistic motion in spin space. Across the channel, electrons suffer a spin dependent tunneling, which establishes spin polarization along the channel.

  4. Underwater operation of a DBD plasma jet

    Science.gov (United States)

    Foster, John E.; Weatherford, Brandon; Gillman, Eric; Yee, Benjamin

    2010-04-01

    A plasma jet produced in water using a submerged ac excited electrode in a coaxial dielectric barrier discharge configuration was studied. Plasma jet formation was found to occur only while the source was submerged. Plasma jet operation was characterized with and without gas flow. It was found that over 60% of the discharge power was deposited into the water and did not vary appreciably with excitation frequency. Presumably the remaining power fraction went into excitation, ionization and local electrode heating. Emission spectra of the jet revealed nitrogen, hydrogen, hydroxyl and oxygen emission lines. Operation of the plasma jet in water containing the oxidation-reduction indicator methylene blue dye resulted in a marked clearing of the water as observed visually and with a spectrophotometer, suggesting plasma-induced chemical reactivity.

  5. Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes

    Energy Technology Data Exchange (ETDEWEB)

    Boucherit, M.; Soltani, A.; Rousseau, M.; Deresmes, D.; Berthe, M.; Durand, C.; De Jaeger, J.-C. [IEMN/UMR-CNRS 8520, Universite Lille1, PRES Universite Lille Nord de France (France); Monroy, E. [Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, DRFMC/SP2M/PSC, CEA-Grenoble (France)

    2011-10-31

    AlN/GaN double-barrier resonant tunnelling diodes were grown by molecular beam epitaxy on GaN/sapphire template and processed into mesa diameters from 2 {mu}m to 4 {mu}m. The current-voltage characteristics were carried out in direct current operation and under-high vacuum. A sharp negative differential resistance (NDR) was detected in the forward bias at 120 K. The NDR was observed for the mesa size of 2 {mu}m at 4 V with a peak-to-valley current ratio of 3.5. The measurement conditions were chosen to make NDR reproducible more than 50 times and apparent in both scan voltage directions after electrical treatment.

  6. Oxidation efficiency of elemental mercury in two DBD plasma reactors

    Science.gov (United States)

    Jiang, Yuze; An, Jiutao; Shang, Kefeng; Jiang, Diwen; Li, Jie; Lu, Na; Wu, Yan

    2013-03-01

    Configuration of plasma reactors influences the generation of active species including the energized electrons, active radicals and the distribution of active species in reactor, and thus influences the removal efficiency of pollutants. Oxidation efficiency of elemental mercury (Hg0) in two different DBD plasma reactors was studied in this paper. One plasma reactor is a surface discharge reactor (SDR) with a spiral stainless steel thread as the high voltage electrode, and the other plasma reactor is a concentric cylinder type DBD reactor (CCDR) with a copper screw rod as the high voltage electrode. The oxidation efficiencies of Hg0 under different specific energy density (SED), oxygen content, flue gas residence time and the temperature of flue gas indicate that SDR had a better performance than CCDR in oxidation of Hg0, which can be attributed to the higher generation efficiency of ozone in SDR than in CCDR.

  7. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low-speed flows and...

  8. Conversion of Methane by Dielectric-barrier Discharge Plasma Method-Comparison with Microwave Plasma Method

    National Research Council Canada - National Science Library

    Konno, Katsuya; Kobayashi, Motoki; Onoe, Kaoru; Yamaguchi, Tatsuaki

    2010-01-01

      Methane conversion by the dielectric-barrier discharge plasma method (DBD) was compared with our previous findings for the microwave plasma method (MW). The power (Pw), initial pressure (P0) and flow rate (F0...

  9. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low-speed flows and...

  10. DBD dyes as fluorescent probes for sensing lipophilic environments.

    Science.gov (United States)

    Wawrzinek, Robert; Wessig, Pablo; Möllnitz, Kristian; Nikolaus, Jörg; Schwarzer, Roland; Müller, Peter; Herrmann, Andreas

    2012-09-01

    Small fluorescent organic molecules based on [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) could be used as probes for lipophillic microenvironments in aqueous solutions by indicating the critical micelles concentration of detergents and staining cell organelles. Their fluorescence lifetime decreases drastically by the amount of water in their direct environment. Therefore they are potential probes for fluorescence lifetime imaging microscopy (FLIM).

  11. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    Science.gov (United States)

    Zheng, Liu; Zhang, Feng; Liu, Sheng-Bei; Dong, Lin; Liu, Xing-Fang; Fan, Zhong-Chao; Liu, Bin; Yan, Guo-Guo; Wang, Lei; Zhao, Wan-Shun; Sun, Guo-Sheng; He, Zhi; Yang, Fu-Hua

    2013-09-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm2 with a total active area of 2.46 × 10-3 cm2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.

  12. Formation and characterization of the vortices generated by a DBD plasma actuator in burst mode

    Science.gov (United States)

    Mishra, Bal Krishan; Panigrahi, P. K.

    2017-02-01

    The present study reports the formation and evolution characteristics of the continuously generated vortical structure and resulting flow field in quiescent air induced by a dielectric-barrier-discharge (DBD) plasma actuator in burst mode operation. A starting vortex is formed during the initial actuation period, which disappears after a small time interval for continuous mode operation of the DBD plasma actuator. A burst input signal to the actuator generates a train of self-similar vortices. The behaviour of vortices and the average flow field induced by the actuator has been studied using high speed schlieren visualization and particle image velocimetry technique for different actuation amplitude and duty cycle parameters. These repeating vortices travel faster than the starting vortex, and the vortex core velocity of these repeating vortices increases with increase in duty cycle parameter. Fuller u-velocity profile, higher v-velocity near the edge of the outer shear layer region, and higher growth of the wall jet thickness is observed due to enhanced entrainment by repeating vortices for burst mode operation. The repeating vortices travel at an angle of 21° relative to the wall surface for duty cycle parameter of 90.9% in comparison to 31° for the starting vortex. Self-similarity of the velocity profile is delayed in the streamwise direction for burst mode operation in comparison to that for the continuous mode of operation. This can be attributed to delay in attaining the maximum velocity of the wall jet profile and presence of coherent structures for the burst mode operation. The non-dimensional vortex core location and size for repeating vortices follow power law fit similar to the starting vortex with difference in value of the power law exponent. The phase difference between the input voltage and current drawn is in the range of π/12 to π/9 (in radians) for both continuous and burst mode operation indicating identical electrical behaviour of the

  13. PEMETAAN DENSITAS LARVA AEDES BERDASARKAN 3M DAERAH ENDEMIS DAN NON ENDEMIS DBD

    OpenAIRE

    Yudin, Marhamah; Ibrahim, Erniwati; Natsir, Muh. Fajaruddin

    2016-01-01

    Demam Berdarah Dengue (DBD) merupakan suatu penyakit menular yang ditularkan melalui gigitan nyamuk Aedes aegypti. Pencegahan DBD dapat dilakukan dengan pengendalian vektor melalui pelaksanaan 3M. Penelitian ini bertujuan untuk mengetahui gambaran densitas larva Aedes berdasarkan pelaksanaan 3M di daerah endemis dan non endemis DBD Kota Makassar. Jenis penelitian yang digunakan adalah survey observasional dengan pendekatan deskriptif. Populasi adalah seluruh rumah di Kelurahan Gunung Sari seb...

  14. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  15. DBD in burst mode: solution for more efficient CO2 conversion?

    Science.gov (United States)

    Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.

    2016-10-01

    CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the conversion from 16-26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles  <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.

  16. Optimization of a miniaturized DBD plasma chip for mercury detection in water samples.

    Science.gov (United States)

    Abdul-Majeed, Wameath S; Parada, Jaime H Lozano; Zimmerman, William B

    2011-11-01

    In this work, an optimization study was conducted to investigate the performance of a custom-designed miniaturized dielectric barrier discharge (DBD) microplasma chip to be utilized as a radiation source for mercury determination in water samples. The experimental work was implemented by using experimental design, and the results were assessed by applying statistical techniques. The proposed DBD chip was designed and fabricated in a simple way by using a few microscope glass slides aligned together and held by a Perspex chip holder, which proved useful for miniaturization purposes. Argon gas at 75-180 mL/min was used in the experiments as a discharge gas, while AC power in the range 75-175 W at 38 kHz was supplied to the load from a custom-made power source. A UV-visible spectrometer was used, and the spectroscopic parameters were optimized thoroughly and applied in the later analysis. Plasma characteristics were determined theoretically by analysing the recorded spectroscopic data. The estimated electron temperature (T(e) = 0.849 eV) was found to be higher than the excitation temperature (T(exc) = 0.55 eV) and the rotational temperature (T(rot) = 0.064 eV), which indicates non-thermal plasma is generated in the proposed chip. Mercury cold vapour generation experiments were conducted according to experimental plan by examining four parameters (HCl and SnCl(2) concentrations, argon flow rate, and the applied power) and considering the recorded intensity for the mercury line (253.65 nm) as the objective function. Furthermore, an optimization technique and statistical approaches were applied to investigate the individual and interaction effects of the tested parameters on the system performance. The calculated analytical figures of merit (LOD = 2.8 μg/L and RSD = 3.5%) indicates a reasonable precision system to be adopted as a basis for a miniaturized portable device for mercury detection in water samples.

  17. A comparison study of toluene removal by two-stage DBD-catalyst systems loading with MnO(x), CeMnO(x), and CoMnO(x).

    Science.gov (United States)

    Huang, Yifan; Dai, Shaolong; Feng, Fada; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2015-12-01

    This paper studies the toluene removal by a two-stage dielectric barrier discharge (DBD)-catalyst system with three catalysts: MnO(x)/ZSM-5, CoMnO(x)/ZSM-5, and CeMnO(x)/ZSM-5. V-Q Lissajous method, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), and X-ray photoelectron (XPS) are used to characterize the DBD and catalysts. The DBD processing partially oxidizes the toluene, and the removal efficiency has a linear relationship with ozone generation. Three DBD-catalyst systems are compared in terms of their toluene removal efficiency, Fourier transform infrared (FTIR) spectra, carbon balance, CO selectivity, CO2 selectivity, and ozone residual. The results show that the DBD-catalyst system with CoMnO(x)/ZSM-5 performs better than the other two systems. It has the highest removal efficiency of about 93.7%, and the corresponding energy yield is 4.22 g/kWh. The carbon balance and CO2 selectivity of CoMnO(x)/ZSM-5 is also better than the other two catalysts. The measurements of two important byproducts including aerosols and ozone are also presented.

  18. Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Wang, Qiuying; Li, Sen; Gu, Fan

    2010-10-01

    Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions. Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi-phase DBD applications.

  19. A dual-use of DBD plasma for simultaneous NO(x) and SO(2) removal from coal-combustion flue gas.

    Science.gov (United States)

    Obradović, Bratislav M; Sretenović, Goran B; Kuraica, Milorad M

    2011-01-30

    Dielectric barrier discharge (DBD) was investigated for the simultaneous removal of NO(x) and SO(2) from flue gas in a coal-combustion power plant. The DBD equipment was used in either a mode where flue gas was directed through the discharge zone (direct oxidation), or a mode where produced ozonized air was injected in the flue gas stream (indirect oxidation). Removal efficiencies of SO(2) and NO for both methods were measured and compared. Oxidation of NO is more efficient in the indirect oxidation, while oxidation of SO(2) is more efficient in the direct oxidation. Addition of NH(3), has lead to efficient removal of SO(2), due to thermal reaction, and has also enhanced NO removal due to heterogeneous reactions on the surface of ammonium salt aerosols. In the direct oxidation, concentration of CO increased significantly, while it maintained its level in the indirect oxidation.

  20. Highly sensitive photodetector based on ge double-barrier punch-through structure

    Directory of Open Access Journals (Sweden)

    Abdulkhaev O. A.

    2015-08-01

    Full Text Available In recent years, transmission and reception systems of optical signals are widely used. Receiving the optical signal in such systems is carried by photoreceiving modules based on a photodetector, which defines the quality of the received signal, the range and speed of the entire system. However, hitherto used p–i–n- and avalanche photodiodes do not fully meet the growing demands. The present work is devoted to investigate the photovoltaic characteristics of semiconductor thin base transistor structure based on germanium, which is superior the silicon counterparts by speed and gain. Investigated p+–n–p-structures were obtained by diffusion of antimony onto the substrate of p-type germanium to a depth of 1 micron and alloying of indium to the part of its surface which creates diffusion layer of ?+-type and with thickness of 0,5 microns. Experiments have shown that the reverse biasing of a single p+-n-emitter-base junction leads to a smooth increase in reverse current, at the same time when it is connected in series to forward biased collector p-n-junction there is a sharp increase in the current by voltage, giving properties of voltage surge suppressor. This behavior of the current-voltage characteristics can be explained by the punch-through effect when the space charge regions of the emitter junction and the space charge region of collector junction touch each other and the conditions are realized for double carrier injection into a fully depleted region of the transistor. At the same time giving small fixed voltages 0,1—0,15 V to the collector-base junction the output static characteristics can be received with an operating voltage of 3—3,5 V. A characteristic feature of the investigated transistor is that when the base region under illumination by integrated light intensity (50 and 3000 lux light current appears, whose magnitude with the increase of operating voltage (up to 1.7 V increases nonlinearly, resulting in increased

  1. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Fangmin, HUANG; Zhouyang, LONG; Sa, LIU; Zhenglong, Qin

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  2. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  3. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency.

    Science.gov (United States)

    Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe

    2017-03-06

    Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m(3), while a most efficient removal of 3 kWh/m(3) or lower was reached for the four other pesticides.

  4. Conductance and resonant tunneling in multi-channel double barrier structures under transverse and longitudinal electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, Pedro, E-mail: pereyrapedro@gmail.com; Mendoza-Figueroa, M. G. [Departamento de Ciencias Básicas, UAM-Azcapotzalco, C.P. 02200 México D.F. (Mexico)

    2015-03-21

    Transport properties of electrons through biased double barrier semiconductor structures with finite transverse width w{sub y}, in the presence of a channel-mixing transverse electric field E{sub T} (along the y-axis), were studied. We solve the multichannel Schrödinger equation using the transfer matrix method and transport properties, like the conductance G and the transmission coefficients T{sub ij} have been evaluated as functions of the electrons' energy E and the transverse and longitudinal (bias) electric forces, f{sub T} and f{sub b}. We show that peak-suppression effects appear, due to the applied bias. Similarly, coherent interference of wave-guide states induced by the transverse field is obtained. We show also that the coherent interference of resonant wave-guide states gives rise to resonant conductance, which can be tuned to produce broad resonant peaks, implying operation frequencies of the order of 10 THz or larger.

  5. Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity

    KAUST Repository

    Zhang, Xuming

    2016-08-24

    Ozone synthesis in air dielectric barrier discharge (DBD) was studied with an emphasis on the effects of power sources and humidity. Discharge characteristics were investigated to understand the physical properties of plasma and corresponding system performance. It was found that 10-ns pulsed DBD produced a homogeneous discharge mode, while ac DBD yielded an inhomogeneous pattern with many microdischarge channels. At a similar level of the energy density (ED), decreasing the flowrate is more effective in the production of ozone for the cases of the ac DBD, while increased voltage is more effective for the pulsed DBD. Note that the maximum ozone production efficiency (110 g/kWh) was achieved with the pulsed DBD. At the ED of ∼ 85 J/L, the ozone concentrations with dry air were over three times higher than those with the relative humidity of 100% for both the ac DBD and pulsed DBD cases. A numerical simulation was conducted using a global model to understand a detailed chemical role of water vapor to ozone production. It was found HO and OH radicals from water vapor significantly consumed O atoms, resulting in a reduction in ozone production. The global model qualitatively captured the experimental trends, providing further evidence that the primary effect of humidity on ozone production is chemical in nature.

  6. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    Science.gov (United States)

    Eisenmann, Kathryn M.

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy. PMID:28243603

  7. Fluid model for a partially packed dielectric barrier discharge plasma reactor

    Science.gov (United States)

    Gadkari, Siddharth; Tu, Xin; Gu, Sai

    2017-09-01

    In this work, a two-dimensional numerical fluid model is developed for a partially packed dielectric barrier discharge (DBD) in pure helium. Influence of packing on the discharge characteristics is studied by comparing the results of DBD with partial packing with those obtained for DBD with no packing. In the axial partial packing configuration studied in this work, the electric field strength was shown to be enhanced at the top surface of the spherical packing material and at the contact points between the packing and the dielectric layer. For each value of applied potential, DBD with partial packing showed an increase in the number of pulses in the current profile in the positive half cycle of the applied voltage, as compared to DBD with no packing. Addition of partial packing to the plasma-alone DBD also led to an increase in the electron and ion number densities at the moment of breakdown. The time averaged electron energy profiles showed that a much higher range of electron energy can be achieved with the use of partial packing as compared to no packing in a DBD, at the same applied power. The spatially and time averaged values over one voltage cycle also showed an increase in power density and electron energy on inclusion of partial packing in the DBD. For the applied voltage parameters studied in this work, the discharge was found to be consistently homogeneous and showed the characteristics of atmospheric pressure glow discharge.

  8. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  9. Dielectric barrier discharge processing of aerospace materials

    Science.gov (United States)

    Scott, S. J.; Figgures, C. C.; Dixon, D. G.

    2004-08-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin.

  10. Systematic comparison of barriers for heavy-ion fusion calculated on the basis of the double-folding model by employing two versions of nucleon-nucleon interaction

    Science.gov (United States)

    Gontchar, I. I.; Chushnyakova, M. V.

    2016-07-01

    A systematic calculation of barriers for heavy-ion fusion was performed on the basis of the double-folding model by employing two versions of an effective nucleon-nucleon interaction: M3Y interaction and Migdal interaction. The results of calculations by the Hartree-Fockmethod with the SKX coefficients were taken for nuclear densities. The calculations reveal that the fusion barrier is higher in the case of employing theMigdal interaction than in the case of employing the M3Y interaction. In view of this, the use of the Migdal interaction in describing heavy-ion fusion is questionable.

  11. Surface Treatment of Polypropylene Films Using Homogeneous DBD Plasma at Atmospheric Pressure in Air%Surface Treatment of Polypropylene Films Using Homogeneous DBD Plasma at Atmospheric Pressure in Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; CAI Ling-ling; LEI Xiao; QIU Yu-chang; Kuffel Edmund

    2011-01-01

    The homogeneous dielectric barrier discharge (DBD) in atmospheric air is most favorable for polymer sur- face modification due to the low cost of operation and the ability of ambient on-line continuous uniform processing. In this paper, polypropylene (PP) films are treated using a homogeneous DBD plasma in atmospheric air. The surface properties of PP films are studied using contact angle and surface energy measurement, scanning electron microscopy (SEM) and Fourier trailsformed infrared spectroscopy (FTIR), and the aging effect after treatment when the treated materials are exposed to open air is also studied, with the modification mechanism being discussed. It is demonstrated that non thermal plasmas generated by homogeneous DBD in atmospheric air is an effective way to enhance the surface properties of PP films. After the pIasma treatment, the surface of PP film is etched, and oxygen-containing polar groups are introduced into the surface. These two processes can induce a remarkable decrease in water contact angle and a remarkable increase in surface energy, and the surface properties of PP films are improved accordingly.

  12. An experimental study of icing control using DBD plasma actuator

    Science.gov (United States)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  13. DNA breakage detection-fluorescence in situ hybridization (DBD-FISH in buccal cells

    Directory of Open Access Journals (Sweden)

    E. I. Cortés-Gutiérrez

    2012-12-01

    Full Text Available DNA breakage detection-fluorescence in situ hybridization (DBD-FISH is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91. In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work.

  14. DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) in buccal cells.

    Science.gov (United States)

    Cortés-Gutiérrez, E I; Dávila-Rodríguez, M I; Fernández, J L; López-Fernández, C; Gosálvez, J

    2012-12-28

    DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91). In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work.

  15. Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist

    Science.gov (United States)

    Xu, Di; Xiao, Zehua; Hao, Chunjing; Qiu, Jian; Liu, Kefu

    2017-06-01

    A dielectric barrier discharge (DBD) reactor is introduced to generate H2O2 by non-thermal plasma with a mixture of oxygen and water mist produced by an ultrasonic atomizer. The results of our experiment show that the energy yield and concentration of the generated H2O2 in the pulsed discharge are much higher than that in AC discharge, due to its high energy efficiency and low heating effect. Micron-sized liquid droplets produced by an ultrasonic atomizer in water mist have large specific surface area, which greatly reduces mass transfer resistance between hydroxyl radicals and water liquids, leading to higher energy yield and H2O2 concentration than in our previous research. The influence of applied voltage, discharge frequency, and environmental temperature on the generated H2O2 is discussed in detail from the viewpoint of the DBD mechanism. The H2O2 concentration of 30 mg l-1, with the energy yield of 2 g kW-1h-1 is obtained by pulsed discharge in our research.

  16. Performance optimisation of a neon DBD excimer light source operating in the extreme-ultraviolet (84nm)

    Science.gov (United States)

    Carman, Robert; Ward, B. K.; Kane, D. M.

    2009-10-01

    We have investigated the electrical and optical characteristics of a windowless dielectric barrier discharge (DBD) excimer lamp using Neon to generate output at ˜84nm in the extreme-ultraviolet (EUV) spectral range. A detailed comparison of Ne DBD lamp performance for both pulsed and sinusoidal voltage excitation waveforms has been undertaken using otherwise identical operating conditions. Compared to sinusoidal excitation, pulsed operation yields a ˜50% increase in the overall electrical to EUV conversion efficiency, and also allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, peak power, pulse width) due to a synchronised breakdown of the discharge gap along the electrode length. The ability to tailor EUV pulse shapes is important for applications in materials processing and surface cleaning. The source is also found to be highly monochromatic with respect to its spectral output at ˜84nm which dominates the spectral emission over the wavelength range 30-550nm. The overall lamp performance, as measured by the EUV output power, electrical to EUV conversion efficiency, and spectral purity at ˜84nm, improves with increasing gas pressure up to 900mb with none of these parameters showing saturation characteristics.

  17. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements

    Science.gov (United States)

    Ullmer, Dirk; Peschke, Philip; Terzis, Alexandros; Ott, Peter; Weigand, Bernhard

    2015-09-01

    This paper demonstrates that the impact of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators on the structure of the boundary layer can be investigated using quantitative convective heat transfer measurements. For the experiments, the flow over a flat plate with a C4 leading edge thickness distribution was examined at low speed incompressible flow (6.6-11.5 m s-1). An ns-DBD plasma actuator was mounted 5 mm downstream of the leading edge and several experiments were conducted giving particular emphasis on the effect of actuation frequency and the freestream velocity. Local heat transfer distributions were measured using the transient liquid crystal technique with and without plasma activated. As a result, any effect of plasma on the structure of the boundary layer is interpreted by local heat transfer coefficient distributions which are compared with laminar and turbulent boundary layer correlations. The heat transfer results, which are also confirmed by hot-wire measurements, show the considerable effect of the actuation frequency on the location of the transition point elucidating that liquid crystal thermography is a promising method for investigating plasma-flow interactions very close to the wall. Additionally, the hot-wire measurements indicate possible velocity oscillations in the near wall flow due to plasma activation.

  18. Experimental Investigation on the Effects of DBD Plasma on the Film Cooling Effectiveness of a 30-Degree Slot

    Directory of Open Access Journals (Sweden)

    Ye Jee Kim

    2017-06-01

    Full Text Available The effects of dielectric barrier discharge (DBD plasma on the film cooling effectiveness of a 30-degree slot was experimentally investigated in a low-speed wind tunnel. The pressure sensitive paint (PSP technique was used to measure the film cooling effectiveness, and two blowing ratios (0.5 and 1.0 were tested. A sinusoidal waveform with a 1-kHz frequency was supplied to the exposed electrode. Two input voltages (6 and 7 kV and two exposed electrode locations were considered. The results showed that the film cooling effectiveness of the slot was higher for the blowing ratio of the 1.0 case than that for the blowing ratio of the 0.5 case regardless of plasma operation. The higher input voltage case (7 kV showed higher film cooling effectiveness than the lower input voltage case (6 kV. The improvement in film cooling effectiveness facilitated by the DBD plasma was more significant when the coolant had less momentum. The maximum improvement of the area averaged film cooling effectiveness was 2.3% for the case with the exposed electrode located at the slot exit and a blowing ratio of 0.5.

  19. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al{sub 2}O{sub 3} double-coating

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Salomaeki, Mikko [University of Turku, Department of Chemistry, Laboratory of Materials Chemistry and Chemical Analysis, Vatselankatu 2, FI-20014 (Finland); Areva, Sami [Tampere University of Technology, Department of Biomedical Engineering, Biokatu 6, P.O. Box 692, FI-33101 Tampere (Finland); Korhonen, Juuso T. [Aalto University School of Science, Department of Applied Physics, P.O. Box 15100 FI-00076 AALTO, Espoo (Finland); Karppinen, Maarit [Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 AALTO, Espoo (Finland)

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al{sub 2}O{sub 3} layer. The double-coating of PEM + Al{sub 2}O{sub 3} is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al{sub 2}O{sub 3} layer. The enhanced water vapor barrier characteristics of the PEM + Al{sub 2}O{sub 3} double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  20. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System.

    Science.gov (United States)

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.

  1. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System

    Science.gov (United States)

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275

  2. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S., E-mail: cswong@um.edu.my [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  3. Effect of Frequency on Emission of XeIast Excimer in a Pulsed Dielectric Barrier Discharge

    Science.gov (United States)

    Ou, Qiong-Rong; Meng, Yue-Dong; Xu, Xu; Shu, Xing-Sheng; Ren, Zhao-Xing

    2004-07-01

    Emission spectra of XeIast excimers and ultraviolet intensity at 253 nm from a dielectric barrier discharge (DBD) lamp excited by a pulsed voltage were measured as functions of pressure, electrical power, and frequency. In the DBD lamp driven by a higher frequency voltage, a more intense emission of XeIast excimers with high efficiency at 253 nm was found. A diffuse discharge mode was observed at high xenon pressure (>1 atm) with an excessive iodine concentration in the DBD driven by a high frequency (60 kHz) voltage.

  4. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    OU Qiong-Rong; MENG Yue-Dong; XU Xu; SHU Xing-Sheng; REN Zhao-Xing

    2004-01-01

    Emission spectra of XeI* excimers and ultraviolet intensity at 253 nm from a dielectric barrier discharge (DBD)lamp excited by a pulsed voltage were measured as functions of pressure, electrical power, and frequency. In the DBD lamp driven by a higher frequency voltage, a more intense emission of XeI* excimers with high efficiency at 253 nm was found. A diffuse discharge mode was observed at high xenon pressure (> 1 atm) with an excessive iodine concentration in the DBD driven by a high frequency (60 kHz) voltage.

  5. Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation

    Institute of Scientific and Technical Information of China (English)

    DI Lanbo; ZHAN Zhibin; ZHANG Xiuling; QI Bin; XU Weijie

    2016-01-01

    Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25-P) with the assistance of the deposition-precipitation procedure.The influences of the plasma reduction time and calcination on the performance of the Au/P25-P catalysts were investigated.CO oxidation was performed to investigate the catalytic activity of thc Au/P25 catalysts.The results show that DBD cold plasma for the fabrication of Au/P25-P catalysts is a fast process,and Au/P25-P (4 min) exhibited the highest CO oxidation activity due to the complete reduction of Au compounds and less consumption of oxygen vacancies.In order to form more oxygen vacancies active species,Au/P25-P was calcined to obtain Au/P25-PC catalysts.Interestingly,Au/P25-PC exhibited the highest activity for CO oxidation among the Au/P25 samples.The results of transmission electron microscopy (TEM) indicated that the smaller size and high distribution of Au nanoparticles are the mean reasons for a high performance of Au/P25-PC.Atmospheric-pressure DBD cold plasma was proved to be of great efficiency in preparing high performance supported Au catalysts.

  6. Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/ n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range

    Science.gov (United States)

    Güçlü, Çiğdem Ş.; Özdemir, Ahmet Faruk; Altindal, Şemsettin

    2016-12-01

    In this study, current conduction mechanisms of the sample (Au/Ti)/Al2O3/ n-GaAs were investigated in detail using current-voltage (I-V) measurements in the temperature range of 80-380 K. The semilogarithmic I-V plots reveal two distinct linear regions with different slopes between 0.07-0.30 and 0.30-0.69 V which are called as Region I (RI) and Region II (RII), respectively. The ideality factor ( n) and zero-bias barrier height (Φ_{{bo}}) were found to be strong functions of temperature and voltage. In both regions, as the temperature increases, Φ_{{bo}} increases, whereas the value of n decreases. The high value of n at low temperatures is an evidence of deviation from thermionic emission, and it cannot be explained solely by tunneling mechanism, the existence of surface states and interfacial layer. Therefore, the Φ_{{bo}} versus q/kT plots were drawn for two linear regions of lnI-V plots, and these plots also revealed two distinct linear regions with different slopes between two temperature regions of 80-170 and 200-380 K which are called as low- and high-temperature range (LTR and HTR), respectively. Such behavior of these plots confirmed the existence of double Gaussian distribution (DGD) in the samples which in turn has mean barrier heights bar{Φ}_{{bo}} and standard deviations ( σ s). These values were obtained from the intercept and slope of these plots as 0.38 eV and 0.061 V for LTR and as 0.88 eV and 0.142 V for HTR (in RI), whereas they were obtained as 0.37 eV and 0.061 V for LTR and as 0.92 eV and 0.148 V for HTR (in RII), respectively. Thus, the modified ln( I s/ T 2)- q 2 σ s 2 /2 k 2 T 2 versus q/ kT plots were drawn, and the values of (bar{Φ}_{{bo}}) and effective Richardson constant ( A *) were extracted from the intercept and slope of these plots as 0.39 eV and 7.07 A/cm2 K2 for LTR and as 0.92 eV and 8.158 A/cm2 K2 for HTR (in RI), whereas they were extracted as 0.38 eV and 7.92 A/cm2 K2 for LTR and as 0.94 eV and 4.66 A/cm2 K2 for HTR

  7. OPTIMISATION OF DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS AND THEIR APPLICATION TO FLUID DYNAMICS

    OpenAIRE

    Erfani, Rasool

    2012-01-01

    The standard dielectric barrier discharge (DBD) plasma actuator, in which an asymmetric arrangement of electrodes leads to momentum coupling into the surrounding air, has already demonstrated its capability for flow control. The effect of some parameters such as dielectric thickness, dielectric temperature, voltage amplitude, driving frequency, different configurations and arrangements on actuator performance are examined. The new configuration of DBD which uses multiple encapsulated electrod...

  8. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  9. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  10. Conversion Characteristics and Production Evaluation of Styrene/o-Xylene Mixtures Removed by DBD Pretreatment

    Directory of Open Access Journals (Sweden)

    Liying Jiang

    2015-01-01

    Full Text Available The combination of chemical oxidation methods with biotechnology to removal recalcitrant VOCs is a promising technology. In this paper, the aim was to identify the role of key process parameters and biodegradability of the degradation products using a dielectric barrier discharge (DBD reactor, which provided the fundamental data to evaluate the possibilities of the combined system. Effects of various technologic parameters like initial concentration of mixtures, residence time and relative humidity on the decomposition and the degradation products were examined and discussed. It was found that the removal efficiency of mixed VOCs decreased with increasing initial concentration. The removal efficiency reached the maximum value as relative humidity was approximately 40%–60%. Increasing the residence time resulted in increasing the removal efficiency and the order of destruction efficiency of VOCs followed the order styrene > o-xylene. Compared with the single compounds, the removal efficiency of styrene and o-xylene in the mixtures of VOCs decreased significantly and o-xylene decreased more rapidly. The degradation products were analyzed by gas chromatography and gas chromatography-mass spectrometry, and the main compounds detected were O3, COx and benzene ring derivatives. The biodegradability of mixed VOCs was improved and the products had positive effect on biomass during plasma application, and furthermore typical results indicated that the biodegradability and biotoxicity of gaseous pollutant were quite depending on the specific input energy (SIE.

  11. Conversion characteristics and production evaluation of styrene/o-xylene mixtures removed by DBD pretreatment.

    Science.gov (United States)

    Jiang, Liying; Zhu, Runye; Mao, Yubo; Chen, Jianmeng; Zhang, Liang

    2015-01-26

    The combination of chemical oxidation methods with biotechnology to removal recalcitrant VOCs is a promising technology. In this paper, the aim was to identify the role of key process parameters and biodegradability of the degradation products using a dielectric barrier discharge (DBD) reactor, which provided the fundamental data to evaluate the possibilities of the combined system. Effects of various technologic parameters like initial concentration of mixtures, residence time and relative humidity on the decomposition and the degradation products were examined and discussed. It was found that the removal efficiency of mixed VOCs decreased with increasing initial concentration. The removal efficiency reached the maximum value as relative humidity was approximately 40%-60%. Increasing the residence time resulted in increasing the removal efficiency and the order of destruction efficiency of VOCs followed the order styrene > o-xylene. Compared with the single compounds, the removal efficiency of styrene and o-xylene in the mixtures of VOCs decreased significantly and o-xylene decreased more rapidly. The degradation products were analyzed by gas chromatography and gas chromatography-mass spectrometry, and the main compounds detected were O3, COx and benzene ring derivatives. The biodegradability of mixed VOCs was improved and the products had positive effect on biomass during plasma application, and furthermore typical results indicated that the biodegradability and biotoxicity of gaseous pollutant were quite depending on the specific input energy (SIE).

  12. Clinical usefulness of observational assessment in the diagnosis of DBD and ADHD in preschoolers.

    Science.gov (United States)

    Bunte, Tessa L; Laschen, Sarah; Schoemaker, Kim; Hessen, David J; van der Heijden, Peter G M; Matthys, Walter

    2013-01-01

    The aim of the present study was to investigate the clinical usefulness of an observational tool--the Disruptive Behavior Diagnostic Observation Schedule (DB-DOS)--in the diagnosis of disruptive behavior disorders (DBD) and attention deficit/hyperactivity disorder (ADHD) in preschoolers. We hypothesized that the DB-DOS may help support the presumption of a diagnosis generated by the information from parents and teachers (or other caregivers). Participants were referred preschool children with externalizing behavioral problems (N = 193; 83% male) and typically developing children (N = 58; 71% male). In view of the clinical validity study each child was given a diagnosis of either DBD (N = 40), or ADHD (N = 54) or comorbid (DBD + ADHD; N = 66) based on best-estimate diagnosis. The DB-DOS demonstrated good interrater and test-retest reliability for DBD and ADHD symptom scores. Confirmatory factor analysis demonstrated an excellent fit of the DB-DOS multidomain model of DBD symptom scores and a satisfactory fit of ADHD symptom scores. The DB-DOS demonstrated good convergent validity, moderate divergent validity, and good clinical validity on a diagnostic group level for DBD and ADHD symptom scores. The Receiver Operating Characteristic curve analyses revealed that for DBD the sensitivity and specificity are moderate and for ADHD good to excellent. The presumption of a diagnosis based on information from parents, teachers, and cognitive assessment was supported by the DB-DOS in 60% for DBD and 75% for ADHD. The DB-DOS can be used to help support a presumption of a DBD and/or ADHD diagnosis in preschool children.

  13. Describing the heavy-ion above-barrier fusion using the bare potentials resulting from Migdal and M3Y double-folding approaches

    Science.gov (United States)

    Gontchar, I. I.; Chushnyakova, M. V.

    2016-08-01

    Systematic calculations of the Coulomb barrier parameters for collisions of spherical nuclei are performed within the framework of the double folding approach. The value of the parameter {B}Z={Z}P{Z}T/({A}P{1/3}+{A}T{1/3}) (which estimates the Coulomb barrier height) varies in these calculations from 10 MeV up to 150 MeV. The nuclear densities came from the Hartree-Fock calculations which reproduce the experimental charge densities with good accuracy. For the nucleon-nucleon effective interaction two analytical approximations known in the literature are used: the M3Y and Migdal forces. The calculations show that Migdal interaction always results in the higher Coulomb barrier. Moreover, as B Z increases the difference between the M3Y and Migdal barrier heights systematically increases as well. As the result, the above barrier fusion cross sections calculated dynamically with the M3Y forces and surface friction are in agreement with the data. The cross sections calculated with the Migdal forces are always below the experimental data even without accounting for the dissipation.

  14. Describing the heavy-ion above-barrier fusion using the bare potentials resulting from Migdal and M3Y double-folding approaches

    CERN Document Server

    Gontchar, Igor

    2015-01-01

    Systematic calculations of the Coulomb barrier parameters for collisions of spherical nuclei are performed within the framework of the double folding approach. The value of the parameter $B_Z=Z_PZ_T/(A^{1/3}_P+(A^{1/3}_P)$ (which estimates the Coulomb barrier height) varies in these calculations from 10 MeV up to 150 MeV. The nuclear densities came from the Hartree-Fock calculations which reproduce the experimental charge densities with good accuracy. For the nucleon-nucleon effective interaction two analytical approximations known in the literature are used: the M3Y and Migdal forces. The calculations show that Migdal interaction always results in the higher Coulomb barrier. Moreover, as $B_Z$ increases the difference between the M3Y and Migdal barrier heights systematically increases as well. As the result, the above barrier fusion cross sections calculated dynamically with the M3Y forces and surface friction are in agreement with the data. The cross sections calculated with the Migdal forces are always bel...

  15. DBD2BS: connecting a DNA-binding protein with its binding sites.

    Science.gov (United States)

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao

    2012-07-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein-DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD-DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein-DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw.

  16. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes.

    Science.gov (United States)

    Skolová, Barbora; Jandovská, Kateřina; Pullmannová, Petra; Tesař, Ondřej; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-05-20

    Dihydroceramides (dCer) are members of the sphingolipid family that lack the C4 trans double bond in their sphingoid backbone. In addition to being precursors of ceramides (Cer) and phytoceramides, dCer have also been found in the extracellular lipid membranes of the epidermal barrier, the stratum corneum. However, their role in barrier homeostasis is not known. We studied how the lack of the trans double bond in dCer compared to Cer influences the permeability, lipid chain order, and packing of multilamellar membranes composed of the major skin barrier lipids: (d)Cer, fatty acids, cholesterol, and cholesteryl sulfate. The permeability of the membranes with long-chain dCer was measured using various markers and was either comparable to or only slightly greater than (by up to 35%, not significant) that of the Cer membranes. The dCer were less sensitive to acyl chain shortening than Cer (the short dCer membranes were up to 6-fold less permeable that the corresponding short Cer membranes). Infrared spectroscopy showed that long dCer mixed less with fatty acids but formed more thermally stable ordered domains than Cer. The key parameter explaining the differences in permeability in the short dCer and Cer was the proportion of the orthorhombic phase. Our results suggest that the presence of the trans double bond in Cer is not crucial for the permeability of skin lipid membranes and that dCer may be underappreciated members of the stratum corneum lipid barrier that increase its heterogeneity.

  17. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Directory of Open Access Journals (Sweden)

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  18. Discharge physics and influence of the modulation on helium DBD modes in the medium-frequency range at atmospheric pressure

    Science.gov (United States)

    Boisvert, Jean-Sébastien; Margot, Joëlle; Massines, Françoise

    2017-04-01

    In this paper the recently reported hybrid mode (a dielectric barrier discharge (DBD) excited by an electric field oscillating at about 1 MHz) is investigated using space and time-resolved imaging together with electrical measurements. In contrast with the helium low-frequency DBD, at 1.6 MHz the light emission is desynchronized with the discharge current. It rather depends on the enhanced rate of stepwise excitation resulting from the massive secondary emission occurring 0.15Ƭ after the discharge current maximum (Ƭ is the excitation wave period). The consequence of ion impacts on the dielectric surfaces is a higher gas and dielectric temperatures as compared to typical helium DBDs. The electrical behavior and the gas temperature of a pulsed dielectric-barrier discharge operated at 1.6 MHz are also described in this paper as a function of the repetition rate (varying from 1 Hz to 10 kHz). The gas temperature is reduced when repetition rates higher or equal to 10 Hz is used. This is related to the gas renewal rate of 8.3 Hz, i.e., gas residence time of 120 ms in our conditions. In addition, due to the memory effect in the gas, the gas gap voltage decreases as the repetition rate increases. However, beyond 100 Hz, the power decreases and the gas gap voltage increases again. As a consequence, for a given power density, the optimal repetition rate is 100 Hz which minimizes the gas temperature without reducing the power density. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  19. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; QIU Yuchang; WANG Hui; E. KUFFEL

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.

  20. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    Science.gov (United States)

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  1. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  2. Effect of Bias Step on the I-V Curve in Double-Barrier AlGaAs/GaAs/AlGaAs Resonant-Tunnelling Devices

    Institute of Scientific and Technical Information of China (English)

    DAI Zhen-Hong; NI Jun

    2006-01-01

    @@ We investigate the non-equilibrium electron transport properties of double-barrier AlGaAs/GaAs/AlGaAs resonanttunnelling devices in nonlinear bias using the time-dependent simulation technique. It is found that the bias step of the external bias voltage applied on the device has an important effect on the final current-voltage (I - V) curves. The results show that different bias step applied on the device can change the bistability, hysteresis and current plateau structure of the I - V curve. The current plateau occurs only in the case of small bias step. As the bias step increases, this plateau structure disappears.

  3. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    NARCIS (Netherlands)

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar

  4. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    NARCIS (Netherlands)

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar bou

  5. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Wong, C. S., E-mail: cswong@um.edu.my; Yap, S. L.; Muniandy, S. V. [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  6. Stabilization of premixed lean methane-air combustion using dielectric barrier discharge with low pollutant emissions

    Science.gov (United States)

    Ono, Ryo; Ogura, Kazuaki; Mogi, Toshio

    2017-09-01

    Catalytic combustion is a promising technology to stabilize lean combustion with low pollutant emissions. Catalytic combustion has been applied to gas turbine combustors; however, some drawbacks of this technology remain to be addressed. In this work, a new concept is demonstrated to overcome the problems of catalytic combustion by using dielectric barrier discharge (DBD) instead of a catalyst. A premixed lean methane-air mixture preheated to 400 °C with an equivalence ratio of 0.45 is flowed through the DBD reactor under atmospheric pressure. Almost complete combustion is achieved with a DBD power of 0.7% of the net calorific value of the mixture. The exhaust emissions are NO = 20 ppm, NO2 = 2 ppm, CO = 2 ppm, and HC \\cong 0 ppm. This work demonstrates that DBD-assisted combustion is a potential alternative to catalytic combustion.

  7. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yinchang, E-mail: ycdu@mail.ustc.edu.cn [Modern Physics Department, University of Science and Technology of China, Hefei, Anhui 230026 (China); Max-Planck Institute for Extraterrestrial Physics, D-85748 Garching (Germany); Li, Yangfang [Max-Planck Institute for Extraterrestrial Physics, D-85748 Garching (Germany); Cao, Jinxiang; Liu, Yu; Wang, Jian; Zheng, Zhe [Modern Physics Department, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-06-15

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5 Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last, the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.

  8. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    Science.gov (United States)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  9. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NARCIS (Netherlands)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-01-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study we

  10. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  11. Fabrication of double barrier structures in single layer c-Si-QDs/a-SiOx films for realization of energy selective contacts for hot carrier solar cells

    Science.gov (United States)

    Kar, Debjit; Das, Debajyoti

    2017-01-01

    Thin films of c-Si-QDs embedded in an a-SiOx dielectric matrix forming arrays of double barrier structures have been fabricated by reactive rf-magnetron sputtering at ˜400 °C, without post-deposition annealing. The formation of larger size c-Si-QDs of reduced number density in homogeneous distribution within a less oxygenated a-SiOx matrix at higher plasma pressure introduces systematic widening of the average periodic distance between the adjacent `c-Si-QDs in a-SiOx', as obtained by X-ray reflectivity and transmission electron microscopy studies. A wave-like pattern in the J-E characteristics identifies the formation of periodic double-barrier structures along the path of the movement of charge carriers across the QDs and that those are originated by the a-SiOx dielectric matrix around the c-Si-QDs. A finite distribution of the size of c-Si-QDs introduces a broadening of the current density peak and simultaneously originates the negative differential resistance-like characteristics, which have suitable applications in the energy selective contacts that act as energy filters for hot carrier solar cells. A simple yet effective process technology has been demonstrated. Further initiative on tuning the energy selectivity by reducing the size and narrowing the size-distribution of Si-QDs can emerge superior energy selective contacts for hot carrier solar cells, paving ground for accomplishing all-Si solar cells.

  12. DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-01-01

    This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar + O2 and Ar + N2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100 sccm) and for different modification times (0.5-7 min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar + O2 plasma for 1 min under 70 cm(3)/min O2 flow rate (71.077° ± 3.578) showed a 18.83% decrease compare to unmodified samples' CA value (84.463° ± 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar + O2 (1 min 70 sccm) and Ar + N2 (40 s 70 sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar + O2 and Ar + N2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar + O2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds.

  13. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    OUYANG Ji-Ting; DUAN Xiao-Xi; XU Shao-Wei; HE Feng

    2012-01-01

    We present the results from 2D fluid modeling of the key roles controlling the glow dielectric barrier discharge (DBD) structure. A uniform DBD can be sustained at lower frequency when the space charge reaches uniformity due to plasma decay, while the patterned structure appears above a critical frequency when the space charge is nonuniform. The patterns start from the electrode edge where the electric field is significantly distorted, characterized by the patterned seed electrons that always form ahead of the surface charges. The formation of the patterned DBD structure is associated with the lateral inhibition of the local increase of space charges. The distribution of the volume seed electrons plays a key role in the DBD structure while the distribution of surface charge is a result of the formed structure.%We present the results from 2D fluid modeling of the key roles controlling the glow dielectric barrier discharge (DBD) structure.A uniform DBD can be sustained at lower frequency when the space charge reaches uniformity due to plasma decay,while the patterned structure appears above a critical frequency when the space charge is nonuniform.The patterns start from the electrode edge where the electric field is significantly distorted,characterized by the patterned seed electrons that always form ahead of the surface charges.The formation of the patterned DBD structure is associated with the lateral inhibition of the local increase of space charges.The distribution of the volume seed electrons plays a key role in the DBD structure while the distribution of surface charge is a result of the formed structure.

  14. DBD--taxonomically broad transcription factor predictions: new content and functionality.

    Science.gov (United States)

    Wilson, Derek; Charoensawan, Varodom; Kummerfeld, Sarah K; Teichmann, Sarah A

    2008-01-01

    DNA-binding domain (DBD) is a database of predicted sequence-specific DNA-binding transcription factors (TFs) for all publicly available proteomes. The proteomes have increased from 150 in the initial version of DBD to over 700 in the current version. All predicted TFs must contain a significant match to a hidden Markov model representing a sequence-specific DNA-binding domain family. Access to TF predictions is provided through http://transcriptionfactor.org, where new search options are now provided such as searching by gene names in model organisms, searching for all proteins in a particular DBD family and specific organism. We illustrate the application of this type of search facility by contrasting trends of DBD family occurrence throughout the tree of life, highlighting the clear partition between eukaryotic and prokaryotic DBD expansions. The website content has been expanded to include dedicated pages for each TF containing domain assignment details, gene names, links to external databases and links to TFs with similar domain arrangements. We compare the increase in number of predicted TFs with proteome size in eukaryotes and prokaryotes. Eukaryotes follow a slower rate of increase in TFs than prokaryotes, which could be due to the presence of splice variants or an increase in combinatorial control.

  15. DBD dyes as fluorescence lifetime probes to study conformational changes in proteins.

    Science.gov (United States)

    Wawrzinek, Robert; Ziomkowska, Joanna; Heuveling, Johanna; Mertens, Monique; Herrmann, Andreas; Schneider, Erwin; Wessig, Pablo

    2013-12-16

    Previously, [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD)-based fluorophores used as highly sensitive fluorescence lifetime probes reporting on their microenvironmental polarity have been described. Now, a new generation of DBD dyes has been developed. Although they are still sensitive to polarity, in contrast to the former DBD dyes, they have extraordinary spectroscopic properties even in aqueous surroundings. They are characterized by long fluorescence lifetimes (10-20 ns), large Stokes shifts (≈100 nm), high photostabilities, and high quantum yields (>0.56). Here, the spectroscopic properties and synthesis of functionalized derivatives for labeling biological targets are described. Furthermore, thio-reactive maleimido derivatives of both DBD generations show strong intramolecular fluorescence quenching. This mechanism has been investigated and is found to undergo a photoelectron transfer (PET) process. After reaction with a thiol group, this fluorescence quenching is prevented, indicating successful bonding. Being sensitive to their environmental polarity, these compounds have been used as powerful fluorescence lifetime probes for the investigation of conformational changes in the maltose ATP-binding cassette transporter through fluorescence lifetime spectroscopy. The differing tendencies of the fluorescence lifetime change for both DBD dye generations promote their combination as a powerful toolkit for studying microenvironments in proteins.

  16. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminova, Anna [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Vandrovcová, Marta [Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4 (Czech Republic); Shelemin, Artem [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Choukourov, Andrei; Hanuš, Jan [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Bačáková, Lucie [Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4 (Czech Republic); Slavínská, Danka; Biederman, Hynek [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic)

    2015-12-01

    Highlights: • Effect of atmospheric pressure DBD plasma on PET foils was investigated. • DBD treatment causes increase in surface density of O-containing functional groups. • DBD plasma causes increase of wettability, roughness and complex modulus of PET. • DBD treatment positively influences cells growth on PET. • Enhancement of cell growth on treated PET depends on the cell type. - Abstract: In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  17. Rapid removal of bacterial endotoxin and natural organic matter in water by dielectric barrier discharge plasma: Efficiency and toxicity assessment.

    Science.gov (United States)

    Zhang, Can; Fang, Zhendong; Liu, Wenjun; Tian, Fang; Bai, Miao

    2016-11-15

    Low-temperature plasma was used to control bacteria, endotoxins and natural organic matter (NOM) in water by a dielectric barrier discharge (DBD) device. Results indicate that DBD plasma has an obvious inactivation effect on various bacteria in water. The degree of inactivation from difficult to easy is as follows: Bacillus subtilis>Escherichia coli>Staphylococcus aureus. Activated ultrapure water treated using DBD plasma exhibited a sustained sterilization effect, but this sterilization effect decreased gradually after 1h. The total-endotoxin (free-endotoxin and bound-endotoxin) released by Escherichia coli during inactivation, as well as artificially simulated endotoxin in a control solution, was significantly controlled by DBD plasma. Both the metabolites that appeared after inactivation of microorganisms by plasma treatment, and the NOM in filtration effluent of a water treatment plant were well removed by DBD plasma if the treatment duration was sufficiently long. However, the acute toxicity increased significantly, and persisted for at least 2h, indicating that some long-life active substances were generated during the DBD process. Therefore, the removal of bacteria, endotoxins or NOM does not mean a safe water is produced. It is also important to eliminate the toxicity and byproducts produced during water treatment for the continuous promotion and industrial application of DBD plasma.

  18. Particle simulation of filamentary formation in dielectric barrier discharge.

    Science.gov (United States)

    Fan, Weili; Dong, Lifang

    2015-11-01

    Dielectric barrier discharge (DBD) is well known for its extensive industrial applications. Recently, new attention has been paid to DBD as a system of rich nonlinear dynamics to study the self-organized filamentary patterns. Though a number of experimental studies have been implemented, the involved physics is still not completely clear, partially due to the limitation of the available space and time-resolved diagnostics. Computer simulation has proven to be an effective tool to give insights into the discharge mechanism. So far, most simulations presented are based on fluid models. However, since the plasma is non-equilibrium in DBD where the particle velocities may deviate from the Maxwellian distribution, self-consistent kinetic simulations are required. In this paper, two successive filamentary discharges in DBD have been studied by use of two-dimensional particle-in-cell simulation with Monte Carlo collisions included (PIC-MCC). The formation of multiple filaments and the involved electric fields, electric potentials, plasma densities, and particle temperatures are presented. Results show that both of the surface charges and space charges play significant roles in the discharges. The total electric field in the gas gap has been completely reversed before the ac voltage hit zero, due to the accumulation of the surface charges, which triggers the next discharge. The space charges always exist between two successive discharges, which provides the `seed charges' for reignition of the filaments. This modeling has revealed significant details of the discharge behaviors, which greatly improved our understanding of DBD mechanisms.

  19. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Sharifian, M. [Faculty of Physics, Science Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2016-01-01

    Highlights: • Cell viability and antibacterial activity was investigated on PMMA modified by DBD. • Treated-samples got hydrophilic by introducing oxygen-containing functional groups. • Mouse embryonic fibroblast (MEF) adhesion was significantly enhanced. • Samples exhibited acceptable antibacterial activity against E. Coli. • Optimum antibacterial performance and cell attachment were obtained. - Abstract: This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid–base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was

  20. Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation

    Science.gov (United States)

    Di, Lanbo; Zhan, Zhibin; Zhang, Xiuling; Qi, Bin; Xu, Weijie

    2016-05-01

    Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25-P) with the assistance of the deposition-precipitation procedure. The influences of the plasma reduction time and calcination on the performance of the Au/P25-P catalysts were investigated. CO oxidation was performed to investigate the catalytic activity of the Au/P25 catalysts. The results show that DBD cold plasma for the fabrication of Au/P25-P catalysts is a fast process, and Au/P25-P (4 min) exhibited the highest CO oxidation activity due to the complete reduction of Au compounds and less consumption of oxygen vacancies. In order to form more oxygen vacancies active species, Au/P25-P was calcined to obtain Au/P25-PC catalysts. Interestingly, Au/P25-PC exhibited the highest activity for CO oxidation among the Au/P25 samples. The results of transmission electron microscopy (TEM) indicated that the smaller size and high distribution of Au nanoparticles are the mean reasons for a high performance of Au/P25-PC. Atmospheric-pressure DBD cold plasma was proved to be of great efficiency in preparing high performance supported Au catalysts. supported by National Natural Science Foundation of China (Nos. 11505019, 21173028), the Science and Technology Research Project of Liaoning Provincial Education Department (No. L2013464), the Scientific Research Foundation for the Doctor of Liaoning Province (No. 20131004), and the Dalian Jinzhou New District Science and Technology Plan Project (No. KJCX-ZTPY-2014-0001)

  1. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    Science.gov (United States)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  2. Nuclear matrix element for two neutrino double beta decay from 136Xe

    CERN Document Server

    Ejiri, Hiroyasu

    2012-01-01

    The nuclear matrix element for the two neutrino double beta decay (DBD) of 136Xe was evaluated by FSQP (Fermi Surface Quasi Particle model), where experimental GT strengths measured by the charge exchange reaction and those by the beta decay rates were used. The 2 neutrino DBD matrix element is given by the sum of products of the single beta matrix elements via low-lying (Fermi Surface) quasi-particle states in the intermediate nucleus. 136Xe is the semi-magic nucleus with the closed neutron-shell, and the beta + transitions are almost blocked. Thus the 2 neutrino DBD is much suppressed. The evaluated 2 neutrino DBD matrix element is consistent with the observed value.

  3. DNA breakage detection-fish (DBD-FISH): effect of unwinding time.

    Science.gov (United States)

    Vázquez-Gundín, F; Gosálvez, J; de la Torre, J; Fernández, J L

    2000-09-20

    DBD-FISH is a new procedure that allows detection and quantification of DNA breakage in situ within specific DNA target sites. Cells embedded in an agarose matrix on a slide are treated in an alkaline unwinding solution to transform DNA breaks into single-stranded DNA (ssDNA). After removal of proteins, DNA probes are hybridized and detected. DNA breaks increase the ssDNA and relax supercoiling of DNA loops, so more probe hybridizes, thereby increasing the surface area and fluorescence intensity of the FISH signal. The probe selects the chromatin area to be analysed. In order to restrict the extension of unwound ssDNA to a region closer to the origin of the DNA break, human leukocytes were processed for DBD-FISH with a whole genome probe, after a 10 Gy dose of X-rays, for various unwinding times: 5, 2 min and 30s. Two cell populations were detected after 30s, but not with the 5 or 2 min unwinding times. One cell group had small to medium haloes corresponding to the relaxation of DNA supercoiling after DAPI staining, and strong DBD-FISH labelling of induced DNA breaks, whereas the other cell group showed big haloes of DNA loop unfolding and an absence of DBD-FISH labelling. The latter group was similar to cells processed by DBD-FISH without the unwinding step. Thus, they should correspond to cells unaffected by the alkaline unwinding solution, possibly because very brief unwinding times do not allow the diffusion of the alkali into the cells deep within the gel, thus biasing the results. Taking this into account, 2 min seems to be the minimum unwinding time required for an accurate detection of a signal by DBD-FISH.

  4. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Science.gov (United States)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.

  5. Complexity Analysis of an Interior Point Algorithm for the Semidefinite Optimization Based on a Kernel Function with a Double Barrier Term

    Institute of Scientific and Technical Information of China (English)

    Mohamed ACHACHE

    2015-01-01

    In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization (SDO) problems. The proposed algorithm is based on a new kernel function which diff ers from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1>q2>1, the algorithm has O((q1+1) n q1+1 2(q1−q2) log n? ) and O((q1+1) 3q1−2q2+12(q1−q2) √n log n? ) complexity results for large-and small-update methods, respectively.

  6. A Numerical Investigation of the Strain Effect on Saturation Optical Intensity in Electroabsorption Modulators Based on Asymmetric Intra-step-barrier Coupled Double Strained Quantum Wells

    Science.gov (United States)

    Abedi, Kambiz

    2011-12-01

    In this paper, the strain effect on saturation optical intensity in electroabsorption modulators (EAMs) based on asymmetric intra-step-barrier coupled double strained quantum well (AICD-SQWs) active region is theoretically investigated and compared with intra-step quantum well (IQW) structure. For this purpose, the thermionic emission and tunneling escape processes are taken into account and the escape times of photogenerated carriers are calculated. Then, the electroabsorption coefficient is calculated for different well strains for TE input light polarization. Finally, the saturation optical intensity of electroabsorption modulators with AICD-SQW structures in comparison with IQW structure is evaluated. Numerical results show that the tensile strain of well has the most significant effect on the saturation optical intensity of electroabsorption modulators with AICD-SQW structures due to reduction in escape times.

  7. Experimental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunfei [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China); Su, Chunqiang [Xi’an High Voltage Apparatus Research Institute, Xi’an 710077 (China); Ren, Xiang; Fan, Chuan; Zhou, Wenwu [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Feng [School of Electrical and Information Engineering, Hunan University, Changsha 410082 (China); Ding, Weidong, E-mail: wdding@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-09-15

    Highlights: • Homogeneous DBD is generated under bipolar nanosecond pulse in atmospheric air. • Effects of surface modification under homogeneous DBD are discussed. • Dielectric properties of the PET films are fully studied from relative dielectric constant ε{sub r}, dielectric loss tangent tan δ and breakdown voltages V{sub b}. • Oxygen-containing polar groups are considered to be the most essential reason for dielectric property changes. - Abstract: Dielectric barrier discharge (DBD) is widely used for surface modification of polymer films. In this paper, DBD characteristics under bipolar repetitive frequency nanosecond pulse in atmospheric air are studied and surface properties of polyethylene terephthalate films under homogeneous DBD and filamentary DBD modification are compared through scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and dielectric test equipment. It is found that the discharge is homogeneous when gap spacing d is less than 1.2 mm and filamentary when d is within the range of 3.0 mm to 5.8 mm. SEM pictures reveal that films under homogeneous DBD present a smooth surface while intensive “gully-like” etches appear on the surface of the films under filamentary DBD, which can result in local insulation defects and is disadvantageous to surface modification. It is found from the XPS analysis that a number of oxygen-containing polar groups are introduced onto the surface of the film modified by homogeneous DBD compared with the untreated one. Experimental results for dielectric properties indicate that the three parameters: relative dielectric constant ε{sub r}, dielectric loss tangent tan δ and breakdown voltages V{sub b} are all changed in different degree after surface modification. And possible reason for the phenomenon is discussed.

  8. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    Science.gov (United States)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  9. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    Science.gov (United States)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-11-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.

  10. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-12-01

    Full Text Available The dielectric barrier discharge (DBD plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS, gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  11. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    Science.gov (United States)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it

  12. Effect of double MgO tunneling barrier on thermal stability and TMR ratio for perpendicular MTJ spin-valve with tungsten layers

    Science.gov (United States)

    Lee, Seung-Eun; Takemura, Yasutaka; Park, Jea-Gun

    2016-10-01

    A tunneling magneto-resistance (TMR) ratio of ˜163% at an annealing temperature of 400 °C was achieved in a single MgO-based perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a tungsten (W)/tantalum (Ta) seed and W capping layer instead of with a Ta seed and capping layer. This was done by improving the interface perpendicular magnetic anisotropy (i-PMA) characteristic of the Co2Fe6B2 free layer and face-centered-cubic (f.c.c.) crystallinity of the MgO tunneling barrier. In particular, a TMR ratio of ˜141% at an annealing temperature of 400 °C and a thermal stability at room temperature of ˜61 were achieved in a double MgO-based p-MTJ spin valve with W/Ta seed, W spacer, and W capping layers by doubling the i-PMA magnetic moment and increasing slightly magnetic anisotropy field (Hk).

  13. Highly Enhanced TMR Ratio and Δ for Double MgO-based p-MTJ Spin-Valves with Top Co2Fe6B2 Free Layer by Nanoscale-thick Iron Diffusion-barrier.

    Science.gov (United States)

    Lee, Seung-Eun; Baek, Jong-Ung; Park, Jea-Gun

    2017-09-19

    For double MgO-based p-MTJ spin-valves with a top Co2Fe6B2 free layer ex-situ annealed at 400 °C, the insertion of a nanoscale-thickness Fe diffusion barrier between the tungsten (W) capping layer and MgO capping layer improved the face-centered-cubic (f.c.c.) crystallinity of both the MgO capping layer and tunneling barrier by dramatically reducing diffusion of W atoms from the W capping layer into the MgO capping layer and tunneling barrier, thereby enhancing the TMR ratio and thermal stability (Δ). In particular, the TMR ratio was extremely sensitive to the thickness of the Fe barrier; it peaked (154%) at about 0.3 nm (the thickness of only two atomic Fe layers). The effect of the diffusion barrier originated from interface strain.

  14. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Science.gov (United States)

    Rezaei, Fatemeh; Shokri, Babak; Sharifian, M.

    2016-01-01

    This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid-base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was observed that plasma-treated samples exhibited significantly better biocompatibility, comparing to the pristine one.

  15. DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions.

    Science.gov (United States)

    Gao, Mu; Skolnick, Jeffrey

    2008-07-01

    The structures of DNA-protein complexes have illuminated the diversity of DNA-protein binding mechanisms shown by different protein families. This lack of generality could pose a great challenge for predicting DNA-protein interactions. To address this issue, we have developed a knowledge-based method, DNA-binding Domain Hunter (DBD-Hunter), for identifying DNA-binding proteins and associated binding sites. The method combines structural comparison and the evaluation of a statistical potential, which we derive to describe interactions between DNA base pairs and protein residues. We demonstrate that DBD-Hunter is an accurate method for predicting DNA-binding function of proteins, and that DNA-binding protein residues can be reliably inferred from the corresponding templates if identified. In benchmark tests on approximately 4000 proteins, our method achieved an accuracy of 98% and a precision of 84%, which significantly outperforms three previous methods. We further validate the method on DNA-binding protein structures determined in DNA-free (apo) state. We show that the accuracy of our method is only slightly affected on apo-structures compared to the performance on holo-structures cocrystallized with DNA. Finally, we apply the method to approximately 1700 structural genomics targets and predict that 37 targets with previously unknown function are likely to be DNA-binding proteins. DBD-Hunter is freely available at http://cssb.biology.gatech.edu/skolnick/webservice/DBD-Hunter/.

  16. Baseline donor chronic renal injury confers the same transplant survival disadvantage for DCD and DBD kidneys.

    Science.gov (United States)

    Kosmoliaptsis, V; Salji, M; Bardsley, V; Chen, Y; Thiru, S; Griffiths, M H; Copley, H C; Saeb-Parsy, K; Bradley, J A; Torpey, N; Pettigrew, G J

    2015-03-01

    Histological assessment of baseline chronic kidney injury may discriminate kidneys that are suitable for transplantation, but has not been validated for appraisal of donation after circulatory death (DCD) kidneys. 'Time-zero' biopsies for 371 consecutive, solitary, deceased-donor kidneys transplanted at our center between 2006 and 2010 (65.5% DCD, 34.5% donation after brain death [DBD]) were reviewed and baseline chronic degenerative injury scored using Remuzzi's classification. High scores correlated with donor age and extended criteria donors (42% of donors), but the spectrum of scores was similar for DCD and DBD kidneys. Transplant outcomes for kidneys scoring from 0 to 4 were comparable (1 and 3 year graft survival 95% and 92%), but were much poorer for kidneys scoring ≥5, with 1 year graft survival only 73%, and 12.5% suffering primary nonfunction. Critically, high Remuzzi scores conferred the same survival disadvantage for DCD and DBD kidneys. On multi-variable regression analysis, time-zero biopsy score was the only independent predictor for graft survival, whereas one-year graft estimated glomerular filtration rate (eGFR) correlated with donor age and biopsy score. In conclusion, the relationship between severity of chronic kidney injury and transplant outcome is similar for DCD and DBD kidneys. Kidneys with Remuzzi scores of ≤4 can be implanted singly with acceptable results.

  17. Executive Functions in Preschool Children with ADHD and DBD: Assessment, Development and Role of Environment

    NARCIS (Netherlands)

    Schoemaker, K.

    2013-01-01

    Impairments in executive functions (EF) are consistently associated with attention deficit hyperactivity disorder (ADHD) and to a lesser extent, with disruptive behavior disorder (DBD), i.e., oppositional defiant disorder or conduct disorder, in school-aged children. Recently, larger numbers of chil

  18. Hot Corrosion Behavior of Double-ceramic-layer LaTi2Al9O19/YSZ Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    XIE Xiaoyun; GUO Hongbo; GONG Shengkai; XU Huibin

    2012-01-01

    LaTi2Al9O19 (LTA) exhibits promising potential as a new kind of thermal barrier coating (TBC) material,due to its excellent high-temperature capability and low thermal conductivity.In this paper,LTA/yttria stabilized zirconia (YSZ) TBCs are produccd by atmospheric plasma spraying.Hot corrosion behavior and the related failure mechanism of the coating are investigated.Decomposition of LTA does not occur even after 1 458 hot corrosion cycles at 1 373 K,revealing good chemical stability in molten salt of Na2SO4 and NaCl.However,the molten salt infiltrates to the bond coat,causing dissolving of the thermally grown oxide (TGO) in the molten salt and hot corrosion of the bond coat.As a result,cracking of the TBC occurs within the oxide layer.In conclusion,the ceranic materials LTA and YSZ reveal good chemical stability in molten salts of Na2SO4 and NaCl,and the bond coat plays a significant role in providing protection for the component against hot corrosion in the LTA/YSZ TBCs.LTA exhibits very promising potential as a novel TBC material.

  19. Effect of ‘Al’ concentration on spin-dependent resonant tunnelling in InAs/Ga$_{1−y}$Al$_y$As symmetrical double-barrier heterostructures

    Indian Academy of Sciences (India)

    L BRUNO CHANDRASEKAR; K GNANASEKAR; M KARUNAKARAN; R CHANDRAMOHAN

    2016-10-01

    The effect of ‘Al’ concentration on spin-dependent tunnelling in strained non-magnetic symmetric double-barrier semiconductor has been theoretically investigated. The separation between spin-up and spin-down components, barrier transparency, polarization efficiency and tunnelling lifetime were calculated using the transfer matrix approach. The separation between spin-up and spin-down resonances and tunnelling lifetime were reportedfor the first time in the case of InAs/Ga$_{1−y}$Al$_y$As heterostructures for various ‘Al’ concentrations and for various barrier widths. Cent percentage polarization can be obtained in this strained non-magnetic double-barriersemiconductor even without any external field.

  20. Simulated and experimental studies on the array dielectric barrier discharge of water electrodes

    Science.gov (United States)

    Lele, WANG; Xiutao, HUANG; Junfeng, CHEN; Shengming, WANG; Zhaoyang, HU; Minghai, LIU

    2017-03-01

    A kind of dielectric barrier discharge (DBD) device composed of water electrodes with 3 × 3 forms can produce large-area low-temperature plasmas at atmospheric pressure. To reflect the discharge characteristics of DBD better, a dynamic simulation model, which is based on the voltage controlled current source (CCS), is established, then the established model in Matlab/Simulink is used to simulate the DBD in air. The voltage–current waves and Lissajous at a voltage of 10 kV, 11 kV and 12 kV peak value with a frequency of 15 kHz are studied. The change of the discharge power of DBD with a different amplitude and frequency of applied voltage is also analyzed. The result shows the voltage–current waves, Lissajous and discharge power of DBD under different conditions from the simulation agree well with those of the experiment. In addition, we propose a method to calculate the dielectric barrier capacitance {{C}}{{d}} and the gap capacitance {{C}}{{g}}, which is valid through analyzing the variation of capacitance at different voltage amplitudes.

  1. Simulated and experimental studies on the array dielectric barrier discharge of water electrodes

    Science.gov (United States)

    Wang, Lele; Huang, Xiutao; Chen, Junfeng; Wang, Shengming; Hu, Zhaoyang; Liu, Minghai

    2017-03-01

    A kind of dielectric barrier discharge (DBD) device composed of water electrodes with 3 × 3 forms can produce large-area low-temperature plasmas at atmospheric pressure. To reflect the discharge characteristics of DBD better, a dynamic simulation model, which is based on the voltage controlled current source (CCS), is established, then the established model in Matlab/Simulink is used to simulate the DBD in air. The voltage-current waves and Lissajous at a voltage of 10 kV, 11 kV and 12 kV peak value with a frequency of 15 kHz are studied. The change of the discharge power of DBD with a different amplitude and frequency of applied voltage is also analyzed. The result shows the voltage-current waves, Lissajous and discharge power of DBD under different conditions from the simulation agree well with those of the experiment. In addition, we propose a method to calculate the dielectric barrier capacitance {{C}}{{d}} and the gap capacitance {{C}}{{g}}, which is valid through analyzing the variation of capacitance at different voltage amplitudes.

  2. DIFFUSE DBD IN ATMOSPHERIC AIR AT DIFFERENT APPLIED PULSE WIDTHS

    Directory of Open Access Journals (Sweden)

    Ekaterina Alexandrovna Shershunova

    2015-02-01

    Full Text Available The paper deals with the realization and the diagnostics of the volume diffuse dielectric barrier discharge in 1-mm air gap when applying high voltage rectangular pulses to the electrodes. The effect of the applied pulse width on the discharge dissipated energy was studied in detail. It was found experimentally, the energy stayed nearly constant with the pulse elongation from 600 ns to 1 ms.

  3. Impact of Atmospheric Plasma Generated by a DBD Device on Quality-Related Attributes of "Abate Fetel" Pear Fruit

    Science.gov (United States)

    Berardinelli, Annachiara; Vannini, Lucia; Ragni, Luigi; Guerzoni, M. Elisabetta

    The effects of gas plasma generated by a Dielectric Barrier Discharge (DBD) device on "Abate Fetel" fresh pears were assessed following exposure times from 10 to 90 min. In particular the decontamination efficacy towards the indigenous microflora naturally occurring on the surface of the fruit was evaluated. The main results showed that total mesophilic bacteria, yeasts and moulds had different inactivation dynamics. However, maximum cell decreases of 2.5 Log CFU/fruit were achieved for all the microbial groups after 90 min of treatment at a relative humidity level of 60% (22°C). Immediately after the treatments, no significant effects were observed on the measured quality traits. After storage for 5 days at 20°C significant changes were detected only in the peel (colour and antioxidant capacity) of fruit samples treated for 90 min. The Magness-Taylor flesh firmness (MTf), the soluble solid content (SSC) and the antioxidant capacity of fruits were unaffected by the tested treatments.

  4. Diagnosis of Methane Plasma Generated in an Atmospheric Pressure DBD Micro-Jet by Optical Emission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Feng; BIAN Xin-Chao; CHEN Qiang; LIU Fu-Ping; LIU Zhong-Wei

    2009-01-01

    Diagnosis of methane plasma,generated in an atmospheric pressure dielectric barrier discharge (DBD) microplasma jet with a quartz tube as dielectric material by a 25 kHz sinusoidal ac power source,is conducted by optical emission spectroscopy (OES).The reactive radicals in methane plasma such as CH,C2,and Ha are detected insitu by OES.The possible dissociation mechanism of methane in diluted Ar plasma is deduced from spectra.In addition,the density of CH radical,which is considered as one of the precursors in diamond-like (DLC) film formation,affected by the parameters of input voltage and the feed gas flow rate,is emphasized. With the Boltzmann plots,four Ar atomic spectral lines (located at 675.28nm,687.13nm,738.40nm and 794.82nm,respectively) are chosen to calculate the electron temperature,and the dependence of electron temperature on discharge parameters is also investigated.

  5. A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells.

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Attri, Pankaj; Kaushik, Neha; Choi, Eun Ha

    2013-04-25

    Non-thermal plasmas are emerging as a novel tool for the treatment of living tissues for biological and medical purpose. In this study, we described the effect of 4 min dielectric barrier discharge (DBD) plasma on both T98G cancer and HEK normal cell lines in the presence of different concentrations of osmolytes. This treatment strategy shows a specific inhibitory effect of a 240 s plasma exposure in the presence of osmolytes against T98G brain cancer cells only, but not on HEK normal cells. Based on these interesting properties of osmolytes, a non-thermal plasma appears to be a potential anticancer treatment strategy for different kinds of cancers in the presence of osmolytes.

  6. Characterization of DBD Plasma Actuators Performance without External Flow . Part I; Thrust-Voltage Quadratic Relationship in Logarithmic Space for Sinusoidal Excitation

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2016-01-01

    We present results of thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators. We have used a test setup, measurement, and data processing methodology that we developed in prior work. The tests were conducted with High Density Polyethylene (HDPE) actuators of three thicknesses. The applied voltage driving the actuators was a pure sinusoidal waveform. The test setup was suspended actuators with a partial liquid interface. The tests were conducted at low ambient humidity. The thrust was measured with an analytical balance and the results were corrected for anti-thrust to isolate the plasma generated thrust. Applying this approach resulted in smooth and repeatable data. It also enabled curve fitting that yielded quadratic relations between the plasma thrust and voltage in log-log space at constant frequencies. The results contrast power law relationships developed in literature that appear to be a rough approximation over a limited voltage range.

  7. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    Science.gov (United States)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  8. MODEL PREDIKSI KEJADIAN DEMAM BERDARAH DENGUE (DBD BERDASARKAN FAKTOR IKLIM DI KOTA BOGOR, JAWA BARAT

    Directory of Open Access Journals (Sweden)

    Jusniar Ariati

    2015-01-01

    Full Text Available AbstractDengue Hemorrhagic Fever (DHF presents a serious health problem in Indonesia. Dengue viruses are transmitted to human through the biting of infected mosquitoes, especially Aedes aegypti and Ae. albopictus.The occurrence of variation and climate change will Affect the growth areas of mosquitoes. This situation can influence on the emergence of dengue fever cases. In this paper will discuss the predictions of the mathematical model of considering the incidence of DHF with climatic factors. The research design was a retrospective study with the data collected is dengue incidence and climate include temperature, rainfall, humidity and rainy days since 2002-2010. Data analysis was performed using Minitab 16.0 software statistical time series. The results showed that R2 varied between 0.65 to 0.99. The highest R2 value of the regression equation obtained in August, September and October is 0.99 and the lowest in April with a R2 value of 0.65. The results of predictions based on 4 predictors (precipitation, rainy days, temperature and humidity with the incidence of DHF is actually not much different, except in April. It can be concluded that according to linear predictive models of dengue is influenced by climatic factors (precipitation, rainy days, temperature and humidity 2 months before and 1 month prior dengue incidence.Keywords : Dhf, Climate, Prediction ModelAbstrakDemam Berdarah Dengue (DBD merupakan salah satu masalah kesehatan di Indonesia. Aedes aegyptisebagai vektor utama penyakit DD/DBD kehidupannya dipengaruhi oleh faktor iklim, diantaranya suhu, kelembaban udara, curah hujan dan hari hujan. Berbagai upaya pengendalian  telah   dilakukan  namun  belum   menurunkan  jumlah  kasus  secara  signifikan, sehingga diperlukan model untuk memprediksi kejadian DBD di suatu wilayah sehingga kejadiannya dapat diantisipasi. Dalam tulisan ini akan membahas model matematika prediksi kejadian DBD dengan mempertimbangkan faktor iklim

  9. MODEL PREDIKSI KEJADIAN DEMAM BERDARAH DENGUE (DBD BERDASARKAN FAKTOR IKLIM DI KOTA BOGOR, JAWA BARAT

    Directory of Open Access Journals (Sweden)

    Jusniar Ariati

    2015-01-01

    Full Text Available AbstractDengue Hemorrhagic Fever (DHF presents a serious health problem in Indonesia. Dengue viruses are transmitted to human through the biting of infected mosquitoes, especially Aedes aegypti and Ae. albopictus.The occurrence of variation and climate change will Affect the growth areas of mosquitoes. This situation can influence on the emergence of dengue fever cases. In this paper will discuss the predictions of the mathematical model of considering the incidence of DHF with climatic factors. The research design was a retrospective study with the data collected is dengue incidence and climate include temperature, rainfall, humidity and rainy days since 2002-2010. Data analysis was performed using Minitab 16.0 software statistical time series. The results showed that R2 varied between 0.65 to 0.99. The highest R2 value of the regression equation obtained in August, September and October is 0.99 and the lowest in April with a R2 value of 0.65. The results of predictions based on 4 predictors (precipitation, rainy days, temperature and humidity with the incidence of DHF is actually not much different, except in April. It can be concluded that according to linear predictive models of dengue is influenced by climatic factors (precipitation, rainy days, temperature and humidity 2 months before and 1 month prior dengue incidence.Keywords : Dhf, Climate, Prediction ModelAbstrakDemam Berdarah Dengue (DBD merupakan salah satu masalah kesehatan di Indonesia. Aedes aegyptisebagai vektor utama penyakit DD/DBD kehidupannya dipengaruhi oleh faktor iklim, diantaranya suhu, kelembaban udara, curah hujan dan hari hujan. Berbagai upaya pengendalian  telah   dilakukan  namun  belum   menurunkan  jumlah  kasus  secara  signifikan, sehingga diperlukan model untuk memprediksi kejadian DBD di suatu wilayah sehingga kejadiannya dapat diantisipasi. Dalam tulisan ini akan membahas model matematika prediksi kejadian DBD dengan mempertimbangkan faktor iklim

  10. Will the use of double barrier result in sustained release of vancomycin? Optimization of parameters for preparation of a new antibacterial alginate-based modern dressing.

    Science.gov (United States)

    Kurczewska, Joanna; Sawicka, Paulina; Ratajczak, Magdalena; Gajęcka, Marzena; Schroeder, Grzegorz

    2015-12-30

    The aim of this research was to prepare and characterize an alginate-based wound dressing containing vancomycin immobilized at the silica surface. The silica samples functionalized with amine, diol and carboxylic acid groups were loaded with 7.8, 5.7 and 7.1wt.% of the antibiotic respectively. The immobilized drug was encapsulated in alginate or gelatin/alginate gels and the average concentration of vancomycin was about 10mg per g of the dried gel. The effect of functional organic groups at the silica surface on the release rate of the drug was investigated. Only the drug immobilized at Si-amine in alginate matrix was found to demonstrate slower release from the proposed wound dressing. The in vitro release profiles for other silica carriers did not show significant differences in relation to the free loaded drug. The presence of gelatin had a favourable impact on the slowing down of the drug release from the dressing with a double barrier. All the gels studied with vancomycin immobilized at the silica surface demonstrated antimicrobial activity against various bacteria. A reduction of the drug dose to a half had no effect on changing microbiological activity of gels.

  11. Experimental Study on the Body Force Field of Dielectric Barrier Discharge Actuators

    NARCIS (Netherlands)

    Kotsonis, M.; Ghaemi, S.; Giepman, R.H.M.; Veldhuis, L.L.M.

    2010-01-01

    An experimental investigation on thrust and body force of Dielectric Barrier Discharge (DBD) /plasma actuators aimed at low power flow control applications is presented. A parametric study on thrust is conducted for a wide range of geometrical configurations as well as several electrical operational

  12. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    Science.gov (United States)

    Bai, Suli; Huang, Chengdu; Lv, Jing; Li, Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N2-physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO2 catalyst showed an enhanced activity, C5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO2 catalyst.

  13. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation

    Science.gov (United States)

    Jiang, Nan; Guo, Lianjie; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2017-04-01

    In this work, a nanosecond bipolar pulsed voltage coupled with a negative DC component is employed to generate sliding dielectric barrier discharge (DBD) plasma in a three-electrode geometry reactor and improve volatile organic compound (VOC) degradation at room temperature. The effects of the bipolar pulsed voltage (U ±pulse) and negative DC voltage (U ‑DC) on the discharge characteristic, optical characteristic, plasma gas temperature (T gas), and vibrational temperature (T vib) are discussed. The horizontal distribution characteristics of the N2(C3Πu  →  B3Πg) emission intensity, T gas, and T vib are also investigated to understand the propagation mechanism of sliding DBD along the dielectric surface. The experimental results reveal that a negative DC component applied to a third electrode can extend the plasma extension region, indicating that the gas ionization is ignited by the nanosecond high-voltage pulse, while charge drift is forced by the surface potential difference caused by the negative high-voltage DC. The T gas is measured by optical emission spectroscopy related to the rotational bands of N2(C3 Πu  →  B3Πg), and is approximately 375  ±  5 K under the condition of U ±pulse  =  20 kV and U ‑DC  =  ‑20 kV. Compared with typical surface DBD plasma, sliding DBD plasma is quasi-diffusive and distributed more uniformly within the whole discharge gap. Furthermore, both surface DBD and sliding DBD are used for removing toluene from flowing air. It is found that sliding DBD has higher toluene degradation efficiency and energy yield than surface DBD when they are excited by the positive pulsed voltage (U +pulse).

  14. KEJADIAN INFEKSI ULANG VIRUS DENGUE BERDASAR RESPON IMUN HUMORALNYA PADA PENDERITA DBD DI DUA RUMAH SAKIT DI DKI JAKARTA

    Directory of Open Access Journals (Sweden)

    Djoko Yuwono

    2012-10-01

    Full Text Available Demam Berdarah Dengue (DBD merupakan penyakit endemik di Indonesia. Upaya pencegahan dengan imunisasi Dengue menghadapi beberapa kendala. Dewasa ini telah dilakukan penelitian dan pengembangan propfilaksi DBD di beberapa negara di Asia. Penelitian ini mencoba memberikan masukan mengenai pola infeksi ulang virus Dengue pada penderita DBD di dua RS di Jakarta. Telah diperiksa sebanyak  49 penderita tersangka Demam Berdarah Dengue di RSPI dan RS Pasar Rebo Jakarta. Konfirmasi DBD dilakukan dengan menentukan serokonversi anti Dengue menggunakan Uji Hambatan Hemaglutinasi (HI terhadap ke empat antigen Dengue, DV-1; DV-2; DV-3 dan DV-4. Selain itu dilakukan uji kualitatif untuk mendeteksi IgM anti Dengue dengan Uji Dengue Strip, Enzyme Immuno Assay (EIA. Hasil pengamatan menunjukkan bahwa dari 49 penderita tersangka DBD ditemukan 19 penderita (38,8% infeksi primer dan 11 penderita (22,4% infeksi sekunder DBD; 16,3% presumptif dan sisanya 22,4% seronegatif Dengue. Hasil pemeriksaan kuantitatif dengan Uji Hambatan Hemagalutinasi menunjukkan bahwa telah terjadi infeksi ulang oleh virus Dengue dengan gambaran sebagai berikut, yaitu: 2,0% (1 orang terinfeksi DV-1 dan DV-3; 4,08% (2 orang terinfeksi DV-2; 10,2% (5 orang terinfeksi DV-4. Selain itu ditemukan adanya koinfeksi yaitu: terinfeksi DV-1+2 dan DV-1+3 masing-masing sebesar 2,0% (1 org; terinfeksi DV-3+4 sebesar 4,08% (2 orang dan terinfeksi DV-1+2+3+4 sebesar 30,6% (15 orang. Hasil penelitian ini menunjukkan bahwa 30,6% penderita DBD dengan komposisi anti DV-1+2+3+4 temyata masih dapat terkena Demam Berdarah Dengue.   Kata kunci: penderita DBD; serologi; infeksi ulang dengue

  15. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K

    2015-01-01

    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  16. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S., E-mail: shussain@uos.edu.pk, E-mail: shussainuos@yahoo.com; Qazi, H. I. A.; Badar, M. A. [Department of Physics, University of Sargodha, 40100 Sargodha (Pakistan)

    2014-03-15

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  17. Phase resolved analysis of the homogeneity of a diffuse dielectric barrier discharge

    Science.gov (United States)

    Baldus, Sabrina; Kogelheide, Friederike; Bibinov, Nikita; Stapelmann, Katharina; Awakowicz, Peter

    2015-09-01

    Cold atmospheric pressure plasmas have already proven their ability of supporting the healing process of chronic wounds. Especially simple configurations like a dielectric barrier discharge (DBD), comprising of one driven electrode which is coated with a dielectric layer, are of interest, because they are cost-effective and easy to handle. The homogeneity of such plasmas during treatment is necessary since the whole wound should be treated evenly. In this investigation phase resolved optical emission spectroscopy is used to investigate the homogeneity of a DBD. Electron densities and reduced electric field distributions are determined with temporal and spatial resolution and the differences for applied positive and negative voltage pulses are studied.

  18. ANN-based Control of a Wheeled Inverted Pendulum System Using an Extended DBD Learning Algorithm

    Directory of Open Access Journals (Sweden)

    David Cruz

    2016-05-01

    Full Text Available This paper presents a dynamic model for a self-balancing vehicle using the Euler-Lagrange approach. The design and deployment of an artificial neuronal network (ANN in a closed-loop control is described. The ANN is characterized by integration of the extended delta bar-delta algorithm (DBD, which accelerates the adjustment of synaptic weights. The results of the control strategy in the dynamic model of the robot are also presented.

  19. ANN-Based Control of a Wheeled Inverted Pendulum System Using an Extended DBD Learning Algorithm

    Directory of Open Access Journals (Sweden)

    David Cruz

    2016-05-01

    Full Text Available This paper presents a dynamic model for a self-balancing vehicle using the Euler-Lagrange approach. The design and deployment of an artificial neuronal network (ANN in a closed-loop control is described. The ANN is characterized by integration of the extended delta-bar-delta algorithm (DBD, which accelerates the adjustment of synaptic weights. The results of the control strategy in the dynamic model of the robot are also presented.

  20. DBD2BS: connecting a DNA-binding protein with its binding sites

    OpenAIRE

    2012-01-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes c...

  1. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    Science.gov (United States)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  2. Molecular dynamics study of DNA binding by INT-DBD under a polarized force field.

    Science.gov (United States)

    Yao, Xue X; Ji, Chang G; Xie, Dai Q; Zhang, John Z H

    2013-05-15

    The DNA binding domain of transposon Tn916 integrase (INT-DBD) binds to DNA target site by positioning the face of a three-stranded antiparallel β-sheet within the major groove. As the negatively charged DNA directly interacts with the positively charged residues (such as Arg and Lys) of INT-DBD, the electrostatic interaction is expected to play an important role in the dynamical stability of the protein-DNA binding complex. In the current work, the combined use of quantum-based polarized protein-specific charge (PPC) for protein and polarized nucleic acid-specific charge (PNC) for DNA were employed in molecular dynamics simulation to study the interaction dynamics between INT-DBD and DNA. Our study shows that the protein-DNA structure is stabilized by polarization and the calculated protein-DNA binding free energy is in good agreement with the experimental data. Furthermore, our study revealed a positive correlation between the measured binding energy difference in alanine mutation and the occupancy of the corresponding residue's hydrogen bond. This correlation relation directly relates the contribution of a specific residue to protein-DNA binding energy to the strength of the hydrogen bond formed between the specific residue and DNA.

  3. Probing the mechanism of recognition of ssDNA by the Cdc13-DBD.

    Science.gov (United States)

    Eldridge, Aimee M; Wuttke, Deborah S

    2008-03-01

    The Saccharomyces cerevisiae protein Cdc13 tightly and specifically binds the conserved G-rich single-stranded overhang at telomeres and plays an essential role in telomere end-protection and length regulation. The 200 residue DNA-binding domain of Cdc13 (Cdc13-DBD) binds an 11mer single-stranded representative of the yeast telomeric sequence [Tel11, d(GTGTGGGTGTG)] with a 3 pM affinity and specificity for three bases (underlined) at the 5' end. The structure of the Cdc13-DBD bound to Tel11 revealed a large, predominantly aromatic protein interface with several unusual features. The DNA adopts an irregular, extended structure, and the binding interface includes a long ( approximately 30 amino acids) structured loop between strands beta2-beta3 (L(2-3)) of an OB-fold. To investigate the mechanism of ssDNA binding, we studied the free and bound states of Cdc13-DBD using NMR spectroscopy. Chemical shift changes indicate that the basic topology of the domain, including L(2-3), is essentially intact in the free state. Changes in slow and intermediate time scale dynamics, however, occur in L(2-3), while conformational changes distant from the DNA interface suggest an induced fit mechanism for binding in the 'hot spot' for binding affinity and specificity. These data point to an overall binding mechanism well adapted to the heterogeneous nature of yeast telomeres.

  4. Hubungan Sanitasi Lingkungan dan Tindakan 3M Plus Terhadap Kejadian DBD

    Directory of Open Access Journals (Sweden)

    rara marisdayana

    2016-02-01

    Full Text Available Sejak tahun 1968 sampai tahun 2012 World Health Organization (WHO mencatat negara Indonesia sebagai negara dengan kasus demam berdarah dengue yang tertinggi di Asia Tenggara. Pada tahun 2015 kasus DBD terus meningkat di Wilayah kerja puskesmas Kenali Besar, hal ini menyebabkan beberapa kelurahan yang berada di wilayah kerja puskesmas kenali besar termasuk daerah endemis DBD.Jenis Penelitian yaitu Penelitian kuantitatif dengan metode cross sectional. Sampel yang diambil dalam penelitian ini sesuai dengan kaedah proportional random sampling yaitu sebanyak 95 responden.Hasil analisis terdapat hubungan yang signifikan antara tempat penampungan air bersih dengan kejadian demam berdarah dengue diwilayah Kerja Puskesmas Kenali Besar (p value = 0,006 p≤ 0,05. terdapat hubungan yang signifikan antara Penyediaan tempat pembuangan sampah dengan kejadian demam berdarah dengue diwilayah Kerja Puskesmas Kenali Besar (p value = 0,002 p≤ 0,05. Terdapat hubungan yang signifikan antara tindakan 3M Plus dengan kejadian demam berdarah dengue diwilayah Kerja Puskesmas Kenali Besar (p value = 0,048 p≤ 0,05..           Ada hubungan antara sarana air bersih, penyediaan tempat sampah dan tindakan 3M Plus dengan kejadian DBD diwilayah Kerja Puskesmas Kenali Besar.

  5. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    Institute of Scientific and Technical Information of China (English)

    XU Guimin; ZHANG Guanjun; SHI Xingmin; MA Yue; WANG Ning; LI Yuan

    2009-01-01

    A coaxial dielectric barrier discharge plasma jet Was designed,which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply,and an atmospheric pressure glow-like discharge Was achieved.Two kinds of typical bacteria,i.e.,the Staphylococcus aureus(S.aurens)and Escherichia coil(E.coil),were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma.The killing log value (KLV)of S.aureus reached up to 5.38 with a treatment time of 90 s and that of E.coil up to 5.36 with 60 s,respectively.According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment.it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation,while the heat,electric field and UV photons had little effect.

  6. Surface modification of PE film by DBD plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Ren, C.-S. [State Key Laboratory of Material Modification by Electron, Ion and Laser Beams, Dalian University of Technology, Dalian 116023 (China)], E-mail: rchsh@dlut.edu.cn; Wang, K.; Nie, Q.-Y.; Wang, D.-Z.; Guo, S.-H. [State Key Laboratory of Material Modification by Electron, Ion and Laser Beams, Dalian University of Technology, Dalian 116023 (China)

    2008-12-30

    In this paper, surface modification of polyethylene (PE) films is studied by dielectric barrier discharge plasma treatment in air. The treated samples were examined by water contact angle measurement, calculation of surface free energy, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The water contact angle changes from the original value of 93.2{sup o} to the minimum value of 53.3{sup o} and surface free energy increases from 27.3 to 51.89 J/m{sup 2} after treatment time of 50 s. Both ATR and XPS show some oxidized species are introduced into the sample surface by the plasma treatment and that the change tendencies of the water contact angle and surface free energy with the treatment time are the same as that of the oxygen concentration on the treated sample surface. Cu films were deposited on the treated and untreated PE surfaces. The peel adhesive strength between the Cu film and the treated sample is 1.5 MPa, whereas the value is only 0.8 MPa between the Cu film and the untreated PE. SEM pictures show that the Cu film deposited on the plasma treated PE surface is smooth and the crystal grain is smaller, contrarily the Cu film on the untreated PE surface is rough and the crystal grain is larger.

  7. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air

    Science.gov (United States)

    Liu, Yidi; Qi, Haicheng; Fan, Zhihui; Yan, Huijie; Ren, ChunSheng

    2016-11-01

    In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.

  8. Transferred plasma jet from a dielectric barrier discharge for processing of poly(dimethylsiloxane) surfaces

    CERN Document Server

    Nascimento, Fellype do; Canesqui, Mara A; Moshkalev, Stanislav

    2016-01-01

    In this work we studied processing of poly(dimethylsiloxane) (PDMS) surfaces using dielectric barrier discharge (DBD) plasma in two different assemblies, one using the primary plasma jet obtained from a conventional DBD and the other using a DBD plasma jet transfer. The evolution of water contact angle (WCA) in function of plasma processing time and in function of aging time as well as the changes in the surface roughness of PDMS samples for both plasma treatments have been studied. We also compared vibrational and rotational temperatures for both plasmas and for the first time the vibrational temperature (T_vib) for the transferred plasma jet has been shown to be higher as compared with the primary jet. The increment in the T_vib value seems to be the main reason for the improvements in adhesion properties and surface wettability for the transferred plasma jet. Possible explanations for the increase in the vibrational temperature are presented.

  9. Design of experiment analysis of CO2 dielectric barrier discharge conditions on CO production

    Science.gov (United States)

    Becker, Markus; Ponduri, Srinath; Engeln, Richard; van de Sanden, Richard; Loffhagen, Detlef

    2016-09-01

    Dielectric barrier discharges (DBD) are frequently used for the generation of CO from CO2 which is of particular interest for syngas production. It has been found by means of fluid modelling in that the CO2 conversion frequency in a CO2 DBD depends linearly on the specific energy input (SEI) while the energy efficiency of CO production is only weakly dependent on the SEI. Here, the same numerical model as in is applied to study systematically the influence of gas pressure, applied voltage amplitude and frequency on the CO2 conversion frequency and the energy efficiency of CO production based on a 2-level 3-factor full factorial experimental design. It is found that the operating conditions of the CO2 DBD for CO production can be chosen to either have an optimal throughput or a better energy efficiency. This work was partly supported by the German Research Foundation within the Collaborative Research Centre Transregio 24.

  10. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma.

    Science.gov (United States)

    Li, Yingying; Kojtari, Arben; Friedman, Gary; Brooks, Ari D; Fridman, Alex; Ji, Hai-Feng

    2014-02-13

    L-Valine solutions in water and phosphate buffer were treated with nonthermal plasma generated by using a dielectric barrier discharge (DBD) device and the products generated after plasma treatments were characterized by (1)H NMR and GC-MS. Our results demonstrate that L-valine is decomposed to acetone, formic acid, acetic acid, threo-methylaspartic acid, erythro-methlyaspartic acid, and pyruvic acid after direct exposure to DBD plasma. The concentrations of these compounds are time-dependent with plasma treatment. The mechanisms of L-valine under the DBD plasma are also proposed in this study. Acetone, pyruvic acid, and organic radicals (•)CHO, CH3COCH2OO(•) (acetonylperoxy), and CH3COC(OH)2OO(•) (1,1-dihydroxypropan-2-one peroxy) may be the determining chemicals in DNA damage.

  11. Single dielectric barrier discharge characteristics in needle-to-plane configuration

    Science.gov (United States)

    Emelyanov, O. A.; Shemet, M. V.

    2014-08-01

    Single dielectric barrier discharges (DBDs) in the ‘needle—submillimetric air gap—polymer barrier—plane’ configuration were investigated. The measurements of breakdown voltages, discharge current pulses, transferred charges and surface charge distributions for both needle polarities were conducted by the developed experimental setup. For the same gaps the breakdown voltage and the accumulated surface charge for the positive needle polarity are larger than the ones for the negative polarity. It is shown that the main contribution to the DBD current pulse and accumulated charge is determined by the surface phase of discharge process. Additionally the subsequent DBD development during one period of the applied voltage of triangular waveform was observed. The results indicate a ‘memory effect’ of the DBD development.

  12. Mesoporous TiO2 films fabricated using atmospheric pressure dielectric barrier discharge jet.

    Science.gov (United States)

    Seo, Hyung-Kee; Elliott, C Michael; Shin, Hyung-Shik

    2010-12-01

    TiO2 nanoparticles were synthesized by a facile method of dielectric barrier discharge jet (DBD jet) for the dye-sensitized solar cell (DSSC) and other potential applications. DBD jet is utilized as a method for deposition of TiO2 nanoparticles with a 9 μm/min growth rate which is more than ×25 faster than reported previously. Their performance was compared with cells fabricated using commercial TiO2 nanoparticles (P25). The crystallinity and chemical bonding states of samples were characterized by XRD and XPS. Photoanodes fabricated by the DBD jet method resulted in approximately 50% higher photoconversion efficiency than ones prepared from P25 nanoparticles.

  13. Temperature characterization of dielectric barrier discharge actuators: influence of electrical and geometric parameters

    Science.gov (United States)

    Tirumala, Rakshit; Benard, Nicolas; Moreau, Eric; Fenot, Matthieu; Lalizel, Gildas; Dorignac, Eva

    2014-06-01

    Dielectric barrier discharge (DBD) based surface plasma actuators have been well studied as flow manipulation devices. However, there is a dearth of research on their application for convective heat transfer enhancement. The adoption of DBD actuators to such areas requires a detailed study on the thermal characteristics of the plasma discharge. The present study conducts infrared thermography measurements on the surface of a thick dielectric (2-4 mm) based DBD actuator and characterizes it against various electrical and geometrical parameters. The temperature distribution is also studied in relation to the regimes of the discharge cycle through comparison with intensified charge-coupled device (iCCD) imaging. Measurements are also conducted with thin cylindrical electrode (wire) based configurations to study the influence of streamer inhibition. Based on the observed experimental results, a hypothesis is proposed on the mechanism of dielectric heating and the relationship between dielectric surface temperature and gas temperature.

  14. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  15. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Institute of Scientific and Technical Information of China (English)

    MOK Young Sun; JO Jin-Oh; LEE Heon-Ju

    2008-01-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  16. Methane conversion into higher hydrocarbons with dielectric barrier discharge micro-plasma reactor

    Institute of Scientific and Technical Information of China (English)

    Baowei; Wang; Wenjuan; Yan; Wenjie; Ge; Xiaofei; Duan

    2013-01-01

    We reported a coaxial,micro-dielectric barrier discharge(micro-DBD)reactor and a conventional DBD reactor for the direct conversion of methane into higher hydrocarbons at atmospheric pressure.The effects of input power,residence time,discharge gap and external electrode length were investigated for methane conversion and product selectivity.We found the conversion of methane in a micro-DBD reactor was higher than that in a conventional DBD reactor.And at an input power of 25.0 W,the conversion of methane and the total C2+C3 selectivity reached 25.10% and 80.27%,respectively,with a micro-DBD reactor of 0.4 mm discharge gap.Finally,a nonlinear multiple regression model was used to study the correlations between both methane conversion and product selectivity and various system variables.The calculated data were obtained using SPSS 12.0 software.The regression analysis illustrated the correlations between system variables and both methane conversion and product selectivity.

  17. Preliminary Investigation of a Dielectric Barrier Discharge Lamp in Open Air at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Feng; WANG Wei-Wei; CHANG Xi-Jiang; LIANG Rong-Qing

    2011-01-01

    @@ A dielectric barrier discharge (DBD) lamp is investigated by using sinusoidal power with a 10 kHz frequency in open air at atmospheric pressure.With increasing applied voltages, the different discharge phenomena appear.At relatively low voltages, the discharge states are general stochastic filamentary discharges with weak light.However, at relatively high voltages, the walls of quartz tubes are heated sharply by plasma, and then the dazzling light is emitted very quickly to form the DBD Lamp, corresponding to the low maintaining voltage that is lower than the ignited voltage.The discharge state or mode of the DBD lamp that corresponds to the glow discharge is deduced according to the wave form of the circuit current, which is evidently different from the filamentary discharges.Under these conditions, the spectrum of the DBD lamp is continuous in the range 400-932nm, which is scanned in the range 300-932nm.It is also shown that there is another discharge state or mode that is different from the traditional filamentary discharges.Therefore, it is concluded that the discharge state or mode of the DBD lamp is a glow discharge.

  18. Hubungan Tindakan Pemberantasan Sarang Nyamuk dengan Keberadaan Larva Vektor DBD di Kelurahan Lubuk Buaya

    Directory of Open Access Journals (Sweden)

    Ayu Azlina

    2016-01-01

    Full Text Available AbstrakKelurahan Lubuk Buaya merupakan daerah endemik Demam Berdarah Dengue (DBD dengan korban meninggal terbanyak pada tahun 2012. Penyebaran DBD dipengaruhi oleh faktor lingkungan dan tindakan Pemberantasan Sarang Nyamuk (PSN. Tujuan penelitian ini adalah menentukan hubungan tindakan pemberantasan sarang nyamuk dan keberadaan larva vektor DBD di Kelurahan Lubuk Buaya Kecamatan Koto Tangah Kota Padang. Jenis penelitian adalah analitik observasional dengan rancangan cross sectional. Penelitian dilaksanakan di Kelurahan Lubuk Buaya dengan 110 sampel pada bulan Desember 2014. Sampel diambil dengan metode Multistage Random Sampling. Pengambilan data menggunakan kuesioner dan survei larva terhadap kontainer yang berada di dalam dan di luar rumah responden. Data disajikan dalam bentuk tabel ditribusi dan dianalisis statistik dengan uji chi-square. Hasil penelitian menunjukkan lebih dari separuh responden melakukan tindakan PSN yang baik. Keberadaan larva vektor DBD tergolong tinggi dengan HI 35,45%, CI 13,41%, BI 50% dan Density figure/Df= 5. Terdapat hubungan yang bermakna antara tindakan pemberantasan sarang nyamuk dengan keberadaan larva vektor DBD di kelurahan Lubuk Buaya (p=0,001. Pelaksanaan PSN di Kelurahan Lubuk Buaya secara umum belum terlaksana secara optimal.Kata kunci: PSN, larva, vektor DBD AbstractKelurahan Lubuk Buaya is a Dengue Hemorhagic Fever (DHF endemic area with the highest death case in 2012. The spreading of DHF influenced by environmental factor and practice of mosquito breading place eradication. The objective of this study was to determine the relationship between mosquito breading place eradication practice and the presence of larvae DHF’s vector. The research was an analitic observational with cross-sectional study design. The research was held in Lubuk Buaya with 110 samples in December 2014. The samples were taken with the Multistage Random Sampling methods. Data’s were collected by using a questionnare and survey

  19. Scintillating bolometers for Double Beta Decay search

    CERN Document Server

    Gironi, Luca

    2009-01-01

    In the field of Double Beta Decay (DBD) searches, the use of high resolution detectors in which background can be actively discriminated is very appealing. Scintillating bolometers containing a Double Beta Decay emitter can largely fulfill this very interesting possibility. In this paper we present the latest results obtained with CdWO4 and CaMoO4 crystals. Moreover we report, for the first time, a very interesting feature of CaMoO4 bolometers: the possibility to discriminate beta-gamma events from those induced by alpha particles thanks to different thermal pulse shape.

  20. An international comparison of the effect of policy shifts to organ donation following cardiocirculatory death (DCD on donation rates after brain death (DBD and transplantation rates.

    Directory of Open Access Journals (Sweden)

    Aric Bendorf

    Full Text Available During the past decade an increasing number of countries have adopted policies that emphasize donation after cardiocirculatory death (DCD in an attempt to address the widening gap between the demand for transplantable organs and the availability of organs from donation after brain death (DBD donors. In order to examine how these policy shifts have affected overall deceased organ donor (DD and DBD rates, we analyzed deceased donation rates from 82 countries from 2000-2010. On average, overall DD, DBD and DCD rates have increased over time, with the proportion of DCD increasing 0.3% per year (p = 0.01. Countries with higher DCD rates have, on average, lower DBD rates. For every one-per million population (pmp increase in the DCD rate, the average DBD rate decreased by 1.02 pmp (95% CI: 0.73, 1.32; p<0.0001. We also found that the number of organs transplanted per donor was significantly lower in DCD when compared to DBD donors with 1.51 less transplants per DCD compared to DBD (95% CI: 1.23, 1.79; p<0.001. Whilst the results do not infer a causal relationship between increased DCD and decreased DBD rates, the significant correlation between higher DCD and lower DBD rates coupled with the reduced number of organs transplanted per DCD donor suggests that a national policy focus on DCD may lead to an overall reduction in the number of transplants performed.

  1. An international comparison of the effect of policy shifts to organ donation following cardiocirculatory death (DCD) on donation rates after brain death (DBD) and transplantation rates.

    Science.gov (United States)

    Bendorf, Aric; Kelly, Patrick J; Kerridge, Ian H; McCaughan, Geoffrey W; Myerson, Brian; Stewart, Cameron; Pussell, Bruce A

    2013-01-01

    During the past decade an increasing number of countries have adopted policies that emphasize donation after cardiocirculatory death (DCD) in an attempt to address the widening gap between the demand for transplantable organs and the availability of organs from donation after brain death (DBD) donors. In order to examine how these policy shifts have affected overall deceased organ donor (DD) and DBD rates, we analyzed deceased donation rates from 82 countries from 2000-2010. On average, overall DD, DBD and DCD rates have increased over time, with the proportion of DCD increasing 0.3% per year (p = 0.01). Countries with higher DCD rates have, on average, lower DBD rates. For every one-per million population (pmp) increase in the DCD rate, the average DBD rate decreased by 1.02 pmp (95% CI: 0.73, 1.32; pDBD donors with 1.51 less transplants per DCD compared to DBD (95% CI: 1.23, 1.79; pDBD rates, the significant correlation between higher DCD and lower DBD rates coupled with the reduced number of organs transplanted per DCD donor suggests that a national policy focus on DCD may lead to an overall reduction in the number of transplants performed.

  2. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, Michelle Jean [Univ. of California, Berkeley, CA (United States)

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  3. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Lamprecht Manfred

    2012-09-01

    Full Text Available Abstract Background Probiotics are an upcoming group of nutraceuticals claiming positive effects on athlete’s gut health, redox biology and immunity but there is lack of evidence to support these statements. Methods We conducted a randomized, double-blinded, placebo controlled trial to observe effects of probiotic supplementation on markers of intestinal barrier, oxidation and inflammation, at rest and after intense exercise. 23 trained men received multi-species probiotics (1010 CFU/day, Ecologic®Performance or OMNi-BiOTiC®POWER, n = 11 or placebo (n = 12 for 14 weeks and performed an intense cycle ergometry over 90 minutes at baseline and after 14 weeks. Zonulin and α1-antitrypsin were measured from feces to estimate gut leakage at baseline and at the end of treatment. Venous blood was collected at baseline and after 14 weeks, before and immediately post exercise, to determine carbonyl proteins (CP, malondialdehyde (MDA, total oxidation status of lipids (TOS, tumor necrosis factor-alpha (TNF-α, and interleukin-6 (IL-6. Statistical analysis used multifactorial analysis of variance (ANOVA. Level of significance was set at p  Results Zonulin decreased with supplementation from values slightly above normal into normal ranges ( 0.1. CP increased significantly from pre to post exercise in both groups at baseline and in the placebo group after 14 weeks of treatment (p = 0.006. After 14 weeks, CP concentrations were tendentially lower with probiotics (p = 0.061. TOS was slightly increased above normal in both groups, at baseline and after 14 weeks of treatment. There was no effect of supplementation or exercise on TOS. At baseline, both groups showed considerably higher TNF-α concentrations than normal. After 14 weeks TNF-α was tendentially lower in the supplemented group (p = 0.054. IL-6 increased significantly from pre to post exercise in both groups (p = 0.001, but supplementation had no effect. MDA

  4. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions

    CERN Document Server

    Ejiri, H

    2016-01-01

    Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He,t) charge exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental GT (Gamow-Teller) and F (Fermi) strengths. They are consistent with the empirical SD NMEs based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.

  5. Executive functions in preschool children with ADHD and DBD: an 18-month longitudinal study.

    Science.gov (United States)

    Schoemaker, Kim; Bunte, Tessa; Espy, Kimberly Andrews; Deković, Maja; Matthys, Walter

    2014-01-01

    In this longitudinal study, we examined the stability of the association between executive functions and externalizing behavior problems, and the developmental change of executive functions in a predominately clinically diagnosed preschool sample (N = 200). Inhibition and working memory performance were assessed three times in 18 months. Across time, poorer inhibition performance in young children was associated with attention deficit hyperactivity disorder (ADHD) and disruptive behavior disorders (DBD), and poorer working memory performance was associated with ADHD. Inhibition and working memory performance increased over time, especially in the early preschool period. The improvement of inhibition performance was more pronounced in the clinically diagnosed children compared to the TD children.

  6. KARAKTERISTIK LINGKUNGAN FISIK, BIOLOGI, DAN SOSIAL DI DAERAH ENDEMIS DBD KOTA BANJAR TAHUN 2011

    Directory of Open Access Journals (Sweden)

    Arda Dinata

    2015-03-01

    Full Text Available Demam Berdarah Dengue (DBD ialah penyakit menular akibat virus dengue yang ditularkan Aedes aegypti sebagai vektor utama. Penyakit ini dapat menimbulkan KLB di Kota Banjar. Penelitian ini bertujuan untuk mengkaji karakteristik lingkungan fisik, biologi dan sosial daerah endemis DBD Kota Banjar. Tujuan penelitian ini melihat karakteristik lingkungan fisik, biologi dan sosial. Penelitian ini dilakukan secara deskriptif dengan rancangan potong lintang. Hasilnya menunjukan bahwa karakteristik lingkungan fisik yang meliputi: Kepadatan rumah: daerah endemis tinggi (517,884 unit/km2, endemis sedang (271,713 dan 331,584 unit/km2, dan endemis rendah (392,171 unit/km2. Keberadaan kontainer: daerah endemis tinggi (95,9%, endemis sedang (95% dan 100%, dan endemis rendah (100%. Suhu udara rumah: daerah endemis tinggi (27,470C, endemis sedang (27,2% dan 27,930C, dan endemis rendah (26,850C. Kelembaban ruangan: daerah endemis tinggi (56,71%, endemis sedang (60,2% dan 62,47% dan endemis rendah (65,43%. Keberadaan baju menggantung: daerah endemis tinggi (89,8%, endemis sedang (80% dan 85% dan endemis rendah (81,8%. Keberadaan kasa: daerah endemis tinggi (30,6%, endemis sedang (10% dan 25% dan endemis rendah (27,3%. Keberadaan tanaman hias: daerah endemis tinggi (61,2%, endemis sedang (30% dan 95% dan endemis rendah (81,8%. Keberadaan lahan pekarangan: daerah endemis tinggi (98%, endemis sedang (75% dan 95% dan endemis rendah (100%. Keberadaan jentik nyamuk: daerah endemis tinggi (27%, endemis sedang (20% dan 35% dan endemis rendah (36%. Daerah endemis tinggi DBD dan endemis sedang sebagian besar berpendidikan tamat SLTA, endemis rendah tamat berpendidikan SLTP. Sebagian besar memiliki kesamaan pekerjaan, yaitu wiraswata dan ibu rumah tangga. Sebagian besar memiliki kesamaan penghasilan, yaitu Rp. 750.000-1.000.000/bulan. Mobilitas penduduk: endemis tinggi (49%, endemis sedang (55% dan 85%, endemis rendah (100%. Keberadaan kelompok peduli DBD: endemis tinggi (40

  7. Diagnosis of the ion density in two discharge modes generated in atmospheric pressure argon with pin-to-plate dielectric barrier geometry

    Energy Technology Data Exchange (ETDEWEB)

    Qi Bing; Huang Jianjun; Qiu Yunming; Liu Ying; Liu Lijun [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2011-08-15

    In this study, the ion densities of an ac dielectric barrier discharge (DBD) (that is, a pin-to-plate DBD) as a function of the applied frequency in argon have been studied by means of the plasma radiation. The pin-to-plate DBD shows the characteristic of radiation oscillations with a low-frequency wave hidden in a high-frequency wave to form a mosaic structure, which reveals the coexistence of two discharge modes in the ac barrier discharge, i.e., the streamer mode and the corona mode. According to the oscillation frequencies, the ion densities are calculated. The results show that the ion density in streamer discharge is higher than that in corona discharge for about 1-2 magnitude orders.

  8. Present and future of double-beta decay searches with bolometric detectors

    Science.gov (United States)

    Cardani, L.

    2016-01-01

    Thanks to the excellent energy resolution, high efficiency and versatility, bolometric detectors are primed for the search of neutrinoless double-beta decay (0 ν DBD). The most advanced bolometric experiment, CUORE, is studying the 0 ν DBD of 130Te using a 741kg array of TeO2 crystals. CUORE points to a 90% CL sensitivity on the half-life of 0 ν DBD of 9.5×1025 yr in 5yr, corresponding to an upper limit on the neutrino Majorana mass of 50-130meV. This sensitivity will allow to touch, but not to explore, the region corresponding to the inverted hierarchy mass scenario. In this document I present the status of CUORE and the possible upgrades of the bolometric technology in view of a next generation experiment.

  9. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  10. Numerical simulation of nanosecond pulsed DBD in lean methane-air mixture for typical conditions in internal engines

    Science.gov (United States)

    Takana, Hidemasa; Nishiyama, Hideya

    2014-06-01

    Detailed two-dimensional numerical simulations of a high energy loading nanosecond dc pulse DBD in a lean methane-air mixture were conducted for plasma-assisted combustion by integrating individual models of plasma chemistry, photoionization and energy loading. The DBD streamer propagation process with radical productions was clarified at 10 atm and 600 K as under the condition of actual internal engines at ignition. Energy is loaded to the streamer first by the formation of plasma channel and then ceased due to the self-shielding effect. Because of the inversed electric field in a discharge space during decrease in applied voltage, energy is loaded to the discharge again. It was found that higher energy is loaded to the DBD streamer for larger dielectric constant even at lower applied voltage, and higher number density of oxygen radical is produced at almost the same radical production efficiency.

  11. Application of dielectric surface barrier discharge for food storage

    Directory of Open Access Journals (Sweden)

    Yassine BELLEBNA

    2015-12-01

    Full Text Available Ozone (O3 is a powerful oxidizer and has much higher disinfection potential than chlorine and other disinfectants. Ozone finds its application mainly in water treatment and air purification Dielectric barrier discharge (DBD method has proved to be the best method to produce ozone. Dried air or oxygen is forced to pass through a 1-2 mm gap. The aim of this study was to show that disinfection system using ozone generated by dielectric barrier discharge (DBD is an effective alternative to be used in food industry and ensures a safe quality of air for optimum preservation of fruits and vegetables. The DBDs are specific kind of discharges because one (or sometimes both electrodes is covered by a dielectric material, thereby preventing the discharge to move towards electrical breakdown. A succession of microdischarges occurs rapidly; their "lifetime" is in the range of a few nanoseconds. One of their most important applications is the production of ozone for air treatment, used mainly in the area of food industry, for extending the storage life of foods. After the achievement of a surface DBD reactor of cylindrical shape and its electrical characterization, it was then used as an ozone generator for air disinfection. Obtained results have shown that this reactor used as an ozone generator is effective for disinfection of air by removing viruses, bacteria and pathogens, causing the slowdown of the ripening process of fruits and vegetables.

  12. Review of Design Document Basis of Nuclear Power Plants and Vandellos ASCA; Revision de los Documentos Bases de Diseno (DBD) de las Centrales Nucleares de Asco y Vandellos

    Energy Technology Data Exchange (ETDEWEB)

    Bellver Gamundi, S.

    2011-07-01

    The review process of the Design Bases of Documents (DBD) have been reviewed several times by international organizations. In 1990 the NUMARC created a working group, which was established guidelines to perform the review of the DBD, these guidelines were published in the 90-12 NUMARC Desing Bases Program Guidelines (Ref. 2).

  13. Thin film deposition at atmospheric pressure using dielectric barrier discharges: Advances on three-dimensional porous substrates and functional coatings

    Science.gov (United States)

    Fanelli, Fiorenza; Bosso, Piera; Mastrangelo, Anna Maria; Fracassi, Francesco

    2016-07-01

    Surface processing of materials by atmospheric pressure dielectric barrier discharges (DBDs) has experienced significant growth in recent years. Considerable research efforts have been directed for instance to develop a large variety of processes which exploit different DBD electrode geometries for the direct and remote deposition of thin films from precursors in gas, vapor and aerosol form. This article briefly reviews our recent progress in thin film deposition by DBDs with particular focus on process optimization. The following examples are provided: (i) the plasma-enhanced chemical vapor deposition of thin films on an open-cell foam accomplished by igniting the DBD throughout the entire three-dimensional (3D) porous structure of the substrate, (ii) the preparation of hybrid organic/inorganic nanocomposite coatings using an aerosol-assisted process, (iii) the DBD jet deposition of coatings containing carboxylic acid groups and the improvement of their chemical and morphological stability upon immersion in water.

  14. Lipidomics comparing DCD and DBD liver allografts uncovers lysophospholipids elevated in recipients undergoing early allograft dysfunction.

    Science.gov (United States)

    Xu, Jin; Casas-Ferreira, Ana M; Ma, Yun; Sen, Arundhuti; Kim, Min; Proitsi, Petroula; Shkodra, Maltina; Tena, Maria; Srinivasan, Parthi; Heaton, Nigel; Jassem, Wayel; Legido-Quigley, Cristina

    2015-12-04

    Finding specific biomarkers of liver damage in clinical evaluations could increase the pool of available organs for transplantation. Lipids are key regulators in cell necrosis and hence this study hypothesised that lipid levels could be altered in organs suffering severe ischemia. Matched pre- and post-transplant biopsies from donation after circulatory death (DCD, n = 36, mean warm ischemia time = 2 min) and donation after brain death (DBD, n = 76, warm ischemia time = none) were collected. Lipidomic discovery and multivariate analysis (MVA) were applied. Afterwards, univariate analysis and clinical associations were conducted for selected lipids differentiating between these two groups. MVA grouped DCD vs. DBD (p = 6.20 × 10(-12)) and 12 phospholipids were selected for intact lipid measurements. Two lysophosphatidylcholines, LysoPC (16:0) and LysoPC (18:0), showed higher levels in DCD at pre-transplantation (q < 0.01). Lysophosphatidylcholines were associated with aspartate aminotransferase (AST) 14-day post-transplantation (q < 0.05) and were more abundant in recipients undergoing early allograft dysfunction (EAD) (p < 0.05). A receiver-operating characteristics (ROC) curve combining both lipid levels predicted EAD with 82% accuracy. These findings suggest that LysoPC (16:0) and LysoPC (18:0) might have a role in signalling liver tissue damage due to warm ischemia before transplantation.

  15. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    Institute of Scientific and Technical Information of China (English)

    WANG Yanhui; YE Huanhuan; ZHANG Jiao; WANG Qi; ZHANG Jie; WANG Dezhen

    2016-01-01

    In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.

  16. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    Science.gov (United States)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  17. Statistical Analysis of Reducing Biochemical Oxygen Demand (BOD) on Industrial Rubber Wastewater using Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Syakur, Abdul; Zaman, Badrus; Yunita Nurmaliakasih, Dias

    2017-04-01

    Dielectric Barrier Discharge plasma (DBD) is one of type non-thermal plasma (non-equilibrium plasma) or can be referred to as cold plasma. In this research, DBD plasma be utilized to reduce organic compounds like Biochemichal oxygen demand in the wastewater rubber processing. In the environment field DBD plasma has been used as a treatment for reducing air pollutants such as gas COx, NOx and HC. In addition DBD plasma have been developed to processed wastewater as an alternative technology in wastewater treatment. DBD plasma appears when the electrode is given a high voltage so that, it will form electric field in the area of the electrodes which allows the ionization and the presence of high-energy electrons in the area. The presence of these electrons will ionize molecules of H2O into active species such as OH•, H• and H2O2. The active species that can oxidize into CO2 and H2O so, BOD that can be degraded. In this research for wastewater treatment used high voltage are 10kV, 11kV, 12kV and 13kV and variations of processing time for 5, 10, 15, 20, and 25 (minutes). By increasing the voltage and extend the contact time then the speed variation of electrons to ionize the greater and more active species to be formed to degrade the pollutants to the maximum. This research used quantitative analysis with statistical analysis using SPSS software.

  18. The Effect of Dielectric Barrier Discharge Plasma Treatment on the Microorganisms Found in Raw Cow’s Milk

    OpenAIRE

    Aslan, Yakup

    2016-01-01

    Milk is an essential source of nutrition especially for the breastfed infants. Sterilization of milk is necessary because it can be contaminated by microorganisms due to unhygienic collection and storage conditions. In this study, the sterilization of raw cow milk was performed by using dielectric barrier discharge (DBD) plasma method. Raw milk was transferred to the plasma reactor and dielectric barrier discharge cold plasma was performed by changing various parameters including voltage, exp...

  19. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification.

    Science.gov (United States)

    Tsai, Kuang-Lei; Sun, Yuh-Ju; Huang, Cheng-Yang; Yang, Jer-Yen; Hung, Mien-Chie; Hsiao, Chwan-Deng

    2007-01-01

    FOXO3a is a transcription factor of the FOXO family. The FOXO proteins participate in multiple signaling pathways, and their transcriptional activity is regulated by several post-translational mechanisms, including phosphorylation, acetylation and ubiquitination. Because these post-translational modification sites are located within the C-terminal basic region of the FOXO DNA-binding domain (FOXO-DBD), it is possible that these post-translational modifications could alter the DNA-binding characteristics. To understand how FOXO mediate transcriptional activity, we report here the 2.7 A crystal structure of the DNA-binding domain of FOXO3a (FOXO3a-DBD) bound to a 13-bp DNA duplex containing a FOXO consensus binding sequence (GTAAACA). Based on a unique structural feature in the C-terminal region and results from biochemical and mutational studies, our studies may explain how FOXO-DBD C-terminal phosphorylation by protein kinase B (PKB) or acetylation by cAMP-response element binding protein (CBP) can attenuate the DNA-binding activity and thereby reduce transcriptional activity of FOXO proteins. In addition, we demonstrate that the methyl groups of specific thymine bases within the consensus sequence are important for FOXO3a-DBD recognition of the consensus binding site.

  20. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry

    Science.gov (United States)

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...

  1. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H M; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A M; Troost, Freddy J

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  2. Synthesis of fluorescent label, DBD-beta-proline, and the resolution efficiency for chiral amines by reversed-phase chromatography.

    Science.gov (United States)

    Min, Jun Zhe; Toyo'oka, Toshimasa; Kato, Masaru; Fukushima, Takeshi

    2005-01-01

    DBD-d(and l)-beta-proline, new fluorescent chiral derivatization reagents, were synthesized from the reaction of 4-(N,N-dimethylaminosulfonyl)-7- fl uoro-2,1,3-benzoxadiazole (DBD-F) with beta-proline. The racemic mixture synthesized was separated by a chiral stationary phase (CSP) column, Chiralpak AD-H, with n-hexane-EtOH-TFA-diethylamine (70:30:0.1:0.1) as the mobile phase. The dl-forms were decided according to the results obtained from a circular dichroism (CD) detector after separation by the CSP column. The fractionated enantiomers reacted with chiral amine to produce a couple of diastereomers. The labeling proceeded in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and pyridine as the activation reagents. The reaction conditions were mild and no racemization occurred during the diastereomer formation. The resulting diastereomers fluoresced at around 570 nm (excitation at around 460 nm). Good linearity of the calibration curves was obtained in the range 1-75 pmol and the detection limits on chromatogram were less than 1 pmol. The separability of the diastereomers was compared with the diastereomers derived from DBD-d(or l)-proline. The resolution values (Rs) obtained from the diastereomers of three chiral amines with DBD-d(or l)-beta-proline were higher than those derived from DBD-d(or l)-proline, e.g. dl-phenylalanine methylester (dl-PAME), 2.23 vs 1.37; (R)(S)-1-phenylethylamine [(R)(S)-PEA], 2.09 vs 1.13; and (R)(S)-1-(1-naphthyl)ethylamines [(R)(S)-NEA], 5.19 vs 1.23. The results suggest that the position of COOH group on pyrrolidine moiety in the structures is one of the important factors for the efficient separation of a couple of the diastereomers.

  3. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.

    Science.gov (United States)

    Cevc, Gregor; Schätzlein, Andreas; Richardsen, Holger

    2002-08-19

    The stability of various aggregates in the form of lipid bilayer vesicles was tested by three different methods before and after crossing different semi-permeable barriers. First, polymer membranes with pores significantly smaller than the average aggregate diameter were used as the skin barrier model; dynamic light scattering was employed to monitor vesicle size changes after barrier passage for several lipid mixtures with different bilayer elasticities. This revealed that vesicles must adapt their size and/or shape, dependent on bilayer stability and elasto-mechanics, to overcome an otherwise confining pore. For the mixed lipid aggregates with highly flexible bilayers (Transfersomes), the change is transient and only involves vesicle shape and volume adaptation. The constancy of ultradeformable vesicle size before and after pores penetration proves this. This is remarkable in light of the very strong aggregate deformation during an enforced barrier passage. Simple phosphatidylcholine vesicles, with less flexible bilayers, lack such capability and stability. Conventional liposomes are therefore fractured during transport through a semi-permeable barrier; as reported by other researchers, liposomes are fragmented to the size of a narrow pore if sufficient pressure is applied across the barrier; otherwise, liposomes clog the pores. The precise outcome depends on trans-barrier flux and/or on relative vesicle vs. pore size. Lipid vesicles applied on the skin behave accordingly. Mixed lipid vesicles penetrate the skin if they are sufficiently deformable. If this is the case, they cross inter-cellular constrictions in the organ without significant composition or size modification. To prove this, we labelled vesicles with two different fluorescent markers and applied the suspension on intact murine skin without occlusion. The confocal laser scanning microscopy (CLSM) of the skin then revealed a practically indistinguishable distribution of both labels in the stratum

  4. Use of DBD-FISH for the study of cervical cancer progression.

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I; Fernández, Jose Luis; Dávila-Rodríguez, Martha I; López-Fernández, Carmen; Gosálvez, Jaime

    2015-01-01

    DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) is a procedure to detect and quantify DNA breaks in single cells, either in the whole genome or within specific DNA sequences. This methodology combines microgel embedding of cells and DNA unwinding procedures with the power of FISH coupled to digital image analysis. Cells trapped within an agarose matrix are lysed and immersed in an alkaline unwinding solution that produces single-stranded DNA motifs beginning at the ends of internal DNA strand breaks. After neutralization, the microgel is dehydrated and the cells are incubated with fluorescently labeled DNA probes. The amount of hybridized probe at a target sequence correlates with the amount of single-stranded DNA generated during the unwinding step, which is in turn proportional to the degree of local DNA breakage. A general view of the technique is provided, emphasizing its versatility for evaluating the association between DNA damage and progressive stages of cervical neoplasia.

  5. Theoretical study on the degradation reaction of octachlorinated dibenzo-p-dioxin with atomic oxygen O((3)P) in dielectric barrier discharge reactor.

    Science.gov (United States)

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Hu, Jingtian; Qi, Chuansong

    2014-11-01

    Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O((3)P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6-31+G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed.

  6. Dielectric barrier discharges with steep voltage rise: mapping of atomic nitrogen in single filaments measured by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Lukas, C.; Spaan, M.; Schulz-von der Gathen, V.; Thomson, M.; Wegst, R.; Döbele, H. F.; Neiger, M.

    2001-08-01

    Space and time resolved relative atomic density distributions of nitrogen have been measured for the first time at a single filament within a dielectric barrier discharge (DBD) reactor with submillimetre radial dimensions. Two-photon-Absorption Laser-Induced Fluorescence (TALIF) spectroscopy of atomic nitrogen using radiation at λ = 206.7 nm is applied to a DBD with fast rising voltage amplitudes. The decay time of the atomic nitrogen density depends strongly on the position within the discharge and the distance from the dielectric where the lifetime is maximum. Admixed oxygen leads to an increase of the N density decay by an order of magnitude even at small fractions.

  7. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Saiful Islam [Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350 (Korea, Republic of); Lee, Eun-Jung [Food Safety Research Group, Korea Food Research Institute, Seongnam-si, Gyeonggi-Do (Korea, Republic of); Kim, Yun-Ji, E-mail: yunji@kfri.re.kr [Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350 (Korea, Republic of); Food Safety Research Group, Korea Food Research Institute, Seongnam-si, Gyeonggi-Do (Korea, Republic of)

    2015-10-15

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  8. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    Directory of Open Access Journals (Sweden)

    Muhammad Saiful Islam Khan

    2015-10-01

    Full Text Available A submerged dielectric barrier discharge plasma reactor (underwater DBD has been used on Escherichia coli O157:H7 (ATCC 35150. Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml. E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES shows that OH and NO (α, β radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  9. Formation and characteristics of patterns in atmospheric-pressure radio-frequency dielectric barrier discharge plasma

    Science.gov (United States)

    Yang, Lizhen; Liu, Zhongwei; Mao, Zhiguo; Li, Sen; Chen, Qiang

    2017-01-01

    The patterns in radio-frequency dielectric barrier discharge (RF DBD) are studied at atmospheric pressure of argon (Ar) or helium (He) mixed with nitrogen (N2) gas. When a small amount of N2 is mixed with He or Ar gas, discharge patterns are formed. In a N2/He gas mixture, besides the filament discharge that forms patterns, a glow background discharge is also observed, whereas only the filament discharge forms patterns in a N2/Ar gas mixture. The resolution of the hexagonal pattern as a function of applied power and gas flow rate is then explored. On the basis of spatial-temporal images taken using an intensified charge-coupled device (ICCD), we find that there is no interleaving of two transient hexagon sublattices in N2/Ar or N2/He plasma in RF DBD patterns, which are totally different from those in which surface charges dominated in the mid-frequency DBD plasma. This supports our hypothesis that the bulk charges dominate the pattern formation in RF DBD.

  10. Removal of cyanobacteria from synthetic and real water by dielectric barrier discharge process.

    Science.gov (United States)

    Zhang, Yi; Chew, Stephanie Ting Yu; Te, Shu Harn; Lim, Tuti Mariana

    2015-12-01

    The feasibility of cyanobacteria removal from freshwater by a dielectric barrier discharge (DBD) process is investigated. Seven commercial and environmental cyanobacteria strains, as well as real algae-laden water, were tested. The removal of the cyanobacteria was evaluated by analyzing the changes in chlorophyll a content, total organic carbon (TOC) concentration, and cell morphology. Nearly total removal of chlorophyll a was achieved within 20 min, while the TOC analysis exhibited an increase-decrease-increase trend in 60 min of treatment, likely due to the oxidation of intracellular and intercellular materials. Observation under light microscopy revealed the disruption of intracellular and intercellular structures within 5 min of DBD treatment and thus supported the TOC analysis. Increasing the salinity of the medium from 0 to 5 parts per thousand (ppt) improved treatment efficiency, where similar level of chlorophyll a removal (around 93%) was achieved in only half the treatment time. Application of DBD on real algae-laden water from a fish farm yielded higher treatment efficiency than in synthetic medium, indicating the promising application of DBD as a means to control cyanobacteria bloom in fresh and estuary water bodies.

  11. Experimental study on temperature characteristics and energy conversion in packed bed reactor with dielectric barrier discharge

    Science.gov (United States)

    Li, Sen; Tang, Zuchen; Gu, Fan

    2010-10-01

    The temperature characteristics and energy conversion in packed bed reactor combined with a dielectric barrier discharge (DBD) plasma was investigated experimentally. The pellet temperatures of two types packed bed reactor, cylindrical reactor and parallel-plate reactor, was measured in conditions of various inlet voltage of DBD plasma. The relationship between pellet temperature of the packed bed and applied voltage of DBD plasma was discovered. The experimental result indicates a tendency that the pellet temperature of packed bed increases as the applied voltage of inlet plasma increases. When the voltage of inlet plasma is high enough, the pellet temperature increment decreases. Simultaneously,the packed bed temperature is sensitive to the inlet plasma energy and there is a potential application to heat exchanger. Moreover the proportion of energy consumption of plasma inputting into packed bed reactor was analyzed and calculated. The mechanisms that electrical energy of inlet plasma is transformed into heat energy in the two phases, gaseous and pellets of the packed bed reactor are different. The energy consumption in pellet phase is dielectric polarization loss and depends on packed bed geometry and DBD plasma etc. The energy consumption in gaseous phase is plasma sheath procedure. The important factors effecting on gas discharge are gaseous component and voltage, frequency of power.

  12. Production of Ar metastables in a dielectric barrier discharge

    Science.gov (United States)

    Mikheyev, Pavel A.; Han, Jiande; Clark, Amanda; Sanderson, Carl; Heaven, Michael C.

    2017-01-01

    The results of experiments with a dielectric barrier discharge (DBD) are presented, where the production of metastable argon atoms was studied. The recently proposed optically pumped all-rare-gas laser (OPRGL) utilizes metastable atoms of heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012÷1013 cm-3 in an atmospheric pressure of He buffer gas. Recent experiments had shown that such densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to produce them in a CW regime. The reason for difficulties in the CW production of metastables at an atmospheric pressure seems to be the low value of the E/N parameter (DBD in 2-5% Ar mixture with He at an atmospheric pressure was studied. [Ar(1s5)] number density of the order of 1012 cm-3 was readily achieved. Temporal behavior of [Ar(1s5)] throughout the DBD cycle was obtained. The results demonstrate the feasibility of DBDs for OPRGL development.

  13. Improvement of water quality using dielectric barrier discharge plasma

    Science.gov (United States)

    Quyen, N. T.; Traikool, T.; Nitisoravut, R.; Onjun, T.

    2017-06-01

    The improvement of water quality using by atmospheric plasma produced from a dielectric barrier discharge (DBD) was studied. An experiment was set-up with a 4 mm diameter pipe, which contains 2 electrodes and has an air flow with the rate of 15 liters per minute. Surface water, domestic wastewater and DI water were treated with the DBD plasma for some period of time. Electricity was supplied at 3.5 kV with the frequency of 5.5 kHz. Some key parameters of water quality includes the level of chemical oxygen demand (COD), total suspended solid (TSS), color, and odor are measured before and after. The result showed that strong acid with pH below 2 was observed after 60 minutes plasma treatment for the DI water, while the surface water and wastewater needs about 120 minutes to pH below 2 even though the pH value are about the same at the beginning. Moreover, It was formed that the COD, TSS microorganism was noticeably decreased, therefore the increasing of transparency level. This result confirms that atmospheric DBD plasma generated acidity in water as reduce amount of organic and suspended solid in water.

  14. Experimental method to quantify the efficiency of the first two operational stages of nanosecond dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Correale, G.; Avallone, F.; Starikovskiy, A. Yu

    2016-12-01

    A method to quantify the efficiency of the first two operational stages of a nanosecond dielectric barrier discharge (ns-DBD) plasma actuator is proposed. The method is based on the independent measurements of the energy of electrical pulses and the useful part of the energy which heats up the gas in the discharge region. Energy input is calculated via a back current shunt technique as the difference between the energy given and the energy reflected back. The ratio of the difference of the latter two quantities and the energy input gives the electrical efficiency (η E) of a ns-DBD. The extent of the energy deposited is estimated via Schlieren visualizations and infrared thermography measurements. Then, the ideal power flux obtained if all the inputted energy was converted into heat is calculated. Transient surface temperature was measured via infrared thermography and used to solve a 1D inverse heat transfer problem in a direction normal to the surface. It gives as output the actual power flux. The estimated ratio between the two power fluxes represents a quantification of the mechanical fluid efficiency (η FM) of a ns-DBD plasma actuator. Results show an inverse proportionality between η E, and η FM, and the thickness of the barrier. The efficiency of the first two operational stages of a ns-DBD is further defined as η  =  η E · η FM.

  15. DISTRIBUSI SPASIAL KASUS DEMAM BERDARAH DENGUE (DBD, ANALISIS INDEKS JARAK DAN ALTERNATIF PENGENDALIAN VEKTOR DI KOTA SAMARINDA, PROVINSI KALIMANTAN TIMUR

    Directory of Open Access Journals (Sweden)

    Damar Tri Boewono

    2013-02-01

    Full Text Available Abstract Dengue hemorrhagic fever (DHF happens to be a public health problem in Samarinda city, East Kalimantan Province. Dengue was reported endemic in the entire six subdistricts of the city. Various vector control programs have been conducted by the Health Office, yet the dengue cases were still occurred on the previous years. Comprehensive research was conducted to determine the spatial distribution of DHF cases using geographical information system (GIS mapping, in relation to positive larvae of the breeding habitat distributions. The study was carried out in five endemic areas namely Pelita village Samarinda Utara Subdistrict, Sambutan village Samarinda Ilir Subdistrict, Sidodadi village Samarinda Ulu Subdistrict, Harapan Baru village Samarinda Seberang Subdistrict and Karang Asam Ilir village Sungai Kunjang Subdistrict. The aim of the study was to determine the specific vector control strategies based on spatial DHF cases and breeding habitat distributions and distance index analyses, larvae free index and insecticide susceptible status of dengue vector of Ae. aegypti against the insecticides which were used for vector control programs. The study revealed that average ABJ in the study areas was 35.85-64.16% and lower the national standar of 95%. Dengue vector of Ae. aegypti was found to be resistant to Malathion, Permethrin, Lambdasihalothrin and Bendiocarb insecticides. Thus an alternative insecticide should be considered. Dengue cases distribution in Samarinda city were found in  clusters/gregorious. Distance index analyses indicated that the transmissions were due to mosquito behaviour. Community empowement is needed to encourage the potential groups (PKK, Dasa Wisma, public health caders, posyandu, to participate on the vector control program.   Keywords: DHF, Spatial distribution, Cases Distance Index, Samarinda City.     Abstrak Demam Berdarah Dengue (DBD masih menjadi masalah kesehatan masyarakat Kota Samarinda, Provinsi

  16. Equation of Energy Injection to a Dielectric Barrier Discharge Reactor

    Science.gov (United States)

    Yao, Shuiliang; Weng, Shan; Jin, Qi; Han, Jingyi; Jiang, Boqiong; Wu, Zuliang

    2016-08-01

    The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge (DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area, and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27-300 °C but becomes obvious in the range of 300-500 °C. A model was established using which the energy injection can be easily predicted. supported by National Natural Science Foundation of China (No. 11575159), Zhejiang Provincial Natural Science Foundation of China (No. LY13B070004), Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07), and National Natural Science Foundation of China (No. 51206146)

  17. Synthesized High-Frequency Thyristor for Dielectric Barrier Discharge Excimer Lamps

    OpenAIRE

    2012-01-01

    International audience; Dielectric barrier discharge (DBD) lamps, being capacitive loads, must be associated with bidirectional current sources for an appropriate control of the transferred power. Pulsed current source supplies, which are known to offer very interesting performances, require specific power switches that are able to manage bidirectional voltage and unidirectional current at much higher frequencies (several hundreds of kilohertz) than commercial thyristors. This paper proposes t...

  18. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  19. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  20. A Paired, Double-Blind, Randomized Comparison of a Moisturizing Durable Barrier Cream to 10% Glycerine Cream in the Prophylactic Management of Postmastectomy Irradiation Skin Care: Trans Tasman Radiation Oncology Group (TROG) 04.01

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Peter H., E-mail: peter.graham@sesiahs.health.nsw.gov.au [Cancer Care Centre, St. George Hospital, Kogarah, New South Wales (Australia); Plant, Natalie; Graham, Jennifer L.; Browne, Lois [Cancer Care Centre, St. George Hospital, Kogarah, New South Wales (Australia); Borg, Martin [Department of Radiation Oncology, Royal Adelaide Hospital (Australia); Capp, Anne [Department of Radiation Oncology, Mater Hospital, Newcastle, New South Wales (Australia); Delaney, Geoff P. [Cancer Care Centre, Liverpool Hospital, Liverpool, New South Wales (Australia); Harvey, Jennifer [Mater Hospital, South Brisbane, Queensland (Australia); Kenny, Lisbeth [Royal Brisbane Hospital, Herston, Queensland (Australia); Francis, Michael [Andrew Love Cancer Centre, Geelong (Australia); Zissiadis, Yvonne [Department of Radiation Oncology, Royal Perth Hospital, Perth (Australia)

    2013-05-01

    Purpose: A previous, unblinded study demonstrated that an alcohol-free barrier film containing an acrylate terpolymer (ATP) was effective in reducing skin reactions compared with a 10% glycerine cream (sorbolene). The different appearances of these products precluded a blinded comparison. To test the acrylate terpolymer principle in a double-blinded manner required the use of an alternative cream formulation, a moisturizing durable barrier cream (MDBC); the study was conducted by the Trans Tasman Radiation Oncology Group (TROG) as protocol 04.01. Methods and Materials: A total of 333 patients were randomized; 1 patient was ineligible and 14 patients withdrew or had less than 7 weeks' observations, leaving 318 for analysis. The chest wall was divided into medial and lateral compartments, and patients were randomized to have MDBC applied daily to the medial or lateral compartment and sorbolene to the other compartment. Weekly observations, photographs, and symptom scores (pain and pruritus) were collected to week 12 or resolution of skin reactions if earlier. Skin dose was confirmed by centrally calibrated thermoluminescent dosimeters. Results: Rates of medial and lateral compartment Common Toxicity Criteria (CTC), version 3, greater than or equal to grade 3 skin reactions were 23% and 41%, but rates by skin care product were identical at 32%. There was no significant difference between MDBC and sorbolene in the primary endpoint of peak skin reactions or secondary endpoints of area-under-the-curve skin reaction scores. Conclusions: The MDBC did not reduce the peak skin reaction compared to sorbolene. It is possible that this is related to the difference in the formulation of the cream compared with the film formulation. Skin dosimetry verification and double blinding are essential for radiation skin care comparative studies.

  1. EFEKTIVITAS LARVASIDA EKSTRAK DAUN SIRSAKDALAM MEMBUNUH JENTIK NYAMUK (Studi di Daerah Endemis DBD KelurahanGajahmungkur Kota Semarang

    Directory of Open Access Journals (Sweden)

    Haqkiki Harfriani

    2014-07-01

    Full Text Available Nyamuk Aedes aegypti merupakan vektor utama dari DBD. Kasus demam berdarah dengue tahun 2011 di Kelurahan Gajahmungkur meningkati peringkat pertama, sebanyak 57 kasus. Penelitian terdahulu mengenai daya Insektisidal daun dan Biji Annona muricuta Linn. terhadap larva nyamuk di Laboratorium, dengan infusa 10%. Namun pemanfaatannya belum dilakukan maksimal dimasyarakat. Tujuan penelitian untuk mengetahui efektfitas larvasida ekstrak daun sirsak dalam membunuh jentik nyamuk di daerah endemis DBD.Penelitian ini menggunakan quasi eksperiment dengan rancangan one group before and after intervention design. Penelitian ini dilaksanakan di wilayah RW IV Kelurahan Gajahmungkur pada Januari 2013. Sampel penelitian ini 30 responden.Hasil penelitian menunjukkan terdapat perbedaan jumlah jentik sebelum dan sesudah intervensi dengan nilai kurang dari 0,05 (p<0,05. Analisis perbandingan (p=0,0001. Penggunaan larvasida ekstrak daun sirsak lebih efektif menekan jumlah jentik nyamuk dengan konsentrasi 6,89% dalam waktu 6 jam.Dengandemikian, makadisarankanbagiDinasKesehatan Kota Semarang danPuskesmasGajahmungkurmelaluiPosyandudan PKK, hendaknyamemfasilitasimasyarakatnyauntukmenggunakanlarvasidaekstrakdaunsirsak di tempatpenampungan air, gunamemperkecilangkakejadian DBD diKelurahanGajahmungkurKecamatanGajahmungkur.

  2. Electrically stimulated high-frequency replicas of a resonant current in GaAs/AlAs resonant-tunneling double-barrier THz nanostructures

    Science.gov (United States)

    Aleksanyan, A. A.; Karuzskii, A. L.; Kazakov, I. P.; Mityagin, Yu. A.; Murzin, V. N.; Perestoronin, A. V.; Shmelev, S. S.; Tskhovrebov, A. M.

    2016-12-01

    The periodical-in-voltage features of the negative differential conductance (NDC) region in the current-voltage characteristics of a high-quality GaAs/AlAs terahertz resonant-tunneling diode have been detected. The found oscillations are considered taking account of the LO-phonon excitation stimulated by tunneling of electrons through the quantum active region in the resonance nanostructure where an undoped quantum well layer is sandwiched between two undoped barrier layers. Rearrangements in the I-V characteristics of the resonant-tunneling diode as a consequence of the topological transformation of a measurement circuit from the circuit with the series resistance Rs to the circuit with the shunt Rp have been experimentally studied and analyzed. The revealed substantial changes in the current-voltage characteristics of the resonant-tunneling diode are discussed schematically using Kirchhoff's voltage law.

  3. Prediksi Penyakit Demam Berdarah Dengue (Dbd Dan Tifus Menggunakan Jaringan Syaraf Tiruan Perambatan Balik (Back Propagation

    Directory of Open Access Journals (Sweden)

    Farida Asriani

    2007-02-01

    Full Text Available Dengue Haemorrhagic Fever (DHF and Typhus are diseases which often knock over Indonesian society. Both of these diseases, especially DBD is malignancy that able to result death if losing time to be diagnosed. But civil society, even a doctor which is expert, sometimes also difficult to detect DHF diagnosed earlier, because symptom initially, tending to look like with other acute diseases. One of the diseases that have symptom like DHF is typhus. Back Propagation Artificial Neural Network (ANN is one of artificial intelligences that can be applicated in the field of health, especially for predicting a disease type. By using input in the form of symptoms the naturalness by a patient, expected this Back Propagation ANN system can help the doctors to diagnose the diseases that happen to their patients, especially DHF and Typhus diseases. ANN system that is designed to predict DHF and typhus diseases, is trained with back propagation algorithm that using adaptive learning rate and momentum. From this research, is got ANN system with network architecture that consist of: one input layer with 18 neurons, one hidden layer with 125 neurons, and one output layer with 1 neuron. And also, value of constanta momentum is 0.95.This ANN system has good performance. From 400 respondents that use for training, result of the memorizing examination reaches percentage equal to 100%, and result of the generalizing examination reaches 96%, from 150 new respondents

  4. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    Science.gov (United States)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  5. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    Science.gov (United States)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  6. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Chieh; Kushner, Mark J. [Electrical Engineering and Computer Science Department, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States); Leoni, Napoleon; Birecki, Henryk; Gila, Omer [Hewlett Packard Research Labs, Palo Alto, California 94304 (United States)

    2013-01-21

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will be discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.

  7. ANTIMICROBIAL TEXTILE PREPARED BY SILVER DEPOSITION ON DIELECTRIC BARRIER DISCHARGE TREATED COTTON/POLYESTER FABRIC

    Directory of Open Access Journals (Sweden)

    Mirjana Kostić

    2008-11-01

    Full Text Available The objective of this research was to impart the additional value on cotton//polyester (Co/PES fabrics (i.e. antimicrobial properties to improve the quality of life and thus to tap new markets with the product. In this paper, silver ions were incorporated in Co/PES fabrics by chemisorptions into the fabric previously treated in a dielectric barrier discharge (DBD. A series of the DBD fabric treatments were done in order to determine the most suitable experimental conditions for the DBD activation of the fabric surface, while the optimal conditions for silver ions sorption by Co/PES fabrics were determined by changing sorption conditions. The antimicrobial Co/PES fabrics prepared by dielectric barrier discharge mediated silver deposition show an antimicrobial activity against tested pathogens: S. aureus, E. coli, and C. albicans under in vitro conditions. The obtained results confirm the practicability of the plasma modification process and furthermore show that with some delays in the next step, i.e. silver ion sorption, we can get the increase in the amount of the sorbed silver ions; the maximum sorption capacity of modified Co/PES fabrics was 0.135 mmol of Ag+ ions per gram of a fabric.

  8. Nonadditivity in the recognition of single-stranded DNA by the schizosaccharomyces pombe protection of telomeres 1 DNA-binding domain, Pot1-DBD.

    Science.gov (United States)

    Croy, Johnny E; Altschuler, Sarah E; Grimm, Nicole E; Wuttke, Deborah S

    2009-07-28

    The Schizosaccharomyces pombe protection of telomeres 1 (SpPot1) protein recognizes the 3' single-stranded ends of telomeres and provides essential protective and regulatory functions. The ssDNA-binding activity of SpPot1 is conferred by its ssDNA-binding domain, Pot1-DBD (residues 1-389), which can be further separated into two distinct domains, Pot1pN (residues 1-187) and Pot1pC (residues 188-389). Here we show that Pot1pC, like Pot1pN, can function independently of Pot1-DBD and binds specifically to a minimal nonameric oligonucleotide, d(GGTTACGGT), with a K(D) of 400 +/- 70 nM (specifically recognized nucleotides in bold). NMR chemical shift perturbation analysis indicates that the overall structures of the isolated Pot1pN and Pot1pC domains remain intact in Pot1-DBD. Furthermore, alanine scanning reveals modest differences in the ssDNA-binding contacts provided by isolated Pot1pN and within Pot1-DBD. Although the global character of both Pot1pN and Pot1pC is maintained in Pot1-DBD, chemical shift perturbation analysis highlights localized structural differences within the G1/G2 and T3/T4 binding pockets of Pot1pN in Pot1-DBD, which correlate with its distinct ssDNA-binding activity. Furthermore, we find evidence for a putative interdomain interface on Pot1pN that mediates interactions with Pot1pC that ultimately result in the altered ssDNA-binding activity of Pot1-DBD. Together, these data provide insight into the mechanisms underlying the activity and regulation of SpPot1 at the telomere.

  9. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    Science.gov (United States)

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.

  10. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production

    Science.gov (United States)

    Khadir, N.; Khodja, K.; Belasri, A.

    2017-09-01

    In the present paper, we carried out a theoretical study of dielectric barrier discharge (DBD) filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an electrical circuit, and the Boltzmann equation. The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr. We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages, the discharge current density, electric field, deposited power density, and the species concentration. We also checked the physical model validity by comparing its results with experimental work. According to the results discussed herein, the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H2/CH4 ratio. This work enriches the knowledge for the improvement of DBD for CH4 conversion and hydrogen production.

  11. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... absorption spectroscopy was also employed for the detection of stable products in the exhaust gas. To clarify the different processes for ammonia decomposition, N-2(2 - 10%) was added to the plasma. Modeling of the chemical kinetics in an Ar/NH3 plasma was performed as well. The dominant stable products...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  12. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Beleznai, Sz; Mihajlik, G; Richter, P [Department of Atomic Physics, Budapest University of Technology and Economics, 3-9.Muegyetem rkp., Budapest H-1111 (Hungary); Maros, I; Balazs, L, E-mail: beleznai@dept.phy.bme.h [GE Consumer and Industrial-Lighting, 77 Vaci ut, Budapest H-1344 (Hungary)

    2010-01-13

    The application of a high frequency ({approx}2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe{sub 2}{sup *} excimer radiation ({approx}172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W{sup -1} has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  13. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Science.gov (United States)

    Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.

    2010-01-01

    The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  14. 2D simulations of short-pulsed dielectric barrier discharge xenon excimer lamp

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, E.A.; Kudryavtsev, A.A. [St. Petersburg State University, St. Petersburg (Russian Federation); Arslanbekov, R.R. [CFD Research Corporation, Huntsville (United States)

    2006-07-01

    Self-consistent two-dimensional (2D) simulations of short-pulsed dielectric barrier discharge (DBD) in pure xenon have been performed. It is shown that during short current pulse the traversal inhomogeneity of the plasma parameters can be important only at the end of the current pulse as an edge effect close to the side walls. During the current pulse, the gap voltage drops until the ionization wave reaches the cathode so the current in the cathode sheath is the displacement current. This means that almost all of the absorbed power is deposited into excitation of xenon atoms and not to the ion heating in the cathode sheath as in the traditional glow discharges. This fact is one of the reasons of high efficiency of short-pulsed DBD. The developed model allows one to estimate the temporal position of the plasma-sheath boundary. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A novel two-level dielectric barrier discharge reactor for methyl orange degradation.

    Science.gov (United States)

    Tao, Xumei; Wang, Guowei; Huang, Liang; Ye, Qingguo; Xu, Dongyan

    2016-12-15

    A novel pilot two-level dielectric barrier discharge (DBD) reactor has been proposed and applied for degradation of continuous model wastewater. The two-level DBD reactor was skillfully realized with high space utilization efficiency and large contact area between plasma and wastewater. Various conditions such as applied voltage, initial concentration and initial pH value on methyl orange (MO) model wastewater degradation were investigated. The results showed that the appropriate applied voltage was 13.4 kV; low initial concentration and low initial pH value were conducive for MO degradation. The percentage removal of 4 L MO with concentration of 80 mg/L reached 94.1% after plasma treatment for 80min. Based on ultraviolet spectrum (UV), Infrared spectrum (IR), liquid chromatography-mass spectrometry (LC-MS) analysis of degradation intermediates and products, insights in the degradation pathway of MO were proposed.

  16. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  17. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach.

    Science.gov (United States)

    Ji, Sang-Hye; Choi, Ki-Hong; Pengkit, Anchalee; Im, Jun Sup; Kim, Ju Sung; Kim, Yong Hee; Park, Yeunsoo; Hong, Eun Jeong; Jung, Sun Kyung; Choi, Eun-Ha; Park, Gyungsoon

    2016-09-01

    In this study, we analyzed seed germination, seedling growth, and physiological aspects after treatment with high voltage nanosecond pulsed plasma and micro DBD plasma in spinach (Spinacia oleracea L.), a green leafy vegetable known to have low germination rate. Both germination and dry weight of seedlings increased after high voltage pulse shots were applied to spinach seeds. However seeds treated with many shots (10 shots) showed a decrease in germination rate and seedling growth. Seeds treated with air DBD plasma exhibited slightly higher germination and subsequent seedling growth than those treated with N2 plasma. Seed surface was degenerated after treated with high voltage pulsed plasma and micro DBD plasma but no significant difference in the degree of degeneration was observed among micro DBD plasma treatment time. Level of GA3 hormone and mRNA expression of an amylolytic enzyme-related gene in seeds were elevated 1 day after treatment with high voltage pulsed plasma. The relative amount of chlorophyll and total polyphenols in spinach seedlings grown from seeds treated with air DBD plasma was increased in 30 s, 1 min, and 3 min treatments. Taken together, our results suggest a possibility that plasma can enhance seed germination by triggering biochemical processes in seeds.

  18. Neutrinoless double beta decay and neutrino mass

    Science.gov (United States)

    Vergados, J. D.; Ejiri, H.; Šimkovic, F.

    2016-11-01

    The observation of neutrinoless double beta decay (DBD) will have important consequences. First it will signal that lepton number is not conserved and the neutrinos are Majorana particles. Second, it represents our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal, however, certain hurdles have to be overcome involving particle, nuclear and experimental physics. Particle physics is important since it provides the mechanisms for neutrinoless DBD. In this review, we emphasize the light neutrino mass mechanism. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements (NMEs), a formidable task. To this end, we review the recently developed sophisticated nuclear structure approaches, employing different methods and techniques of calculation. We also examine the question of quenching of the axial vector coupling constant, which may have important consequences on the size of the NMEs. From an experimental point of view it is challenging, since the life times are extremely long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with good energy resolution and very low background.

  19. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  20. Values of the phase space factors for double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Sabin, E-mail: stoica@theory.nipne.ro; Mirea, Mihai [Horia Hulubei Foundation, 407, Atomistilor street, P.O. Box MG12, 077125 Magurele (Romania); Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului street, P.O. Box MG6, Magurele (Romania)

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  1. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    Abhishek Nag; Sugata Ray

    2015-06-01

    Tunnelling magnetoresistance (TMR) in polycrystalline double perovskites has been an important research topic for more than a decade now, where the nature of the insulating tunnel barrier is the core issue of debate. Other than the nonmagnetic grain boundaries as conventional tunnel barriers, intragrain magnetic antiphase boundaries (APB) as well as magnetically frustrated grain surfaces have also been proposed to act as tunnel barriers in Sr2FeMoO6. In this review, the present state of the debate has been discussed briefly and how the physical state of the material can affect the magnetoresistance signal of double perovskites in many different ways has been pointed out.

  2. Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier; Evaluation de la penetration cerebrale: une double etude utilisant un modele in vitro de barriere hemato-encephalique humaine et l'imagerie par tomographie d'emission de positons in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Josserand, V.; Jego, B.; Duconge, F.; Tavitian, B. [CEA Service Hospitalier Frederic Joliot (DSV/DRM/SHFJ), INSERM ERM 0103, 91 - Orsay (France); Pelerin, H.; Ezan, E.; Mabondzo, A. [CEA Saclay (DSV/DRM), Service de Pharmacologie et d' Immunologie, 91 - Gif-sur-Yvette (France); Bruin, B. de; Kuhnast, B.; Dolle, F. [CEA Service Hospitalier Frederic Joliot (DSV/DRM/SHFJ), Groupe de Radiochimie, 91 - Orsay (France)

    2004-08-01

    The blood brain barrier (BBB) passage of a set of radiopharmaceuticals candidates was measured both in vitro using a newly developed co-culture based model of human BBB and in vivo by positron emission tomography (PET). MATERIAL and METHODS: As an in vitro BBB model, a co-culture of primary human brain endothelial cells and primary human astrocytes was used. Dynamic PET studies were performed simultaneously on 4 anesthetized rats with the EXACT HR+ camera. Volumes of interest (VOI) were manually defined on the tomographic images in order to determine the pharmacokinetics of the compounds in various organs, including brain. The in vivo input function was measured by radioactivity counting of arterial blood samples. A two-compartment model analysis was used to compute the exchanging rate constants between blood and brain and to calculate the in vivo permeability coefficient. RESULTS: There was an excellent correlation between the in vitro and in vivo permeability coefficients (r = 0.99; p < 0.001) as well as between the in vivo distribution volume and the in vitro efflux /influx permeability coefficients ratio (r = 0.76). CONCLUSION: This double study evidenced a close relationship between the in vitro and the in vivo approaches for the assessment of the BBB passage. Hence, small animal PET imaging appeared suitable to screen drugs or radiopharmaceuticals candidates aimed at cerebral targets directly in the real-life situation in vivo. (author)

  3. Use of the DBD-FISH technique for detecting DNA breakage in response to high doses of X-rays.

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2014-11-01

    The aim of this study was to generate a dose-response curve using the DNA breakage detection-fluorescent in situ hybridization (DBD-FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose-response curve was obtained by measuring the ex vivo responses to increasing doses (0-50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose-response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high (r = 0.934, b(0) = 10.408, and b(1) = 0.094). One-way ANOVA with the Student-Newman-Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD-FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.

  4. Low-temperature upgrading of low-calorific biogas for CO2 mitigation using DBD-catalyst hybrid reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Tsukijihara, Hiroyuki; Fukui, Wataru; Okazaki, Ken

    2006-10-01

    Although huge amounts of biogas, which consists of 20-60% of CH4 in CO2/N2, can be obtained from landfills, coal mines, and agricultural residues, most of them are simply flared and wasted: because global warming potential of biogas is 5-15 times as potent as CO2. Poor combustibility of such biogas makes it difficult to utilize in conventional energy system. The purpose of this project is to promote the profitable recovery of methane from poor biogas via non-thermal plasma technology. We propose low-temperature steam reforming of biogas using DBD generated in catalyst beds. Methane is partially converted into hydrogen, and then fed into internal combustion engines for improved ignition stability as well as efficient operation. Low-temperature steam reforming is beneficial because exhaust gas from an engine can be used to activate catalyst beds. Space velocity (3600-15000 hr-1), reaction temperature (300-650^oC), and energy cost (30-150 kJ per mol CH4) have been investigated with simulated biogas (20-60% CH4 in mixtures of CO2/N2). The DBD enhances reaction rate of CH4 by a factor of ten at given catalyst temperatures, which is a rate-determining step of methane steam reforming, while species concentration of upgraded biogas was governed by thermodynamic equilibrium in the presence of catalyst.

  5. Impedance matching for repetitive high voltage all-solid-state Marx generator and excimer DBD UV sources

    Science.gov (United States)

    Wang, Yonggang; Tong, Liqing; Liu, Kefu

    2017-06-01

    The purpose of impedance matching for a Marx generator and DBD lamp is to limit the output current of the Marx generator, provide a large discharge current at ignition, and obtain fast voltage rising/falling edges and large overshoot. In this paper, different impedance matching circuits (series inductor, parallel capacitor, and series inductor combined with parallel capacitor) are analyzed. It demonstrates that a series inductor could limit the Marx current. However, the discharge current is also limited. A parallel capacitor could provide a large discharge current, but the Marx current is also enlarged. A series inductor combined with a parallel capacitor takes full advantage of the inductor and capacitor, and avoids their shortcomings. Therefore, it is a good solution. Experimental results match the theoretical analysis well and show that both the series inductor and parallel capacitor improve the performance of the system. However, the series inductor combined with the parallel capacitor has the best performance. Compared with driving the DBD lamp with a Marx generator directly, an increase of 97.3% in radiant power and an increase of 59.3% in system efficiency are achieved using this matching circuit.

  6. Effect of active species on animal cells in culture media induced by DBD Plasma irradiation using air

    Science.gov (United States)

    Ohtsubo, Tetsuya; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Little has been reported on action mechanism of active species produced by plasmas affecting living cells. In this study, active species in culture medium generated by torch type DBD and variations of animal cells are attempted to be clarified. Animal cells are irradiated by DBD plasma through various media such as DMEM, PBS and distilled water. Irradiation period is 1 to 15 min. The distance between the lower tip of plasma touch and the surface of the medium is 10 mm. Concentrations of NO2 -, O2 in liquid are measured. After the irradiation, the cells were cultivated in culture medium and their modifications are observed by microscope and some chemical reagents. Concentration of NO2 - and H2 O2 in all media increased with discharge period. Increase rate of NO2 -concentration is much higher than that of hydrogen peroxide. After plasma irradiation for 15 min, concentrations of NO2 were 80 mg/L in DMEM, 30 mg/L in PBS and 15 mg/L in distilled water. Also, the concentration of H2 O2 became 3mg/L in DMEM, 6.5 mg/L in PBS and 6.5mg/L in distilled water. The significant inactivation of cells was observed in the PBS. Above results indicate that, in this experiment, H2 O2 or OH radicals would affect animal cells in culture media.

  7. Decomposition of dimethylamine gas with dielectric barrier discharge.

    Science.gov (United States)

    Ye, Zhaolian; Zhao, Jie; Huang, Hong ying; Ma, Fei; Zhang, Renxi

    2013-09-15

    The decomposition of dimethylamine (DMA) with gas under high flow rate was investigated with dielectric barrier discharge (DBD) technology. Different parameters including removal efficiency, energy yield, carbon balance and CO2 selectivity, secondary products, as well as pathways and mechanisms of DMA degradation were studied. The experimental results showed that removal efficiency of DMA depended on applied voltage and gas flow rate, but had no obvious correlation with initial concentration. Excellent energy performance was obtained using present DBD technology for DMA abatement. When experiment conditions were controlled at: gas flow rate of 14.9 m(3)/h, initial concentration of 2104 mg/m(3), applied voltage of 4.8 kV, removal efficiency of DMA and energy yield can reach 85.2% and 953.9 g/kWh, respectively. However, carbon balance (around 40%) was not ideal due to shorter residence time (about 0.1s), implying that some additional conditions should be considered to improve the total oxidation of DMA. Moreover, secondary products in outlet gas stream were detected via gas chromatogram-mass spectrum and the amounts of NO3(-) and NO2(-) were analyzed by ion chromatogram. The obtained data demonstrated that NOx might be suppressed due to reductive NH radical form DMA dissociation. The likely reaction pathways and mechanisms for the removal of DMA were suggested based on products analysis. Experimental results demonstrated the application potential of DBD as a clean technology for organic nitrogen-containing gas elimination from gas streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Study on the Microsecond Pulse Homogeneous Dielectric Barrier Discharges in Atmospheric Air and Its Influencing Factors%Study on the Microsecond Pulse Homogeneous Dielectric Barrier Discharges in Atmospheric Air and Its Influencing Factors

    Institute of Scientific and Technical Information of China (English)

    方志; 雷枭; 蔡玲玲; 邱毓昌; Edmund KUFFEL

    2011-01-01

    The homogeneous dielectric barrier discharge (DBD) in atmospheric air between two symmetric-columnar copper electrodes with epoxy plates as the dielectric barriers is generated using a us pulse high voltage power supply. The discharge characteristics are studied by measurement of its electrical discharge parameters and observation of its light emission phenom- ena, and the main discharge parameters of the homogenous DBD, such as discharge current and average discharge power, are calculated. Results show that the discharge generated is a homogeneous one with one larger single current pulse of about 2 #s duration appearing in each voltage pulse, and its light emission is radially homogeneous and covers the entire surface of the two elec- trodes. The influences of applied voltage amplitude, air gap distance and barrier thickness on the transition of discharge modes are studied. With the increase of air gap distance, the discharge will transit from homogeneous mode to filamentary mode. The higher the thickness of dielectric barriers, the larger the air gap distance for generating the homogeneous discharge mode. The average discharge power increases non-linearly with increasing applied voltage amplitude, and decreases non-linearly with the increase of air gap distance and barrier thickness. In order to generate stable and homogeneous DBD with high discharge power, thin barriers distance should be used, and higher applied voltage amplitude should be applied to small air gap.

  9. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions

    Science.gov (United States)

    Ejiri, H.; Frekers, D.

    2016-11-01

    Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He, t) charge-exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) {M}α ({{SD}}) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental α = GT (Gamow-Teller) and α = F (Fermi) strengths. They are consistent with the empirical NMEs M({{SD}}) based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.

  10. Surface reactive species on MnOx(0.4)-CeO2 catalysts towards soot oxidation assisted with pulse dielectric barrier discharge

    Institute of Scientific and Technical Information of China (English)

    付名利; 林俊敏; 朱文波; 吴军良; 陈礼敏; 黄碧纯; 叶代启

    2014-01-01

    MnOx(0.4)-CeO2 was investigated for soot oxidation assisted with a pulse dielectric barrier discharge (DBD). The catalysts were evaluated and characterized with TPO (temperature programmed oxidation), X-ray diffraction (XRD), Raman and X-ray photo-electron spectroscopy (XPS). The ignition temperature Ti for soot oxidation decreased from 240.8 to 216.4 ºC with the increase of the pulse DBD frequencies from 50 to 400 Hz, lower than that of the case without pulse DBD present (253.4 ºC). The results of XRD, Raman and XPS agreed well with the TPO activities of MnOx(0.4)-CeO2 towards soot oxidation. More solid solution of ceria and manganese, and surface reactive species including O2-, O-and Mn4+were responsible for the enhancement of soot oxidation due to pulse DBD injection in the present study. For solid solution favors to the activation and transformation of those species, which are be-lieved to be involved in the soot oxidation in a hybrid catalysis-plasma.

  11. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  12. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER

    Directory of Open Access Journals (Sweden)

    Michael Allen Lindon

    2014-09-01

    Full Text Available Dissociation of CO2 is investigated in an atmospheric pressure dielectric barrier discharge (DBD with a simple, zero dimensional (0-D chemical model and through experiment. The model predicts that the primary CO2 dissociation pathway within a DBD is electron impact dissociation and electron-vibrational excitation. The relaxation kinetics following dissociation are dominated by atomic oxygen chemistry. The experiments included investigating the energy efficiencies and dissociation rates of CO2 within a planar DBD, while the gas flow rate, voltage, gas composition, driving frequency, catalyst, and pulse modes were varied. Some of the VADER results include a maximum CO2 dissociation energy efficiency of 2.5 +/- 0.5%, a maximum CO$_2$ dissociation rate of 4 +/- 0.4*10^-6 mol CO2/s (5 +/- 0.5% percent dissociation, discovering that a resonant driving frequency of ~30 kHz, dependent on both applied voltage and breakdown voltage, is best for efficient CO2 dissociation and that TiO2, a photocatalyst, improved dissociation efficiencies by an average of 18% at driving frequencies above 5 kHz.

  13. Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge.

    Science.gov (United States)

    Li, Yang; Yi, Rongjie; Yi, Chengwu; Zhou, Biyun; Wang, Huijuan

    2017-03-01

    Pyridine, an important chemical raw material, is widely used in industry, for example in textiles, leather, printing, dyeing, etc. In this research, a dielectric barrier discharge (DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol (TBA), HCO3(-), and CO3(2-) on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), ion chromatography (IC), total organic carbon (TOC) analysis, ultraviolet (UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water. Copyright © 2016. Published by Elsevier B.V.

  14. Effects of airflow on the distribution of filaments in atmospheric AC dielectric barrier discharge

    Science.gov (United States)

    Fan, Zhihui; Qi, Haicheng; Liu, Yidi; Yan, Huijie; Ren, Chunsheng

    2016-12-01

    Atmospheric-pressure dielectric barrier discharge (DBD) accompanied by airflow has attracted a significant attention for its extensive applications. In this paper, the effects of airflow on the characteristics of the atmospheric air DBD plasma are experimentally investigated using the DBD reactor excited by a 15 kHz AC power source. In order to study the discharge filaments distribution at different flow rates, transparent conductive indium tin oxide film is used as the upper electrode, and quartz glasses are used as insulated dielectrics. Experiment results prove that the breakdown voltage is decreased and more current pulses with declined amplitudes are produced when the airflow is introduced into the discharge gap. It is confirmed that although the discharge seems to be diffuse in the presence of airflow to the naked eyes, the discharge mode remains filamentary in the intensified charge-coupled device images within a single AC cycle. By acquiring the images with a different exposure time, it can be recognized that the discharge filaments move along the flow field direction with a velocity less than the corresponding flow rate. The movement of discharge filaments is attributed to the motion of the charge induced by the airflow.

  15. Study of a Filamentary Dielectric Barrier Discharge in Air at Atmospheric Pressure

    Science.gov (United States)

    Celestin, Sebastien; Zeghondy, Barbar; Guaitella, Olivier; Bourdon, Anne; Rousseau, Antoine

    2006-10-01

    Dielectric Barrier Discharges (DBD) at atmospheric pressure have many applications, for instance ozone production, surface treatment, and waste gas treatment. Generally, such a discharge is filamentary but it can be diffuse under particular conditions. Understanding the formation of the filament, which is an ionization wave or so-called ``streamer'', is very hard theoretically, numerically, and experimentally. This is due, first, to the non-linearity of the equations concerned, and second, because of the scaling in space and time of this phenomenon: a streamer has a radius on the order of a few microns, and propagates through distances of several centimeters in a few nanoseconds. In this study we will present the results obtained in experiments and in simulations for a plane-to-plane DBD. We electrically characterized this device and have observed collective effects that are still poorly understood. A point-to-plane DBD has also been studied for producing a much more localized discharge. In parallel with the experimental study we have developed a numerical model based on the Immersed Boundary Method (IBM) to introduce an electrode having a complex geometry into a structured Cartesian mesh. The first results of the code will be discussed.

  16. Degradation of organic compounds and production of activated species in Dielectric Barrier Discharges and Glidarc reactors

    CERN Document Server

    Cormier, Jean Marie; Khacef, Ahmed

    2008-01-01

    Major sterilization mechanisms are related to atoms and radicals, charged parti-cles, excited molecules, ozone, and UV radiation. The ROS (Reactive Oxygen Species) are well known as evildoers. These species are easily created in ambient air and water and they live long enough to reach the cell and attack the organic matter. Test molecules conversion in dry and wet air is studied using Dielectric Barrier Discharge (DBD) and Gliding Arc Reactors (GAR). The effects of tem-perature and energy deposition into the media on the active species production and then on the organic compounds degradation are presented for two non thermal plasma reactors: DBD and GAR. Main production species investigated are OH, O3, NOx, CO and CxHyOz by-products. It is shown from experiment analysis that the reactive species production is quite different from one reactor to another. GAR and pulsed DBD are two chemical processing ways in which the temperature of heavy species in ionized gas is determinant. By reviewing the species producti...

  17. Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure

    Science.gov (United States)

    Wu, Haixia; Fang, Zhi; Zhou, Tong; Lu, Chen; Xu, Yanhua

    2016-05-01

    A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses. supported by National Natural Science Foundation of China (No. 51377075), the Natural Science Foundation of Jiangsu Province of China (Nos. BK20131412, BK20150951)

  18. Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    WU Haixia; FANG Zhi; ZHOU Tong; LU Chen; XU Yanhua

    2016-01-01

    A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution.Plasma was generated in the gas space above the water interface under atmospheric pressure.Discharge characteristics were analyzed by voltage-current waveforms.Effects of applied voltage,initial conductivity,and initial concentration were also analyzed.Congo red discoloration increased with increased applied voltage and decreased conductivity.The initial conductivity significantly influenced the Congo red discoloration.Under the same conditions,the highest discoloration rate was obtained at 25 mg/L.The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation.At an applied voltage of 20 kV,about 100%of dye was degraded after 4 min of Fe2+/DBD treatment.Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate.Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS,FTIR,and UV-vis spectroscopy analyses.

  19. Room Temperature Growth of Hydrogenated Amorphous Silicon Films by Dielectric Barrier Discharge Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    GUO Yu; ZHANG Xiwen; HAN Gaorong

    2007-01-01

    Hydrogenated amorphous silicon (a-Si:H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD)in (SiH4+H2) atmosphere at room temperature.Results of the thickness measurement,SEM (scanning electron microscope),Raman,and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage,the deposition rate and network order of the films increase,and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films.The UV-visible transmission spectra show that with the decrease in Sill4/ (SiH4+H2) the thin films'band gap shifts from 1.92 eV to 2.17 eV.These experimental results are in agreement with the theoretic analysis of the DBD discharge.The deposition of a-Si:H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si:H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.

  20. Improving the Interfacial Mechanical Property of Fiber Reinforced Cement with Dielectric Barrier Discharge 2: Morphological and Compositional Changes of the Fiber Surface

    Institute of Scientific and Technical Information of China (English)

    丁可; 胡群华; 谢涵坤

    2001-01-01

    The morphological and compositional changes of the PP fibers pretreated with dielectric barrier discharge (DBD)are investigated with SEM, XPS and IR. The result shows that the etching effect is the main reason for the improvement of the result of pull-out test of the fibercement composite reported in a previous paper and the oxidation of the fiber surface also favors the adhesion between the fiber and the matrix.

  1. Tsunami wave suppression using submarine barriers

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, Aleksei M [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation); Alperovich, Leonid S; Pustil' nik, Lev A; Shtivelman, D [Department of Geophysics and Planetary Sciences, Tel-Aviv University (Israel); Shemer, L; Liberzon, D [School of Mechanical Engineering, Tel-Aviv University (Israel); Marchuk, An G [Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2010-11-15

    Submerged barriers, single or double, can be used to greatly reduce the devastating effect of a tsunami wave according to a research flume study conducted at Tel Aviv University. (instruments and methods of investigation)

  2. Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma

    Directory of Open Access Journals (Sweden)

    S. Dahle

    2015-10-01

    Full Text Available The efficient removal of hydrogen sulfide, H2S, from streams of H2S in air via a dielectric barrier discharge (DBD plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

  3. Amine-containing film deposited in pulsed dielectric barrier discharge at a high pressure and its cell adsorption behaviours

    Institute of Scientific and Technical Information of China (English)

    Hu Wen-Juan; Xie Fen-Yan; Chen Qiang; Weng Jing

    2009-01-01

    With monomer allylamine, amine-containing functional films were prepared in alternative current pulsed dielectric barrier discharge (DBD) at a high pressure. This paper analyses in detail the film properties and structures, such as hydrophilicity, compounds and microstructures as well as amine density by the water contact angle, Fourier transform infrared spectroscopy, atomic force microscopy, and ultraviolet-visible measurement. The influence of discharge param-eters, in particular applied power, on amine density was investigated. As an application the cell adsorption behaviours on plasma polymerization films was performed in-vitro. The results show that at a high pressure pulsed DBD plasma can polymerize films with sufficient amine group on surface, through which the very efficient cell adsorption behaviours was demonstrated, and the high rate of cell proliferation was visualized.

  4. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2007-10-01

    Full Text Available A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: I. Istadi, N.A.S. Amin. (2007. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 37-44.  doi:10.9767/bcrec.2.2-3.8.37-44][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.8.37-44 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/8][Cited by: Scopus 1 |

  5. Surface modification of chitosan/PEO nanofibers by air dielectric barrier discharge plasma for acetylcholinesterase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Dorraki, Naghme, E-mail: n.dorraki@web.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Safa, Nasrin Navab [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Jahanfar, Mehdi [Protein Research Center, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of)

    2015-09-15

    Highlights: • We used an economical and effective method for surface modification. • Chitosan/PEO nanofibrous membranes were modified by air-DBD plasma. • The most NH{sub 3}{sup +} group was generated on the 6 min plasma modified membrane. • We immobilized acetylcholinesterase on the plasma modified and unmodified membranes. • More enzyme activity was detected on the modified membrane by plasma. - Abstract: There are different methods to modify polymer surfaces for biological applications. In this work we have introduced air-dielectric barrier discharge (DBD) plasma at atmospheric pressure as an economical and safe method for modifying the surface of electrospun chitosan/PEO (90/10) nanofibers for acetylcholinesterase (AChE) immobilization. According to the contact angle measurement results, the nanofibers become highly hydrophilic when they are exposed to the DBD plasma for 6 min in compared to unmodified membrane. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) results reveal hydroxyl, C=O and NH{sub 3}{sup +} polar groups increment after 6 min plasma treatment. Contact angle measurements and ATR-FTIR results are confirmed by X-ray photoelectron spectroscopy (XPS). AChE at pH 7.4 carries a negative charge and after immobilization on the surface of plasma-treated nanofibrous membrane attracts the NH{sub 3}{sup +} group and more enzyme activity is detected on the plasma-modified nanofibers for 6 min in compared to unmodified nanofibers. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used for the surface topography and morphology characterization. The results have proved that air-DBD plasma is a suitable method for chitosan/PEO nanofibrous membrane modification as a biodegradable and functionalized substrate for enzyme immobilization.

  6. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Yao; LIU ZhenMei; XU ZhiKang; YAO Ke

    2009-01-01

    Surface modification with dielectric barrier discharge (DBD) plasma was carried out at atmospheric pressure (argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens (IOL). Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy (XPS),field emission scanning electron microscopy (FESEM),atomic force microscopy (AFM) and water contact angle (WCA) measurements. The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells (LECs) in vitro. After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved. The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect. The existence of low molecular weight oxidized material (LMWOM) was proved on the plasma treated IOL which was caused by the chain scission effect of the plasma treatment. The plasma-treated lOLs resisted the adhesion of platelets and macrophages significantly. The LECs spreading and proliferation were postponed on the lOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs. The IOL biocompatibility was improved after the DBD plasma treatment. We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification (ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  7. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM) and water contact angle(WCA) measurements.The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells(LECs) in vitro.After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved.The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect.The existence of low molecular weight oxidized material(LMWOM) was proved on the plasma-treated IOL which was caused by the chain scission effect of the plasma treatment.The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly.The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs.The IOL biocompatibility was improved after the DBD plasma treatment.We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification(ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  8. Reactivity of water vapor in an atmospheric pressure DBD -Application to LDPE surfaces

    CERN Document Server

    Collette, S; Viville, Pascal; Reniers, François

    2016-01-01

    The reactivity of water vapor introduced in an atmospheric dielectric barrier discharge supplied in argon is investigated through optical emission spectroscopy measurements. This discharge is also used for the treatment of LDPE surfaces. Water contact angles measurements, XPS and AFM techniques are used to study the grafting of oxygen functions on the LDPE surface and increase its hydrophilicity.

  9. Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation

    Science.gov (United States)

    Laing, Richard; Kirwan, Jennifer; Silva, Michael A.; Richards, Douglas A.; Murphy, Nick; Mirza, Darius F.; Viant, Mark R.

    2016-01-01

    Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations. PMID:27835640

  10. Structure of the human FOXO4-DBD-DNA complex at 1.9 Å resolution reveals new details of FOXO binding to the DNA.

    Science.gov (United States)

    Boura, Evzen; Rezabkova, Lenka; Brynda, Jiri; Obsilova, Veronika; Obsil, Tomas

    2010-12-01

    FOXO4 is a member of the FOXO subgroup of forkhead transcription factors that constitute key components of a conserved signalling pathway that connects growth and stress signals to transcriptional control. Here, the 1.9 Å resolution crystal structure of the DNA-binding domain of human FOXO4 (FOXO4-DBD) bound to a 13 bp DNA duplex containing a FOXO consensus binding sequence is reported. The structure shows a similar recognition of the core sequence as has been shown for two other FOXO proteins. Helix H3 is docked into the major groove and provides all of the base-specific contacts, while the N-terminus and wing W1 make additional contacts with the phosphate groups of DNA. In contrast to other FOXO-DBD-DNA structures, the loop between helices H2 and H3 has a different conformation and participates in DNA binding. In addition, the structure of the FOXO4-DBD-DNA complex suggests that both direct water-DNA base contacts and the unique water-network interactions contribute to FOXO-DBD binding to the DNA in a sequence-specific manner.

  11. Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation.

    Science.gov (United States)

    Hrydziuszko, Olga; Perera, M Thamara P R; Laing, Richard; Kirwan, Jennifer; Silva, Michael A; Richards, Douglas A; Murphy, Nick; Mirza, Darius F; Viant, Mark R

    2016-01-01

    Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations.

  12. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity.

    Science.gov (United States)

    Solomon, Isaac H; Hager, Janet M; Safi, Rachid; McDonnell, Donald P; Redinbo, Matthew R; Ortlund, Eric A

    2005-12-16

    The DNA-binding and ligand-binding functions of nuclear receptors are localized to independent domains separated by a flexible hinge. The DNA-binding domain (DBD) of the human liver receptor homologue-1 (hLRH-1), which controls genes central to development and metabolic homeostasis, interacts with monomeric DNA response elements and contains an Ftz-F1 motif that is unique to the NR5A nuclear receptor subfamily. Here, we present the 2.2A resolution crystal structure of the hLRH-1 DBD in complex with duplex DNA, and elucidate the sequence-specific DNA contacts essential for the ability of LRH-1 to bind to DNA as a monomer. We show that the unique Ftz-F1 domain folds into a novel helix that packs against the DBD but does not contact DNA. Mutations expected to disrupt the positioning of the Ftz-F1 helix do not eliminate DNA binding but reduce the transcriptional activity of full-length LRH-1 significantly. Moreover, we find that altering the Ftz-F1 helix positioning eliminates the enhancement of LRH-1-mediated transcription by the coactivator GRIP1, an action that is associated primarily with the distantly located ligand-binding domain (LBD). Taken together, these results indicate that subtle structural changes in a nuclear receptor DBD can exert long-range functional effects on the LBD of a receptor, and significantly impact transcriptional regulation.

  13. Cooperative binding of PhoB(DBD) to its cognate DNA sequence-a combined application of single-molecule and ensemble methods.

    Science.gov (United States)

    Ritzefeld, Markus; Walhorn, Volker; Kleineberg, Christin; Bieker, Adeline; Kock, Klaus; Herrmann, Christian; Anselmetti, Dario; Sewald, Norbert

    2013-11-19

    A combined approach based on isothermal titration calorimetry (ITC), fluorescence resonance energy transfer (FRET) experiments, circular dichroism spectroscopy (CD), atomic force microscopy (AFM) dynamic force spectroscopy (DFS), and surface plasmon resonance (SPR) was applied to elucidate the mechanism of protein-DNA complex formation and the impact of protein dimerization of the DNA-binding domain of PhoB (PhoB(DBD)). These insights can be translated to related members of the family of winged helix-turn-helix proteins. One central question was the assembly of the trimeric complex formed by two molecules of PhoB(DBD) and two cognate binding sites of a single oligonucleotide. In addition to the native protein WT-PhoB(DBD), semisynthetic covalently linked dimers with different linker lengths were studied. The ITC, SPR, FRET, and CD results indicate a positive cooperative binding mechanism and a decisive contribution of dimerization on the complex stability. Furthermore, an alanine scan was performed and binding of the corresponding point mutants was analyzed by both techniques to discriminate between different binding types involved in the protein-DNA interaction and to compare the information content of the two methods DFS and SPR. In light of the published crystal structure, four types of contribution to the recognition process of the pho box by the protein PhoB(DBD) could be differentiated and quantified. Consequently, it could be shown that investigating the interactions between DNA and proteins with complementary techniques is necessary to fully understand the corresponding recognition process.

  14. Proteomic identification of C/EBP-DBD multiprotein complex: JNK1 activates stem cell regulator C/EBPalpha by inhibiting its ubiquitination.

    Science.gov (United States)

    Trivedi, A K; Bararia, D; Christopeit, M; Peerzada, A A; Singh, S M; Kieser, A; Hiddemann, W; Behre, H M; Behre, G

    2007-03-15

    Functional inactivation of transcription factors in hematopoietic stem cell development is involved in the pathogenesis of acute myeloid leukemia (AML). Stem cell regulator C/enhancer binding protein (EBP)alpha is among such transcription factors known to be inactive in AML. This is either due to mutations or inhibition by protein-protein interactions. Here, we applied a mass spectrometry-based proteomic approach to systematically identify putative co-activator proteins interacting with the DNA-binding domain (DBD) of C/EBP transcription factors. In our proteomic screen, we identified c-Jun N-terminal kinase (JNK) 1 among others such as PAK6, MADP-1, calmodulin-like skin proteins and ZNF45 as proteins interacting with DBD of C/EBPs from nuclear extract of myelomonocytic U937 cells. We show that kinase JNK1 physically interacts with DBD of C/EBPalpha in vitro and in vivo. Furthermore, we show that active JNK1 inhibits ubiquitination of C/EBPalpha possibly by phosphorylating in its DBD. Consequently, JNK1 prolongs C/EBPalpha protein half-life leading to its enhanced transactivation and DNA-binding capacity. In certain AML patients, however, the JNK1 mRNA expression and its kinase activity is decreased which suggests a possible reason for C/EBPalpha inactivation in AML. Thus, we report the first proteomic screen of C/EBP-interacting proteins, which identifies JNK1 as positive regulator of C/EBPalpha.

  15. Conversion of methane through dielectric-barrier discharge plasma

    Institute of Scientific and Technical Information of China (English)

    Baowei WANG; Xiaolei CAO; Kuanhui YANG; Genhui XU

    2008-01-01

    Methane coupling to produce C2 hydrocar-bons through a dielectric-barrier discharge (DBD) plasma reaction was studied in four DBD reactors. The effects of high voltage electrode position, different discharge gap, types of inner electrode, volume ratio of hydrogen to methane and air cooling method on the conversion of methane and distribution of products were investigated. Conversion of methane is obviously lower when a high voltage electrode acts as an outer electrode than when it acts as an inner electrode. The lifting of reaction temper-ature becomes slow due to cooling of outer electrode and the temperature can be controlled in the expected range of 60℃-150℃ for ensuring better methane conversion and safe operation. The parameters of reactors have obvious effects on methane conversion, but it only slightly affects distribution of the products. The main products are ethyl-ene, ethane and propane. The selectivity of C2 hydrocar-bons can reach 74.50% when volume ratio of hydrogen to methane is 1.50.

  16. Detection of DBD-carbamoyl amino acids in amino acid sequence and D/L configuration determination of peptides with fluorogenic Edman reagent 7-[(N,N-dimethylamino)sulfonyl]-2,1,3-benzoxadiazol-4-yl isothiocyanate.

    Science.gov (United States)

    Huang, Y; Matsunaga, H; Toriba, A; Santa, T; Fukushima, T; Imai, K

    1999-06-01

    A method for amino acid sequence and D/L configuration identification of peptides by using fluorogenic Edman reagent 7-[(N, N-dimethylamino)sulfonyl]-2,1,3-benzoxadiazol-4-yl isothiocyanate (DBD-NCS) has been developed. This method was based on the Edman degradation principle with some modifications. A peptide or protein was coupled with DBD-NCS under basic conditions and then cyclized/cleaved to produce DBD-thiazolinone (TZ) derivative by BF3, a Lewis acid, which could significantly suppress the amino acid racemization. The liberated DBD-TZ amino acid was hydrolyzed to DBD-thiocarbamoyl (TC) amino acid under a weakly acidic condition and then oxidized by NaNO2/H+ to DBD-carbamoyl (CA) amino acid which was a stable and had a strong fluorescence intensity. The individual DBD-CA amino acids were separated on a reversed-phase high-performance liquid chromatography (RP-HPLC) for amino acid sequencing and their enantiomers were resolved on a chiral stationary-phase HPLC for identifying their D/L configurations. Combination of the two HPLC systems, the amino acid sequence and D/L configuration of peptides could be determined. This method will be useful for searching D-amino-acid-containing peptides in animals.

  17. Current-Mode Power Converter for Radiation Control in DBD Excimer Lamps

    OpenAIRE

    2012-01-01

    A pulsed current-mode converter specifically designed for the supply of dielectric barrier discharge excimer lamps is proposed in this paper. The power supply structure is defined on the basis of causality criteria that are justified by the structure of the lamp model. The converter operation is studied, and its design criteria are established using state-plane analysis. This converter, operating in discontinuous conduction mode, controls directly both the amplitude and the duration of the em...

  18. Direct plasma NOx reduction using single surface dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kroushawi, Feisal; Stamate, Eugen

    2014-01-01

    NOx reduction using direct atmospheric barrier discharge in air-NO mixture at different voltages and flow rates is inversigated. Reduction rate of 80% is achieved at 3.18 W/cm2 power density and gas mixture of 20 slm air and 0.006 slm NO. The ozone for NO reduction is produced by a honeycomb...... structured DBD with a total surface of 12.56 cm2. The reduction process is investigated by FTIR spectroscopy, chemiluminsecence, mass spectrometry and optical emission spectroscopy....

  19. Vortex shedding noise reduction by single dielectric barrier discharge plasma actuators

    OpenAIRE

    Al-Sadawi, L; Chong, TP

    2016-01-01

    An experimental study of active control of vortex shedding narrow band tonal noise from both blunt and rounded trailing edge of a profiled body at zero incidences was performed using Single Dielectric Barrier plasma actuators (DBD). Acoustics and flow measurements were carried out in an open jet, aerocoustic wind tunnel at Reynolds numbers ranging from 7x104 to 4x105. The noise results were obtained using single microphone, while both PIV and hot-wire were used for flow measurement in order t...

  20. Conversion from Dimethyl Ether to Dimethoxymethane and Dimethoxyethane Using Dielectric-Barrier Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    Wang Yu; Liu Changjun; Zhang Yueping

    2005-01-01

    Experimental investigation was conducted to convert dimethyl ether (DME) in thepresence of steam using dielectric barrier discharge (DBD) at atmospheric pressure and 373 K.The flow rate of DME was 20 ml/min. The introduction of steam resulted in an increase in theDME conversion and the selectivity of oxygenates. Plasma steam-enhanced dimethyl ether (DME)conversion led to a direct synthesis of DMMT and DMET, with a high selectivity of 5.78% and17.99%, respectively. The addition of steam promoted the formation of "plasma aerosol" that wasfavored for the formation of liquid oxygenates. The reaction pathway of plasma DME conversionwas proposed.

  1. 对称双势垒量子阱中自旋极化输运的时间特性%Time of spin-polarized tunneling through a symmetric double-barrier quantum well structure∗

    Institute of Scientific and Technical Information of China (English)

    王瑞琴; 宫箭†; 武建英; 陈军

    2013-01-01

      电子的隧穿时间是描述量子器件动态工作范围的重要指标。本文考虑k3 Dresselhaus自旋轨道耦合效应对系统哈密顿量的修正,结合转移矩阵方法和龙格-库塔法来解含时薛定谔方程,进而讨论了电子在非磁半导体对称双势垒结构中的透射系数及隧穿寿命等问题。研究结果发现:由于k3 Dresselhaus自旋轨道耦合效应使自旋简并消除,并在时间域内得到了表达,导致自旋向上和自旋向下电子的透射峰发生了自旋劈裂;不同自旋取向的电子构建时间和隧穿寿命不同,这是导致自旋极化的原因之一;电子的自旋极化在时间上趋于稳定。%Tunneling time is an important factor to describe quantum electronic device. In this paper, the dynamic problem of spin-dependent tunneling is investigated by solving the time-dependent Schr¨odinger equation. The transmission coefficient and tunneling lifetime are discussed by use of mixing transfer-matrix and Runge-Kutta method. The k3 Dresselhaus term is considered to correct the effective Hamiltonian of the system in our calculation. The results show that the transmission peak of the electrons with different spin orien-tations split obviously. The building time and the tunneling lifetime through the double-barrier structure of AlxGa1−xSb material are different for the spin-down electron and spin-up electron. These time-dependent properties depend on the electronic spin orientation. It can be considered as one of reasons for spin polarization to appear. Additionally, the steady spin-polarization emerges in the well due to the k3 Dresselhaus spin-orbit coupling.

  2. CO2 splitting by DBD: understanding the influence of electrical parameters and regimes

    CERN Document Server

    Ozkan, Alp; Silva, Tiago; Britun, Nikolay; Snyders, Rony; Bogaerts, Annemie; Reniers, François

    2016-01-01

    Plasma processes are an innovative approach for the decomposition of CO2 in O radicals and CO as a valuable carbon source. In this experimental work, a tubular dielectric barrier discharge operating at atmospheric pressure has been used to split CO2 and study its conversion considering the influence of frequency and power, as well as the influence of various electrical regimes (AC, AC pulsed regimes). The CO2 conversion has been measured by mass spectrometry and gas chromatography while gas and walls temperatures have been determined and correlated to evaluate their influence of the CO2 splitting.

  3. Degradation of bisphenol-A by dielectric barrier discharge system: influence of polyethylene glycol stabilized nano zero valent iron particles

    Science.gov (United States)

    Tijani, Jimoh O.; Mouele, Massima E. S.; Fatoba, Ojo O.; Babajide, Omotola O.; Petrik, Leslie F.

    2017-09-01

    In this study we report the synthesis and catalytic properties of polyethylene glycol stabilized nano zero valent iron particles (PEG-nZVI) added to the dielectric barrier discharge (DBD) system to induce photo-Fenton process in the degradation of bisphenol A (BPA) in aqueous solution. The influence of operating parameters such as solution pH, initial concentration of the modelled pollutant and PEG-nZVI dosage on the extent of BPA degradation was investigated. The residual concentration of BPA and its intermediates were determined using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LCMS). The high resolution scanning electron microscope (HRSEM), x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and x-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of filamentous, high surface area iron nanoparticles in the zero valent state. The BPA mineralization rate was monitored using total organic carbon (TOC) analyser. 100% BPA removal was achieved with DBD/PEG-nZVI system within 30 min compared to 67.9% (BPA) with DBD alone after 80 min. The complete BPA removal within a short reaction time was attributed to the existence of a synergetic effect in the combined DBD/PEG-nZVI system. Five new transformation products of BPA namely: 4-nitrophenol (C6H5NO3), 4-nitrosophenolate (C6H4NO2), 4-(prop-1-en-2-yl) cyclohexa-3,5-diene-1,2-dione, (C9H8O2), 4-(2-hydroxylpropan-2-yl)cyclohexane-3,5-diene-1,2-dione (C9H10O3), and 1,2-dimethyl-4-(2-nitropropan-2-yl)benzene (C9H10NO4) were identified. BPA degradation proceeded via ozonation, hydroxylation, dimerization, and decarboxylation and nitration step. The combined DBD/photo-Fenton-induced process was found to be the most efficient in the elimination of BPA in aqueous solutions and DBD alone.

  4. A gapless micro-dielectric-barrier-discharge ion source for analytical applications

    CERN Document Server

    Coy, Stephen L; Eiceman, Gary A; Kanik, Isik

    2016-01-01

    Use of dielectric barrier discharge (DBD) as an ion source for sensitive chemical analysis is uncommon because barrier discharges generate excess noise due to spatial and temporal instability. This design uses contacted, crossed glass-coated micro-wires to focus the field into a gradually vanishing gap, suppressing spatial and temporal variability, reducing pressure, temperature, and humidity effects, stabilizing discharge initiation and limiting chemical fragmentation. Positive-ion-mode proton transfer, chemical fragmentation from a micro-discharge, and NO+ adducts combine to allow broad chemical sensitivity. We analyze noise properties of the ion source and report chemical responsivity for a wide range of volatile organic compounds. Source noise spectral density is compared for three systems: the contacted coated wires source, a gapped dielectric barrier discharge source, and a 5 mCi Ni-63 radioactive source. The crossed-wires source shows noise properties approaching those of the white-noise Ni-63 source, ...

  5. Average OH density in alternating current dielectric barrier discharge by laser-induced fluorescence technique

    Science.gov (United States)

    Yang, Hongliang; Feng, Chunlei; Gao, Liang; Ding, Hongbin

    2015-10-01

    The average OH density in atmospheric He-H2O(0.4%) needle-plate dielectric barrier discharge (DBD) was measured by the asynchronous laser-induced fluorescence (LIF) technique and the fluctuation of OH radical density was measured simultaneously to prove that the average OH density can be obtained by the asynchronous LIF technique. The evolution of the average OH density in four different discharge patterns, namely, negative barrier corona discharge, glow discharge, multi glow discharge, and streamer discharge, was studied, and it was found that the average OH density has an observable increase from corona discharge to streamer discharge. The main mechanism of OH production in the four different discharge patterns was analyzed. It was shown that the main mechanism of OH production in negative barrier corona discharge is electron direct collision dissociation, whereas in the other three discharge patterns the He metastable Penning ionization is the main process.

  6. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    Science.gov (United States)

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  7. The Changes in Electrical and Interfacial Properties of Polyimide Exposed to Dielectric Barrier Discharge in SF6 Medium

    Directory of Open Access Journals (Sweden)

    Hafiz Z. Alisoy

    2013-01-01

    Full Text Available The formation mechanism of space charges in polyimide (PI which was exposed to dielectric barrier discharge (DBD in SF6 medium and the effects of the space charges on interfacial and electrical properties of PI were investigated. The variation of normalized surface charge density on PI sample was calculated and illustrated for different DBD exposure times. The surface potential was measured to determine the effect of the space charges on the sample. Then, the contact angle values were measured to obtain the relation between the surface energy and the surface charge density. The expressions for the total charge and the concentration of trapped electrons were derived by using Poisson and continuity equations at stationary state. The space charges were determined experimentally by using thermally stimulated depolarization current (TSDC method. Also, SEM image and FTIR spectrum of virgin and treated samples were presented to observe the structural variations. It was seen that the approach for the formation mechanism of the space charges agreed with the experimental data. However, it was concluded particularly for the short-time DBD treatments that the space charges accumulated in the sample should be considered besides the effects of surface functionalization in the determination of the surface energy.

  8. Changes in Properties of Dielectric Barrier Discharge Plasma Jets for Different Gases and for Insulating and Conducting Transfer Plates

    Science.gov (United States)

    do Nascimento, Fellype; Moshkalev, Stanislav; Machida, Munemasa

    2017-03-01

    Dielectric barrier discharge (DBD) plasma jets have been studied extensively in recent years because of its wide range of applications. DBD plasmas can be produced using many different gases and can be applied to a broad variety of surfaces and substrates. This work provides comparisons of DBD plasmas generated using argon (Ar), helium (He), and nitrogen (N2), as well as their mixtures with water vapor in order to know how some plasma properties are affected by the use of different gases. All plasmas were studied in two different conditions: using a transfer plate made of a conductive material and using a transfer plate made of an insulating one. It was observed that the process of Penning ionization of nitrogen molecules by direct collisions with metastable atoms and molecules is evident and significant only in plasmas that use He as the working gas, which means that He atoms in metastable states have greater ability to transfer energy to molecules of nitrogen in the plasma. The collisions of metastable He with N2 molecules determine the vibrational temperature (T vib) values in He plasmas, while in Ar and N2 plasmas, the T vib values are determined mainly by collisions of electrons with N2 molecules. It was noticed that the use of an insulating or a conducting transfer plate as the sample holder affects the results of adhesion between poly(dimethylsiloxane) samples, and it is mainly due to the differences in the plasma power, with a higher plasma power leading to better adhesion.

  9. Application of Dielectric-Barrier Discharge to the Stabilization of Lifted Non-Premixed Methane/Air Jet Flames

    Science.gov (United States)

    Liao, Ying-Hao; Zhao, Xiang-Hong

    2016-11-01

    Recent studies have shown that the application of non-thermal plasma is a promising way to enhance the flame stabilization and combustion efficiency. The present study experimentally investigates the effect of a dielectric-barrier discharge (DBD) on the stabilization of lifted non-premixed methane/air jet flames. The jet flame with co-annular DBD is produced by a co-flow burner and has a Reynolds number of Re = 2500, 5000, 7000, and 9000. The application of DBD is seen to have an impact on the flame lift-off height, and the degree of impact is subject to flow conditions (such as Reynolds number and co-flow velocity) and plasma power. In general, the enhancement of flame stabilization, indicated by the decrease in lift-off height, is most evident at low Reynolds number and co-flow velocity. For flames with a Reynolds number less than Re = 5000, flames are attached to the nozzle regardless of the co-flow velocity and plasma power; at Re = 5000, flames are often intermittently attached. The enhancement is not that significant at high Reynolds number and co-flow velocity at least for the plasma power employed in the current study. A slight increase in plasma power leads to enhanced flame stabilization.

  10. The Changes in Electrical and Interfacial Properties of Polyimide Exposed to Dielectric Barrier Discharge in SF6 Medium

    Science.gov (United States)

    Alisoy, Hafiz Z.; Koseoglu, Murat

    2013-01-01

    The formation mechanism of space charges in polyimide (PI) which was exposed to dielectric barrier discharge (DBD) in SF6 medium and the effects of the space charges on interfacial and electrical properties of PI were investigated. The variation of normalized surface charge density on PI sample was calculated and illustrated for different DBD exposure times. The surface potential was measured to determine the effect of the space charges on the sample. Then, the contact angle values were measured to obtain the relation between the surface energy and the surface charge density. The expressions for the total charge and the concentration of trapped electrons were derived by using Poisson and continuity equations at stationary state. The space charges were determined experimentally by using thermally stimulated depolarization current (TSDC) method. Also, SEM image and FTIR spectrum of virgin and treated samples were presented to observe the structural variations. It was seen that the approach for the formation mechanism of the space charges agreed with the experimental data. However, it was concluded particularly for the short-time DBD treatments that the space charges accumulated in the sample should be considered besides the effects of surface functionalization in the determination of the surface energy. PMID:23844414

  11. Inactivation of dinoflagellate Scrippsiella trochoidea in synthetic ballast water by reactive species generated from dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Tang Qiong; Jiang Wenju; Yang Zhishan [Institute of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Zhang Yi; Lim Tuti Mariana, E-mail: TMLim@ntu.edu.s [Institute of Environmental Science and Engineering, Nanyang Technology University, Innovation Center, Block 2, Unit 237, 18 Nanyang Drive, 637723 Singapore (Singapore)

    2009-05-07

    The inactivation of dinoflagellate Scrippsiella trochoidea in synthetic ballast water by a dielectric barrier discharge (DBD) system was investigated. The OH{sup .} radical, ozone and hydrogen peroxide generated from the DBD system were measured. Before and after the treatment, the viability of dinoflagellate S. trochoidea was evaluated by analyzing chlorophyll a, protein and saccharide content and morphology of the cells, as well as the pH of the cell culture media. The results show OH{sup .} radical was the major reactive species when humid air was used. The inactivation of S. trochoidea was found to be dependent on the applied voltage and the gas flow rate, and was completed within 4 min at a gas flow rate of 7 L min{sup -1} and an applied voltage of 20 kV. The change of chlorophyll a, protein and saccharide concentrations of S. trochoidea and the morphology of the cells indicates that the reactive species generated from the DBD system can break up the cells via oxidation.

  12. Status of the NEXT experiment and future perspectives for HPXe-based DBD searches

    Science.gov (United States)

    Cadenas, Juan

    2014-09-01

    Neutrinos may be Majorana particles. If so, neutrinoless double beta decay processes could be observed by the next-generation bb0nu experiments. This talk will present one of the most promising ideas in the field, the use of a High Pressure Gas Xenon TPC (HPGXe) with electroluminescence gain and optical readout. A 100 kg incarnation of such a device, the NEXT-100 experiment, will start operations at the Canfranc Underground Lab in Spain in 2015. The technology can be extrapolated to 1 ton, and thus lead the exploration of the inverse hierarchy in Majorana landscape. Neutrinos may be Majorana particles. If so, neutrinoless double beta decay processes could be observed by the next-generation bb0nu experiments. This talk will present one of the most promising ideas in the field, the use of a High Pressure Gas Xenon TPC (HPGXe) with electroluminescence gain and optical readout. A 100 kg incarnation of such a device, the NEXT-100 experiment, will start operations at the Canfranc Underground Lab in Spain in 2015. The technology can be extrapolated to 1 ton, and thus lead the exploration of the inverse hierarchy in Majorana landscape. Thanks: Advanced Grant/ERC; CSIC and MINECO CONSOLIDER GREANT- CUP.

  13. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  14. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  15. Dielectric-barrier discharges in two-dimensional lattice potentials

    CERN Document Server

    Sinclair, Josiah

    2011-01-01

    We use a pin-grid electrode to introduce a corrugated electrical potential into a planar dielectric-barrier discharge (DBD) system, so that the amplitude of the applied electric field has the profile of a two-dimensional square lattice. The lattice potential provides a template for the spatial distribution of plasma filaments in the system and has pronounced effects on the patterns that can form. The positions at which filaments become localized within the lattice unit cell vary with the width of the discharge gap. The patterns that appear when filaments either overfill or under-fill the lattice are reminiscent of those observed in other physical systems involving 2d lattices. We suggest that the connection between lattice-driven DBDs and other areas of physics may benefit from the further development of models that treat plasma filaments as interacting particles.

  16. Manufacturing of Dielectric Barrier Discharge Plasma Actuator for Degradation Resistance

    Science.gov (United States)

    Houser, Nicole M.

    The performance and broader application of dielectric barrier discharge (DBD) plasma actuators are restricted by the manufacturing methods currently employed. In the current work, two methodologies are proposed to build robust plasma actuators for active flow control; a protective silicone oil (PDMS) treatment for hand-cut and laid tape-based actuators and a microfabrication technique for glass-based devices. The microfabrication process, through which thin film electrodes are precisely deposited onto plasma-resistant glass substrates, is presented in detail. The resulting glass-based devices are characterized with respect to electrical properties and output for various operating conditions. The longevity of microfabricated devices is compared against silicone-treated and untreated hand-made devices of comparable geometries over 60 hours of continuous operation. Both tungsten and copper electrodes are considered for microfabricated devices. Human health effects are also considered in an electromagnetic field study of the area surrounding a live plasma actuator for various operating conditions.

  17. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode

    Science.gov (United States)

    Khoshkhoo, R.; Jahangirian, A.

    2016-09-01

    A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter-pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000.

  18. Grafting Silane onto Silicate Glass Surface Treated by DBD in Air

    Institute of Scientific and Technical Information of China (English)

    REN Chunsheng; WANG Dezhen; WANG Younian

    2008-01-01

    Dielectric barrier discharge plasma in air was used to modify glass surface to induce the graft of silane onto the treated surface to increase the possibility of biomolecule immobilization.The plasma treated glass had been characterized by scanning electron microscopy (SEM),Fourier transform infrared attenuated total reflection spectroscopy,X-ray photoelectron spectroscopy (XPS) and surface water contact angle measurement.The validity of grafting silane onto glass surface was approved by the analysis of water contact angle measurement,SEM and XPS.The grafted silane content was measured by visible absorption spectroscopy using acid Orange-7.It is shown that the grafting density of silane for glass samples increases significantly after plasma treatment.

  19. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    Science.gov (United States)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  20. Experimental Investigation of Separation Control on a NACA0024 Airfoil using Stationary and Non-Stationary AC-Dielectric Barrier Discharge Plasma Actuator

    Directory of Open Access Journals (Sweden)

    Hossein Parishani

    2016-01-01

    Full Text Available An experimental study of stationary and non-stationary dielectric barrier discharge (DBD plasma actuator is presented to control the flow around a NACA0024 airfoil. First, an induced air velocity of ~5 m/s is generated on a flat plate in still air using an AC-DBD actuator to find the optimal setup of the actuator (voltage, frequency, electrode width and gap size. Using the same actuator in the optimal position/setup on a NACA0024 airfoil at Reynolds number of 0.48×106, we are able to increase the stall angle of the airfoil to 18º, compared to 16º in no-actuator state. Furthermore, during the plasma actuation, the lift is increased by up to 5%. We show that non-stationary actuation, while yielding a performance similar to stationary actuation, leads to a considerable reduction of ~51% in plasma power consumption.

  1. Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range

    Science.gov (United States)

    Blin-Simiand, N.; Pasquiers, S.; Magne, L.

    2016-05-01

    The influence of the gas mixture temperature, from 20 °C up to 300 °C, on the removal of formaldehyde, diluted at low concentration (less than 800 ppm) in dry air at atmospheric pressure, by a pulsed dielectric barrier discharge (DBD) is studied by means of Fourier transform infrared spectroscopy and micro gas chromatography. Efficient removal of CH2O is obtained and it is found that the characteristic energy, less than 200 J l-1, is a decreasing function of the temperature over the whole range of concentration values under consideration. Byproducts issued from the removal are identified and quantified (CO, CO2, HCOOH, HNO3). Experimental results are analysed using a zero-dimensional simplified DBD-reactor model in order to gain insights on the chemical processes involved. It is shown that the dissociation of the molecule competes with oxidation reactions at low temperature, whereas at high temperature oxidation processes dominate.

  2. Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation

    OpenAIRE

    Hrydziuszko, Olga; Perera, M. Thamara P. R; Laing, Richard; Kirwan, Jennifer; Silva, Michael A; Richards, Douglas A.; Murphy, Nick; Mirza, Darius F; Viant, Mark R.

    2016-01-01

    Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27...

  3. 液相条件下低温常压 DBD 等离子对厌氧细菌的杀灭研究%Study on Anaerobic Bacteria Sterilization by Low Temperature Atmospheric DBD Plasma in Liquid Phase

    Institute of Scientific and Technical Information of China (English)

    杨博; 郭斯青; 郭荣; 陈欢欢; 谢博厚

    2015-01-01

    The rules of Anaerobic Bacteria Lactobacillus acidophilus sterilization by Low Temperature Atmospheric DBD was studied , in terms of plasma voltage , plasma current and exposure time.It was indicated that there was a linear dependent between plasma parameters and sterilization capacity , and Leakage of cellular protein and DNA was also observed during initial treatment stage of plasma exposure by UV-visible spectrophotometer examination , which meant the bacteria activity was reduced successfully.%采用低温常压DBD等离子灭菌技术,研究了不同等离子体放电参数(电压、电流及放电时间等)对液相中乳酸杆菌的杀灭影响规律。研究发现,等离子体杀灭液相中乳酸杆菌的能力与其放电参数线性相关;紫外可见吸收光谱检测发现等离子体处理初期细胞蛋白质和DNA已经开始泄漏,细菌活性被有效削减。

  4. Enantiomeric separation of D,L-tryptophan and D,L-kynurenine by HPLC using pre-column fluorescence derivatization with R(-)-DBD-PyNCS.

    Science.gov (United States)

    Iizuka, Hideaki; Hirasa, Yasushi; Kubo, Kazumi; Ishii, Kana; Toyo'oka, Toshimasa; Fukushima, Takeshi

    2011-07-01

    The enantiomeric separation of D,L-tryptophan (Trp) and D,L-kynurenine (KYN) was investigated by high-performance liquid chromatography using pre-column fluorescence derivatization with a chiral fluorescent labeling reagent, R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7- (N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole [R(-)-DBD-PyNCS]. Using an octadecylsilica column, namely, an Inertsil ODS-3 column (250 x 2.0 mm; i.d., 3 μm), four fluorescence peaks of D- and L-Trp as well as D- and L-KYN derivatized with R(-)-DBD-PyNCS were clearly observed, and their chemical structures were confirmed by HPLC-time-of-flight-mass spectrometry. Simultaneous separation was achieved under the mobile phase condition of 1.5% acetic acid in H₂O-CH₃CN (60:40), and the separation factors of D,L-Trp and D,L-KYN derivatized with R(-)-DBD-PyNCS were 1.22 and 1.19, respectively. Fluorescence detection was carried out by setting the emission wavelength at 565 nm, and the excitation wavelength at 440 nm, and the detection limits were approximately 0.3-0.5 pmol (signal-to-noise ratio of 3).

  5. Antitumor action of non thermal plasma sources, DBD and Plasma Gun, alone or in combined protocols

    Science.gov (United States)

    Robert, Eric; Brullé, Laura; Vandamme, Marc; Riès, Delphine; Le Pape, Alain; Pouvesle, Jean-Michel

    2012-10-01

    The presentation deals with the assessment on two non thermal plasma sources developed and optimized for oncology applications. The first plasma source is a floating-electrode dielectric barrier discharge powered at a few hundreds of Hz which deliver air-plasma directly on the surface of cell culture medium in dishes or on the skin or organs of mice bearing cancer tumors. The second plasma source, so called Plasma Gun, is a plasma jet source triggered in noble gas, transferred in high aspect ratio and flexible capillaries, on targeting cells or tumors after plasma transfer in air through the ``plasma plume'' generated at the capillary outlet. In vitro evidence for massive cancer cell destruction and in vivo tumor activity and growth rate reductions have been measured with both plasma sources. DNA damages, cell cycle arrests and apoptosis induction were also demonstrated following the application of any of the two plasma source both in vitro and in vivo. The comparison of plasma treatment with state of the art chemotherapeutic alternatives has been performed and last but not least the benefit of combined protocols involving plasma and chemotherapeutic treatments has been evidenced for mice bearing orthotopic pancreas cancer and is under evaluation for the colon tumors.

  6. Multiple surface DBD electrode system for efficient and controlled generation of ozone

    Science.gov (United States)

    Prukner, Vaclav; Hoffer, Petr; Simek, Milan

    2016-09-01

    Electrical characteristics and ozone production measurements were performed to evaluate the efficiency of ozone generation using an amplitude-modulated AC Surface Dielectric Barrier Discharge (SDBD) in dry synthetic air and pure oxygen at atmospheric pressure. To increase the concentration and production of ozone we used the multiple SDBD electrode system consisting of several identical elements in parallel configuration. Each SDBD element is made of a thin alumina plate (10cm x 10 cm x 0,065cm) with metallic strips deposited on the upper side as a HV electrode and full square or strips on the opposite side as a ground electrode. An influence of a photocatalyst on ozone production was studied as well by inserting thin alumina plates coated with titanium dioxide thin films between SDBD electrodes. Alternatively, the SDBD electrodes directly coated with titanium dioxide were tested either. Dependence of ozone production on the discharge duty cycle and gas flow rate of 0,8 slm - 10 slm were evaluated. Work supported by TACR (Contract No. TA03010098).

  7. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators

    Directory of Open Access Journals (Sweden)

    Zhao Guangyin

    2015-04-01

    Full Text Available A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.

  8. Influence of excitation frequency on helium metastable density in atmospheric pressure DBD

    Science.gov (United States)

    Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.

    2016-09-01

    Diffuse dielectric barrier discharges in atmospheric-pressure helium was sustained over a wide range of excitation frequencies (50 kHz to 15 MHz). Emission spectroscopy and resonant absorption and laser absorption on He(23S) metastable atoms have been used to characterize different plasma regimes, which with increasing frequency changes from a low pressure glow discharge (APGD) to Townsend-like mode (TL) and finally to a continuously sustained plasma. This later can be in Ω mode (with uniform E-field) or RF- α mode (with sheath formation). Depending on applied power, the time-averaged He(23S) density remains below 3 1016 m-3 in TL and Ω modes, can reach 7 1016 m-3 in APGD and RF- α modes and up to 4 1017 m-3 in a combination of APGD and RF- α modes (Hybrid). Time-resolved He(23S) densities show an overshoot on the ignition phase, which in RF- α mode can be attributed to a secondary source of ionization involving metastable atoms.

  9. Design of a MT-DBD reactor for H2S control

    Science.gov (United States)

    Xu, CAO; Weixuan, ZHAO; Renxi, ZHANG; Huiqi, HOU; Shanping, CHEN; Ruina, ZHANG

    2017-04-01

    This study aimed to discuss the removal of hydrogen sulfide (H2S) with non-thermal plasma produced by a multilayer tubular dielectric barrier discharge reactor, which is useful in the field of plasma environmental applications. We explored the influence of various factors upon H2S removal efficiency ({η }{{{H}}2{{S}}}) and energy yield (Ey), such as specific energy density (SED), initial concentration, gas flow velocity and the reactor configuration. The study showed that we can achieve {η }{{{H}}2{{S}}} of 91% and the best Ey of 3100 mg kWh‑1 when we set the SED, gas flow velocity, initial H2S concentration and layers of quartz tubes at 33.2 J l‑1, 8.0 m s‑1, 30 mg m‑3 and five layers, correspondingly. The average rate constant for the decomposition of hydrogen sulfide was 0.206 g m‑3 s‑1. In addition, we also presented the optimized working conditions, by-product analysis and decomposition mechanism. Supported by programs of Research on the Technology and Equipment of Gaseous Pollutant Removal from the Emission of Household Garbage (15DZ12055904) and Jointly Decomposition of Odorous Compounds by Dielectric Combined with Excimer Ultraviolet Emission (21577023).

  10. Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution

    Science.gov (United States)

    Mercado-Cabrera, Antonio; Peña-Eguiluz, Rosendo; López-Callejas, Régulo; Jaramillo-Sierra, Bethsabet; Valencia-Alvarado, Raúl; Rodríguez-Méndez, Benjamín; Muñoz-Castro, Arturo E.

    2017-07-01

    Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar-10% O2, 80% Ar-20% O2 and 0% Ar-100% O2. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from ˜0.0115 S m-1 up to ˜0.0430 S m-1 after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were: (1) lower typical power consumption, (2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation, (3) a relatively lower temperature of the aqueous solution during the process, and (4) the plasma generation length is larger.

  11. Design of a MT-DBD reactor for H2S control

    Science.gov (United States)

    Cao, Xu; Zhao, Weixuan; Zhang, Renxi; Hou, Huiqi; Chen, Shanping; Zhang, Ruina

    2017-04-01

    This study aimed to discuss the removal of hydrogen sulfide (H2S) with non-thermal plasma produced by a multilayer tubular dielectric barrier discharge reactor, which is useful in the field of plasma environmental applications. We explored the influence of various factors upon H2S removal efficiency ({η }{{{H}}2{{S}}}) and energy yield (Ey), such as specific energy density (SED), initial concentration, gas flow velocity and the reactor configuration. The study showed that we can achieve {η }{{{H}}2{{S}}} of 91% and the best Ey of 3100 mg kWh-1 when we set the SED, gas flow velocity, initial H2S concentration and layers of quartz tubes at 33.2 J l-1, 8.0 m s-1, 30 mg m-3 and five layers, correspondingly. The average rate constant for the decomposition of hydrogen sulfide was 0.206 g m-3 s-1. In addition, we also presented the optimized working conditions, by-product analysis and decomposition mechanism. Supported by programs of Research on the Technology and Equipment of Gaseous Pollutant Removal from the Emission of Household Garbage (15DZ12055904) and Jointly Decomposition of Odorous Compounds by Dielectric Combined with Excimer Ultraviolet Emission (21577023).

  12. It's all about NO? - The role of NO and its derivates produced by a DBD in air for wound healing

    Science.gov (United States)

    Stapelmann, K.; Kogelheide, F.; Baldus, S.; Lackmann, J.-W.; Awakowicz, P.; Kartaschew, K.; Havenith, M.; Schroeder, D.; Schulz-von der Gathen, V.; Oplaender, C.; Suschek, C. V.

    2016-09-01

    DBDs can be used therapeutically in various clinical applications, e.g. improving the wound healing. Besides the disinfecting properties of plasma, tissue exposed to plasma responds to the highly reactive mixture of RONS. In particular NO plays an essential role in skin physiology, e.g. promoting wound healing and influencing the microcirculation. However, not only NO itself but also NO-derivates (NOD), such as nitrite and nitrosothiols, play an essential role, acting as NO-storage under acidic conditions and thus contributing to NO bioavailability with a long-term effect. Selected results of the DFG package project PlaCID (Plasma-Cell-Interaction in Dermatology) are presented. Spatial and time-resolved characterization of the DBD regarding ne, O (TALIF) and O3 (OAS) densities is shown. Single skin components investigated with Raman and FTIR spectroscopy show distinct modifications caused by RONS. From single components to whole skin, we investigated diffusion of NO through intact epidermis and dermal enrichment with NOD, acting as long-term storage for NO bioavailability. Funding from the DFG within PAK816 is gratefully acknowledged.

  13. Nanosecond pulsed dielectric barrier discharge plasma-catalytic removal of HCHO in humid air

    Science.gov (United States)

    Zhang, Shuai; Wang, Wenchun; Zhang, Li; Zhao, Zilu; Yang, Dezheng

    2017-05-01

    Non-thermal plasma (NTP) has been regarded as a promising method for the removal of a wide range of low concentration volatile organic compounds (VOCs). In this paper, nanosecond pulsed and alternating current dielectric barrier discharge plasmas synergistic catalyst are utilized for removal of formaldehyde (HCHO) in humid air. Working gas is 1% H2O/21% O2/78% N2 with 154 ppm HCHO over total flow rate of 50 mL/min. Specific energy density (SED) are 32.5 JL-1, 35.8 JL-1 and 1069.2 JL-1 at power consumption of 0.325 W, 0.3 W, 8.9 W for removal of 67%, 63.8% and 73.8% HCHO when using bipolar nanosecond pulsed, unipolar nanosecond pulsed and AC dielectric barrier discharge (DBD) plasma, respectively. The removal efficiencies of HCHO using nanosecond pulsed DBD plasma increase approximately 10 20% when the packed-bed Al2O3 pellets exist and can reach up to almost 100% when TiO2 nanoparticles are used while the effect of CeO2 nanoparticles is a bit poor. Analysis indicate that OH radical and O atom play main role for removal HCHO and the gas temperature is a significant factor for its influence on rate constants of HCHO with active particles.

  14. Treatment surfaces with atomic oxygen excited in dielectric barrier discharge plasma of O2 admixed to N2

    Directory of Open Access Journals (Sweden)

    E. V. Shun'ko

    2012-06-01

    Full Text Available This paper describes the increase in surface energy of substrates by their treatment with gas composition generated in plasmas of DBD (Dielectric Barrier Discharge in O2 admixed with N2. Operating gas dissociation and excitation was occurred in plasmas developed in two types of reactors of capacitively-coupled dielectric barrier configurations: coaxial cylindrical, and flat rectangular. The coaxial cylindrical type comprised an inner cylindrical electrode encapsulated in a ceramic sheath installed coaxially inside a cylindrical ceramic (quartz tube passing through an annular outer electrode. Components of the flat rectangular type were a flat ceramic tube of a narrow rectangular cross section supplied with two flat electrodes mounted against one another outside of the long parallel walls of this tube. The operating gas, mixture of N2 and O2, was flowing in a completely insulated discharge gap formed between insulated electrodes of the devices with an average velocity of gas inlet of about 7 to 9 m/s. Dielectric barrier discharge plasma was excited in the operating gaps with a bipolar pulse voltage of about 6 kV for 2 ms at 50 kHz repetition rate applied to the electrodes of the coaxial device, and of about 14 kV for 7 ms at 30 kHz repetition rate for the flat linear device. A lifetime of excited to the 2s22p4(1S0 state in DBD plasma and streaming to the surfaces with a gas flow atomic oxygen, responsible presumably for treating surfaces, exceeded 10 ms in certain cases, that simplified its separation from DBD plasma and delivery to substrates. As it was found in particular, surfaces of glass and some of polymers revealed significant enhancement in wettability after treatment.

  15. The BTB/POZ zinc finger protein Broad-Z3 promotes dendritic outgrowth during metamorphic remodeling of the peripheral stretch receptor dbd

    Directory of Open Access Journals (Sweden)

    Scott Janet A

    2011-12-01

    Full Text Available Abstract Background Various members of the family of BTB/POZ zinc-finger transcription factors influence patterns of dendritic branching. One such member, Broad, is notable because its BrZ3 isoform is widely expressed in Drosophila in immature neurons around the time of arbor outgrowth. We used the metamorphic remodeling of an identified sensory neuron, the dorsal bipolar dendrite sensory neuron (dbd, to examine the effects of BrZ3 expression on the extent and pattern of dendrite growth during metamorphosis. Results Using live imaging of dbd in Drosophila pupae, we followed its normal development during metamorphosis and the effect of ectopic expression of BrZ3 on this development. After migration of its cell body, dbd extends a growth-cone that grows between two muscle bands followed by branching and turning back on itself to form a compact dendritic bundle. The ectopic expression of the BrZ3 isoform, using the GAL4/UAS system, caused dbd's dendritic tree to transform from its normal, compact, fasciculated form into a comb-like arbor that spread over on the body wall. Time-lapse analysis revealed that the expression of BrZ3 caused the premature extension of the primary dendrite onto immature myoblasts, ectopic growth past the muscle target region, and subsequent elaboration onto the epidermis. To control the timing of expression of BrZ3, we used a temperature-sensitive GAL80 mutant. When BrZ3 expression was delayed until after the extension of the primary dendrite, then a normal arbor was formed. By contrast, when BrZ3 expression was confined to only the early outgrowth phase, then ectopic arbors were subsequently formed and maintained on the epidermis despite the subsequent absence of BrZ3. Conclusions The adult arbor of dbd is a highly branched arbor whose branches self-fasciculate to form a compact dendritic bundle. The ectopic expression of BrZ3 in this cell causes a premature extension of its growth-cone, resulting in dendrites that extend

  16. Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges

    Science.gov (United States)

    Du, Yanjun; Nayak, Gaurav; Oinuma, Gaku; Peng, Zhimin; Bruggeman, Peter J.

    2017-04-01

    Although atmospheric pressure dielectric barrier discharges (DBDs) have a long history, the effects of water vapor on the discharge morphology and kinetics have not been studied intensively. We report a simultaneous investigation of discharge morphology, OH and H2O2 production in Ar and He DBDs operated at different water vapor concentrations and powers. The combined study allows us to assess the impact of the discharge morphology and power on the concentration dependence of the OH and H2O2 production. The morphology of the discharge is investigated by ICCD images and current–voltage waveforms. These diagnostics are complemented by broadband absorption and a colorimetric method to measure the gas temperature and the OH and H2O2 concentrations. The number of filaments in Ar DBD increases with increasing water concentration and power. The surface discharge part of the micro-discharge also reduces with increasing water concentration most likely due to a change in surface conductivity of the dielectric with changing water concentration. The OH density in the case of Ar is approximately double the OH density in He for similar power and water admixture. In contrast to the root square dependence of the OH density on the water concentration in He similar to diffuse RF discharges, the OH density in Ar increases for small water concentrations followed by a saturation and reduces for higher water concentrations. This dependence of OH density on water concentration is found to correlate with changes in discharge morphology. An analytical balance of the production and destruction mechanism of H2O2 is shown to be able to reproduce the ratio of the measured OH and H2O2 density for realistic values of electron densities.

  17. Double Trouble

    NARCIS (Netherlands)

    Elsaesser, Thomas; Kievit, Robert; Simons, Jan

    1994-01-01

    Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime impo

  18. Double Trouble

    NARCIS (Netherlands)

    Elsaesser, Thomas; Kievit, Robert; Simons, Jan

    1994-01-01

    Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime

  19. Search for Spin Filtering By Electron Tunneling Through Ferromagnetic EuS Barriers in Pbs

    Science.gov (United States)

    Figielski, T.; Morawski, A.; Wosinski, T.; Wrotek, S.; Makosa, A.; Lusakowska, E.; Story, T.; Sipatov, A. Yu.; Szczerbakow, A.; Grasza, K.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Perpendicular transport through single- and double-barrier heterostructures consisting of ferromagnetic EuS layers embedded into PbS matrix was investigated. Manifestations of both resonant tunneling and spin filtering through EuS barrier have been observed.

  20. Penetration Deep into Tissues of Reactive Oxygen Species Generated in Floating-Electrode Dielectric Barrier Discharge (FE-DBD): in Vitro Agarose Gel Model Mimicking an Open Wound

    CERN Document Server

    Dobrynin, Danil; Friedman, Gary; Fridman, Alexander

    2013-01-01

    In this manuscript we present an in vitro model based on agarose gel that can be used to simulate a dirty, oily, bloody, and morphologically complex surface of, for example, an open wound. We show this models effectiveness in simulating depth of penetration of reactive species generated in plasma deep into tissue of a rat and confirm the penetration depths with agarose gel model. We envision that in the future such a model could be used to study plasma discharges (and other modalities) and minimize the use of live animals: plasma can be optimized on the agarose gel wound model and then finally verified using an actual wound.

  1. UNJUK KERJA REAKTOR PLASMA DIELECTRIC BARRIER DISCHARGE UNTUK PRODUKSI BIODIESEL DARI MINYAK KELAPA SAWIT

    Directory of Open Access Journals (Sweden)

    Ardian Dwi Yudhistira

    2013-10-01

    Full Text Available Biodiesel is one of alternative renewable energy source to substitute diesel fuel. Various biodiesel productionprocesses through transesterification reaction with a variety of catalysts have been developed by previousresearcher. This process still has the disadvantage of a long reaction time, and high energy need. DielectricBarrier Discharge (DBD plasma electro-catalysis may become a solution to overcome the drawbacks in theconventional transesterification process. This process only needs a short time reaction and low energy process.The purpose of this study was to assess the performance of DBD plasma rector in making biodiesel such as: theeffect of high voltage electric value, electrodes gap, mole ratio of methanol / oil, and reaction time. TheResearch method was using GC-MS (Gas Cromatography-Mass Spectrofotometry and FTIR (FourierTransform Infrared Spectrofotometry and then it will be analysed the change of chemical bond betweenreactant and product. So, the reaction mechanism can be predicted. Biodiesel is produced using methanol andpalm oil as reactants and DBD plasma used as reactor in batch system. Then, reactants contacted by highvoltage electric. From the results of this research can be concluded that the reaction mechanism occurs in theprocess is the reaction mechanism of cracking, the higher of electric voltage and the longer of reaction time leadto increasing of product yield. The more of mole ratio of methanol / oil and widening the gap between theelectrodes lead to decreased product yield. From this research, product yield maksimum is 89,8% in the variableof rasio mol metanol/palm oil 3:1, voltage 10 kV, electrode gap 1,5 cm, and reaction time 30 seconds.

  2. Dielectric Barrier Discharge Characteristics of Multineedle-to-Cylinder Configuration

    Directory of Open Access Journals (Sweden)

    Caixin Sun

    2011-12-01

    Full Text Available A dielectric barrier discharge (DBD produces a homogenous discharge with low energy consumption, offering broad developmental prospects, and this discharge process is also the mechanism through which charges are transported. Higher reaction efficiency is achieved when more charges are transported. Focusing on the electrode configuration of the multineedle-to-cylinder (MC system, i.e., the structure of needles arrayed on the inner coaxial rod, the effect of needle arrangement, including needle length (NL, inter axial needle distance (ID, and inter axial needle rotation angle (INRA, on the transported charge per cycle and discharge power in DBDs is investigated. The finite-element method (FEM and quasi-static field simulation are adopted to study the active region (AR where the electric field strength exceeds the breakdown electric field strength between MC electrodes because this region plays a dominant role in DBD. The improvement of its volume ratio in the reactor allows an increase in discharge power. The simulation results are in accordance with the experimental results, which illustrate that quasi-static field simulation is effective and reliable. Simulation results show that mutual effects of nearby needles and between needles and the inner rod exist. As a result, shorter ID (1.5 mm, needles with similar lengths (3.5 mm are arranged, and an INRA of 0° is proven to be the optimal structure because it produces the highest AR volume ratio. The result is experimentally validated by transported charges per cycle and discharge power obtained through Lissajous figures.

  3. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    Science.gov (United States)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  4. Dielectric barrier discharge plasma induced degradation of aqueous atrazine.

    Science.gov (United States)

    Feng, Jingwei; Jiang, Lin; Zhu, Dan; Su, Kuizu; Zhao, Dayong; Zhang, Jibiao; Zheng, Zheng

    2016-05-01

    Degradation of herbicide atrazine in aqueous solution was investigated using a plate type dielectric barrier discharge (DBD) plasma reactor. DBD plasma was generated at the gas-liquid interface of the formed water film. At discharge time of 14 min, atrazine was degradated effectively with a degradation rate of 99 % at the discharge power of 200 W. The experimental data fitted well with first-order kinetics and the energy efficiency for 90 % degradation of atrazine (G value) was calculated, obtaining a rate constant of 0.35 min(-1) and a G value of 1.27 × 10(-10) mol J(-1) (98.76 mg kW(-1) h(-1)) at a discharge power of 200 W, respectively. The addition of Fe(2+) increased the rate constant and G value dramatically, and a significant decrease of the rate constant and G value was observed with the addition of radical scavengers (tert-butyl alcohol, isopropyl alcohol, or Na2CO3). The generated aqueous O3 and H2O2 were determined, which promoted the degradation of herbicide atrazine. Dechlorination was observed and the experimentally detected Cl(-) was 1.52 mg L(-1) at a discharge time of 14 min. The degradation intermediates of atrazine were detected by means of liquid chromatography-mass spectrometry; dechlorination, hydroxylation, dealkylation, and alkyl oxidation processes were involved in the degradation pathways of atrazine.

  5. A Xenon dielectric barrier discharge lamp (172nm) with a fast-pulse voltage driver: Influence of the voltage waveform on plasma kinetic issues and light output.

    Science.gov (United States)

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah

    2003-10-01

    An important class of vacuum-ultraviolet (VUV) excimer lamps based on high pressure rare-gas and rare-gas halogen mixtures utilize the dielectric barrier discharge (DBD) to generate a transient, non-equilibrium plasma that yields high electrical to VUV conversion efficiency. Recent interest has focussed on the use of pulsed voltage excitation techniques (rather than conventional AC sinusoidal waveforms) to alter the physical appearance of the DBD "micro-discharges" from filamentary (AC) to semi-diffuse, conical or homogeneous (pulsed), whilst at the same time dramatically improving the lamp performance and VUV efficiency^1,2. We report results from a combined experimental/computer modelling study of a short-pulse excited co-axial DBD Xe lamp to investigate the influence of the pulsed voltage waveform on the discharge structure, lamp performance, VUV output, and electrical efficiency. The underlying plasma kinetics issues relating to lamp performance, including parasitic collisional processes that act to quench key xenon species population densities, are examined in detail. ^1 Vollkommer F and Hitzschke, US patent 5604410 (1997) ^2 R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6 (2001)

  6. High-pressure dielectric barrier discharge Xenon lamps generating short pulses of high-peak-power VUV radiation (172nm) with high pulse-to-pulse reproducibility.

    Science.gov (United States)

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah

    2003-10-01

    Dielectric barrier discharges (DBDs) are used to efficiently generate radiation in the ultraviolet and vacuum-ultraviolet spectral regions (88nm-350nm) by forming rare-gas and rare-gas halide excimers in a transient plasma. Usually, DBD lamps generate the light output quasi-continuously or in bursts with a high degree of stochastic or random variability in the instantaneous UV/VUV intensity. However, regular pulses of high-peak-power UV/VUV, with high pulse-to-pulse reproducibility, are of interest for applications in biology, surface treatment and cleaning, and time-resolved fluorescence spectroscopy. Such pulses can be generated from spatially homogeneous plasmas in a Xe DBD when the discharge is driven by uni-polar voltage pulses of short duration ( 100ns)^1. In the present study, we will report Xe DBD lamp performance and VUV output pulse characteristics for gas pressures up to 2.5bar and excitation conditions tailored for high-peak-power output. The experimental results will be compared to theoretical results from a detailed 1-D computer model of the spatio-temporal evolution of the plasma kinetics and Xe species population densities. ^1R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6, (2001)

  7. A Study of Removing Chlorobenzene by the Synergistic Effect of Catalysts and Dielectric-Barrier Discharge Driven by Bipolar Pulse-Power

    Institute of Scientific and Technical Information of China (English)

    LI Duan; ZHANG Di; WU Yan; LI Jie; LI Guofeng

    2008-01-01

    In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A (MS-4A) and MnO2/γ-Al2O3 (MnO2/ALP) as two kinds of catalysts were tested at different positions in a DBD reactor. Catalysts were located either in the discharging area between two electrodes, or just behind the discharging area (in the afterglow area) closed to the outlet. The results indicated that DBD reactor with a bipolar pulse power-supply produced strong instant discharge and energetic particles, which can effectively activate catalysts of MS-4A and MnO2/ALP located in the afterglow area to achieve the synergistic effects on effective fission of chemical bonds of chlorobenzene. It was considered that the gas-chlorobenzene and the chlorobenzene adsorbed on the catalysts were decomposed simultaneously.

  8. Oceanic double-infusion: introduction

    Science.gov (United States)

    Ruddick, Barry; Gargett, Ann E.

    2003-03-01

    Double-diffusion, the mixing of fluids with two constituents of different molecular diffusivities, was originally discovered in the mid-1800s, forgotten, then rediscovered as an ‘oceanographic curiosity’ a century later. Many oceanographers suspect that double-diffusion has major effects on oceanic water masses and circulation, but direct measurement of the effects has proven difficult. In 1996, a Working Group was formed under the auspices of the Scientific Committee on Ocean Research (SCOR WG108), with the goal to identify progress and barriers to quantifying oceanic double-diffusive fluxes, and make recommendations for further progress. This document gives a brief history of double-diffusion, a review of evidence of its potential effects in the ocean, and gives an overview of the review articles contained in this volume, written by the Working Group members with the above aim in mind.

  9. Reliability Estimation for Double Containment Piping

    Energy Technology Data Exchange (ETDEWEB)

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  10. The AMoRE: Search for neutrinoless double beta decay of {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Park, HyangKyu, E-mail: hkpark@ibs.re.kr [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of)

    2015-10-28

    The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is using calcium molybdate ({sup dep48}Ca {sup 100}MoO{sub 4}) crystals enriched in {sup 100}Mo and depleted in {sup 48}Ca to search for neutrinoless double-beta decay (DBD) of {sup 100}Mo using at the underground laboratory in Korea. Metallic magnetic calorimeters operating a milliKelvin temperatures are used as temperature sensors to measure heat and light signals from the crystals. The simultaneous and fast detection capabilities for both phonons and photons, and their excellent energy resolution provide powerful methods for identifying DBD signals and rejecting background events, which are mainly due to random coincidences between two uncorrelated two-neutrino-double-beta decays of {sup 100}Mo. The AMoRE-Pilot experiment that is currently underway uses a 1.5 kg, five-element array of {sup dep48}Ca {sup 100}MoO{sub 4} crystals. The ultimate goal is a ∼200 kg array of crystals and a half-life sensitivity of order 10{sup 26} years, which will access the inverted hierarchy region for effective Majorana neutrino masses, i.e., 0.02 to 0.05 eV. In this talk, we present recent progress on the development of low-background calcium molybdate detectors and results from room- and milli-Kelvin temperatures. Sensitivities based on GEANT4 simulations that incorporate measured background are reported.

  11. Synthesis of the isotope-labeled derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)], and its application to the quantification and the determination of relative amount of fatty acids in rat plasma samples by high-performance liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Tsukamoto, Yuhki; Santa, Tomofumi; Yoshida, Hiroo; Miyano, Hiroshi; Fukushima, Takeshi; Hirayama, Kazuo; Imai, Kazuhiro; Funatsu, Takashi

    2006-04-01

    The isotope-labeled benzofurazan derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)] was synthesized. DBD-PZ-NH2 (D) was used for the accurate quantification of fatty acids by liquid chromatography/mass spectrometry (LC/MS). The standard fatty acids were derivatized with DBD-PZ-NH2 (D) to the stable isotope-labeled compounds for the fatty acids derivatives of DBD-PZ-NH2 and used for the internal standards. The obtained calibration curves for fatty acids were linear over the range 0.1-200 microM (r2 > 0.999). Fatty acids in plasma samples were determined after derivatization with DBD-PZ-NH2 and analyzed by LC/MS using standard fatty acid DBD-PZ-NH2 (D) derivatives as internal standards. Furthermore, the relative amounts of fatty acids in two plasma samples were determined after derivatization with DBD-PZ-NH2 and DBD-PZ-NH2) (D). The isotope-labeled derivatization reagent was useful for accurate quantification and the determination of relative amounts of the metabolites in biological samples having the target functional group.

  12. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination%Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    Institute of Scientific and Technical Information of China (English)

    白素丽; 黄承都; 吕静; 李振花

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N2-physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500~C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/Si02 catalyst showed an enhanced activity, C5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO2 catalyst.

  13. Electrical and optical characterization of an atmospheric pressure, uniform, large-area processing, dielectric barrier discharge

    Science.gov (United States)

    Zeniou, A.; Puač, N.; Škoro, N.; Selaković, N.; Dimitrakellis, P.; Gogolides, E.; Petrović, Z. Lj

    2017-04-01

    A printed-circuit-board (PCB) based atmospheric pressure dielectric barrier discharge (DBD) capable of uniform processing over a large area was constructed consisting of two parallel plates. The first perforated plate is comprised of four layers: a RF powered metal layer, a polymeric dielectric layer, a floating metal grid and another dielectric layer. The second, grounded, plate was fluorine doped tin oxide (FTO) glass plate with surface of 100  ×  100 mm2 and thickness of 2 mm. The PCB based atmospheric pressure DBD was characterized by (a) measuring electrical characteristics of the device using derivative I-V probes, (b) ICCD imaging and (c) optical emission spectroscopy (OES). Optical and electrical characteristics, as well as plasma uniformity were measured by changing He flow rate and input power, while keeping the gap between the PCB and the FTO glass plate ground electrode constant at 2 mm. The plasma uniformity strongly depends on the applied power and on the flow rate of the buffer gas. When increasing the flow rate, the intensity of the nitrogen-dominated emission drops, while emission of helium and oxygen lines increases. The source allows low temperature, uniform plasma operation over a wide area of 100  ×  100 mm2, which could be essential for numerous applications. Examples of etching rate and hydrophilization are demonstrated.

  14. Roughness modification of surfaces treated by a pulsed dielectric barrier discharge

    CERN Document Server

    Dumitrascu, N; Apetroaei, N; Popa, G

    2002-01-01

    Local modifications of surface roughness are very important in many applications, as this surface property is able to generate new mechano-physical characteristics of a large category of materials. Roughness is one of the most important parameters used to characterize and control the surface morphology, and techniques that allow modifying and controlling the surface roughness present increasing interest. In this respect we propose the dielectric barrier discharge (DBD) as a simple and low cost method that can be used to induce controlled roughness on various surfaces in the nanoscale range. DBD is produced in helium, at atmospheric pressure, by a pulsed high voltage, 28 kV peak to peak, 13.5 kHz frequency and 40 W power. This type of discharge is a source of energy capable of modifying the physico-chemical properties of the surfaces without affecting their bulk properties. The discharge is characterized by means of electrical probes and, in order to analyse the heat transfer rate from the discharge to the tre...

  15. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  16. CO and byproduct formation during CO₂ reduction in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Brehmer, F. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); AFS GmbH, Von-Holzapfel-Straße 10, 86497 Horgau (Germany); Welzel, S.; Sanden, M. C. M. van de [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Engeln, R. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-09-28

    The dissociation of CO₂ and the formation of CO, O₃, and O² were studied in a dielectric barrier discharge (DBD) at atmospheric pressure by means of ex-situ infrared absorption spectroscopy. CO mixing ratios of 0.1%–4.4% were determined for specific injected energies between 0.1 and 20 eV per molecule (0.3–70 kJ/l). A lower limit of the gas temperature of 320–480 K was estimated from the wall temperature of the quartz reactor as measured with an infrared camera. The formation of CO in the DBD could be described as function of the total number of transferred charges during the residence time of the gas in the active plasma zone. An almost stoichiometric CO:O₂ ratio of 2:1 was observed along with a strongly temperature dependent O₃ production up to 0.075%. Although the ideal range for an efficient CO₂ dissociation in plasmas of 1 eV per molecule for the specific injected energy was covered, the energy efficiency remained below 5% for all conditions. The present results indicate a reaction mechanism which is initiated by electron impact processes followed by charge transfer reactions and non-negligible surface enhanced O and CO recombination. While electron-driven CO₂ dissociation is relatively energy inefficient by itself, fast O recombination and the low gas temperatures inhibit the synergistic reuse of atomic oxygen in a secondary CO₂ + O dissociation step.

  17. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    Science.gov (United States)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  18. Self-organized plasmas formed by accumulated charge in dielectric barrier discharge

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) have been widely applied to various research fields, such as bio-medical treatment, toxic decomposition and so on. However, the details of DBD have not been understood yet. Because the phenomena occur in nanosecond time scale under atmospheric pressure. It is known that DBDs are significantly affected by accumulated charges on dielectrics, but the distributions and development of accumulated charges are not known for years. To clarify the distributions and the developments of accumulated charges on dielectrics and electron behavior in the vicinity of dielectrics, DBDs in atmospheric pressure oxygen have been simulated using a two dimensional fluid model with relatively high electron emission coefficient. In this condition, DBD simulation results are obtained in so called self-organized form. As a result, the locations of highly accumulated charges are at where the primary streamers reached in a half cycle. And the charges on the dielectrics become almost zero by the electrons after the change of discharge voltage polarity. The electron distribution in the vicinity of the dielectric forms similar to that of accumulated charges to compensate the charges. Excess electrons in front of dielectric become the seed electrons for next half cycle. This continuation makes discharge in self-organized form.

  19. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge.

    Science.gov (United States)

    Dojčinović, Biljana P; Roglić, Goran M; Obradović, Bratislav M; Kuraica, Milorad M; Kostić, Mirjana M; Nešić, Jelena; Manojlović, Dragan D

    2011-08-30

    Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H(2)O(2), Fe(2+) and Cu(2+)) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315kJ/L) were studied. Influence of residence time was investigated over a period of 24h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10mM H(2)O(2) in a system of 80.0mg/L Reactive Black 5 with applied energy density of 45kJ/L, after residence time of 24h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  20. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  1. Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin

    Science.gov (United States)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2013-01-01

    The application of atmospheric-pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. In this paper, we report on a computational study of the intersection of plasma filaments in a dielectric barrier discharge (DBD) with a small wound in human skin in the context of plasma medicine. The wound is represented as a small cut in the epidermal layer of cells. Intracellular structures and their electrical properties were incorporated into the two-dimensional computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the wound. We quantify the fluxes of reactive oxygen and nitrogen species, ions and photons produced in or diffusing into the wound as might occur during the first few discharge pulses of treatment. Comparison is made to fluxes predicted by global modelling. We show that the relative location of the plasma filament with respect to the wound is important on plasma time scales (ns) for ions and photons, and for radicals directly produced by electron impact processes. On the longer-term diffusion time scales (ms) the position of the plasma filament relative to the wound is not so critical. For typical DBD conditions, the magnitude of these fluxes to the cellular surfaces corresponds to fluences of radicals nearly equal to the surface site density. These results imply that the biological reactivity is limited by reaction probabilities and not the availability of radical fluxes.

  2. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation.

    Science.gov (United States)

    Wang, Tiecheng; Ren, Jingyu; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2016-12-15

    Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh(-1), and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO4(3-) and NO3(-). The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO4(3-) and NO3(-), CO2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation.

  3. Decolorization of reactive black 5 using dielectric barrier discharge in the presence of inorganic salts

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2012-01-01

    Full Text Available Inorganic salts improve the coloration of textiles, which increase pollution load on dyehouse effluent in general. Decolorization of reactive textile dye C.I. Reactive Black 5 was studied using Advanced Oxidation Processes (AOPs in a non-thermal plasma reactor, based on coaxial water falling film Dielectric Barrier Discharge (DBD. Initial dye concentration in the solution was 40.0 mg L-1. The effects of addition of inorganic salt different high concentrations (NaCl, Na2SO4 and Na2CO3 on the degree of decolorization were studied. Recirculation of dye solution through the DBD reactor with applied energy density 45-315 kJ L-1 was used. The influence of residence time was investigated after 5 minutes and 24 hours of plasma treatment. Decolorization of the dyes was monitored by spectrophotometric measurement. Changes of pH values and the conductivity of dye solution after each recirculation were tested. The most effective decolorization of over 90% was obtained with the addition of NaCl (50 g L-1, applied energy density of 135 kJ L-1 and after residence time of 24 hours of plasma treatment. Decolorization of solutions containing inorganic salts Na2SO4 and Na2CO3 were lower than for the solution without salt.

  4. Experimental Study on Inactivation of Bacterial Endotoxin by Using Dielectric Barrier Discharge

    Science.gov (United States)

    Shi, Xingmin; Li, Yaxi; Zhang, Guanjun; Ma, Yue; Shao, Xianjun

    2011-12-01

    The low-temperature plasma (LTP) generated by dielectric barrier discharge (DBD) was used to sterilize the E.coli endotoxin, which is usually difficult to kill by traditional methods. Three different concentrations of bacterial endotoxin (1 EU/mL, 0.5 EU/mL and 0.25 EU/mL) were treated by LTP for different time (20 s, 40 s and 60 s). Tachypleus amebocyte lysate (TAL) method was employed to detect the concentration variation of bacterial endotoxin before and after the plasma treatment, and endotoxic shock mice model was used to evaluate the inactivation effects of LTP on endotoxin for further study. Experimental results demonstrated that, DBD plasma can inactivate the bacterial endotoxin quickly and effectively, and when the LTP treatment time was increased, the concentrations of bacterial endotoxin decreased gradually (after 60 s plasma treatment, its inactivation effect was beyond the Chinese pharmacopoeia standard), and the average survival time of mice gradually extended. The possible inactivation mechanisms are proposed to be related to reactive oxygen species (ROSs).

  5. Beneficial and detrimental fatigue effects of dielectric barrier discharges on the piezoelectricity of polypropylene ferroelectrets

    Science.gov (United States)

    Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund

    2011-07-01

    Cellular polypropylene (PP) ferroelectrets combine a large piezoelectricity with mechanical flexibility and elastic compliance. Their charging process represents a series of dielectric barrier discharges (DBDs) that generate a cold plasma with numerous active species and thus modify the inner polymer surfaces of the foam cells. Both the threshold for the onset of DBDs and the piezoelectricity of ferroelectrets are sensitive to repeated DBDs in the voids. It is found that the threshold voltage is approximately halved and the charging efficiency is clearly improved after only 103 DBD cycles. However, plasma modification of the inner surfaces from repeated DBDs deteriorates the chargeability of the voids, leading to a significant reduction of the piezoelectricity in ferroelectrets. After a significant waiting period, the chargeability of previously fatigued voids shows a partial recovery. The plasma modification is, however, detrimental to the stability of the deposited charges and thus also of the macroscopic dipoles and of the piezoelectricity. Fatigue from only 103 DBD cycles already results in significantly less stable piezoelectricity in cellular PP ferroelectrets. The fatigue rate as a function of the number of voltage cycles follows a stretched exponential. Fatigue from repeated DBDs can be avoided if most of the gas molecules inside the voids are removed via a suitable evacuation process.

  6. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH).

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I; Ortíz-Hernández, Brenda L; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-02-19

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  7. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH)

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I.; Ortíz-Hernández, Brenda L.; Dávila-Rodríguez, Martha I.; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-01-01

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1. PMID:23429197

  8. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH

    Directory of Open Access Journals (Sweden)

    Jaime Gosálvez

    2013-02-01

    Full Text Available We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH. A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL, 10 with high-grade SIL (HG-SIL, and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  9. Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. H.; Cheng, Y. H.; Ko, C. W.; Hsueh, W. J., E-mail: hsuehwj@ntu.edu.tw [Nanomagnetism Group, Department of Engineering Science and Ocean Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10660, Taiwan (China)

    2015-10-12

    This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed to the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.

  10. Double supergeometry

    CERN Document Server

    Cederwall, Martin

    2016-01-01

    A geometry of superspace corresponding to double field theory is developed, with type II supergravity in D=10 as the main example. The formalism is based on an orthosymplectic extension OSp(d,d|2s) of the continuous T-duality group. Covariance under generalised super-diffeomorphisms is manifest. Ordinary superspace is obtained as a solution of the orthosymplectic section condition. A systematic study of curved superspace Bianchi identities is performed, and a relation to a double pure spinor superfield cohomology is established. A Ramond-Ramond superfield is constructed as an infinite-dimensional orthosymplectic spinor. Such objects in minimal orbits under the OSp supergroup ("pure spinors") define super-sections.

  11. Double screening

    Energy Technology Data Exchange (ETDEWEB)

    Gratia, Pierre [Department of Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Hu, Wayne [Department of Astronomy and Astrophysics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Ribeiro, Raquel H. [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London, E1 4NS (United Kingdom)

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  12. CdWO4 bolometers for Double Beta Decay search

    CERN Document Server

    Gironi, L; Capelli, S; Cremonesi, O; Pavan, M; Pessina, G; Pirro, S

    2008-01-01

    In the field of Double Beta Decay (DBD) searches the possibility to have high resolution detectors in which background can be discriminated is very appealing. This very interesting possibility can be largely fulfilled in the case of a scintillating bolometer containing a Double Beta Decay emitter whose transition energy exceeds the one of the natural gamma line of 208Tl. We present the latest results obtained in the development of such a kind of scintillating bolometer. For the first time an array of five CdWO4 (116Cd has a Double Beta Decay transition energy of 2805 keV) crystals is tested. The array consists of a plane of four 3x3x3 cm3 crystals and a second plane consisting of a single 3x3x6 cm3 crystal. This setup is mounted in hall C of the National Laboratory of Gran Sasso inside a lead shielding in order to reduce as far as possible the environmental background. The aim of this test is to demonstrate the technical feasibility of this technique through an array of detectors and perform a long background...

  13. Dynamics of the atmospheric pressure diffuse dielectric barrier discharge between cylindrical electrodes in roll-to-roll PECVD reactor

    Science.gov (United States)

    Starostin, Sergey A.; Welzel, Stefan; Liu, Yaoge; van der Velden-Schuermans, Bernadette; Bouwstra, Jan B.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2015-07-01

    The high current diffuse dielectric barrier discharge (DBD) was operated in a bi-axial cylindrical electrode configuration using nitrogen, oxygen and argon gas flow with the addition of tetraethyl orthosilicate as precursor for silica-like film deposition. The behaviour of the transient plasma was visualized by means of fast imaging from two orthogonal directions. The formation and propagation (~3 × 104 m s-1) of lateral ionization waves with the transverse light emission structure similar to the low pressure glow discharge was observed at time scales below 1 µs. Despite plasma non-uniformity at nanosecond time scale the deposition process on the web-rolled polymer results in smooth well adherent films with good film uniformity and excellent gas diffusion barrier properties. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  15. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53.

    Science.gov (United States)

    Demma, Mark; Maxwell, Eugene; Ramos, Robert; Liang, Lianzhu; Li, Cheng; Hesk, David; Rossman, Randall; Mallams, Alan; Doll, Ronald; Liu, Ming; Seidel-Dugan, Cynthia; Bishop, W Robert; Dasmahapatra, Bimalendu

    2010-04-02

    Abrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature. Here, we report a small molecule, SCH529074, that binds specifically to the p53 DBD in a saturable manner with an affinity of 1-2 microm. Binding restores wild type function to many oncogenic mutant forms of p53. This small molecule reactivates mutant p53 by acting as a chaperone, in a manner similar to that previously reported for the peptide CDB3. Binding of SCH529074 to the p53 DBD is specifically displaced by an oligonucleotide with a sequence derived from the p53-response element. In addition to reactivating mutant p53, SCH529074 binding inhibits ubiquitination of p53 by HDM2. We have also developed a novel variant of p53 by changing a single amino acid in the core domain of p53 (N268R), which abolishes binding of SCH529074. This amino acid change also inhibits HDM2-mediated ubiquitination of p53. Our novel findings indicate that through its interaction with p53 DBD, SCH529074 restores DNA binding activity to mutant p53 and inhibits HDM2-mediated ubiquitination.

  16. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge

    Science.gov (United States)

    Xu, S. Y.; Cai, J. S.; Li, J.

    2016-10-01

    A simplified (7 species and 9 processes) plasma kinetic model is proposed to investigate the mechanism of the plasma aerodynamic actuation driven by nanosecond-pulsed dielectric barrier discharge (NS-DBD). The governing equations include conservation equations for each species, the Poisson equation for the electric potential, and Navier-Stokes equations for the gas dynamic flow. Numerical simulations of plasma discharge and flow actuation on NS-DBD plasma actuators have been carried out. Key discharge characteristics and the responses of the quiescent air were reproduced and compared to those obtained in experiments and numerical simulations. Results demonstrate that the reduced plasma kinetic model is able to capture the dominant species and reactions to predict the actuation in complicated hydrodynamics. For the one-dimensional planar and two-dimensional symmetric NS-DBD, the forming of the sheath collapse is mainly due to the charge accumulation and secondary emission from the grounded electrode. Rapid species number density rise and electric field drop occur at the edge of the plasma sheath, where the space charge density gradient peaks. For the aerodynamic actuation with typical asymmetry electrodes, discharge characteristics have a core area on the right edge of the upper electrode, where the value can be much higher. The formation and propagation of the compression waves generated through rapid heating have also been performed and compared to those measured in a recent experiment. Energy release leads to gas expansion and forms a cylindrical shock wave, centering at the upper electrode tip with low gas acceleration. For the present single pulsed 12 kV case, the mean temperature of gas heating reaches about 575 K at 1 μs and decreases to about 460 K at 10 μs.

  17. Experimental Research on the Sterilization of Escherichia Coli and Bacillus Subtilis in Drinking Water by Dielectric Barrier Discharge

    Science.gov (United States)

    Li, Yang; Yi, Chengwu; Li, Jingjing; Yi, Rongjie; Wang, Huijuan

    2016-02-01

    The bactericidal effect on the representative type of Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge (DBD) advanced oxidation technology. The sterilizing rates under different conditions of reaction time t, input voltage V, pH value, and initial concentration of bacteria C0 were investigated to figure out the optimum sterilization conditions. Our observations and comparisons of cell morphology alteration by scanning electron microscopy and transmission electron microscopy revealed the sterilization mechanisms. The results showed that the sterilizing rate increased obviously with the extension of reaction time t and the rise of input voltage V. The optimal sterilization effect was achieved when the pH value was 7.1. As the initial concentration of bacteria rose, the sterilizing rate decreased. When the input voltage was 2.2 kV and the initial concentration of bacteria was relatively low, the sterilizing rate almost reached 100% after a certain treatment time in neutral aqueous solution. The reasons for the great damage of cell structure and the killing of bacteria are the oxidation of O3, OH and the accumulation of active species produced by DBD. The article provides a certain theoretical and experimental basis for DBD application in water pollution treatment. supported by the Science and Technology Support Project Plan and Social Development of Jiangsu Province, China (No. BE2011732), the Science and Technology Support Project Plan and Social Development of Zhenjiang, Jiangsu Province, China (No. SH2012013)

  18. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  19. Mitigation of Traffic-Induced Ground Vibration by Inclined Wave Barriers

    DEFF Research Database (Denmark)

    Andersen, Lars; Augustesen, Anders Hust

    2009-01-01

    Double sheet pile walls can be used as wave barriers in order to mitigate ground vibrations from railways. The present analysis concerns the efficiency of such barriers, especially with regard to the influence of the barrier inclination and the backfill between the walls. Thus, the screening...

  20. Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier.

    Science.gov (United States)

    Poller, Birk; Wagenaar, Els; Tang, Seng Chuan; Schinkel, Alfred H

    2011-04-04

    P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) combination knockout mice display disproportionately increased brain penetration of shared substrates, including topotecan and several tyrosine kinase inhibitors, compared to mice deficient for only one transporter. To better study the interplay of both transporters also in vitro, we generated a transduced polarized MDCKII cell line stably coexpressing substantial levels of human ABCB1 and ABCG2 (MDCKII-ABCB1/ABCG2). Next, we measured concentration-dependent transepithelial transport of topotecan, sorafenib and sunitinib. By blocking either one or both of the transporters simultaneously, using specific inhibitors, we aimed to mimic the ABCB1-ABCG2 interplay at the blood-brain barrier in wild-type, single or combination knockout mice. ABCB1 and ABCG2 contributed to similar extents to topotecan transport, which was only partly saturable. For sorafenib transport, ABCG2 was the major determinant at low concentrations. However, saturation of ABCG2-mediated transport occurred at higher sorafenib concentrations, where ABCB1 was still fully active. Furthermore, sunitinib was transported equally by ABCB1 and ABCG2 at low concentrations, but ABCG2-mediated transport became saturated at lower concentrations than ABCB1-mediated transport. The relative impact of these transporters can thus be affected by the applied drug concentrations. A comparison of the in vitro observed (inverse) transport ratios and cellular accumulation of the drugs at low concentrations with in vivo brain penetration data from corresponding Abcb1a/1b⁻/⁻, Abcg2⁻/⁻ and Abcb1a/1b;Abcg2⁻/⁻ mouse strains revealed very similar qualitative patterns for each of the tested drugs. MDCKII-ABCB1/ABCG2 cells thus present a useful in vitro model to study the interplay of ABCB1 and ABCG2.

  1. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Belen; Brey, J. Javier; Viera, Inmaculada G. [Hynergreen Technologies, S.A. Avda. de la Buhaira, 2. 41018 Sevilla (Spain); Gonzalez-Elipe, Agustin R.; Cotrino, Jose; Rico, Victor J. [Instituto de Ciencia de los Materiales de Sevilla (CSIC-University Sevilla), Avda. Americo Vespucio, 49, 41092 Sevilla (Spain)

    2007-06-10

    This work reports about the use of plasmas to obtain hydrogen by reforming of hydrocarbons or alcohols in mixtures with CO{sub 2} or H{sub 2}O. The plasma is activated in a dielectric barrier discharge (DBD) reactor working at atmospheric pressure and low temperatures (i.e., about 100 C). The reactor presents a great versatility in operation and a low manufacturing cost. Results are presented for the reforming of methane, methanol and ethanol. Methane transforms up to a 70% into CO and H{sub 2} without formation of any kind of superior hydrocarbon. For the two alcohols 100% conversion into the same products is found for flows much higher than in the case of methane. The work reports a description of the reactor and the operational conditions of the power supply enabling the ignition of the plasma and its steady state operation. (author)

  2. Characterization of dielectric barrier discharge in air applying current measurement, numerical simulation and emission spectroscopy

    CERN Document Server

    Rajasekaran, Priyadarshini; Awakowicz, Peter

    2012-01-01

    Dielectric barrier discharge (DBD) in air is characterized applying current measurement, numerical simulation and optical emission spectroscopy (OES). For OES, a non-calibrated spectrometer is used. This diagnostic method is applicable when cross-sectional area of the active plasma volume and current density can be determined. The nitrogen emission in the spectral range of 380 nm- 406 nm is used for OES diagnostics. Electric field in the active plasma volume is determined applying the measured spectrum, well-known Frank-Condon factors for nitrogen transitions and numerically- simulated electron distribution functions. The measured electric current density is used for determination of electron density in plasma. Using the determined plasma parameters, the dissociation rate of nitrogen and oxygen in active plasma volume are calculated, which can be used by simulation of the chemical kinetics.

  3. Formation of positive ions in hydrocarbon containing dielectric barrier discharge plasmas

    Science.gov (United States)

    Mihaila, Ilarion; Pohoata, Valentin; Jijie, Roxana; Nastuta, Andrei Vasile; Rusu, Ioana Alexandra; Topala, Ionut

    2016-12-01

    Low temperature atmospheric pressure plasma devices are suitable experimental solutions to generate transitory molecular environments with various applications. In this study we present experimental results regarding the plasma chemistry of dielectric barrier discharges (DBD) in helium - hydrogen (0.1%) - hydrocarbons (1.2%) mixtures. Four types of hydrocarbon gases were studied: methane (CH4), ethane (C2H6), propane (C3H8), and butane (C4H10). Discharge diagnosis and monitoring was assured by electrical measurements and optical emission spectroscopy. Molecular beam mass spectrometry is engaged to sample positive ions populations from two different plasma sources. Dissociation and generation of higher-chain and cyclic (aromatic) hydrocarbons were discussed as a function of feed gas and discharge geometry. We found a strong influence of these parameters on both molecular mass distribution and recombination processes in the plasma volume.

  4. Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Peng, Shi; Li, Lingjun; Li, Wei; Wang, Chaoliang; Guo, Ying; Shi, Jianjun; Zhang, Jing

    2016-04-01

    In this paper, polyimide (PI) films are modified using an atmospheric pressure plasma generated by a dielectric barrier discharge (DBD) in argon. Surface performance of PI film and its dependence on exposure time from 0 s to 300 s are investigated by dynamic water contact angle (WCA), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy in attenuated total multiple reflection mode (FTIR-ATR). The study demonstrates that dynamic WCA exhibits a minimum with 40 s plasma treatment, and evenly distributed nano-dots and shadow concaves appeared for 40 s and 12 s Ar plasma treatment individually. A short period of plasma modification can contribute to the scission of the imide ring and the introduction of C-O and C=O (-COOH) by detailed analysis of FTIR-ATR.

  5. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges

    Science.gov (United States)

    Höft, H.; Becker, M. M.; Kettlitz, M.

    2016-03-01

    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  6. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    Institute of Scientific and Technical Information of China (English)

    QI Haicheng; GAO Wei; FAN Zhihui; LIU Yidi; REN Chunsheng

    2016-01-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length.The discharge images,optical emission spectra (OES),the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained.When airflow rate is increased,the transition of the discharge mode and the variations of discharge intensity,breakdown characteristics and the temperature of the discharge plasma are investigated.The results show that the discharge becomes more diffuse,discharge intensity is decreased accompanied by the increased breakdown voltage and time lag,and the temperature of the discharge plasma reduces when airflow of small vclocity is introduced into the discharge gap.These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.

  7. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    Science.gov (United States)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  8. Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma.

    Science.gov (United States)

    Liang, Wen-Jun; Li, Jian; Li, Jing-Xin; Zhu, Tao; Jin, Yu-Quan

    2010-03-15

    Destruction of formaldehyde by means of NaNO2 ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among four kinds of NaNO2 ferro-electric reactors was compared in terms of specific energy density (SED), energy yield (EY), and HCHO decomposition. In addition, by-products during the decomposition of HCHO and destruction mechanism were also investigated. The removal efficiency of HCHO increased by means of NaNO2 DBD plasma significantly and enhanced with increasing SED distinctly. More amount of NaNO2 contributed to higher HCHO removal efficiency in the reactors. Reactor C had the highest HCHO removal efficiency among the reactors. As an important by-product, ozone concentration increased with higher SED. The possible main products in the outlet effluent were CO, CO(2) and H(2)O.

  9. Investigation of Plasma Polymerized Maleic Anhydride Film in a Middle Frequency Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    TANG Wenjie; CHEN Qiang; ZHANG Yuefei; GE Yuanjing

    2008-01-01

    Plasma polymerized maleic anhydride (MA) was carried out by using maleic anhydride supersaturated ethanol solution as a precursor in a dielectric barrier discharge (DBD). The film properties were characterized by water contact angle (WCA), Fourier transfer infrared (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) analysis, and a thickness profilometer. The influence of the processing parameters on the film properties such as the power frequency, and polymerization zone was investigated. The results show that anhydride group incorporated into the growing films is favorable at the frequency of 80 kHz and working pressure of 50 Pa. The poly (maleic anhydride) film is uniform and compact at an average deposition rate of 8 nm/min.

  10. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge

    Institute of Scientific and Technical Information of China (English)

    Baowei Wang; Yijun Lü; Xu Zhang; Shuanghui Hu

    2011-01-01

    Dielectric barrier discharge(DBD)was used for the generation of hydrogen from ethanol reforming.Effects of reaction conditions,such as vaporization temperature,ethanol flow rate,water/ethanol ratio,and addition of oxygen,on the ethanol conversion and hydrogen yield,were studied.The results showed that the increase of ethanol flow rate decreased ethanol conversion and hydrogen yield,and high water/ethanol ratio and addition of oxygen were advantageous.Ethanol conversion and hydrogen yield increased with the vaporization room temperature up to the maximum at first,and then decreased slightly.The maximum hydrogen yield of 31.8% was obtained at an ethanol conversion of 88.4% under the optimum operation conditions of vaporization room temperature of 120℃,ethanol flux of 0.18 mL/min,water/ethanol ratio of 7.7 and oxygen volume concentration of 13.3%.

  11. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  12. Growth of Fluorocarbon Films by Low-Pressure Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    LI Wei; TAN Xiaodong; LIU Dongping; LIU Yanhong; FENG Zhiqing; CHEN Baoxiang

    2008-01-01

    Plasma polymerized fluorocarbon (FC) films have been deposited on silicon sub-strates from dielectric barrier discharge (DBD) plasma of C4Fs at room temperature under a pressure of 25~125 Pa. The effects of the discharge pressure and frequency of power supply on the films have been systematically investigated. FC films with a less cross linked structure may be formed at a relatively high pressure. Increase in the frequency of power supply leads to a signifi-cant increase in the deposition rate. Static contact angle measurements show that deposited FC films have a stable, hydrophobic surface property. All deposited films show smooth surfaces with an atomic surface roughness. The relationship between plasma parameters and the properties of the deposited FC films are discussed.

  13. Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J. [Department of Physics, Division of Information and Communications Sciences, Macquarie University, Sydney, NSW (Australia)). E-mail: rcarman@physics.mq.edu.au; Mildren, R.P. [Centre for Lasers and Applications, Division of Information and Communications Sciences, Macquarie University, Sydney, NSW (Australia)

    2000-10-07

    In modelling the plasma kinetics in dielectric barrier discharges (DBDs), the electron energy conservation equation is often included in the rate equation analysis (rather than utilizing the local-field approximation) with the assumption that the electron energy distribution function (EEDF) has a Maxwellian profile. We show that adopting a Maxwellian EEDF leads to a serious overestimate of the calculated ionization/excitation rate coefficients and the electron mobility for typical plasma conditions in a xenon DBD. Alternative EEDF profiles are trialed (Druyvesteyn, bi-Maxwellian and bi-Druyvesteyn) and benchmarked against EEDFs obtained from solving the steady-state Boltzmann equation. A bi-Druyvesteyn EEDF is shown to be more inherently accurate for modelling simulations of xenon DBDs. (author)

  14. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    Science.gov (United States)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).

  15. Determination of l-tryptophan and l-kynurenine in Human Serum by using LC-MS after Derivatization with (R)-DBD-PyNCS.

    Science.gov (United States)

    Ohashi, Hayato; Iizuka, Hideaki; Yoshihara, Shunsuke; Otani, Hayato; Kume, Misato; Sadamoto, Kiyomi; Ichiba, Hideaki; Fukushima, Takeshi

    2013-01-01

    Concentrations of l-tryptophan (l-Trp) and its metabolite, l-kynurenine (l-KYN), in sera of 19 normal subjects (age: 23.6 ± 3.5 y, male: 8, female: 11) were determined by high-performance liquid chromatography with mass-spectrometric detection, following their derivatization with (R)-(-)-4-(N, N-dimethylaminosulfonyl)-7-(3-isothiocyanatopyrrolidin-1-yl)-2,1,3-benzoxadiazole (DBD-PyNCS). A significant positive correlation between l-Trp and l-KYN concentrations was observed (r = 0.532, P < 0.05). Serum l-Trp concentration in male subjects (95.65 ± 4.27 μM) was significantly higher than that in female subjects (79.20 ± 3.34 μM; P < 0.05), while no significant differences in l-KYN concentration or the l-KYN:l-Trp ratio were observed between male and female subjects.

  16. Optical and electrical characteristics of a single surface DBD micro-discharge produced in atmospheric-pressure nitrogen and synthetic air

    Science.gov (United States)

    Šimek, M.; Prukner, V.; Schmidt, J.

    2011-05-01

    Basic opto-electrical characteristics of a single micro-discharge generated in a surface DBD reactor with a coplanar electrode arrangement were studied with nanosecond time resolution. The discharge electrode geometry based on machinable glass-ceramic was optimized in order to get a system free of the circulating dielectric liquids that are frequently used to insulate and cool metallic electrodes. The build-up and decay of UV-vis-NIR emission by a single micro-discharge unaffected by concurrent or preceding discharge events was inspected during the first 10 µs of the micro-discharge evolution in nitrogen and in synthetic air. Obtained emission waveforms show a great similarity between the surface and volume streamers. The streamer volume-averaged N2(A) concentrations of ~8 × 1014 cm-3 were estimated at t = 1 µs decay time and concentrations of ~(2-4) × 1015 cm-3 were estimated during the streamer propagation phase in nitrogen.

  17. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  18. Double Imbalance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The government has been introducing a string of policies to stabilize the economy and cushion the impact of the global eco-nomic slowdown since October.These policies are generally deemed"timely"and"necessary,"but not a long-term cure for problems in China’s economy.Renowned economist Wu Jinglian says the country must address its"double imbalance"and further reform its economic growth mode.He made his comments at the First Annual Global Management Forum on December 6 in Shanghai.Excerptsf ollow:

  19. PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21.

    Science.gov (United States)

    Hu, F; Gartenhaus, R B; Eichberg, D; Liu, Z; Fang, H-B; Rapoport, A P

    2010-10-07

    PBK/TOPK (PDZ-binding kinase, T-LAK-cell-originated protein kinase) is a serine-threonine kinase that is overexpressed in a variety of tumor cells but its role in oncogenesis remains unclear. Here we show, by co-immunoprecipitation experiments and yeast two-hybrid analysis, that PBK/TOPK physically interacts with the tumor suppressor p53 through its DNA-binding (DBD) domain in HCT116 colorectal carcinoma cells that express wild-type p53. PBK also binds to p53 mutants carrying five common point mutations in the DBD domain. The PBK-p53 interaction appears to downmodulate p53 transactivation function as indicated by PBK/TOPK knockdown experiments, which show upregulated expression of the key p53 target gene and cyclin-dependent kinase inhibitor p21 in HCT116 cells, particularly after genotoxic damage from doxorubicin. Furthermore, stable PBK/TOPK knockdown cell lines (derived from HCT116 and MCF-7 cells) showed increased apoptosis, G(2)/M arrest and slower growth as compared to stable empty vector-transfected control cell lines. Gene microarray studies identified additional p53 target genes involved in apoptosis or cell cycling, which were differentially regulated by PBK knockdown. Together, these data suggest that increased levels of PBK/TOPK may contribute to tumor cell development and progression through suppression of p53 function and consequent reductions in the cell-cycle regulatory proteins such as p21. PBK/TOPK may therefore be a valid target for antineoplastic kinase inhibitors to sensitize tumor cells to chemotherapy-induced apoptosis and growth suppression.

  20. Exploring the cooperation effect of DBD byproducts and Ag/TiO2 catalyst for water treatment in an APPJ system

    Science.gov (United States)

    Guangliang, Chen; Wei, Hu; Jinsong, Yu; Wenxia, Chen; Jun, Huang

    2017-01-01

    In this paper, the collective effects of combining heterogeneous Ag/TiO2 nanocomposite catalyst with the byproducts (primarily the irradiation and the O3 species) of an atmospheric pressure plasma jet (APPJ) system on the degradation of methyl orange (MO) were explored. The heterostructured Ag/TiO2 nanocomposite was achieved via decorating the Ag quantum dots (QDs) on the commercially available TiO2 catalyst (P25) through a hydrothermal method. The x-ray diffraction analysis of the nanocomposite catalyst showed the diffraction peaks at 44.3°, 64.4°, and 77.5°, corresponding to the Ag planes of (200), (220) and (311), respectively. The high resolution transmission electron microscope characterization of the nanocomposite catalyst indicated that the Ag QDs with an average diameter of 5 nm were homogeneously distributed on the P25 surface. The experimental results on the MO photodegradation showed that the APPJ irradiation had a marginal effect on the cleavage of the MO molecules. When the Ag/TiO2 nanocomposite catalyst was used, the photodegradation rate of MO increased about 5 times. When both the APPJ byproducts and the Ag/TiO2 nanocomposite catalyst were used, however, over 90% of the MO in the tested solution was cleaved within 15 min, and the energy efficiency was about 0.6 g/kW h. Moreover, an optimal Ag dosage value was determined (6 wt%). The catalytic results indicated that combining the DBD plasma byproducts with heterogeneous nanocomposite catalysts may be an effect protocol for decreasing the application cost of the DBD system and mitigating the environment pollution by organic dyes in the textile industry.

  1. Phase Space Factors for Double Beta Decay: an up-date

    CERN Document Server

    Mirea, M; Stoica, S

    2014-01-01

    We give a complete, up-date list of the phase space factors (PSF) for beta-beta-, beta+beta+, EC beta+ and ECEC double beta decay (DBD) modes, in all nuclei of interest and possible transitions to final states. In calculation, the Coulomb distortion of the electron wave functions is treated by solving numerically the Dirac equation with inclusion of the finite nuclear size and electron screening effects. In addition to the previous calculations we use a Coulomb potential derived from a realistic proton density distribution in nucleus, improve the precision of the numerical routines used to solve the Dirac equations and to integrate the PSF expressions, and use recently reported Q-values. These ingredients proved to be important, leading in many cases to significant differences as compared to the present available PSF values, which are discussed as well. Accurate values of the PSF are necessary ingredients both for theorists, to improve the DBD lifetime predictions and constraint the neutrino parameters, and f...

  2. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges%Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges

    Institute of Scientific and Technical Information of China (English)

    王小华; 杨爱军; 荣命哲; 刘定新

    2011-01-01

    A 1-D fluid model for homogeneous dielectric barrier discharge (DBD) in helium is presented, aimed at unraveling the spatial-temporal characteristics of two basic discharge regimes: single-breakdown and multi-breakdown discharges. Discharge currents, gap voltages, charge densities, electron temperature and electric field profiles of the two regimes make it clear that these two regimes are qualitatively different. It is found that the multi-breakdown discharge has a more homogeneous flux on dielectrics compared to the single-breakdown discharge.

  3. Dielectric Barrier Discharge Air Plasma at Atmospheric Pressure Induced Oxidative Stress in Saccharomyces cerevisiae%大气压介质阻挡放电空气等离子体引起酿酒酵母氧化应激的研究

    Institute of Scientific and Technical Information of China (English)

    陈慧黠; 修志龙; 白凤武

    2013-01-01

    在产生等离子体的过程中会同时产生大量的自由基和准分子.作者研究了经大气压介质阻挡放电(dielectric barrier discharge,DBD)空气等离子体处理后酿酒酵母(Saccharomyce cerevisiae)细胞的氧化应激,发现酿酒酵母细胞在DBD空气等离子体处理后,胞内总抗氧化能力和谷胱甘肽还原酶活力都不同程度被激活,丙二醛含量也随处理时间的延长不断增加,胞内活性氧(reactive oxygen species,ROS)含量明显增加,细胞周期也出现严重的G1期阻滞,说明等离子体产生的大量自由基可引发酵母细胞的氧化应激.%Atmospheric pressure dielectric barrier discharge (DBD) air plasma is a source of reactive species,such as OH*,H*,O*,H2O2,O3,etc.The oxidative stress in Saccharomyces cerevisiae which was exposed to DBD air plasma at atmospheric pressure was studied.It was showed that the intracellular total antioxidant capability (T-AOC) and activity of glutathione reductase (GR) were activated,malondialdehyde (MDA) content increased in a treatment time-dependent manner,intracellular reactive oxygen species (ROS) content increased,and cell cycle arrested in G1 phase significantly.It was proved that oxidative stress was induced in S.cerevisiae when the cells were exposed to DBD air plasma.

  4. 基于不同基体条件的Sm2Zr2O7/YSZ双层热障涂层界面残余热应力的数值仿真%Numerical Simulation of Residual Thermal Stresses at the Interface of Sm2Zr2O7/YSZ Double-layer Thermal Barrier Coatings Based on Different Matrix Conditions

    Institute of Scientific and Technical Information of China (English)

    李振军; 吴惠云

    2012-01-01

    采用有限元分析软件ANSYS对2Cr13基体等离子喷涂SmZr2O7/YSZ双层热障涂层界面残余热应力分布进行了仿真.结果表明:在涂层Sm2Zr2O7/YSZ及YSZ/NiCoCrAlY界面存在较大的残余热应力,且应力梯度基本不变,表明应力梯度与基体厚度、半径无关.%The distribution of residual thermal stresses at the interface of plasma sprayed Sm2Zr2O7/YSZ double-layer thermal barrier coatings on 2Cr13 substrates were simulated by using ANSYS software. Results show that higher residual thermal stresses exist in the Sm2Zr2O7/YSZ layer interface and the YSZ/ NiCoCrAlY layer interface, and the stress gradient is basically unchanged. It is also indicated that the stress gradient is independent of Matrix thickness and radius.

  5. Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge

    Science.gov (United States)

    Zhang, Renxi; Wang, Jingting; Cao, Xu; Hou, Huiqi

    2016-04-01

    For their distinguished global warming potential (GWP100) and long atmosphere lifespan, CF4, SF6 and SF5CF3 were significant in the field of greenhouse gas research. The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge (DBD) reactor to decompose these potent greenhouse gases in this work. The results showed that SF6 could be decomposed by 92% under the conditions of 5 min resident time and 3000 V applied voltage with the partial pressure of 2.0 kPa, 28.2 kPa, and 1.8 kPa for SF6, air and water vapor, respectively. 0.4 kPa CF4 could be decomposed by 98.2% for 4 min resident time with 30 kPa Ar added. The decomposition of SF5CF3 was much more effective than that of SF6 and CF4 and moreover, 1.3 kPa SF5CF3, discharged with 30 kPa O2, Ar and air, could not be detected when the resident time was 80 s, 40 s, and 120 s, respectively. All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases. supported by National Natural Science Foundation of China (Nos. 20507004, 21577023)

  6. Effect of nitrogen addition to ozone generation characteristics by diffuse and filamentary dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Osawa, Naoki; Tsuji, Takafumi; Ogiso, Ryota; Yoshioka, Yoshio

    2017-05-01

    Ozone is widely used for gas treatment, advanced oxidation processes, microorganisms inactivation, etc. In this research, we investigated the effect of nitrogen addition to ozone generation characteristics by atmospheric pressure Townsend discharge (APTD) type and filamentary dielectric barrier discharge (DBD) type ozone generators. The result showed that the ozone generated by the filamentary DBD increases rapidly with the increase of O2 content, and is higher than that by the APTD. On the other hand, it is interesting that the ozone generated by the APTD gradually decreases with the increase of O2 content. In order to clarify why the characteristics of ozone generation by the two kinds of discharge modes showed different dependency to the N2 content, we analyzed the exhaust gas composition using FTIR spectroscopy and calculated the rate coefficients using BOLSIG+ code. As a result, we found that although O2 content decreased with increasing N2 content, additional O atoms produced by excited N2 molecules contribute to ozone generation in case of APTD. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  7. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma.

    Science.gov (United States)

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E; Choi, Eun Ha; Shiratani, Masaharu

    2015-12-10

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of (•)OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H(•) and (•)OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  8. Simulation study of one-dimensional self-organized pattern in an atmospheric-pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-04-15

    A two-dimensional fluid model is developed to simulate the one-dimensional self-organized patterns in an atmospheric-pressure dielectric barrier discharge (DBD) driven by sinusoidal voltage in argon. Under certain conditions, by changing applied voltage amplitude, the transversely uniform discharge can evolve into the patterned discharge and the varied self-organized patterned discharges with different numbers and arrangements of discharge channels can be observed. Similar to the uniform atmospheric-pressure DBD, the patterned discharge mode is found to undergo a transition from Townsend regime, sub-glow regime to glow regime with increasing applied voltage amplitude. In the different regimes, charged particles and electric field display different dynamical behaviors. If the voltage amplitude is increased over a certain value, the discharge enters an asymmetric patterned discharge mode, and then transforms into the spatially chaotic state with out-of-order discharge channels. The reason for forming the one-dimensional self-organized pattern is mainly due to the so-called activation-inhibition effect resulting from the local high electron density region appearing in discharge space. Electrode arrangement is the reason that induces local high electron density.

  9. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica" Rocasolano" C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L' Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  10. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    Science.gov (United States)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  11. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge

    Science.gov (United States)

    Rincón, R.; Hendaoui, A.; de Matos, J.; Chaker, M.

    2016-06-01

    An Ar/CH4 atmospheric pressure dielectric barrier discharge (AP-DBD) was used to synthesize sticky hydrophobic diamond-like carbon (DLC) films on glass surface. The film is formed with plasma treatment duration shorter than 30 s, and water contact angles larger than 90° together with contact angle hysteresis larger than 10° can be achieved. According to Fourier transform infrared spectroscopy and atomic force microscopy analysis, hydrocarbon functional groups are created on the glass substrate, producing coatings with low surface energy (˜35 mJ m-2) with no modification of the surface roughness. To infer the plasma processes leading to the formation of low energy DLC surfaces, optical emission spectroscopy was used. From the results, a direct relationship between the CH species present in the plasma and the carbon concentration in the hydrophobic layer was found, which suggests that the CH species are the precursors of DLC film growth. Additionally, the plasma gas temperature was measured to be below 350 K which highlights the suitability of using AP-DBD to treat thermo-sensitive surfaces.

  12. Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites

    Science.gov (United States)

    Liu, Zhe; Chen, Ping; Zhang, Xiaoliang; Yu, Qi; Ma, Keming; Ding, Zhenfeng

    2013-10-01

    In this paper, oxygen dielectric barrier discharge (oxy-DBD) plasma was employed to modify PBO fibers and enhance the interfacial adhesion of PBO fiber/bismaleimide composites. The interlaminar shear strength (ILSS) of the composites was improved greatly to 62.0 MPa with an increment of 41.2% at 30 W/cm3, 24 s. The SEM images of fracture morphology indicated that the failure place shifted from the interface to the matrix, and the water absorption decreased from 1.96 to 1.53%, the two results demonstrated the improved adhesive strength in other ways. In addition, the ILSS retention ratio of PBO/BMI composites after boiling in water were about 90%, confirming good humid resistance of the composites. The results obtained from XPS and AFM revealed that some polar groups were introduced onto PBO fibers and the surface morphology of PBO fibers was roughened. As a result, the wettability, reactivity and roughness of PBO fibers were all improved, they contributed to the improvement of the ILSS of the composites. The comparisons with air-DBD plasma showed that the chemical changes of PBO fibers were not alike because of different plasma gases.

  13. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk......Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... analysis with operational safety management....

  14. Extremal surface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta; Wall, Aron C. [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2014-03-13

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  15. Interaction of atomized colloid with an ac electric field in a dielectric barrier discharge reactor used for deposition of nanocomposite coatings

    Science.gov (United States)

    Profili, Jacopo; Dap, Simon; Levasseur, Olivier; Naude, Nicolas; Belinger, Antoine; Stafford, Luc; Gherardi, Nicolas

    2017-02-01

    Nanocomposite thin films can be obtained by polymerization of a colloidal solution in a dielectric barrier discharge (DBD) at atmospheric pressure. In such a process, the dispersion of nanoparticles into the matrix is driven by the charging, transport, and deposition dynamics of the atomized colloid. This work examines the interaction of atomized TiO2 nanoparticles with ac electric fields in a plane-to-plane dielectric barrier discharge reactor. Experiments are performed with the discharge off to examine transport and deposition phenomena over a wide range of experimental conditions with a fixed particle charge distribution. Scanning electron microscopy reveals that the size distribution of TiO2 nanoparticles collected at different locations along the substrate surface placed on the bottom electrode of the DBD reactor can judiciously be controlled by varying the amplitude and frequency of the ac electric field. These results are also compared to the predictions of a simple particle motion model accounting for the electrostatic force, the gravitational force, and the neutral drag force in the laminar flow. It is found that while the initial charge distribution of atomized particles strongly influences the total deposition yield, its maximal position on the substrate, and the width of the deposited area, the initial size distribution of the particles at the entrance of the reactor mostly changes the size distribution at each position along the substrate surface.

  16. Properties of native ultrathin aluminium oxide tunnel barriers

    CERN Document Server

    Gloos, K; Pekola, J P

    2003-01-01

    We have investigated planar metal-insulator-metal tunnel junctions with aluminium oxide as the dielectricum. These oxide barriers were grown on an aluminium electrode in pure oxygen at room temperature till saturation. By applying the Simmons model we derived discrete widths of the tunnelling barrier, separated by DELTA s approx 0.38 nm. This corresponds to the addition of single layers of oxygen atoms. The minimum thickness of s sub 0 approx 0.54 nm is then due to a double layer of oxygen. We found a strong and systematic dependence of the barrier height on the barrier thickness. Breakdown fields up to 5 GV m sup - sup 1 were reached. They decreased strongly with increasing barrier thickness. Electrical breakdown could be described by a metal-insulator like transition of the dielectric barrier due to the large density of tunnelling electrons.

  17. Carbon dioxide conversion by means of coplanar dielectric barrier discharges

    Science.gov (United States)

    Schiorlin, Milko; Klink, Rouven; Brandenburg, Ronny

    2016-08-01

    To face the worldwide problem of anthropogenic carbon dioxide (CO2) emission new techniques have to be developed. One approach for carbon capture utilization (CCU) is the conversion of CO2 to more valuable chemicals, e.g., carbon monoxide (CO) by means of non-thermal plasma generated at ambient conditions and supplied by excess energy from renewable sources. This paper reports about the effect of the admixture of inert gases, namely nitrogen or argon to CO2 in a coplanar dielectric barrier discharge (DBD). Systematic experiments were conducted to investigate the effects of applied voltage, frequency, flowrate and CO2 concentration in the influent. The composition of products, energy efficiency and yield were determined. Within the investigated parameter ranges, the maximum conversion of CO2 to CO efficiency of 1% was achieved when the specific input energy was 190 J L-1, whereas the maximum CO yield of 0.7% was achieved when the specific input energy was 210 J L-1. In conclusion, the energy efficiency can be significantly increased by operating the plasma in a diluted CO2 gas. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  18. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    Science.gov (United States)

    Bogdanov, E. A.; Kudryavtsev, A. A.; Arslanbekov, R. R.; Kolobov, V. I.

    2004-11-01

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C&M). However, some computational results of the work of C&M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C&M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C&M. Although these differences do not affect profoundly the plasma macro parameters measured in the C&M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage.

  19. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, E A [St Petersburg State University, St Petersburg (Russian Federation); Kudryavtsev, A A [St Petersburg State University, St Petersburg (Russian Federation); Arslanbekov, R R [CFD Research Corporation, Huntsville (United States); Kolobov, V I [CFD Research Corporation, Huntsville (United States)

    2004-11-07

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C and M). However, some computational results of the work of C and M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C and M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C and M. Although these differences do not affect profoundly the plasma macro parameters measured in the C and M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage.

  20. Electrohydrodynamic force in dielectric barrier discharge plasma actuators

    Energy Technology Data Exchange (ETDEWEB)

    Boeuf, J P; Lagmich, Y; Unfer, Th; Callegari, Th; Pitchford, L C [CPAT-CNRS, Universite Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 (France)

    2007-02-07

    Surface dielectric barrier discharges (DBDs) have been proposed as actuators for flow control. In this paper we discuss the basic mechanisms responsible for the electrohydrodynamic (EHD) force exerted by the discharge on the gas molecules. A two-dimensional fluid model of the DBD is used to describe the plasma dynamics, to understand the basic physics associated with the EHD force and to give some quantitative estimation of the force under simplified conditions. The results show that for ramp or sinusoidal voltage waveforms, the discharge consists of large amplitude short current pulses during which a filamentary plasma spreads along the surface, separated in time by long duration, low current discharge phases of a Townsend or corona type. The contribution of the low current phases to the total force exerted by the discharge on the gas is dominant because their duration is much longer than that of the current pulses and because the force takes place in a much larger volume. A description of the different discharge regimes and a parametric study of the EHD force as a function of voltage rise time and dielectric thickness is presented.