WorldWideScience

Sample records for dot-polymer solar cells

  1. Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials

    Science.gov (United States)

    Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick

    2018-05-01

    We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.

  2. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  3. Comparative study of polymer and liquid electrolytes in quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Wang, Wenyong

    We present the study of CdS/CdSe quantum dot sensitized solar cells (QDSSCs) in which Zn2SnO4\\ nanowires on the conductive glass are used as photoanode. The CdS/CdSe quantum dots (QDs) are deposited in the Zn2SnO4 photoanode by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. CdS is first deposited on the nanowires after which it is further coated with 5 cycles of CdSe QDs. Finally, ZnS is coated on the QDs as a passivation layer. The QD sensitized photoanode are then used to assemble a solar device with the polymer and liquid electrolytes. The Incident Photon to Current Efficiency (IPCE) spectra are obtained for the CdS/CdSe coated nanowires. Further, a stability test of these devices is performed, using the polymer and liquid electrolytes, which provides insight to determine the better working electrolyte in the CdS/CdSe QDSSCs. Department of Energy.

  4. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  5. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.

    Science.gov (United States)

    Halim, Mohammad A

    2012-12-27

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley - Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  6. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  7. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  8. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    Science.gov (United States)

    Halim, Mohammad A.

    2012-01-01

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320

  9. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  10. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II–VI and IV–VI Inorganic Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ryan Kisslinger

    2017-01-01

    Full Text Available Bulk heterojunction solar cells based on blends of quantum dots and conjugated polymers are a promising configuration for obtaining high-efficiency, cheaply fabricated solution-processed photovoltaic devices. Such devices are of significant interest as they have the potential to leverage the advantages of both types of materials, such as the high mobility, band gap tunability and possibility of multiple exciton generation in quantum dots together with the high mechanical flexibility and large molar extinction coefficient of conjugated polymers. Despite these advantages, the power conversion efficiency (PCE of these hybrid devices has remained relatively low at around 6%, well behind that of all-organic or all-inorganic solar cells. This is attributed to major challenges that still need to be overcome before conjugated polymer–quantum dot blends can be considered viable for commercial application, such as controlling the film morphology and interfacial structure to ensure efficient charge transfer and charge transport. In this work, we present our findings with respect to the recent development of bulk heterojunctions made from conjugated polymer–quantum dot blends, list the ongoing strategies being attempted to improve performance, and highlight the key areas of research that need to be pursued to further develop this technology.

  11. Quantum dot doped solid polymer electrolyte for device application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pramod K.; Kim, Kang Wook; Rhee, Hee-Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul 121-742 (Korea)

    2009-06-15

    ZnS capped CdSe quantum dots embedded in PEO:KI:I{sub 2} polymer electrolyte matrix have been synthesized and characterized for dye sensitized solar cell (DSSC) application. The complex impedance spectroscopy shows enhance in ionic conductivity ({sigma}) due to charges provide by quantum dots (QD) while AFM affirm the uniform distribution of QD into polymer electrolyte matrix. Cyclic voltammetry revealed the possible interaction between polymer electrolyte, QD and iodide/iodine. The photovoltaic performances of the DSSC containing quantum dots doped polymer electrolyte was also found to improve. (author)

  12. Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Poudyal, Uma

    Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.

  13. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    International Nuclear Information System (INIS)

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei

    2014-01-01

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  14. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Science.gov (United States)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  15. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  16. Luminescent GdVO_4:Sm"3"+ quantum dots enhance power conversion efficiency of bulk heterojunction polymer solar cells by Förster resonance energy transfer

    International Nuclear Information System (INIS)

    Bishnoi, Swati; Gupta, Vinay; Sharma, Gauri D.; Chand, Suresh; Sharma, Chhavi; Kumar, Mahesh; Haranath, D.; Naqvi, Sheerin

    2016-01-01

    In this work, we report enhanced power conversion efficiency (PCE) of bulk heterojunction polymer solar cells by Förster resonance energy transfer (FRET) from samarium-doped luminescent gadolinium orthovanadate (GdVO_4:Sm"3"+) quantum dots (QDs) to polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) polymer. The photoluminescence emission spectrum of GdVO_4:Sm"3"+ QDs overlaps with the absorption spectrum of PTB7, leading to FRET from GdVO_4:Sm"3"+ to PTB7, and significant enhancements in the charge-carrier density of excited and polaronic states of PTB7 are observed. This was confirmed by means of femtosecond transient absorption spectroscopy. The FRET from GdVO_4:Sm"3"+ QDs to PTB7 led to a remarkable increase in the power conversion efficiency (PCE) of PTB7:GdVO_4:Sm"3"+:PC_7_1BM ([6,6]-phenyl-C_7_1-butyric acid methyl ester) polymer solar cells. The PCE in optimized ternary blend PTB7:GdVO_4:Sm"3"+:PC_7_1BM (1:0.1:1.5) is increased to 8.8% from 7.2% in PTB7:PC_7_1BM. This work demonstrates the potential of rare-earth based luminescent QDs in enhancing the PCE of polymer solar cells.

  17. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells

    KAUST Repository

    Choi, Joshua J.; Wenger, Whitney N.; Hoffman, Rachel S.; Lim, Yee-Fun; Luria, Justin; Jasieniak, Jacek; Marohn, John A.; Hanrath, Tobias

    2011-01-01

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2011-06-03

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  20. Improved performance of nanowire–quantum-dot–polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials

    International Nuclear Information System (INIS)

    Nadarajah, A; Smith, T; Könenkamp, R

    2012-01-01

    We report a nanowire–quantum-dot–polymer solar cell consisting of a chemically treated CdSe quantum dot film deposited on n-type ZnO nanowires. The electron and hole collecting contacts are a fluorine-doped tin-oxide/zinc oxide layer and a P3HT/Au layer. This device architecture allows for enhanced light absorption and an efficient collection of photogenerated carriers. A detailed analysis of the chemical treatment of the quantum dots, their deposition, and the necessary annealing processes are discussed. We find that the surface treatment of CdSe quantum dots with pyridine, and the use of 1,2-ethanedithiol (EDT) ligands, critically improves the device performance. Annealing at 380 °C for 2 h is found to cause a structural conversion of the CdSe from its initial isolated quantum dot arrangement into a polycrystalline film with excellent surface conformality, thereby resulting in a further enhancement of device performance. Moreover, long-term annealing of 24 h leads to additional increases in device efficiency. Our best conversion efficiency reached for this type of cell is 3.4% under 85 mW cm −2 illumination. (paper)

  1. Semiconductor quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  2. Colloidal quantum dot solar cells exploiting hierarchical structuring

    KAUST Repository

    Labelle, André J.; Thon, Susanna; Masala, Silvia; Adachi, Michael M.; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H.; Fratalocchi, Andrea; Sargent, E. H.

    2015-01-01

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells

  3. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  4. Unconventional device concepts for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, S.C.; Slooff, L.H.; Verhees, W.J.H.; Cobussen-Pool, E.M.; Lenzmann, F.O.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands); Sessolo, M.; Bolink, H.J. [Instituto de Ciencia Molecular, Universidad de Valencia, Valencia (Spain)

    2009-09-15

    The inclusion of metal-oxide layers in polymer solar cells enables the fabrication of a series of unconventional device architectures. These devices include: semi-transparent polymer solar cells, devices with inverted polarity, as well as devices with air stable electrodes. A proof-of-principle of these devices is presented. The anticipated benefits of these novel device structures over conventional polymer solar cells are discussed.

  5. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  6. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    Science.gov (United States)

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  7. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Marti, A.; Lopez, N.; Antolin, E.; Canovas, E.; Stanley, C.; Farmer, C.; Cuadra, L.; Luque, A.

    2006-01-01

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation

  8. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Marti, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)]. E-mail: amarti@etsit.upm.es; Lopez, N. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Antolin, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Canovas, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Stanley, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Farmer, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cuadra, L. [Departamento de Teoria de la Senal y Comunicaciones- Escuela Politecnica Superior, Universidad de Alcala, Ctra. Madrid-Barcelona, km. 33600, 28805-Alcala de Henares (Madrid) (Spain); Luque, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)

    2006-07-26

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation.

  9. Luminescent GdVO{sub 4}:Sm{sup 3+} quantum dots enhance power conversion efficiency of bulk heterojunction polymer solar cells by Förster resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Swati [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Gupta, Vinay, E-mail: drvinaygupta@netscape.net; Sharma, Gauri D.; Chand, Suresh [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Organic and Hybrid Solar Cells Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Sharma, Chhavi; Kumar, Mahesh [Ultrafast Optoelectronics and Terahertz Photonics Lab, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India); Naqvi, Sheerin [Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-07-11

    In this work, we report enhanced power conversion efficiency (PCE) of bulk heterojunction polymer solar cells by Förster resonance energy transfer (FRET) from samarium-doped luminescent gadolinium orthovanadate (GdVO{sub 4}:Sm{sup 3+}) quantum dots (QDs) to polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) polymer. The photoluminescence emission spectrum of GdVO{sub 4}:Sm{sup 3+} QDs overlaps with the absorption spectrum of PTB7, leading to FRET from GdVO{sub 4}:Sm{sup 3+} to PTB7, and significant enhancements in the charge-carrier density of excited and polaronic states of PTB7 are observed. This was confirmed by means of femtosecond transient absorption spectroscopy. The FRET from GdVO{sub 4}:Sm{sup 3+} QDs to PTB7 led to a remarkable increase in the power conversion efficiency (PCE) of PTB7:GdVO{sub 4}:Sm{sup 3+}:PC{sub 71}BM ([6,6]-phenyl-C{sub 71}-butyric acid methyl ester) polymer solar cells. The PCE in optimized ternary blend PTB7:GdVO{sub 4}:Sm{sup 3+}:PC{sub 71}BM (1:0.1:1.5) is increased to 8.8% from 7.2% in PTB7:PC{sub 71}BM. This work demonstrates the potential of rare-earth based luminescent QDs in enhancing the PCE of polymer solar cells.

  10. Polymer Solar Cells – Non Toxic Processing and Stable Polymer Photovoltaic Materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (~1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient...... and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding...... synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells...

  11. Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel; Hagemann, Ole; Alstrup, Jan

    2009-01-01

    large-scale production of polymer solar cells using screen printing. Screen-printed solar cells are still very inferior to state of the art P3HT/PCBM technology, but it is our view that it is necessary to explore these printing technologies if polymer solar cells are to ever become commercial products.......The synthesis and characterization of a number of so-called thermo-cleavable solvents are described with their application in all-air, all-solution and all-screen-printed polymer solar cells. These solvents were developed to meet some requirements for printing techniques such as long “open time...... (TGA) and high-temperature NMR established the onset temperature of decomposition, the rate of the reaction and the nature of the products. Printing experiments with inks based on these solvents together with conjugated polymers are exemplified for polymer solar cell devices to show how they enable...

  12. Modeling and simulation of InGaN/GaN quantum dots solar cell

    International Nuclear Information System (INIS)

    Aissat, A.; Benyettou, F.; Vilcot, J. P.

    2016-01-01

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In 0.25 Ga 0.75 N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In 0.25 Ga 0.75 N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  13. Modeling and simulation of InGaN/GaN quantum dots solar cell

    Science.gov (United States)

    Aissat, A.; Benyettou, F.; Vilcot, J. P.

    2016-07-01

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In0.25Ga0.75N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In0.25Ga0.75N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  14. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  15. Modeling and simulation of InGaN/GaN quantum dots solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Aissat, A., E-mail: sakre23@yahoo.fr [LATSI Laboratory, Faculty of Technology, University of Blida 1 (Algeria); LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Benyettou, F. [LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Vilcot, J. P. [Institute of Electronics, Micro-Electronics and Nanotechnologies,UMR CNRS 8520, Université des Sciences et Technologies de Lille1, Avenue Poincaré, CS 60069, 59652 Villeneuve d’Ascq (France)

    2016-07-25

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In{sub 0.25}Ga{sub 0.75}N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In{sub 0.25}Ga{sub 0.75}N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  16. Effect of CdS/Mg-Doped CdSe Cosensitized Photoanode on Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Yingxiang Guan

    2015-01-01

    Full Text Available Quantum dots have emerged as a material platform for low-cost high-performance sensitized solar cells. And doping is an effective method to improve the performance of quantum dot sensitized solar cells (QDSSCs. Since Kwak et al. from South Korea proved the incorporation of Mg in the CdSe quantum dots (QDs in 2007, the Mg-doped CdSe QDs have been thoroughly studied. Here we report a new attempt on CdS/Mg-doped CdSe quantum dot cosensitized solar cells (QDCSSC. We analyzed the performance of CdS/Mg-doped CdSe quantum dot cosensitized solar cells via discussing the different doping concentration of Mg and the different SILAR cycles of CdS. And we studied the mechanism of CdS/Mg-doped CdSe QDs in detail for the reason why the energy conversion efficiency had been promoted. It is a significant instruction on the development of Mg-doped CdSe quantum dot sensitized solar cells (QDSSCs.

  17. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  18. Efficient spray-coated colloidal quantum dot solar cells

    KAUST Repository

    Kramer, Illan J.

    2014-11-10

    (Figure Presented). A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control - an approach termed as sprayLD - an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

  19. Efficient spray-coated colloidal quantum dot solar cells

    KAUST Repository

    Kramer, Illan J.; Minor, James C.; Moreno-Bautista, Gabriel; Rollny, Lisa R.; Kanjanaboos, Pongsakorn; Kopilovic, Damir; Thon, Susanna; Carey, Graham H.; Chou, Kang Wei; Zhitomirsky, David; Amassian, Aram; Sargent, E. H.

    2014-01-01

    (Figure Presented). A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control - an approach termed as sprayLD - an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

  20. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  1. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo; Garnett, Erik C.; Wang, Shuang; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.; McGehee, Michael D.; Cui, Yi

    2012-01-01

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  2. Influence of Quantum Dot Concentration on Carrier Transport in ZnO:TiO2 Nano-Hybrid Photoanodes for Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Francis S. Maloney

    2016-10-01

    Full Text Available Zinc oxide nanowire and titanium dioxide nanoparticle (ZnO:TiO2 NW/NP hybrid films were utilized as the photoanode layer in quantum dot-sensitized solar cells (QDSSCs. CdSe quantum dots (QDs with a ZnS passivation layer were deposited on the ZnO:TiO2 NW/NP layer as a photosensitizer by successive ion layer adsorption and reaction (SILAR. Cells were fabricated using a solid-state polymer electrolyte and intensity-modulated photovoltage and photocurrent spectroscopy (IMVS/PS was carried out to study the electron transport properties of the cell. Increasing the SILAR coating number enhanced the total charge collection efficiency of the cell. The electron transport time constant and diffusion length were found to decrease as more QD layers were added.

  3. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  4. The interplay of nanostructure and efficiency of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Yin

    2008-12-04

    The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: the polymer-polymer solar cells, and the polymer-small molecule solar cell which has polymer as electron donor incorporating with organic small molecule as electron acceptor. For the polymer-polymer devices, I compared the photocurrent characteristics of bilayer and blend devices as well as the blend devices with different nano-morphology, which is fine tuned by applying solvents with different boiling points. The main conclusion based on the complementary measurements is that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel small molecule electron acceptor vinazene. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V without thermal treatment of the devices were achieved. In the past, fill factors of solar cells exceeding 50 % have only been observed when using fullerene-derivatives as the electron-acceptor. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. (orig.)

  5. Characterization of Thin Films for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    , but a large number of additional degradation mechanisms are introduced. Consequently, research in the stability of polymer solar cells is impractical since the extensive timeframe of stability testing reduces the pace of the research. This thesis reports the first results on the response of polymer solar...... cells to concentrated light, both in terms of performance as well as stability. Additionally, concentrated light was used to study some of the mechanisms governing solar cells operation, which are dominant when currents are very high as a consequence of high photon flux. The response in terms......The field of polymer solar cells has undergone an extensive development in recent years after the invention of semiconducting polymers in 1991. Efficiencies have gradually increased to above 10 %, and high throughput processing methods such as roll-to-roll coating allow for production of thousands...

  6. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    Science.gov (United States)

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  7. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  8. Development of polymers for large scale roll-to-roll processing of polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert

    Development of polymers for large scale roll-to-roll processing of polymer solar cells Conjugated polymers potential to both absorb light and transport current as well as the perspective of low cost and large scale production has made these kinds of material attractive in solar cell research....... The research field of polymer solar cells (PSCs) is rapidly progressing along three lines: Improvement of efficiency and stability together with the introduction of large scale production methods. All three lines are explored in this work. The thesis describes low band gap polymers and why these are needed....... Polymer of this type display broader absorption resulting in better overlap with the solar spectrum and potentially higher current density. Synthesis, characterization and device performance of three series of polymers illustrating how the absorption spectrum of polymers can be manipulated synthetically...

  9. Business, market and intellectual property analysis of polymer solar cells

    DEFF Research Database (Denmark)

    Damgaard Nielsen, Torben; Cruickshank, C.; Foged, S.

    2010-01-01

    and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found......The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent...... and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance...

  10. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  11. Biomass converted carbon quantum dots for all-weather solar cells

    International Nuclear Information System (INIS)

    Meng, Yuanyuan; Zhang, Yue; Sun, Weiyin; Wang, Min; He, Benlin; Chen, Haiyan; Tang, Qunwei

    2017-01-01

    Highlights: •CQDs are converted from soybean powders by a hydrothermal method. •The biomass converted CQDs are used for all-weather DSSCs. •The so-called all-weather DSSCs can generate electricity in the daytime and dark. •A dark efficiency as high as 7.97% is determined on the all-weather photovoltaics. •The launched solar cell extend our knowledge of advanced all-weather solar cells. -- Abstract: A great challenge for state-of-the-art photovoltaic devices is to realize electric power generation in all weathers. We constructively demonstrate here the conversion from biomass to carbon quantum dots for all-weather carbon quantum dot solar cells that can generate electricity in the daytime and in the dark. The combination of green-emitting long persistence phosphors with mesoscopic titanium dioxide realizes optical storage by composite photoanode under illumination and excitation to monochromatic green light in the dark. The optimized all-weather solar cell yields maximized dark power conversion efficiency as high as 7.97% along with persistent electricity output for several hours. This work begins a photovoltaic revolution to forward all-weather solar cells as future energy solutions.

  12. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Manceau, Matthieu

    2010-01-01

    connected cells were prepared with a total module active area of 96 cm2. The devices were tested for operational stability under simulated sunlight (AM1.5G) and natural sunlight, and the photochemical stability of the polymer was examined using a combination of UV−vis and IR spectroscopy.......We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...... around a 1:2 mixing ratio. Roll-to-roll coated polymer solar cell devices were prepared under ambient conditions employing solution processing in all steps including the metallic back electrode that was printed as a grid giving semitransparent solar cell devices. Solar cell modules comprising 16 serially...

  13. Business, market and intellectual property analysis of polymer solar cells

    International Nuclear Information System (INIS)

    Nielsen, Torben D.; Krebs, Frederik C.; Cruickshank, Craig; Foged, Soeren; Thorsen, Jesper

    2010-01-01

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found that the polymer solar cell technology is very poorly protected in Europe with the central patents being valid in only France, Germany, the Netherlands and the United Kingdom. Several countries with a large potential for PV such as Portugal and Greece are completely open and have apparently no relevant patents. This is viewed as a great advantage for the possible commercialization of polymer solar cells in a European setting as the competition for the market will be based on the manufacturing performance rather than domination by a few patent stakeholders. (author)

  14. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  15. Colloidal quantum dot solar cells exploiting hierarchical structuring

    KAUST Repository

    Labelle, André J.

    2015-02-11

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

  16. Efficient CsF interlayer for high and low bandgap polymer solar cell

    Science.gov (United States)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  17. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  19. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  20. Diketopyrrolopyrrole polymers for organic solar cells

    NARCIS (Netherlands)

    Li, Wei Wei; Hendriks, K.H.; Wienk, M.M.; Janssen, R.A.J.

    2016-01-01

    Conspectus Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a

  1. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  2. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells

    NARCIS (Netherlands)

    Azpiroz, Jon Mikel; Infante, Ivan; De Angelis, Filippo

    2015-01-01

    We report on the density functional theory (DFT) modeling of core/shell quantum dot (QD) sensitized solar cells (QDSSCs), a device architecture that holds great potential in photovoltaics but has not been fully exploited so far. To understand the working mechanisms of this kind of solar cells, we

  4. Indaceno-Based Conjugated Polymers for Polymer Solar Cells.

    Science.gov (United States)

    Yin, Yuli; Zhang, Yong; Zhao, Liancheng

    2018-01-04

    Polymer solar cells have received considerable attention due to the advantages of low material cost, tunable band gaps, ultralight weight, and high flexible properties, and they have been a promising organic photovoltaic technology for alternative non-renewable fossil fuels for the past decade. Inspired by these merits, numerous state-of-the-art organic photovoltaic materials have been constructed. Among them, indaceno-based polymer materials have made an impact in obtaining an impressive power conversion efficiency of more than 11%, which shows the momentous potential of this class of materials for commercial applications. In this review, recent progress of indaceno-based organic polymer solar cells are reviewed, and the structure-property device performance correlations of the reported materials are highlighted. Then, common regularities of these successful cases are collected, and encouraging viewpoints on the further development of more exciting indaceno-based organic photovoltaic materials are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polymer solar cells - Non toxic processing and stable polymer photovoltaic materials

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, R

    2012-07-01

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (approx1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient cell must be achieved. For a continuous success it is therefore essential to transfer the accomplishments from the laboratory to large scale facilities for actual production. In order to do so, several issues have to be approached. Among these are more environmentally friendly processing and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding to several GW{sub peek}, this is not a suitable approach from neither a production nor environmental point of view. As a consequence new materials, which can be processed from more environmentally friendly solvents (preferably water), need to be developed. In this thesis, the issue has been approached through synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells as it slows down diffusion though the active layer, but just as important it renders the layer insoluble. This allows for further processing, using the same solvent, without dissolving already processed layers, and resulted in the first ever reported solar cells where all layers are processed from aqueous or semi-aqueous solution. As previously mentioned many advantages can be achieved by use of thermocleavable materials. Unfortunately the cleavage temperatures are too

  6. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  7. Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    International Nuclear Information System (INIS)

    Kramer, Illan J.; Pattantyus-Abraham, Andras G.; Barkhouse, Aaron R.; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Md. K.; Graetzel, Michael; Sargent, Edward H.

    2011-01-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum.

  8. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  9. Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination

    KAUST Repository

    Tang, Jiang

    2010-01-07

    (Figure Presented) The air stability and power conversion efficiency of solution-processed PbS quantum dot solar cells is dramatically improved by the insertion of 0.8 nm LiF between the PbS nanoparticle film and the Al contact. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  10. Design, fabrication, and characterization of polymer based bulk heterojunction solar cells with enhanced efficiencies

    Science.gov (United States)

    Lu, Haiwei

    Polymer based bulk heterojunction (BHJ) solar cells offer promising technological advantages for actualization of low-cost and large-area fabrication on flexible substrates. To reach the envisaged market entry figure of 10% power conversion efficiency (PCE), it is crucial that more solar energy is utilized in the active layer, requiring both higher energy conversion efficiency and expansion of the absorption spectrum of the active layer to near infrared (NIR) region. The research introduced in this dissertation is an effort to increase PCE of solar cells from the aforementioned two directions. In the first method, carbon nanotubes (CNTs) were incorporated into polymer-fullerene BHJ solar cells to increase the hole-collection efficiency. Devices with CNT monolayer networks placed at different positions were fabricated, and the impact of CNTs on device performance was studied. It was demonstrated that CNTs placed on the hole-collection side of the device resulted in optimized performance, with PCE increased from 4% to 4.9%. To realize the controlled deposition of a uniform layer of CNTs on different positions, a mild plasma treatment of the active-layer was employed, and the influence of plasma treatment on device performance was also studied. In the second strategy, I developed an approach to expand the absorption spectrum to NIR region. In this case, hybrid polymer based BHJ solar cells composed of pyridine-capped PbS (PbS-py) quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) were proposed. With pyridines as capping ligands, devices showed superior performance compared to with conventionally used oleate agents. PbS QDs with bandgaps of ˜1.13-1.38 eV offered the advantage of energetically favorable charge separation between P3HT and PbS QDs for photoexcitons in both visible and NIR regions. It was also found that thermal annealing leads to the removal of excess and interfacial pyridine ligands in polymer/QDs composites, and thus provides intimate electrical

  11. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    , a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...

  12. Increasing the efficiency of polymer solar cells by silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  13. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  14. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  15. Inkjet Printing of Back Electrodes for Inverted Polymer Solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Sweelssen, Jorgen; Andriessen, Ronn

    2013-01-01

    in an otherwise fast roll-to-roll production line. In this paper, the applicability of inkjet printing in the ambient processing of back electrodes in inverted polymer solar cells with the structure ITO/ZnO/P3HT:PCBM/PEDOT:PSS/ Ag is investigated. Furthermore, the limitation of screen printing, the commonly......Evaporation is the most commonly used deposition method in the processing of back electrodes in polymer solar cells used in scientifi c studies. However, vacuum-based methods such as evaporation are uneconomical in the upscaling of polymer solar cells as they are throughput limiting steps...... employed method in the ambient processing of back electrode, is demonstrated and discussed. Both inkjet printing and screen printing of back electrodes are studied for their impact on the photovoltaic properties of the polymer solar cells measured under 1000 Wm−2 AM1.5. Each ambient processing technique...

  16. Simulation of quantum dots size and spacing effect for intermediate band solar cell application based on InAs quantum dots arrangement in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hendra, P. I. B., E-mail: ib.hendra@gmail.com; Rahayu, F., E-mail: ib.hendra@gmail.com; Darma, Y., E-mail: ib.hendra@gmail.com [Physical Vapor Deposition Laboratory, Physics of Material Electronics Research, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Intermediate band solar cell (IBSC) has become a promising technology in increasing solar cell efficiency. In this work we compare absorption coefficient profile between InAs quantum dots with GaAs bulk. We calculate the efficiency of GaAs bulk and GaAs doped with 2, 5, and 10 nm InAs quantum dot. Effective distances in quantum dot arrangement based on electron tunneling consideration were also calculated. We presented a simple calculation method with low computing power demand. Results showed that arrangement of quantum dot InAs in GaAs can increase solar cell efficiency from 23.9 % initially up to 60.4%. The effective distance between two quantum dots was found 2 nm in order to give adequate distance to prevent electron tunneling and wave functions overlap.

  17. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions

    Directory of Open Access Journals (Sweden)

    Brad W. Watson

    2016-11-01

    Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.

  18. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    Science.gov (United States)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  19. Polymer-Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J

    2015-08-01

    Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of Bi_2S_3 quantum dots for sensitized solar cells by reverse SILAR

    International Nuclear Information System (INIS)

    Singh, Navjot; Sharma, J.; Tripathi, S. K.

    2016-01-01

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi_2S_3) (group V – Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7 eV.

  1. Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR

    Science.gov (United States)

    Singh, Navjot; Sharma, J.; Tripathi, S. K.

    2016-05-01

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.

  2. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R.; Garcí a de Arquer, F. Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required

  3. Colloidal quantum dot solar cells on curved and flexible substrates

    KAUST Repository

    Kramer, Illan J.; Moreno-Bautista, Gabriel; Minor, James C.; Kopilovic, Damir; Sargent, Edward H.

    2014-01-01

    © 2014 AIP Publishing LLC. Colloidal quantum dots (CQDs) are semiconductor nanocrystals synthesized with, processed in, and deposited from the solution phase, potentially enabling low-cost, facile manufacture of solar cells. Unfortunately, CQD solar cell reports, until now, have only explored batch-processing methods - such as spin-coating - that offer limited capacity for scaling. Spray-coating could offer a means of producing uniform colloidal quantum dot films that yield high-quality devices. Here, we explore the versatility of the spray-coating method by producing CQD solar cells in a variety of previously unexplored substrate arrangements. The potential transferability of the spray-coating method to a roll-to-roll manufacturing process was tested by spray-coating the CQD active layer onto six substrates mounted on a rapidly rotating drum, yielding devices with an average power conversion efficiency of 6.7%. We further tested the manufacturability of the process by endeavoring to spray onto flexible substrates, only to find that spraying while the substrate was flexed was crucial to achieving champion performance of 7.2% without compromise to open-circuit voltage. Having deposited onto a substrate with one axis of curvature, we then built our CQD solar cells onto a spherical lens substrate having two axes of curvature resulting in a 5% efficient device. These results show that CQDs deposited using our spraying method can be integrated to large-area manufacturing processes and can be used to make solar cells on unconventional shapes.

  4. Colloidal quantum dot solar cells on curved and flexible substrates

    International Nuclear Information System (INIS)

    Kramer, Illan J.; Moreno-Bautista, Gabriel; Minor, James C.; Kopilovic, Damir; Sargent, Edward H.

    2014-01-01

    Colloidal quantum dots (CQDs) are semiconductor nanocrystals synthesized with, processed in, and deposited from the solution phase, potentially enabling low-cost, facile manufacture of solar cells. Unfortunately, CQD solar cell reports, until now, have only explored batch-processing methods—such as spin-coating—that offer limited capacity for scaling. Spray-coating could offer a means of producing uniform colloidal quantum dot films that yield high-quality devices. Here, we explore the versatility of the spray-coating method by producing CQD solar cells in a variety of previously unexplored substrate arrangements. The potential transferability of the spray-coating method to a roll-to-roll manufacturing process was tested by spray-coating the CQD active layer onto six substrates mounted on a rapidly rotating drum, yielding devices with an average power conversion efficiency of 6.7%. We further tested the manufacturability of the process by endeavoring to spray onto flexible substrates, only to find that spraying while the substrate was flexed was crucial to achieving champion performance of 7.2% without compromise to open-circuit voltage. Having deposited onto a substrate with one axis of curvature, we then built our CQD solar cells onto a spherical lens substrate having two axes of curvature resulting in a 5% efficient device. These results show that CQDs deposited using our spraying method can be integrated to large-area manufacturing processes and can be used to make solar cells on unconventional shapes.

  5. Colloidal quantum dot solar cells on curved and flexible substrates

    KAUST Repository

    Kramer, Illan J.

    2014-10-20

    © 2014 AIP Publishing LLC. Colloidal quantum dots (CQDs) are semiconductor nanocrystals synthesized with, processed in, and deposited from the solution phase, potentially enabling low-cost, facile manufacture of solar cells. Unfortunately, CQD solar cell reports, until now, have only explored batch-processing methods - such as spin-coating - that offer limited capacity for scaling. Spray-coating could offer a means of producing uniform colloidal quantum dot films that yield high-quality devices. Here, we explore the versatility of the spray-coating method by producing CQD solar cells in a variety of previously unexplored substrate arrangements. The potential transferability of the spray-coating method to a roll-to-roll manufacturing process was tested by spray-coating the CQD active layer onto six substrates mounted on a rapidly rotating drum, yielding devices with an average power conversion efficiency of 6.7%. We further tested the manufacturability of the process by endeavoring to spray onto flexible substrates, only to find that spraying while the substrate was flexed was crucial to achieving champion performance of 7.2% without compromise to open-circuit voltage. Having deposited onto a substrate with one axis of curvature, we then built our CQD solar cells onto a spherical lens substrate having two axes of curvature resulting in a 5% efficient device. These results show that CQDs deposited using our spraying method can be integrated to large-area manufacturing processes and can be used to make solar cells on unconventional shapes.

  6. Industrialization of polymer solar cells - phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Krebs, F.C. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark); Andersen, Rasmus B. [Mekoprint A/S, Stoevrimg (Denmark); Bork, J.; Bentzen, B.

    2012-03-15

    A three-phased project with the objective to industrialize DTU's basic polymer solar cell technology was started in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project's phase 1.The key tasks in phase 1 are to stream-line DTU's tech-nology for the industrial utilization, to demonstrate production according to this stream-lined technology at Mekoprint A/S and finally to fertilize the market for polymer solar cells by demonstrating their use in appli-cations that harmonize with their present maturity level. The main focus in the stream-lining of DTU's technology has been to demonstrate a convincing rate of reduction for the production cost, and thereby make a competitive price plausible. This has been materialized as a learning curve showing that the polymer technology presently develops considerably faster than the silicon technology. The polymer solar cells will, under the assumption that both technologies follow a projection of the learning curve, gain a cost-leading position within a reasonable time. A production cost of 5 Euro/Wp has already been demonstrated in DTU's pilot plant, and a road map for the further decrease to 1 Euro/Wp is drawn. This target is expected to be reached in 2013 in the ongoing phase 2 of the project. Another activity essential for the industrialization has been the launch of specialized materials, equipment and services required for the processing of DTU's polymer solar cells. Relevant products and services are made available for sale on DTU's homepage, www.energyconversion.dtu.dk. A production line for polymer solar cells has been established at Mekoprint. For this a retrofit solution was chosen where the core of an existing screen-printing line was dismantled and fitted to a slot-die printing head manufactured in DTU's workshop

  7. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  8. Efficient eco-friendly inverted quantum dot sensitized solar cells

    NARCIS (Netherlands)

    Park, Jinhyung; Sajjad, Muhammad T.; Jouneau, Pierre-Henri; Ruseckas, Arvydas; Faure-Vincent, Jérôme; Samuel, Ifor D. W.; Reiss, Peter; Aldakov, Dmitry

    2016-01-01

    Recent progress in quantum dot (QD) sensitized solar cells has demonstrated the possibility of low-cost and efficient photovoltaics. However, the standard device structure based on n-type materials often suffers from slow hole injection rate, which may lead to unbalanced charge transport. We have

  9. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  10. RETRACTED: Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    KAUST Repository

    Kramer, Illan J.; Pattantyus-Abraham, Andras G.; Barkhouse, Aaron R.; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Md. K.; Grä tzel, Michael; Sargent, Edward H.

    2011-01-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. © 2010 Elsevier B.V.

  11. RETRACTED: Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    KAUST Repository

    Kramer, Illan J.

    2011-08-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. © 2010 Elsevier B.V.

  12. Intermediate band solar cell simulation use InAs quantum dot in GaAs

    International Nuclear Information System (INIS)

    Hendra P, I. B.; Rahayu, F.; Sahdan, M. F.; Darma, Y.

    2015-01-01

    Intermediate band solar cell (IBSC) has become a new approach in increasing solar cell efficiency significantly. One way to create intermediate band is by proposing quantum dots (QD) technology. One of the important aspects in utilizing IBSC is the absorption of light. In this work we simulated the influence of QD arrangement in order to increase absorption coefficient and solar cell efficiency. We also simulated the influence of QD size to capture a wider light spectrum. We present a simple calculation method with low computing power demand. Results show that the increasing in quantum dot size can increase in capturing wider spectrum of light. Arrangement InAs QD in bulk material GaAs can capture wider spectrum of light and increase the absorption coefficient. The arrangement InAs QD 2 nm in GaAs bulk can increase solar cell efficiency up to 49.68%

  13. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H

    2016-01-13

    A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots

    KAUST Repository

    Ning, Zhijun; Dong, Haopeng; Zhang, Qiong; Voznyy, Oleksandr; Sargent, Edward H.

    2014-01-01

    © 2014 American Chemical Society. New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  15. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots

    KAUST Repository

    Ning, Zhijun

    2014-10-28

    © 2014 American Chemical Society. New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  16. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode

    International Nuclear Information System (INIS)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-01-01

    In this work Nb-doped anatase TiO 2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO 2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO 2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell. (paper)

  17. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

    Science.gov (United States)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-10-18

    In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.

  18. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    Science.gov (United States)

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  19. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells.

    Science.gov (United States)

    Di, Dawei; Perez-Wurfl, Ivan; Gentle, Angus; Kim, Dong-Ho; Hao, Xiaojing; Shi, Lei; Conibeer, Gavin; Green, Martin A

    2010-08-01

    As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO(2)) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H(3)PO(4)) etching, nitrogen (N(2)) gas anneal and forming gas (Ar: H(2)) anneal on the cells' electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I-V, light I-V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement.

  20. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  1. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  2. Stability and Degradation of Organic and Polymer Solar Cells

    DEFF Research Database (Denmark)

    Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability...... during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art...... understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing...

  3. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; Garcí a de Arquer, F. Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  4. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng

    2015-11-18

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  5. Perspective: Hybrid solar cells: How to get the polymer to cooperate?

    Directory of Open Access Journals (Sweden)

    Jonas Weickert

    2013-08-01

    Full Text Available Lately, a lot of attention has been paid to metal oxide-organic hybrid solar cells. In these devices, conjugated polymers replace the typically transparent hole transporter as usually used in solid-state dye-sensitized solar cells in order to maximize the photon absorption efficiency. However, to unleash the full potential of hybrid solar cells it is imperative to push the photocurrent contribution of the absorbing polymer.

  6. Industrialisation of polymer solar cells. Phase 2: Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Gevorgyan, S.; Frausig, J.; Andersen, Rasmus B.; Krebs, F.C.

    2013-03-15

    The key results from the project are: a firmly anchoring of DTU's basic polymer solar cell technology, ProcessOne, at Mekoprint, improved documented operational lifetime for polymer solar modules, and optimized processing of such modules. Mekoprint has worked determinedly to stabilize their production of ProcessOne devices, to prepare for full scale production and to build a marked for polymer solar cells. Work has been invested in improvement of process tolerances, documentation of the production process, training of process operators and roll-to-roll characterization of the produced solar cells. The planned and conducted actions have been summed up in a SIPOC diagram. Mekoprint's communication with potential customers reveals that lowering the cost, increasing the efficiency and operational life time is important for reaching the commercial market. Activities aimed at penetrating the market for lighting products in 3{sup rd} world countries are intensified. A new solar cell laser pointer is developed and a series of 2000 has been produced for the purpose of creating a commercial focus on polymer solar cells. DTU has established a characterization laboratory for organic photovoltaics (CLOP). The laboratory allows for real-time - and accelerated lifetime testing of solar cells both indoor and outdoor, and thus for the development of reliable methods for predicting life-time from accelerated testing. An operational lifetime of 2 years has, by means of the method, been documented for polymer solar modules encapsulated in a food-packaging barrier. Preliminary accelerated measurements on an equivalent device encapsulated in the same barrier, but in two layers, show a five times improvement of the solar cell stability. On basis of this it is considered that five years operational lifetime is within reach. DTU has improved of their OPV production technology by replacing the purchased vacuum-processed indium-tin-oxide (ITO) electrode by a roll-to-roll processed

  7. Industrialisation of polymer solar cells. Phase 2: Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Gevorgyan, S.; Frausig, J.; Andersen, Rasmus B.; Krebs, F. C.

    2013-03-15

    The key results from the project are: a firmly anchoring of DTU's basic polymer solar cell technology, ProcessOne, at Mekoprint, improved documented operational lifetime for polymer solar modules, and optimized processing of such modules. Mekoprint has worked determinedly to stabilize their production of ProcessOne devices, to prepare for full scale production and to build a marked for polymer solar cells. Work has been invested in improvement of process tolerances, documentation of the production process, training of process operators and roll-to-roll characterization of the produced solar cells. The planned and conducted actions have been summed up in a SIPOC diagram. Mekoprint's communication with potential customers reveals that lowering the cost, increasing the efficiency and operational life time is important for reaching the commercial market. Activities aimed at penetrating the market for lighting products in 3{sup rd} world countries are intensified. A new solar cell laser pointer is developed and a series of 2000 has been produced for the purpose of creating a commercial focus on polymer solar cells. DTU has established a characterization laboratory for organic photovoltaics (CLOP). The laboratory allows for real-time - and accelerated lifetime testing of solar cells both indoor and outdoor, and thus for the development of reliable methods for predicting life-time from accelerated testing. An operational lifetime of 2 years has, by means of the method, been documented for polymer solar modules encapsulated in a food-packaging barrier. Preliminary accelerated measurements on an equivalent device encapsulated in the same barrier, but in two layers, show a five times improvement of the solar cell stability. On basis of this it is considered that five years operational lifetime is within reach. DTU has improved of their OPV production technology by replacing the purchased vacuum-processed indium-tin-oxide (ITO) electrode by a roll-to-roll processed electrode

  8. Lengthening the lifetime of roll-to-roll produced polymer solar cells

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager

    the knowledge of the degradation mechanisms involved in roll-to-roll coated polymer solar cells. While only a part of the experiments have directly involved roll-to-roll coated devices, most of the work is applicable to coated devices. The first part of the dissertation is devoted to the study of in......The field of polymer solar cells is a field with an exponential growth in the number of published papers. It is a field defined by a set of challenges including; efficiency, stability and processability. Before all of these challenges have been addressed; polymer solar cells...... will not be a commercial success. This dissertation is devoted primarily to the study of the stability of polymer solar cells, and more specifically to designing and verifying experimental techniques, procedures, and automated solutions to stability tests and characterization. The goal of the project was to expand...

  9. Influence of electron-donating polymer addition on the performance of polymer solar cells

    International Nuclear Information System (INIS)

    Kim, Youngkyoo; Shin, Minjung; Kim, Hwajeong; Ha, Youri; Ha, Chang-Sik

    2008-01-01

    Here we report the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT) : 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C 61 (PCBM) solar cells. Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) was chosen as the electron-donating polymer to improve the open circuit voltage (V OC ) due to its higher level of the highest occupied molecular orbital energy compared with P3HT. Results showed that the MDMO-PPV addition led to an improved V OC for ternary blend (P3HT : MDMO-PPV : PCBM) solar cells. In particular, after thermal annealing at 110 deg. C, the short circuit current density of ternary blend solar cells was greatly improved, close to that of comparative binary blend (P3HT : PCBM) solar cells.

  10. 9.0% power conversion efficiency from ternary all-polymer solar cells

    NARCIS (Netherlands)

    Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Genene, Z.; Ma, W.; Mammo, W.; Yartsev, A.; Andersson, M.; Janssen, R.A.J.; Wang, E.

    2017-01-01

    Integration of a third component into a single-junction polymer solar cell (PSC) is regarded as an attractive strategy to enhance the performance of PSCs. Although binary all-polymer solar cells (all-PSCs) have recently emerged with compelling power conversion efficiencies (PCEs), the PCEs of

  11. Polymer solar cells. Morphology-property-correlation; Polymere Solarzellen. Morphologie-Eigenschafts-Korrelation

    Energy Technology Data Exchange (ETDEWEB)

    Erb, Tobias

    2008-09-22

    The aim of the presented dissertation is to clarify open questions concerning the development and control of the morphology in the active layer of polymer bulk heterojunction solar cells. The new findings hereby derived shall modify the existing models of the active layer morphology as found in today's literature. The experimental investigations were performed by X-ray diffraction, spectroscopic ellipsometry, and photoluminescence spectroscopy. In addition to those methods, light microscopy and differential scanning calorimetry were applied to investigate three chosen material systems: P3HT/PCBM-C{sub 60}, P3HT/MDHE-C{sub 60}, and P3HT/(MDHE){sub 2}-C{sub 60}. On the basis of experimental results a morphological model is developed, which is discussed in the context of existing literature. The solar cells were electrically characterised by current-voltage and external quantum efficiency measurements. The structural model is set into relation with photovoltaic parameters of the polymer solar cell, such as short circuit photocurrent, open circuit voltage, fill factor, and power conversion efficiency. This contributes to the explanation and analysis of the electrical properties of the organic solar cell as a device. In summary, this work yields morphology-property-relations that are able to explain the interaction between physical properties, such as light absorption, charge carrier generation, and transport, with the morphology present within the active layer. Finally, the three investigated systems are compared and evaluated with respect to their applicability in polymer solar cells. Further on, the morphology-propertyrelations are used to develop a strategy to estimate the suitability of new twocomponent polymer-fullerene donor-acceptor systems for polymer solar cells. Based on these findings it becomes possible to evaluate the optimization potential for new materials. In conclusion, this helps to develop polymer solar cells with increased power conversion

  12. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    KAUST Repository

    Debnath, Ratan; Tang, Jiang; Barkhouse, D. Aaron; Wang, Xihua; Pattantyus-Abraham, Andras G.; Brzozowski, Lukasz; Levina, Larissa; Sargent, Edward H.

    2010-01-01

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.

  13. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    KAUST Repository

    Debnath, Ratan

    2010-05-05

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.

  14. Assembly of CdS Quantum Dots onto Hierarchical TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Syed Mansoor Ali

    2015-05-01

    Full Text Available Quantum dot (QD sensitized solar cells based on Hierarchical TiO2 structure (HTS consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate is fabricated. The hierarchical TiO2 structure consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate synthesized by hydrothermal route. The CdS quantum dots were grown by the successive ionic layer adsorption and reaction deposition method. The quantum dot sensitized solar cell based on the hierarchical TiO2 structure shows a current density JSC = 1.44 mA, VOC = 0.46 V, FF = 0.42 and η = 0.27%. The QD provide a high surface area and nano-urchins offer a highway for fast charge collection and multiple scattering centers within the photoelectrode.

  15. Industrialization of Polymer Solar Cells – phase 1

    DEFF Research Database (Denmark)

    Lauritzen, Hanne; Bork, Jakob; Andersen, Rasmus B.

    into more refined products. Such refined products might be self-powered electronic devices designed for easy integration in the customer’s production or solar-powered products for the end-user. A three-phased project with the objective to industrialize DTU’s basic polymer solar cell technology was started...... in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project’s phase 1.The key tasks in phase 1...... to a slot-die printing head manufactured in DTU’s workshop. The line was at the same time adjusted and updated to handle the new production. The very first solar cells produced on this line appeared in July 2010. The line has subse-quently been upgraded on a running basis, and Mekoprint’s operators have...

  16. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single......-cost alternatives to ITO suitable for use in PSCs. These alternatives belong to four material groups: polymers; metal and polymer composites; metal nanowires and ultra-thin metal films; and carbon nanotubes and graphene. We further present the progress of employing these alternatives in PSCs and identify future...

  17. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  18. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  19. Synthesis of Bi{sub 2}S{sub 3} quantum dots for sensitized solar cells by reverse SILAR

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Navjot; Sharma, J. [University Institute of Emerging Areas in Science and Technology Centre for Nano Science and Technology, Panjab University, Chandigarh-160025 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [University Institute of Emerging Areas in Science and Technology Centre for Nano Science and Technology, Panjab University, Chandigarh-160025 (India); Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-06

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi{sub 2}S{sub 3}) (group V – Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7 eV.

  20. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul; Kim, Jong H.

    2016-01-01

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure

  1. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

    Science.gov (United States)

    Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao

    2018-06-05

    A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

  2. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing; Kovalev, Valery; Chen, Wen

    2014-01-01

    Highlights: • ZnSe is employed as passivation layer in CuInS 2 quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS 2 based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS 2 quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS 2 quantum dot sensitized TiO 2 photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS 2 quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS 2 based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer

  3. High Efficiency Quantum Dot III-V Multijunction Solar Cell for Space Power, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to utilize quantum dots to develop a super high-efficiency multijunction III-V solar cell for space. In metamorphic triple junction space solar...

  4. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  5. Triple junction polymer solar cells for photoelectrochemical water splitting

    NARCIS (Netherlands)

    Esiner, S.; Eersel, van H.; Wienk, M.M.; Janssen, R.A.J.

    2013-01-01

    A triple junction polymer solar cell in a novel 1 + 2 type configuration provides photoelectrochemical water splitting in its maximum power point at V ˜ 1.70 V with an estimated solar to hydrogen energy conversion efficiency of 3.1%. The triple junction cell consists of a wide bandgap front cell and

  6. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  7. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    DEFF Research Database (Denmark)

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C

    2012-01-01

    demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy......The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We...... energies was observed....

  8. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    Science.gov (United States)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  9. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    International Nuclear Information System (INIS)

    Cao, Fengfeng; Wang, Hao; Xia, Zhouhui; Dai, Xiao; Cong, Shan; Dong, Chao; Sun, Baoquan; Lou, Yanhui; Sun, Yinghui; Zhao, Jie; Zou, Guifu

    2015-01-01

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0 # diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement

  10. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  11. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    Science.gov (United States)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  12. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    Science.gov (United States)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  13. Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Albert, Ancy; Sreekala, C. O.; Prabhakaran, Malini

    2018-02-01

    High quality, colloidal lead selenide (PbSe) nanoparticles possessing cube shaped morphology have been successfully synthesized by organometallic synthesis method, using oleic acid (OA) as capping agent. The use of non-coordinating solvent, 1-Octadecene (ODE), during the synthesis results in good quality nanocrystals. Morphology analysis by transmission electron microscopy reveals that cube-shaped nanocrystals with a size range of 10 nm have been produced during the synthesis. The absorption and PL spectra analysis showed an emission peak at 675 nm when excited to a wavelength of 610 nm, further confirmed the formation of PbSe nanocrystals. The surface modification of this colloidal quantum dots was then carried out using L- cysteine ligand, to make them water soluble, for solar cell application. The J-V characteristics study of this PbSe quantum dots solar cell (PbSe QDSC) showed a little power conversion efficiency which intern it shows significant advance toward effective utilization of PbSe nanocrystals sensitized in solar cells.

  14. ZnSe passivation layer for the efficiency enhancement of CuInS{sub 2} quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Kovalev, Valery [Department of Mechanics and Mathematics, Moscow State University named after M.V. Lomonosov, Leninskie Gory 1, 119992 Moscow (Russian Federation); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2014-02-25

    Highlights: • ZnSe is employed as passivation layer in CuInS{sub 2} quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS{sub 2} based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS{sub 2} quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS{sub 2} quantum dot sensitized TiO{sub 2} photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS{sub 2} quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS{sub 2} based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer.

  15. Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong

    2017-10-01

    In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.

  16. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    Science.gov (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  17. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian

    2016-02-29

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  18. Solar Cell Polymer Based Active Ingredients PPV and PCBM

    Science.gov (United States)

    Hardeli, H.; Sanjaya, H.; Resikarnila, R.; Nitami H, R.

    2018-04-01

    A polymer solar cell is a solar cell based on a polymer bulk heterojunction structure using the method of thin film, which can convert solar energy into electrical energy. Absorption of light is carried by active material layer PPV: PCBM. This study aims to make solar cells tandem and know the value of converting solar energy into electrical energy and increase the value of efficiency generated through morphological control, ie annealing temperature and the ratio of active layer mixture. The active layer is positioned above the PEDOT:PSS layer on ITO glass substrate. The characterization results show the surface morphology of the PPV:PCBM active layer is quite evenly at annealing temperature of 165 ° C. The result of conversion of electrical energy with a UV light source in annealing samples with temperature 165 ° C is 0.03 mA and voltage of 4.085 V with an efficiency of 2.61% and mixed ratio variation was obtained in comparison of P3HT: PCBM is 1: 3

  19. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    Science.gov (United States)

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  20. Tandem colloidal quantum dot solar cells employing a graded recombination layer

    KAUST Repository

    Wang, Xihua; Koleilat, Ghada I.; Tang, Jiang; Liu, Huan; Kramer, Illan J.; Debnath, Ratan; Brzozowski, Lukasz; Barkhouse, D. Aaron R.; Levina, Larissa; Hoogland, Sjoerd; Sargent, Edward H.

    2011-01-01

    Tuning of the electronic bandgap in colloidal quantum dots (CQDs) by changing their size enables the spectral response of CQD-based photodetectors and photovoltaic devices to be tailored. Multi-junction solar cells made from a combination of CQDs of differing sizes and thus bandgaps are a promising means by which to increase the energy harvested from the Sun's broad spectrum. Here, we report the first CQD tandem solar cells using the size-effect tuning of a single CQD material, PbS. We use a graded recombination layer to provide a progression of work functions from the hole-accepting electrode in the bottom cell to the electron-accepting electrode in the top cell, allowing matched electron and hole currents to meet and recombine. Our tandem solar cell has an open-circuit voltage of 1.06Â V, equal to the sum of the two constituent single-junction devices, and a solar power conversion efficiency of up to 4.2%. © 2011 Macmillan Publishers Limited. All rights reserved.

  1. Tandem colloidal quantum dot solar cells employing a graded recombination layer

    KAUST Repository

    Wang, Xihua

    2011-06-26

    Tuning of the electronic bandgap in colloidal quantum dots (CQDs) by changing their size enables the spectral response of CQD-based photodetectors and photovoltaic devices to be tailored. Multi-junction solar cells made from a combination of CQDs of differing sizes and thus bandgaps are a promising means by which to increase the energy harvested from the Sun\\'s broad spectrum. Here, we report the first CQD tandem solar cells using the size-effect tuning of a single CQD material, PbS. We use a graded recombination layer to provide a progression of work functions from the hole-accepting electrode in the bottom cell to the electron-accepting electrode in the top cell, allowing matched electron and hole currents to meet and recombine. Our tandem solar cell has an open-circuit voltage of 1.06Â V, equal to the sum of the two constituent single-junction devices, and a solar power conversion efficiency of up to 4.2%. © 2011 Macmillan Publishers Limited. All rights reserved.

  2. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin

    2018-04-17

    In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).

  3. Quantum Dot Sensitized Solar Cells Based on Ternary Metal Oxide Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenyong [Univ. of Wyoming, Laramie, WY (United States); Tang, Jinke [Univ. of Wyoming, Laramie, WY (United States); Dahnovsky, Yuri [Univ. of Wyoming, Laramie, WY (United States); Pikal, Jon M [Univ. of Wyoming, Laramie, WY (United States); Chien, TeYu [Univ. of Wyoming, Laramie, WY (United States)

    2017-11-03

    In Phase I of this project we investigate quantum dot sensitized solar cells (QDSSCs) based on ternary metal oxide nanowires and study the physical and chemical mechanisms that govern device operation. Our research has the following five objectives: (1) synthesis of ternary metal oxide nanowires, (2) synthesis of QDs and exploration of non-solution based QD deposition methods, (3) physical and electro-optical characterizations of fabricated solar devices, (4) device modeling and first-principle theoretical study of transport physics, and (5) investigation of long-term stability issues of QD sensitized solar cells. In Phase II of this project our first major research goal is to investigate magnetically doped quantum dots and related spin polarization effect, which could improve light absorption and suppress electron relaxation in the QDs. We will utilize both physical and chemical methods to synthesize these doped QDs. We will also study magnetically modified nanowires and introduce spin-polarized transport into QDSSCs, and inspect its impact on forward electron injection and back electron transfer processes. Our second goal is to study novel solid-state electrolytes for QDSSCs. Specifically, we will inspect a new type of polymer electrolytes based on a modified polysulfide redox couple, and examine the effect of their electrical properties on QDSSC performance. These solid-state electrolytes could also be used as filler materials for in situ sample fracturing in STM and enable cross-sectional interface examination of QD/nanowire structures. Our third research goal is to examine the interfacial properties such as energy level alignment at QD/nanowire interfaces using the newly developed Cross-sectional Scanning Tunneling Microscopy and Spectroscopy technique for non-cleavable materials. This technique allows a direct probing of band structures and alignment at device interfaces, which could generate important insight into the mechanisms that govern QDSSC operation

  4. Folded-light-path colloidal quantum dot solar cells.

    KAUST Repository

    Koleilat, Ghada I; Kramer, Illan J; Wong, Chris T O; Thon, Susanna M; Labelle, André J; Hoogland, Sjoerd; Sargent, Edward H

    2013-01-01

    Colloidal quantum dot photovoltaics combine low-cost solution processing with quantum size-effect tuning to match absorption to the solar spectrum. Rapid advances have led to certified solar power conversion efficiencies of over 7%. Nevertheless, these devices remain held back by a compromise in the choice of quantum dot film thickness, balancing on the one hand the need to maximize photon absorption, mandating a thicker film, and, on the other, the need for efficient carrier extraction, a consideration that limits film thickness. Here we report an architecture that breaks this compromise by folding the path of light propagating in the colloidal quantum dot solid. Using this method, we achieve a substantial increase in short-circuit current, ultimately leading to improved power conversion efficiency.

  5. Machine learning-based screening of complex molecules for polymer solar cells

    Science.gov (United States)

    Jørgensen, Peter Bjørn; Mesta, Murat; Shil, Suranjan; García Lastra, Juan Maria; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer; Schmidt, Mikkel N.

    2018-06-01

    Polymer solar cells admit numerous potential advantages including low energy payback time and scalable high-speed manufacturing, but the power conversion efficiency is currently lower than for their inorganic counterparts. In a Phenyl-C_61-Butyric-Acid-Methyl-Ester (PCBM)-based blended polymer solar cell, the optical gap of the polymer and the energetic alignment of the lowest unoccupied molecular orbital (LUMO) of the polymer and the PCBM are crucial for the device efficiency. Searching for new and better materials for polymer solar cells is a computationally costly affair using density functional theory (DFT) calculations. In this work, we propose a screening procedure using a simple string representation for a promising class of donor-acceptor polymers in conjunction with a grammar variational autoencoder. The model is trained on a dataset of 3989 monomers obtained from DFT calculations and is able to predict LUMO and the lowest optical transition energy for unseen molecules with mean absolute errors of 43 and 74 meV, respectively, without knowledge of the atomic positions. We demonstrate the merit of the model for generating new molecules with the desired LUMO and optical gap energies which increases the chance of finding suitable polymers by more than a factor of five in comparison to the randomised search used in gathering the training set.

  6. Design Principles in Polymer-Fullerene BHJ Solar Cells: PBDTTPD as a Case Study

    KAUST Repository

    Beaujuge, Pierre

    2015-06-29

    Among Organic Electronics, solution-processable π-conjugated polymers are proving particularly promising in bulk-heterojunction (BHJ) solar cells with fullerene acceptors such as PCBM.[1] In recent years, great headway has been made in the development of efficient polymer donors across the community, with published power conversion efficiencies (PCE) >8% in single cells and >10% in tandems. In most reports, these systems involve elaborate repeat unit and side chain patterns, and deviating from those patterns induces substantial drops in device PCE. While the range of polymer design parameters that impact BHJ solar cell performance remains a matter of some debate, our recent developments indicate that the combination of side-chain substituents appended to the main chain critically impacts polymer performance. For example, in poly(benzo[1,2-b:4,5-b’]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD), side-chain substituents of various size and branching impart distinct molecular packing distances (i.e., π–π stacking and lamellar spacing), varying degrees of nanostructural order in thin films, and preferential backbone orientation relative to the device substrate.[2-5] While these structural variations seem to correlate with BHJ solar cell performance, with power conversion efficiencies ranging from 4% to 8.5%,[2,3] we believe that other contributing parameters – such as the local conformations between the polymer and the fullerene, and the domain distribution/composition across the BHJ (i.e., pure/mixed phases) – should also be taken into account.[6,7] Other discrete modifications of PBDTTPD’s molecular structure affect polymer performance in BHJ solar cells with PCBM, and our recent developments emphasize how systematic structure-property relationship studies impact the design of efficient polymer donors for BHJ solar cell applications.[8-10] It is important to further our understanding of these effects as we look to continue improving BHJ solar

  7. Characterization of polymer solar cells by TOF-SIMS depth profiling

    NARCIS (Netherlands)

    Bulle-Lieuwma, C.W.T.; Gennip, van W.J.H.; Duren, van J.K.J.; Jonkheijm, P.; Janssen, R.A.J.; Niemantsverdriet, J.W.

    2003-01-01

    Solar cells consisting of polymer layers sandwiched between a transparent electrode on glass and a metal top electrode are studied using dynamic time-of-flight secondary ion mass spectrometry (TOF-SIMS) in dual-beam mode. Because depth profiling of polymers and polymer-metal stacks is a relatively

  8. The donor-supply electrode enhances performance in colloidal quantum dot solar cells.

    Science.gov (United States)

    Maraghechi, Pouya; Labelle, André J; Kirmani, Ahmad R; Lan, Xinzheng; Adachi, Michael M; Thon, Susanna M; Hoogland, Sjoerd; Lee, Anna; Ning, Zhijun; Fischer, Armin; Amassian, Aram; Sargent, Edward H

    2013-07-23

    Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun's broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.

  9. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    Science.gov (United States)

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  10. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  11. Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO2 Photoanode In Situ

    Directory of Open Access Journals (Sweden)

    Quanxin Zhang

    2017-05-01

    Full Text Available Dye-sensitized solar cells (DSSCs are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs have emerged as attractive candidates for this purpose. However, current methodologies to build up CQD-sensitized solar cells (CQDSCs result in an imperfect apparatus with extremely low power conversion efficiencies (PCEs. Herein, we present a simple strategy of growing carbon quantum dots (CQDs onto TiO2 surfaces in situ. The CQDs/TiO2 hybridized photoanode was then used to construct solar cell with an improved PCE of 0.87%, which is higher than all of the reported CQDSCs adopting the simple post-adsorption method. This result indicates that an in situ growing strategy has great advantages in terms of optimizing the performance of CQDSCs. In addition, we have also found that the mechanisms dominating the performance of CQDSCs are different from those behind the solar cells using inorganic semiconductor quantum dots (ISQDs as the photosensitizers, which re-confirms the conclusion that the characteristics of CQDs differ from those of ISQDs.

  12. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.; Sachs-Quintana, I. T.; Kastrop, John P.; Beaupré , Serge; Leclerc, Mario; McGehee, Michael D.

    2011-01-01

    Organic bulk-heterojunction solar cells comprising poly[N-9'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2', 1',3'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.

    2011-04-20

    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  15. Doped Heterojunction Used in Quantum Dot Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yanyan Gao

    2014-01-01

    Full Text Available Incorporated foreign atoms into the quantum dots (QDs used in heterojunction have always been a challenge for solar energy conversion. A foreign atom indium atom was incorporated into PbS/CdS QDs to prepare In-PbS/In-CdS heterojunction by successive ionic layer adsorption and reaction method which is a chemical method. Experimental results indicate that PbS or CdS has been doped with In by SILAR method; the concentration of PbS and CdS which was doped In atoms has no significantly increase or decrease. In addition, incorporating of Indium atoms has resulted in the lattice distortions or changes of PbS or CdS and improved the light harvest of heterojunction. Using this heterojunction, Pt counter electrode and polysulfide electrolyte, to fabricate quantum dot sensitized solar cells, the short circuit current density ballooned to 27.01 mA/cm2 from 13.61 mA/cm2 and the open circuit voltage was improved to 0.43 V from 0.37 V at the same time.

  16. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Pattantyus-Abraham, Andras G.

    2010-06-22

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depletedheterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest opencircuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety. © 2010 American Chemical Society.

  17. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  18. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.; Beaujuge, Pierre M.; Holcombe, Thomas W.; Lee, Olivia P.; Fréchet, Jean M. J.

    2010-01-01

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  19. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  20. Charge Generation Dynamics in Efficient All-Polymer Solar Cells: Influence of Polymer Packing and Morphology.

    Science.gov (United States)

    Gautam, Bhoj R; Lee, Changyeon; Younts, Robert; Lee, Wonho; Danilov, Evgeny; Kim, Bumjoon J; Gundogdu, Kenan

    2015-12-23

    All-polymer solar cells exhibit rapid progress in power conversion efficiency (PCE) from 2 to 7.7% over the past few years. While this improvement is primarily attributed to efficient charge transport and balanced mobility between the carriers, not much is known about the charge generation dynamics in these systems. Here we measured exciton relaxation and charge separation dynamics using ultrafast spectroscopy in polymer/polymer blends with different molecular packing and morphology. These measurements indicate that preferential face-on configuration with intermixed nanomorphology increases the charge generation efficiency. In fact, there is a direct quantitative correlation between the free charge population in the ultrafast time scales and the external quantum efficiency, suggesting not only the transport but also charge generation is key for the design of high performance all polymer solar cells.

  1. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  2. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon

    2017-03-13

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  3. 3D morphology of photoactive layers of polymer solar cells

    NARCIS (Netherlands)

    Bavel, van S.S.

    2009-01-01

    Nanostructured polymer solar cells (PSCs) have emerged as a promising low-cost alternative to conventional silicon-based photovoltaic devices. Since PSCs can be fabricated by processing polymers, eventually together with other organic materials, from solution and depositing them onto different types

  4. Pyramid shape of polymer solar cells: a simple solution to triple efficiency

    International Nuclear Information System (INIS)

    Xia, Yuxin; Hou, Lintao; Ma, Kaijie; Wang, Biao; Xiong, Kang; Liu, Pengyi; Liao, Jihai; Wen, Shangsheng; Wang, Ergang

    2013-01-01

    Pyramid-shaped polymer solar cells fabricated on flexible substrates were investigated. Effective light trapping can be realized due to light reflection in all 360° directions, and 100% space utilization is achieved when assembled into arrays. The power conversion efficiency is enhanced by 200% ([60]PCBM as the acceptor) and 260% ([70]PCBM as the acceptor) with a dihedral angle of 30° between the opposite sides of the pyramid compared with a planar device, and a high V oc of 3.5 V in series connection is obtained. Considering the material utilization, an angle of 90° for pyramid-shaped polymer solar cells is proposed. Pyramid-shaped polymer solar cells are particularly suitable for installation on roof of vehicles and houses, which have limited surface area. (paper)

  5. The donor-supply electrode enhances performance in colloidal quantum dot solar cells

    KAUST Repository

    Maraghechi, Pouya

    2013-07-23

    Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun\\'s broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry - one based on a donor-supply electrode (DSE) - that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance. © 2013 American Chemical Society.

  6. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  7. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  8. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian; Song, Xin; Thomas, Simil; Kan, Zhipeng; Cruciani, Federico; Laquai, Fré dé ric; Bredas, Jean-Luc; Beaujuge, Pierre

    2017-01-01

    limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell

  9. Characteristics of photocurrent generation in the near-ultraviolet region in Si quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    Uchida, Giichiro; Sato, Muneharu; Seo, Hyunwoong; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2013-01-01

    We have studied photocurrent generation in Si quantum-dot (QD) sensitized solar cells, where QD thin films composed of Si nanoparticles were deposited using the double multi-hollow discharge plasma chemical vapor deposition process in an SiH 4 /H 2 and CH 4 or N 2 gas mixture. The short-circuit current density of the Si QD sensitized solar cells increases by a factor of 2.5 by using Si nanoparticles prepared by irradiation of CH 4 or N 2 plasma onto the Si nanoparticle surface. We have measured incident photon-to-current conversion efficiency (IPCE) in the near-ultraviolet range using quartz-glass front panels of the QD sensitized solar cells. With decreasing the wavelength of irradiation light, IPCE gradually increases upon light irradiation in a wavelength range less than about 600 nm, and then steeply increases below 300 nm, corresponding to 2.2 times the optical band-gap energy of Si QD film. - Highlights: • We have developed on Si quantum-dot sensitized solar cells using Si particles. • Current of solar cells increases by surface-termination of Si particles. • Incident photo-to-current conversion efficiency increases below 300 nm

  10. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  11. Optoelectronic engineering of colloidal quantum-dot solar cells beyond the efficiency black hole: a modeling approach

    Science.gov (United States)

    Mahpeykar, Seyed Milad; Wang, Xihua

    2017-02-01

    Colloidal quantum dot (CQD) solar cells have been under the spotlight in recent years mainly due to their potential for low-cost solution-processed fabrication and efficient light harvesting through multiple exciton generation (MEG) and tunable absorption spectrum via the quantum size effect. Despite the impressive advances achieved in charge carrier mobility of quantum dot solids and the cells' light trapping capabilities, the recent progress in CQD solar cell efficiencies has been slow, leaving them behind other competing solar cell technologies. In this work, using comprehensive optoelectronic modeling and simulation, we demonstrate the presence of a strong efficiency loss mechanism, here called the "efficiency black hole", that can significantly hold back the improvements achieved by any efficiency enhancement strategy. We prove that this efficiency black hole is the result of sole focus on enhancement of either light absorption or charge extraction capabilities of CQD solar cells. This means that for a given thickness of CQD layer, improvements accomplished exclusively in optic or electronic aspect of CQD solar cells do not necessarily translate into tangible enhancement in their efficiency. The results suggest that in order for CQD solar cells to come out of the mentioned black hole, incorporation of an effective light trapping strategy and a high quality CQD film at the same time is an essential necessity. Using the developed optoelectronic model, the requirements for this incorporation approach and the expected efficiencies after its implementation are predicted as a roadmap for CQD solar cell research community.

  12. Anthracene-containing wide-band-gap conjugated polymers for high-open-circuit-voltage polymer solar cells.

    Science.gov (United States)

    Gong, Xue; Li, Cuihong; Lu, Zhen; Li, Guangwu; Mei, Qiang; Fang, Tao; Bo, Zhishan

    2013-07-25

    The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene-containing wide-band-gap donor and acceptor (D-A) alternating conjugated polymers (P1 and P2) are described. These two polymers absorb in the range of 300-600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1:PC71 BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm(-2) , and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm(-2) ). In addition, P2:PC71 BM blend-based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm(-2) , and an FF of 0.53. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells

    Science.gov (United States)

    Seo, Hyunwoong; Son, Min-Kyu; Kim, Hee-Je; Wang, Yuting; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2013-10-01

    Quantum dots (QDs) have attracted much attention with their quantum characteristics in the research field of photochemical solar cells. Si QD was introduced as one of alternatives to conventional QD materials. However, their large particles could not penetrate inside TiO2 layer. Therefore, this work proposed the paint-type Si QD-sensitized solar cell. Its heat durability was suitable for the fabrication of paint-type solar cell. Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition and characterized. The paste type, sintering temperature, and Si ratio were controlled and analyzed for better performance. Finally, its performance was enhanced by ZnS surface modification and the whole process was much simplified without sensitizing process.

  14. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  15. Morphology and efficiency : the case of Polymer/ZnO solar cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    2013-01-01

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  16. Morphology and Efficiency : The Case of Polymer/ZnO Solar Cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  17. Degradation and stability of R2R manufactured polymer solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion; Krebs, Frederik C

    2009-01-01

    Polymer solar cells have many advantages such as light weight, flexibility, environmental friendliness, low thermal budget, low cost and most notably very fast modes of production by printing techniques. Production experiments have shown that it is highly feasible with existing technology to mass...... produce polymer solar cells at a very low cost. We have employed state-of-the-art analytical techniques to address the challenging issues of degradation and stability of R2R manufactured devices. We have specifically studied the relative effect of oxygen and water on the operational devices in regard...

  18. Performance Study of CdS/Co-Doped-CdSe Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaoping Zou

    2014-01-01

    Full Text Available In order to optimize the charge transfer path in quantum dot sensitized solar cells (QDSCs, we employed successive ionic layer adsorption and reaction method to dope CdSe with Co for fabricating CdS/Co-doped-CdSe QDSCs constructed with CdS/Co-doped-CdSe deposited on mesoscopic TiO2 film as photoanode, Pt counter electrode, and sulfide/polysulfide electrolyte. After Co doping, the bandgap of CdSe quantum dot decreases, and the conduction band and valence band all improve, forming a cascade energy level which is more conducive to charge transport inside the solar cell and reducing the recombination of electron-hole thus improving the photocurrent and ultimately improving the power conversion efficiency. This work has not been found in the literature.

  19. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko; Schroeder, Bob; Nielsen, Christian; Bronstein, Hugo; Fei, Zhuping; McCulloch, Iain; Heeney, Martin; Durrant, James

    2016-01-01

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact

  20. Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells

    Science.gov (United States)

    Rimal, Gaurab; Pimachev, Artem K.; Yost, Andrew J.; Poudyal, Uma; Maloney, Scott; Wang, Wenyong; Chien, TeYu; Dahnovsky, Yuri; Tang, Jinke

    2016-09-01

    A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the Zn2SnO4 (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The ab initio calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.

  1. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  2. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  3. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya

    2015-08-10

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  4. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya; Vezie, Michelle S; Gasparini, Nicola; Deledalle, Florent; Yao, Jizhong; Schroeder, Bob C.; Bronstein, Hugo; Ameri, Tayebeh; Kirchartz, Thomas; McCulloch, Iain; Nelson, Jenny; Brabec, Christoph J

    2015-01-01

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  5. Elaboration of fabrication technology of ITO/CdS/CdTe solar cells on flexible polymer substrates

    International Nuclear Information System (INIS)

    Potlog, T.; Spalatu, N.; Capros, N.

    2007-01-01

    The development of high efficiency, stable, lightweight and flexible solar cell is important for terrestrial and space applications. We have developed a novel process to make solar cells on flexible polymer sheets. A thin layer of CdTe compound semiconductor is used for the absorption of solar light and generation of electrical current. In this work the solar electricity conversion efficiency of 4,66% is the highest efficiency reported for a solar cell grown on a polymer sheet. (authors)

  6. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  7. Characteristics of photocurrent generation in the near-ultraviolet region in Si quantum-dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Giichiro, E-mail: uchida@ed.kyushu-u.ac.jp [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Sato, Muneharu; Seo, Hyunwoong [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Kamataki, Kunihiro [Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395 (Japan); Itagaki, Naho [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); PRESTO, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2013-10-01

    We have studied photocurrent generation in Si quantum-dot (QD) sensitized solar cells, where QD thin films composed of Si nanoparticles were deposited using the double multi-hollow discharge plasma chemical vapor deposition process in an SiH{sub 4}/H{sub 2} and CH{sub 4} or N{sub 2} gas mixture. The short-circuit current density of the Si QD sensitized solar cells increases by a factor of 2.5 by using Si nanoparticles prepared by irradiation of CH{sub 4} or N{sub 2} plasma onto the Si nanoparticle surface. We have measured incident photon-to-current conversion efficiency (IPCE) in the near-ultraviolet range using quartz-glass front panels of the QD sensitized solar cells. With decreasing the wavelength of irradiation light, IPCE gradually increases upon light irradiation in a wavelength range less than about 600 nm, and then steeply increases below 300 nm, corresponding to 2.2 times the optical band-gap energy of Si QD film. - Highlights: • We have developed on Si quantum-dot sensitized solar cells using Si particles. • Current of solar cells increases by surface-termination of Si particles. • Incident photo-to-current conversion efficiency increases below 300 nm.

  8. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells

    Directory of Open Access Journals (Sweden)

    Rongfang Wu

    2017-07-01

    Full Text Available PbS colloidal quantum dots (CQDs solar cells have already demonstrated very impressive advances in recent years due to the development of many different techniques to tailor the interface morphology and compactness in PbS CQDs thin film. Here, n-hexane, n-octane, n-heptane, isooctane and toluene or their hybrids are for the first time introduced as solvent for comparison of the dispersion of PbS CQDs. PbS CQDs solar cells with the configuration of PbS/TiO2 heterojunction are then fabricated by using different CQDs solution under ambient conditions. The performances of the PbS CQDs solar cells are found to be tuned by changing solvent and its content in the PbS CQDs solution. The best device could show a power conversion efficiency (PCE of 7.64% under AM 1.5 G illumination at 100 mW cm−2 in a n-octane/isooctane (95%/5% v/v hybrid solvent scheme, which shows a ~15% improvement compared to the control devices. These results offer important insight into the solvent engineering of high-performance PbS CQDs solar cells.

  9. Polymer materials for roll coated solar cells: strategies tom improve performance and stability

    DEFF Research Database (Denmark)

    Heckler, Ilona Maria

    Solar cells are among the renewable energy technologies with a large potential in terms of solar energy availability. The solar cells based on conjugated polymers belong to the third generation of this technology and their attractive features include a fast and cheap solution‐processed production...

  10. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  11. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo; Firdaus, Yuliar; Kirmani, Ahmad R.; Liang, Ru-Ze; Hu, Hanlin; Liu, Mengxia; El Labban, Abdulrahman; Hoogland, Sjoerd; Beaujuge, Pierre; Sargent, Edward H.; Amassian, Aram

    2018-01-01

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar

  12. Room temperature solid-state synthesis of a conductive polymer for applications in stable I₂-free dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Byeonggwan; Koh, Jong Kwan; Kim, Jeonghun; Chi, Won Seok; Kim, Jong Hak; Kim, Eunkyoung

    2012-11-01

    A solid-state polymerizable monomer, 2,5-dibromo-3,4-propylenedioxythiophene (DBProDOT), was synthesized at 25 °C to produce a conducting polymer, poly(3,4-propylenedioxythiophene) (PProDOT). Crystallographic studies revealed a short interplane distance between DBProDOT molecules, which was responsible for polymerization at low temperature with a lower activation energy and higher exothermic reaction than 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) or its derivatives. Upon solid-state polymerization (SSP) of DBProDOT at 25 °C, PProDOT was obtained in a self-doped state with tribromide ions and an electrical conductivity of 0.05 S cm⁻¹, which is considerably higher than that of chemically-polymerized PProDOT (2×10⁻⁶ S cm⁻¹). Solid-state ¹³C NMR spectroscopy and DFT calculations revealed polarons in PProDOT and a strong perturbation of carbon nuclei in thiophenes as a result of paramagnetic broadening. DBProDOT molecules deeply penetrated and polymerized to fill nanocrystalline TiO₂ pores with PProDOT, which functioned as a hole-transporting material (HTM) for I₂-free solid-state dye-sensitized solar cells (ssDSSCs). With the introduction of an organized mesoporous TiO₂ (OM-TiO₂) layer, the energy conversion efficiency reached 3.5 % at 100 mW cm⁻², which was quite stable up to at least 1500 h. The cell performance and stability was attributed to the high stability of PProDOT, with the high conductivity and improved interfacial contact of the electrode/HTM resulting in reduced interfacial resistance and enhanced electron lifetime. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    Science.gov (United States)

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  14. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.; Brennan, Thomas P.; Dominguez, Juan C.; Bailie, Colin D.; Margulis, George Y.; Hoke, Eric T.; McGehee, Michael D.; Bent, Stacey F.

    2013-01-01

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article

  15. Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Bundgaard, Eva; Carlé, Jon Eggert

    2011-01-01

    A comparative photochemical stability study of a wide range of π-conjugated polymers relevant to polymer solar cells is presented. The behavior of each material has been investigated under simulated sunlight (1 sun, 1000 W m−2, AM 1.5G) and ambient atmosphere. Degradation was monitored during age...... ageing combining UV-visible and infrared spectroscopies. From the comparison of the collected data, the influence of the polymer chemical structure on its stability has been discussed. General rules relative to the polymer structure–stability relationship are proposed....

  16. Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rimal, Gaurab; Pimachev, Artem K.; Yost, Andrew J.; Poudyal, Uma; Maloney, Scott; Wang, Wenyong; Chien, TeYu; Dahnovsky, Yuri, E-mail: yurid@uwyo.edu, E-mail: jtang2@uwyo.edu; Tang, Jinke, E-mail: yurid@uwyo.edu, E-mail: jtang2@uwyo.edu [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-09-05

    A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the Zn{sub 2}SnO{sub 4} (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The ab initio calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.

  17. La Doping of CdS for Enhanced CdS/CdSe Quantum Dot Cosensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaolei Qi

    2015-01-01

    Full Text Available CdS/CdSe system of quantum dot cosensitized solar cells (QDCSCs is one of the most attractive structures for high-efficiency due to its effect of level adjusting. However, the stepwise structure formed between levels of CdS and CdSe has a limitation for enhancing the efficiencies. Metal ions doping in quantum dots have emerged as a common way for changing the Fermi level, band gap, and conductance. Here we report an innovative concept for the rare earth materials La-doped of the CdS layer in the CdS/CdSe QDCSCs by means of the successive ionic layer adsorption and reaction (SILAR. Then we tested that La doped quantum dots can help more electrons accumulate in CdS film, which makes the Fermi level shift up and form a stepped structure. This method leads to enhanced absorption intensity, obviously increasing current density in CdS/CdSe QDCSCs. Our research is a new exploration for improving efficiencies of quantum dot sensitized solar cells.

  18. Plastic Electronics and Optoelectronics: New Science and Technology from Soluble Semiconducting Polymers and Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers

    Science.gov (United States)

    2011-11-03

    Seifter, A. J. Heeger, Adv. Mater., 23, 1679–1683 (2011). 8. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode...distribution is unlimited. 13. SUPPLEMENTARY NOTES None 14. ABSTRACT Bulk heterojunction (BHJ) solar cells were invented at UC Santa Barbara after the...Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers Grant number: AFOSR FA9550-08-1-0248 Dr. Charle Lee, Program

  19. Overcoming the Scaling Lag for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Hagemann, Ole

    2017-01-01

    -to-roll printed polymer solar cell to a realistic scale across the entire value chain. The materials synthesis, the manufacture, the installation, the failure modes, and the operation have all been covered and addressed. We demonstrate outdoor operation for 2 years through a large-scale, grid-tied, high...

  20. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved....

  1. Comparison of electroluminescence intensity and photocurrent of polymer based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Ulrich; Swonke, Thomas; Auer, Richard [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); Pinna, Luigi; Brabec, Christoph J. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); I-MEET, University Erlangen (Germany); Stubhan, Tobias; Li, Ning [I-MEET, University Erlangen (Germany)

    2011-11-15

    The reciprocity theorem for solar cell predicts a linear relation between electroluminescence emission and photovoltaic quantum efficiency and an exponential dependence of the electroluminescence signal on the applied voltage. Both dependencies are experimentally verified for polymer based solar cells in this paper. Furthermore it is shown, that electroluminescence imaging of organic solar cells has the potential to visualize the photocurrent distribution significantly faster than standard laser beam induced current mapping (LBIC) techniques. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer/fullerene...... be performing less than the current state-of-the-art in their present form but that may have the potential to outperform these pending a larger investment in effort....

  3. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells

    Directory of Open Access Journals (Sweden)

    Yitan Li

    2012-01-01

    Full Text Available Large area rutile TiO2 nanorod arrays were grown on F:SnO2 (FTO conductive glass using a hydrothermal method at low temperature. CdSe quantum dots (QDs were deposited onto single-crystalline TiO2 nanorod arrays by a chemical bath deposition (CBD method to make a photoelectrode. The solar cell was assembled using a CdSe-TiO2 nanostructure as the photoanode and polysulfide solution as the electrolyte. The annealing effect on optical and photovoltaic properties of CdSe quantum-dots-sensitized TiO2 nanorod solar cells was studied systematically. A significant change of the morphology and a regular red shift of band gap of CdSe nanoparticles were observed after annealing treatment. At the same time, an improved photovoltaic performance was obtained for quantum-dots-sensitized solar cell using the annealed CdSe-TiO2 nanostructure electrode. The power conversion efficiency improved from 0.59% to 1.45% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by annealing treatment.

  4. Widely Applicable n-Type Molecular Doping for Enhanced Photovoltaic Performance of All-Polymer Solar Cells.

    Science.gov (United States)

    Xu, Yalong; Yuan, Jianyu; Sun, Jianxia; Zhang, Yannan; Ling, Xufeng; Wu, Haihua; Zhang, Guobing; Chen, Junmei; Wang, Yongjie; Ma, Wanli

    2018-01-24

    A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (J sc ) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X - (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and J sc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.

  5. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  8. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  9. The Effect of Dopant-Free Hole-Transport Polymers on Charge Generation and Recombination in Cesium-Bismuth-Iodide Solar Cells.

    Science.gov (United States)

    Zhu, Huimin; Johansson, Malin B; Johansson, Erik M J

    2018-03-22

    The photovoltaic characteristics of CsBi 3 I 10 -based solar cells with three dopant-free hole-conducting polymers are investigated. The effect on charge generation and charge recombination in the solar cells using the different polymers is studied and the results indicate that the choice of polymer strongly affects the device properties. Interestingly, for the solar cell with poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl] (TQ1), the photon-to-current conversion spectrum is highly improved in the red wavelength region, suggesting that the polymer also contributes to the photocurrent generation in this case. This report provides a new direction for further optimization of Bi-halide solar cells by using dopant-free hole-transporting polymers and shows that the energy levels and the interaction between the Bi-halide and the conducting polymers are very important for solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir

    2015-02-04

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room-temperature, solution-processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of H25 nm yields solar cell power-conversion effi ciencies (PCEs) of ≈6%, exceeding the effi ciency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60-300 ° C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL-deposited fi lms to solar cell performance. This protocol suggests a new fabrication method for solution-processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to fl exible devices printed on plastic substrates.

  11. Design Principles in Polymer-Fullerene BHJ Solar Cells: PBDTTPD as a Case Study

    KAUST Repository

    Beaujuge, Pierre

    2015-01-01

    For example, in poly(benzo[1,2-b:4,5-b’]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD), side-chain substituents of various size and branching impart distinct molecular packing distances (i.e., π–π stacking and lamellar spacing), varying degrees of nanostructural order in thin films, and preferential backbone orientation relative to the device substrate.[2-5] While these structural variations seem to correlate with BHJ solar cell performance, with power conversion efficiencies ranging from 4% to 8.5%,[2,3] we believe that other contributing parameters – such as the local conformations between the polymer and the fullerene, and the domain distribution/composition across the BHJ (i.e., pure/mixed phases) – should also be taken into account.[6,7] Other discrete modifications of PBDTTPD’s molecular structure affect polymer performance in BHJ solar cells with PCBM, and our recent developments emphasize how systematic structure-property relationship studies impact the design of efficient polymer donors for BHJ solar cell applications.[8-10] It is important to further our understanding of these effects as we look to continue improving BHJ solar cell efficiencies.

  12. Optimizing the fabrication process and interplay of device components of polymer solar cells using a field-based multiscale solar-cell algorithm

    International Nuclear Information System (INIS)

    Donets, Sergii; Pershin, Anton; Baeurle, Stephan A.

    2015-01-01

    Both the device composition and fabrication process are well-known to crucially affect the power conversion efficiency of polymer solar cells. Major advances have recently been achieved through the development of novel device materials and inkjet printing technologies, which permit to improve their durability and performance considerably. In this work, we demonstrate the usefulness of a recently developed field-based multiscale solar-cell algorithm to investigate the influence of the material characteristics, like, e.g., electrode surfaces, polymer architectures, and impurities in the active layer, as well as post-production treatments, like, e.g., electric field alignment, on the photovoltaic performance of block-copolymer solar-cell devices. Our study reveals that a short exposition time of the polymer bulk heterojunction to the action of an external electric field can lead to a low photovoltaic performance due to an incomplete alignment process, leading to undulated or disrupted nanophases. With increasing exposition time, the nanophases align in direction to the electric field lines, resulting in an increase of the number of continuous percolation paths and, ultimately, in a reduction of the number of exciton and charge-carrier losses. Moreover, we conclude by modifying the interaction strengths between the electrode surfaces and active layer components that a too low or too high affinity of an electrode surface to one of the components can lead to defective contacts, causing a deterioration of the device performance. Finally, we infer from the study of block-copolymer nanoparticle systems that particle impurities can significantly affect the nanostructure of the polymer matrix and reduce the photovoltaic performance of the active layer. For a critical volume fraction and size of the nanoparticles, we observe a complete phase transformation of the polymer nanomorphology, leading to a drop of the internal quantum efficiency. For other particle-numbers and -sizes

  13. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.

    Science.gov (United States)

    Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan

    2015-09-02

    Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  14. Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    de la Fuente, Mauricio Solis; Sánchez, Rafael S; González-Pedro, Victoria; Boix, Pablo P; Mhaisalkar, S G; Rincón, Marina E; Bisquert, Juan; Mora-Seró, Iván

    2013-05-02

    The effect of semiconductor passivation on quantum-dot-sensitized solar cells (QDSCs) has been systematically characterized for CdS and CdS/ZnS. We have found that passivation strongly depends on the passivation agent, obtaining an enhancement of the solar cell efficiency for compounds containing amine and thiol groups and, in contrast, a decrease in performance for passivating agents with acid groups. Passivation can induce a change in the position of TiO2 conduction band and also in the recombination rate and nature, reflected in a change in the β parameter. Especially interesting is the finding that β, and consequently the fill factor can be increased with the passivation treatment. Applying this strategy, record cells of 4.65% efficiency for PbS-based QDSCs have been produced.

  15. Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers

    NARCIS (Netherlands)

    Duan, C.; Gao, K.; Colberts, F. J. M.; Liu, F.; Meskers, S. C. J.; Wienk, M. M.; Janssen, R. A. J.

    2017-01-01

    Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large-scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and

  16. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2016-09-09

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  17. Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Zad, Azam Iraji; Molaei, Mehdi

    2014-01-01

    TiO 2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (V oc = 497 mV, J sc = 11.32 mA/cm 2 , FF = 0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Co-sensitization of quantum dot sensitized solar cells composed of TiO2 nanocrystalline photoanode with CdS and PbS nanoparticles and effect of PbS on the performance of solar cell

    Directory of Open Access Journals (Sweden)

    Maziar Marandi

    2017-09-01

    Full Text Available In this research, CdS and PbS quantum dots were applied as the light sensitizers in TiO2 based nanostructured solar cells. The PbS quantum dots could absorb a wide range of the sunlight spectrum on earth due to their low bandgap energy. As a result, the cell sensitization is more effective by application of both CdS and PbS quantum dots sensitizers. The TiO2 nanocrystals were synthesized through a hydrothermal process and deposited on FTO glass substrates as the photoanode scaffold. Then PbS quantum dots were grown on the surface of this nanocrystalline layer by a successive ionic layer adsorption and reaction (SILAR method. The CdS quantum dots were over-grown in the next step through a similar deposition method. Finally this sensitized layer was applied as the photoelectrode of the corresponding quantum dot sensitized solar cells. The results demonstrated that the maximum efficiency was achieved for the cell with a photoanode made of co-sensitization through 2 and 6 cycles of PbS and CdS deposition, respectively. The photovoltaic parameters of this cell were measured as Jsc of 10.81 mA/cm2, Voc of 590 mv and energy conversion efficiency of 2.7+0.2%.

  19. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.; Trejo, Orlando; Roelofs, Katherine E.; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  20. Thermocleavable Materials for Polymer Solar Cells with High Open Circuit Voltage-A Comparative Study

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Gevorgyan, Suren; Jørgensen, Mikkel

    2009-01-01

    The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3......MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 °C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical...... conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis...

  1. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas; Mateker, William R.; Sachs-Quintana, I. T.; Vandewal, Koen; Bartelt, Jonathan A.; Burke, Timothy M.; Ameri, Tayebeh; Brabec, Christoph J.; McGehee, Michael D.

    2014-01-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which

  2. Combination of short-length TiO_2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-01-01

    Graphical abstract: The TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm"−"2 was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO_2 nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO_2 nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO_2 nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm"−"2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO_2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO_2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO_2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open

  3. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.; Ardalan, Pendar; Lee, Han-Bo-Ram; Bakke, Jonathan R.; Ding, I-Kang; McGehee, Michael D.; Bent, Stacey F.

    2011-01-01

    Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2',7,7'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2011-10-04

    Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2\\',7,7\\'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9\\'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficiency increase in flexible bulk heterojunction solar cells with a nano-patterned indium zinc oxide anode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong Hwan; Seifter, Jason; Heeger, Alan J. [Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106-5090 (United States); Park, Jong Hyeok [School of Chemical Engineering and SAINT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Dae-Geun [Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2012-11-15

    Efficient flexible bulk-heterojunction polymer solar cells based on PCDTBT/PC{sub 70}BM were successfully fabricated by a simple nano-imprint technique. The flexible nano-patterned IZO anode with ordered periodic dot structures led to improved light absorption and increased interfacial contact area between the anode and polymer as well as between the polymer and cathode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Improved efficiency of CdS quantum dot sensitized solar cell with an organic redox couple and a polymer counter electrode

    International Nuclear Information System (INIS)

    Shu, Ting; Li, Xiong; Ku, Zhi-Liang; Wang, Shi; Wu, Shi; Jin, Xiao-Hong; Hu, Chun-Di

    2014-01-01

    Highlights: • The organic AT - /BAT and T - /T 2 redox couples were used in CdS QDSSCs. • The AT - /BAT and PEDOT are better than polysulfide electrolyte and Pt and CoS CEs. • An improved η of 1.53% was obtained with the AT - /BAT electrolyte and the PEDOT CE. • PEDOT CE deposited at high deposition charge has better electrochemical activity. • The AT - /BAT outperformed T - /T 2 electrolyte due to suppressed charge recombination. - Abstract: Quantum dot sensitized solar cells (QDSSCs) based on an organic thiolate/disulfide redox couple (C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 or C 2 H 3 N 4 S - /C 4 H 6 N 8 S 2 ) and a polymer counter electrode [poly (3, 4-ethylenedioxythiophene), PEDOT] were fabricated and their photovoltaic performance were investigated. In CdS QDSSC, the organic C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 electrolyte shows better performance than the polysulfide electrolyte, and the PEDOT counter electrode exhibits higher efficiency than that of the Pt counter electrode and the CoS counter electrode. An efficiency of 1.53% was achieved in this QDSSC. The influences of the morphology and the deposition charge of the PEDOT counter electrodes on the cell performance were also studied. Furthermore, it was found that the C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 redox couple outperformed the C 2 H 3 N 4 S - /C 4 H 6 N 8 S 2 redox couple due to reduced electron recombination

  7. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.

    Science.gov (United States)

    Allan, Guy; Delerue, Christophe

    2011-09-27

    We present calculations of impact ionization rates, carrier multiplication yields, and solar-power conversion efficiencies in solar cells based on quantum dots (QDs) of a semimetal, α-Sn. Using these results and previous ones on PbSe and PbS QDs, we discuss a strategy to select QDs with the highest carrier multiplication rate for more efficient solar cells. We suggest using QDs of materials with a close to zero band gap and a high multiplicity of the bands in order to favor the relaxation of photoexcited carriers by impact ionization. Even in that case, the improvement of the maximum solar-power conversion efficiency appears to be a challenging task. © 2011 American Chemical Society

  8. Efficient low bandgap polymer solar cell with ordered heterojunction defined by nanoimprint lithography.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2014-11-12

    In this work, we demonstrate the feasibility of using nanoimprint lithography (NIL) to make efficient low bandgap polymer solar cells with well-ordered heterojunction. High quality low bandgap conjugated polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) nanogratings are fabricated using this technique for the first time. The geometry effect of PCPDTBT nanostructures on the solar cell performance is investigated by making PCPDTBT/C70 solar cells with different feature sizes of PCPDTBT nanogratings. It is found that the power conversion efficiency (PCE) increases with increasing nanograting height, PCPDTBT/C70 junction area, and decreasing nanograting width. We also find that NIL makes PCPDTBT chains interact more strongly and form an improved structural ordering. Solar cells made on the highest aspect ratio PCPDTBT nanostructures are among the best reported devices using the same material with a PCE of 5.5%.

  9. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-01-01

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  10. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  11. Polymers in Carbon Dots: A Review

    Directory of Open Access Journals (Sweden)

    Yiqun Zhou

    2017-02-01

    Full Text Available Carbon dots (CDs have been widely studied since their discovery in 2004 as a green substitute of the traditional quantum dots due to their excellent photoluminescence (PL and high biocompatibility. Meanwhile, polymers have increasingly become an important component for both synthesis and modification of CDs to provide polymeric matrix and enhance their PL property. Furthermore, critical analysis of composites of CDs and polymers has not been available. Herein, in this review, we summarized the use of polymers in the synthesis and functionalization of CDs, and the applications of these CDs in various fields.

  12. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    Science.gov (United States)

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.

  13. A review on solar cells from Si-single crystals to porous materials and quantum dots

    Directory of Open Access Journals (Sweden)

    Waheed A. Badawy

    2015-03-01

    Full Text Available Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed.

  14. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J

    2017-08-22

    Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.

  15. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration

    Science.gov (United States)

    Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing

    2017-08-01

    Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.

  16. Enhancement of the inverted polymer solar cells via ZnO doped with CTAB

    Science.gov (United States)

    Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin

    2018-02-01

    A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.

  17. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  18. Combination of short-length TiO{sub 2} nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengguo [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Shi, Chengwu, E-mail: shicw506@foxmail.com [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Junjun; Xiao, Guannan; Li, Long [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2017-07-15

    Graphical abstract: The TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm{sup −2} was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO{sub 2} nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO{sub 2} nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO{sub 2} nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm{sup −2} is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO{sub 2} nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion

  19. High stability of benzotriazole and benzodithiophene containing medium band-gap polymer solar cell

    DEFF Research Database (Denmark)

    Unay, Hande; dos Reis Benatto, Gisele A.; Beliatis, Michail J.

    2018-01-01

    The improvement of polymer solar cell stability is a challenge for the scientists and has significant implications commercially. In this study, we investigated the stability of a novel P-SBTBDT active material applied in an inverted type solar cell. Detailed stability experiments comprising shelf......-in phase with T50 from 700 to 840 h, with some P-SBTBDT solar cells did not reach T50 in the time span of the test. Degradation tests on the P-SBTBDT solar cells which were carried out under natural solar light indicated that T40 was reached after 840 h. The results of dark, light, damp and dry stability...

  20. Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan

    Polymer solar cells (PSCs) aim to produce clean energy that is cost-competitive to energy produced by fossil fuel-based conventional energy sources. From an environmental perspective, PSCs already compares favorably to other solar cell technologies in terms of fewer emissions of greenhouse gases......, represents majority of the share of cost and energy footprint in terms of materials and processing in a conventional PSC module. Furthermore, the scarcity of indium is feared to create bottleneck in the dawning PSC industry and its brittle nature is an obstacle for fast processing of PSCs on flexible...

  1. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan; Kurosawa, Tadanori; Ma, Wei; Guo, Yikun; Fang, Lei; Vandewal, Koen; Diao, Ying; Wang, Chenggong; Yan, Qifan; Reinspach, Julia; Mei, Jianguo; Appleton, Anthony Lucas; Koleilat, Ghada I.; Gao, Yongli; Mannsfeld, Stefan C. B.; Salleo, Alberto; Ade, Harald; Zhao, Dahui; Bao, Zhenan

    2014-01-01

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan

    2014-03-24

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.

    2016-01-01

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally

  4. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; El Labban, Abdulrahman; Tassone, Christopher J.; Toney, Michael F.; Fré chet, Jean Mj J; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well

  5. Effects of passivation treatment on performance of CdS/CdSe quantum-dot co-sensitized solar cells

    International Nuclear Information System (INIS)

    Tubtimtae, Auttasit; Lee, Ming-Way

    2012-01-01

    Carrier recombination can greatly reduce the efficiencies of quantum-dot sensitized solar cells (QDSSCs). This work aims to find a general preparation route to reduce carrier recombination in QDSSCs. The effects of a series of passivation treatments on CdS/CdSe quantum-dot (QD) co-sensitized solar cells are investigated. The QDs were synthesized on a nanoporous TiO 2 electrode by the successive ionic layer adsorption and reaction processes. The different types of treatment included a blocking layer, a fluoride-ion coating, a ZnS coating, annealing, a TiO 2 scattering layer and an Au counterelectrode. The power conversion efficiency was observed to become three times larger after treatment. The effectiveness of each treatment method is as follows in descending order: blocking layer ≅ TiO 2 scattering layer > Au counterelectrode > F − ions and ZnS coatings > annealing. The best cell yields a current density of 14.6 mA/cm 2 and a respectable power conversion efficiency of η = 3.11% under AM 1.5 sun. The passivation procedure makes a useful general guide for researchers for the preparation of QDSSCs. - Highlights: ► Used a series of treatments to passivate quantum-dot sensitized solar cells ► Efficiency increased by a factor of three after going through all the treatments ► Contribution to efficiency due to each treatment determined quantitatively ► Obtained a best efficiency of 3.11%

  6. Application of Nanostructured Materials and Multi-junction Structure in Polymer Solar Cells

    KAUST Repository

    Gao, Yangqin

    2015-12-09

    polymer absorber, in which the homo-tandem device showed an enhanced power conversion efficiency (PCE) (8.3% vs 7.7%) relative to the optimized single junction PSC. The high open voltage (>1.8 V) achieved in homo-tandem PSCs allowed for water splitting with an estimated solar-to-fuel conversion efficiency of 6%. Lastly, a hybrid tandem cell was also constructed using a polymer and a colloidal quantum dot subcell. Different hybrid tandem device architectures were proposed and show a promising PCE of 6.7%.

  7. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    International Nuclear Information System (INIS)

    Wu, Yuchang; Asryan, Levon V.

    2016-01-01

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  8. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuchang, E-mail: yuchangw@cumt.edu.cn [Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221116 (China); School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Asryan, Levon V., E-mail: asryan@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-08-28

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  9. Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a non-chlorinated solvent

    NARCIS (Netherlands)

    Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; Janssen, R.A.J.; Li, W.W.

    2016-01-01

    Newly designed asymmetric diketopyrrolopyrrole conjugated polymers with two different aromatic substituents possess a hole mobility of 12.5 cm2 V−1 s−1 in field-effect transistors and a power conversion efficiency of 6.5% in polymer solar cells, when solution processed from a nonchlorinated

  10. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to

  11. Ultrabroadband time-resolved THz spectroscopy of polymer-based solar cells

    DEFF Research Database (Denmark)

    Cooke, David G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2011-01-01

    We have developed ultrabroadband THz spectroscopy in reflection mode for characterization of conductivity dynamics in conductive polymer samples used in organic solar cells. The spectrometer is designed to have a time resolution limited only by the duration of the optical pump pulse, thus enabling...

  12. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo

    2018-05-03

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.

  13. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar; Maffei, Luna Pratali; Cruciani, Federico; Mü ller, Michael A.; Liu, Shengjian; Lopatin, Sergei; Wehbe, Nimer; Ngongang Ndjawa, Guy Olivier; Amassian, Aram; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  14. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2017-07-21

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  15. Theoretical and Experimental Study of Plasmonic Polymer Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Adam, Jost; Madsen, Morten

    The organic bulk hetero-junction solar cell has remarkable advantages such as low cost, mechanical flexibility and simple process techniques. Recently, low-band gap photoactive materials have obtained a significant attention due to their potential to absorb a wider range of the solar spectrum...... to attain higher power conversion efficiencies. Many low-band gap photoactive materials, however, still show a relatively low external quantum efficiency of less than 60% [1]. One possible approach to improve the device performance is to increase the light absorption in the active layer. This may, amongst...... other approaches, be achieved by using nano- or micro-structures that trap light at specific wavelengths [2], or by using the localized surface plasmon resonance effect of metal nanoparticles in the devices. In this work, we theoretically studied planar polymer solar cell based on finite-difference time...

  16. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    Science.gov (United States)

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications.

  17. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  18. A simple nanostructured polymer/ZnO hybrid solar cell - preparation and operation in air

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Thomann, Yi; Thomann, Ralf

    2008-01-01

    without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl......A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good...

  19. Enhancement of the photoelectric performance in inverted bulk heterojunction solid solar cell with inorganic nanocrystals

    International Nuclear Information System (INIS)

    Luan, Weiling; Zhang, Chengxi; Luo, Lingli; Yuan, Binxia; Jin, Lin; Kim, Yong-Sang

    2017-01-01

    Highlights: • Solid solar cells based on FeS_2 or PbS NCs showed power conversion efficiency (PCE) of 3.0% and 3.11%, respectively. • The FeS_2 NCs/polymer solar cells showed good time and thermal stability when exposed in air condition. • Ternary solid solar cells based on PbS NCs exhibited a higher short circuit current density (J_s_c). - Abstract: Nanocrystal/polymer solid solar cells have the advantages of low-cost, simple process, and flexible manufacture. In this work, ternary solid solar cells based on FeS_2 and PbS nanocrystals exhibited photovoltaic conversion efficiency of 3.0% and 3.1%, respectively. As a kind of semiconductor with optical absorption in the visible and near-infrared regions, FeS_2 nanocrystals matched well with the solar radiation spectrum. Furthermore, PbS Nanocrystals could increase the number of electrons, due to its multiple exciton effect. Additionally, the FeS_2 nanocrystals solar cells showed high stability, with 83.3% of its initial efficiency remained after 15 weeks of exposure in air, and kept good stable performance at 20–80 °C. The photovoltaic conversion efficiency fluctuation magnitudes were also found to be smaller than quantum-dot sensitized solar cell under the same conditions.

  20. Fully solution-processing route toward highly transparent polymer solar cells.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Stubhan, Tobias; Li, Ning; Baran, Derya; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-10-22

    We report highly transparent polymer solar cells using metallic silver nanowires (AgNWs) as both the electron- and hole-collecting electrodes. The entire stack of the devices is processed from solution using a doctor blading technique. A thin layer of zinc oxide nanoparticles is introduced between photoactive layer and top AgNW electrode which plays decisive roles in device functionality: it serves as a mechanical foundation which allows the solution-deposition of top AgNWs, and more importantly it facilitates charge carriers extraction due to the better energy level alignment and the formation of ohmic contacts between the active layer/ZnO and ZnO/AgNWs. The resulting semitransparent polymer:fullerene solar cells showed a power conversion efficiency of 2.9%, which is 72% of the efficiency of an opaque reference device. Moreover, an average transmittance of 41% in the wavelength range of 400-800 nm is achieved, which is of particular interest for applications in transparent architectures.

  1. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An analytical study of the minority carrier distribution and photocurrent of a p-i-n quantum dot solar cell based on the InAs/GaAs system

    Science.gov (United States)

    Biswas, Sayantan; Sinha, Amitabha

    2017-10-01

    An analytical study has been carried out on the InAs/GaAs p+-i-n+ quantum dot solar cell, taking into consideration the contributions of each region of the cell to the total photocurrent. The expressions for the excess minority carrier concentration and photocurrent from the front and the rear regions of the device have been obtained and their variations with different device parameters have been studied. Also, based on the investigations reported by some researchers earlier, the photocurrent contribution from the intrinsic region of the solar has been studied, taking into account the quantum dot ensemble absorption coefficient, which depends significantly on the quantum dot size and size dispersion. It is observed that all the three regions of the cell contribute to the overall internal quantum efficiency (IQE) of the cell. The contribution of each region of the solar cell to the total IQE has been shown graphically. From these studies it is observed that the incorporation of the quantum dots in the intrinsic region enhance the photocurrent density and hence the IQE of such solar cell, as it absorbs low energy photons, which are beyond the absorption range of GaAs. Finally, the fill factor of the solar cell has been calculated.

  3. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  4. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  5. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2012-10-26

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer\\'s band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b \\' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  6. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Zimmermann, Yannick-Serge; Benatto, Gisele Alves dos Reis

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver...

  7. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng

    2018-05-11

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  8. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng; Wang, Zhenwei; Firdaus, Yuliar; Babics, Maxime; Alshareef, Husam N.; Beaujuge, Pierre

    2018-01-01

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  9. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    NARCIS (Netherlands)

    Espinosa, Nieves; Zimmermann, Yannick-Serge; Reis Benatto, Dos Gisele A.; Lenz, Markus; Krebs, Frederik C.

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver and

  10. Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots

    Science.gov (United States)

    Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang

    2016-04-01

    We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.

  11. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi’an 710300 (China); Wang, Ye Feng [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Xue Qing [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-04-30

    Highlights: • PbSe thin film is deposited on FTO glass by a pulse voltage electrodeposition method. • The thin film is used as counter electrode (CE) in quantum dot-sensitized solar cell. • Superior electrocatalytic activity and stability in the polysulfide electrolyte is received. • The narrow band gap characteristics and p-type conductivity enhances the cell efficiency. • An efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells. - Abstract: Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  12. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  13. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications

    KAUST Repository

    Mondal, Rajib

    2010-01-01

    Thiophene enriched fused-aromatic thieno[3,4-b]pyrazine systems were designed and employed to produce low band gap polymers (Eg = 1.0-1.4 eV) when copolymerized with fluorene and cyclopentadithiophene. The copolymers are mainly investigated for organic thin film transistor and organic photovoltaic applications. Molecular packing in the thin films of these polymers was investigated using Grazing incidence X-ray Scattering. Although both fluorene and cyclopentadithiophene polymers follow similar face to face π-π stacking, the latter polymers show much smaller lamellar d-spacings due to side-chain interdigitation between the lamellae. This lead to the higher charge carrier mobilities in cyclopentadithiophene polymers (up to 0.044 cm2/V.s) compared to fluorene polymers (up to 8.1 × 10-3 cm2/V.s). Power conversion efficiency of 1.4% was achieved using fluorene copolymer in solar cells with a fullerene derivative as an acceptor. Although the cyclopentadithiophene polymers show lower band gaps with higher absorption coefficients compared to fluorene copolymers, but the power conversion efficiencies in solar cells of these polymers are low due to their low ionization potentials. © The Royal Society of Chemistry 2010.

  14. Fabrication of Hybrid Polymer Solar Cells By Inverted Structure Based on P3HT:PCBM Active Layer

    Directory of Open Access Journals (Sweden)

    Shobih Shobih

    2017-08-01

    Full Text Available Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al. In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.

  15. A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors

    KAUST Repository

    Chen, Hung-Yang

    2017-12-28

    A novel fused heterocycle-flanked diketopyrrolopyrrole (DPP) monomer, thieno[2,3-b]pyridine diketopyrrolopyrrole (TPDPP), was designed and synthesized. When copolymerized with 3,4-difluorothiophene using Stille coupling polymerization, the new polymer pTPDPP-TF possesses a highly planar conjugated polymer backbone due to the fused thieno[2,3-b]pyridine flanking unit that effectively alleviates the steric hindrance with both the central DPP core and the 3,4-difluorothiophene repeat unit. This new polymer exhibits a high electron affinity (EA) of −4.1 eV and was successfully utilized as an n-type polymer semiconductor for applications in organic field-effect transistors (OFETs) and all polymer solar cells. A promising n-type charge carrier mobility of 0.1 cm2 V–1 s–1 was obtained in bottom-contact, top-gate OFETs, and a power conversion efficiency (PCE) of 2.72% with a high open-circuit voltage (VOC) of 1.04 V was achieved for all polymer solar cells using PTB7-Th as the polymer donor.

  16. A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors

    KAUST Repository

    Chen, Hung-Yang; Nikolka, Mark; Wadsworth, Andrew; Yue, Wan; Onwubiko, Ada; Xiao, Mingfei; White, Andrew J. P.; Baran, Derya; Sirringhaus, Henning; McCulloch, Iain

    2017-01-01

    A novel fused heterocycle-flanked diketopyrrolopyrrole (DPP) monomer, thieno[2,3-b]pyridine diketopyrrolopyrrole (TPDPP), was designed and synthesized. When copolymerized with 3,4-difluorothiophene using Stille coupling polymerization, the new polymer pTPDPP-TF possesses a highly planar conjugated polymer backbone due to the fused thieno[2,3-b]pyridine flanking unit that effectively alleviates the steric hindrance with both the central DPP core and the 3,4-difluorothiophene repeat unit. This new polymer exhibits a high electron affinity (EA) of −4.1 eV and was successfully utilized as an n-type polymer semiconductor for applications in organic field-effect transistors (OFETs) and all polymer solar cells. A promising n-type charge carrier mobility of 0.1 cm2 V–1 s–1 was obtained in bottom-contact, top-gate OFETs, and a power conversion efficiency (PCE) of 2.72% with a high open-circuit voltage (VOC) of 1.04 V was achieved for all polymer solar cells using PTB7-Th as the polymer donor.

  17. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo; Gao, Yangqin; Hu, Hanlin; Yan, Buyi; Ning, Zhijun; Jagadamma, Lethy Krishnan; Zhao, Kui; Kirmani, Ahmad R.; Eid, Jessica; Adachi, Michael M.; Sargent, Edward H.; Beaujuge, Pierre; Amassian, Aram

    2015-01-01

    with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual

  18. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  19. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  20. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Science.gov (United States)

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318

  1. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  2. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  3. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    Science.gov (United States)

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-03

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  4. Solid-state ZnS quantum dot-sensitized solar cell fabricated by the Dip-SILAR technique

    International Nuclear Information System (INIS)

    Mehrabian, M; Mirabbaszadeh, K; Afarideh, H

    2014-01-01

    Solid-state quantum dot sensitized solar cells (QDSSCs) were fabricated with zinc sulfide quantum dots (ZnS QDs), which served as the light absorber and the recombination blocking layer simultaneously. ZnS QDs were prepared successfully by a novel successive ionic layer adsorption and reaction technique based on dip-coating (Dip-SILAR). The dependences of the photovoltaic parameters on the number of SILAR cycles (n) were investigated. The cell with n = 6 (particle average size ∼9 nm) showed an energy conversion efficiency of 2.72% under the illumination of one sun (AM 1.5, 100 mW cm −2 ). Here we investigate also the cohesion between ZnS QDs and ZnO film to obtain a well-covering QD layer. (paper)

  5. Effect of AlSb quantum dots on efficiency of GaAs solar cell (Conference Presentation)

    Science.gov (United States)

    Mansoori, Ahmad; Addamane, Sadhvikas J.; Renteria, Emma J.; Shima, Darryl M.; Hains, Christopher P.; Balakrishnan, Ganesh

    2016-09-01

    Quantum Dots (QDs) have a broad applications in science and specifically in solar cell. Many research groups show that by adding QDs with lower bandgap respect to host material, the overall absorption of sun spectrum coverage will increase. Here, we propose using QDs with higher band gap respect to host material to improve efficiency of solar cell by improving quantum efficiency. GaAs solar cells have the highest efficiency in single junction solar cells. However, the absorption of GaAs is not good enough in wavelength lower than 550nm. AlSb can absorb shorter wavelength with higher absorption coefficient and also recombination rate should be lower because of higher bandgap of AlSb respect to GaAs. We embed AlSb QDs in GaAs solar cells and results show slight improvement in quantum efficiency and also in overall efficiency. Coverage of AlSb QDs has a direct impact on quality of AlSb QDs and efficiency of cell. In the higher coverage, intermixing between GaAs and AlSb causes to shift bandgap to lower value (having AlGaSb QDs instead of pure AlSb QDs). This intermixing decrease the Voc and overall efficiency of cell. In lower coverage, AlSb can survive from intermixing and overall performance of cell improves. Optimizing growth condition of AlSb QDs is a key point for this work. By using AlSb QDs, we can decrease the thickness of active layer of GaAs solar cells and have a thinner solar cell.

  6. Fabrication of SnS quantum dots for solar-cell applications: issues of capping and doping

    Czech Academy of Sciences Publication Activity Database

    Rath, J.K.; Prastani, C.; Nanu, D.E.; Nanu, M.; Schropp, R.E.I.; Vetushka, Aliaksi; Hývl, Matěj; Fejfar, Antonín

    2014-01-01

    Roč. 251, č. 7 (2014), s. 1309-1321 ISSN 0370-1972 R&D Projects: GA ČR GA13-25747S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : chalcogenides * chemical bath deposition * core-shell particles * quantum dots * solar cells * tin sulfide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2014

  7. Optoelectronic processes at polymer-fullerene heterojunctions : charge transfer states in organic solar cells

    NARCIS (Netherlands)

    Di Nuzzo, D.

    2012-01-01

    Polymer photovoltaic cells currently achieve power conversion efficiencies (PCE) above 10% on lab scale. To compete with the efficiencies above 20% of inorganic solar cells, understanding and elimination of all the loss channels is necessary. This thesis investigates charge generation and

  8. Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells.

    Science.gov (United States)

    Pimachev, Artem; Poudyal, Uma; Proshchenko, Vitaly; Wang, Wenyong; Dahnovsky, Yuri

    2016-09-29

    We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn 2 SnO 4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.

  9. Influence of injected charge carriers on photocurrents in polymer solar cells

    NARCIS (Netherlands)

    Wehenkel, D.J.; Koster, L.J.A.; Wienk, M.M.; Janssen, R.A.J.

    2012-01-01

    We determine and analyze the photocurrent Jph in polymer solar cells under conditions where, no, one, or two different charge carriers can be injected by choosing appropriate electrodes and compare the experimental results to simulations based on a drift-diffusion device model that accounts for

  10. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Beiley, Zach M.; Hoke, Eric T.; Mateker, William R.; Douglas, Jessica D.; Collins, Brian A.; Tumbleston, John R.; Graham, Kenneth; Amassian, Aram; Ade, Harald W.; Frechet, Jean; Toney, Michael F.; McGehee, Michael D.

    2012-01-01

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b ' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  11. Improved Efficiency of Polymer Solar Cells by means of Coating Hole Transporting Layer as Double Layer Deposition

    Science.gov (United States)

    Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.

    2017-09-01

    Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.

  12. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  13. Non-toxic silver iodide (AgI) quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Moosakhani, S.; Sabbagh Alvani, A.A.; Sarabi, A.A.; Sameie, H.; Salimi, R.; Kiani, S.; Ebrahimi, Y.

    2014-01-01

    Highlights: • We have demonstrated AgI sensitized solar cell for the first time. • Obtained mesoporous titania powders possessed small crystallite size, high purity and surface area, and developed mesopores with a narrow pore size distribution. • Photovoltaic measurements revealed the electron injection from AgI to TiO 2 . • The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% under one sun illumination. • AgI may be a suitable candidate material for use as a non-toxic sensitizer in QDSSC. - Abstract: The present study reports the performance of a new photosensitizer -AgI quantum dots (QDs)- and mesoporous titania (TiO 2 ) nanocrystals synthesized by sol–gel (SG) method for solar cells. Furthermore, the effects of n-heptane on the textural properties of TiO 2 nanocrystals were comprehensively investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N 2 adsorption–desorption measurements, and UV–vis spectroscopy. TiO 2 powders exhibited an anatase-type mesoporous structure with a high surface area of 89.7 m 2 /g. Afterwards, the QDs were grown on mesoporous TiO 2 surface to fabricate a TiO 2 /AgI electrode by a successive ionic layer adsorption and reaction (SILAR) deposition route. Current–voltage characteristics and electrochemical impedance spectroscopy (EIS) data demonstrated that the injection of photoexcited electrons from AgI QDs into the TiO 2 matrix produces photocurrents. The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% and a short-circuit current of 2.13 mA/cm 2 under one sun illumination

  14. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    Science.gov (United States)

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when

  15. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  16. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology w...

  17. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  18. Roll-to-Roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend

    Science.gov (United States)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan

    The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.

  19. Hole transfer from CdSe nanoparticles to TQ1 polymer in hybrid solar cell device

    Science.gov (United States)

    Sohail, Muhammad; Shah, Zawar Hussain; Saeed, Shomaila; Bibi, Nasreen; Shahbaz, Sadia; Ahmed, Safeer; Shabbir, Saima; Siddiq, Muhammad; Iqbal, Azhar

    2018-05-01

    In view of realizing the economic viability, we fabricate a solar cell device containing low band gap and easily processable polymer 5-yl-8-(thiophene-2,5-diyl)-2,3-bis(3-(octyloxy)phenyl) quinoxaline (TQ1) and CdSe nanoparticles (NPs) and investigate its charge transport properties. When the TQ1 is combined with the CdSe NPs a strong photoluminescence quenching and shortening of photoluminescence lifetime of the TQ1 is observed indicating exciton transfer from TQ1 to the CdSe NPs. The time-resolved photoluminescence further reveals that the exciton transfer from the polymer to CdSe NPs is very efficient (68%) and it occurs in solar cell as compared to polymer only device. These observations suggest the importance of other II-VI semiconductor NPs to achieve higher efficiency for photovoltaic devices containing TQ1 polymer.

  20. Increasing the quantum efficiency of GaAs solar cells by embedding InAs quantum dots

    Science.gov (United States)

    Salii, R. A.; Mintairov, S. A.; Nadtochiy, A. M.; Payusov, A. S.; Brunkov, P. N.; Shvarts, M. Z.; Kalyuzhnyy, N. A.

    2016-11-01

    Development of Metalorganic Vapor Phase Epitaxy (MOVPE) technology of InAs quantum dots (QDs) in GaAs for photovoltaic applications is presented. The growth peculiarities in InAs-GaAs lattice-mismatched system were considered. The photoluminescence (PL) intensity dependences on different growth parameters were obtained. The multimodal distribution of QDs by sizes was found using AFM and PL methods. GaAs solar cell nanoheterostructures with imbedded QD arrays were designed and obtained. Ones have been demonstrated a significant increase of quantum efficiency and photogenerated current of QD solar cells due to photo effect in InAs QD array (0.59 mA/cm2 for AM1.5D and 82 mA/cm2 for AM0).

  1. SILAR deposition of nickel sulfide counter electrode for application in quantum dot sensitized solar cell

    Science.gov (United States)

    Singh, Navjot; Siwatch, Poonam; Arora, Anmol; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Quantum Dot Sensitized Solar Cells are a likely replacement for Silicon-based solar cells. Counter electrodes are a fundamental aspect of QDSSC's performance. NiS being a less expensive material is a decent choice for the purpose. In this paper, we have discussed the synthesis of NiS by Successive Ionic Layer Adsorption Reaction. Optical, Crystallographic and Electrical studies have been presented. Electrical studies of the device with NiS counter electrode is compared with characteristics of the device with CNTs as the counter electrode. SILAR method is easy and less time to consume than chemical bath deposition or any other method. Results show the success of NiS synthesized by SILAR method as the counter electrode.

  2. Morphology of polymer solar cells

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.

    as a function of polymer, type of ink, annealing etc. Ptychography is a new state of the art X-ray imaging technique based on coherent scattering. Together with Scanning X-ray Transmission Microscopy (STXM) it has been used in this study to inspect the morphology of the active layer taken from working solar...

  3. Two-dimensional simulation of GaAsSb/GaAs quantum dot solar cells

    Science.gov (United States)

    Kunrugsa, Maetee

    2018-06-01

    Two-dimensional (2D) simulation of GaAsSb/GaAs quantum dot (QD) solar cells is presented. The effects of As mole fraction in GaAsSb QDs on the performance of the solar cell are investigated. The solar cell is designed as a p-i-n GaAs structure where a single layer of GaAsSb QDs is introduced into the intrinsic region. The current density–voltage characteristics of QD solar cells are derived from Poisson’s equation, continuity equations, and the drift-diffusion transport equations, which are numerically solved by a finite element method. Furthermore, the transition energy of a single GaAsSb QD and its corresponding wavelength for each As mole fraction are calculated by a six-band k · p model to validate the position of the absorption edge in the external quantum efficiency curve. A GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4 provides the best power conversion efficiency. The overlap between electron and hole wave functions becomes larger as the As mole fraction increases, leading to a higher optical absorption probability which is confirmed by the enhanced photogeneration rates within and around the QDs. However, further increasing the As mole fraction results in a reduction in the efficiency because the absorption edge moves towards shorter wavelengths, lowering the short-circuit current density. The influences of the QD size and density on the efficiency are also examined. For the GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4, the efficiency can be improved to 26.2% by utilizing the optimum QD size and density. A decrease in the efficiency is observed at high QD densities, which is attributed to the increased carrier recombination and strain-modified band structures affecting the absorption edges.

  4. PbS/Cd3P2 quantum heterojunction colloidal quantum dot solar cells

    International Nuclear Information System (INIS)

    Cao, Hefeng; Xu, Songman; Liu, Huan; Liu, Zeke; Zhu, Xiangxiang; Peng, Jun; Ma, Wanli; Hu, Long; Luo, Miao; Tang, Jiang

    2015-01-01

    Here, we demonstrated the quantum heterojunction colloidal quantum dot (CQD) solar cells employing the PbS CQDs/Cd 3 P 2 CQDs architecture in which both the p-type PbS and n-type Cd 3 P 2 CQD layers are quantum-tunable and solution-processed light absorbers. We synthesized well-crystallized and nearly monodispersed tetragonal Cd 3 P 2 CQDs and then engineered their energy band alignment with the p-type PbS by tuning the dot size and hence the bandgap to achieve efficient light absorbing and charge separation. We further optimized the device through the Ag-doping strategy of PbS CQDs that may leverage an expanded depletion region in the n-layer, which greatly enhances the photocurrent. The resulting devices showed an efficiency of 1.5%. (paper)

  5. Imaging the Anomalous Charge Distribution Inside CsPbBr3 Perovskite Quantum Dots Sensitized Solar Cells.

    Science.gov (United States)

    Panigrahi, Shrabani; Jana, Santanu; Calmeiro, Tomás; Nunes, Daniela; Martins, Rodrigo; Fortunato, Elvira

    2017-10-24

    Highly luminescent CsPbBr 3 perovskite quantum dots (QDs) have gained huge attention in research due to their various applications in optoelectronics, including as a light absorber in photovoltaic solar cells. To improve the performances of such devices, it requires a deeper knowledge on the charge transport dynamics inside the solar cell, which are related to its power-conversion efficiency. Here, we report the successful fabrication of an all-inorganic CsPbBr 3 perovskite QD sensitized solar cell and the imaging of anomalous electrical potential distribution across the layers of the cell under different illuminations using Kelvin probe force microscopy. Carrier generation, separation, and transport capacity inside the cells are dependent on the light illumination. Large differences in surface potential between electron and hole transport layers with unbalanced carrier separation at the junction have been observed under white light (full solar spectrum) illumination. However, under monochromatic light (single wavelength of solar spectrum) illumination, poor charge transport occurred across the junction as a consequence of less difference in surface potential between the active layers. The outcome of this study provides a clear idea on the carrier dynamic processes inside the cells and corresponding surface potential across the layers under the illumination of different wavelengths of light to understand the functioning of the solar cells and ultimately for the improvement of their photovoltaic performances.

  6. Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality.

    Science.gov (United States)

    Medford, Andrew J; Lilliedal, Mathilde R; Jørgensen, Mikkel; Aarø, Dennis; Pakalski, Heinz; Fyenbo, Jan; Krebs, Frederik C

    2010-09-13

    Large solar panels were constructed from polymer solar cell modules prepared using full roll-to-roll (R2R) manufacture based on the previously published ProcessOne. The individual flexible polymer solar modules comprising multiple serially connected single cell stripes were joined electrically and laminated between a 4 mm tempered glass window and black Tetlar foil using two sheets of 0.5 mm thick ethylene vinyl acetate (EVA). The panels produced up to 8 W with solar irradiance of ~960 Wm⁻², and had outer dimensions of 1 m x 1.7 m with active areas up to 9180 cm². Panels were mounted on a tracking station and their output was grid connected between testing. Several generations of polymer solar cells and panel constructions were tested in this context to optimize the production of polymer solar panels. Cells lacking a R2R barrier layer were found to degrade due to diffusion of oxygen after less than a month, while R2R encapsulated cells showed around 50% degradation after 6 months but suffered from poor performance due to de-lamination during panel production. A third generation of panels with various barrier layers was produced to optimize the choice of barrier foil and it was found that the inclusion of a thin protective foil between the cell and the barrier foil is critical. The findings provide a preliminary foundation for the production and optimization of large-area polymer solar panels and also enabled a cost analysis of solar panels based on polymer solar cells.

  7. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.

  8. Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications

    KAUST Repository

    Cruciani, Federico

    2018-04-01

    Bulk heterojunction (BHJ) devices represent a very versatile family of organic cells for both the fields of solar energy conversion and photodetection. Organic photovoltaics (OPV) are an attractive alternative to their silicon-based counterparts because of their potential for low-cost roll-to-roll printing, and their intended application in light-weight mechanically conformable devices and in window-type semi-transparent PV modules. Of all proposed OPV candidates, polymer donor with different absorption range are especially promising when used in conjunction with complementary absorbing acceptor materials, like fullerene derivatives (PCBM), conjugated molecules or polymers, achieving nowadays power conversion efficiencies (PCEs) in the range of 10-13% and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR and high detectivity values reached so far, compared to the inorganic devices. Since the research has been focused on the enhancement of those numbers for an effective commercialization of organic cells, the topic of the following thesis has been centered on the synthesis of different polymer structures with diverse absorption ranges, used as donor or acceptor, with emphasis on performance in various BHJ devices either for solar cells and photodetectors. In the first part, two new wide band gap polymers, used as donor material in BHJ devices blended with fullerene and small molecule acceptors, are presented. The PBDT_2FT and PBDTT_2FT have shown nice efficiencies from 7% to 9.8%. The device results are implemented with a morphology study and a specific application in a semi-transparent tandem device, reaching a record PCE of 5.4% for average level of transparency of 48%. In another section two new low band gap polymers (Eopt~ 1.26 eV) named DTP_2FBT and (Eopt~ 1.1 eV) named BDTT_BTQ are presented. While the DTP

  9. Aesthetically Pleasing Conjugated Polymer: Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing

    DEFF Research Database (Denmark)

    Amb, Chad M.; Craig, Michael R.; Koldemir, Unsal

    2012-01-01

    as a thin-film deposition technique due its convenience. We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs......The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively...... not utilizing poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) blends as a light absorbing layer. Through synthetic optimization, we show that strict protocols are necessary to yield polymers which achieve consistent photovoltaic behavior. We fabricated spin-coated laboratory scale OPV...

  10. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin

    2015-12-16

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  11. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin; Tu, Wei-Chen; Tang, Libin; Wei, Tzu-Chiao; Wei, Wan-Rou; Lau, Shu Ping; Chen, Lih-Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  12. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang Miao; Lin Yuan; Zhou Xiaowen; Xiao Xurui; Yang Lei; Feng Shujing; Li Xueping

    2008-01-01

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm -2 ) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO 2 /electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  13. Non-toxic silver iodide (AgI) quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moosakhani, S. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sabbagh Alvani, A.A., E-mail: sabbagh_alvani@aut.ac.ir [Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sameie, H.; Salimi, R.; Kiani, S.; Ebrahimi, Y. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • We have demonstrated AgI sensitized solar cell for the first time. • Obtained mesoporous titania powders possessed small crystallite size, high purity and surface area, and developed mesopores with a narrow pore size distribution. • Photovoltaic measurements revealed the electron injection from AgI to TiO{sub 2}. • The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% under one sun illumination. • AgI may be a suitable candidate material for use as a non-toxic sensitizer in QDSSC. - Abstract: The present study reports the performance of a new photosensitizer -AgI quantum dots (QDs)- and mesoporous titania (TiO{sub 2}) nanocrystals synthesized by sol–gel (SG) method for solar cells. Furthermore, the effects of n-heptane on the textural properties of TiO{sub 2} nanocrystals were comprehensively investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N{sub 2} adsorption–desorption measurements, and UV–vis spectroscopy. TiO{sub 2} powders exhibited an anatase-type mesoporous structure with a high surface area of 89.7 m{sup 2}/g. Afterwards, the QDs were grown on mesoporous TiO{sub 2} surface to fabricate a TiO{sub 2}/AgI electrode by a successive ionic layer adsorption and reaction (SILAR) deposition route. Current–voltage characteristics and electrochemical impedance spectroscopy (EIS) data demonstrated that the injection of photoexcited electrons from AgI QDs into the TiO{sub 2} matrix produces photocurrents. The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% and a short-circuit current of 2.13 mA/cm{sup 2} under one sun illumination.

  14. Homo-Tandem Polymer Solar Cells withVOC>1.8 V for Efficient PV-Driven Water Splitting

    KAUST Repository

    Gao, Yangqin; Le Corre, Vincent M.; Gaï tis, Alexandre; Neophytou, Marios; Hamid, Mahmoud Abdul; Takanabe, Kazuhiro; Beaujuge, Pierre

    2016-01-01

    Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V

  15. Pad printing as a film forming technique for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2009-04-15

    Pad printing as a technique for preparing the active layer in polymer solar cells is presented. The technique employs a silicone rubber stamp to pick up the motif from a gravure plate and transfer it to the substrate. The strengths and limitations of pad printing are discussed and polymer solar cells prepared by pad printing are presented. Devices were prepared on indium tin oxide substrates but in principle the entire photovoltaic device comprising front and back electrodes, barrier layers and active layer could be printed with no need for vacuum steps. The device geometry comprises a spin coated transparent zinc oxide front electrode, a pad printed active layer based on a bulk heterojunction of the thermocleavable polymer poly(3-(2-methylhexyloxycarbonyl)thiophene-co-thiopene) (P3MHOCT) and zinc oxide nanoparticles, spin coated PEDOT:PSS and finally a manually cast thermally cured silver paste back electrode. The P3MHOCT was converted to poly(3-carboxy-dithiophene) (P3CT) in situ by heating the film to 200 C for a brief period. The entire printing and device preparation was carried out in the ambient atmosphere and the devices obtained had a good stability in air during storage and operation. (author)

  16. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells

    NARCIS (Netherlands)

    Heintges, G.H.L.; Leenaers, P.J.; Janssen, R.A.J.

    2017-01-01

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of

  17. Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell

    DEFF Research Database (Denmark)

    Norrman, Kion; Vesterager Madsen, Morten; Gevorgyan, Suren

    2010-01-01

    The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed...... by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material...... and the two electrodes indium−tin−oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H218O and 18O2 enabled detailed information on where and to what extent uptake took place...

  18. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer.

    Science.gov (United States)

    He, Zhicai; Wu, Hongbin; Cao, Yong

    2014-02-01

    This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid-growing progress in methods that use a thin layer of alcohol/water-soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll-to-roll type processing of polymer-based solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficiencies of Dye-Sensitized Solar Cells using Ferritin-Encapsulated Quantum Dots with Various Staining Methods

    Science.gov (United States)

    Perez, Luis

    Dye-sensitized solar cells (DSSC) have the potential to replace traditional and cost-inefficient crystalline silicon or ruthenium solar cells. This can only be accomplished by optimizing DSSC's energy efficiency. One of the major components in a dye-sensitized solar cell is the porous layer of titanium dioxide. This layer is coated with a molecular dye that absorbs sunlight. The research conducted for this paper focuses on the different methods used to dye the porous TiO2 layer with ferritin-encapsulated quantum dots. Multiple anodes were dyed using a method known as SILAR which involves deposition through alternate immersion in two different solutions. The efficiencies of DSSCs with ferritin-encapsulated lead sulfide dye deposited using SILAR were subsequently compared against the efficiencies produced by cells using the traditional immersion method. It was concluded that both methods resulted in similar efficiencies (? .074%) however, the SILAR method dyed the TiO2 coating significantly faster than the immersion method. On a related note, our experiments concluded that conducting 2 SILAR cycles yields the highest possible efficiency for this particular binding method. National Science Foundation.

  20. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Liu, Shengjian

    2016-09-16

    Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The

  1. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    International Nuclear Information System (INIS)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-01-01

    Highlights: • Cu-doped CdS QDs were deposited on TiO_2 by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J_S_C = 9.40 mA cm"−"2, V_O_C = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J_S_C = 7.12 mA cm"−"2, V_O_C = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  2. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Muthalif, Mohammed Panthakkal Abdul [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Lee, Young-Seok [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Sunesh, Chozhidakath Damodharan [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Kim, Hee-Je [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Choe, Youngson, E-mail: choe@pusan.ac.kr [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of)

    2017-02-28

    Highlights: • Cu-doped CdS QDs were deposited on TiO{sub 2} by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J{sub SC} = 9.40 mA cm{sup −2}, V{sub OC} = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J{sub SC} = 7.12 mA cm{sup −2}, V{sub OC} = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  3. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.M. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Aashuri, H. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of)

    2015-04-15

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown.

  4. Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang, Yue-Yong; Zhang, Quan-Xin; Wang, Tian-Zi; Zhu, Li-Feng; Huang, Xiao-Ming; Zhang, Yi-Duo; Hu, Xing; Li, Dong-Mei; Luo, Yan-Hong; Meng, Qing-Bo

    2013-01-01

    Highlights: ► This is the first report on practical tandem structures for quantum dot-sensitized solar cells (QDSCs). ► Mesh-structured Cu 2 S counter electrode exhibits high catalytic activity and good transmittance. ► Influence of photoanode thickness on tandem QDSCs has been systematically studied. ► Tandem QDSCs shows higher photocurrent and efficiency as against the single-photoanode cell. ► This structure can achieve higher efficiency with different QD sensitizers for complementary spectral responses. -- Abstract: A practical tandem structure with a semitransparent mesh-structured Cu 2 S counter electrode sandwiched between two TiO 2 photoelectrodes has been designed for quantum dot-sensitized solar cells (QDSCs). The mesh-structured Cu 2 S counter electrode exhibits high catalytic activity for polysulfide electrolyte. CdS/CdSe quantum dot-sensitized TiO 2 films have been applied as both top and bottom photoelectrodes to testify the effectiveness of the tandem structure. The influence of the TiO 2 film thickness on the performance of the tandem cell has been systematically studied. The optimized tandem QDSC shows an improved photocurrent and 12-percent increase of efficiency over the top cell with a 4.7 μm thick top cell and an 11.0 μm thick bottom cell, presenting a new effective approach towards highly efficient QDSCs

  5. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhu Guang

    2010-01-01

    Full Text Available Abstract Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%. The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.

  6. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.

    Science.gov (United States)

    Prasad, Rajendra M B; Pathan, Habib M

    2016-04-08

    In spite of the promising design and architecture, quantum dot sensitized solar cells (QDSSCs) have a long way to go before they attain the actual projected photoconversion efficiencies. Such an inferior performance displayed by QDSSCs is primarily because of many unwanted recombination losses of charge carriers at various interfaces of the cell. Electron recombination due to back electron transfer at the photoanode/electrolyte interface is an important one that needs to be addressed, to improve the efficiency of these third generation nanostructured solar cells. The present work highlights the importance of conformal coverage of CdS quantum dots (QDs) on the surface of the nanocrystalline titania photoanode in arresting such recombinations, leading to improvement in the performance of the cells. Using the successive ionic layer adsorption and reaction (SILAR) process, photoanodes are subjected to different amounts of CdS QD sensitization by varying the number of cycles of deposition. The sensitized electrodes are characterized using UV-visible spectroscopy, cyclic voltammetry and transmission electron microscopy to evaluate the extent of surface coverage of titania electrodes by QDs. Sandwich solar cells are then fabricated using these electrodes and characterized employing electrochemical impedance spectroscopy and J-V characteristics. It is observed that maximum solar cell efficiency is obtained for photoanodes with conformal coating of QDs and any further deposition of sensitizer leads to QD aggregation and so reduces the performance of the solar cells.

  7. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  8. Hydrophilic Conjugated Polymers with Large Bandgaps and Deep-Lying HOMO Levels as an Efficient Cathode Interlayer in Inverted Polymer Solar Cells.

    Science.gov (United States)

    Kan, Yuanyuan; Zhu, Yongxiang; Liu, Zhulin; Zhang, Lianjie; Chen, Junwu; Cao, Yong

    2015-08-01

    Two hydrophilic conjugated polymers, PmP-NOH and PmP36F-NOH, with polar diethanol-amine on the side chains and main chain structures of poly(meta-phenylene) and poly(meta-phenylene-alt-3,6-fluorene), respectively, are successfully synthesized. The films of PmP-NOH and PmP36F-NOH show absorption edges at 340 and 343 nm, respectively. The calculated optical bandgaps of the two polymers are 3.65 and 3.62 eV, respectively, the largest ones so far reported for hydrophilic conjugated polymers. PmP-NOH and PmP36F-NOH also possess deep-lying highest occupied molecular orbital levels of -6.19 and -6.15 eV, respectively. Inserting PmP-NOH and PmP36F-NOH as a cathode interlayer in inverted polymer solar cells with a PTB7/PC71 BM blend as the active layer, high power conversion efficiencies of 8.58% and 8.33%, respectively, are achieved, demonstrating that the two hydrophilic polymers are excellent interlayers for efficient inverted polymer solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Homo-Tandem Polymer Solar Cells withVOC>1.8 V for Efficient PV-Driven Water Splitting

    KAUST Repository

    Gao, Yangqin

    2016-03-06

    Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V. The high-voltage homo-tandem is used to demonstrate PV-driven electrochemical water splitting with an estimated solar-to-hydrogen conversion efficiency of ≈6%. © 2016 WILEY-VCH Verlag GmbH & Co.

  10. Bifunctional NaYF4:Er3+/Yb3+ submicron rods, implemented in quantum dot sensitized solar cell(Conference Presentation)

    Science.gov (United States)

    Guerrero, J. Pablo; Cerdán Pasarán, Andrea; López-Luke, Tzarara; Ramachari, D.; Esparza, Diego; De la Rosa Cruz, Elder; Romero Arellano, Victor Hugo

    2016-09-01

    In this work are presented the results obtained with solar cells sensitized with quantum dots of cadmium sulphide (CdS) incorporating luminescent materials (NaYF4:Yb/Er). The study revealed that through using a bifunctional layer of NaYF4:Yb/Er submicron rods, the infrared radiation is absorbed in 980nm to generate luminescence in the visible region to 530nm, under the UP-conversion process, in the same way simultaneously, NaYF4:Yb/Er layer causes scattering toward the quantum dots, the emission and scattering generated by this material is reabsorbed by the QD-CdS, and these in turn are absorbing in its range of solar radiation absorption, Thus generates an increase in the electron injection into the semiconductor of TiO2. The results of a cell incorporating NaYF4: Yb/Er at 0.07M shown photoconversion efficiencies of 3.39% improving efficiency with respect to the reference solar cell without using NaYF4: Yb/Er of 1.99%. The obtained values of current and voltage showed a strong dependence of the percentage of NaYF4 Yb/Er, and the mechanism of incorporation of this material.

  11. Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Ardalan, Pendar; Brennan, Thomas P.; Lee, Han-Bo-Ram; Bakke, Jonathan R.; Ding, I-Kang; McGehee, Michael D.; Bent, Stacey F.

    2011-01-01

    Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.

  12. Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Ardalan, Pendar

    2011-02-22

    Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.

  13. Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality

    DEFF Research Database (Denmark)

    Medford, Andrew James; Lilliedal, Mathilde Raad; Jørgensen, Mikkel

    2010-01-01

    Large solar panels were constructed from polymer solar cell modules prepared using full roll-to-roll (R2R) manufacture based on the previously published ProcessOne. The individual flexible polymer solar modules comprising multiple serially connected single cell stripes were joined electrically...... and laminated between a 4 mm tempered glass window and black Tetlar foil using two sheets of 0.5 mm thick ethylene vinyl acetate (EVA). The panels produced up to 8 W with solar irradiance of ~960 Wm−2, and had outer dimensions of 1 m x 1.7 m with active areas up to 9180 cm2. Panels were mounted on a tracking...... station and their output was grid connected between testing. Several generations of polymer solar cells and panel constructions were tested in this context to optimize the production of polymer solar panels. Cells lacking a R2R barrier layer were found to degrade due to diffusion of oxygen after less than...

  14. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells.

    Science.gov (United States)

    Heckler, Ilona M; Kesters, Jurgen; Defour, Maxime; Madsen, Morten V; Penxten, Huguette; D'Haen, Jan; Van Mele, Bruno; Maes, Wouter; Bundgaard, Eva

    2016-03-09

    The stability of polymer solar cells (PSCs) can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyl)dialkoxybenzene donor and benzo[ c ][1,2,5]thiadiazole (BT) or thiazolo[5,4- d ]thiazole (TzTz) acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10%) of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable) TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs' lifetime.

  15. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Ilona M. Heckler

    2016-03-01

    Full Text Available The stability of polymer solar cells (PSCs can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyldialkoxybenzene donor and benzo[c][1,2,5]thiadiazole (BT or thiazolo[5,4-d]thiazole (TzTz acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10% of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs’ lifetime.

  16. Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Søndergaard, Roar; Jørgensen, Mikkel

    2011-01-01

    The performance of printable metal back electrodes for polymer solar cells were investigated using light beam induced current (LBIC) mapping of the final solar cell device after preparation to identify the causes of poor performance. Three different types of silver based printable metal inks were...

  17. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2010-05-15

    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  18. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

  19. Influence of Side Chain Position on the Electrical Properties of Organic Solar Cells Based on Dithienylbenzothiadiazole-alt-phenylene Conjugated Polymers

    DEFF Research Database (Denmark)

    Livi, Francesco; Zawacka, Natalia Klaudia; Angmo, Dechan

    2015-01-01

    backbone for polymer solar cells. All the polymers were roll slot die coated under ambient conditions on flexible ITO-free plastic substrates to give inverted polymer solar cell devices with an upscaled active area of 1 cm2. The best characteristics were found for the polymer carrying alkoxy side chains...... showed excellent performance under constant illumination and high temperature (exhibiting stable photovoltaic properties even after 670 h under conditions similar to ISOS-L-2 lifetime protocol). This makes P7 a good candidate for further upscaling and device optimization. The photovoltaic performance...

  20. Efficient decommissioning and recycling of polymer solar cells: justification for use of silver

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Espinosa Martinez, Nieves; Jørgensen, Mikkel

    2014-01-01

    Large 100 m long polymer solar cell modules were installed in a solar park using fast installation (>100 m min−1) and operated for 5 months ensuring a meaningful energy return factor (ERF > 1) followed by fast de-installation (>200 m min−1) and end-of-life management. Focus was on recovery...... of silver that is an essential component of the two electrodes. We employed life cycle analysis as a tool to evaluate the most efficient silver extraction method as well as the impact on the overall life cycle of the solar cells. Silver from the electrodes could be recovered as silver chloride in 95% yield...

  1. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph M.; Lloyd, Matthew T.; Beard, Matthew C. [National Renewable Energy Laboratory, Golden, CO (United States); Gao, Jianbo [National Renewable Energy Laboratory, Golden, CO (United States); University of Toledo, Toledo, OH (United States); Semonin, Octavi E.; Nozik, Arthur J. [National Renewable Energy Laboratory, Golden, CO (United States); University of Colorado, Boulder, CO (United States)

    2010-09-01

    We provide the first NREL-certified efficiency measurement on an all-inorganic, solution-processed, nanocrystal solar cell. The 3% efficient device is composed of ZnO nanocrystals and 1.3 eV PbS quantum dots with gold as the top contact. This configuration yields a stable device, retaining 95% of the starting efficiency after a 1000-hour light soak in air without encapsulation. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  3. A bifacial quantum dot-sensitized solar cell with all-cadmium sulfide photoanode

    Science.gov (United States)

    Ma, Chunqing; Tang, Qunwei; Liu, Danyang; Zhao, Zhiyuan; He, Benlin; Chen, Haiyan; Yu, Liangmin

    2015-02-01

    Pursuit of a high power conversion efficiency and reduction of electricity-generation cost has been a persistent objective for quantum dot-sensitized solar cells (QDSSCs). We present here the fabrication of a QDSSC comprising a nanoflower-structured CdS anode, a liquid electrolyte having S2-/Sn2- redox couples, and a transparent CoSe counter electrode. Nanoflower-structured CdS anodes are prepared by a successive ionic layer adsorption and reaction (SILAR) method and subsequently hydrothermal strategy free of any surfactant or template. The CdS nanoparticles synthesized by a SILAR method act as "seed crystal" for growth of CdS nanoflowers. The average electron lifetime is markedly elevated in nanoflower-structured CdS anode in comparison with CdS nanoparticle or nanoporous CdS microsphere anode. Herein, we study the effect of synthesis method on CdS morphology and solar cell's photovoltaic performance, showing a power conversion efficiency of 1.67% and 1.17% for nanoflower-structured CdS QDSSC under front and rear irradiations, respectively.

  4. Industrialisation of polymer solar cells. Phase 2: Consolidation

    DEFF Research Database (Denmark)

    Lauritzen, Hanne; Gevorgyan, Suren; Frausig, Jesper

    of the OPV devices – targets that are import both for niche applications and bulk power production. Besides the work dedicated to solving these three key targets, two more activities have been included in the project; a pre-study on OPV solar parks and an evaluation of the business opportunities arising......The present report refers to the project “Industrialization of polymer solar cells – phase 2”. Both the project and this report build directly upon the prior phase 1 where the basic OPV technology, ProcessOne, was transferred to Mekoprint. This second phase focuses on an anchoring......-scale power production. The project represents thus a crossroad, where Mekoprint and DTU gradually differentiate themselves with respect to applications and therefore also their R&D priorities. The key targets of phase 2 relate to production cost, stabilization of the production and operational lifetime...

  5. Improving charge transport in PbS quantum Dot to Al:ZnO layer by changing the size of Quantum dots in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2016-07-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  6. Improved light trapping in polymer solar cells by light diffusion ink

    International Nuclear Information System (INIS)

    Chao, Yu-Chiang; Lin, Yun-Hsuan; Lin, Ching-Yi; Li, Husan-De; Zhan, Fu-Min; Huang, Yu-Zhang

    2014-01-01

    Light trapping is an important issue for solar cells to increase optical path length and optical absorption. In this work, a light trapping structure was realized for polymer solar cells by utilizing light diffusion ink which is conventionally used in display backlighting. The light scattering particles in the ink cause the deflection of light, and the number of these particles coated on a glass substrate determines the light transmission and scattering characteristics. It was observed that the short-circuit current density did not decrease with decreasing transmittance, but it increased to a highest value at an optimized transmittance. This behaviour is attributed to the trapping of scattered light in the photoactive layer. (paper)

  7. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    Science.gov (United States)

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  8. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2010-01-01

    Inverted polymer:fullerene solar cells with ZnO and MoO3 transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted

  9. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M.

    Inverted polymer: fullerene solar cells with ZnO and MoO(3) transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted

  10. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Zawacka, Natalia Klaudia

    2014-01-01

    lifetime in flexible large area roll-coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2-hexyldecyloxy (BDTHDO) (P1-P3) or 2-hexyldecylthiophene (BDT THD) (P4-P6). The photochemical stability clearly shows that the stability enhances along...... with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium-tin-oxide-free plastic substrates. Solar cells based on the P4-P6 series...... in the performance followed by a much slower decay rate, still retaining 40-55% of their initial performance after 250 h of testing under ISOS-L-1 conditions. © 2014 Wiley Periodicals, Inc....

  11. Investigation of the open-circuit voltage in wide-bandgap InGaP-host InP quantum dot intermediate-band solar cells

    Science.gov (United States)

    Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi

    2018-04-01

    To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.

  12. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance

    KAUST Repository

    Kirmani, Ahmad R.; Carey, Graham H.; Abdelsamie, Maged; Yan, Buyi; Cha, Dong Kyu; Rollny, Lisa R.; Cui, Xiaoyu; Sargent, E. H.; Amassian, Aram

    2014-01-01

    The absorbing layer in state-of-the-art colloidal quantum-dot solar cells is fabricated using a tedious layer-by-layer process repeated ten times. It is now shown that methanol, a common exchange solvent, is the main culprit, as extended exposure leaches off the surface halide passivant, creating carrier trap states. Use of a high-dipole-moment aprotic solvent eliminates this problem and is shown to produce state-of-the-art devices in far fewer steps. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cu-Doped-CdS/In-Doped-CdS Cosensitized Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS quantum dot solar cells (QDSCs are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion, open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.

  14. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance

    KAUST Repository

    Kirmani, Ahmad R.

    2014-06-04

    The absorbing layer in state-of-the-art colloidal quantum-dot solar cells is fabricated using a tedious layer-by-layer process repeated ten times. It is now shown that methanol, a common exchange solvent, is the main culprit, as extended exposure leaches off the surface halide passivant, creating carrier trap states. Use of a high-dipole-moment aprotic solvent eliminates this problem and is shown to produce state-of-the-art devices in far fewer steps. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Study of the back recombination processes of PbS quantum dots sensitized solar cells

    Science.gov (United States)

    Badawi, Ali; Al-Hosiny, N.; Merazga, Amar; Albaradi, Ateyyah M.; Abdallah, S.; Talaat, H.

    2016-12-01

    In this study, the back recombination processes of PbS quantum dots sensitized solar cells (QDSSCs) has been investigated. PbS QDs were adsorbed onto titania electrodes to act the role of sensitizers using successive ionic layer adsorption and reaction (SILAR) technique. The energy band gaps of the synthesized PbS QDs/titania are ranged from 1.64 eV (corresponding to 756 nm) to 3.12 eV (397 nm) matching the whole visible solar spectrum. The hyperbolic band model (HBM) was used to calculate PbS QDs size and it ranges from 1.76 to 3.44 nm. The photovoltaic parameters (open circuit voltage Voc, short circuit current density Jsc, fill factor FF and efficiency η) of the assembled PbS QDs sensitized solar cells (QDSSCs) were determined under a solar illumination of 100 mW/cm2 (AM 1.5 conditions). The open circuit voltage-decay (OCVD) rates of the assembled PbS QDSSCs were measured. The time constant (τ) for PbS QDSSCs (4 SILAR cycles) shows one order of magnitude larger than that of PbS QDSSCs (8 SILAR cycles) as a result of a decreased electron-hole back recombination.

  16. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza

    2016-11-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  17. Application of the photoreflectance technique to the characterization of quantum dot intermediate band materials for solar cells

    International Nuclear Information System (INIS)

    Canovas, E.; Marti, A.; Lopez, N.; Antolin, E.; Linares, P.G.; Farmer, C.D.; Stanley, C.R.; Luque, A.

    2008-01-01

    Intermediate band materials rely on the creation of a new electronic band within the bandgap of a conventional semiconductor that is isolated from the conduction and valence band by a true zero density of states. Due to the presence of the intermediate band, a solar cell manufactured using these materials is capable of producing additional photocurrent, thanks to the absorption of photons with energy lower than the conventional bandgap. In this respect, the characterization of these materials by suitable techniques becomes a key element in the development of the new photovoltaic devices called intermediate band solar cells. The technique of photoreflectance is particularly suited to this purpose because it is contact-less and allows the characterization of the material without the need of actually manufacturing a complete device. Using room temperature photoreflectance we have analyzed intermediate band materials based on quantum dots and have been able to identify the energy levels involved. Also, from the photoreflectance data we have demonstrated the overlap of the wave-functions defined by the quantum dots

  18. Synthesis and property characterization of two novel side-chain isoindigo copolymers for polymer solar cells

    Directory of Open Access Journals (Sweden)

    X. Liu

    2015-11-01

    Full Text Available Two novel side-chain conjugated polymers, PTBT-TID and PTBT-TTID, based on the new synthetic thiophene-benzne-thiophene (TBT unit, side-chain isoindigo (ID unit, and the introduced thiophene π-bridge, have been designed and synthesized. The photophysical, electrochemical and photovoltaic properties of the two polymers have been systematically investigated. The two polymers possess relatively good solubility as well as excellent thermal stability up to 380°C, and all of the polymer solar cell (PSC devices based on the two polymers obtain high open circuit voltage (Voc of about 0.8 V. The polymer solar cells based on the polymer PTBT-TID show relatively higher efficiencies than the PTBT-TTID-based ones, due to the broader absorption spectrum, a relatively higher hole mobility, a lower HOMO (the highest occupied molecular orbital energy level, a stronger IPCE (the incident photon to current conversion efficiency response and a better microphase separation, Consequently, the device based on PTBT-TID:PC61BM (1:2, by weight gives the best power conversion efficiency (PCE of 2.04%, with a short-circuit current density (Jsc of 5.39 mA·cm–2, an open-circuit voltage (Voc of 0.83 V, and a fill factor (FF of 0.45.

  19. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Ekiz, Seyma; Pankow, Robert M.

    2017-01-01

    Although direct arylation polymerization (DArP) has recently emerged as an alternative to traditional cross-coupling methods like Suzuki polymerization, the evaluation of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. Because even the presence of minute...

  1. Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption

    Directory of Open Access Journals (Sweden)

    Viktor A. Öberg

    2017-10-01

    Full Text Available A facile heat-up synthesis route is used to synthesize environmentally friendly Ag2S colloidal quantum dots (CQDs that are applied as light absorbing material in solid state p-i-n junction solar cell devices. The as-synthesized Ag2S CQDs have an average size of around 3.5 nm and exhibit broad light absorption covering ultraviolet, visible, and near infrared wavelength regions. The solar cell devices are constructed with a device architecture of FTO/TiO2/Ag2S CQDs/hole transport material (HTM /Au using a solution-processed approach. Different HTMs, N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl-9,9′-spirobi(9H-fluorene-2,2′,7,7′ tetramine (spiro-OMeTAD, poly(3-hexylthiophene-2,5-diyl (P3HT, and poly((2,3-bis(3-octyloxyphenyl-5,8-quinoxalinediyl-2,5-thiophenediyl TQ1 are studied for maximizing the device photovoltaic performance. The solar cell device with P3HT as a hole transport material gives the highest performance and the solar cell exhibit broad spectral absorption. These results indicate that Ag2S CQD have high potential for utilization as environmentally friendly light absorbing materials for solar cell application and that the hole transport material is critical to maximize the solar cell photovoltaic performance.

  2. Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Ravva, Mahesh Kumar; Wang, Tonghui; Bredas, Jean-Luc

    2016-01-01

    Blends of π-conjugated polymers and fullerene derivatives are ubiquitous as the active layers of organic solar cells. However, a detailed understanding of the weak noncovalent interactions at the molecular level between the polymer chains

  3. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    Science.gov (United States)

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  4. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...

  5. Polymer tandem solar cells

    NARCIS (Netherlands)

    Gilot, J.

    2010-01-01

    Solar cells convert solar energy directly into electricity and are attractive contribute to the increasing energy demand of modern society. Commercial mono-crystalline silicon based devices are infiltrating the energy market but their expensive, time and energy consuming production process

  6. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    Science.gov (United States)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  7. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.

    Science.gov (United States)

    Li, Guangwu; Kang, Chong; Li, Cuihong; Lu, Zhen; Zhang, Jicheng; Gong, Xue; Zhao, Guangyao; Dong, Huanli; Hu, Wenping; Bo, Zhishan

    2014-06-01

    Four novel conjugated polymers (P1-4) with 9,10-disubstituted phenanthrene (PhA) as the donor unit and 5,6-bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low-lying HOMO energy levels (below -5.3 eV), and high hole mobilities (in the range of 3.6 × 10(-3) to 0.02 cm(2) V(-1) s(-1) ). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1-4:PC71 BM blends as the active layer and an alcohol-soluble fullerene derivative (FN-C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10-disubstituted PhA are potential donor materials for high-efficiency BHJ PSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  9. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.

    2014-03-24

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A p-type quantum dot/organic donor: Acceptor solar-cell structure for extended spectral response

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiang-Yu; Dayal, Smita; Kopidakis, Nikos; Beard, Matthew C.; Luther, Joseph M. [National Renewable Energy Laboratory, 1617 Cole Blvd, Golden CO 80401 (United States); Hou, Jianhui; Huo, Lijun [Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2011-07-15

    A coupled PbS quantum dot film and a PSBTBT:PCBM bulk heterojunction layer contribute comparable photocurrent in a new stacked solar-cell architecture with sensitivity in the near infrared and an efficiency >4%. With a focus on the energy level alignment between components, time-resolved microwave photoconductivity is used to elucidate the charge transport pathways for electrons and holes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  12. Manufacture, integration and demonstration of polymer solar cells in a lamp for the Lighting Africa initiative

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Damgaard Nielsen, Torben; Fyenbo, Jan

    2010-01-01

    Semitransparent flexible polymer solar cells were manufactured in a full roll-to-roll process under ambient conditions. After encapsulation a silver based circuit was printed onto the back side of the polymer solar cell module followed by sheeting and application of discrete components and vias...... two adjacent corners are joined via button contacts whereby the device can stand on a horizontal surface and the circuit is closed such that the battery discharges through the LEDs that illuminate the surface in front of the lamp. Several different lamps were prepared using the same solar cell...... mm. A hole with a ring was punched in one corner to enable mechanical fixation or tying. The lamp has two states. In the charging state it has a completely flat outline and will charge the battery when illuminated from either side while the front side illumination is preferable. When used as a lamp...

  13. NREL Scientists Report First Solar Cell Producing More Electrons In

    Science.gov (United States)

    measured in operating quantum dot solar cells at low light intensity; these cells showed significant power Photocurrent Than Solar Photons Entering Cell | News | NREL NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell News Release: NREL

  14. Influence of electron transport on the efficiency of polymer-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuxhaus, Viktor; Jaiser, Frank; Neher, Dieter [Institute of Physics and Astronomy, University Potsdam (Germany); Voges, Frank [Merck KGaA, Darmstadt (Germany)

    2010-07-01

    Recently, we showed that the mobility of electrons in polymer-based solar cells has a large influence on the overall performance of such devices. Here, we investigate the correlation between electron mobility and charge generation efficiency in organic bilayer solar cells for a series of electron transporting materials (ETMs) with comparable HOMO and LUMO levels. The electron mobility was measured by transient electroluminescence. Here, a thin M3EH-PPV was used as a sensing layer. The interface between M3EH-PPV and ETM acted as a recombination zone of electrons transported through the ETM layer and holes that are blocked at the interface. Therefore, the electron mobility can easily be determined from the onset of M3EH-PPV emission which is spectrally well separated from the ETM emission. To determine the charge generation efficiency, the different ETMs were combined in bilayer solar cell with PFB as donator.

  15. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    Science.gov (United States)

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    Science.gov (United States)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  17. Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Giménez, Sixto; Boix, Pablo P.; Shen, Qing; Calvo, Mauricio E.; Taghavinia, Nima; Azam Iraji zad; Toyoda, Taro; Míguez, Hernán

    2012-01-01

    Highlights: ► Electrode nanostructure and quantum dot growth method have a clear influence in the final quantum dot solar cell performance. ► Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area. ► Higher V oc values are systematically obtained for cells using CBD growth method in comparison with SILAR method. - Abstract: Here we analyze the effect of two relevant aspects related to cell preparation on quantum dot sensitized solar cells (QDSCs) performance: the architecture of the TiO 2 nanostructured electrode and the growth method of quantum dots (QD). Particular attention is given to the effect on the photovoltage, V oc , since this parameter conveys the main current limitation of QDSCs. We have analyzed electrodes directly sensitized with CdSe QDs grown by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR). We have carried out a systematic study comprising structural, optical, photophysical and photoelectrochemical characterization in order to correlate the material properties of the photoanodes with the functional performance of the manufactured QDSCs. The results show that the correspondence between photovoltaic conversion efficiency and the surface area of TiO 2 depends on the QDs deposition method. Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area and for cells using CBD growth method. This is systematically correlated to a higher recombination resistance of CBD sensitized electrodes. Electron injection kinetics from QDs into TiO 2 also depends on both the TiO 2 structure and the QDs deposition method, being systematically faster for CBD. Only for electrodes prepared with small TiO 2 nanoparticles SILAR method presents better performance than CBD, indicating that the small pore size disturb the CBD growth method. These results have important implications for the optimization of QDSCs.

  18. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath; Melianas, Armantas; Kan, Zhipeng; Pranculis, Vytenis; Wohlfahrt, Markus; Khan, Jafar Iqbal; Gorenflot, Julien; Xia, Yuxin; Inganä s, Olle; Gulbinas, Vidmantas; Kemerink, Martijn; Laquai, Fré dé ric

    2018-01-01

    -geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  19. Recent Advances in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Kietzke

    2007-01-01

    Full Text Available Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

  20. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications....... This is obtained by detailed knowledge of the degradation mechanisms. Methods to compare and standardize device stability are urgently needed. Methodologies to study failure mechanism that are based on physical processes (e.g. morphological changes) are well-established. However, methodologies to study chemical...... degradation mechanisms are currently scarce. An overview of known degradation mechanisms will be presented and discussed in relation to state-of-the-art methodologies to study failure mechanisms with focus on chemical degradation....

  1. Perovskite/polymer solar cells prepared using solution process

    International Nuclear Information System (INIS)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-01-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH 3 NH 3 PM 3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH 3 NH 3 I (methyl ammonium iodide) with PbI 2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm 2 at 25 °C comprised of an open circuit voltage of 0. 3 1 V, a short circuit current density of 2.53 mA/cm 2 , and a power conversion efficiency of 0.42%. (paper)

  2. Development of air stable polymer solar cells using an inverted gold on top anode structure

    International Nuclear Information System (INIS)

    Sahin, Yuecel; Alem, Salima; Bettignies, Remi de; Nunzi, Jean-Michel

    2005-01-01

    We developed indium-tin-oxide/perylene diimide (or bathocuproine (BCP))/poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) and [6,6]-phenyl C 60 butyric acid methyl ester (PCBM) blend/copper phthalocyanine (CuPc)/Au interpenetrated network polymer solar cells in order to improve air stability. The stability properties of the cells were characterized by current-voltage measurements under the influence of light and air. We achieved long lifetime solar cells which work at least 2 weeks under ambient air conditions without encapsulation. Solar energy conversion efficiency of the cells decrease 30% of the first day value at the end of 2 weeks. Photocurrent absorption properties of the devices were also investigated

  3. GaAsSb/InAs/(In)GaAs type II quantum dots for solar cell applications

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, Jan; Hospodková, Alice; Petříček, Otto; Pangrác, Jiří; Zíková, Markéta; Oswald, Jiří; Vetushka, Aliaksi

    2017-01-01

    Roč. 464, Apr (2017), s. 64-68 ISSN 0022-0248 R&D Projects: GA ČR(CZ) GP14-21285P; GA MŠk LO1603 Institutional support: RVO:68378271 Keywords : InAs * GaAsSb * InGaAs * quantum dot * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  4. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells.

    Science.gov (United States)

    Ordenes-Aenishanslins, Nicolás Alexis; Saona, Luis Alberto; Durán-Toro, Vicente María; Monrás, Juan Pablo; Bravo, Denisse Margarita; Pérez-Donoso, José Manuel

    2014-07-16

    One of the major challenges of nanotechnology during the last decade has been the development of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they are simple, safe and eco-friendly. In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate was able to produce TiO2 nanoparticles at 37 ° C in the presence of titanyl hydroxide. Biosynthesized nanoparticles have anatase polymorphic structure, spherical morphology, polydisperse size (40-60 nm) and an organic shell as determined by UV-vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly than chemically produced TiO2. Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures represents a novel alternative for the construction of green solar cells.

  5. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    KAUST Repository

    Ma, Zaifei

    2014-01-01

    A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.

  6. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    Science.gov (United States)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-05-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  7. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    International Nuclear Information System (INIS)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-01-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS 2 /ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion

  8. Poly(3-hexylthiophene) - CdSe quantum dot bulk heterojunction solar cells: Influence of the functional end-group of the polymer

    KAUST Repository

    Palaniappan, Kumaranand

    2009-06-23

    The synthesis of H/thiol terminated P3HT from Br/allyl-terminated P3HT precursor was analyzed. The photovoltaic response of blends were prepared of H/thiol terminated P3HT with spherical CdSe quantum dots(QD) and compares the results with regioregular H/Br and Br/aryl-terminated P3HT. Phase segregation was carried by mixing relatively polar pyridine treated CdSe QD with nonpolar P3HT. The experiment revealed that a high loading of CdSe is necessary for an efficient charge transport and different loading ratios of CdSe has been investigated to correlate the photovoltaic response as a function of ration between donor H/thiol-P3ht polymer and acceptor Cdse QD. The results show that H/Br-P3HT, H/thiol- and Br/allyl-terminated P3HT exhibits better performance and Cdse quantum dots were used to obtain results.

  9. A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells

    Science.gov (United States)

    Yang, Peizhi; Tang, Qunwei; Ji, Chenming; Wang, Haobo

    2015-12-01

    Pursuit of an efficient strategy for quantum dot-sensitized photoanode has been a persistent objective for enhancing photovoltaic performances of quantum dot-sensitized solar cell (QDSC). We present here the fabrication of the indium sulfide (In2S3) quantum dot-sensitized titanium dioxide (TiO2) photoanode by combining successive ionic layer adsorption and reaction (SILAR) with solvothermal processes. The resultant QDSC consists of an In2S3 sensitized TiO2 photoanode, a liquid polysulfide electrolyte, and a Co0.85Se counter electrode. The optimized QDSC with photoanode prepared with the help of a SILAR method at 20 deposition cycles and solvothermal method yields a maximum power conversion efficiency of 1.39%.

  10. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO₂ Based CdS Quantum Dot Sensitized Solar Cells.

    Science.gov (United States)

    Atif, M; Farooq, W A; Fatehmulla, Amanullah; Aslam, M; Ali, Syed Mansoor

    2015-01-19

    Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO) electrode into TiO₂.

  11. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Zuo, Lijian; Fu, Weifei

    2012-01-01

    To increase the open circuit voltage (VOC) of polymer solar cells based on diketopyrrolopyrrole (DPP) containing polymers, the weakly electron-withdrawing thiophene-3,4-dicarboxylate unit was introduced into the polymer backbone. Two ester group functionalized DPP containing polymers, PCTDPP...... with a random structure and PDCTDPP with a regular structure, were designed and synthesized by the Stille coupling reaction. The resulting copolymers exhibit broad and strong absorption bands from 350 to 1000 nm with low optical band gaps below 1.40 eV. Through cyclic voltammetry measurements, it is found...

  12. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  13. Efficient polymer solar cells on opaque substrates with a Laminated PEDOT : PSS top electrode

    NARCIS (Netherlands)

    Gupta, D.; Wienk, M.M.; Janssen, R.A.J.

    2013-01-01

    Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting

  14. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Cao, Jing; Liu, Jia-Cheng; Deng, Wen-Ting; Li, Ren-Zhi; Jin, Neng-Zhi

    2013-01-01

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO 2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO 2 electrode surface in supramolecular solar cells

  15. Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    International Nuclear Information System (INIS)

    Kim, Byung-Sung; Hong, John; Hou, Bo; Cho, Yuljae; Sohn, Jung Inn; Cha, SeungNam; Kim, Jong Min

    2016-01-01

    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell.

  16. Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Sung; Hong, John; Hou, Bo; Cho, Yuljae; Sohn, Jung Inn, E-mail: junginn.sohn@eng.ox.ac.uk, E-mail: seungnam.cha@eng.ox.ac.uk; Cha, SeungNam, E-mail: junginn.sohn@eng.ox.ac.uk, E-mail: seungnam.cha@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Kim, Jong Min [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2016-08-08

    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell.

  17. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application

    International Nuclear Information System (INIS)

    Yu, Libo; Li, Zhen; Liu, Yingbo; Cheng, Fa; Sun, Shuqing

    2014-01-01

    A double-layered TiO 2 film which three dimensional (3D) flowers grown on highly ordered self-assembled one dimensional (1D) TiO 2 nanorods was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The 3D TiO 2 flowers with the increased surface areas can adsorb more QDs, which increased the absorption of light; meanwhile 1D TiO 2 nanorods beneath the flowers offered a direct electrical pathway for photogenerated electrons, accelerating the electron transfer rate. A typical type II band alignment which can effectively separate photogenerated excitons and reduce recombination of electrons and holes was constructed by Mn-doped CdS QDs and TiO 2 flower-rod. The incident photon-to-current conversion efficiency (IPCE) of the Mn-doped CdS/TiO 2 flower-rod solar cell reached to 40% with the polysulfide electrolyte filled in the solar cell. The power conversion efficiency (PCE) of 1.09% was obtained with the Mn-doped CdS/TiO 2 flower-rod solar cell under one sun illumination (AM 1.5G, 100 mW/cm 2 ), which is 105.7% higher than that of the CdS/TiO 2 nanorod solar cell (0.53%).

  18. Preparation of conjugated polymer-based composite thin film for application in solar cell

    International Nuclear Information System (INIS)

    Yu, Yang-Yen; Chien, Wen-Chen; Ko, Yu-Hsin; Chen, Chih-Ping; Chang, Chao-Ching

    2015-01-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm 2 . - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained

  19. Preparation of conjugated polymer-based composite thin film for application in solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chien, Wen-Chen [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Ko, Yu-Hsin [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chen, Chih-Ping [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2015-06-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm{sup 2}. - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained.

  20. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  1. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Urbina, Antonio

    2011-01-01

    A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film was ...... photovoltaic technologies. The results showed that an Energy Pay-Back Time (EPBT) of 2.02 years can be achieved for an organic solar module of 2% efficiency, which could be reduced to 1.35 years, if the efficiency was 3%.......A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film...... printed. Finally the polymer solar modules were encapsulated, using a polyester barrier material. All operations except the application of ITO were carried out under ambient conditions. The life cycle analysis delivered a material inventory of the full process for a module production...

  2. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  3. PECASE: Multi-Spectral Photon Detection in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Unmanned Vehicles

    Science.gov (United States)

    2016-03-31

    on Organic Solar Cells The maximum amount of surfactant that can be included in the AIR-MAPLE target and still yield photovoltaic function was...in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Sb. GRANT NUMBER Unmanned Vehicles N00014-1 0-1-0481 Sc...photodetectors and solar cells deposited by RIR-MAPLE, and developing a simulation tool for optoelectronic device performance that accounts for RIR

  4. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells.

    Science.gov (United States)

    Sahin, Mehmet

    2018-05-23

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  5. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    Science.gov (United States)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  6. A round robin study of polymer solar cells and small modules across China

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Gevorgyan, Suren; Søndergaard, Roar R.

    2013-01-01

    not employ indium or vacuum and were prepared using only printing and coating techniques on flexible substrates. The devices were studied in their flexible form and thus approach the vision of what the polymer solar cell is. The main purpose of the work was to establish and chart geographic and cultural...

  7. Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Vesterager Madsen, Morten; Andreasen, Birgitta

    2011-01-01

    New thermally reactive copolymers based on dithienylthiazolo[5,4-d]thiazole (DTZ) and silolodithiophene (SDT) have been synthesized and explored in bulk heterojunction solar cells as mixtures with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). In thin films the polymers had optical band gaps...... in the range of 1.64-1.80 eV. For solubility the polymers have incorporated alkyl groups on the SDT unit and thermally removable ester groups on the DTZ unit that can be eliminated around 200 °C for improved photochemical stability in thin films. The bulkiness of the alkyl chains on the SDT unit proved...... to be very significant in terms of photovoltaic performance of the polymer:PCBM solar cells. Polymers based on 4,4-dihexyl-4H-silolo[3,2-b:4,5-b′]dithiophene reached power conversion efficiencies (PCEs) up to 1.45% but changing the alkyl groups to more bulky ethylhexyl chains reduced the PCE to 1.17%. More...

  8. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2017-11-01

    Full Text Available Three donor/acceptor (D/A-type two-dimensional polythiophenes (PTs; PBTFA13, PBTFA12, PBTFA11 featuring difluorobenzothiadiazole (DFBT derivatives as the conjugated (acceptor units in the polymer backbone and tertbutyl–substituted triphenylamine (tTPA-containing moieties as (donor pendants have been synthesized and characterized. These PTs exhibited good thermal stabilities, broad absorption spectra, and narrow optical band gaps. The cutoff wavelength of the UV–Vis absorption band was red-shifted upon increasing the content of the DFBT units in the PTs. Bulk heterojunction solar cells having an active layer comprising blends of the PTs and fullerene derivatives [6,6] phenyl-C61/71-butyric acid methyl ester (PC61BM/PC71BM were fabricated; their photovoltaic performance was strongly dependent on the content of the DFBT derivative in the PT. Incorporating a suitable content of the DFBT derivative in the polymer backbone enhanced the solar absorption ability and conjugation length of the PTs. The photovoltaic properties of the PBTFA13-based solar cells were superior to those of the PBTFA11- and PBTFA12-based solar cells.

  9. A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel; Norrman, Kion

    2009-01-01

    , complete processing in air using commonly available screen printing, and finally, simple mechanical encapsulation using a flexible packaging material and electrical contacting post-production using crimped contacts. We detail the production of more than 2000 modules in one production run and show......A complete polymer solar cell module prepared in the ambient atmosphere under industrial conditions is presented. The versatility of the polymer solar cell technology is demonstrated through the use of abstract forms for the active area, a flexible substrate, processing entirely from solution...

  10. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  11. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  12. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    Science.gov (United States)

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  13. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  14. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2015-07-08

    Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and

  15. A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang, Peizhi; Tang, Qunwei; Ji, Chenming; Wang, Haobo

    2015-01-01

    Graphical abstract: - Highlights: • In 2 S 3 sensitized TiO 2 anode is prepared by combining SILAR with solvothermal process. • The deposition cycle in SILAR process has an impact on cell performances. • A promising conversion efficiency of 1.39% is obtained for the optimal device. • The cell performances are markedly increased compared with SILAR technique. - Abstract: Pursuit of an efficient strategy for quantum dot-sensitized photoanode has been a persistent objective for enhancing photovoltaic performances of quantum dot-sensitized solar cell (QDSC). We present here the fabrication of the indium sulfide (In 2 S 3 ) quantum dot-sensitized titanium dioxide (TiO 2 ) photoanode by combining successive ionic layer adsorption and reaction (SILAR) with solvothermal processes. The resultant QDSC consists of an In 2 S 3 sensitized TiO 2 photoanode, a liquid polysulfide electrolyte, and a Co 0.85 Se counter electrode. The optimized QDSC with photoanode prepared with the help of a SILAR method at 20 deposition cycles and solvothermal method yields a maximum power conversion efficiency of 1.39%.

  16. Heterovalent Cation Substitutional and Interstitial Doping in Semiconductor Sensitizers for Quantum Dot Cosensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Ningning Zhang

    2015-01-01

    Full Text Available Doped films of TiO2/PbS/CdS have been prepared by successive ionic layer adsorption and reaction (SILAR method. Bi- and Ag-doped-PbS quantum dot (QD were produced by admixing Bi3+ or Ag+ during deposition and the existing forms of the doping element in PbS QD were analyzed. The results show that Bi3+ entered the cube space of PbS as donor yielding interstitial doping Bi-doped-PbS QD, while Ag+ replaced Pb2+ of PbS as acceptor yielding substitutional doping Ag-doped-PbS QD. The novel Bi-doped-PbS/CdS and Ag-doped-PbS/CdS quantum dot cosensitized solar cell (QDCSC were fabricated and power conversion efficiency (PCE of 2.4% and 2.2% was achieved, respectively, under full sun illumination.

  17. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Heremans, Paul; Dauskardt, Reinhold H.

    2012-01-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared

  18. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    Science.gov (United States)

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  19. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  20. Bulk Heterojunction Solar Cell Devices Prepared with Composites of Conjugated Polymer and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Nguyen Tam Nguyen Truong

    2017-01-01

    Full Text Available ZnO nanorods (Nrods with ~20–50 nm lengths were synthesized using an aqueous solution of zinc acetate and glacial acetic acid. Bulk heterojunction solar cells were fabricated with the structure of indium tin oxide (ITO/polyethylenedioxythiophene doped with polystyrene-sulfonic acid (PEDOT:PSS/ZnO-Nrods + polymer/electron transport layer (ETL/Al. Current density-voltage characterization of the resulting cells showed that, by adding an ETL and using polymers with a low band gap energy, the photoactive layer surface morphology and the device performance can be dramatically improved.

  1. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.; Heumü ller, Thomas; Mateker, William R.; Orozco, Darian E.; Cheacharoen, Rongrong; Sweetnam, Sean; Brabec, Christoph J.; McGehee, Michael D.

    2014-01-01

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C

  2. Photoacoustic Study of CdS QDs for Application in Quantum-Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S. Abdallah

    2012-01-01

    Full Text Available The optical properties and photovoltaic characterization of CdS quantum dots sensitized solar cells (QDSSCs were studied. CdS QDs were prepared by the chemical solution deposition (CD technique. Photoacoustic spectroscopy (PA was employed to study the optical properties of the prepared samples. The sizes of the CdS QDs were estimated from transmission electron microscope (TEM micrographs gives radii ranged from 1.57 to 1.92 nm. The current density-voltage (J-V characteristic curves of the assembled QDSSCs were measured. Fluorine doped Tin Oxide (FTO substrates were coated with 20 nm-diameter TiO2 nanoparticles (NPs. Presynthesized colloidal CdS quantum dots of different particles size were deposited on the TiO2-coated substrates using direct adsorption (DA method. The FTO counter electrodes were coated with platinum, while the electroelectrolyte containing I-/I-3 redox species was sandwiched between the two electrodes. The short current density (Jsc and efficiency (η increases as the particle size increases. The values of Jsc increases linearly with increasing the intensities of the sun light which indicates the greater sensitivity of the assembled cells.

  3. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    DEFF Research Database (Denmark)

    Ma, Zaifei; Sun, Wenjun; Himmelberger, Scott

    2014-01-01

    interfacial energy level offset ensures efficient exciton separation and charge generation. The structure–property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing......) in the repeating unit alters both polymer crystallinity and polymer–fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force...

  4. Lead selenide quantum dot polymer nanocomposites

    Science.gov (United States)

    Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

    2015-02-01

    Optical absorption and fluorescence properties of PbSe quantum dots (QDs) in an Angstrom Bond AB9093 epoxy polymer matrix to form a nanocomposite were investigated. To the authors’ knowledge, this is the first reported use of AB9093 as a QD matrix material and it was shown to out-perform the more common poly(methyl methacrylate) matrix in terms of preserving the optical properties of the QD, resulting in the first reported quantum yield (QY) for PbSe QDs in a polymer matrix, 26%. The 1-s first excitonic absorption peak of the QDs in a polymer matrix red shifted 65 nm in wavelength compared to QDs in a hexane solution, while the emission peak in the polymer matrix red shifted by 38 nm. The fluorescence QY dropped from 55% in hexane to 26% in the polymer matrix. A time resolved fluorescence study of the QDs showed single exponential lifetimes of 2.34 and 1.34 μs in toluene solution and the polymer matrix respectively.

  5. High-throughput roll-to-roll X-ray characterization of polymer solar cell active layers

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.; Jørgensen, Mikkel; Menzel, Andreas

    2012-01-01

    Synchrotron-based X-rays were used to probe active materials for polymer solar cells on flexible polyester foil. The active material was coated onto a flexible 130 micron thick polyester foil using roll-to-roll differentially pumped slot-die coating and presented variation in composition, thickness...

  6. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots

    Science.gov (United States)

    Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.

    2017-11-01

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  7. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.

    Science.gov (United States)

    Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M

    2017-11-08

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  8. Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-01-01

    factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated...... with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator...... to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on...

  9. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tsukigase, Hiroki; Suzuki, Yoshikazu; Berger, Marie-Hélène; Sagawa, Takashi; Yoshikawa, Susumu

    2011-03-01

    SnS-sensitized TiO2 electrodes were applied in quantum dot-sensitized solar cells (QDSSCs) which are environmentally more favorable than conventional Cd or Pb-chalcogenide-sensitized electrodes. SnS nanoparticles were well-distributed over the surface of TiO2 nanoparticles by the successive ionic layer adsorption and reaction (SILAR) method. Deposited SnS nanoparticles had diameter about 3 nm. Under AM1.5 irradiation with 100 mW/cm2 light intensity (at 1 sun), the energy conversion efficiency of obtained cells reached a value of 0.21% (0.25 cm2) at SILAR coating cycles of 5. In addition, the photovoltaic performance was improved by additional ZnS coating on the surface of SnS-sensitized TiO2 electrodes.

  10. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  11. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  12. 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Jian; Chen, Bai-Xue; Zhang, Fang-Shuai; Yu, Hui-Juan; Ma, Shuang; Kuang, Dai-Bin; Shao, Guang; Su, Cheng-Yong

    2016-04-05

    Two new electron-rich molecules based on 3,4-phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). X-ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT-core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10(-4)  cm(2)  V(-1)  s(-1) , being higher than that of spiro-OMeTAD, 2.34×10(-5)  cm(2)  V(-1)  s(-1)). The PSC based on MeO-PheDOT as HTM exhibits a short-circuit current density (Jsc) of 18.31 mA cm(-2) , an open-circuit potential (Voc ) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high-efficiency and low-cost HTMs for PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan

    2017-08-15

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  14. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan; Qian, Deping; Balawi, Ahmed Hesham; Wu, Yang; Ma, Wei; Laquai, Fré dé ric; Tang, Zheng; Zhang, Fengling; Li, Weiwei

    2017-01-01

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  15. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin

    2015-12-18

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  16. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin; Wei, Wan-Rou; Tang, Libin; Chang, Hung Chih; Tai, Shih Hsiang; Yang, Po Kang; Lau, Shu Ping; Chen, Lih Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  17. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  18. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    Science.gov (United States)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  19. Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.

    2006-01-01

    The synthesis of a zwitterionic ruthenium dye that binds to anatase surfaces and has a built-in functionality that allows for the attachment of a conjugated polymer chain is presented. The system was found to adsorb on the surface of anatase anchored by the ruthenium dye. Two types of devices were...... prepared: standard photoelectrochemical (PEC) solar cells and polymer solar cells. The PEC solar cells employed a sandwich geometry between TiO2 nanoporous photoanodes and Pt counter electrodes using LiI/I-2 in CH3CN as an electrolyte. The polymer solar cells employed planar anatase electrodes...

  20. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.

    Science.gov (United States)

    Tulsani, Srikanth Reddy; Rath, Arup Kumar

    2018-07-15

    The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-30

    Colloidal quantum dots (CQDs) are potentially low-cost, solution-processable semiconductors which are endowed, through their nanoscale dimensions, with strong absorption, band gap tunability, high dielectric constants and enhanced stability. CQDs are contenders as a standalone PV technology as well as a potential back layer for augmenting established photovoltaic (PV) technologies, such as Si. However, owing to their small size (ca. few nanometers), CQDs are prone to surface trap states that inhibit charge transport and threaten their otherwise wonderful optoelectronic properties. Surface traps have also, indirectly, impeded scalable and industry-compatible fabrication of these solar cells, as all of the reports, to date, have relied on spin-coating with sophisticated and tedious ligand exchange schemes, some of which need to be performed in low humidity environments. In this thesis, we posit that an in-depth understanding of the process-structure-property-performance relationship in CQDs can usher in fresh insights into the nature and origin of surface traps, lead to novel ways to mitigate them, and finally help achieve scalable fabrication. To this end, we probe the CQD surfaces and their interactions with process solvents, linkers, and ambient environment employing a suite of spectroscopic techniques. These fundamental insights help us develop facile chemical and physical protocols to mitigate surface traps such as solvent engineering, remote molecular doping, and oxygen doping, directly leading to better-performing solar cells. Our efforts finally culminate in the realization of >10% efficient, air-stable CQD solar cells scalably fabricated in an ambient environment of high, uncontrolled R.H. (50-65%). As-prepared solar cells fabricated in high humidity ambient conditions are found to underperform, however, an oxygen-doping recipe is devised to mitigate the moisture-induced surface traps and recover device performances. Importantly, these solar cells are

  2. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir; El Labban, Abdulrahman; Cruciani, Federico; Usman, Anwar; Beaujuge, Pierre; Mohammed, Omar F.

    2015-01-01

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room

  3. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  4. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  5. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee; Melianas, Armantas; Zhuang, Wenliu; Bergqvist, Jonas; Diaz De Zerio Mendaza, Amaia; Steckler, Timothy T.; Yu, Liyang; Bradley, Siobhan J.; Musumeci, Chiara; Gedefaw, Desta; Nann, Thomas; Amassian, Aram; Mü ller, Christian; Inganä s, Olle; Andersson, Mats R.

    2015-01-01

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  6. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee

    2015-09-08

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  7. Regulating Molecular Aggregations of Polymers via Ternary Copolymerization Strategy for Efficient Solar Cells.

    Science.gov (United States)

    Wang, Qian; Wang, Yingying; Zheng, Wei; Shahid, Bilal; Qiu, Meng; Wang, Di; Zhu, Dangqiang; Yang, Renqiang

    2017-09-20

    For many high-performance photovoltaic materials in polymer solar cells (PSCs), the active layers usually need to be spin-coated at high temperature due to the strong intermolecular aggregation of donor polymers, which is unfavorable in device repeatability and large-scale PSC printing. In this work, we adopted a ternary copolymerization strategy to regulate polymer solubility and molecular aggregation. A series of D-A 1 -D-A 2 random polymers based on different acceptors, strong electron-withdrawing unit ester substituted thieno[3,4-b]thiophene (TT-E), and highly planar dithiazole linked TT-E (DTzTT) were constructed to realize the regulation of molecular aggregation and simplification of device fabrication. The results showed that as the relative proportion of TT-E segment in the backbone increased, the absorption evidently red-shifted with a gradually decreased aggregation in solution, eventually leading to the active layers that can be fabricated at low temperature. Furthermore, due to the excellent phase separation and low recombination, the optimized solar cells based on the terpolymer P1 containing 30% of TT-E segment exhibit high power conversion efficiency (PCE) of 9.09% with a significantly enhanced fill factor up to 72.86%. Encouragingly, the photovoltaic performance is insensitive to the fabrication temperature of the active layer, and it still could maintain high PCE of 8.82%, even at room temperature. This work not only develops the highly efficient photovoltaic materials for low temperature processed PSCs through ternary copolymerization strategy but also preliminarily constructs the relationship between aggregation and photovoltaic performance.

  8. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  9. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Matthew R. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Makarov, Nikolay S. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Ramasamy, Karthik [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Jackson, Aaron [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Guglielmetti, Rob [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; McDaniel, Hunter [UbiQD, Inc., Los Alamos, New Mexico 87544, United States

    2018-01-30

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.

  10. Interfacial charge trapping in the polymer solar cells and its elimination by solvent annealing

    Directory of Open Access Journals (Sweden)

    A. K. Chauhan

    2016-09-01

    Full Text Available The PCDTBT:PCBM solar cells were fabricated adopting a tandem layer approach to investigate the critical issues of charge trapping, radiation absorption, and efficiency in polymer solar cells. This layered structure was found to be a source of charge trapping which was identified and confirmed by impedance spectroscopy. The low efficiency in multilayered structures was related to trapping of photo-generated carriers and low carrier mobility, and thus an increased recombination. Solvent annealing of the structures in tetrahydrofuran vapors was found beneficial in homogenizing the active layer, dissolving additional interfaces, and elimination of charge traps which improved the carrier mobilities and eventually the device efficiencies.

  11. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, Minyu; Feng, Shujing; Fang, Shibi; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen; Lin, Yuan

    2007-01-01

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V oc closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs

  12. Investigation of the optical characteristics of a combination of InP/ZnS-quantum dots with MWCNTs in a PMMA matrix

    Science.gov (United States)

    Landi, G.; Henninger, M.; De Girolamo del Mauro, A.; Borriello, C.; Di Luccio, T.; Neitzert, H. C.

    2013-10-01

    In the present study we investigated a combination of quantum dots with multi-walled carbon nanotubes as a possible future additive to the active layer of polymer solar cells. In this case the quantum dots should serve to enhance the long wavelength response of the solar cell, while the nanotubes enhance the charge carrier collection efficiency by favoring charge carrier separation and enhancement of the lateral conduction of the films. In order to clarify the interplay of the nanoparticles only, we deposited them into a non-conducting and transparent polymethyl-methalacrylate (PMMA) matrix. InP/ZnS quantum dots with an emission peak wavelength of 660 nm have been chosen in this study, because their addition can enhance the long wavelength response of conventional poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) bulk heterostructure polymer solar cells. In our study we kept the quantum dot concentration constant and varied the concentration of the carbon nanotubes (CNTs) in the deposited films. The characterization of the film morphology by scanning electron microscopy (SEM) imaging and of the optical properties by photoluminescence and transmittance revealed a rather complex interplay between nanotubes and quantum dots. In particular we found a strong quenching of the photoluminescence and an inhomogeneous CNT distribution for carbon nanotube concentrations exceeding 1%. The decrease in optical transmittance of the films with increasing CNT concentration is less pronounced, when quantum dots (QDs) are added. The optical transmittance in a wavelength range between 380 nm and 800 nm of the composites could be expressed empirically as a simple second order polynomial function.

  13. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO2 Based CdS Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Atif

    2015-01-01

    Full Text Available Cadmium sulphide (CdS quantum dot sensitized solar cells (QDSSCs based on screen-printed TiO2 were assembled using a screen-printing technique. The CdS quantum dots (QDs were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO electrode into TiO2.

  14. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Nordlund, Dennis; Dauskardt, Reinhold H.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface

  15. The Colloidal Stabilization of Quantum Dots: Towards Manufacturable, Efficient Solution-Processed Solar Cells

    Science.gov (United States)

    Rollny, Lisa

    Understanding colloidal stabilization can influence the design of optoelectronic devices and enable improvements to their performance and stability. For photovoltaics, important characteristics of the active layer material are high conductivity along with a minimum of recombination centers. In order to capitalize on the benefits of solution-processed materials, it is important to minimize the number of processing steps: ideally, to achieve a low-cost solution, materials would be deposited using a single process step compatible with roll-to-roll manufacturing. Prior to this work, the highest-performing colloidal quantum dots (CQD) solar cells have relied on several deposition steps that are repeated in a layer-by-layer (LBL) fashion. The purpose of these process steps has been to remove the long insulating ligands used in synthesis and replace them with short ligands that allow electrical conduction. The large number of steps combined, typically implemented via spin coating, leads to inefficient materials utilization and fails to show a path to a manufacturable solution. In this work, the first CQD solar cells were designed, built, and characterized combining state-of-art performance with scalable manufacture. Firstly, I report the first automated CQD synthesis to result in CQDs that form high-performance CQD solar cells. I analyze the CQD synthesis and by separating it into two phases---nucleation and growth phase---my insights are used to create higher-quality CQDs exhibiting enhanced monodispersity. I then proceed to develop a CQD ink: a CQD solution ready for direct deposition to form a semiconducting film exhibiting low trap state density. In early trials the CQD ink showed only limited power conversion efficiencies of 2%. I designed a new ink strategy, which I term cleavable hemiketal ligands. This novel two-component ligand strategy enables the combination of colloidal stabilization (via this longer two-component ligand) and cleavability (enabling excellent

  16. Sandwich-like singled-walled titania nanotube as a novel semiconductor electrode for quantum dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Cunku; Li, Xin; Fan, Xiujuan [Department of Chemistry, Harbin Institute of Technology, Harbin 150090 (China); Qi, Jingyao [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2012-06-15

    A novel sandwich-like singled-walled titania nanotube is designed as a photoanode in quantum dot-sensitized solar cells. It acts as a hollow coaxial nanocable, in which the injected electron is confined in the conducting layer for transport, guarded from electron recombination by the protective layers. An ultrafast interfacial electron transfer is also expected in this photoelectric system due to the unique nanoarchitecture. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Yan-Huei Lee

    2016-11-01

    Full Text Available The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy-benzo(1,2-b:4,5-b’dithiophene-2,6-diyl-alt- (4-(2-ethylhexanoyl-thieno [3,4-b]thiophene--2-6-diyl] (PBDTTT-C-T and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  18. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  19. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  20. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  1. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  2. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.; Vandewal, Koen; Bartelt, Jonathan A.; Mateker, William R.; Douglas, Jessica D.; Noriega, Rodrigo; Graham, Kenneth; Frechet, Jean; Salleo, Alberto; McGehee, Michael D.

    2012-01-01

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc 's above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  3. Fabrication, Characterization, and Optimization of CdS and CdSe Quantum Dot-Sensitized Solar Cells with Quantum Dots Prepared by Successive Ionic Layer Adsorption and Reaction

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2014-01-01

    Full Text Available CdS and CdSe quantum dot-sensitized solar cells (QDSSCs were used for the study of determining the optimum preparation parameters that could yield the best solar cell performance. The quantum dots (QDs were coated on the surface of mesoporous TiO2 layer deposited on FTO substrate using the successive ionic layer adsorption and reaction (SILAR method. In this method the QDs are allowed to grow on TiO2 by dipping the TiO2 electrode successively in two different solutions for predetermined times. This method allows the fabrication of QDs in a facile way. Three preparation parameters that control the QD fabrication were investigated: concentration of precursor solutions, number of dipping cycles (SILAR cycles, and dipping time in each solution. CdS based QDSSC showed optimum performance when the QDs were prepared from precursor solutions having the concentration of 0.10 M using 4 dipping cycles with the dipping time of 5 minutes in each solution. For CdSe QDSSC, the optimum performance was achieved with QDs prepared from 0.03 M precursor solutions using 7 dipping cycles with 30 s dipping time in each solution. The QDs deposited on TiO2 surface were characterized using UV-vis absorption spectroscopy, FESEM, and TEM imaging.

  4. Indium Tin Oxide-Free Polymer Solar Cells: Toward Commercial Reality

    DEFF Research Database (Denmark)

    Angmo, Dechan; Espinosa Martinez, Nieves; Krebs, Frederik C

    2014-01-01

    Polymer solar cell (PSC) is the latest of all photovoltaic technologies which currently lies at the brink of commercialization. The impetus for its rapid progress in the last decade has come from low-cost high throughput production possibility which in turn relies on the use of low-cost materials...... and vacuum-free manufacture. Indium tin oxide (ITO), the commonly used transparent conductor, imposes the majority of the cost of production of PSCs, limits flexibility, and is feared to create bottleneck in the dawning industry due to indium scarcity and the resulting large price fluctuations. As such...

  5. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  6. Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    KAUST Repository

    Ardalan, Pendar

    2010-06-01

    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.

  7. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  8. Photovoltaic conversion efficiency of InN/InxGa1-xN quantum dot intermediate band solar cells

    Science.gov (United States)

    Ben Afkir, N.; Feddi, E.; Dujardin, F.; Zazoui, M.; Meziane, J.

    2018-04-01

    The behavior of InN/InxGa1-xN spherical quantum dots solar cell is investigated, considering the internal electric field induced by the polarization of the junction. In order to determine the position of the intermediate band (IB), we present an efficient numerical technique based on difference finite method to solve the 3D time-independent Schrödinger's equation in spherical coordinates. The resultant n × n Hamiltonian matrix when considering n discrete points in spatial direction is diagonalized in order to calculate energy levels. Thus, the interband and intersubband transitions are determined, taking into consideration the effect of the internal electric field, size dots, interdot distances, and indium content on the energy levels, optical transition, photo-generated current density, open-circuit voltage and power conversion efficiency of the QD-IBSCs.

  9. Fabrication of PbS quantum dots and their applications in solar cells based on ZnO nanorod arrays

    Science.gov (United States)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-05-01

    An efficient, inexpensive and large area scalable approach based on sol-gel technique is presented to fabricate quantum dots (QDs) of PbS. Size of the QDs is tuned by the varying the bath concentrations in the range of 50-200 mM. Transmission electron microscopy (TEM) studies confirm the growth of spherically shaped ˜5.6 nm QDs at 50 mM bath concentration. The optical bandgap of the QDs is found to be ˜0.9 eV and corresponds to the size obtained from TEM studies. ZnO/PbS solar cells are fabricated by sensitizing the ZnO nanorods with PbS QDs. The fabricated solar cells demonstrate the highest open circuit voltage ˜200 mV and short circuit current density ˜0.81 µA/cm2.

  10. The short circuit current improvement in P3HT:PCBM based polymer solar cell by introducing PSBTBT as additional electron donor.

    Science.gov (United States)

    Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping

    2014-05-01

    Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.

  11. Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities

    KAUST Repository

    Mateker, William R.; Douglas, Jessica D.; Cabanetos, Clement; Sachs-Quintana, I. T.; Bartelt, Jonathan A.; Hoke, Eric T.; El Labban, Abdulrahman; Beaujuge, Pierre; Frechet, Jean; McGehee, Michael D.

    2013-01-01

    While bulk heterojunction (BHJ) solar cells fabricated from high M n PBDTTPD achieve power conversion efficiencies (PCE) as high as 7.3%, the short-circuit current density (JSC) of these devices can drop by 20% after seven days of storage in the dark and under inert conditions. This degradation is characterized by the appearance of S-shape features in the reverse bias region of current-voltage (J-V) curves that increase in amplitude over time. Conversely, BHJ solar cells fabricated from low Mn PBDTTPD do not develop S-shaped J-V curves. However, S-shapes identical to those observed in high Mn PBDTTPD solar cells can be induced in low M n devices through intentional contamination with the TPD monomer. Furthermore, when high Mn PBDTTPD is purified via size exclusion chromatography (SEC) to reduce the content of low molecular weight species, the JSC of polymer devices is significantly more stable over time. After 111 days of storage in the dark under inert conditions, the J-V curves do not develop S-shapes and the JSC degrades by only 6%. The S-shape degradation feature, symptomatic of low device lifetimes, appears to be linked to the presence of low molecular weight contaminants, which may be trapped within samples of high Mn polymer that have not been purified by SEC. Although these impurities do not affect initial device PCE, they significantly reduce device lifetime, and solar cell stability is improved by increasing the purity of the polymer materials. © 2013 The Royal Society of Chemistry.

  12. A universal route to fabricate n-i-p multi-junction polymer solar cells via solution processing

    NARCIS (Netherlands)

    Rasi, Dario Di Carlo; Hendriks, Koen H.; Heintges, Gael H. L.; Simone, Giulio; Gelinck, Gerwin H.; Gevaerts, Veronique S.; Andriessen, Ronn; Pirotte, Geert; Maes, Wouter; Li, Weiwei; Wienk, Martijn M.; Janssen, Rene A. J.

    The interconnection layer (ICL) that connects adjacent subcells electrically and optically in solution‐processed multi‐junction polymer solar cells must meet functional requirements in terms of work functions, conductivity, and transparency, but also be compatible with the multiple layer stack in

  13. Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications

    Science.gov (United States)

    Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu

    2018-05-01

    Graphene: polymer composite based electrically conducting films are realized by a facile solution processable method. Ultraviolet Photoelectron Spectroscopy (UPS) measurements on the composite films, reveal a low work function of reduced graphene oxide (rGO) obtained from hydrazine hydrate reduction of graphene oxide (GO). We suggest that the low work function could potentially make rGO: PMMA composite suitable for electron conducting layer in perovskite solar cells in place of traditionally used expensive PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) layer. Further, we demonstrate from the gravimetric experiments conducted on rGO: PMMA films, that the same coating is also resistant to moisture permeation. This latter property can be used to realize a protective coating layer for perovskite films, which are prone to moisture induced degradation. Thus, dual functionality of rGO-PMMA films is demonstrated towards integration with perovskite solar cells. Architecture of perovskite solar cell based on these concepts is proposed.

  14. Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyethylene glycol modified carbon quantum dots

    Science.gov (United States)

    Zhu, Wanlu; Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; Tang, Qunwei

    2017-11-01

    Photovoltaics are promising solutions to energy crisis and environmental pollution problems. The dye-sensitized solar cells with mesoscopic structures have attracted growing interests because of zero emissions, easy fabrication, scalable materials and techniques, etc. However, the state-of-the-art dye-sensitized solar cells have narrow spectral absorption for photoelectric conversion and high electron-hole recombination rate under sunlight illumination. Therefore, it is a persistent object to make wide-spectral absorption and fast charge extraction solar cells for energy harvest in both solar and dark-light conditions. To address this issue, we present here experimental realization of a category of solar cells converting visible and near-infrared light into electricity by co-sensitizing photoanode with N719 dye and polyethylene glycol (PEG) modified carbon quantum dots (PEG-m-CQDs), arising from up-conversion and hole-transporting behaviors of PEG-m-CQDs as well as photofluorescence of green-emitting long persistence phosphors. The optimized solar cell yields maximized photoelectric conversion efficiencies of 9.89% and 25.81% under simulated sunlight (air mass 1.5, 100 mW cm-2) illumination and dark conditions, respectively. This work is far from optimization, but the physical proof-of-concept hybridized solar cell may markedly increase electricity generation time and total power output of photovoltaic platforms.

  15. The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell

    KAUST Repository

    Peters, Craig H.

    2011-10-11

    Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    International Nuclear Information System (INIS)

    Melnig, V.; Apostu, M.-O.; Foca, N.

    2008-01-01

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  17. Quantum dots: Rethinking the electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  18. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    International Nuclear Information System (INIS)

    Huang, Like; Hu, Ziyang; Zhang, Ke; Chen, Peipei; Zhu, Yuejin

    2015-01-01

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS

  19. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Like; Hu, Ziyang, E-mail: huziyang@nbu.edu.cn; Zhang, Ke; Chen, Peipei; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    2015-03-02

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS.

  20. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    Science.gov (United States)

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  1. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Fyenbo, Jan; Jørgensen, Mikkel

    2010-01-01

    The improvement of the performance of roll-to-roll processed polymer solar cell modules through miniaturization of the device outline is described. The devices were prepared using full roll-to-roll processing comprising flexographic printing, slot-die coating and rotary screen printing to create ......HT:[70]PCBM. The solar cell modules were used to demonstrate the complete manufacture of a small lamp entirely using techniques of flexible electronics. The solar cell module was used to charge a polymer lithium ion battery through a blocking diode. The entire process was fully automated...

  2. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells

    Science.gov (United States)

    Kourkoutis, Lena F.; Hao, Xiaojing; Huang, Shujuan; Puthen-Veettil, Binesh; Conibeer, Gavin; Green, Martin A.; Perez-Wurfl, Ivan

    2013-07-01

    All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to reduced inter-QD coupling in the layer. Efficient carrier transport via mini-bands is in this case more likely across the multilayers provided the SiO2 spacer layer is thin enough to allow coupling in the vertical direction.All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to

  3. Colloidal Engineering for Infrared-Bandgap Solution-Processed Quantum Dot Solar Cells

    Science.gov (United States)

    Kiani, Amirreza

    Ever-increasing global energy demand and a diminishing fossil fuel supply have prompted the development of technologies for sustainable energy production. Solar photovoltaic (PV) devices have huge potential for energy harvesting and production since the sun delivers more energy to the earth in one hour than the global population consumes in one year. The solar cell industry is now dominated by silicon PV devices. The cost of silicon modules has decreased substantially over the past two decades and the number of installed silicon PV devices has increased dramatically. There remains a need for emerging solar technologies that can harvest the untapped portion of the solar spectrum and can be integrated on flexible and curved surfaces. This thesis focuses on colloidal quantum dot (CQD) PV devices. CQDs are nanoparticles fabricated using a low-temperature and cost-effective solution technique. These materials suffer from a high density of surface traps derived from the large surface-to-volume ratio of CQD nanoparticles, combined with limited carrier mobility. These result in a short carrier diffusion length, a main limiting factor in CQD solar cell performance. This thesis seeks to address the poor diffusion length in lead sulfide (PbS) CQD films and pave the way for new applications for CQD PV devices in infrared solar harvesting and waste heat recovery. A two-fold reduction in surface trap density is demonstrated using molecular halide treatment. Iodine molecules introduced prior to the film formation replace the otherwise unpassivated surface sulfur atoms. This results in a 35% increase in the diffusion length and enables charge extraction over thicker active layer leading to the world's most efficient CQD PV devices from June 2015 to July 2016 with the certified power conversion efficiency of 9.9%. This represents a 30% increase over the best-certified PCE (7.5%) prior to this thesis. The colloidal engineering highlighted herein enables infrared (IR) solar

  4. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    Science.gov (United States)

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  5. Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Pedersen, Emil Bøje Lind

    2015-01-01

    one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use......The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added...

  6. The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices

    KAUST Repository

    Kramer, Illan J.

    2014-01-08

    The materials chemistry of Colloidal Quantum Dot (CQDs) suspended in solution and processed into films has provided a foundation onto which useful photovoltaic devices can be built. These active materials offer the benefits of solution processing paired with the flexibility of adjustable bandgaps, tailored to suit a particular need. In parallel with these advances, pursuing device geometries that better leverage the available electronic properties of CQD films has borne fruit in further advancing CQD solar cell performance. For active materials such as CQD films where 1/α, where alpha is the absorption coefficient, is of the same order as the free carrier extraction length, external quantum efficiency (EQE) measurements have proved useful in profiling the effectiveness of each nanometer of device thickness at extracting photogenerated carriers. Because CQD films have the added complications of being made of variable-sized constituent material building blocks as well as being deposited from solution, the nature of charge transport through the films can also be size-dependent and matrix dependent.

  7. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Gevorgyan, Suren; Alstrup, Jan

    2009-01-01

    An inverted polymer solar cell geometry comprising a total of five layers was optimized using laboratory scale cells and the operational stability was studied under model atmospheres. The device geometry was substrate-ITO-ZnO-(active layer)-PEDOT:PSS-silver with P3HT-PCBM as the active layer. The...

  8. Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions

    International Nuclear Information System (INIS)

    Nozawa, Tomohiro; Arakawa, Yasuhiko

    2014-01-01

    The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)

  9. All-solution-processed PbS quantum dot solar modules

    Science.gov (United States)

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-01

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade

  10. Exploitation of inimitable properties of CuInS2 quantum dots for energy conversion in bulk heterojunction hybrid solar cell

    Science.gov (United States)

    Jindal, Shikha; Giripunje, Sushama M.

    2017-11-01

    Quantum dots (QDs) are the suitable material for solar cell devices owing to its distinctive optical, electrical and electronic properties. Currently, the most efficient devices have employed the toxic QDs which cause destructive impact on environment. In the present article, we have used environment benign CuInS2 QDs as an acceptor material in bulk heterojunction device of P3HT and QDs. The energy level positions corroborated from UPS spectra substantiates the acceptor property of CuInS2. We scrutinized the hybrid solar cell by tailoring the acceptor content in active layer. The increased acceptor content intensifies the performance of device. The enhancement in photovoltaic parameters is mainly due to the fast dissociation and extraction of photogenerated excitons which occurs with the larger wt% of acceptor QDs. Current density-voltage characteristics describes the greater V oc and I sc in the 60 wt% CuInS2 QDs based solar cell as compared to the low wt% of QDs in the active layer.

  11. Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles

    International Nuclear Information System (INIS)

    Masala, S.; Del Gobbo, S.; Borriello, C.; Bizzarro, V.; La Ferrara, V.; Re, M.; Pesce, E.; Minarini, C.; De Crescenzi, M.; Di Luccio, T.

    2011-01-01

    The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.

  12. Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer

    International Nuclear Information System (INIS)

    Lu, Shudi; Lin, Jie; Liu, Kong; Yue, Shizhong; Ren, Kuankuan; Tan, Furui; Wang, Zhijie; Jin, Peng; Qu, Shengchun; Wang, Zhanguo

    2017-01-01

    To take a full advantage of polymer semiconductors on realization of large-area flexible photovoltaic devices, herein, we fabricate polymer solar cells on the basis of polyethylene terephthalate (PET) with imprinted Ag grid as transparent electrode. The key fabrication procedure is the adoption of a modified PEDOT:PSS (PH1000) solution for spin-coating the buffer layer to form a compact contact with the substrate. In comparison with the devices with intrinsic PEDOT:PSS buffer layer, the advanced devices present a much higher efficiency of 6.51%, even in a large device area of 2.25 cm"2. Subsequent characterizations reveal that such devices show an impressive performance stability as the bending angle is enlarged to 180° and bending time is up to 1000 cycles. Not only providing a general methodology to construct high efficient and flexible polymer solar cells, this paper also involves deep insights on device working mechanism in bending conditions.

  13. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  14. Fabrication and processing of polymer solar cells: A review of printing and coating techniques

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    Polymer solar cells are reviewed in the context of the processing techniques leading to complete devices. A distinction is made between the film-forming techniques that are used currently such as spincoating, doctor blading and casting and the, from a processing point of view, more desirable film...... are described with focus on the particular advantages and disadvantages associated with each case....

  15. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Science.gov (United States)

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  16. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability

    Science.gov (United States)

    Huang, Li-Bo; Su, Pei-Yang; Liu, Jun-Min; Huang, Jian-Feng; Chen, Yi-Fan; Qin, Su; Guo, Jing; Xu, Yao-Wei; Su, Cheng-Yong

    2018-02-01

    This work proposes a new perovskite solar cell structure by inserting a polymer interlayer between perovskite and hole transporting material (HTM) to minimize the interface losses via interface engineering. The multifunctional interlayers improve the photovoltaic efficiency and device stability by shielding perovskite from moisture, suppressing charge combination, and promoting hole transport. The five different polymer layers are utilized to investigate the relationships of polymer structure, layer morphology and cell performance systematically. It is found that a reliable power conversion efficiency exceeding 19.0% is realized based on P3HT/spiro-OMeTAD composite structure, surpassing that of pure spiro-OMeTAD (15.0%). Moreover, the device with P3HT interlayer shows more brilliant long-term stability than that without interlayer when exposed into moisture. The enhanced device performance based on P3HT interlayer compared with the other polymers can be ascribed to the long hydrophobic alkyl chains and the small molecule monomers of P3HT, which contribute to self-assembly of the polymers into insulating layers and formation of the efficient π-π stacking in polymer/spiro-OMeTAD interface simultaneously. This study provides a practical route for the integration of a new class of easily-accessible, solution-processed interfacial polymer materials for high-performance and long-time stable PSC.

  17. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    International Nuclear Information System (INIS)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Alfano, Robert; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.

    2014-01-01

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm 2 ) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm 2 ) is found to be superlinear, showing a relation of I = P n , where n = 1.4.

  18. Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuning [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Zuo, Xiaobing [X-ray Science Division; Argonne National Laboratory; Argonne; USA; Xie, Shenkun [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Yuan, Jianyu [Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou; P. R. China; Zhou, Huiqiong [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190; China; Zhang, Yuan [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China

    2017-01-01

    Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).

  19. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  20. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Science.gov (United States)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-02-01

    In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including JSC = 9.40 mA cm-2, VOC = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, JSC = 7.12 mA cm-2, VOC = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV-vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.