WorldWideScience

Sample records for dot array formation

  1. Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes

    Science.gov (United States)

    2010-01-01

    To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity. PMID:20681601

  2. Templating growth of gold nanostructures with a CdSe quantum dot array.

    Science.gov (United States)

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-06-07

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ≈7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.

  3. Plasmonic resonances in optomagnetic metamaterials based on double dot arrays.

    Science.gov (United States)

    Kravets, Vasyl G; Schedin, Fred; Taylor, Shaun; Viita, David; Grigorenko, Alexander N

    2010-05-10

    We study optical properties of optomagnetic metamaterials produced by regular arrays of double gold dots (nanopillars). Using combined data of spectroscopic ellipsometry, transmission and reflection measurements, we identify localized plasmon resonances of a nanopillar pair and measure their dependences on dot sizes. We formulate the necessary condition at which an effective field theory can be applied to describe optical properties of a composite medium and employ interferometry to measure phase shifts for our samples. A negative phase shift for transmitted green light coupled to an antisymmetric magnetic mode of a double-dot array is observed. (c) 2010 Optical Society of America.

  4. Edge-state blockade of transport in quantum dot arrays

    Science.gov (United States)

    Benito, Mónica; Niklas, Michael; Platero, Gloria; Kohler, Sigmund

    2016-03-01

    We propose a transport blockade mechanism in quantum dot arrays and conducting molecules based on an interplay of Coulomb repulsion and the formation of edge states. As a model we employ a dimer chain that exhibits a topological phase transition. The connection to a strongly biased electron source and drain enables transport. We show that the related emergence of edge states is manifest in the shot noise properties as it is accompanied by a crossover from bunched electron transport to a Poissonian process. For both regions we develop a scenario that can be captured by a rate equation. The resulting analytical expressions for the Fano factor agree well with the numerical solution of a full quantum master equation.

  5. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nevedomskiy, V. N., E-mail: nevedom@mail.ioffe.ru; Bert, N. A.; Chaldyshev, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  6. Long-distance coherent coupling in a quantum dot array.

    Science.gov (United States)

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

  7. Quantum transport through an array of quantum dots.

    Science.gov (United States)

    Chen, Shuguang; Xie, Hang; Zhang, Yu; Cui, Xiaodong; Chen, Guanhua

    2013-01-07

    The transient current through an array of as many as 1000 quantum dots is simulated with two newly developed quantum mechanical methods. To our surprise, upon switching on the bias voltage, the current increases linearly with time before reaching its steady state value. And the time required for the current to reach its steady state value is proportional to the length of the array, and more interestingly, is exactly the time for a conducting electron to travel through the array at the Fermi velocity. These quantum phenomena can be understood by a simple analysis on the energetics of an equivalent classical circuit. An experimental design is proposed to confirm the numerical findings.

  8. Thermally induced switching field distribution of a single CoPt dot in a large array

    NARCIS (Netherlands)

    Engelen, J.B.C.; Delalande, M.; Febre, le A.J.; Bolhuis, T.; Kikuchi, N.; Abelmann, L.; Lodder, J.C.; Shimatsu, T.

    2010-01-01

    Magnetic dot arrays with perpendicular magnetic anisotropy were fabricated by patterning Co80Pt20-alloy continuous films by means of laser interference lithography. As commonly seen in large dot arrays, there is a large difference in the switching field between dots. Here we investigate the origin o

  9. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    Science.gov (United States)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  10. Dot-array implantation for patterned doping of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wanzenboeck, H.D. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria)]. E-mail: heinz.wanzenboeck@tuwien.ac.at; Ostermaier, C. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Gruen, A. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Eichinger, B. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Karner, M. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Bertagnolli, E. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria)

    2006-01-15

    Novel ion beam processing for microelectronic applications has been performed by doping silicon with a focused ion beam tool. A Ga{sup +} ion beam with a energy between 10 and 50 keV was used for p-doping of Si. The ion beam could be focused to an effective beam diameter in the sub-micron range with the smallest focus own below 10 nm. In contrast to conventional implantation with a broad ion beam where the doped area is assigned by a hardmask the implantation was achieved by scanning a focused ion beam over the designated implantation area. With this approach not only the hardmask becomes obsolete because of the electronic beam guidance. Moreover, different doses may be implanted on the same wafer. An additional feature is the inhomogeneous implantation in a pixel-array, where the distance between exposed pixels can be deliberately varied. Even single spots can be independently doped with the focused gallium beam. Due to lateral scattering of ions in the semiconductor the circular implantation area is larger than the beam diameter. With a variation of the pixel spacing we could intentionally obtain either a overlap or a separation of implantation spots. With a four-point method we have investigated the conductivity of the dot-array implanted area. The conductivity of the p-doped region could be deliberately scaled by varying the pixel spacing, the implantation dose and the ion energy. The effective implantation diameter of a single pixel could be determined. This modified implantation approach was also used to fabricate functional p-channel MOSFET's. The Ga implantation with a focused ion beam was used for p-doping of source and drain regions of the transistor device. The utilization of this dot-array implantation with a FIB for semiconductor circuitry demonstrates the potential application of this approach. With the laterally inhomogeneous implantation dot-arrays of doped zones in the nanometer range could be fabricated.

  11. Current noise in a vibrating quantum dot array

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, Tomas; Jauho, Antti-Pekka

    2004-01-01

    We develop methods for calculating the zero-frequency noise for quantum shuttles, i.e., nanoelectromechanical devices where the mechanical motion is quantized. As a model system we consider a three-dot array, where the internal electronic coherence both complicates and enriches the physics. Two...... different formulations are presented: (i) quantum regression theorem and (ii) the counting variable approach. It is demonstrated, both analytically and numerically, that the two formulations yield identical results, when the conditions of their respective applicability are fulfilled. We describe the results......, shuttling versus cotunneling). In the case of weak interdot coupling, the electron transport proceeds via sequential tunneling between neighboring dots. A simple rate equation with the rates calculated analytically from the P(E) theory is developed and shown to agree with the full numerics....

  12. Melamine-DNA encoded periodicity of quantum dot arrays.

    Science.gov (United States)

    Singh, Seema; Kumari, Rina; Chakraborty, Anirban; Hussain, Sahid; Singh, Manoj K; Das, Prolay

    2016-01-01

    Formation of QD-array in solution phase guided by the self-assembly with DNA-melamine hybrid molecules is reported here. Melamine was conjugated with ssDNA using phosphoramidate chemistry. Aqueous soluble ZnSe/ZnS QDs conjugated to complementary ssDNA was self-assembled with the DNA-melamine hybrid molecules by DNA-hybridization. The self-assembly leads to the precise positioning of the QDs in QDs array where the inter QD distance is being maintained by the DNA sequence length. The QD array was characterized by gel electrophoresis, UV-visible and fluorescence spectrophotometry and circular dichroism. Direct visualization of the DNA-melamine hybrid molecule mediated QD array was made possible by atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis. Substantial increase in the fluorescence intensity and lifetime of the QDs was observed on array formation by DNA self-assembly.

  13. Inducing vortex formation in multilayered circular dots using remanent curves

    Science.gov (United States)

    Kim, Dong-Ok; Ryeol Lee, Dong; Choi, Yongseong; Metlushko, Vitali; Park, Jihwey; Kim, Jae-Young; Bong Lee, Ki

    2012-11-01

    We report field manipulation of magnetic vortex states in Co(30 nm)/Cu(3 nm)/Ni80Fe20 (20 nm)-multilayer dot arrays via remanent curve. The element-resolved resonant x-ray magnetic measurements, combined with micromagnetic simulations, show vortex formation in the Co layer but not in the NiFe layer along the major hysteresis loop. Although the two magnetic layers are not directly coupled due to the presence of the Cu interlayer, the NiFe layer is strongly influenced by the dipolar field from uncompensated magnetic poles in the Co layer. Using remanent curves, we demonstrate that the single vortex state can be induced simultaneously in both layers.

  14. Soliton nanoantennas in two-dimensional arrays of quantum dots

    CERN Document Server

    Gligorić, G; Hadžievski, Lj; Slepyan, G Ya; Malomed, B A

    2015-01-01

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schr\\"{o}dinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D \\textit{% soliton-based nano-antenna}, which should be stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  15. Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors

    Science.gov (United States)

    Gunapala, Sarath; Wilson, Daniel; Hill, Cory; Liu, John; Bandara, Sumith; Ting, David

    2007-01-01

    Focal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as

  16. Model of tunnelling through periodic array of quantum dots

    Directory of Open Access Journals (Sweden)

    Meynster Dmitry

    2017-01-01

    Full Text Available Several explicitly solvable models of electron tunnelling in a system of single and double two-dimensional periodic arrays of quantum dots with two laterally coupled leads in a homogeneous magnetic field are constructed. First, a model of single layer formed by periodic array of zero-range potentials is described. The Landau operator (the Schrodinger operator with a magnetic field with point-like interactions is the system Hamiltonian. We deal with two types of the layer lattices: square and honeycomb. The periodicity condition gives one an invariance property for the Hamiltonian in respect to magnetic translations group. The consideration of double quantum layer reduces to the replacement of the basic cell for the single layer by a cell including centers of different layers. Two variants of themodel for the double layer are suggested: with direct tunneling between the layers and with the connecting channels (segments in the model between the layers. The theory of self-adjoint extensions of symmetric operators is a mathematical background of the model. The third stage of the construction is the description of leads connection. It is made by the operator extensions theory method too. Electron tunneling from input lead to the output lead through the double quantum layer is described. Energy ranges with extremely small (practically, zero transmission were found. Dependencies of the transmission coefficient (particularly, “zero transmission bands” positions on the magnetic field, the energy of electron and the distance between layers are investigated. The results are compared with the corresponding single-layer transmission.

  17. Discrete solitons in an array of quantum dots

    CERN Document Server

    Gligoric, Goran; Hadzievski, Ljupco; Slepyan, Gregory Ya; Malomed, Boris A

    2013-01-01

    We develop a theory for the interaction of classical light fields with an a chain of coupled quantum dots (QDs), in the strong-coupling regime, taking into account the local-field effects. The QD chain is modeled by a one-dimensional (1D) periodic array of two-level quantum particles with tunnel coupling between adjacent ones. The local-field effect is taken into regard as QD depolarization in the Hartree-Fock-Bogoliubov approximation. The dynamics of the chain is described by a system of two discrete nonlinear Schr\\"{o}dinger (DNLS) equations for local amplitudes of the probabilities of the ground and first excited states. The two equations are coupled by a cross-phase-modulation cubic terms, produced by the local-field action, and by linear terms too. In comparison with previously studied DNLS systems, an essentially new feature is a phase shift between the intersite-hopping constants in the two equations. By means of numerical solutions, we demonstrate that, in this QD chain, Rabi oscillations (RO) self-tr...

  18. Negative Differential Resistance Probe for Interdot Interactions in a Double Quantum Dot Array.

    Science.gov (United States)

    Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2015-05-07

    Colloidal quantum dots are free-standing nanostructures with chemically tunable electronic properties. In this work, we consider a new STM tip-double quantum dot (DQD)-surface setup with a unique connectivity, in which the tip is coupled to a single dot and the coupling to the surface is shared by both dots. Our theoretical analysis reveals a unique negative differential resistance (NDR) effect attributed to destructive interference during charge transfer from the DQD to the surface. This NDR can be used as a sensitive probe for interdot interactions in DQD arrays.

  19. Confinement of gold quantum dot arrays inside ordered mesoporous silica thin film

    Institute of Scientific and Technical Information of China (English)

    Chi Yaqing; Zhong Haiqin; Zhang Xueao; Fang Liang; Chang Shengli

    2009-01-01

    Periodic disposed quantum dot arrays are very useful for the large scale integration of single electron devices. Gold quantum dot arrays were self-assembled inside pore channels of ordered amino-functionalized mesoporous silica thin films, employing the neutralization reaction between chloroauric acid and amino groups. The diameters of quantum dots are controlled via changing the aperture of pore channels from 2.3 to 8.3 nm, which are characterized by HRTEM, SEM and FT-IR. UV-vis absorption spectra of gold nanoparticle/mesoporous silica composite thin films exhibit a blue shift and intensity drop of the absorption peak as the aperture of mesopores decreases,which represents the energy level change of quantum dot arrays due to the quantum size effect.

  20. Dynamical entanglement formation and dissipation effects in two double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)

    2006-11-01

    We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.

  1. Infrared Focal Plane Arrays Based on Semiconductor Quantum Dots

    Science.gov (United States)

    2002-01-01

    studied in the framework of this, including the collaborating researchers in each of them, are detailed below: 1. “Ultra Small InAs/GaInP/ InP Quantum Dots ”: with...of detectors, which will be attached to Si based signal processors. D:\\FINAL REPORT.doc 4 Part 1 Ultra Small InAs/GaInP/ InP Quantum Dots The heights of...an ensemble of self-assembled InAs/GaAs or InAs/ InP quantum dots (QDs) are typically in the range of 10-30 monolayers [1]. Here, we report on InAs

  2. Reentrant formation of magnetic polarons in quantum dots

    Science.gov (United States)

    Pientka, J. M.; Oszwałdowski, R.; Petukhov, A. G.; Han, J. E.; Žutić, Igor

    2012-10-01

    We propose a model of magnetic polaron formation in semiconductor quantum dots doped with magnetic ions. A wetting layer serves as a reservoir of photogenerated holes, which can be trapped by the adjacent quantum dots. For certain hole densities, the temperature dependence of the magnetization induced by the trapped holes is reentrant: it disappears for some temperature range and reappears at higher temperatures. We demonstrate that this peculiar effect is not an artifact of the mean-field approximation and persists after statistical spin fluctuations are accounted for. We predict fingerprints of reentrant magnetic polarons in photoluminescence spectra.

  3. Effect of external noise on the dynamical localization of two coupling electrons in quantum dot array

    Institute of Scientific and Technical Information of China (English)

    He An-Min; Duan Su-Qing; Zhao Xian-Geng

    2005-01-01

    The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied. A numerical solution of the stochastic equations is obtained by averaging over stochastic trajectories. The results show that the external noise may destroy the dynamical localization, but the anti-noise capacity of the system is stronger when the two electrons are localized at the ends of the quantum dot array.

  4. Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots

    Directory of Open Access Journals (Sweden)

    Wang Nengwen

    2011-01-01

    Full Text Available Abstract ZnO nanoparticle array has been fabricated on the Si substrate by a simple thermal chemical vapor transport and condensation without any metal catalysts. This ZnO nanoparticles array is constructed from ZnO quantum dots (QDs, and half-embedded in the amorphous silicon oxide layer on the surface of the Si substrate. The cathodoluminescence measurements showed that there is a pronounced blue-shift of luminescence comparable to those of the bulk counterpart, which is suggested to originate from ZnO QDs with small size where the quantum confinement effect can work well. The fabrication mechanism of the ZnO nanoparticle array constructed from ZnO QDs was proposed, in which the immiscible-like interaction between ZnO nuclei and Si surface play a key role in the ZnO QDs cluster formation. These investigations showed the fabricated nanostructure has potential applications in ultraviolet emitters.

  5. Dynamical localization effect in a coupled quantum dot array driven by an AC magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xia Jun-Jie; Nie Yi-Hang

    2011-01-01

    We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field,which is connected to two leads,and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function,dynamical localization and collapse of quasi-energy occurs and importantly,the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number,and it is weakened on account of the increase of the dots-lead hopping rate.

  6. RVS large format arrays for astronomy

    Science.gov (United States)

    Starr, Barry; Mears, Lynn; Fulk, Chad; Getty, Jonathan; Beuville, Eric; Boe, Raymond; Tracy, Christopher; Corrales, Elizabeth; Kilcoyne, Sean; Vampola, John; Drab, John; Peralta, Richard; Doyle, Christy

    2016-07-01

    Raytheon Vision Systems (RVS) has a long history of providing state of the art infrared sensor chip assemblies (SCAs) for the astronomical community. This paper will provide an update of RVS capabilities for the community not only for the infrared wavelengths but also in the visible wavelengths as well. Large format infrared detector arrays are now available that meet the demanding requirements of the low background scientific community across the wavelength spectrum. These detector arrays have formats from 1k x 1k to as large as 8k x 8k with pixel sizes ranging from 8 to 27 μm. Focal plane arrays have been demonstrated with a variety of detector materials: SiPiN, HgCdTe, InSb, and Si:As IBC. All of these detector materials have demonstrated low noise and dark current, high quantum efficiency, and excellent uniformity. All can meet the high performance requirements for low-background within the limits of their respective spectral and operating temperature ranges.

  7. Quantum theory of shuttling instability in a movable quantum dot array

    DEFF Research Database (Denmark)

    Donarini, Andrea; Novotny, Tomas; Jauho, Antti-Pekka

    2004-01-01

    We study the shuttling instability in an array of three quantum dots the central one of which is movable. We extend the results by Armour and MacKinnon on this problem to a broader parameter regime. The results obtained by an efficient numerical method are interpreted directly using the Wigner...

  8. Model of tunnelling through periodic array of quantum dots in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    I.Yu.Popov; S.A.Osipov

    2012-01-01

    A two-dimensional periodic array of quantum dots with two laterally coupled leads in a magnetic field is considered.The model of electron transport through the system based on the theory of self-adjoint extensions of symmetric operators is suggested.We obtain the formula for the transmission coefficient and investigate its dependence on the magnetic field.

  9. Tunnel-coupled quantum dots: Atomistic Theory of Quantum Dot Molecules and Arrays

    Science.gov (United States)

    Bryant, Garnett W.; Aizpurua, J.; Jaskolski, W.; Zielinski, Michal

    2003-03-01

    Quantum dots are studied as artificial atoms for building novel artificial solids, as nanodevices in nanoelectronics, and as bio/nanohybrids. We present an atomistic tight-binding theory of coupled CdS nanocrystals and vertically and laterally coupled InAs self-assembled dots. Electron states of coupled dots follow the analogy of coupled dots as artificial molecules. Symmetric/antisymmetric pairs are formed with strongest coupling between states with high density at interdot interfaces. Complex coupling of hole states, with significant departures from the artificial molecule analogy, occurs because the coupling is determined by the hole envelope function and the hole atomic state. Some hole states couple to form symmetric/antisymmetric pairs. Other hole states couple through additional intermediate states to form two strongly split symmetric states and an antisymmetric state insensitive to coupling. These coupling effects lead to level reordering, changes in state symmetry, conversion of dark states to bright states and vice versa, and tailored polarization dependence.

  10. Recombination dynamics in heterostructures with two planar arrays of II-VI quantum dots

    Science.gov (United States)

    Mikhailov, T. N.; Belyaev, K. G.; Toropov, A. A.; Sorokin, S. V.; Pozina, G.; Shubina, T. V.

    2016-08-01

    We present time-resolved photoluminescence studies of epitaxial heterostructures with two arrays of Cd(Zn)Se/ZnSe quantum dots (QDs), which are formed by the successive insertion of CdSe fractional monolayers of different nominal thicknesses into a ZnSe matrix. Our data are suggestive of the appearance of effective channels of the energy transfer from the insertion comprising the array with smaller QDs, emitting at higher energy, towards the array with larger QDs, emitting at lower energy. The effect of dark excitons on characteristic times of radiative recombination is discussed.

  11. A transfer hamiltonian model for devices based on quantum dot arrays.

    Science.gov (United States)

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  12. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    Directory of Open Access Journals (Sweden)

    S. Illera

    2015-01-01

    Full Text Available We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  13. Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well

    Science.gov (United States)

    Murphy, Graham P.; Gough, John J.; Higgins, Luke J.; Karanikolas, Vasilios D.; Wilson, Keith M.; Garcia Coindreau, Jorge A.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Bradley, A. Louise

    2017-03-01

    Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer (ET) efficiencies of up to ∼25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d ‑4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Förster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to ∼21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates.

  14. Field emission arrays fabricated utilizing conjugated ZnO quantum dot/carbon nanotube hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Wu Chaoxing [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Li Fushan, E-mail: fushanli@hotmail.com [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Zhang Yongai [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Guo Tailiang, E-mail: gtl@fzu.edu.cn [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Qu Bo; Chen Zhijian [State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2011-02-15

    In situ growth of ZnO quantum dots (QDs) on the surface of multiwalled carbon nanotube (MWCNTs) was realized via a mild solution-process method, and their application in field emission device was demonstrated. High resolution transmission electron microscopy observation revealed the conjugation between ZnO QDs and MWCNTs. Field emission arrays based on ZnO QD/MWCNT hybrid nanocomposite exhibited significantly improved luminance intensity and emitting dot density when compared with the MWCNT-only arrays. It is proposed that the introduction of the ZnO QDs on the sidewall of MWCNTs can enhance the tunnelling probability, and result in the improved field emission property for the hybrid emitters.

  15. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays.

    Science.gov (United States)

    Ren, Mengxin; Chen, Mo; Wu, Wei; Zhang, Lihui; Liu, Junku; Pi, Biao; Zhang, Xinzheng; Li, Qunqing; Fan, Shoushan; Xu, Jingjun

    2015-05-13

    Polarizers provide convenience in generating polarized light, meanwhile their adoption raises problems of extra weight, cost, and energy loss. Aiming to realize polarizer-free polarized light sources, herein, we present a plasmonic approach to achieve direct generation of linearly polarized optical waves at the nanometer scale. Periodic slot nanoantenna arrays are fabricated, which are driven by the transition dipole moments of luminescent semiconductor quantum dots. By harnessing interactions between quantum dots and scattered fields from the nanoantennas, spontaneous emission with a high degree of linear polarization is achieved from such hybrid antenna system with polarization perpendicular to antenna slot. We also demonstrate that the polarization is engineerable in aspects of both spectrum and magnitude by tailoring plasmonic resonance of the antenna arrays. Our findings will establish a basis for the development of innovative polarized light-emitting devices, which are useful in optical displays, spectroscopic techniques, optical telecommunications, and so forth.

  16. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2013-03-21

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers\\' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  17. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001 surface: nucleation, morphology, and CMOS compatibility

    Directory of Open Access Journals (Sweden)

    Yuryev Vladimir

    2011-01-01

    Full Text Available Abstract Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001 surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C and high (≳600°C temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001 surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001 quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  18. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    Science.gov (United States)

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  19. Fabrication of CdTe quantum dots-apoferritin arrays for detection of dopamine

    Science.gov (United States)

    Le, Thi Hoa; Kim, Ji Hyeon; Park, Sang Joon

    2017-06-01

    A method was proposed for detecting dopamine using a two-dimensional CdTe quantum dots (QDs)-apoferritin array fabricated on a modified silicon (Si) surface. First, CdTe QDs were synthesized in the cavity of horse spleen apoferritin (HsAFr). Then, the characterization of CdTe QDs in apoferritin was performed using photoluminescence (PL) spectroscopy. Transmission electron microscopy was used to analyze the size and structure of CdTe QDs. An atomic force microscopy image was obtained to evaluate the topography of the Si surface. In addition, the PL change resulting from the conjugation reaction of the CdTe QDs-apoferritin array with dopamine was investigated. When the array was linked to dopamine, a significant quenching of fluorescence was observed. Accordingly, the CdTe QDs-apoferritin arrays could be employed as useful sensing media for dopamine detection.

  20. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    Science.gov (United States)

    Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo; Vavassori, Paolo; Sarella, Anandakumar; Bisero, Diego

    2016-05-01

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  1. Large Format Uncooled Focal Plane Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Uncooled focal plane arrays have improved dramatically and array sizes of 320x240 elements in a 50-?m pitch are commercially available at affordable cost. Black...

  2. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  3. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  4. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  5. Anomalous electronic transport features in a lateral quantum dot array sample

    Science.gov (United States)

    Pan, Wei; Dunn, R. G.; Reno, J. L.; Simmons, J. A.; Li, D.; Brueck, S. R. J.

    2006-03-01

    We will present in this talk experimental results obtained in a lateral quantum dot array sample, with a pitch size of ˜ 350 nm and a designed dot size of ˜ 150nm. The starting material is a high quality quantum well with the two-dimensional electron gas buried 200 nm below the surface. The quantum dot array is defined by a Ti/Au metal grid, which was fabricated using the interferometric lithograph and lift-off techniques. Around zero magnetic field, a pronounced positive magnetoresistance is observed, which can be explained by the semi-classical model of magnetic breakdown. The so-called commensurability oscillations together with the usual Shubnikov- de Hass oscillations are also observed. Surprisingly, in a pure DC measurement of longitudinal resistance, an anomalous resistance spike is clearly seen. The magnetic field position of this resistance spike depends on the amplitude of applied DC bias (Vds) between source and drain, and shows roughly a 1/Vds dependence.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Large Format Uncooled Focal Plane Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Black Forest Engineering has identified innovative modifications in uncooled focal plane array (UFPA) architecture and processing that allows development of large...

  7. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity.

    Science.gov (United States)

    Yuryev, Vladimir A; Arapkina, Larisa V; Storozhevykh, Mikhail S; Chapnin, Valery A; Chizh, Kirill V; Uvarov, Oleg V; Kalinushkin, Victor P; Zhukova, Elena S; Prokhorov, Anatoly S; Spektor, Igor E; Gorshunov, Boris P

    2012-07-23

    : Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films.Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed.By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk

  8. Stress-determined nucleation sites above GaAs-capped arrays of InAs quantum dots

    Science.gov (United States)

    Latini, V.; Placidi, E.; Arciprete, F.; Tisbi, E.; Patella, F.; Magri, R.

    2016-09-01

    We studied the stress field at the surface of GaAs capping layers of variable thicknesses burying InAs quantum dot arrays using the Finite Element method to solve numerically the equations of the elastic field. The aim is to determine the stress-determined favorable sites for dot nucleation. We show that: (i) depending on the cap thickness, dot distances, and array orientation, sudden transitions in the stress-strain fields occur, leading from a vertical alignment of the dots to an anti-aligned correlation. We find that just few determined positions are favorable for dot nucleation and exclude some other sites previously indicated as favorable in the literature; (ii) the critical thicknesses at which the switch between the vertical alignment and the anti-aligned positions occurs depend on the distance between the dots in a square array and on the ratio between the two different distances if the arrays are rectangular; (iii) the transitions occur within a few nanometer range of the capping layer thickness, and the elastic field undergoes large changes in its properties before and after the transition. This behavior has been revealed by a very accurate fit of the tangential stress field using appropriate fit functions. The fit and parameter functions allow to easily reproduce the stress field in different contexts and are useful in growth simulation models. The results suggest that by properly engineering the capping layer thicknesses in the layers of a stack, it is possible to obtain different three-dimensional quantum dot lattices starting from an initial fixed dot array. Our results are in agreement with the available experimental data.

  9. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    Science.gov (United States)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  10. Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  11. Recent progress in all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingyao, E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Chen, Chao; Liu, Wei [Tongji University, School of Materials Science and Engineering (China); Gao, Shanmin [Ludong University, School of Chemistry and Materials Science (China); Yang, Xiuchun, E-mail: yangxc@tongji.edu.cn [Tongji University, School of Materials Science and Engineering (China)

    2016-01-15

    All-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO{sub 2} films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO{sub 2} nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO{sub 2} nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO{sub 2} nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell.

  12. InGaAs/GaAs (110) quantum dot formation via step meandering

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Merino, Laura; Tejedor, Paloma [Department of Nanostructures and Surfaces, Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049-Madrid (Spain)

    2011-07-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  13. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    Science.gov (United States)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core–shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  14. Electrochemical Synthesis of CdSe Quantum Dot Array on Graphene Basal Plane using Mesoporous Silica Thin Film Templates

    OpenAIRE

    Kim, Yong-Tae; Han, Jung Hee; Hong, Byung Hee; Kwon, Young-Uk

    2010-01-01

    We report on the synthesis of CdSe quantum dots on a graphene surface by an electrochemical deposition method. By using a mesoporous silica film formed on the graphene surface as a template and a potential equalizer between the edge/defect sites and the basal plane of the graphene, CdSe quantum dots can be grown on the basal plane into a regular hexagonal array.

  15. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R T, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy Street, Ulyanovsk (Russian Federation)

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  16. The formation of acetylcholine receptor clusters visualized with quantum dots

    Directory of Open Access Journals (Sweden)

    Peng H Benjamin

    2009-07-01

    Full Text Available Abstract Background Motor innervation of skeletal muscle leads to the assembly of acetylcholine receptor (AChR clusters in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ. Synaptic AChR aggregation, according to the diffusion-mediated trapping hypothesis, involves the establishment of a postsynaptic scaffold that "traps" freely diffusing receptors into forming high-density clusters. Although this hypothesis is widely cited to explain the formation of postsynaptic AChR clusters, direct evidence at molecular level is lacking. Results Using quantum dots (QDs and live cell imaging, we provide new measurements supporting the diffusion-trap hypothesis as applied to AChR cluster formation. Consistent with published works, experiments on cultured Xenopus myotomal muscle cells revealed that AChRs at clusters that formed spontaneously (pre-patterned clusters, also called hot spots and at those induced by nerve-innervation or by growth factor-coated latex beads were very stable whereas diffuse receptors outside these regions were mobile. Moreover, despite the restriction of AChR movement at sites of synaptogenic stimulation, individual receptors away from these domains continued to exhibit free diffusion, indicating that AChR clustering at NMJ does not involve an active attraction of receptors but is passive and diffusion-driven. Conclusion Single-molecular tracking using QDs has provided direct evidence that the clustering of AChRs in muscle cells in response to synaptogenic stimuli is achieved by two distinct cellular processes: the Brownian motion of receptors in the membrane and their trapping and immobilization at the synaptic specialization. This study also provides a clearer picture of the "trap" that it is not a uniformly sticky area but consists of discrete foci at which AChRs are immobilized.

  17. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  18. Fractional Matching Effect due to Pinning of the Vortex Lattice by an Array of Magnetic Dots

    Science.gov (United States)

    Stoll, O. M.; Montero, M. I.; Jönsson-Åkerman, B. J.; Schuller, Ivan K.

    2001-03-01

    We have investigated the pinning of magnetic flux quanta by rectangular arrays of nanoscaled magnetic dots. We measured the resistivity vs. magnetic field characteristics using a high magnetic field resolution of up to 0.1 G over the full field range ( 2 kG to 2 kG). By this we the appearance of minima at half and third integer values of the matching field. It is well known that a reconfiguration of the vortex lattice from a rectangular to a square type geometry occurs in rectangular arrays of magnetic dots when the magnetic field is increased over a threshold value H_r. If we lower the magnetic field after crossing H_r, we find that some of the minima at the full integer matching field are missing. This hysteretic behavior occurs only when Hr is exceeded before the subsequent decrease of the magnetic field. We present the experimental results and discuss preliminary models for the explanation of these observations. This work was supported by the grants NSF and DOE. Two of us acknowledge postdoctoral fellowships by the DAAD (Deutscher Akademischer Austauschdienst) (O.M.S.) and the Secretaria De Estado De Educacion Y Universidades (M.I.M.) respectively.

  19. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    Science.gov (United States)

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  20. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

    Directory of Open Access Journals (Sweden)

    Donald K. L. Chan

    2014-05-01

    Full Text Available TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, thermogravimetric analysis (TGA and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation.

  1. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins.

    Science.gov (United States)

    Xu, Qinfeng; Zhang, Yihong; Tang, Bo; Zhang, Chun-yang

    2016-02-16

    Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics.

  2. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  3. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Thorbeck, Ted, E-mail: tcthorbeck@wisc.edu [Quantum Measurement Division, NIST, Gaithersburg, Maryland (United States); Joint Quantum Institute and Dept. of Physics, University of Maryland, College Park, Maryland (United States); Zimmerman, Neil M. [Quantum Measurement Division, NIST, Gaithersburg, Maryland (United States)

    2015-08-15

    A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  4. Large-area patterning of sub-100 nm epitaxial L10 FePt dots array via nanoimprint lithography

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2015-08-01

    Full Text Available Bit-patterned media, a promising candidate for next generation high density magnetic recording, requires sub-100 nm dots array on a wafer scale, a high degree of patterning control of the size distribution, and a material with high perpendicular anisotropy. In this work, large area (0.75 cm × 0.75 cm dots array was achieved by nanoimprint lithography and ion milling from L10 FePt thin films that are pre-sputtered at 450 °C with both high crystalline quality and good chemical order. The sub-100 nm dots are decoupled from each other and show both narrow size distributions and high coercivity values on the order of 11 kOe. Our work would cast light for the application of bit-patterned media.

  5. Colloidal quantum dot Vis-SWIR imaging: demonstration of a focal plane array and camera prototype (Presentation Recording)

    Science.gov (United States)

    Klem, Ethan J. D.; Gregory, Christopher W.; Temple, Dorota S.; Lewis, Jay S.

    2015-08-01

    RTI has developed a photodiode technology based on solution-processed PbS colloidal quantum dots (CQD). These devices are capable of providing low-cost, high performance detection across the Vis-SWIR spectral range. At the core of this technology is a heterojunction diode structure fabricated using techniques well suited to wafer-scale fabrication, such as spin coating and thermal evaporation. This enables RTI's CQD diodes to be processed at room temperature directly on top of read-out integrated circuits (ROIC), without the need for the hybridization step required by traditional SWIR detectors. Additionally, the CQD diodes can be fabricated on ROICs designed for other detector material systems, effectively allowing rapid prototype demonstrations of CQD focal plane arrays at low cost and on a wide range of pixel pitches and array sizes. We will show the results of fabricating CQD arrays directly on top of commercially available ROICs. Specifically, the ROICs are a 640 x 512 pixel format with 15 µm pitch, originally developed for InGaAs detectors. We will show that minor modifications to the surface of these ROICs make them suitable for use with our CQD detectors. Once completed, these FPAs are then assembled into a demonstration camera and their imaging performance is evaluated. In addition, we will discuss recent advances in device architecture and processing resulting in devices with room temperature dark currents of 2-5 nA/cm^2 and sensitivity from 350 nm to 1.7 μm. This combination of high performance, dramatic cost reduction, and multi-band sensitivity is ideally suited to expand the use of SWIR imaging in current applications, as well as to address applications which require a multispectral sensitivity not met by existing technologies.

  6. Universal behavior of magnetoresistance in quantum dot arrays with different degrees of disorder.

    Science.gov (United States)

    Stepina, N P; Koptev, E S; Pogosov, A G; Dvurechenskii, A V; Nikiforov, A I; Zhdanov, E Yu; Galperin, Y M

    2013-12-18

    The magnetoresistance in a two-dimensional array of Ge/Si quantum dots was studied in a wide range of zero magnetic field conductances, where the transport regime changes from a hopping to a diffusive one. The behavior of the magnetoresistance is found to be similar for all samples--it is negative in weak fields and becomes positive with increasing magnetic field. The result apparently contradicts existing theories. To explain experimental data we suggest that clusters of overlapping quantum dots are formed. These clusters are assumed to have metal-like conductance, the charge transfer taking place via hopping between the clusters. Relatively strong magnetic field shrinks electron wavefunctions, decreasing inter-cluster hopping and, therefore, leading to a positive magnetoresistance. Weak magnetic field acts on 'metallic' clusters, destroying the interference of the electron wavefunctions corresponding to different paths (weak localization) inside clusters. The interference may be restricted either by inelastic processes, or by the cluster size. Taking into account weak localization inside clusters and hopping between them within the effective medium approximation, we extract effective parameters characterizing charge (magneto-) transport.

  7. Dynamic Localization of a One-Dimensional Quantum Dot Array in an ac Electric Field

    Institute of Scientific and Technical Information of China (English)

    罗莹; 段素青; 范文斌; 赵宪庚; 王立民; 马本堃

    2002-01-01

    We investigate the dynamics of two interaction electrons confined to one-dimensional quantum dot array in an acelectric field. We find that initially localized electrons will remain localized in the absence of Coulomb interactionif the ratio of the ac field magnitude to the frequency is a root of the ordinary zero-order Bessel function. Incontrast to the case without Coulomb interaction, no matter what the value is, the electrons are delocalized andthe delocalization effect depends on the ratio U/ω and eaE/ω, where U is the strength of Coulomb interaction,a is the lattice constant, and E and ω are the ac field amplitude and frequency, respectively.

  8. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy.

    Science.gov (United States)

    Schramm, A; Tommila, J; Strelow, C; Hakkarainen, T V; Tukiainen, A; Dumitrescu, M; Mews, A; Kipp, T; Guina, M

    2012-05-04

    We present the growth of single, site-controlled InAs quantum dots on GaAs templates using UV-nanoimprint lithography and molecular beam epitaxy. A large quantum dot array with a period of 1.5 µm was achieved. Single quantum dots were studied by steady-state and time-resolved micro-photoluminescence experiments. We obtained single exciton emission with a linewidth of 45 µeV. In time-resolved experiments, we observed decay times of about 670 ps. Our results underline the potential of nanoimprint lithography and molecular beam epitaxy to create large-scale, single quantum dot arrays.

  9. Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well

    CERN Document Server

    Murphy, Graham P; Higgins, Luke J; Karanikolas, Vasilios D; Wilson, Keith M; Coindreau, Jorge A Garcia; Zubialevich, Vitaly Z; Parbrook, Peter J; Bradley, A Louise

    2016-01-01

    Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated non-radiative energy transfer from quantum dots to quantum wells with varying top barrier thicknesses. Plasmon-mediated energy transfer efficiencies of up to ~25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated energy transfer is found to follow the same d^{-4} dependence as the direct quantum dot to quantum well energy transfer. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a F\\"orster-like model with the Ag nanoparticle-quantum dot acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated energy transfer efficiencies up to ~21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor quantum well emission to...

  10. Magnetic transition from dot to antidot regime in large area Co/Pd nanopatterned arrays with perpendicular magnetization

    Science.gov (United States)

    Krupinski, M.; Mitin, D.; Zarzycki, A.; Szkudlarek, A.; Giersig, M.; Albrecht, M.; Marszałek, M.

    2017-02-01

    We have studied the transition between two different magnetization reversal mechanisms for thin Co/Pd multilayers with perpendicular magnetic anisotropy, appearing in magnetic dot and antidot arrays, which were prepared by nanosphere lithography. Various ordered arrays of nanostuctures, both magnetic dots and antidots, were created by varying size and distance between the nanospheres employing RF-plasma etching. We have shown that the coercivity values reach a maximum for the array of antidots with a separation length close to the domain wall width. In this case, each area between three adjacent holes corresponds to a single domain configuration, which can be switched individually. On the contrary, small hole sizes and large volume of material between them results in domain wall propagation throughout the system accompanied by strong domain wall pinning at the holes. We have also shown the impact of edge effects on the magnetic anisotropy energy.

  11. Photo-Current Enhancement in Carbon Quantum Dots Functionalized Titania Nanotube Arrays.

    Science.gov (United States)

    Rani, Sanju; Borse, Pramod H; Pareek, Alka; Rajalakshmi, N; Dhathathreyan, K S

    2016-06-01

    Highly aligned, vertically oriented, TiO2 nanotube arrays fabricated by electrochemical anodization were functionalised by carbon quantum dots (CQD) synthesized by an electrochemical reduction technique. Here, we report the photo-electrochemical properties of such TiO2 nanotubes array-CQD composite material and it has been found that the properties are significantly enhanced compared to that in pristine (bare) nanotubes. The TiO2 nanotubes were characterized by X-ray diffraction and scanning electron microscopy, whereas the CQD samples were characterized by transmission electron microscopy, optical absorption spectroscopy. CQDs synthesized under two different conditions showed a distinct size difference and corresponding absorption spectra revealed concominant shift in the absorption edges. Furthermore, the photo-electrochemical measurements were carried out with the help of photo-current, incident photon to current conversion efficiency (IPCE), Mott-Schottky plots and the impedance analysis. The photo-current data revealed 30% improvement in TiO2-CQD samples compared to bare TiO2 nanotubes samples. A higher photo-conversion efficiency was observed along with the shifting of the peak value towards visible wavelengths. The Mott-Schottky plots revealed shift in the flat-band potential in the CQD-TiO2 samples and corresponding lowering of the charge transfer resistance was observed through the impedance spectroscopy.

  12. Tunable configurational anisotropy in collective magnetization dynamics of Ni{sub 80}Fe{sub 20} nanodot arrays with varying dot shapes

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, B. K.; Choudhury, S.; Mandal, R.; Barman, S.; Barman, A., E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Otani, Y. [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2015-06-07

    We present broadband ferromagnetic resonance measurements of tunable spin wave anisotropy in arrays of nanodots with different dot shapes. Magnetization dynamics of the circular dot array shows two modes, while square, diamond, and triangular dot arrays show three, three, and four modes, respectively. Various distinct rotational symmetries in the configurational anisotropy of the nanodot arrays are observed with the variation of dot shape. The observed spin wave modes are reproduced by micromagnetic simulations and the calculated mode profiles show different collective modes determined by internal and stray magnetic fields. Effects of dot shapes are observed in combination with the effects of lattice symmetry and the shape of the boundary of the array. The collective behaviour is observed to be weakest in the diamond shaped dots and strongest in circular shaped dots. This is further confirmed by the stray field calculation. The large variation of spin wave mode frequencies and their configurational anisotropies with dot shapes are important for selection of suitable basis structures for future magnonic crystals.

  13. Controlling of 6 nm sized and 10 nm pitched dot arrays ordered along narrow guide lines using PS-PDMS self-assembly.

    Science.gov (United States)

    Hosaka, Sumio; Akahane, Takashi; Huda, Miftakhul; Zhang, Hui; Yin, You

    2014-05-14

    We have studied graphoepitaxy to make nanodots or nanolines ordered along electron beam (EB)-drawn resist guide using block copolymers (BCPs) of polystyrene-polydimethylsiloxane (PS-PDMS). We found out that the number n of ordered molecular dot arrays in the line gap increases stepwise with the gap between guide lines. The n self-assembled dot arrays were ordered in a gap between n and n+1 times the mean PDMS pitch and self-assembled with no guide pattern. According to the ordering characteristics, 6 nm sized and 10 nm pitched PDMS dot arrays were formed using the BCP self-assembly with the guide lines.

  14. Light trapping considerations in self-assembled ZnO nanorod arrays for quantum dot sensitized solar cells

    Science.gov (United States)

    Luan, ChunYan; Cheung, King Tai; Foo, Yishu; Yu, Li Yu; Shen, Qing; Zapien, Juan Antonio

    2014-03-01

    We study light absorption in ZnO nanorod arrays sensitized with CdSe quantum dots as one of the factors affecting solar cell performance in need of improvement given their current performance well below expectations. Light trapping in nanorod arrays (NRAs) as it relates to array density and length as well as quantum dot (QD) loading is studied using the Finite Difference Time Domain model. It is shown that light absorption in such solar cell architecture is a sensitive function of the morphological dimensions and that a higher NRA density does not necessarily correspond to large absorption in the solar cell. Instead, light trapping efficiency depends significantly on the array density, QD axial distribution and refractive index contrast between NR and QDs thus suggesting strategies for improved quantum dot solar cell (QDSC) fabrication. In addition, we present experimental data showing dramatic improvement in photo conversion efficiency performance for relatively short ZnO NRAs (~1 μm) of low NRA density, but whose efficiency improvement can not be solely explained based on our current light trapping estimates from the numerical simulations.

  15. Coherent Excitonic Wavepackets in Two-Dimensional Square Dot-Arrays Driven by an In-Plane Uniform Electric Field

    Institute of Scientific and Technical Information of China (English)

    李秀平; 阎维贤

    2004-01-01

    We investigate the evolution behaviour of electron-hole pair wavepacket in optically excited square quantum-dot arrays driven by in-plane (x-y plane) uniform electric field E (viz, E = Exex + Eyey, ex,ey are unit vectors along x and y directions respectively), in the time domain. It is found that if the ratio of the x-component electric field Ex to the y-component electric field Ey is a rational p/q (p and q being coprime integer numbers),the wavepackets undergo a time-periodic breathing mode, with the period 2πp/ωBx, where ωBx = eExa/h, with a being the lattice constant of square dot arrays, h being Planck's constant, e being the electron charge. This finding provides a time-domain demonstration of the recent spectral result [Phys. Rev. Lett. 86 (2001)3116].

  16. Using light-switching molecules to modulate charge mobility in a quantum dot array

    Science.gov (United States)

    Chu, Iek-Heng; Trinastic, Jonathan; Wang, Lin-Wang; Cheng, Hai-Ping

    2014-03-01

    We have studied the electron hopping in a two-CdSe quantum dot (QD) system linked by an azobenzene-derived light-switching molecule. This system can be considered as a prototype of a QD supercrystal. Following the computational strategies given in our recent work [I.-H. Chu et al., J. Phys. Chem. C 115, 21409 (2011), 10.1021/jp206526s], we have investigated the effects of molecular attachment, molecular isomer (trans and cis), and QD size on the electron hopping rate using Marcus theory. Our results indicate that molecular attachment has a large impact on the system for both isomers. In the most energetically favorable attachment, the cis isomer provides significantly greater coupling between the two QDs and hence the electron hopping rate is greater compared to the trans isomer. As a result, the carrier mobility of the QD array in the low carrier density, weak external electric-field regime is several orders of magnitude higher in the cis compared to the trans configuration. This demonstration of mobility modulation using QDs and azobenzene could lead to an alternative type of switching device.

  17. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer.

    Science.gov (United States)

    Higgins, Luke J; Marocico, Cristian A; Karanikolas, Vasilios D; Bell, Alan P; Gough, John J; Murphy, Graham P; Parbrook, Peter J; Bradley, A Louise

    2016-10-27

    A range of seven different Ag plasmonic arrays formed using nanostructures of varying shape, size and gap were fabricated using helium-ion lithography (HIL) on an InGaN/GaN quantum well (QW) substrate. The influence of the array geometry on plasmon-enhanced Förster resonance energy transfer (FRET) from a single InGaN QW to a ∼80 nm layer of CdSe/ZnS quantum dots (QDs) embedded in a poly(methyl methacrylate) (PMMA) matrix is investigated. It is shown that the energy transfer efficiency is strongly dependent on the array properties and an efficiency of ∼51% is observed for a nanoring array. There were no signatures of FRET in the absence of the arrays. The QD acceptor layer emission is highly sensitive to the array geometry. A model was developed to confirm that the increase in the QD emission on the QW substrate compared with a GaN substrate can be attributed solely to plasmon-enhanced FRET. The individual contributions of direct enhancement of the QD layer emission by the array and the plasmon-enhanced FRET are separated out, with the QD emission described by the product of an array emission factor and an energy transfer factor. It is shown that while the nanoring geometry results in an energy transfer factor of ∼1.7 the competing quenching by the array, with an array emission factor of ∼0.7, results in only an overall gain of ∼14% in the QD emission. The QD emission was enhanced by ∼71% for a nanobox array, resulting from the combination of a more modest energy transfer factor of 1.2 coupled with an array emission factor of ∼1.4.

  18. Controlling the Photophysical Properties of Semiconductor Quantum Dot Arrays by Strategically Altering Their Surface Chemistry

    Science.gov (United States)

    Marshall, Ashley R.

    Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of

  19. Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays

    Science.gov (United States)

    Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.

    2004-01-01

    Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.

  20. Probing Energy Levels of Large Array Quantum Dot Superlattice by Electronic Transport Measurement

    Science.gov (United States)

    Bisri, S. Z.; Degoli, E.; Spallanzani, N.; Krishnan, G.; Kooi, B.; Ghica, C.; Yarema, M.; Protesescu, L.; Heiss, W.; Kovalenko, M.; Pulci, O.; Ossicini, S.; Iwasa, Y.; Loi, M. A.

    2015-03-01

    Colloidal quantum dot superlattice (CQDS) emerges as new type of hybrid solids allowing easy fabrication of devices that exploits the quantum confinement properties of individual QD. This materials displays peculiar characters, making investigation of their transport properties nontrivial. Besides the bandgap variations, 0D nature of QD lead to the formation of discrete energy subbands. These subbands are crucial for multiple exciton generation (for efficient solar cell), thermoelectric material and multistate transistor. Full understanding of the CQDS energy level structure is vital to use them in complex devices. Here we show a powerful method to determine the CQDS electronic energy levels from their intrinsic charge transport characteristics. Via the use of ambipolar transistors with CQDS as active materials and gated using highly capacitive ionic liquid gating, Fermi energy can be largely tuned. It can access energy levels beyond QD's HOMO & LUMO. Ability to probe not only the bandgap, but also the discrete energy level from large assembly of QD at room temperature suggests the formation of energy minibands in this system.

  1. CdS quantum dot-sensitized solar cells based on nano-branched TiO2 arrays

    Science.gov (United States)

    Liu, Chang; Li, Yitan; Wei, Lin; Wu, Cuncun; Chen, Yanxue; Mei, Liangmo; Jiao, Jun

    2014-03-01

    Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunks.

  2. Influence of Plasmonic Array Geometry on Energy Transfer from a Quantum Well to a Quantum Dot Layer

    CERN Document Server

    Higgins, Luke J; Karanikolas, Vasilios D; Bell, Alan P; Gough, John J; Murphy, Graham P; Parbrook, Peter J; Bradley, A Louise

    2016-01-01

    A range of seven different Ag plasmonic arrays formed using nanostructures of varying shape, size and gap were fabricated using helium-ion lithography (HIL) on an InGaN/GaN quantum well (QW) substrate. The influence of the array geometry on plasmon-enhanced F\\"orster resonance energy transfer (FRET) from a single InGaN QW to a ~ 80 nm layer of CdSe/ZnS quantum dots (QDs) embedded in a poly(methyl methacrylate) (PMMA) matrix is investigated. It is shown that the energy transfer efficiency is strongly dependent on the array properties and an efficiency of ~ 51% is observed for a nanoring array. There were no signatures of FRET in the absence of the arrays. The QD acceptor layer emission is highly sensitive to the array geometry. A model was developed to confirm that the increase in the QD emission on the QW substrate compared with a GaN substrate can be attributed solely to plasmon-enhanced FRET. The individual contributions of direct enhancement of the QD layer emission by the array and the plasmon-enhanced FR...

  3. Two-layer ZnO nanowire arrays: Fabrication and its photovoltaic property sensitized by CdSe and CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Jingzhi [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Wang, Jianxiong; Sun, Xiaowei [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2015-09-01

    Two-layer ZnO nanowire arrays have been synthesized by a low temperature hydrothermal method. The two-layer structure enables the absorption of CdSe and CdS quantum dots (QDs) on different nanostructured layers, respectively. Solar cell based on the QD sensitized ZnO nanowire arrays is fabricated. Because sequential light adsorption of different sensitizers happens in two different layers, the photoanode can reduce the interaction possibility among different QDs and extend the absorption range, and result in improved photovoltaic properties. - Highlights: • Two-layer ZnO nanowire array has been synthesized by a low temperature hydrothermal. • A two-layer quantum dot sensitized ZnO nanowire array solar cell has been fabricated. • The structure can reduce interaction possibility among different quantum dots. • The structure can extend the range of light absorption.

  4. Composite Semiconductor Quantum Dots CdSe/CdS Co-sensitized TiO2 Nanorod Array Solar Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jingyang; ZHANG Tianjin; WANG Qingqing; WANG Duofa; PAN Ruikun; XIA Hanming

    2012-01-01

    CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process.The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD),field-emission scanning electron microscopy (FESEM),and transmission electron microscopy (TEM).The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods.The shift of light absorption edge was monitored by taking UV-visible absorption spectra.Compared with the absorption spectra of the TiO2 nanorod array,deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength.The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs).By optimizing the CdSe layer deposition cycles,a photocurrent of 5.78 mA/cm2,an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2.

  5. High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays

    Science.gov (United States)

    Hou, Juan; Zhao, Haifeng; Huang, Fei; Jing, Qun; Cao, Haibin; Wu, Qiang; Peng, Shanglong; Cao, Guozhong

    2016-09-01

    Doping transition metal ions Mn2+ to semiconductor quantum dots (QDs) are extremely interesting for the development of photovoltaic devices. Quantum dot sensitized solar cells (QDSCs) are able to show promising power conversion efficiencies (PCE) by employing Mn2+ doped QDs. Herein we achieve effective CdS/Mnsbnd CdSe/ZnS QDs co-sensitized vertical ZnO nanorod arrays film that provides an appreciable enhancement in photovoltaic performance. The measured PCE of the solar cells with Mn2+ doped CdSe QDs is 4.14%, which is higher than the efficiency of 2.91% for the solar cells without Mn2+ or a ∼42% increase. The improvement in PCE is ascribed to a higher open-circuit voltage (Voc = 0.74 V) and a superior short-circuit current density (Jsc = 12.6 mA cm-2) with the introduction of Mn2+ into CdSe QDs. The enhancement seen with Mn2+ doped CdSe QDs are investigated and explained by the fact that the enhanced light absorption and reduced charge recombination by the formation of Mnsbnd CdSe passivation layer covering the QDs.

  6. Self-organization of topological defects for a triangular-lattice magnetic dots array subject to a perpendicular magnetic field

    Directory of Open Access Journals (Sweden)

    R.S. Khymyn

    2014-09-01

    Full Text Available The regular array of magnetic particles (magnetic dots of the form of a two-dimensional triangular lattice in the presence of external magnetic field demonstrates complicated magnetic structures. The magnetic symmetry of the ground state for such a system is lower than that for the underlying lattice. Long range dipole-dipole interaction leads to a specific antiferromagnetic order in small fields, whereas a set of linear topological defects appears with the growth of the magnetic field. Self-organization of such defects determines the magnetization process for a system within a wide range of external magnetic fields.

  7. Pulsed-laser micropatterned quantum-dot array for white light source

    Science.gov (United States)

    Wang, Sheng-Wen; Lin, Huang-Yu; Lin, Chien-Chung; Kao, Tsung Sheng; Chen, Kuo-Ju; Han, Hau-Vei; Li, Jie-Ru; Lee, Po-Tsung; Chen, Huang-Ming; Hong, Ming-Hui; Kuo, Hao-Chung

    2016-03-01

    In this study, a novel photoluminescent quantum dots device with laser-processed microscale patterns has been demonstrated to be used as a white light emitting source. The pulsed laser ablation technique was employed to directly fabricate microscale square holes with nano-ripple structures onto the sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed quantum dots into well-defined areas and eliminating the coffee ring effect. The electroluminescence characterizations showed that the white light emission from the developed photoluminescent quantum-dot light-emitting diode exhibits stable emission at different driving currents. With a flexibility of controlling the quantum dots proportions in the patterned square holes, our developed white-light emitting source not only can be employed in the display applications with color triangle enlarged by 47% compared with the NTSC standard, but also provide the great potential in future lighting industry with the correlated color temperature continuously changed in a wide range.

  8. Fivefold Enhanced Photoelectrochemical Properties of ZnO Nanowire Arrays Modified with C3N4 Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2017-03-01

    Full Text Available A facile and effective growing strategy of graphite-like carbon nitride quantum dots (CNQDs modified on ZnO nanowire array composite electrodes has been successfully designed and prepared for the first time. The remarkable quantum enhanced properties were carefully studied by means of scanning electron microscope (SEM, transmission electron microscopy (TEM, X-ray photoelectron spectroscope (XPS, UV-vis diffuse reflectance, PEC performance, and photocatalytic hydrogen production, and the results were in good agreement. Fivefold enhanced photoelectrochemical performances of this novel hierarchical hetero-array prepared in this paper compared with pure ZnO nanowire arrays were obtained under UV-light. The effect was attributed to the remarkable charge separation between CNQDs and ZnO nanowire arrays. Additional investigations revealed that the particular structure of CNQDs/ZnO composites contributed to the separation of a photon-generation carrier and an enhanced photoelectric current. Moreover, the absorption edge of CNQD-modified ZnO nanowire arrays was slightly broadened, and the diameter was reduced as well. The photoelectrochemistry hydrogen evolution splitting water using simulated solar irradiation exhibited the foreground of a possible application of a mechanism of photoelectrochemistry hydrogen evolution over CNQDs/ZnO composite electrodes.

  9. Synthesis and photoelectrochemical response of CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes

    Science.gov (United States)

    Hu, Yunxia; Wang, Baoyuan; Zhang, Jieqiong; Wang, Tian; Liu, Rong; Zhang, Jun; Wang, Xina; Wang, Hao

    2013-05-01

    A continuous and compact CdS quantum dot-sensitive layer was synthesized on TiO2 nanorods by successive ionic layer adsorption and reaction (SILAR) and subsequent thermal annealing. The thickness of the CdS quantum dot layer was tuned by SILAR cycles, which was found to be closely related to light absorption and carrier transformation. The CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet-visible absorption spectroscopy, and photoelectrochemical property measurement. The optimum sample was fabricated by SILAR in 70 cycles and then annealed at 400°C for 1 h in air atmosphere. A TiO2/CdS core-shell structure was formed with a diameter of 35 nm, which presented an improvement in light harvesting. Finally, a saturated photocurrent of 3.6 mA/cm2 was produced under the irradiation of AM1.5G simulated sunlight at 100 mW/cm2. In particular, the saturated current density maintained a fixed value of approximately 3 mA/cm2 without decadence as time passed under the light conditions, indicating the steady photoelectronic property of the photoanode.

  10. Photoelectrochemical Immunosensor Array Based on Thioglycolic Acid Capped CdS Quantum Dots for Multiplexed Detection of Veterinary Drug Residues

    Institute of Scientific and Technical Information of China (English)

    肖飞; 赖彦君; 张苧丹; 白静; 鲜跃仲; 金利通

    2012-01-01

    A photoelectrochemical immunosensor based on multi-electrode array was developed for simultaneous and sen- sitive determination of veterinary drug residues. In this system, poly(dimethyldiallylammonium chloride) (PDDA), Au nanoparticles (Au NPs) and thioglycolic acid (TGA)-capped CdS quantum dots (QDs) were layer-by-layer as- sembled onto the home-made Au electrode array. The assembling process of the (CdS/PDDA/Au NPs/PDDA), mul- tilayer was characterized by electrochemical impedance spectroscopy. And then the antibodies for clenbuterol (CB), ractopamine (RAC) and chloramphenicol (CAP) were covalently immobilized onto the Au electrode array by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) coupling reaction, respectively. The concentrations of CB, RAC and CAP were measured based on the photoelectrochemical effects of CdS QDs. Under the optimal conditions the limits of detection (LOD) for CB, RAC and CAP were 25, 50 and 2.2 pg/mL (3a), respectively, with acceptable recovery over the range of 95.40%--105.5% in pig liver samples. All results indicate that the immunosensor array system has potential application for practical, effective and high throughput analysis of veterinary drugs residues.

  11. Adaptive lesion formation using dual mode ultrasound array system

    Science.gov (United States)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  12. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells.

  13. Photoelectrochemical performance of cadmium sulfide quantum dots modified titania nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn

    2016-01-01

    The cadmium sulfide quantum dots modified titania nanotube arrays (CdS QDs/TiO{sub 2} NTAs) were prepared through a sequential sonication-assisted chemical bath deposition (CBD) process. The morphology and microstructure of CdS QDs/TiO{sub 2} NTAs were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy and UV–vis diffuse reflectance spectroscopy. The photoelectrochemical performance of CdS QDs/TiO{sub 2} NTAs was investigated under solar light illumination. The affecting parameters were studied including the nanotube length of TiO{sub 2} NTAs, CBD cycles of CdS QDs and the annealing treatment of CdS QDs/TiO{sub 2} NTAs. CdS QDs synthesized through 8 CBD cycles could uniformly cover on the tube walls of TiO{sub 2} NTAs to form unique CdS QDs/TiO{sub 2} NTAs with an open pore mouth. The appropriate annealing treatment at 400 °C for 60 min in N{sub 2} atmosphere could improve the crystallinity of CdS QDs, and accordingly enhance the photovoltaic properties of CdS QDs/TiO{sub 2} NTAs. Significantly, the nanotube length was the predominant factor affecting photoelectrochemical performance of CdS QDs/TiO{sub 2} NTAs. The unannealed CdS QDs/TiO{sub 2} NTAs with an optimal nanotube length of 12 μm achieved a short-circuit photocurrent density of 4.37 mA cm{sup −2}, an open circuit photovoltage of 1.10 V and a top photoconversion efficiency of 3.56%. Comparatively, the annealed CdS QDs/TiO{sub 2} NTAs with an optimal nanotube length of 4 μm achieved a short-circuit photocurrent density of 6.31 mA cm{sup −2}, an open circuit photovoltage of 1.23 V and a top photoconversion efficiency of 4.18%. The suitable modification of crystalline CdS QDs could well improve the photoelectrochemical performance of TiO{sub 2} NTAs photoanode. - Highlights: • CdS QDs are uniformly loaded into short and long TiO{sub 2} NTAs to form CdS QDs/TiO{sub 2} NTAs.

  14. Enhanced photoelectrochemical water splitting from Si quantum dots/TiO{sub 2} nanotube arrays composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong [Department of Materials Science, Fudan University, Shanghai 200433 (China); Cui, Xiaoli, E-mail: xiaolicui@fudan.edu.cn [Department of Materials Science, Fudan University, Shanghai 200433 (China); Hao, Hongchen; Lu, Ming [Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433 (China); Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2015-06-15

    Graphical abstract: Si quantum dots were firstly applied to modify TiO{sub 2} nanotubes and enhanced visible light response was demonstrated for the resulted Si QDs/TiO{sub 2} nanocomposite. Si QDs are promising in photoelectrochemical water splitting and photocatalysis since their low cost, abundance and environmentally-friendliness. - Highlights: • A novel nanocomposite Si QDs/TiO{sub 2} nanotubes was fabricated and characterized. • Enhanced photoelectrochemical water splitting was firstly demonstrated for Si QDs/TiO{sub 2}. • The visible light response of TiO{sub 2} increased with the presence of Si QDs. - Abstract: This work firstly introduced Si quantum dots (QDs) to modify TiO{sub 2} nanotube arrays for photoelectrochemical water splitting. A systematic study using surface and optical characterization tools reveals the nature of the combination of Si QDs and TiO{sub 2} nanotube arrays. Scanning electron microscopy and X-ray photoelectron spectroscopy results show that Si QDs were assembled on the surface of vertically aligned TiO{sub 2} nanotube arrays. The UV–vis diffuse reflectance spectra indicate the improved visible light absorbance. The enhanced photoelectrochemical water splitting was demonstrated under visible light illumination and the photocurrent density was 1.6 times larger than that of pristine TiO{sub 2} electrodes. Electrochemical impedance behavior was measured for the electrodes and the impedance is slightly reduced for the nanocomposite electrode with the presence of Si QDs. This work demonstrated that Si QDs would be a novel and effective choice for improving the utilization of visible light for TiO{sub 2} nanotubes.

  15. Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes

    Science.gov (United States)

    Qi, Junjie; Liu, Wang; Biswas, Chandan; Zhang, Guangjie; Sun, Lifang; Wang, Zengze; Hu, Xiaofeng; Zhang, Yue

    2015-08-01

    We report the fabrication of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes. The influences of precursor solution temperature and sensitizing cycles on the performance of CdS quantum dots sensitized ZnO nanowires solar cells were studied. Successive ionic layer adsorption and reaction (SILAR) method was applied to deposit CdS quantum dots on the surface of ZnO nanowire arrays for assembling ZnO/CdS electrodes. The results of scanning electron microscopic (SEM), X-ray diffraction (XRD) patterns and UV-vis absorption spectroscopy indicated that the ZnO nanowires electrodes were well-covered with CdS quantum dots. The temperature of the ethanol sensitizing solutions significantly influenced the performance of ZnO/CdS electrodes by affecting the rate of deposition reaction and the penetration ability of ethanol solution. The CdS quantum dots sensitized ZnO-based solar cells exhibited a short-circuit current density (Jsc) of 3.1 mA/cm2, an open-circuit voltage (Voc) of 0.55 V and a photovoltaic conversion efficiency of 0.72%, which is much higher than that reported in literatures, under the illumination of one sun (AM 1.5, 100 mW/cm2) when the temperature of the ethanol solutions was 60 °C and ZnO arrays were sensitized for seven times.

  16. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China); Pan, Yuyang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com [College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China)

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  17. Carbon-dot-decorated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e-/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  18. Carbon-dot-decorated TiO₂ nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria.

    Science.gov (United States)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-18

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e(-)/h(+) pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  19. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  20. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization.

    Science.gov (United States)

    Zhou, Zhengji; Yuan, Shengjie; Fan, Junqi; Hou, Zeliang; Zhou, Wenhui; Du, Zuliang; Wu, Sixin

    2012-11-27

    CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-μm thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm-2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (η) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule.

  1. Enhanced reflection loss and permittivity of self assembled Mg-Co-Zr substituted barium ferrite dot array on carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Ali, E-mail: ali13912001@yahoo.com [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of)

    2012-03-15

    In this research work, magnetic multi-walled carbon nanotube (MWCNTs) nanocomposites have been created by the assembly of Mg-Co-Zr substituted barium ferrite film onto the surface of MWCNTs. Microwave absorption of the MWCNTs/doped barium ferrite nanocomposites is evidently enhanced compared to that of pure MWCNTs and substituted ferrites. The maximum reflection loss increased significantly with an increase in volume percentage of MWCNTs. Reflection loss evaluations indicated that nanocomposites display a great potential application as thinner and lighter wide-band electromagnetic wave absorbers. - Highlights: Black-Right-Pointing-Pointer Ferrite dot array was formed on carbon nanotube by sol-gel method. Black-Right-Pointing-Pointer It was found that the volume percentage of carbon nanotube has remarkable influence on reflection loss characteristics. Black-Right-Pointing-Pointer Microwave measurements indicate that the synthesized nanocomposites could be employed as wide-band electromagnetic wave absorbers.

  2. Large-format and multispectral QWIP infrared focal plane arrays

    Science.gov (United States)

    Goldberg, Arnold C.; Choi, Kwong-Kit; Jhabvala, Murzy; La, Anh; Uppal, Parvez N.; Winn, Michael L.

    2003-09-01

    The next generation of infrared (IR) focal plane arrays (FPAs) will need to be a significant improvement in capability over those used in present-day second generation FLIRs. The Army's Future Combat System requires that the range for target identification be greater than the range of detection for an opposing sensor. To accomplish this mission, the number of pixels on the target must be considerably larger than that possible with 2nd generation FLIR. Therefore, the 3rd generation FLIR will need to be a large format staring FPA with more than 1000 pixels on each side. In addition, a multi-spectral capability will be required to allow operability in challenging ambient environments, discriminate targets from decoys, and to take advantage of the smaller diffraction blur in the MWIR for enhanced image resolution. We report on laboratory measurements of a large format (1024 x 1024 pixels) single-color LWIR IR FPA made using the corrugated quantum well infrared photodetector (QWIP) structure by the ARL/NASA team. The pixel pitch is 18 μm and the spectral response peaks at 8.8 μm with a 9.2 μm cutoff. We report on recent results using a MWIR/LWIR QWIP FPA to image the boost phase of a launch vehicle for missile defense applications and a LWIR/LWIR FPA designed specifically for detecting the disturbed soil associated with buried land mines. Finally, we report on the fabrication of a new read-out integrated circuit (ROIC) specifically designed for multi-spectral operation.

  3. Film formation of CdSe quantum dot embedded phosphate glass on an FTO glass substrate

    Science.gov (United States)

    Han, Karam; Kim, Yoon Hwa; Im, Won Bin; Chung, Woon Jin

    2015-07-01

    A thick film with CdSe quantum dot (QD) embedded glass was formed on a fluorine-doped tin oxide (FTO) glass substrate. Phosphate glasses with different CdO and ZnSe concentrations were synthesized, and the heat treatment conditions were varied to determine the appropriate QD and film formation conditions. Phosphate glass with 1 mol. % CdO and 1.5 mol. % ZnSe showed controlled crystallization of CdSe QDs when they were heat treated at 550℃ for 1 hr. Absorption spectra and Raman spectroscopy identified the QD formation. Precursor glass was ground into powder and pasted onto FTO only and TiO2/FTO glass substrates via the screen printing method. Glass film embedded with QDs was successfully formed after sintering, thus demonstrating its potential for film applications. [Figure not available: see fulltext.

  4. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals

    Science.gov (United States)

    Han, Dong-Soo; Vogel, Andreas; Jung, Hyunsung; Lee, Ki-Suk; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Fischer, Peter; Meier, Guido; Kim, Sang-Koog

    2013-07-01

    Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices.

  5. Characterization of the local density-of-states fluctuations near the integer quantum Hall transition in a quantum-dot array

    Science.gov (United States)

    Jug, Giancarlo; Ziegler, Klaus

    1997-10-01

    We present a calculation for the second moment of the local density of states in a model of a two-dimensional quantum dot array near the quantum Hall transition. The quantum dot array model is a realistic adaptation of the lattice model for the quantum Hall transition in the two-dimensional electron gas in an external magnetic field proposed by Ludwig, Fisher, Shankar, and Grinstein. We make use of a Dirac fermion representation for the Green's functions in the presence of fluctuations for the quantum dot energy levels. A saddle-point approximation yields nonperturbative results for the first and second moments of the local density of states, showing interesting fluctuation behavior near the quantum Hall transition. To our knowledge we discuss here one of the first analytic characterizations of chaotic behavior for a two-dimensional mesoscopic structure. The connection with possible experimental investigations of the local density of states in the quantum dot array structures (by means of NMR Knight-shift or single-electron-tunneling techniques) and our work is also established.

  6. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    Science.gov (United States)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  7. Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Moroni, Stefano T.; Dimastrodonato, Valeria; Chung, Tung-Hsun; Juska, Gediminas; Gocalinska, Agnieszka; Pelucchi, Emanuele [Tyndall National Institute, “Lee Maltings,” University College Cork, Cork (Ireland); Vvedensky, Dimitri D. [The Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-04-28

    We report a model for metalorganic vapor-phase epitaxy on non-planar substrates, specifically V-grooves and pyramidal recesses, which we apply to the growth of InGaAs nanostructures. This model—based on a set of coupled reaction-diffusion equations, one for each facet in the system—accounts for the facet-dependence of all kinetic processes (e.g., precursor decomposition, adatom diffusion, and adatom lifetimes) and has been previously applied to account for the temperature-, concentration-, and temporal-dependence of AlGaAs nanostructures on GaAs (111)B surfaces with V-grooves and pyramidal recesses. In the present study, the growth of In{sub 0.12}Ga{sub 0.88}As quantum wires at the bottom of V-grooves is used to determine a set of optimized kinetic parameters. Based on these parameters, we have modeled the growth of In{sub 0.25}Ga{sub 0.75}As nanostructures formed in pyramidal site-controlled quantum-dot systems, successfully producing a qualitative explanation for the temperature-dependence of their optical properties, which have been reported in previous studies. Finally, we present scanning electron and cross-sectional atomic force microscopy images which show previously unreported facetting at the bottom of the pyramidal recesses that allow quantum dot formation.

  8. Dislocation-induced Charges in Quantum Dots: Step Alignment and Radiative Emission

    Science.gov (United States)

    Leon, R.; Okuno, J.; Lawton, R.; Stevens-Kalceff, M.; Phillips, M.; Zou, J.; Cockayne, D.; Lobo, C.

    1999-01-01

    A transition between two types of step alignment was observed in a multilayered InGaAs/GaAs quantum-dot (QD) structure. A change to larger QD sizes in smaller concentrations occurred after formation of a dislocation array.

  9. Large Format Geiger Mode Avalanche Photodiode Arrays and Readout Circuits

    Science.gov (United States)

    2017-06-01

    a detector wafer with a transparent substrate; the arrays can therefore be bump bonded to CMOS readouts by the same process used for InP- based... bump bond to a more advanced 3D integration requires heterogeneous integration technique. We have demonstrated wafer bonding of InP detector arrays...digital CMOS readout circuits using bump bonding or 3D integration techniques. Silicon is the material of choice for ultraviolet, visible, and near

  10. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties.

    Science.gov (United States)

    Coïsson, Marco; Celegato, Federica; Barrera, Gabriele; Conta, Gianluca; Magni, Alessandro; Tiberto, Paola

    2017-08-23

    A bi-component nanostructured system composed by a Co dot array embedded in a Ni80Fe20 antidot matrix has been prepared by means of the self-assembling polystyrene nanospheres lithography technique. Reference samples constituted by the sole Co dots or Ni80Fe20 antidots have also been prepared, in order to compare their properties with those of the bi-component material. The coupling between the two ferromagnetic elements has been studied by means of magnetic and magneto-transport measurements. The Ni80Fe20 matrix turned out to affect the vortex nucleation field of the Co dots, which in turn modifies the magneto-resistance behaviour of the system and its spinwave properties.

  11. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    Directory of Open Access Journals (Sweden)

    Hamza Qayyum

    2016-05-01

    Full Text Available The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm−2 could be formed over an area larger than 4 mm2. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.

  12. Graphene kirigami as a platform for stretchable and tunable quantum dot arrays

    Science.gov (United States)

    Bahamon, D. A.; Qi, Zenan; Park, Harold S.; Pereira, Vitor M.; Campbell, David K.

    2016-06-01

    The quantum transport properties of a graphene kirigami similar to those studied in recent experiments are calculated in the regime of elastic, reversible deformations. Our results show that, at low electronic densities, the conductance profile of such structures replicates that of a system of coupled quantum dots, characterized by a sequence of minibands and stopgaps. The conductance and I-V curves have different characteristics in the distinct stages of deformation that characterize the elongation of these structures. Notably, the effective coupling between localized states is strongly reduced in the small elongation stage but revived at large elongations that allow the reestablishment of resonant tunneling across the kirigami. This provides an interesting example of interplay between geometry, strain, spatial confinement, and electronic transport. The alternating miniband and stopgap structure in the transmission leads to I-V characteristics with negative differential conductance in well defined energy/doping ranges. These effects should be stable in a realistic scenario that includes edge roughness and Coulomb interactions, as these are expected to further promote localization of states at low energies in narrow segments of graphene nanostructures.

  13. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes

    Science.gov (United States)

    Chung, T. H.; Juska, G.; Moroni, S. T.; Pescaglini, A.; Gocalinska, A.; Pelucchi, E.

    2016-12-01

    Scalability and foundry compatibility (as apply to conventional silicon-based integrated computer processors, for example) in developing quantum technologies are major challenges facing current research. Here we introduce a quantum photonic technology that has the potential to enable the large-scale fabrication of semiconductor-based, site-controlled, scalable arrays of electrically driven sources of polarization-entangled photons that may be able to encode quantum information. The design of the sources is based on quantum dots grown in micrometre-sized pyramidal recesses along the crystallographic direction (111)B, which theoretically ensures high symmetry of the quantum dots—a requirement for bright entangled-photon emission. A selective electric injection scheme in these non-planar structures allows a high density of light-emitting diodes to be obtained, with some producing entangled photon pairs that also violate Bell's inequality. Compatibility with semiconductor fabrication technology, good reproducibility and lithographic position control make these devices attractive candidates for integrated photonic circuits for quantum information processing.

  14. Surface current density distribution measurements of an electrically exploded foil via B-dot probe array data inversion

    Science.gov (United States)

    Ruden, E. L.; Amdahl, D. J.; Cooksey, R. H.; Robinson, P. R.; Analla, F. T.; Brown, D. J.; Kostora, M. R.; Camacho, J. F.

    2014-10-01

    Measurements are presented of the current per unit length as a function of the transverse distance from the center of a water-tamped 80 μm Al foil that narrows to a central width of 15.2 cm as it explodes into warm dense matter by Ohmic heating. Current is delivered by the discharge of a 36 μF capacitor bank charged to 30 kV and discharged to a peak current of 342 kA in 2.0 μs. The distribution is calculated by the linear regularized inversion of signals from an array of B-dot probes distributed along the foil's central half-width. The probes are far enough away from the foil (1 cm) be noninvasive and mechanically undisturbed during the time of interest. These results are compared to 3-D MHD ALEGRA simulations of the geometry driven by an external coupled two-loop lumped circuit model which accurately represents the driver. The goal of the effort is to test, in conjunction with other diagnostics, ab initio models of the equation of state and electrical conductivity of matter under conditions encountered in single-shot pulsed power devices (1 - 10 eV and 0.1 - 1 × solid density). This work was supported by AFOSR LRIR 11RD02COR.

  15. Structure and excited state relaxation dynamics in nanoscale self-assembled arrays: multiporphyrin complexes, porphyrin-quantum dot composites

    Science.gov (United States)

    Zenkevich, E. I.; von Borczyskowski, C.

    2005-06-01

    Self-assembled nanoscale arrays of controllable geometry and composition (up to 8 tetrapyrroles) have been formed via non-covalent binding interactions of the meso-phenyl bridged Zn-octaethylporphyrin chemical dimers or trimers with di- /tetrapyridyl substituted porphyrin extra-ligands. In these complexes using steady-state and time-resolved (ps fluorescence and fs pump-probe) measurements pathways and efficiencies of the energy transfer photoinduced charge separation as well as exchange d-π effects have been studied in solutions of variable polarity at 77-293 K. The same principles of aggregation via the key-hole scheme "Zn-pyridyl" have been used also for the surface passivation of pyridylsubstituted tetrapyrroles on the coreshell semiconductor CdSe/ZnS quantum dots (QD) showing quantum confinement effects. Picosecond time-resolved and steady-state data reveal that CdSe/ZnS QD emission is multiexponential and the efficiency of its quenching by attached porphyrins (due to energy transfer and photoinduced charge separation) depends strongly on the number of anchoring groups their arrangement in the porphyrin molecule as well as on QD size and number of ZnS monolayers. The analysis of spectroscopic and kinetic findings reveals that on average only ~l/5 porphyrin molecules are assembled on the QD and a limited number of "vacancies" accessible for porphyrin attachment is available on the QD surface.

  16. Ordered arrays of InGaN/GaN dot-in-a-wire nanostructures as single photon emitters

    Science.gov (United States)

    Lazić, Snežana; Chernysheva, Ekaterina; Gačević, Žarko; García-Lepetit, Noemi; van der Meulen, Herko P.; Müller, Marcus; Bertram, Frank; Veit, Peter; Christen, Jürgen; Torres-Pardo, Almudena; González Calbet, José M.; Calleja, Enrique; Calleja, José M.

    2015-03-01

    The realization of reliable single photon emitters operating at high temperature and located at predetermined positions still presents a major challenge for the development of solid-state systems for quantum light applications. We demonstrate single-photon emission from two-dimensional ordered arrays of GaN nanowires containing InGaN nanodisks. The structures were fabricated by molecular beam epitaxy on (0001) GaN-on-sapphire templates patterned with nanohole masks prepared by colloidal lithography. Low-temperature cathodoluminescence measurements reveal the spatial distribution of light emitted from a single nanowire heterostructure. The emission originating from the topmost part of the InGaN regions covers the blue-to-green spectral range and shows intense and narrow quantum dot-like photoluminescence lines. These lines exhibit an average linear polarization ratio of 92%. Photon correlation measurements show photon antibunching with a g(2)(0) values well below the 0.5 threshold for single photon emission. The antibunching rate increases linearly with the optical excitation power, extrapolating to the exciton decay rate of ~1 ns-1 at vanishing pump power. This value is comparable with the exciton lifetime measured by time-resolved photoluminescence. Fast and efficient single photon emitters with controlled spatial position and strong linear polarization are an important step towards high-speed on-chip quantum information management.

  17. Blue-to-green single photons from InGaN/GaN dot-in-a-nanowire ordered arrays

    Science.gov (United States)

    Chernysheva, E.; Gačević, Ž.; García-Lepetit, N.; van der Meulen, H. P.; Müller, M.; Bertram, F.; Veit, P.; Torres-Pardo, A.; González Calbet, J. M.; Christen, J.; Calleja, E.; Calleja, J. M.; Lazić, S.

    2015-07-01

    Single-photon emitters (SPEs) are at the basis of many applications for quantum information management. Semiconductor-based SPEs are best suited for practical implementations because of high design flexibility, scalability and integration potential in practical devices. Single-photon emission from ordered arrays of InGaN nano-disks embedded in GaN nanowires is reported. Intense and narrow optical emission lines from quantum dot-like recombination centers are observed in the blue-green spectral range. Characterization by electron microscopy, cathodoluminescence and micro-photoluminescence indicate that single photons are emitted from regions of high In concentration in the nano-disks due to alloy composition fluctuations. Single-photon emission is determined by photon correlation measurements showing deep anti-bunching minima in the second-order correlation function. The present results are a promising step towards the realization of on-site/on-demand single-photon sources in the blue-green spectral range operating in the GHz frequency range at high temperatures.

  18. The first large format SI:SB BIB arrays

    Science.gov (United States)

    Van Cleve, J. E.; Herter, T.; Pirger, B.; Gull, G.; Huffman, J.; Seib, D.; Halleck, B. L.; Reynolds, D. B.

    1994-01-01

    The first 128x128 Si:Sb blocked impurity band (BIB) detectors, manufactured by Rockwell International, are sensitive detectors from 10 to at least 40 micrometers. While further work is required to make these arrays suitable for the low backgrounds of space infrared telescopes, they can be used now for observations from the ground and aircraft.

  19. Formation of emission line dots and extremely metal-deficient dwarfs from almost dark galaxies

    CERN Document Server

    Bekki, Kenji

    2015-01-01

    Recent observations have discovered a number of extremely gas-rich very faint dwarf galaxies possibly embedded in low-mass dark matter halos. We investigate star formation histories of these gas-rich dwarf ("almost dark") galaxies both for isolated and interacting/merging cases. We find that although star formation rates (SFRs) are very low (<10^-5 M_sun/yr) in the simulated dwarfs in isolation for the total halo masses (M_h) of 10^8-10^9 M_sun, they can be dramatically increased to be ~ 10^{-4} M_sun/yr when they interact or merge with other dwarfs. These interacting faint dwarfs with central compact HII regions can be identified as isolated emission line dots ("ELdots") owing to their very low surface brightness envelopes of old stars. The remnant of these interacting and merging dwarfs can finally develop central compact stellar systems with very low metallicities (Z/Z_sun<0.1), which can be identified as extremely metal-deficient ("XMD") dwarfs. These results imply that although there would exist ma...

  20. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States)

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial film surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.

  1. Formation mechanism of highly luminescent silica capsules incorporating multiple hydrophobic quantum dots with various emission wavelengths.

    Science.gov (United States)

    Li, Chunliang; Murase, Norio

    2013-12-01

    A synthesis process was reconsidered for encapsulating hydrophobic quantum dots (QDs) into silica capsules with high photoluminescent (PL) efficiency. The process comprises three steps: silanization of QD surfaces, seed formation by assembly of the QDs, and coating of the QD seeds with a silica shell. Analysis of the encapsulation mechanism enabled this process to be adapted for application to CdSe-based core-shell QDs with various organic ligands such as oleic acid and with various emission wavelengths. Formation of the seeds is the key step in synthesizing the silica capsules, so that they have high PL efficiency. Due to the differences in QD size and in the affinity of the ligands on their surfaces, the concentration of QDs used in the synthesis must be optimized to maximize emission efficiency. Contrary to an initial assumption, several ligands remained on the QD surfaces even after the QDs were transferred from organic solution to water. This greatly affected the size and PL efficiency of the seeds. Judicious selection of the conditions for seed and silica capsule synthesis resulted in seeds with PL efficiency greater than 70% and in silica capsules encapsulating multiple CdSe/CdZnS QDs with PL efficiency as high as 41%. Silica capsules incorporating QDs with various emission peak wavelengths from green to red were also prepared. The process presented serves as a guideline for encapsulating various types of hydrophobic QDs into silica capsules for biological tagging applications.

  2. The influence of sodium nanoparticles formation on luminescent properties of fluorophosphate glasses containing molecular clusters and quantum dots of lead selenide

    Science.gov (United States)

    Lipatova, Zh. O.; Kolobkova, E. V.; Sidorov, A. I.; Nikonorov, N. V.

    2016-08-01

    The influence of sodium nanoparticles and secondary heat treatment conditions on the spectralluminescent characteristics of fluorophosphate glasses with PbSe molecular clusters and quantum dots is studied. Experiments with glasses containing no sodium nanoparticles show that their thermal treatment leads to the formation of molecular clusters with subsequent formation of quantum dots having an intense luminescence. The results of numerical simulation for glasses with sodium nanoparticles shows that heat treatment leads to formation of a sodium fluoride shell on the nanoparticles surface. It is shown that quenching of the luminescence of PbSe molecular clusters and quantum dots takes place in these glasses.

  3. Dynamic array generation and pattern formation for optical tweezers

    DEFF Research Database (Denmark)

    Mogensen, P.C.; Glückstad, J.

    2000-01-01

    The generalised phase contrast approach is used for the generation of optical arrays of arbitrary beam shape, suitable for applications in optical tweezers for the manipulation of biological specimens. This approach offers numerous advantages over current techniques involving the use of computer......-generated holograms or diffractive optical elements. We demonstrate a low-loss system for generating intensity patterns suitable for the trapping and manipulation of small particles or specimens....

  4. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    Science.gov (United States)

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  5. Analysis of Image Formation with Thinned Random Arrays

    Science.gov (United States)

    1979-06-01

    FORCE OFFICE OF SCIENTIFIC RESEARCH Building 410 i Boiling Air Force Base , Washington, DC 20332 A ~VA Approved for public rolo~ae; UT G’ -7 7 . . . . 7...However, there is no general theory available for the algorithmic design of this class of arrays. Many of the designs to date have been based on trial- and...system. The system impulse function is directly related 14 to the pupil function by a Fourier trmnsformation: h(x,y) ff P(•,) 6 -i2T(xc+Y8) dadO . (3

  6. Design, preparation and use of ligated phosphoproteins: a novel approach to study protein phosphatases by dot blot array, ELISA and Western blot assays.

    Science.gov (United States)

    Sun, Luo; Ghosh, Inca; Barshevsky, Tanya; Kochinyan, Samvel; Xu, Ming-Qun

    2007-07-01

    The study of substrate specificity of protein phosphatases (PPs) is very challenging since it is difficult to prepare a suitable phosphorylated substrate. Phosphoproteins, phosphorylated by a protein kinase, or chemically synthesized phosphopeptides are commonly used substrates for PPs. Both types of these substrates have their advantages and limitations. Phosphoproteins mimic more closely the physiologically relevant PP substrates, but their preparation is technically demanding. Synthetic phosphopeptides present advantages over proteins because they can be easily produced in large quantity and their amino acid sequence can be designed to contain potential determinants of substrate specificity. However, short peptides are less optimal compared to in vivo PP substrates and often display poor and variable binding to different matrices, resulting in low sensitivity in analysis of PP activity on solid support. In this work we utilize the intein-mediated protein ligation (IPL) technique to generate substrates for PPs, combining the advantages of proteins and synthetic peptides in one molecule. The ligation of a synthetic phosphopeptide to an intein-generated carrier protein (CP) with a one-to-one stoichiometry results in the formation of a ligated phosphoprotein (LPP). Three widely used assays, dot blot array, Western blot and ELISA were employed to study the PP activity on LPP substrates. Dephosphorylation was measured by detection of the remaining phosphorylation, or lack of it, with a phospho-specific antibody. The data show the advantage of LPPs over free peptides in assays on solid supports. LPPs exhibited enhanced binding to the matrices used in the study, which significantly improved sensitivity and consistency of the assays. In addition, saturation of the signal was circumvented by serial dilution of the assay samples. This report describes detailed experimental procedures for preparation of LPP substrates and their use in PP assays based on immobilization on

  7. Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell

    Science.gov (United States)

    Justin Raj, C.; Karthick, S. N.; Park, Songyi; Hemalatha, K. V.; Kim, Soo-Kyoung; Prabakar, K.; Kim, Hee-Je

    2014-02-01

    Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm-2) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy.

  8. Assessing the occurrence of the dibromide radical (Br{sub 2}{sup -{center_dot}}) in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Mailhot, Gilles; Sarakha, Mohamed [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Brigante, Marcello, E-mail: marcello.brigante@univ-bpclermont.fr [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Vione, Davide, E-mail: davide.vione@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-11-15

    The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br{sup {center_dot}}/Br{sub 2}{sup -{center_dot}}, with rate constant (2-4) Dot-Operator 10{sup 9} M{sup -1} s{sup -1} that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ({sup 3}CDOM*). The brominating agent Br{sub 2}{sup -{center_dot}} could thus be formed in natural waters upon oxidation of bromide by both {sup {center_dot}}OH and {sup 3}CDOM*. Br{sub 2}{sup -{center_dot}} would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of {approx} 3 Dot-Operator 10{sup 2} L (mg C){sup -1} s{sup -1} was measured between Br{sub 2}{sup -{center_dot}} and DOM. It was thus possible to model the formation and reactivity of Br{sub 2}{sup -{center_dot}} in natural waters, assessing the steady-state [Br{sub 2}{sup -{center_dot}}] Almost-Equal-To 10{sup -13}-10{sup -12} M. It is concluded that bromide oxidation by {sup 3}CDOM* would be significant compared to oxidation by {sup {center_dot}}OH. The {sup 3}CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge {sup {center_dot}}OH. Under such conditions, {sup {center_dot}}OH-assisted formation of Br{sub 2}{sup -{center_dot}} would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of {sup 3}CDOM* is much higher compared to that of {sup {center_dot}}OH in most surface waters and would provide a large {sup 3}CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br{sub 2}{sup -{center_dot}} could be an important source of the nitrating agent {sup {center_dot

  9. Formation of plasmon pulses in the cooperative decay of excitons of quantum dots near a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Shesterikov, A. B.; Gubin, M. Yu. [Vladimir State University (Russian Federation); Gladush, M. G. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Prokhorov, A. V., E-mail: avprokhorov33@mail.ru [Vladimir State University (Russian Federation)

    2017-01-15

    The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.

  10. ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection.

    Science.gov (United States)

    Zhang, Xiaoliang; Liu, Jianhua; Zhang, Jindan; Vlachopoulos, Nick; Johansson, Erik M J

    2015-05-21

    A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.

  11. Quantum dot formation and dynamic scaling behavior of SnO2 nanocrystals induced by pulsed delivery

    Science.gov (United States)

    Chen, Z. W.; Lai, J. K. L.; Shek, C. H.

    2006-01-01

    Quantum dot formation and dynamic scaling behavior of SnO2 nanocrystals in coalescence regime for growth by pulsed-laser deposition is explored experimentally and theoretically, and the same is compared with that for continuous vapor deposition such as molecular-beam epitaxy. Using high-resolution transmission electron microscopy, unusual quantum dots of SnO2 nanocrystals are studied. We present kinetic Monte-Carlo simulations for pulsed-laser deposition in the submonolayer regime and give a description of the island distance versus pulse intensity. We found that the scaling exponent for pulsed-laser deposition is 1.28±0.03, which is significantly lower as compared to that for molecular-beam epitaxy (1.62±0.03). Theoretical simulations reveal that this attractive difference can be pursued to the large fraction of multiple droplet coalescence under pulsed vapor delivery.

  12. Functional Si and CdSe quantum dots: synthesis, conjugate formation, and photoluminescence quenching by surface interactions.

    Science.gov (United States)

    Sudeep, P K; Emrick, Todd

    2009-12-22

    Silicon quantum dots (QDs) were prepared with a corona of di-n-octyl phosphine oxides, by performing hydrosilylation chemistry on the surface of hydrogen-terminated Si QDs. These novel Si QDs proved well-suited to serve as "ligands" for other semiconductor QDs, such as CdSe, by interaction of the phosphine oxide corona with the CdSe surface. A pronounced photoluminescence quenching of CdSe quantum dots was observed upon introduction of the phosphine oxide functionalized Si QDs to a CdSe QD solution. Surface functionalization of the Si QDs proved critically important to observing these effects, as conventional (alkane-covered) Si QD samples gave no evidence of electronic interactions with TOPO-covered CdSe. In a comparative system, phosphine oxide terminated oligo(phenylene vinylene) molecules acting as CdSe QD ligands provide a similar fluorescence quenching, with exciton decay kinetics supporting the formation of an electronically interacting hybrid materials system.

  13. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  14. Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy

    Science.gov (United States)

    Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary

    2012-01-01

    A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing

  15. Formation and properties of selected quantum dots in maize amylopectin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Karen, E-mail: rrchacza@cyf-kr.edu.pl [Department of Chemistry and Physics, Agricultural University, Balicka Street 122, 30 149 Krakow (Poland); Khachatryan, Gohar; Fiedorowicz, Maciej [Department of Chemistry and Physics, Agricultural University, Balicka Street 122, 30 149 Krakow (Poland); Tomasik, Piotr [Krakow College of Health Promotion, Krowoderska Street 73, 31 158 Krakow (Poland)

    2014-09-01

    Highlights: • Synthesis of quantum dots in aqueous gel of amylopectin. • Generation of quantum dots in non-ionic polysaccharide. • Preparation of CdS, Ga{sub 2}S{sub 3} and ZnS quantum dots of the size below 10 nm. • The amylopectin matrix is not suitable for generation of CaS and Cs{sub 2}S quantum dots. - Abstract: CdS, ZnS, Ga{sub 2}S{sub 3}, CaS and Cs{sub 2}S quantum dots (QDs) were generated in the amylopectin (Ap) matrix. They all emitted a light between 460 (ZnS) and 475 (CdS) nm. Sizes of Ga{sub 2}S{sub 3} and CdS QDs were 7–9 nm and 5–7 nm, respectively. Single ZnS QDs had 6–7 nm but they readily aggregated. The CaS and Cs{sub 2}S appeared mainly as 30–100 nm aggregates. There were no significant interactions between QDs and the Ap matrix. Presented method appeared unsuitable for the generation of CaS and Cs{sub 2}S QDs as they as well as their substrates [Ca(NO{sub 3}){sub 2}] hydrolyzed. Calcium compounds formed complexes with Ap and alkaline solution from CsOH could produce cesium salts of Ap as well as cause oxidation of Ap.

  16. CMOS-compatible dense arrays of Ge quantum dots on the Si(001) surface: hut cluster nucleation, atomic structure and array life cycle during UHV MBE growth.

    Science.gov (United States)

    Arapkina, Larisa V; Yuryev, Vladimir A

    2011-04-15

    We report a direct observation of Ge hut nucleation on Si(001) during UHV molecular beam epitaxy at 360°C. Nuclei of pyramids and wedges were observed on the wetting layer (WL) (M × N) patches starting from the coverage of 5.1 Å and found to have different structures. Atomic models of nuclei of both hut species have been built as well as models of the growing clusters. The growth of huts of each species has been demonstrated to follow generic scenarios. The formation of the second atomic layer of a wedge results in rearrangement of its first layer. Its ridge structure does not repeat the nucleus. A pyramid grows without phase transitions. A structure of its vertex copies the nucleus. Transitions between hut species turned out to be impossible. The wedges contain point defects in the upper corners of the triangular faces and have preferential growth directions along the ridges. The derived structure of the {105} facet follows the paired dimer model. Further growth of hut arrays results in domination of wedges, and the density of pyramids exponentially drops. The second generation of huts arises at coverages >10 Å; new huts occupy the whole WL at coverages ~14 Å. Nanocrystalline Ge 2D layer begins forming at coverages >14 Å.

  17. CMOS-compatible dense arrays of Ge quantum dots on the Si(001 surface: hut cluster nucleation, atomic structure and array life cycle during UHV MBE growth

    Directory of Open Access Journals (Sweden)

    Arapkina Larisa

    2011-01-01

    Full Text Available Abstract We report a direct observation of Ge hut nucleation on Si(001 during UHV molecular beam epitaxy at 360°C. Nuclei of pyramids and wedges were observed on the wetting layer (WL (M × N patches starting from the coverage of 5.1 Å and found to have different structures. Atomic models of nuclei of both hut species have been built as well as models of the growing clusters. The growth of huts of each species has been demonstrated to follow generic scenarios. The formation of the second atomic layer of a wedge results in rearrangement of its first layer. Its ridge structure does not repeat the nucleus. A pyramid grows without phase transitions. A structure of its vertex copies the nucleus. Transitions between hut species turned out to be impossible. The wedges contain point defects in the upper corners of the triangular faces and have preferential growth directions along the ridges. The derived structure of the {105} facet follows the paired dimer model. Further growth of hut arrays results in domination of wedges, and the density of pyramids exponentially drops. The second generation of huts arises at coverages >10 Å; new huts occupy the whole WL at coverages ~14 Å. Nanocrystalline Ge 2D layer begins forming at coverages >14 Å.

  18. Effect of InAlGaAs and GaAs combination barrier thickness on the duration of dot formation in different layers of stacked InAs/GaAs quantum dot heterostructure grown by MBE.

    Science.gov (United States)

    Halder, N; Suseendran, J; Chakrabarti, S; Herrera, Miriam; Bonds, Marta; Browning, Nigel D

    2010-08-01

    Multilayer stacks of quantum dots (QDs) (10 periods) with a combination barrier layer of In0.21Al0.21 Ga0.58As (30 angstroms) and GaAs (70-180 angstroms) are grown by solid source molecular beam epitaxy (MBE) and reflection high-energy electron diffraction (RHEED) has been used for the in situ determination of the duration of dot formation in the QD layers. The increase in the duration of dot formation in the consecutive layers of the QD heterostructure with thinner barrier is attributed to the indium migration towards the defects in the strained QD layers. A thicker GaAs layer at 590 degrees C overgrown on the InAlGaAs is believed to remove the unevenness of the growth front for the subsequent QD layer resulting in good vertical stacking of islands till the final layer of the multilayer heterostructures.

  19. Dipolariton formation in quantum dot molecules strongly coupled to optical resonators

    CERN Document Server

    Domínguez, Marlon S; Ramírez, Hanz Y

    2016-01-01

    In this theoretical work, we study a double quantum dot interacting strongly with a microcavity, while undergoing resonant tunneling. Effects of interdot tunneling on the light-matter hybridized states are determined, and tunability of their brightness degrees and associated dipole moments is demonstrated. These results predict dipolariton generation in artificial molecules coupled to optical resonators, and provide a promising scenario for control of emission efficiency and coherence times of exciton polaritons.

  20. Mechanistic Insights into the Formation of InP Quantum Dots**

    Science.gov (United States)

    Allen, Peter M.; Walker, Brian J.

    2011-01-01

    This paper examines the molecular mechanism of InP colloidal quantum dot (QD) syntheses. Unlike methods for monodisperse PbSe and CdSe we found that existing InP syntheses result in total depletion of molecular phosphorous species following nucleation, so QD growth is due exclusively to non-molecular ripening. We find that amines inhibit precursor depletion via solvation, and these findings may lead to better synthetic methodology for InP QDs. PMID:20025010

  1. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    Science.gov (United States)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  2. Plasma formation and dynamics in conical wire arrays in the Llampudken pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, C. Gonzalo, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Valenzuela, Vicente, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Veloso, Felipe, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Favre, Mario, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Wyndham, Edmund, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl [Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile)

    2014-12-15

    Plasma formation and dynamics from conical wire array is experimentally studied. Ablation from the wires is observed, forming plasma accumulation at the array axis and subsequently a jet outflow been expelled toward the top of the array. The arrays are composed by 16 equally spaced 25μ diameter tungsten wires. Their dimensions are 20mm height, with base diameters of 8mm and 16mm top diameter. The array loads are design to be overmassed, hence no complete ablation of the wires is observed during the current rise. The experiments have been carried out in the Llampudken. pulsed power generator (∼350kA in ∼350ns). Plasma dynamics is studied in both side-on and end-on directions. Laser probing (shadowgraphy) is achieved using a frequency doubled Nd:YAG laser (532nm, 12ps FWHM) captured by CCD cameras. Pinhole XUV imaging is captured using gated microchannel plate cameras with time resolution ∼5ns. Results on the jet velocity and the degree of collimation indicating the plausibility on the use of these jets as comparable to the study astrophysically produced jets are presented and discussed.

  3. Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays

    Directory of Open Access Journals (Sweden)

    Yang XQ

    2011-10-01

    Full Text Available Xue-Qin Yang1,2, Chuang Chen1, Chun-Wei Peng1, Jin-Xuan Hou1, Shao-Ping Liu1, Chu-Bo Qi3, Yi-Ping Gong4, Xiao-Bo Zhu5, Dai-Wen Pang6, Yan Li1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory on Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan; 2Medical School of Jingchu University of Technology, Jingmen; 3Department of Pathology; 4Department of Breast Surgery, Hubei Cancer Hospital, Wuhan; 5Wuhan Jiayuan Quantum Dots Co Ltd and Wuhan Tumor Nanometer Diagnosis Engineering Research Center, Wuhan; 6Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan, People's Republic of China Background: The epidermal growth factor receptor (EGFR is a promising therapeutic target in cancer, but its clinical value in breast cancer remains controversial. Our previous studies have found that quantitative analysis of biomarkers with quantum dot-based nanotechnology had better detection performance than conventional immunohistochemistry. The present study was undertaken to investigate the prognostic value of EGFR in breast cancer using quantum dot-based quantitative spectral analysis. Methods: EGFR expression in 65 breast cancer specimens was detected by immunohistochemistry and quantum dot-immunohistochemistry, and comparisons were made between the two methods. EGFR expression in tissue microarrays of 240 breast cancer patients was then detected by quantum dot-immunohistochemistry and spectral analysis. The prognostic value of EGFR immunofluorescence area (EGFR area for five-year recurrence-free survival was investigated. Results: The same antigen localization, high correlation of staining rates (r = 0.914, and high agreement of measurement (κ= 0.848 of EGFR expression in breast cancer were found by quantum dot-immunohistochemistry and immunohistochemistry. The EGFR area showed significant

  4. Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Back-Illuminated Quantum Dot Infrared Photodetectors

    Science.gov (United States)

    2013-02-25

    Woo-Yong Jang,2,5,6 Jiangfeng Zhou,3,5 Jun Oh Kim,2 Ajit V. Barve,2 Sinhara Silva,3 Sanjay Krishna,2 S. R. J. Brueck,2 Robert Nelson,1 Augustine Urbas...dots,” C. R. Phys. 4(10), 1133–1154 (2003). 4. G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy , and L. F. Lester

  5. Interstellar Medium and Star Formation Studies with the Square Kilometre Array

    Indian Academy of Sciences (India)

    P. Manoj; S. Vig; G. Maheswar; U. S. Kamath; A. Tej

    2016-12-01

    Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major role in filling these gaps in our understanding. In this article, we present a few science cases that the Indian star formation community is interested in pursuing with SKA, which include investigation of AU-sized structures in the neutral ISM, the origin of thermal and non-thermal radio jets from protostars and the accretion history of protostars, and formation of massive stars and their effect on the surrounding medium.

  6. Interstellar medium and star formation studies with the Square Kilometre Array

    CERN Document Server

    Manoj, P; Mahewar, G; Kamath, U S; Tej, A

    2016-01-01

    Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major role in filling these gaps in our understanding. In this article, we present a few science cases that the Indian star formation community is interested in pursuing with SKA, which include investigation of AU-sized structures in the neutral ISM, the origin of thermal and non-thermal radio jets from protostars and the accretion history of protostars, and formation of massive stars and their effect on the surrounding medium.

  7. Flat-Topped Emission with Spectral Width above 500 nm from InAs/InP Quantum Dot Waveguide Array Light-Emitting Diode

    Science.gov (United States)

    Yoshikawa, Shohei; Saegusa, Tomomitsu; Iwane, Yuto; Yamauchi, Masayuki; Shimomura, Kazuhiko

    2012-09-01

    Flat-topped emission with a spectral width greater than 500 nm was obtained from self-assembled Stranski-Krastanov (SK) InAs/InP quantum dots (QDs) grown by selective area low-pressure metal organic vapor phase epitaxy using a double-capping procedure. Selective area growth using an SiO2 mask with narrow stripes was carried out to tailor a wide emission range for the QDs in sixteen arrayed waveguides. Each waveguide core contained three stacked QD layers with different QD heights and Ga content in the GaInAs buffer layer. An investigation was carried out into the optimum Ga content and QD height for increasing the emission intensity and obtaining equal intensity from each QD layer.

  8. Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices.

    Science.gov (United States)

    Liu, Bingkun; Wang, Dejun; Zhang, Yu; Fan, Haimei; Lin, Yanhong; Jiang, Tengfei; Xie, Tengfeng

    2013-02-14

    Vertically aligned TiO(2) nanorod arrays (NRAs) modified with Ag(2)S quantum dots (QDs) have been successfully prepared via a successive ionic layer adsorption and reaction (SILAR) process. Ultraviolet-visible (UV-vis) absorption spectra and surface photovoltage (SPV) measurements reveal that the Ag(2)S sensitization extends the range of the photoresponse of the TiO(2) NRAs to the visible region and exhibits higher photovoltage responses. With a polysulfide electrolyte, a maximum conversion efficiency of 0.148% with a superior J(sc) of 1.177 mA cm(-2) are obtained after 6 SILAR cycles under illumination at 100 mW cm(-2). These results indicate that the Ag(2)S QDs/TiO(2) NRAs photoelectrode has a promising application in solar cells.

  9. Formation of spin droplet at ν =5/2 in an asymmetric quantum dot under quantum Hall conditions

    Science.gov (United States)

    Atci, H.; Siddiki, A.

    2017-01-01

    In this work, a quantum dot that is defined asymmetrically by electrostatic means induced on a GaAs/AlGaAs heterostructure is investigated to unravel the effect of geometric constraints on the formation of spin droplets under quantized Hall conditions. The incompressibility of the excited ν =5/2 state is explored by solving the Schrödinger equation within spin density functional theory, where the confinement potential is obtained self-consistently utilizing the Thomas-Fermi approximation. Our numerical investigations show that the spatial distribution of the ν =2 incompressible strips and electron occupation in the second lowest Landau level considerably differ from the results of the laterally symmetric quantum dots. Our findings yield two important consequences: first, the incompressibility of the intriguing ν =5/2 state is strongly affected by the asymmetry, and second, since the Aharonov-Bohm interference patterns depend on the velocity of the particles, asymmetry yields an additional parameter to adjust the oscillation period, which imposes a boundary condition dependency in observing quasiparticle phases.

  10. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  11. Highly Parallel Computing Architectures by using Arrays of Quantum-dot Cellular Automata (QCA): Opportunities, Challenges, and Recent Results

    Science.gov (United States)

    Fijany, Amir; Toomarian, Benny N.

    2000-01-01

    There has been significant improvement in the performance of VLSI devices, in terms of size, power consumption, and speed, in recent years and this trend may also continue for some near future. However, it is a well known fact that there are major obstacles, i.e., physical limitation of feature size reduction and ever increasing cost of foundry, that would prevent the long term continuation of this trend. This has motivated the exploration of some fundamentally new technologies that are not dependent on the conventional feature size approach. Such technologies are expected to enable scaling to continue to the ultimate level, i.e., molecular and atomistic size. Quantum computing, quantum dot-based computing, DNA based computing, biologically inspired computing, etc., are examples of such new technologies. In particular, quantum-dots based computing by using Quantum-dot Cellular Automata (QCA) has recently been intensely investigated as a promising new technology capable of offering significant improvement over conventional VLSI in terms of reduction of feature size (and hence increase in integration level), reduction of power consumption, and increase of switching speed. Quantum dot-based computing and memory in general and QCA specifically, are intriguing to NASA due to their high packing density (10(exp 11) - 10(exp 12) per square cm ) and low power consumption (no transfer of current) and potentially higher radiation tolerant. Under Revolutionary Computing Technology (RTC) Program at the NASA/JPL Center for Integrated Space Microelectronics (CISM), we have been investigating the potential applications of QCA for the space program. To this end, exploiting the intrinsic features of QCA, we have designed novel QCA-based circuits for co-planner (i.e., single layer) and compact implementation of a class of data permutation matrices, a class of interconnection networks, and a bit-serial processor. Building upon these circuits, we have developed novel algorithms and QCA

  12. Highly Parallel Computing Architectures by using Arrays of Quantum-dot Cellular Automata (QCA): Opportunities, Challenges, and Recent Results

    Science.gov (United States)

    Fijany, Amir; Toomarian, Benny N.

    2000-01-01

    There has been significant improvement in the performance of VLSI devices, in terms of size, power consumption, and speed, in recent years and this trend may also continue for some near future. However, it is a well known fact that there are major obstacles, i.e., physical limitation of feature size reduction and ever increasing cost of foundry, that would prevent the long term continuation of this trend. This has motivated the exploration of some fundamentally new technologies that are not dependent on the conventional feature size approach. Such technologies are expected to enable scaling to continue to the ultimate level, i.e., molecular and atomistic size. Quantum computing, quantum dot-based computing, DNA based computing, biologically inspired computing, etc., are examples of such new technologies. In particular, quantum-dots based computing by using Quantum-dot Cellular Automata (QCA) has recently been intensely investigated as a promising new technology capable of offering significant improvement over conventional VLSI in terms of reduction of feature size (and hence increase in integration level), reduction of power consumption, and increase of switching speed. Quantum dot-based computing and memory in general and QCA specifically, are intriguing to NASA due to their high packing density (10(exp 11) - 10(exp 12) per square cm ) and low power consumption (no transfer of current) and potentially higher radiation tolerant. Under Revolutionary Computing Technology (RTC) Program at the NASA/JPL Center for Integrated Space Microelectronics (CISM), we have been investigating the potential applications of QCA for the space program. To this end, exploiting the intrinsic features of QCA, we have designed novel QCA-based circuits for co-planner (i.e., single layer) and compact implementation of a class of data permutation matrices, a class of interconnection networks, and a bit-serial processor. Building upon these circuits, we have developed novel algorithms and QCA

  13. Formation and manipulation of regular metallic nanoparticle arrays on bacterial surface layers: an advanced TEM study

    Science.gov (United States)

    Mertig, M.; Wahl, R.; Lehmann, M.; Simon, P.; Pompe, W.

    The template-directed formation of regular nanoparticle arrays on two-dimensional crystalline protein layers after their treatment with metal salt complexes was studied by transmission electron microscopy. For these investigations, bacterial surface layers (S layers), recrystallized in vitro into sheets and tube-shaped protein crystals with typical dimensions in the micrometer range, were used as the template. As identified by electron holography and scanning force microscopy, the S-layer tubes form alternating double layers when deposited onto a solid substrate surface. Two distinct pathways for the metal particle formation at the templates have been found: the site-specific growth of metal clusters by chemical reduction of the metal salt complexes, and the electron-beam induced growth of nanoparticles in the transmission electron microscope. Both mechanisms lead to regular arrays with particle densities > 6×1011cm-2. Nanoparticle formation by electron exposure takes exclusively place in the flat-lying double-layered protein tubes, where a sufficient amount of metal complexes can be accumulated during sample preparation.

  14. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays

    Science.gov (United States)

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  15. Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures.

    Science.gov (United States)

    Stankevičius, Evaldas; Garliauskas, Mantas; Gedvilas, Mindaugas; Račiukaitis, Gediminas

    2015-11-02

    Here, we report the formation of Bessel-like beam array from periodic patterns fabricated by the four-beam interference lithography. Characteristics of the generated Bessel-like beams depend on geometrical parameters of the fabricated microaxicon-like structures, which can be easily controlled via the laser processing parameters. The output beam characteristics disclose the attributes of Bessel beams. The demonstrated method enables an easy fabrication of angular-tolerant wavefront detectors, optical tweezers, optical imaging systems or materials processing tools, having a broad range of applications.

  16. Mesa-top quantum dot single photon emitter arrays: Growth, optical characteristics, and the simulated optical response of integrated dielectric nanoantenna-waveguide systems

    Science.gov (United States)

    Zhang, Jiefei; Chattaraj, Swarnabha; Lu, Siyuan; Madhukar, Anupam

    2016-12-01

    Nanophotonic quantum information processing systems require spatially ordered, spectrally uniform single photon sources (SPSs) integrated on-chip with co-designed light manipulating elements providing emission rate enhancement, emitted photon guidance, and lossless propagation. Towards this goal, we consider systems comprising an SPS array with each SPS coupled to a dielectric building block (DBB) based multifunctional light manipulation unit (LMU). For the SPS array, we report triggered single photon emission from GaAs(001)/InGaAs single quantum dots grown selectively on top of nanomesas using the approach of substrate-encoded size-reducing epitaxy (SESRE). Systematic temperature and power dependent photoluminescence (PL), PL excitation, time-resolved PL, and emission statistics studies reveal high spectral uniformity and single photon emission at 8 K with g(2)(0) of 0.19 ± 0.03. The SESRE based SPS arrays, following growth of a planarizing overlayer, are readily integrable with LMUs fabricated subsequently using either the 2D photonic crystal approach or, as theoretically examined here, DBB based LMUs. We report the simulated optical response of SPS embedded in DBB based nanoantenna-waveguide structures as the multifunctional LMU. The multiple functions of emission rate enhancement, guiding, and lossless propagation are derived from the behavior of the same collective Mie resonance (dominantly magnetic) of the interacting DBB based LMU tuned to the SPS targeted emission wavelength of 980 nm. The simulation utilizes an analytical approach that provides physical insight into the obtained numerical results. Together, the combined experimental and modelling demonstrations open a rich approach to implementing co-designed on-chip integrated SPS-LMUs that, in turn, serve as basic elements of integrated nanophotonic information processing systems.

  17. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays.

    Science.gov (United States)

    Tao, Liang; Xiong, Yan; Liu, Hong; Shen, Wenzhong

    2014-01-21

    Quantum dot sensitized solar cells (QDSSCs) are attractive photovoltaic devices due to their simplicity and low material requirements. However, efforts to realize high efficiencies in QDSSCs have often been offset by complicated processes and expensive or toxic materials, significantly limiting their useful application. In this work, we have realized for the first time, high performance PbS QDSSCs based on TiO2 nanotube arrays (NTAs) via an in situ chemical deposition method controlled by a low electric field. An efficiency, η, of ~3.41% under full sun illumination has been achieved, which is 133.6% higher than the best result previously reported for a simple system without doping or co-sensitizing, and comparable to systems with additional chemicals. Furthermore, a high open-circuit voltage (0.64 V), short-circuit current (8.48 mA cm(-2)) and fill factor (0.63) have been achieved. A great increase in the quantity of the loaded quantum dots (QDs) in the NTAs was obtained from the in situ electric field assisted chemical bath deposition (EACBD) process, which was the most significant contributing factor with respect to the high JSC. The high VOC and FF have been attributed to a much shorter electron path, less structural and electronic defects, and lower recombination in the ordered TiO2 NTAs produced by oscillating anodic voltage. Besides, the optimal film thickness (~4 μm) based on the NTAs was much thinner than that of the control cell based on nanoporous film (~30.0 μm). This investigation can hopefully offer an effective way of realizing high performance QDSSCs and QD growth/installation in other nanostructures as well.

  18. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Fu, Haiyan, E-mail: fuhaiyan@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Yang, Tianming, E-mail: tmyang@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); She, Yuanbin, E-mail: sheyb@zjut.edu.cn [State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Ni, Chuang [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-04-15

    As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10{sup −8} mol L{sup −1} and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.

  19. SCUBA-2 instrument: an application of large-format superconducting bolometer arrays for submillimetre astronomy

    Science.gov (United States)

    Hollister, Matthew Ian

    2009-01-01

    This thesis concerns technical aspects related to the design and operation of the submillimetre common-user bolometer array 2 (SCUBA-2) instrument, a new wide-field camera for submillimetre astronomy currently undergoing commissioning on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. Offering unprecedented sensitivity and mapping capabilities, SCUBA-2 is expected to make a major impact in surveys of the sky at submillimetre wavelengths, a largely unexplored part of the electromagnetic spectrum, and provide better understanding of the formation and evolution of galaxies, stars and planets by providing large, unbiased samples of such objects. SCUBA-2 uses large arrays of bolometers, with superconducting transition edge sensors (TESs) as the temperature-sensitive element. TES devices are a relatively new technology, utilising the sharp resistance change between the normal and superconducting states to make a sensitive thermistor. Kilopixel arrays of such devices are multiplexed using superconducting quantum interference devices (SQUIDs). This thesis derives the key detector performance parameters, and presents analysis of engineering data to confirm the detector performance on array scales. A key issue for bolometric instruments for far infrared and submillimetre astronomy is the need to operate at extremely low temperatures in the sub-kelvin and millikelvin ranges to achieve the necessary detector sensitivity. This work describes the design, testing and performance of the liquid cryogen-free millikelvin cryostat, the first such instrument to be deployed for astronomy. Subsequent chapters detail the design and testing of a magnetic shielding scheme for the instrument, an important aspect of the operation of superconducting devices. Based on experience with the construction and testing of this instrument, a number of potential improvements for future instruments are presented and discussed.

  20. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.; Shi, Yujun J., E-mail: shiy@ucalgary.ca [Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); El-Sayed, Hany A. [Institute for Technical Electrochemistry, Technische Universität München, D-85748 Garching (Germany)

    2015-05-18

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation times (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.

  1. Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles.

    Science.gov (United States)

    Lin, Jia-Hui; Yu, Cheng-Ju; Yang, Ya-Chun; Tseng, Wei-Lung

    2015-06-21

    This study describes the synthesis of fluorescent polydopamine dots (PDs) through hydroxyl radical-induced degradation of polydopamine nanoparticles. The decomposition of polydopamine nanoparticles to fluorescent PDs was confirmed using transmission electron microscopy and dark-field microscopy. The analysis of PDs by using laser desorption/ionization time-of-flight mass spectrometry revealed that the PDs consisted of dopamine, 5,6-dihydroxyindole, and trihydroxyindole units. Oligomerization and self-assembly of these units produced a broad adsorption band, resulting in an excitation-wavelength-dependent emission behavior. The maximal fluorescence of PDs appeared at 440 nm with a quantum yield of 1.2%. The coordination between the catechol groups of PDs and ferric ions (Fe(3+)) quenched the fluorescence of PDs; the limit of detection at a signal-to-noise ratio of 3 for Fe(3+) was determined to be 0.3 μM. The presence of pyrophosphate switched on the fluorescence of the PD-Fe(3+) complexes. Compared to the other reported methods for sensing Fe(3+), PDs provided simple, low-cost, and reusable detection of Fe(3+).

  2. Self-assembly of ordered graphene nanodot arrays

    DEFF Research Database (Denmark)

    Camilli, Luca; Jørgensen, Jakob H.; Tersoff, Jerry

    2017-01-01

    at such extreme dimensions has proven exceptionally challenging. Here we show the spontaneous formation of ordered arrays of graphene nano-domains (dots), epitaxially embedded in a two-dimensional boron–carbon–nitrogen alloy. These dots exhibit a strikingly uniform size of 1.6 ± 0.2 nm and strong ordering...... composite of uniform-size semiconducting graphene quantum dots laterally integrated within a larger-bandgap matrix, holds promise for novel electronic and optoelectronic properties, with a variety of potential device applications....

  3. A facile route to accelerate the formation of TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan; Wu Yucheng; Qin Yongqiang; Zheng Hongmei; Cui Jiewu; Hong Yu; Liu Liang; Zheng Yuchun; Huang Xinmin [School of Materials Sciences and Engineering, Hefei University of Technology, Hefei, 230009 (China); Xu Gaobin; Shu Xia, E-mail: ycwu@hfut.edu.cn [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 (China)

    2011-02-01

    Highly ordered TiO{sub 2} nanotube arrays fabricated by electrochemical anodization of titanium have attracted significant attention due to their splendid promising applications. One of the factors limiting the application of TiO{sub 2} nanotube arrays was their long sustaining reaction time by anodic oxidation, usually lasting 6 - 12 h and even longer when systhesizing thicker nanotubular layers. In this paper, we reported for the first time a facile and effective route to accelerate the formation of TiO{sub 2} nanotube arrays by proper proportional addition of sodium carbonate(Na{sub 2}CO{sub 3}) into the anodization electrolyte. In our experiments, we adopted the 0.3 wt% NH{sub 4}F + EG (ethylene glycol) + 3.0 vol% H{sub 2}O electrolyte and we added Na{sub 2}CO{sub 3} with the proportion n(NH{sub 4}F) : n(Na{sub 2}CO{sub 3}) = 1:1, 2:1, 3:1, 4:1 and 5:1. The field-emission scanning electron microscope (FESEM) characterization results suggested the Na{sub 2}CO{sub 3} additives accelerated the growth rate of the TiO{sub 2} nanotubes with the quickest growth rate 1100 nm/min when n(NH{sub 4}F) : n(Na{sub 2}CO{sub 3}) = 2:1. Finally, we investigated the mechanism of the Na{sub 2}CO{sub 3} additives accelerating the growth rate of the TiO{sub 2} nanotubes. It was believed that the hydrolyzation of the Na{sub 2}CO{sub 3} additives in the electrolytes accelerated the formation of the TiO{sub 2} nanotubes and at the same time restrained the chemical dissolution of the formed TiO{sub 2} nanotubes.

  4. Corrugated single layer templates for molecules: From $h$-BN Nanomesh to Graphene based Quantum dot arrays

    CERN Document Server

    Ma, Haifeng; Schmidlin, Jeanette; Roth, Silvan; Morscher, Martin; Greber, Thomas

    2010-01-01

    Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium or ruthenium these superstructures have unit cells with ~3 nm lattice constant. They are corrugated and contain sub-units, which behave like traps for molecules or quantum dots, which are small enough to become operational at room temperature. For graphene on Rh(111) we emphasize a new structural element of small extra hills within the corrugation landscape. For the case of molecules like water it is shown that new phases assemble on such templates, and that they can be used as "nano-laboratories" where many individual processes are studied in parallel. Furthermore, it is shown that the h-BN/Rh(111) nanomesh displays a strong scanning tunneling microscopy ...

  5. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Science.gov (United States)

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-01-01

    Background Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis. PMID:19102773

  6. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Directory of Open Access Journals (Sweden)

    Hennessy Bryan T

    2008-12-01

    Full Text Available Abstract Background Reverse Phase Protein Arrays (RPPA are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML. RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  7. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode.

    Science.gov (United States)

    Zhang, Guanhua; Hou, Sucheng; Zhang, Hang; Zeng, Wei; Yan, Feilong; Li, Cheng Chao; Duan, Huigao

    2015-04-08

    MOF-derived ZnO@ZnO Quantum Dots/C core-shell nanorod arrays grown on flexible carbon cloth are successfully fabricated as a binder-free anode for Li-ion storage. In combination with the advantages from the ZnO/C core-shell architecture and the 3D nanorod arrays, this material satisfies both efficient ion and fast electron transport, and thus shows superior rate capability and excellent cycling stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plasmon–Phonon Coupling in Large-Area Graphene Dot and Antidot Arrays Fabricated by Nanosphere Lithography

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Wang, Weihua; Yan, Wei

    2014-01-01

    Nanostructured graphene on SiO2 substrates paves the way for enhanced light–matter interactions and explorations of strong plasmon–phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography......, with structural control down to the sub-100 nm regime. The interaction between graphene plasmon modes and the substrate phonons is experimentally demonstrated, and structural control is used to map out the hybridization of plasmons and phonons, showing coupling energies of the order 20 meV. Our findings...

  9. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance

    Science.gov (United States)

    Sun, Bo; Lu, Na; Su, Yan; Yu, Hongtao; Meng, Xiangyu; Gao, Zhanming

    2017-02-01

    In this paper, we present a novel method to improve the photoelectrocatalytic (PEC) property of TiO2 nanotube arrays (TNTAs) by way of decorating it with visible-light-respond graphitic-C3N4 quantum dots (g-C3N4 QDs). The g-C3N4 QDs/TNTAs heterojunction is successfully prepared using a facile dipping method. The optimal condition of preparing g-C3N4 QDs/TNTAs heterojunction is found as 60 min of dipping duration and 0.2 mg mL-1 of g-C3N4 QDs dipping solution. The fabricated g-C3N4 QDs/TNTAs heterojunction shows improved PEC activity comparing to TNTAs due to its better separation capability of photo-generated charges and wider optical absorption. And the photocurrent generated by the optimal g-C3N4 QDs/TNTAs photoanode is 4.3 times than that of pristine TNTAs. Besides, the g-C3N4 QDs/TNTAs heterojunction also exhibits superior PEC activities in degradation of phenol. 98.6% of phenol is successfully degraded in 120 min and the pseudo-first-order kinetic constant of phenol degradation is 4.9 times as great as that of pristine TNTAs. This work indicates that the g-C3N4 QDs/TNTAs heterojunction is expected to be a promising nanomaterial for pollutant degradation and further application in solar energy conversion.

  10. Improved efficiency for nanopillar array of c-Si photovoltaic by down-conversion and anti-reflection of quantum dots

    Science.gov (United States)

    Lin, Chien-chung; Chen, Hsin-Chu; Han, Hau-Vei; Tsai, Yu-Lin; Chang, Chia-Hua; Tsai, Min-An; Kuo, Hao-Chung; Yu, Peichen

    2012-02-01

    Improvement of efficiency for crystalline silicon (c-Si) with nanopillar arrays (NPAs) solar cell was demonstrated by deployment of CdS quantum dots (QDs). The NPAs was fabricated by colloidal lithography of self-assembled polystyrene (PS) nanospheres with a 600 nm in size and reactive-ion etching techniques, and then a colloidal CdS QDs with a concentration of 5 mg/mL was spun on the surface of c-Si with NPAs solar cell. Under a simulated one-sun condition, the device with CdS QDs shows a 33% improvement of power conversion efficiency, compared with the one without QDs. Additionally, we also found that the device with CdS QDs shows a 32% reduction in electrical resistance, compared with the one without QDs solar cell, under an ultraviolet (UV) light of 355nm illumination. This reduced electrical resistance can directly contribute to our fill-factor (FF) enhancement. For further investigation, the excitation spectrum of photoluminescence (PL), absorbance spectrum, current-voltage (I-V) characteristics, reflectance and external quantum efficiency (EQE) of the device were measured and analyzed. Based on the spectral response and optical measurement, we believe that CdS QDs not only have the capability for photon down-conversion in ultraviolet region, but also provide extra antireflection capability.

  11. Controlling Smectic Liquid Crystal Defect Patterns by Physical Stamping-Assisted Domain Separation and Their Use as Templates for Quantum Dot Cluster Arrays.

    Science.gov (United States)

    Ok, Jong Min; Kim, Yun Ho; Lee, Tae Yong; Yoo, Hae-Wook; Kwon, Kiok; Jung, Woo-Bin; Kim, Shin-Hyun; Jung, Hee-Tae

    2016-12-20

    Controlling the organization of self-assembling building blocks over a large area is crucial for lithographic tools based on the bottom-up approach. However, the fabrication of liquid crystal (LC) defect patterns with a particular ordering still remains a challenge because of the limited close-packed morphologies of LC defects. Here, we introduce a multiple-stamping domain separation method for the control of the dimensions and organization of LC defect structures. Prepatterns with various grid shapes on planar polyimide (PI) surfaces were fabricated by pressing a line-shaped stamp into the PI surfaces in two different directions, and then these surfaces were used to prepare LC defect structures confined to these grid domains. The dimensions of the LC defect structures, namely, the equilibrium diameter and the center to center spacing, are controlled by varying the line spacing of the stamps and the film thickness. A variety of arrangements of LC defects, including square, rhombic, hexagonal, and other oblique lattices, can be obtained by simply varying the stamping angle (Ω) between the first and second stamping directions. Furthermore, we demonstrate that the resulting controllable LC defect arrays can be used as templates for generating various patterns of nanoparticle clusters by trapping quantum dots (QDs) within the cores of the LC defects.

  12. Pulsed laser deposition of CuInS2 quantum dots on one-dimensional TiO2 nanorod arrays and their photoelectrochemical characteristics

    Science.gov (United States)

    Han, Minmin; Chen, Wenyuan; Guo, Hongjian; Yu, Limin; Li, Bo; Jia, Junhong

    2016-06-01

    In the typical solution-based synthesis of colloidal quantum dots (QDs), it always resorts to some surface treatment, ligand exchange processing or post-synthesis processing, which might involve some toxic chemical regents injurious to the performance of QD sensitized solar cells. In this work, the CuInS2 QDs are deposited on the surface of one-dimensional TiO2 nanorod arrays by the pulsed laser deposition (PLD) technique. The CuInS2 QDs are coated on TiO2 nanorods without any ligand engineering, and the performance of the obtained CuInS2 QD sensitized solar cells is optimized by adjusting the laser energy. An energy conversion efficiency of 3.95% is achieved under one sun illumination (AM 1.5, 100 mW cm-2). The improved performance is attributed to enhanced absorption in the longer wavelength region, quick interfacial charge transfer and few chance of carrier recombination with holes for CuInS2 QD-sensitized solar cells. Moreover, the photovoltaic device exhibits high stability in air without any specific encapsulation. Thus, the PLD technique could be further applied for the fabrication of QDs or other absorption materials.

  13. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip.

    Science.gov (United States)

    Torisawa, Yu-suke; Takagi, Airi; Nashimoto, Yuji; Yasukawa, Tomoyuki; Shiku, Hitoshi; Matsue, Tomokazu

    2007-01-01

    We describe a novel multicellular spheroid culture system that facilitates the easy preparation and culture of a spheroid microarray for the long-term monitoring of cellular activity. A spheroid culture device with an array of pyramid-like microholes was constructed in a silicon chip that was equipped with elastomeric microchannels. A cell suspension was introduced via the microfluidic channel into the microstructure that comprised silicon microholes and elastomeric microwells. A single spheroid can be formed and localized precisely within each microstructure. Since the culture medium could be replaced via the microchannels, a long-term culture (of approximately 2 weeks) is available on the chip. Measurement of albumin production in the hepatoma cell line (HepG2) showed that the liver-specific functions were maintained for 2 weeks. Based on the cellular respiratory activity, the cellular viability of the spheroid array on the chip was evaluated using scanning electrochemical microscopy. Responses to four different chemical stimulations were simultaneously detected on the same chip, thus demonstrating that each channel could be evaluated independently under various stimulation conditions. Our spheroid culture system facilitated the understanding of spheroid formation, culture, and viability assay on a single chip, thus functioning as a useful drug-screening device for cancer and liver cells.

  14. Biofilm formation over surface patterned with pico-liter oil micro-drop array

    Science.gov (United States)

    Jalali, Maryam; Sheng, Jian

    2015-11-01

    It has been suggested that biodegradation by microbes is an effective process in the cleansing of oil polluted marine environments. It has also been speculated that dispersants could further enhance processes amid no direct evidence. The studies in the relevant scales are severely hampered by lack of techniques to generate uniform micro-scale drops allowing in-situ monitoring of these processes. In this paper, we present a microfabrication technique allowing patterning microfluidic surfaces with arrays of micro oil drops. The array of oil drops was printed by micro transfer molding/printing with negative PDMS stamps. The printed micro-drops have dimensions ranging from 5 μm to 50 μm. Non-circular shapes, such as square and triangle, can also be printed and maintained for weeks. Atomic force microscopy is used to characterize the topology and interfacial structures of droplets. The results reveal that although the drop with different base shapes assumes dome like profile asymptotically, donut and top-hat shapes are also observed. Time evolution measurement elucidates that in the absences of inviscid mechanisms in comparison to a micro-liter drop, subtle interplays between interfacial forces and viscosity play crucial role in the shape of pico-liter drop. With the developed surfaces, the effects of oil drop sizes and interfacial structures on biofilm formation are studied and reported.

  15. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    Science.gov (United States)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  16. Controlled synthesis and formation mechanism of sodium yttrium fluoride nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    TIAN Li; TAN Li; SUN Qiliang; XIANG Shaobin; XIAO Qiuguo; TANG Jianting; ZHU Guangshan

    2012-01-01

    Cubic and hexagonal sodium yttrium fluoride were successfully synthesized from yttrium nitrate,sodium fluoride and polyethanediol in propanetriol solvent under a facile hydrothermal route.By regulating the molar ratio of yttrium and fluoride,hydrothermal temperature and reaction time,the phase and shape of sodium yttrium fluoride were commendably controlled.The as-prepared products were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS) techniques.It was revealed that the hollow-structured Na(Y1.5Na0.5)F6 nanotubes self-assembled and arrayed orientedly to be bamboo raft-shaped.The formation of hexagonal Na(Y1.5Na0.5)F6 nanotube arrays was attributed to solid-liquid-solid process and Oswald ripening.This study provided a simple method to prepare hexagonal bamboo raft-shaped Na(Y1.5Na0.5)F6 on a large scale,which broadened their practical applications.

  17. Formation of self-assembled quantum dot-chlorin e6 complex: influence of nanoparticles phospholipid coating

    Science.gov (United States)

    Karabanovas, V.; Skripka, A.; Valanciunaite, J.; Kubiliute, R.; Poderys, V.; Rotomskis, R.

    2014-07-01

    The clinical use of phospholipid-coated quantum dots (QDs)-photosensitizer complexes as therapeutic nanoagents depends on colloidal stability of these complexes and efficiency of Förster resonance energy transfer from QDs to bound photosensitizer molecules. In this study, we demonstrate modification of CdSe/ZnS QDs with different phospholipids such as 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(polyethylene glycol)-2000] (PEG-DPPE); 1,2-dioleoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(polyethylene glycol)-2000 (PEG-DOPE) and 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and the complex formation with photosensitizer chlorin e6 (Ce6). QDs were successfully solubilized in water by coating QDs with PEG-DPPE and PEG-DOPE phospholipids. However, an attempt to solubilize QDs using PEG-free phospholipids (DOPC) was ineffective. While QDs modified with DOPC:PEG-DOPE mixtures at molar ratios of 1:1 and 2:1 showed long-term stability in aqueous solution, colloidal solution of QDs modified by DOPC:PEG-DPPE (molar ratio 2:1) was unstable. We showed that Ce6 forms a stable complex only with QDs coated with unsaturated phospholipids PEG-DOPE and DOPC:PEG-DOPE. Close localization of Ce6 molecules to the core of QDs ensures efficient energy transfer from QDs to bound Ce6 molecules that is crucial for its further application in photodynamic therapy of cancer.

  18. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  19. Star Formation as Seen by the Infrared Array Camera on Spitzer

    Science.gov (United States)

    Smith, Howard A.; Allen, L.; Megeath, T.; Barmby, P.; Calvet, N.; Fazio, G.; Hartmann, L.; Myers, P.; Marengo, M.; Gutermuth, R.

    2004-01-01

    The Infrared Array Camera (IRAC) onboard Spitzer has imaged regions of star formation (SF) in its four IR bands with spatial resolutions of approximately 2"/pixel. IRAC is sensitive enough to detect very faint, embedded young stars at levels of tens of Jy, and IRAC photometry can categorize their stages of development: from young protostars with infalling envelopes (Class 0/1) to stars whose infrared excesses derive from accreting circumstellar disks (Class 11) to evolved stars dominated by photospheric emission. The IRAC images also clearly reveal and help diagnose associated regions of shocked and/or PDR emission in the clouds; we find existing models provide a good start at explaining the continuum of the SF regions IRAC observes.

  20. PCI express bus design of large format array IRFPA high-speed acquisition system

    Science.gov (United States)

    Huang, Zewu; Zheng, Xing; Zeng, Xingxin; Liu, Ziji

    2012-10-01

    In this paper, a novel solution of PCI Express Bus was designed to improve the data transfer rate for large format array infrared imaging acquisition system. In this structure, an embedded PCI Express hard intellectual property (IP) block of Stratix IV GX FPGA was used, and the protocol stack module is totally compliant with PCI Express base specification Gen 2.0 which includes PHY-MAC, Data Link, and transaction layers. In order to communicate with CPU through computer PCIe root port, a pipeline structure was established with two SSRAMs to carry out the function of real-time data process. The DMA mode was adopted for the high-speed data transmission on the PCI Express Bus. Some other control logic parts such as detector drive signal generator - display controller and PCIe configuration module were also designed and introduced in this paper. According to the evaluation, the data transmission speed was up to 5.6Gbps, which means that this system could meet the qualifications of infrared imaging data acquisition. Compared with traditional infrared imaging data acquisition systems, this solution is more integrated and faster, so it is suitable for larger format and higher frame rate of infrared focal plane image acquisition in nowadays and future.

  1. Density duct formation in the wake of a travelling ionospheric disturbance: Murchison Widefield Array observations

    CERN Document Server

    Loi, Shyeh Tjing; Murphy, Tara; Erickson, Philip J; Bell, Martin E; Rowlinson, Antonia; Arora, Balwinder Singh; Morgan, John; Ekers, Ronald D; Hurley-Walker, Natasha; Kaplan, David L

    2016-01-01

    Geomagnetically-aligned density structures with a range of sizes exist in the near-Earth plasma environment, including 10-100 km-wide VLF/HF wave-ducting structures. Their small diameters and modest density enhancements make them difficult to observe, and there is limited evidence for any of the several formation mechanisms proposed to date. We present a case study of an event on 26 August 2014 where a travelling ionospheric disturbance (TID) shortly precedes the formation of a complex collection of field-aligned ducts, using data obtained by the Murchison Widefield Array (MWA) radio telescope. Their spatiotemporal proximity leads us to suggest a causal interpretation. Geomagnetic conditions were quiet at the time, and no obvious triggers were noted. Growth of the structures proceeds rapidly, within 0.5 hr of the passage of the TID, attaining their peak prominence 1-2 hr later and persisting for several more hours until observations ended at local dawn. Analyses of the next two days show field-aligned structu...

  2. A Prototype Data Format for the Cherenkov Telescope Array: Regions Of Interest (ROI)

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes and the large amount of data produced will exceed the volume of current VHE Imaging Atmospheric Cherenkov Telescopes by $\\sim$two orders of magnitude. This volume of data represents a new challenge to the community, which is looking for new data formats to transfer and store the CTA data. One of the prototypes currently under study is the ROI (Regions Of Interest) file format for camera images. It can store only those pixels of a camera image that are close to the shower, thus removing the major part of the night sky background (NSB) while keeping all pixels that might belong to the shower. Simple on-the-fly compression is used to reduce the file size even further. Here, we explain the ROI prototype in detail and present preliminary results when applied to simulations.

  3. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO{sub 2} nanosheets array film photoelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Mu, Yannan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Department of Physics and Chemistry, Heihe University, Heihe 164300 (China); Su, Pengyu; Wang, Guangxia; Fu, Wuyou [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Yang, Haibin, E-mail: yanghb@jlu.edu.cn [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-10-25

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO{sub 2}NSs) films were reported for the first time. The TiO{sub 2}NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO{sub 2}NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO{sub 2}NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO{sub 2}NSs was with photocurrent density of 6.12 mA cm{sup −2} under an illumination of AM 1.5 G, indicating the TiO{sub 2}NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO{sub 2} nanosheets films were fabricated by a simple hydrothermal. • TiO{sub 2} nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO{sub 2} nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm{sup −2}.

  4. Nanocrystalline silicon and silicon quantum dots formation within amorphous silicon carbide by plasma enhanced chemical vapour deposition method controlling the Argon dilution of the process gases

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Arindam; Chaudhuri, Partha, E-mail: erpc@iacs.res.in

    2012-11-01

    Structural and optical properties of the amorphous silicon carbide (a-SiC:H) thin films deposited by radio frequency plasma enhanced chemical vapour deposition method from a mixture of silane (SiH{sub 4}) and methane (CH{sub 4}) diluted in argon (Ar) have been studied with variation of Ar dilution from 94% to 98.4%. It is observed that nanocrystalline silicon starts to form within the a-SiC:H matrix by increasing the dilution to 96%. With further increase in Ar dilution to 98% formation of the silicon nanocrystals (nc-Si) with variable size is enhanced. The optical band gap (E{sub g}) of the a-SiC:H film decreases from 2.0 eV to 1.9 eV with increase in Ar dilution from 96% to 98% as the a-SiC:H films gradually become Si rich. On increasing the Ar dilution further to 98.4% leads to the appearance of crystalline silicon quantum dots (c-Si q-dots) of nearly uniform size of 3.5 nm. The quantum confinement effect is apparent from the sharp increase in the E{sub g} value to 2.6 eV. The phase transformation phenomenon from nc-Si within the a-SiC:H films to Si q-dot were further studied by high resolution transmission electron microscopy and the grazing angle X-ray diffraction spectra. A relaxation in the lattice strain has been observed with the formation of Si q-dots.

  5. Formation, atomic structure, and electronic properties of GaSb quantum dots in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Timm, R.

    2007-12-14

    In this work, cross-sectional scanning tunneling microscopy and spectroscopy are used for the first time to study the shape, size, strain, chemical composition, and electronic properties of capped GaSb/GaAs QDs at the atomic scale. By evaluating such structural results on a variety of nanostructures built using different epitaxy methods and growth conditions, details on the underlying QD formation processes can be revealed. A cross-over from flat quantum wells (QWs) to optically active QDs can be observed in samples grown by metalorganic chemical vapor deposition (MOCVD) with increasing amount of GaSb, including self-assembled Sb accumulations within a still two-dimensional layer and tiny three-dimensional GaSb islands probably acting as precursor structures. The QWs consist of significantly intermixed material with stoichiometries of maximally 50% GaSb, additionally exhibiting small gaps filled with GaAs. A higher GaSb content up to nearly pure material is found in the QDs, being characterized by small sizes of up to 8 nm baselength and about 2 nm height. In spite of the intermixing, all nanostructures have rather abrupt interfaces, and no significant Sb segregation in growth direction is observed. This changes completely when molecular beam epitaxy (MBE) is used as growth method, in which case individual Sb atoms are found to be distributed over several nm above the nanostructures. Massive group-V atomic exchange processes are causing this strong inter-mixing and Sb segregation during GaAs overgrowth. In combination with the large strain inherent to GaSb/GaAs QDs, this segregation upon overgrowth is assumed to be the reason for a unique structural phenomenon: All MBE-grown QDs, independent of the amount of deposited GaSb, exhibit a ring structure, consisting of a ring body of high GaSb content and a more or less extended central gap filled with GaAs. These rings have formed in a self-assembled way even when the initial GaSb layer was overgrown considerably fast

  6. Innovative optical power detection array system for relative positioning of inner-formation flying system

    Science.gov (United States)

    Hou, Zhendong; Wang, Zhaokui; Zhang, Yulin

    2016-09-01

    The Inner-formation flying system (IFFS) is conceived to feature a spherical proof mass falling freely within a large cavity for space gravity detection, of which first application focuses on the Earth's gravity field recovery. For the IFFS, it is the relative position of the proof mass to its surrounding cavity that is feedback into thrusters for tracking control, even as part of data to detect gravity. Since the demonstration and verification of demanding technologies using small satellite platforms is a very sensible choice prior to detection mission, an optical power detection array system (OPDAS) is proposed to measure the relative position with advantages of low cost and high adaptability. Besides that, its large dynamic range can reduce the requirement for satellite platform and releasing mechanism, which is also an attracting trait for small satellite application. The concept of the OPDAS is firstly presented, followed by the algorithm to position the proof mass. Then the radiation pressure caused by the measuring beam is modeled, and its disturbance on the proof mass is simulated. The experimental system to test the performance of a prototype of the OPDAS is established, and the preliminary results show that a precision of less than 0.4 mm across a dynamic range of several centimeters can be reached by the prototype of the OPDAS.

  7. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    Science.gov (United States)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  8. Formation and Evolution Mechanism of Plasmon Resonance from Single Ring-Shaped Nanotube to Dimer and Arrays

    Directory of Open Access Journals (Sweden)

    F. Q. Zhou

    2014-01-01

    Full Text Available The formation and evolution mechanisms of plasmon resonance from single Ring-shaped nanotube to dimer and arrays are studied; an attempt has been made to bridge the gap between single-tube, dimer, and array. Results show that resonant modes can be divided into three types: quadrupole, hexapole, and octupole resonance from visible to near infrared region, and each mode maintains relatively stable resonant characteristics, but the optical transmission properties including redshift and blueshift of the modes and band gap are highly tunable by adjusting the number of nanotube and intertube spacing values. The field-interference mechanism has been suggested to explain the physical origin.

  9. Formation of Combined Surface Features of Protrusion Array and Wrinkles atop Shape-Memory Polymer

    Science.gov (United States)

    Sun, L.; Zhao, Y.; Huang, W. M.; Tong, T. H.

    We demonstrate a simple and cost-effective approach to realize two combined surface features of different scales together, namely submillimeter-sized protrusion array and microwrinkles, atop a polystyrene shape-memory polymer. Two different types of protrusions, namely flat-top protrusion and crown-shaped protrusion, were studied. The array of protrusions was produced by the Indentation-Polishing-Heating (IPH) process. Compactly packed steel balls were used for making array of indents. A thin gold layer was sputter deposited atop the polymer surface right after polishing. After heating for shape recovery, array of protrusions with wrinkles on the top due to the buckling of gold layer was produced.

  10. Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-21

    The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on sample grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.

  11. Formation of Carbonized Polystyrene Sphere/hemisphere Shell Arrays by Ion Beam Irradiation and Subsequent Annealing or Chloroform Treatment

    Science.gov (United States)

    Song, Xianyin; Dai, Zhigao; Xiao, Xiangheng; Li, Wenqing; Zheng, Xudong; Shang, Xunzhong; Zhang, Xiaolei; Cai, Guangxu; Wu, Wei; Meng, Fanli; Jiang, Changzhong

    2015-01-01

    Heat-resistant two-dimensional (2D) sphere/hemisphere shell array is significant for the fabrication of novel nanostructures. Here large-area, well-ordered arrays of carbonized polystyrene (PS) hollow sphere/hemisphere with controlled size and morphology are prepared by combining the nanosphere self-assembly, kV Ag ion beam modification, and subsequent annealing or chloroform treatment. Potential mechanisms for the formation and evolution of the heat-resistant carbonized PS spherical shell with increasing ion fluence and energy are discussed. Combined with noble metal or semiconductor, these modified PS sphere arrays should open up new possibilities for high-performance nanoscale optical sensors or photoelectric devices. PMID:26640125

  12. Lateral variation of interface disorder in wetting layer on formation of InAs/InP quantum dots visualized by near-field imaging spectroscopy

    Science.gov (United States)

    Tojinbara, Hiroki; Takahashi, Motoki; Tsumori, Nobuhiro; Mizuno, Dai; Kubota, Ryosuke; Sakuma, Yoshiki; Saiki, Toshiharu

    2012-01-01

    Near-field photoluminescence imaging spectroscopy of a wetting layer of InAs/InP quantum dots (QDs) at the critical thickness of 2.4 monolayers (ML) is used to visualize the spatial variation of the interface disorder. The wetting layer has a significantly lower density of carrier localization centers than a 2-ML thick InAs/InP quantum well, particularly in the vicinity of the QDs. This indicates that atomic-scale interface disorder is reduced during the initial stages of QD formation; in contrast, disorder remained far from the QDs.

  13. Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick; Porter, Frederick S.; Ray, C.; Sadleir, John E.; Smith, S. J.; Wassell, Edward J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.

  14. Sunyaev-Zel'dovich Observations Using Large-Format Millimeter Arrays

    Science.gov (United States)

    Czakon, Nicole G.

    Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ

  15. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions.

    Science.gov (United States)

    Robin, I C; Aichele, T; Bougerol, C; André, R; Tatarenko, S; Bellet-Amalric, E; Van Daele, B; Van Tendeloo, G

    2007-07-01

    CdSe/ZnSe quantum dot formation is investigated by studying different steps of the growth. To precisely control the critical thickness of CdSe grown on a ZnSe buffer layer, the CdSe self-regulated growth rate in atomic layer epitaxy growth mode is determined by reflection high-energy electron diffraction (RHEED) measurements for a temperature range between 180 and 280 °C. Then, the two-dimensional-three-dimensional (2D-3D) transition of a strained CdSe layer on (001)-ZnSe induced by the use of amorphous selenium is studied. The formation of CdSe islands is found when 3 monolayers (ML) of CdSe are deposited. When only 2.5 ML of CdSe are deposited, another relaxation mechanism is observed, leading to the appearance of strong undulations on the surface. We also studied the evolution of the surface morphology when 2.7 ML are deposited, to study the boundary between those two phenomena. The influence of capping on quantum dot morphology is investigated. It is found that cadmium is redistributed within the layer during capping. Our results show that the cadmium distribution after capping depends on the capping temperature and on the strain of the CdSe layer. Cadmium incorporation after capping is also studied. It is found that the amount of incorporated cadmium depends on the strain of the CdSe layer before capping.

  16. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robin, I C [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Aichele, T [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Bougerol, C [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Andre, R [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Tatarenko, S [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Bellet-Amalric, E [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group, Departement de Recherche Fondamentale sur la Matiere Condensee/SP2M CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Daele, B Van [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Tendeloo, G van [EMAT University of Antwerp (RUCA), Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2007-07-04

    CdSe/ZnSe quantum dot formation is investigated by studying different steps of the growth. To precisely control the critical thickness of CdSe grown on a ZnSe buffer layer, the CdSe self-regulated growth rate in atomic layer epitaxy growth mode is determined by reflection high-energy electron diffraction (RHEED) measurements for a temperature range between 180 and 280 deg. C. Then, the two-dimensional-three-dimensional (2D-3D) transition of a strained CdSe layer on (001)-ZnSe induced by the use of amorphous selenium is studied. The formation of CdSe islands is found when 3 monolayers (ML) of CdSe are deposited. When only 2.5 ML of CdSe are deposited, another relaxation mechanism is observed, leading to the appearance of strong undulations on the surface. We also studied the evolution of the surface morphology when 2.7 ML are deposited, to study the boundary between those two phenomena. The influence of capping on quantum dot morphology is investigated. It is found that cadmium is redistributed within the layer during capping. Our results show that the cadmium distribution after capping depends on the capping temperature and on the strain of the CdSe layer. Cadmium incorporation after capping is also studied. It is found that the amount of incorporated cadmium depends on the strain of the CdSe layer before capping.

  17. Nano-dot formation using self-assembled 3-mercaptopropionic acid thin films prepared by facile atmospheric-vapor-adsorption method on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tohru; Kimura, Ryota; Sakai, Hideki; Abe, Masahiko; Kondoh, Hiroshi; Ohta, Toshiaki; Matsumoto, Mutsuyoshi

    2002-12-30

    Nanometer scale structures of self-assembled films consisting of 3-mercaptopropionic acid (MPA) were formed by using electric stimuli between scanning tunng microscope (STM) Au tips and gold surfaces. The obtained structures were compared with those using bare gold surfaces and hexanethiol films on Au(1 1 1) under the same conditions. X-ray photoelectron spectroscopy measurements revealed that self-assembled ultrathin films of the corresponding thiol molecules were fabricated on Au(1 1 1) by a facile atmospheric-vapor-adsorption (AVA) method without solvent. Comparison of nano-structure formation suggested that the self-assembled thin films of 3-mercatopropionic acid molecules gave nano-dots below the height of voltage pulses where gold atom emission from Au tips and surface evaporation of Au(1 1 1) take place. It was found that 3-mercaptopropionic acid films easily produced much better nano-dots on Au(1 1 1) than hexanethiol films probably due to the formation of hydrogen bonding networks and/or the reactions of 3-mercaptopropionic acid when electric pulses were applied to the films.

  18. Formation of arrayed holes on metal foil and metal film by multibeam interfering femtosecond laser beams

    Institute of Scientific and Technical Information of China (English)

    Zhao Quan-Zhong; Qiu Jian-Rong; Zhao Chong-Jun; Jiang Xiong-Wei; Zhu Cong-Shan

    2005-01-01

    We report on an optical interference method to fabricate arrayed holes on metal nickel foil and aluminum film deposited on glass substrate by means of five-beam interference of femtosecond laser pulses. Optical microscope and scanning electron microscope observations revealed that arrayed holes of micrometre-order were fabricated on both metal foil and metal film. The present technique allows one-step, large-area, micrometric processing of metal materials for potential industrial applications.

  19. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.

    Science.gov (United States)

    Fan, Dingxun; Li, Sen; Kang, N; Caroff, Philippe; Wang, L B; Huang, Y Q; Deng, M T; Yu, C L; Xu, H Q

    2015-09-28

    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ∼700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Landég-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ∼300 μeV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices.

  20. Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method

    Science.gov (United States)

    Hsieh, Shang-Chen; Chang, Chia-Chen; Lu, Chia-Chen; Wei, Chia-Fong; Lin, Chuan-Sheng; Lai, Hsin-Chih; Lin, Chii-Wann

    2012-03-01

    Tubercle bacillus [TB] is one of the most important chronic infectious diseases that cause millions of deaths annually. While conventional smear microscopy and culture methods are widely used for diagnosis of TB, the former is insensitive, and the latter takes up to 6 to 8 weeks to provide a result, limiting the value of these methods in aiding diagnosis and intermediate decisions on treatment. Therefore, a rapid detection method is essential for the diagnosis, prognosis assessment, and recurrence monitoring. A new surface plasmon resonance [SPR] biosensor based on an array format, which allowed immobilizing nine TB antigens onto the sensor chip, was constructed. Simultaneous determination of multiple TB antibodies in serum had been accomplished with this array-based SPR system. The results were compared with enzyme-linked immunosorbent assay, a conventional immunological method. Array-based SPR showed more advantages in providing label-free and real-time detection. Additionally, the high sensitivity and specificity for the detection of TB infection showed its potential for future development of biosensor arrays for TB diagnosis.

  1. Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells.

    Science.gov (United States)

    Hirade, Masaya; Nakanotani, Hajime; Yahiro, Masayuki; Adachi, Chihaya

    2011-01-01

    To enhance the performance of organic photovoltaic (OPV) cells, preparation of organic nanometer-sized pillar arrays is fascinating because a significantly large area of a donor/acceptor heterointerface having continuous conduction path to both anode and cathode electrodes can be realized. In this study, we grew cupper phthalocyanine (CuPc) crystalline nanopillar arrays by conventional thermal gradient sublimation technique using a few-nanometer-sized trigger seeds composed of a CuPc and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) stacked layer. We optimized the pillar density by tuning crystal growth condition in order to apply it to OPV cells.

  2. Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays

    Science.gov (United States)

    Chervenak, James A.; Adams, J. M.; Bailey, C. N.; Bandler, S.; Brekosky, R. P.; Eckart, M. E.; Erwin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadlier, J. E.; Smith, S. J.

    2012-01-01

    We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R(sub n), G, and T(sub c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring.

  3. Site specific isolated nanostructure array formation on a large area by broad ion beam without any mask and resist

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2014-06-09

    We report the formation of isolated nanostructure arrays on a large area via broad ion beam implantation without the aid of any mask or resist. Desired ions have been implanted at specific locations of the prefabricated silicon ripple or triangular structures by exploiting the variation of local ion impact angles. We have shown that the implantation of Fe ions on an O{sup +} ions induced pre fabricated triangular shaped patterned Si surface results in a self-organized periodic array of striped magnetic nanostructures having several micron length and about 50 nm width arranged with a spacial separation of ∼200 nm. The morphology, composition, crystalline structure, and magnetic property of these nanopatterns have been analyzed using high-resolution cross-sectional transmission electron microscopy and atomic force microscopy. A geometrical model has been proposed to explain the fundamental features of such ion-induced nanopattern structures.

  4. Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays

    NARCIS (Netherlands)

    Wuennemann, Patrick; Noyong, Michael; Kreuels, Klaus; Bruex, Roland; Gordiichuk, Pavlo; van Rijn, Patrick; Plamper, Felix A.; Simon, Ulrich; Boeker, Alexander

    2016-01-01

    Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-

  5. Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip

    NARCIS (Netherlands)

    Xie, Sijia; Schurink, Bart; Berenschot, Johan W.; Tiggelaar, Roald M.; Gardeniers, Johannes G.E.; Lüttge, Regina

    2016-01-01

    Commercial microelectrode arrays (MEAs) for in vitro neuroelectrophysiology studies rely on conventional two dimensional (2D) neuronal cultures that are seeded on the planar surface of such MEAs and thus form a random neuronal network. The cells attaching on these types of surfaces grow in 2D and

  6. Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays

    NARCIS (Netherlands)

    Wuennemann, Patrick; Noyong, Michael; Kreuels, Klaus; Bruex, Roland; Gordiichuk, Pavlo; van Rijn, Patrick; Plamper, Felix A.; Simon, Ulrich; Boeker, Alexander

    Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting

  7. Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation

    Science.gov (United States)

    Steeves Lloyd, Kayla; Bolotin, Igor L.; Schmeling, Martina; Hanley, Luke; Veryovkin, Igor V.

    2016-10-01

    Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2. The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples' chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection X-ray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.

  8. Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    2016-09-01

    Full Text Available Colloidal cadmium selenide (CdSe and zinc selenide (ZnSe quantum dots with a hexagonal structure were synthesized by irradiating an aqueous solution containing metal precursors, poly (vinyl pyrrolidone, isopropyl alcohol, and organic solvents with 1.25-MeV gamma rays at a dose of 120 kGy. The radiolytic processes occurring in water result in the nucleation of particles, which leads to the growth of the quantum dots. The physical properties of the CdSe and ZnSe nanoparticles were measured by various characterization techniques. X-ray diffraction (XRD was used to confirm the nanocrystalline structure, energy-dispersive X-ray spectroscopy (EDX was used to estimate the material composition of the samples, transmission electron microscopy (TEM was used to determine the morphologies and average particle size distribution, and UV-visible spectroscopy was used to measure the optical absorption spectra, from which the band gap of the CdSe and ZnSe nanoparticles could be deduced.

  9. Three dimensional ZnO nanotube arrays and their optical tuning through formation of type-II heterostructures

    OpenAIRE

    Wang, L; Huang, X.; Xia, J; Zhu, D.; Li, X.; Meng, X.

    2016-01-01

    In this paper, we report on the first successful attempt of chemical vapor deposition (CVD) synthesis of well-aligned single-crystalline ZnO nanotube arrays on Mo wire mesh. According to detailed morphology and composition analyses, a rational growth model is proposed to illustrate the growth process of the hollow ZnO nanotubes. Metastable Zn-rich ZnOx nanorods formed in the early stage are believed to play a vital role towards the formation of nanotube configuration. In addition, we also suc...

  10. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  11. Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, L.; Blum, I.; Vurpillot, F.; Rigutti, L., E-mail: lorenzo.rigutti@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, University and INSA of Rouen, Normandie University, 76800 St. Etienne du Rouvray (France); Fontana, Y.; Conesa-Boj, S.; Francaviglia, L.; Russo-Averchi, E.; Heiss, M.; Morral, A. Fontcuberta i [Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Arbiol, J. [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, CAT (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, CAT (Spain)

    2014-12-15

    GaAs/Al-GaAs core-shell nanowires fabricated by molecular beam epitaxy contain quantum confining structures susceptible of producing narrow photoluminescence (PL) and single photons. The nanoscale chemical mapping of these structures is analyzed in 3D by atom probe tomography (APT). The study allows us to confirm that Al atoms tend to segregate within the AlGaAs shells towards the vertices of the hexagons defining the nanowire cross section. We also find strong alloy fluctuations remaining AlGaAs shell, leading occasionally to the formation of quantum dots (QDs). The PL emission energies predicted in the framework of a 3D effective mass model for a QD analyzed by APT and the PL spectra measured on other nanowires from the same growth batch are consistent within the experimental uncertainties.

  12. Selective in situ potential-assisted SAM formation on multi electrode arrays

    Science.gov (United States)

    Haag, Ann-Lauriene; Toader, Violeta; Lennox, R. Bruce; Grutter, Peter

    2016-11-01

    The selective modification of individual components in a biosensor array is challenging. To address this challenge, we present a generalizable approach to selectively modify and characterize individual gold surfaces in an array, in an in situ manner. This is achieved by taking advantage of the potential dependent adsorption/desorption of surface-modified organic molecules. Control of the applied potential of the individual sensors in an array where each acts as a working electrode provides differential derivatization of the sensor surfaces. To demonstrate this concept, two different self-assembled monolayer (SAM)-forming electrochemically addressable ω-ferrocenyl alkanethiols (C11) are chemisorbed onto independent but spatially adjacent gold electrodes. The ferrocene alkanethiol does not chemisorb onto the surface when the applied potential is cathodic relative to the adsorption potential and the electrode remains underivatized. However, applying potentials that are modestly positive relative to the adsorption potential leads to extensive coverage within 10 min. The resulting SAM remains in a stable state while held at potentials <200 mV above the adsorption potential. In this state, the chemisorbed SAM does not significantly desorb nor do new ferrocenylalkythiols adsorb. Using three set applied potentials provides for controlled submonolayer alkylthiol marker coverage of each independent gold electrode. These three applied potentials are dependent upon the specifics of the respective adsorbate. Characterization of the ferrocene-modified electrodes via cyclic voltammetry demonstrates that each specific ferrocene marker is exclusively adsorbed to the desired target electrode.

  13. Array Formation and Size Effects in Chemically Synthesized FePt Nanoparticles

    Science.gov (United States)

    Colak, Levent; Hadjipanayis, George

    2007-03-01

    FePt nanoparticles with controlled size have been synthesized following a route given by Shukla et. al.[1] The effect of particle size on the magnetic properties has been investigated for nanoparticles with sizes of 3.0 and 6.0 nm. With the addition of the surfactants at a later stage of preparation, a long range self-assembled array of particles was obtained as evidenced by transmission electron microscope (TEM). By comparing bright field images of the samples with projected potential image simulations^ [2], the packing structures and stacking sequences of the arrays were identified. Well-aligned mono and multi layered hcp to bcc nanostructures are formed from 5 nm FePt nanoparticles. Subjecting the NP's to thermal processing at 800 ^oC results in a transformation of the nanoparticles from the disordered fcc phase to the ordered L10 phase. HRTEM studies have been carried out to investigate the development of particle morphology and microstructure during the synthesis and subsequent annealing of nanoparticles. 1. N. Shukla, C. Liu, A. G. Roy, Matt. Lett. 60, 2006, 995-998. 2. S. Yamamuro, D. F. Farrell and S. A. Majetich, Phys. Rev. B 65, 224431 (2002).

  14. Widely tunable narrow-linewidth 1.5 μm light source based on a monolithically integrated quantum dot laser array

    Science.gov (United States)

    Becker, A.; Sichkovskyi, V.; Bjelica, M.; Rippien, A.; Schnabel, F.; Kaiser, M.; Eyal, O.; Witzigmann, B.; Eisenstein, G.; Reithmaier, J. P.

    2017-05-01

    A monolithically integrated widely tunable narrow-linewidth light source was realized on an InP-based quantum dot (QD) gain material. The quasi zero-dimensional nature of QDs and the resulting low linewidth enhancement factor enabled standalone distributed feedback (DFB) lasers with intrinsic linewidths as low as 110 kHz. An integrated device comprising four DFB lasers with on-chip micro-heaters, a 3 dB-coupler network, and a semiconductor optical amplifier (SOA), which covers the entire C+ telecom band, exhibits a linewidth of below 200 kHz independent of the SOA operation current.

  15. Versatile microfluidic droplets array for bioanalysis.

    Science.gov (United States)

    Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan

    2015-01-14

    We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods.

  16. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements.

    Science.gov (United States)

    Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael

    2017-10-01

    Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10(-4) and 10(-2)M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10(-4) and 10(-2)M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions

  17. Nano-scale ultra-dense Z-pinches formation from laser-irradiated nanowire arrays

    CERN Document Server

    Kaymak, Vural; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2016-01-01

    We show that ulta-dense Z-pinches with nanoscale dimensions can be generated by irradiating aligned nanowires with femtosecond laser pulses of relativistic intensity. Using fully three-dimensional relativistic particle-in-cell simulations we demonstrate that the laser pulse drives a forward electron current in the area around the wires. This forward current induces return current densities of $\\sim$ 0.1 Giga-Amperes per $\\mu$m\\textsuperscript{2} through the wires. The resulting strong, quasi-static, self-generated azimuthal magnetic field pinches the nanowires into hot plasmas with a peak electron density of $> 9\\cdot 10^{24}$ cm\\textsuperscript{-3}, exceeding 1000 times the critical density. Arrays of these new ultra-dense nanopinches can be expected to lead to efficient micro-fusion and other applications.

  18. Very large array observations of ammonia in high-mass star formation regions

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xing; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China)

    2014-08-01

    We report systematic mapping observations of the NH{sub 3} (1, 1) and (2, 2) inversion lines toward 62 high-mass star-forming regions using the Very Large Array (VLA) in its D and DnC array configurations. The VLA images cover a spatial dynamic range from 40'' to 3'', allowing us to trace gas kinematics from ∼1 pc scales to ≲0.1 pc scales. Based on the NH{sub 3} morphology and the infrared nebulosity on 1 pc scales, we categorize three subclasses in the sample: filaments, hot cores, and NH{sub 3}-dispersed sources. The ubiquitous gas filaments found on 1 pc scales have a typical width of ∼0.1 pc and often contain regularly spaced fragments along the major axis. The spacing of the fragments and the column densities is consistent with the turbulent supported fragmentation of cylinders. Several sources show multiple filaments that converge toward a center where the velocity field in the filaments is consistent with gas flows. We derive rotational temperature maps for the entire sample. For the three hot core sources, we find a projected radial temperature distribution that is best fit by power-law indices from –0.18 to –0.35. We identify 174 velocity-coherent ∼0.1 pc scale dense cores from the entire sample. The mean physical properties for these cores are 1.1 km s{sup –1} in intrinsic linewidth, 18 K in NH{sub 3} rotational temperature, 2.3 × 10{sup 15} cm{sup –2} in NH{sub 3} gas column density, and 67 M{sub ☉} in molecular mass. The dense cores identified from the filamentary sources are closer to being virialized. Dense cores in the other two categories of sources appear to be dynamically unstable.

  19. "Turn-off" fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides.

    Science.gov (United States)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang

    2016-04-15

    As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs.

  20. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of Botulinum neurotoxin using high-affinity antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Marvin G.; Grate, Jay W.; Tyler, Abby J.; Ozanich, Richard M.; Miller, Keith D.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cindy J.

    2009-09-01

    A fluorescence sandwich immunoassay using high affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum toxin serotype A (BoNT/A). For the development of the assay, a nontoxic recombinant fragment of the holotoxin (BoNT/A-HC-fragment) has been used as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader. Detection down to 31 pM of the BoNT/Hc-fragment was demonstrated with a total incubation time of 3 hours, using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the immunochemical reactions were carried out in microcentrifuge tubes with an incubation time of 1 hour. These beads were subsequently captured and concentrated in a rotating rod “renewable surface” flow cell as part of a sequential injection fluidic system. This flow cell was equipped with a fiber optic system for fluorescence measurements. In PBS buffer solution matrix, the BoNT/A-HC-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach.

  1. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays

    Science.gov (United States)

    Wang, Chih-Chieh; Chou, Po-Hsun

    2016-08-01

    The effects of hydrogen thermal and plasma treatment on the formation and photocatalytic activities of black TiO2 nanowire arrays were investigated and discussed. After either the hydrogen thermal or plasma treatment, the TiO2 nanowires remained. However, in contrast to the plasma treated nanowires, the diameter of the thermal treated TiO2 nanowires reduced more significantly, which was attributed to a thicker surface amorphous layer and more oxygen vacancies. A higher photoresponse in both UV and visible light regions and more hydroxide groups were also observed for the thermal treated nanowires. In addition, the black nanowires possessed greater carrier concentration, leading to a more efficient separation of electron-hole pairs. As a consequence, much enhanced photoelectrochemical water splitting and photocatalytic degradation of methylene blue were obtained.

  2. Multi-parameter assessment of thrombus formation on microspotted arrays of thrombogenic surfaces

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Susanne de Witt, Frauke Swieringa, Judith Cosemans & Johan Heemskerk ### Abstract Thrombus formation by adhering and aggregating blood platelets is fundamental to hemostasis and is a prerequisite for vascular occlusion in pathological thrombosis. The parallel-plate flow chamber technique has been extensively used to measure platelet adhesion and activation in vitro at arterial or venous flow conditions. Here, we describe the use of brightfield and confocal fluorescence mi...

  3. Polarization properties and disorder effects in H{sub 3} photonic crystal cavities incorporating site-controlled, high-symmetry quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Surrente, Alessandro; Felici, Marco; Gallo, Pascal; Dwir, Benjamin; Rudra, Alok; Kapon, Eli, E-mail: eli.kapon@epfl.ch [Laboratory of Physics of Nanostructures, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Biasiol, Giorgio [Istituto Officina dei Materiali CNR, Laboratorio TASC, I-34149 Trieste (Italy)

    2015-07-20

    We report on the effects of optical disorder on breaking the symmetry of the cavity modes of H{sub 3} photonic crystal cavities incorporating site-controlled pyramidal quantum dots (QDs) as the internal light source. The high in-plane symmetry of the polarization states of the pyramidal QDs simplifies the analysis of the polarization states of the H{sub 3} cavities. It is shown that the optical disorder induced by fabrication imperfections lifts the degeneracy of the two quadrupole cavity modes and tilts the elongation axes of the cavity mode patterns with respect to the ideal, hexagonal symmetry case. These results are useful for designing QD-cavity structures for polarization-entangled photon sources and few-QD lasers.

  4. Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays

    Science.gov (United States)

    Shin, Kahee; Yoo, Ji-Beom; Park, Jong Hyeok

    2013-03-01

    The present work reports fabrication of vertically aligned CdS sensitized TiO2 nanorod arrays grown on transparent conducting oxide substrate with high transparency as a photoanode in photoelectrochemical cell for water splitting. To realize an unassisted water splitting system, the photoanode and dye-sensitized solar cell tandem structures are tried and their electrochemical behaviors are also investigated. The hydrothermally grown TiO2 nanorod arrays followed by CdS nanoparticle decoration can improve the light absorption of long wavelength light resulting in increased photocurrent density. Two different techniques (electrodeposition and spray pyrolysis deposition) of CdS nanoparticle sensitization are carried out and their water splitting behaviors in the tandem cell are compared.

  5. Pattern Formation by Staphylococcus epidermidis via Droplet Evaporation on Micropillars Arrays at a Surface.

    Science.gov (United States)

    Susarrey-Arce, A; Marin, A; Massey, A; Oknianska, A; Díaz-Fernandez, Y; Hernández-Sánchez, J F; Griffiths, E; Gardeniers, J G E; Snoeijer, J H; Lohse, Detlef; Raval, R

    2016-07-19

    We evaluate the effect of epoxy surface structuring on the evaporation of water droplets containing Staphylococcus epidermidis (S. epidermidis). During evaporation, droplets with S. epidermidis cells yield to complex wetting patterns such as the zipping-wetting1-3 and the coffee-stain effects. Depending on the height of the microstructure, the wetting fronts propagate circularly or in a stepwise manner, leading to the formation of octagonal or square-shaped deposition patterns.4,5 We observed that the shape of the dried droplets has considerable influence on the local spatial distribution of S. epidermidis deposited between micropillars. These changes are attributed to an unexplored interplay between the zipping-wetting1 and the coffee-stain6 effects in polygonally shaped droplets containing S. epidermidis. Induced capillary flows during evaporation of S. epidermidis are modeled with polystyrene particles. Bacterial viability measurements for S. epidermidis show high viability of planktonic cells, but low biomass deposition on the microstructured surfaces. Our findings provide insights into design criteria for the development of microstructured surfaces on which bacterial propagation could be controlled, limiting the use of biocides.

  6. Aerosol assisted fabrication of two dimensional ZnO island arrays and honeycomb patterns with identical lattice structures

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Numata

    2010-11-01

    Full Text Available Two dimensional island arrays and honeycomb patterns consisting of ZnO nanocrystal clusters were fabricated on predefined TiO2 seed patterns prepared by vacuum free, aerosol assisted wet-chemical synthesis. The TiO2 seed patterns were prepared by applying an aerosol of a water soluble titanium complex on hexagonally close-packed polystyrene bead arrays for different lengths of time. Scanning electron microscopy revealed that a dot array grows into a honeycomb shape as increasing amounts of the precursor were deposited. ZnO nucleation on substrates with a dot array and honeycomb patterns resulted in the formation of two discrete patterns with contrasting fill fractions of the materials.

  7. Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots

    Science.gov (United States)

    Holi, Araa Mebdir; Zainal, Zulkarnain; Talib, Zainal Abidin; Lim, Hong-Ngee; Yap, Chi-Chin; Chang, Sook-Keng; Ayal, Asmaa Kadim

    2017-03-01

    Ternary nanostructured Ag2S/CdS/ZnO thin film was prepared by using a simple low-cost hydrothermal method. The hexagonal phase of ZnO nanorods and CdS shells combined with monoclinic Ag2S quantum dots resulted in improved optical and photoelectrochemical properties. CdS shell with high absorption property efficiently compliment the energy levels of ZnO and improved the ability of light absorption. Furthermore, narrow band gap Ag2S also played a vital part in the light harvesting. The photoelectrochemical performance of the ternary nanostructured Ag2S/CdS/ZnO NRs was investigated in a mixture of Na2S and Na2SO3 aqueous solutions under visible light illumination. The Ag2S/CdS/ZnO NRs were found to be more efficient than ZnO NRs, CdS/ZnO NRs, and Ag2S/ZnO NRs as this particular sample gave a maximum photocurrent of 5.69 mA cm-2, which is around 2 and 1.5 times greater than CdS/ZnO NRs and Ag2S/ZnO NRs, respectively. Besides that, it was found that this ternary film possessed 15 times higher photocurrent density than plain ZnO NRs. This is attributed to the larger amount of visible light absorbed by the ternary nanostructured composite.

  8. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Suddhasatta

    2008-01-16

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T{sub G}=300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T{sub G}<{proportional_to}240 C. In the second variant technique, formation of large and distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (T{sub D}=230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  9. Enhance photoelectrochemical hydrogen-generation activity and stability of TiO2 nanorod arrays sensitized by PbS and CdS quantum dots under UV-visible light.

    Science.gov (United States)

    Li, Lei; Dai, Haitao; Feng, Liefeng; Luo, Dan; Wang, Shuguo; Sun, Xiaowei

    2015-12-01

    We develop a composite photoanode by sensitizing TiO2 nanorod arrays with PbS quantum dots (QDs) and CdS QDs. Benefitted from additional introduced PbS QDs and CdS QDs onto TiO2, the absorption of the composite photoanodes are broaden from UV to visible region. The experimental results showed that the PbS sandwiched between TiO2 and CdS cannot only broad the absorption properties but also improve the stability. The stability can be explained by the hole facile transmission from PbS to CdS because of the valence band offsets between PbS and CdS which cause a small energy barrier and reduce the hole accumulation. The photocurrent density reached 1.35 mA cm(-2) at 0.9716 V vs. RHE (0 V vs. Ag/AgCl, under 60 mW cm(-2) illumination) for TiO2/PbS/CdS. The highest photocurrent of TiO2/PbS/CdS can be explained by the smallest of total resistance (138 Ω cm(-2)) compared to TiO2/CdS and pristine TiO2.

  10. Interfacial effects of the Cu2O nano-dots decorated Co3O4 nanorods array and its photocatalytic activity for cleaving organic molecules

    Science.gov (United States)

    Qiu, X. P.; Yu, J. S.; Xu, H. M.; Chen, W. X.; Hu, W.; Chen, G. L.

    2016-09-01

    A heterogeneous nanocomposite catalyst constructed by the Co3O4 nanorods decorated with the Cu2O quantum dots (QDs) were successfully synthesized via a simple hydrothermal method followed by an oxidation-reduction processing. The fabricated Cu2O/Co3O4 nanocomposite was characterized by the SEM, TEM, XPS, XRD, UV-vis and PL, and the (2 2 0) and (3 1 1) facets of the Co3O4 were exposed. Compared with the original Co3O4 nanorods with an average diameter of 350 nm, a substantial decrease in the band gap was observed after doping the nanorods with the Cu2O QDs (average diameter of 5 nm). Such a dramatic decrease in the band gap indicated a significant enhancement of the photocatalytic activities under visible light. The methylene blue (MB) dye and the phenol were used as model organic pollutants, and the Cu2O/Co3O4 nanocomposite catalyst exhibited both high catalytic activity and good recycling stability. The catalytic activities of the Cu2O/Co3O4/potassium monopersulfate triple salt (PMS) system for cleaving the MB and the phenol were dependent on the dosages of the Cu2O QDs, and the calculated degradation rates achieved by 7.0 wt% Cu2O/Co3O4 nanocomposite catalyst were about 11.3 and 1.8 times than that of the pristine Co3O4 nanorod catalyst for the MB and the phenol, respectively. The reactive species of rad O2- and the holes were determined to be the main active species for the phenol photocatalytic degradation by the 7 wt% Cu2O/Co3O4/PMS system and the 7 wt% Cu2O/Co3O4/H2O2 system, respectively.

  11. Initial stage growth of GexSi1-x layers and Ge quantum dot formation on GexSi1-x surface by MBE.

    Science.gov (United States)

    Nikiforov, Aleksandr I; Timofeev, Vyacheslav A; Teys, Serge A; Gutakovsky, Anton K; Pchelyakov, Oleg P

    2012-10-09

    Critical thicknesses of two-dimensional to three-dimensional growth in GexSi1-x layers were measured as a function of composition for different growth temperatures. In addition to the (2 × 1) superstructure for a Ge film grown on Si(100), the GexSi1-x layers are characterized by the formation of (2 × n) reconstruction. We measured n for all layers of Ge/GexSi1-x/Ge heterosystem using our software with respect to the video recording of reflection high-energy electron diffraction (RHEED) pattern during growth. The n reaches a minimum value of about 8 for clear Ge layer, whereas for GexSi1-x films, n is increased from 8 to 14. The presence of a thin strained film of the GexSi1-x caused not only the changes in critical thicknesses of the transitions, but also affected the properties of the germanium nanocluster array for the top Ge layer. Based on the RHEED data, the hut-like island form, which has not been previously observed by us between the hut and dome islands, has been detected. Data on the growth of Ge/GexSi1-x/Ge heterostructures with the uniform array of islands in the second layer of the Ge film have been received.

  12. Connecting dots

    DEFF Research Database (Denmark)

    Murakami, Kyoko; Jacobs, Rachel L.

    2017-01-01

    of connecting the dots of recalled moments of individual family members lives and is geared towards building a family’s shared future for posterity. Lastly, we consider a wider implication of family reminiscence in terms of human development. http://www.infoagepub.com/products/Memory-Practices-and-Learning...

  13. Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast.

    Directory of Open Access Journals (Sweden)

    Mohammad Bani Ismail

    Full Text Available Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation.

  14. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    OpenAIRE

    Z. O. Lipatova; E. V. Kolobkova; V. A. Aseev

    2015-01-01

    Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been fou...

  15. Enhancement of the capability of hydroxyapatite formation on Zr with anodic ZrO₂ nanotubular arrays via an effective dipping pretreatment.

    Science.gov (United States)

    Wang, Lu-Ning; Adams, Alissa; Luo, Jing-Li

    2011-11-01

    Hydroxyapatite (HA) depositions on metallic biomedical implants are widely applied to generate bioactive surfaces in simulated biological environments. Highly ordered anodic ZrO₂ nanotubes have attracted increasing interest for biomedical applications. However, previous reports showed that at least 14-28 days were required to obtain HA coating on ZrO₂ nanotubular arrays under biomimetic condition, thus capability to grow HA coating on ZrO ₂nanotubular at room temperature needs to be enhanced. In the present work, we demonstrate that ZrO₂ nanotubular arrays are suitable for an effective dipping treatment to induce more rapid HA coating. A series of ZrO₂ nanotubular arrays having different dimensions were fabricated in fluoride containing electrolyte. Then, we used a dipping treatment for biomimetic formation of an adhesive HA coating on the nanotubular arrays. The coatings formed rapidly using this procedure under biomimetic conditions and did not require a high-temperature annealing process. The as-formed ZrO₂ nanotubular arrays were treated using several dip-and-dry steps, through which the nanotubular arrays were filled and covered with calcium phosphate (CaP) nucleation sites. The specimens readily grew HA once immersed in the simulated biological fluid after 2 days immersion. The carbonated HA coating had several micron thickness after 8 days of immersion while only a thin layer of CaP were observed on annealed ZrO₂ nanotubes immersed in the same solution for the same duration. Tensile testing showed that bonding strength between HA coating and substrate was 21.6 ± 1.6 MPa. This treatment dramatically improves efficiency for promoting HA formation on anodic ZrO₂ nanotubes at room temperature. 2011 Wiley Periodicals, Inc.

  16. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    Science.gov (United States)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  17. 基于QCA可编程逻辑阵列单元的元胞缺陷研究%Study of Cell Defects of the Programmable Logic Array Unit Based on the Quantum-Dot Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    李政操; 蔡理; 黄宏图

    2012-01-01

    介绍了一种量子元胞自动机(QCA)可编程逻辑阵列结构,该结构可用于实现量子元胞自动机大规模可编程逻辑电路,采用QCADesigner仿真软件研究了元胞缺失、移位缺陷和未对准缺陷对可编程逻辑阵列单元逻辑功能的影响.得出了特定结构下,每个元胞移位缺陷和未对准缺陷的最大错位距离,以及导线模式中存在特定位置的8个可缺失元胞.这为缺陷单元的应用提供了一个具体的参数标准,提高了PLA阵列的单元利用率.%A programmable logic array (PLA) structure that can be used in the large scale integrated circuit using quantum-dot cellular automata (QCA) was introduced. The effects of the cell omission , cell misalignment and cell displacement on the PLA were researched by QCADesigner. And the maximum fault-tolerant ranges of displacement and misalignment for each cell were obtained for a certain structure. Besides that, the 8-cell omission defect in the wire mode was also achieved. The research provides a concrete parameter criterion for applying defect units normally, and advances the utilizing rate of the cell.

  18. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    NARCIS (Netherlands)

    Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2016-01-01

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the

  19. Photolithographic process for the patterning of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Joo; Park, Sang Joon; Lee, Sang Wha [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of); Kim, Jong Sung [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of)], E-mail: jskim@kyungwon.ac.kr

    2008-09-15

    Recently, quantum dots have been used as molecular probes substituting for conventional organic fluorophores. Quantum dots are stable against photobleaching and have more controllable emission bands, broader absorption spectra, and higher quantum yields. In this study, an array of ZnS-coated CdSe quantum dots on a slide glass has been prepared by photolithographic method. The array pattern was prepared using a positive photoresist (AZ1518) and developer (AZ351). The patterned glass was silanized with 3-aminopropyltriethoxysilane (APTES), and carboxyl-coated quantum dots were selectively attached onto the array pattern. The silanization was examined by measuring contact angle and the surface of the array pattern was analyzed using AFM and fluorescent microscope.

  20. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.

    Science.gov (United States)

    Gonfa, Belete Atomsa; Kim, Mee Rahn; Delegan, Nazar; Tavares, Ana C; Izquierdo, Ricardo; Wu, Nianqiang; El Khakani, My Ali; Ma, Dongling

    2015-06-14

    Near infrared (NIR) PbS quantum dots (QDs) have attracted significant research interest in solar cell applications as they offer several advantages, such as tunable band gaps, capability of absorbing NIR photons, low cost solution processability and high potential for multiple exciton generation. Nonetheless, reports on solar cells based on NIR PbS/CdS core-shell QDs, which are in general more stable and better passivated than PbS QDs and thus more promising for solar cell applications, remain very rare. Herein we report high efficiency bulk heterojunction QD solar cells involving hydrothermally grown TiO2 nanorod arrays and PbS/CdS core-shell QDs processed in air (except for a device thermal annealing step) with a photoresponse extended to wavelengths >1200 nm and with a power conversion efficiency (PCE) as high as 4.43%. This efficiency was achieved by introducing a thin, sputter-deposited, uniform TiO2 seed layer to improve the interface between the TiO2 nanorod arrays and the front electrode, by optimizing TiO2 nanorod length and by conducting QD annealing treatment to enhance charge carrier transport. It was found that the effect of the seed layer became more obvious when the TiO2 nanorods were longer. Although photocurrent did not change much, both open circuit voltage and fill factor clearly changed with TiO2 nanorod length. This was mainly attributed to the variation of charge transport and recombination processes, as evidenced by series and shunt resistance studies. The optimal PCE was obtained at the nanorod length of ∼450 nm. Annealing is shown to further increase the PCE by ∼18%, because of the improvement of charge carrier transport in the devices as evidenced by considerably increased photocurrent. Our results clearly demonstrate the potential of the PbS/CdS core-shell QDs for the achievement of high PCE, solution processable and NIR responsive QD solar cells.

  1. Formation of plano-convex micro-lens array in fused silica glass using CO2 laser assisted reshaping technique

    CERN Document Server

    Sohn, Ik-Bu; Yoo, Dongyoon; Noh, Young-Chul; Ahsan, Md Shamim; Sung, Jae-Hee; Lee, Seong-Ku

    2016-01-01

    We report on fabricating high-fill-factor plano-convex spherical and square micro-lens arrays on fused silica glass surface using CO2 laser assisted reshaping technique. Initially, periodic micro-pillars have been encoded on the glass surface by means of a femtosecond laser beam. Afterwards, the micro-pillars are polished several times by irradiating a CO2 laser beam on top of the micro-pillars. Consequently, spherical micro-lens array with micro-lens size of 50 um x 50 um and square micro-lens array with micro-lens size of 100 um x 100 um are formed on fused silica glass surface. We also study the intensity distribution of light passed through the spherical micro-lens array engraved glass sample. The simulation result shows that, the focal length of the spherical micro-lens array is 35 um. Furthermore, we investigate the optical properties of the micro-lens array engraved glass samples. The proposed CO2 laser based reshaping technique is simple and fast that shows promises in fabrication arrays of smooth mic...

  2. Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?

    Science.gov (United States)

    Moghaddam, Mojtaba Mirhosseini; Baghbanzadeh, Mostafa; Keilbach, Andreas; Kappe, C Oliver

    2012-12-07

    Microwave-assisted syntheses of colloidal nanocrystals (NCs), in particular CdSe quantum dots (QDs), have gained considerable attention due to unique opportunities provided by microwave dielectric heating. The extensive use of microwave heating and the frequently suggested specific microwave effects, however, pose questions about the role of the electromagnetic field in both the formation and quality of the produced QDs. In this work a one-pot protocol for the tunable synthesis of monodisperse colloidal CdSe NCs using microwave dielectric heating under carefully controlled conditions is introduced. CdSe QDs are fabricated using selenium dioxide as a selenium precursor, 1-octadecene as a solvent and reducing agent, cadmium alkyl carboxylates or alkyl phosphonates as cadmium sources, 1,2-hexadecanediol to stabilize the cadmium complex and oleic acid to stabilize the resulting CdSe QDs. Utilizing the possibilities of microwave heating technology in combination with accurate online temperature control the influence of different reaction parameters such as reaction temperature, ramp and hold times, and the timing and duration of oleic acid addition have been carefully investigated. Optimum results were obtained by performing the reaction at 240 °C applying a 5 min ramp time, 2 min hold time before oleic acid addition, 90 s for oleic acid addition, and a 5 min hold time after oleic acid addition (8.5 min overall holding at 240 °C). By using different cadmium complexes in the microwave protocol CdSe QDs with a narrow size distribution can be obtained in different sizes ranging from 0.5-4 nm by simply changing the cadmium source. The QDs were characterized by TEM, HRTEM, UV-Vis, and photoluminescence methods and the size distribution was monitored by SAXS. Control experiments involving conventional conductive heating under otherwise identical conditions ensuring the same heating and cooling profiles, stirring rates, and reactor geometries demonstrate that the

  3. Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?

    Science.gov (United States)

    Moghaddam, Mojtaba Mirhosseini; Baghbanzadeh, Mostafa; Keilbach, Andreas; Kappe, C. Oliver

    2012-11-01

    Microwave-assisted syntheses of colloidal nanocrystals (NCs), in particular CdSe quantum dots (QDs), have gained considerable attention due to unique opportunities provided by microwave dielectric heating. The extensive use of microwave heating and the frequently suggested specific microwave effects, however, pose questions about the role of the electromagnetic field in both the formation and quality of the produced QDs. In this work a one-pot protocol for the tunable synthesis of monodisperse colloidal CdSe NCs using microwave dielectric heating under carefully controlled conditions is introduced. CdSe QDs are fabricated using selenium dioxide as a selenium precursor, 1-octadecene as a solvent and reducing agent, cadmium alkyl carboxylates or alkyl phosphonates as cadmium sources, 1,2-hexadecanediol to stabilize the cadmium complex and oleic acid to stabilize the resulting CdSe QDs. Utilizing the possibilities of microwave heating technology in combination with accurate online temperature control the influence of different reaction parameters such as reaction temperature, ramp and hold times, and the timing and duration of oleic acid addition have been carefully investigated. Optimum results were obtained by performing the reaction at 240 °C applying a 5 min ramp time, 2 min hold time before oleic acid addition, 90 s for oleic acid addition, and a 5 min hold time after oleic acid addition (8.5 min overall holding at 240 °C). By using different cadmium complexes in the microwave protocol CdSe QDs with a narrow size distribution can be obtained in different sizes ranging from 0.5-4 nm by simply changing the cadmium source. The QDs were characterized by TEM, HRTEM, UV-Vis, and photoluminescence methods and the size distribution was monitored by SAXS. Control experiments involving conventional conductive heating under otherwise identical conditions ensuring the same heating and cooling profiles, stirring rates, and reactor geometries demonstrate that the

  4. Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband focal plane arrays, operating in UV-to-SWIR wavelength range, are required for atmospheric monitoring of greenhouse gases. Currently, separate image...

  5. Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband focal plane arrays, operating in UV-to-SWIR wavelength range, are required for atmospheric monitoring of greenhouse gases. Currently, separate image...

  6. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  7. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Science.gov (United States)

    Baart, T. A.; Eendebak, P. T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.

    2016-05-01

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  8. Thermodynamics of formation of double salts M{sub 2}SO{sub 4} {center_dot} M{sup '}SO{sub 4} {center_dot} 6H{sub 2}O and M{sub 2}SeO{sub 4} {center_dot} M{sup '}SeO{sub 4} {center_dot} 6H{sub 2}O where M denotes Rb, or Cs and M{sup '} denote Co, Ni, or Zn[Pitzer model; Solubility diagram; Rubidium, and cesium sulfate and selenate; Cobalt, nickel, and zinc sulfate and selenate; M2SO4{center_dot}M'SO4{center_dot}6H2O- and M2SeO4{center_dot}M'SeO4{center_dot}nH2O-double salts; Gibbs free energy

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Christomir. E-mail: hhristov@chem.ucsd.edu

    2003-11-01

    Gibbs free energy of formation) of the solid phases (simple salts, six sulfate - M{sub 2}SO{sub 4} {center_dot} M{sup '}SO{sub 4} {center_dot} 6H{sub 2}O, and five selenate - M{sub 2}SeO{sub 4} {center_dot} M{sup '}SeO{sub 4} {center_dot} 6H{sub 2}O - double salts) crystallizing in the systems under consideration are determined.

  9. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  10. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  11. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  12. Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion

    Science.gov (United States)

    Ye, Qianghua; Yan, Fanyong; Luo, Yunmei; Wang, Yinyin; Zhou, Xuguang; Chen, Li

    2017-02-01

    Biomass is regarded as an excellent candidate for the preparation of heteroatom-doped carbon nanomaterials. We have developed a simple and facile one-pot synthesis of nitrogen and sulfur codoped fluorescent carbon dots from pigeon feathers, egg and manure via the pyrolysis carbonization method. The as-prepared four PCDs have high fluorescence quantum yield about 24.87% (PCDs-f), 17.48% (PCDs-w), 16.34% (PCDs-y), 33.50% (PCDs-m), respectively, which is higher than the other carbon dots preparing from biomass. We found that the preparation of PCDs-m with pigeon manure has no favourable selectively with heavy metal ions. However, other PCDs exhibit highly sensitive and selective detection behavior of Hg2 +/Fe3 + ions with a low detection limit of 10.3 and 60.9 nM. They were applied to imaging of human umbilical vein endothelial cells, showing low cytotoxicity and good biocompatibility.

  13. First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth.

    Science.gov (United States)

    Yin, Zongyou; Tang, Xiaohong; Zhang, Jixuan; Deny, Sentosa; Teng, Jinghua; Du, Anyan; Chin, Mee Koy

    2008-02-27

    First-step nucleation growth has an important impact on the two-step growth of high-quality mid-infrared emissive InAs/InGaAs/InP quantum dots (QDs). It has been found that an optimized growth rate for first-step nucleation is critical for forming QDs with narrow size distribution, high dot density and high crystal quality. High growth temperature has an advantage in removing defects in the QDs formed, but the dot density will be reduced. Contrasting behavior in forming InAs QDs using metal-organic vapor phase epitaxy (MOVPE) by varying the input flux ratio of group-V versus group-III source (V/III ratio) in the first-step nucleation growth has been observed and investigated. High-density, 2.5 × 10(10) cm(-2), InAs QDs emitting at>2.15 µm have been formed with narrow size distribution, ∼1 nm standard deviation, by reducing the V/III ratio to zero in first-step nucleation growth.

  14. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths

    NARCIS (Netherlands)

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-01-01

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can

  15. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  16. Growing InAs/GaAs quantum dots by droplet epitaxy under MOVPE conditions

    Science.gov (United States)

    Surnina, M. A.; Akchurin, R. Kh.; Marmalyuk, A. A.; Bagaev, T. A.; Sizov, A. L.

    2016-07-01

    Results of studying the formation of InAs quantum dots (QDs) on GaAs(100) substrates by droplet epitaxy using trimethylindium and arsine (AsH3) as precursors are presented. The growth process was carried out at temperatures within 230-400°C in a horizontal reactor for metalorganic vapor phase epitaxy (MOVPE) using high-purity hydrogen as the carrier gas. Data on the influence of process temperature on the QD size and the density of QD array and results of investigation of the low-temperature photoluminescence of obtained samples are presented.

  17. Beyond the heteroepitaxial quantum dot : self-assembling complex nanostructures controlled by strain and growth kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Peter (Brookhaven National Laboratory, Upton, NY); Lam, Chi-Hang (Hong Kong Polytechnic University, Hong Kong); Gray, Jennifer Lynn (University of Virginia, Charlottesville, VA); Means, Joel L. (Texas A& M University, College Station, TX); Floro, Jerrold Anthony; Hull, Robert (University of Virginia, Charlottesville, VA)

    2005-06-01

    Heteroepitaxial growth of GeSi alloys on Si (001) under deposition conditions that partially limit surface mobility leads to an unusual form of strain-induced surface morphological evolution. We discuss a kinetic growth regime wherein pits form in a thick metastable wetting layer and, with additional deposition, evolve to a quantum dot molecule - a symmetric assembly of four quantum dots bound by the central pit. We discuss the size selection and scaling of quantum dot molecules. We then examine the key mechanism - preferred pit formation - in detail, using ex situ atomic force microscopy, in situ scanning tunneling microscopy, and kinetic Monte Carlo simulations. A picture emerges wherein localized pits appear to arise from a damped instability. When pits are annealed, they extend into an array of highly anisotropic surface grooves via a one-dimensional growth instability. Subsequent deposition on this grooved film results in a fascinating structure where compact quantum dots and molecules, as well as highly ramified quantum wires, are all simultaneously self-assembled.

  18. Quantum Dots-based Reverse Phase Protein Microarray

    Energy Technology Data Exchange (ETDEWEB)

    Shingyoji, Masato; Gerion, Daniele; Pinkel, Dan; Gray, Joe W.; Chen, Fanqing

    2005-07-15

    CdSe nanocrystals, also called quantum dots (Qdots) are a novel class of fluorophores, which have a diameter of a few nanometers and possess high quantum yield, tunable emission wavelength and photostability. They are an attractive alternative to conventional fluorescent dyes. Quantum dots can be silanized to be soluble in aqueous solution under biological conditions, and thus be used in bio-detection. In this study, we established a novel Qdot-based technology platform that can perform accurate and reproducible quantification of protein concentration in a crude cell lysate background. Protein lysates have been spiked with a target protein, and a dilution series of the cell lysate with a dynamic range of three orders of magnitude has been used for this proof-of-concept study. The dilution series has been spotted in microarray format, and protein detection has been achieved with a sensitivity that is at least comparable to standard commercial assays, which are based on horseradish peroxidase (HRP) catalyzed diaminobenzidine (DAB) chromogenesis. The data obtained through the Qdot method has shown a close linear correlation between relative fluorescence unit and relative protein concentration. The Qdot results are in almost complete agreement with data we obtained with the well-established HRP-DAB colorimetric array (R{sup 2} = 0.986). This suggests that Qdots can be used for protein quantification in microarray format, using the platform presented here.

  19. Colloidal quantum dots as optoelectronic elements

    Science.gov (United States)

    Vasudev, Milana; Yamanaka, Takayuki; Sun, Ke; Li, Yang; Yang, Jianyong; Ramadurai, Dinakar; Stroscio, Michael A.; Dutta, Mitra

    2007-02-01

    Novel optoelectronic systems based on ensembles of semiconductor nanocrystals are addressed in this paper. Colloidal semiconductor quantum dots and related quantum-wire structures have been characterized optically; these optical measurements include those made on self-assembled monolayers of DNA molecules terminated on one end with a common substrate and on the other end with TiO II quantum dots. The electronic properties of these structures are modeled and compared with experiment. The characterization and application of ensembles of colloidal quantum dots with molecular interconnects are considered. The chemically-directed assembly of ensembles of colloidal quantum dots with biomolecular interconnects is demonstrated with quantum dot densities in excess of 10 +17 cm -3. A number of novel photodetectors have been designed based on the combined use of double-barrier quantum-well injectors, colloidal quantum dots, and conductive polymers. Optoelectronic devices including photodetectors and solar cells based on threedimensional ensembles of quantum dots are considered along with underlying phenomena such as miniband formation and the robustness of minibands to displacements of quantum dots in the ensemble.

  20. Dot-in-Well Quantum-Dot Infrared Photodetectors

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  1. Quantum Simulation in Quantum Dot Arrays

    Science.gov (United States)

    2013-12-16

    Hexagonal lattice. (d) Kagome Lattice. In parallel, we have benchmarked clean room fabrication methods to obtain clean grid gates samples. The...symmetries (square, triagonal/hexagonal or Kagome /Diced lattices). Grids with 150-200nm periods have been successfully written. Possibilities to reduce

  2. Formation of three-dimensional arrays of magnetic clusters NiO, Co3O4, and NiCo2O4 by the matrix method

    Science.gov (United States)

    Kurdyukov, D. A.; Pevtsov, A. B.; Smirnov, A. N.; Yagovkina, M. A.; Grigorev, V. Yu.; Romanov, V. V.; Bagraev, N. T.; Golubev, V. G.

    2016-06-01

    A method has been proposed for the formation of three-dimensional arrays of isolated magnetic clusters NiO, Co3O4, and NiCo2O4 in the sublattice of pores in the matrix of bulk synthetic opals through a single impregnation of the pores with melts of nickel and cobalt nitrate crystal hydrates and their thermal degradation. The method makes it possible to controllably vary the degree of filling of pores in the matrix with oxides within 10-70 vol %. The composition and structure of the synthesized materials, as well as the dependences of their static magnetic susceptibility on the magnetic field strength, have been investigated.

  3. Reduced 30% scanning time 3D multiplexer integrated circuit applied to large array format 20KHZ frequency inkjet print heads

    CERN Document Server

    Liou, J -C

    2008-01-01

    Enhancement of the number and array density of nozzles within an inkjet head chip is one of the keys to raise the printing speed and printing resolutions. However, traditional 2D architecture of driving circuits can not meet the requirement for high scanning speed and low data accessing points when nozzle numbers greater than 1000. This paper proposes a novel architecture of high-selection-speed three-dimensional data registration for inkjet applications. With the configuration of three-dimensional data registration, the number of data accessing points as well as the scanning lines can be greatly reduced for large array inkjet printheads with nozzles numbering more than 1000. This IC (Integrated Circuit) architecture involves three-dimensional multiplexing with the provision of a gating transistor for each ink firing resistor, where ink firing resistors are triggered only by the selection of their associated gating transistors. Three signals: selection (S), address (A), and power supply (P), are employed toge...

  4. Surface-roughness-assisted formation of large-scale vertically aligned CdS nanorod arrays via solvothermal method

    Science.gov (United States)

    Zhou, Minmin; Yan, Shancheng; Shi, Yi; Yang, Meng; Sun, Huabin; Wang, Jianyu; Yin, Yao; Gao, Fan

    2013-05-01

    Large-scale cadmium sulfide (CdS) nanorod arrays were successfully synthesized on several different substrates through solvothermal reaction. During the growth experiments, we observed that the adhesion strength of the CdS nanorod arrays to different substrates differed dramatically, causing some of the CdS coating being easily flushed away by deionized water (DI water). With doubts and suspicions, we seriously investigate the original morphology of all the substrates by using atomic force microscopy (AFM). The phase, morphology, crystal structure and photoelectric property of all the products were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and current-voltage (I-V) probe station. The growth mechanism of solvothermal reaction was proposed on the basis of all the characterizations. Our approach presents a universal method of liquid phase epitaxy of 1D material on a wide range of substrates of any shape.

  5. A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2008-01-01

    Full Text Available AbstractFabrication of a large area of periodic structures with deep sub-wavelength features is required in many applications such as solar cells, photonic crystals, and artificial kidneys. We present a low-cost and high-throughput process for realization of 2D arrays of deep sub-wavelength features using a self-assembled monolayer of hexagonally close packed (HCP silica and polystyrene microspheres. This method utilizes the microspheres as super-lenses to fabricate nanohole and pillar arrays over large areas on conventional positive and negative photoresist, and with a high aspect ratio. The period and diameter of the holes and pillars formed with this technique can be controlled precisely and independently. We demonstrate that the method can produce HCP arrays of hole of sub-250 nm size using a conventional photolithography system with a broadband UV source centered at 400 nm. We also present our 3D FDTD modeling, which shows a good agreement with the experimental results.

  6. A scalable multi-chip architecture to realise large-format microshutter arrays for coded aperture applications

    Science.gov (United States)

    McNie, Mark E.; King, David O.; Smith, Gilbert W.; Stone, Steven M.; Brown, Alan G.; Gordon, Neil T.; Slinger, Christopher W.; Cannon, Kevin; Riches, Stephen; Rogers, Stanley

    2009-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously we reported on the realization of a 2x2cm single chip mask in the mid-IR based on polysilicon micro-opto-electro-mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. The MOEMS architecture employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we present the latest transmission results in the mid-IR band (3-5μm) and report on progress in developing a scalable architecture based on a tiled approach using multiple 2 x 2cm MOEMS chips with associated control ASICs integrated using flip chip technology. Initial work has focused on a 2 x 2 tiled array as a stepping stone towards an 8 x 8 array.

  7. A 2x2 multi-chip reconfigurable MOEMS mask: a stepping stone to large format microshutter arrays for coded aperture applications

    Science.gov (United States)

    McNie, Mark E.; Brown, Alan G.; King, David O.; Smith, Gilbert W.; Gordon, Neil T.; Riches, Stephen; Rogers, Stanley

    2010-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously reported work focused on realising a 2x2cm single chip mask in the mid-IR based on polysilicon micro-optoelectro- mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. It employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we report on the latest results in the mid-IR for the single chip reconfigurable MOEMS mask, trials in scaling up to a mask based on a 2x2 multi-chip array and report on progress towards realising a large format mask comprising 44 MOEMS chips. We also explore the potential of such large, transmissive IR spatial light modulator arrays for other applications and in the current and alternative architectures.

  8. Single semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Michler, Peter (ed.) [Stuttgart Univ. (Germany). Inst. fuer Halbleiteroptik und Funktionelle Grenzflaechen

    2009-07-01

    This book reviews recent advances in the exciting and rapidly growing field of semiconductor quantum dots via contributions from some of the most prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots due to their potential applications in devices operating with single electron spins and/or single photons. This includes single and coupled quantum dots in external fields, cavity-quantum electrodynamics, and single and entangled photon pair generation. Single Semiconductor Quantum Dots also addresses growth techniques to allow for a positioned nucleation of dots as well as applications of quantum dots in quantum information technologies. (orig.)

  9. The formation of micrometer-long TiO2 nanotube arrays by anodization of titanium film on conducting glass substrate

    Science.gov (United States)

    Tang, Yuxin; Tao, Jie; Dong, Zhili; Tien Oh, Joo; Chen, Zhong

    2011-12-01

    Micrometer-long titanium oxide nanotube arrays, tens of nanometers in diameter, were fabricated by anodization of titanium film coated on a conducting glass substrate. The Ti film was deposited by magnetron sputtering at room temperature. The effect of anodizing conditions on the formation of TiO2 nanotubes was investigated. The results indicate that dense and uniform Ti film deposited under 150 W at room temperature was favorable for the formation of ordered nanotube arrays. The average diameter of the TiO2 nanotubes varied from 35 to 95 nm when the anodization potential changed from 10 to 40 V. Micrometer-long nanotubes (1.1 μm) with good adhesion to the substrate could be obtained in 0.5 wt% NH4F/glycerol at 30 V for 2 h. After heat treatment, the crystalline anatase nanotubes show enhanced photoelectrochemical activity compared with those anodized in 1 M H3PO4/0.5 wt% HF. This is attributed to the increased light-harvesting abilities.

  10. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics.

    Science.gov (United States)

    Sanchez, Rafael S; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3-xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The "color" of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit.

  11. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.

    Science.gov (United States)

    Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J

    2012-01-01

    In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.

  12. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna

    2012-05-23

    Recently, an intriguing solution to obtain better color purity has been to introduce inorganic emissive quantum dots (QDs) into an otherwise OLED structure. The emphasis of this chapter is to present a simple discussion of the first attempts to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors that have to be considered in order to achieve the desired accuracy and printing quality. The successful operation of the RGB printed devices indicates the potential of the inkjet printing approach in the fabrication of full-color QDLEDs for display application. However, further optimization of print quality is still needed in order to eliminate the formation of pinholes, thus maximizing energy transfer from organic layers to the QDs and in turn increasing the performance of the devices. Controlled Vocabulary Terms: ink jet printing; LED displays; LED lamps; organic light emitting diodes; quantum dots

  13. Array formatting of the heat-transfer method (HTM) for the detection of small organic molecules by molecularly imprinted polymers.

    Science.gov (United States)

    Wackers, Gideon; Vandenryt, Thijs; Cornelis, Peter; Kellens, Evelien; Thoelen, Ronald; De Ceuninck, Ward; Losada-Pérez, Patricia; van Grinsven, Bart; Peeters, Marloes; Wagner, Patrick

    2014-06-20

    In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications.

  14. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    Science.gov (United States)

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  15. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube® format

    Directory of Open Access Journals (Sweden)

    Wiederanders B

    2006-06-01

    Full Text Available Abstract Background Recent developments in DNA microarray technology led to a variety of open and closed devices and systems including high and low density microarrays for high-throughput screening applications as well as microarrays of lower density for specific diagnostic purposes. Beside predefined microarrays for specific applications manufacturers offer the production of custom-designed microarrays adapted to customers' wishes. Array based assays demand complex procedures including several steps for sample preparation (RNA extraction, amplification and sample labelling, hybridization and detection, thus leading to a high variability between several approaches and resulting in the necessity of extensive standardization and normalization procedures. Results In the present work a custom designed human proteinase DNA microarray of lower density in ArrayTube® format was established. This highly economic open platform only requires standard laboratory equipment and allows the study of the molecular regulation of cell behaviour by proteinases. We established a procedure for sample preparation and hybridization and verified the array based gene expression profile by quantitative real-time PCR (QRT-PCR. Moreover, we compared the results with the well established Affymetrix microarray. By application of standard labelling procedures with e.g. Klenow fragment exo-, single primer amplification (SPA or In Vitro Transcription (IVT we noticed a loss of signal conservation for some genes. To overcome this problem we developed a protocol in accordance with the SPA protocol, in which we included target specific primers designed individually for each spotted oligomer. Here we present a complete array based assay in which only the specific transcripts of interest are amplified in parallel and in a linear manner. The array represents a proof of principle which can be adapted to other species as well. Conclusion As the designed protocol for amplifying m

  16. Experimental demonstration of a novel bio-sensing platform via plasmonic band gap formation in gold nano-patch arrays

    CERN Document Server

    Grande, Marco; Stomeo, Tiziana; Morea, Giuseppe; Marani, Roberto; Marrocco, Valeria; Petruzzelli, Vincenzo; D'Orazio, Antonella; Cingolani, Roberto; De Vittorio, Massimo; de Ceglia, Domenico; Scalora, Michael

    2011-01-01

    We discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings when an analyte is deposited on top of the metallic structure. We provide experimental proof of the sensing capabilities of a two-dimensional array of gold nano-patches by observing color variations in the diffracted field when the air overlayer is replaced with a small quantity of Isopropyl Alcohol (IPA). Effects of rounded corners and surface imperfections are also discussed. Finally, we also report proof of changes in color intensities as a function of the air/filling ratio of the structure and discuss their relation with the diffracted spectra.

  17. Dynamic micromagnetic simulation of the magnetic spectrum of permalloy nanodot array with vortex state

    Science.gov (United States)

    Peng, Y.; Zhao, G. P.; Morvan, F. J.; Wu, S. Q.; Yue, M.

    2017-01-01

    Due to its potential applications in high-density magnetic storage and spin electronic devices, the ferromagnetic resonance absorption phenomenon has recently drawn much attention. By studying the influence of different materials with various shapes on this phenomenon, the new understandings gained could lead to other applications in the future. In this paper, dynamic magnetic susceptibilities of the vortex state in permalloy nanodot arrays have been investigated using a three-dimensional object oriented micromagnetic framework (OOMMF) code with a two-dimensional periodic boundary condition (2D-PBC) extension and compared with those of a single dot carefully. The resonance mode is excited in the vortex state of nanodot arrays by the microwave magnetic field perpendicular to the dot plane. In this case only radially symmetric spin wave modes can be excited. The influence of the geometric parameters on the resonance frequency has been studied systemically, including the dot radius, the number of repeating elements, and the dot distance. One can see that the resonance peak of the dot array is higher than that of a single dot because of the induced stronger magnetostatic coupling. A critical dot distance exists at which the dot array may be treated as a single dot. There is only one resonance peak for both the dot array and the single dot, as the radius changes.

  18. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  19. Using a quantum dot system to realize perfect state transfer

    Institute of Scientific and Technical Information of China (English)

    Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang

    2011-01-01

    There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M,Petrosyan D and Lambropoulos P 2004 Europhys.Lett.65 297] where a quantum dot system is used to realize quantum communication.To overcome these disadvantages,we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST).First,we calculate the interaction relation for PQST in the spin chain.Second,we review the interaction between the quantum dots in the Heitler-London approach.Third,we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.

  20. The Astrophysics of Star Formation Across Cosmic Time at $\\gtrsim$10 GHz with the Square Kilometer Array

    CERN Document Server

    Murphy, Eric J; Beswick, Rob J; Dickinson, Clive; Heywood, Ian; Hunt, Leslie K; Hyunh, Minh T; Jarvis, Matt; Karim, Alexander; Krause, Marita; Prandoni, Isabella; Seymour, Nicholas; Schinnerer, Eva; Tabatabei, Fatemeh S; Wagg, Jeff

    2014-01-01

    In this chapter, we highlight a number of science investigations that are enabled by the inclusion of Band~5 ($4.6-13.8$ GHz) for SKA1-MID science operations, while focusing on the astrophysics of star formation over cosmic time. For studying the detailed astrophysics of star formation at high-redshift, surveys at frequencies $\\gtrsim$10 GHz have the distinct advantage over traditional $\\sim$1.4 GHz surveys as they are able to yield higher angular resolution imaging while probing higher rest frame frequencies of galaxies with increasing redshift, where emission of star-forming galaxies becomes dominated by thermal (free-free) radiation. In doing so, surveys carried out at $\\gtrsim$10 GHz provide a robust, dust-unbiased measurement of the massive star formation rate by being highly sensitive to the number of ionizing photons that are produced. To access this powerful star formation rate diagnostic requires that Band~5 be available for SKA1-MID. We additionally present a detailed science case for frequency cove...

  1. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    OpenAIRE

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2011-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to stand...

  2. Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics

    Science.gov (United States)

    Srivastava, Sanjay K.; Kumar, Dinesh; Schmitt, S. W.; Sood, K. N.; Christiansen, S. H.; Singh, P. K.

    2014-05-01

    Vertically aligned silicon nanowire (SiNW) arrays have been fabricated over a large area using a silver-assisted single-step electroless wet chemical etching (EWCE) method, which involves the etching of silicon wafers in aqueous hydrofluoric acid (HF) and silver nitrate (AgNO3) solution. A comprehensive systematic investigation on the influence of different parameters, such as the etching time (up to 15 h), solution temperature (10-80 °C), AgNO3 (5-200 mM) and HF (2-22 M) concentrations, and properties of the multi-crystalline silicon (mc-Si) wafers, is presented to establish a relationship of these parameters with the SiNW morphology. A linear dependence of the NW length on the etch time is obtained even at higher temperature (10-50 °C). The activation energy for the formation of SiNWs on Si(100) has been found to be equal to ˜0.51 eV . It has been shown for the first time that the surface area of the Si wafer exposed to the etching solution is an important parameter in determining the etching kinetics in the single-step process. Our results establish that single-step EWCE offers a wide range of parameters by means of which high quality vertical SiNWs can be produced in a very simple and controlled manner. A mechanism for explaining the influence of various parameters on the evolution of the NW structure is discussed. Furthermore, the SiNW arrays have extremely low reflectance (as low as <3% for Si(100) NWs and <12% for mc-Si NWs) compared to ˜35% for the polished surface in the 350-1000 nm wavelength range. The remarkably low reflection surface of SiNW arrays has great potential for use as an effective light absorber material in novel photovoltaic architectures, and other optoelectronic and photonic devices.

  3. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  4. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  5. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths.

    Science.gov (United States)

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-10-30

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can be explained from the general theory of surface-directed phase separation in confined spaces. The formed structures are to a large extent nearly exclusively determined by the ratio between the bulk domain size of the monolith on the one hand and the distance between the micro-pillars on the other hand. When this ratio is small, the presence of the pillars has nearly no effect on the morphology of the produced monoliths. However, when the ratio approaches unity and ascends above it, some new types of monolith morphologies are induced, two of which appear to have interesting properties for use as novel chromatographic supports. One of these structures (obtained when the domain size/inter-pillar distance ratio is around unity) is a 3D network of linear interconnections between the pillars, organized such that all skeleton branches are oriented perpendicular to the micro-pillar surface. A second interesting structure is obtained at even higher values of the domain size/inter-pillar distance ratio. In this case, each individual micro-pillar is uniformly coated with a mesoporous shell.

  6. Studies of silicon quantum dots prepared at different substrate temperatures

    Science.gov (United States)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  7. ENERGY LEVEL DETERMINATION AND PERFORMANCE ANALYSIS OF QUANTUM DOT PHOTO DETECTOR

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2013-09-01

    Full Text Available The theoretical estimation of dark and illumination characteristics of InGaAs quantum dot photo detector is developed and presented in this paper. The exact potential and energy profile of the Quantum Dot is computed by obtaining the solution of 3D Poisson and Schrodinger equations using Homotopy analysis. The dark current, photo current, responsivity, detectivity and efficiency of the model are calculated by considering the structural parameters Quantum Dot density, applied voltage, length of quantum dot array, number of quantum dot array, light intensity and temperature. The results obtained show that the dark current and photo current are strongly influenced by Quantum Dot density and applied voltage. The developed model is purely physics based one and overcomes the limitations of the existing analytical models. The model is validated by comparing the results obtained with the existing models.

  8. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  9. The formation and transformation of the spatial weak-light bright and dark solitons in a quantum dot molecule with the interdot tunneling coupling

    Science.gov (United States)

    Zeng, Kuanhong; Wang, Denglong; She, Yanchao; Luo, Xiaoqin

    2013-11-01

    We study analytically the properties of the optical absorption and the spatial weak-light solitons in a quantum dot molecule system with the interdot tunneling coupling (ITC). It is shown that, for the linear case, there exists tunneling induced transparency (TIT) in the context of a weak ITC, while the TIT can be replaced by Autler-Townes splitting in the presence of a strong ITC. For the nonlinear case, it is probable to realize the spatial optical solitons even under weak light intensity. Interestingly, we find that there appears transformation behavior between the bright and dark solitons by properly turning both the ITC strength and the detuning of the probe field. Meanwhile, the transformation condition of the bright and dark solitons is obtained. Additionally it is also found that the amplitude of the solitons first descends and then rises with the increasing of ITC strength. Our results may have potential applications for nonlinear optical experiments and optical telecommunication engineering in solid systems.

  10. Quantum dot heterojunction solar cells: The mechanism of device operation and impacts of quantum dot oxidation

    Science.gov (United States)

    Ihly, Rachelle

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic study of the absorption properties of PbS quantum dot films exposed to air, heat, and UV illumination as a function of quantum dot size has been described. A method to improve the air-stability of films with atomic layer deposition of alumina is demonstrated. Encapsulation of quantum dot films using a protective layer of alumina results in quantum dot solids that maintain tuned absorption for 1000 hours. This thesis focuses on the use of atomic force microscopy and electrical variants thereof to study the physical and electrical characteristics of quantum dot arrays. These types of studies have broad implications in understanding charge transport mechanisms and solar cell device operation, with a particular emphasis on quantum dot transistors and solar cells. Imaging the channel potential of a PbSe quantum dot thin-film in a transistor showed a uniform distribution of charge coinciding with the transistor current voltage characteristics. In a second study, solar cell device operation of ZnO/PbS heterojunction solar cells was investigated by scanning active cross-sections with Kelvin probe microscopy as a function of applied bias, illumination and device architecture. This technique directly provides operating potential and electric field profiles to characterize drift and diffusion currents occurring in the device. SKPM established a field-free region occurring in the quantum dot layer, indicative of diffusion-limited transport. These results provide the path to optimization of

  11. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application

    Science.gov (United States)

    Bergen, A.; van Weers, H. J.; Bruineman, C.; Dhallé, M. M. J.; Krooshoop, H. J. G.; ter Brake, H. J. M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ˜100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 106, well exceeding

  12. Formation of TiO2 nanotube arrays in KOH added fluoride-ethylene glycol (EG) electrolyte and its photoelectrochemical response

    Science.gov (United States)

    Nyein, Nyein; Lockman, Zainovia; Matsuda, Astunori; Kawamura, Go; Tan, Wai Kian; Oo, Than Zaw

    2016-07-01

    In this study, highly ordered TiO2 nanotube arrays were prepared by anodic oxidation of titanium foil in fluoride -EG electrolyte containing a small amount of potassium hydroxide, KOH at 60 V for 30 min. This electrolyte resulted in the formation of long nanotubes with an average length of 10 µm and diameter of 170 nm. For comparison, TiO2 nanotubes anodized in H2O added EG electrolyte which produces short nanotubes with an average tube length of 5 µm and diameter of 170 nm. It appears that the addition of KOH into the fluoride EG electrolyte accelerated the formation of the TiO2 nanotubes as it is believed that the chemical dissolution at the tips of the nanotubes is suppressed. Highly ordered TiO2 nanotubes anodized in KOH added EG electrolyte exhibited the photocurrent density of 2 mA/cm2, which is significantly higher than H2O added sample (1.5 mA/cm2).

  13. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  14. From DOT to Dotty

    CERN Document Server

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  15. Photon-assisted tunneling in an asymmetrically coupled triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao; Yu, Guo-Dong; Li, Hai-Ou; Xiao, Ming; Guo, Guo-Ping, E-mail: gpguo@ustc.edu.cn [Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-08-14

    The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-central dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.

  16. Optical characterization of CdTe/ZnTe semiconductor wires and dots

    OpenAIRE

    Gourgon, C; Eriksson, B; Dang, L.; MARIETTE H.; Vieu, C.

    1993-01-01

    Arrays of wires and dots have been fabricated by electron beam lithography and Ar+ ion beam etching from CdTe/ZnTe quantum wells. Low temperature photoluminescence coming out from these structures is still observed for the smallest wires (40 nm) whereas for the dots, the detection limit occurs for lateral dimensions of 100 nm.

  17. Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.P. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Gonçalves, M.C. [State University of Campinas (Unicamp), Instituto de Química, CP 6154, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP (Brazil); Caram, R. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Bertazzoli, R., E-mail: rbertazzoli@fem.unicamp.br [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Rodrigues, C.A. [Federal University of São Paulo – Campus Diadema (UNIFESP – Campus Diadema), Departamento de Ciências Exatas e da Terra, Rua São Nicolau n° 210, 09913-030 Diadema, SP (Brazil)

    2013-11-15

    The formation of nanotubular oxide layers on Ti and Ti alloys has been widely investigated for the photocatalytic degradation of organic compounds due to their excellent catalytic efficiency, chemical stability, and low cost and toxicity. Aiming to improve the photocatalytic efficiency of this nanostructured oxide, this work investigated the influence of substrate grain size on the growth of nanotubular oxide layers. Ti and Ti alloys (Ti–6Al, Ti–6Al–7Nb) were produced by arc melting with non-consumable tungsten electrode and water-cooled copper hearth under argon atmosphere. Some of the ingots were heat-treated at 1000 °C for 12 and 24 h in argon atmosphere, followed by slow cooling rates to reduce crystalline defects and increase the grain size of their microstructures. Three types of samples were anodized: commercial substrate, as-prepared and heat-treated samples. The anodization was performed using fluoride solution and a cell potential of 20 V. The samples were characterized by optical microscopy, field-emission scanning electron microscopy and X-ray diffraction. The heat treatment preceding the anodization process increased the grain size of pure Ti and Ti alloys and promoted the formation of Widmanstätten structures in Ti{sub 6}Al{sub 7}Nb. The nanotubes layers grown on smaller grain and thermally untreated samples were more regular and homogeneous. In the case of Ti–6Al–7Nb alloy, which presents a α + β phase microstructure, the morphology of nanotubes nucleated on α matrix was more regular than those of nanotubes nucleated on β phase. After the annealing process, the Ti–6Al–7Nb alloy presented full diffusion process and the growth of equilibrium phases resulting in the appearance of regions containing higher concentrations of Nb, i.e. beta phase. In those regions the dissolution rate of Nb{sub 2}O{sub 5} is lower than that of TiO{sub 2}, resulting in a nanoporous layer. In general, heat treating reduces crystalline defects and promotes

  18. Circumferential lesion formation around the pulmonary veins in the left atrium with focused ultrasound using a 2D-array endoesophageal device: a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Pichardo, Samuel; Hynynen, Kullervo [Imaging Research-Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room C713, Toronto, ON M4N 3M5 (Canada)

    2007-08-21

    Atrial fibrillation (AF) is the most frequently sustained cardiac arrhythmia affecting humans. The electrical isolation by ablation of the pulmonary veins (PVs) in the left atrium (LA) of the heart has been proven as an effective cure of AF. The ablation consists mainly in the formation of a localized circumferential thermal coagulation of the cardiac tissue surrounding the PVs. In the present numerical study, the feasibility of producing the required circumferential lesion with an endoesophageal ultrasound probe is investigated. The probe operates at 1 MHz and consists of a 2D array with enough elements (114 x 20) to steer the acoustic field electronically in a volume comparable to the LA. Realistic anatomical conditions of the thorax were considered from the segmentation of histological images of the thorax. The cardiac muscle and the blood-filled cavities in the heart were identified and considered in the sound propagation and thermal models. The influence of different conditions of the thermal sinking in the LA chamber was also studied. The circumferential ablation of the PVs was achieved by the sum of individual lesions induced with the proposed device. Different scenarios of lesion formation were considered where ultrasound exposures (1, 2, 5 and 10 s) were combined with maximal peak temperatures (60, 70 and 80 {sup 0}C). The results of this numerical study allowed identifying the limits and best conditions for controlled lesion formation in the LA using the proposed device. A controlled situation for the lesion formation surrounding the PVs was obtained when the targets were located within a distance from the device in the range of 26 {+-} 7 mm. When combined with a maximal temperature of 70 {sup 0}C and an exposure time between 5 and 10 s, this distance ensured preservation of the esophageal structures, controlled lesion formation and delivery of an acoustic intensity at the transducer surface that is compatible with existing materials. With a peak

  19. Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F. [Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Latini, V.; Latini, S.; Patella, F. [Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Magri, R. [Dipartimento di Scienze Fisiche, Informatiche e Matematiche (FIM), Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto Nanoscienze, Via Campi 213/A, 4100 Modena (Italy); Scuderi, M.; Nicotra, G. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy)

    2014-09-15

    An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.

  20. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  1. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  2. Dots-on-the-fly electron beam lithography

    Science.gov (United States)

    Isotalo, Tero J.; Niemi, Tapio

    2016-03-01

    We demonstrate a novel approach for electron-beam lithography (EBL) of periodic nanostructures. This technique can rapidly produce arrays of various metallic and etched nanostructures with line and pitch dimensions approaching the beam spot size. Our approach is based on often neglected functionality which is inherent in most modern EBL systems. The raster/vector beam exposure system of the EBL software is exploited to produce arrays of pixel-like spots without the need to define coordinates for each spot in the array. Producing large arrays with traditional EBL techniques is cumbersome during pattern design, usually leads to large data files and easily results in system memory overload during patterning. In Dots-on-the-fly (DOTF) patterning, instead of specifying the locations of individual spots, a boundary for the array is given and the spacing between spots within the boundary is specified by the beam step size. A designed pattern element thus becomes a container object, with beam spacing acting as a parameterized location list for an array of spots confined by that container. With the DOTF method, a single pattern element, such as a square, rectangle or circle, can be used to produce a large array containing thousands of spots. In addition to simple arrays of nano-dots, we expand the technique to produce more complex, highly tunable arrays and structures on substrates of silicon, ITO/ FTO coated glass, as well as uncoated fused silica, quartz and sapphire.

  3. A Complete Physical Germanium-on-Silicon Quantum Dot Self-Assembly Process

    Science.gov (United States)

    Alkhatib, Amro; Nayfeh, Ammar

    2013-06-01

    Achieving quantum dot self-assembly at precise pre-defined locations is of vital interest. In this work, a novel physical method for producing germanium quantum dots on silicon using nanoindentation to pre-define nucleation sites is described. Self-assembly of ordered ~10 nm height germanium quantum dot arrays on silicon substrates is achieved. Due to the inherent simplicity and elegance of the proposed method, the results describe an attractive technique to manufacture semiconductor quantum dot structures for future quantum electronic and photonic applications.

  4. Numerical computation of pyramidal quantum dots with band non-parabolicity

    Science.gov (United States)

    Gong, Liang; Shu, Yong-chun; Xu, Jing-jun; Wang, Zhan-guo

    2013-09-01

    This paper presents an effective and feasible eigen-energy scanning method to solve polynomial matrix eigenvalues introduced by 3D quantum dots problem with band non-parabolicity. The pyramid-shaped quantum dot is placed in a computational box with uniform mesh in Cartesian coordinates. Its corresponding Schrödinger equation is discretized by the finite difference method. The interface conditions are incorporated into the discretization scheme without explicitly enforcing them. By comparing the eigenvalues from isolated quantum dots and a vertically aligned regular array of them, we investigate the coupling effect for variable distances between the quantum dots and different size.

  5. Type 2 quantum dots in Ge/Si system

    CERN Document Server

    Dvurechenskij, A V

    2001-01-01

    The results on the electronic structure of spatially indirect excitons, multiparticle excitonic complexes, and negative interband photoconductivity in arrays of Ge/Si type 2 quantum dots are presented. These data have been compared with the well known results for type 2 A sup I sup I sup I B sup V and A sup I sup I B sup V sup I -based heterostructures with quantum dots. Fundamental physical phenomena are found to be the result of an increase in the binding energy of excitons in quantum dots as compared with that of free excitons in bulk homogeneous materials; the shortwave shift of exciton transition energy at multiparticle complexes production (charges excitons, biexcitons), as well as the trapping of equilibrium carrier by localized states induced by the charged quantum dot electric field

  6. Detection and control of charge states in a quintuple quantum dot

    Science.gov (United States)

    Ito, Takumi; Otsuka, Tomohiro; Amaha, Shinichi; Delbecq, Matthieu R.; Nakajima, Takashi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Noiri, Akito; Kawasaki, Kento; Tarucha, Seigo

    2016-12-01

    A semiconductor quintuple quantum dot with two charge sensors and an additional contact to the center dot from an electron reservoir is fabricated to demonstrate the concept of scalable architecture. This design enables formation of the five dots as confirmed by measurements of the charge states of the three nearest dots to the respective charge sensor. The gate performance of the measured stability diagram is well reproduced by a capacitance model. These results provide an important step towards realizing controllable large scale multiple quantum dot systems.

  7. Preparation of Hierarchical Anatase TiO2 Nanowire Arrays on Ti-foil Substrate for CdSe Quantum-dot Sensitized Solar Cells%分等级锐钛矿TiO2纳米线阵列的制备及其在CdSe量子点敏化太阳电池中的应用

    Institute of Scientific and Technical Information of China (English)

    徐杨帆

    2014-01-01

    量子点敏化太阳电池是一种新型的第三代高效太阳电池,具有极大的应用前景。本文利用水热法,首先在柔性的钛片基底上生长了光滑的TiO2纳米线阵列,并通过第二步水热反应制备出具有分支结构的分等级TiO2纳米线阵列,研究了其在CdSe量子点敏化太阳电池中的应用。实验结果表明,具有分支结构的分等级材料具有更高的表面积以负载敏化剂,同时保持了一维纳米阵列高效的电子传输特性,因此相比于光滑纳米线阵列,其光电转换效率提升近一倍,在标准光强下测试达到0.72%。%As one type of the third generation solar cells, quantum dot sensitized solar cells (QDSSCs) has a bright future in application. In this paper, the hierarchical anatase TiO2 NWs arrays were synthesized through a two-step hydrother-mal growth process on a flexible titanium foil substrate. The HNW photoelectrode offered a high surface area to load sen-sitizer while maintaining its well elctron tranfer ability. Therefore, the power conversion efficiency of CdSe Quantum-dot sensitized solar cells based on such photoelectrode showed a significant enhancement compared to TiO2 nanowire with similar thickness,which achieved 0.72%.

  8. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  9. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    Z. O. Lipatova

    2015-03-01

    Full Text Available Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been found to be dependent on the registration wavelength in the range from 450 to 700 nm. Obtained fluorophosphate glasses with CdS quantum dots can find their application as fluorescent materials with intensive luminescence band and long excited-state natural lifetime.

  10. RKKY interaction in a chirally coupled double quantum dot system

    Energy Technology Data Exchange (ETDEWEB)

    Heine, A. W.; Tutuc, D.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Zwicknagl, G. [Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regensburg (Germany); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, Schafmattstr. 16, 8093 Zürich, Switzerland and Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regens (Germany)

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.

  11. Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications

    Directory of Open Access Journals (Sweden)

    Nagaprasad Puvvada, B N Prashanth Kumar, Suraj Konar, Himani Kalita, Mahitosh Mandal and Amita Pathak

    2012-01-01

    Full Text Available Water-soluble carbon dots (C-dots were prepared through microwave-assisted pyrolysis of an aqueous solution of dextrin in the presence of sulfuric acid. The C-dots produced showed multicolor luminescence in the entire visible range, without adding any surface-passivating agent. X-ray diffraction and Fourier transform infrared spectroscopy studies revealed the graphitic nature of the carbon and the presence of hydrophilic groups on the surface, respectively. The formation of uniformly distributed C-dots and their luminescent properties were, respectively, revealed from transmission electron microscopy and confocal laser scanning microscopy. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on MDA-MB-468 cells and their cellular uptake was assessed through a localization study.

  12. Volmer–Weber InAs quantum dot formation on InP (113)B substrates under the surfactant effect of Sb

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu, E-mail: yu.zhao@insa-rennes.fr; Bertru, Nicolas; Folliot, Hervé; Rohel, Tony [Université Européenne de Bretagne, INSA, FOTON, UMR-CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes Cedex 7 (France); Mauger, Samuel J. C.; Koenraad, Paul M. [COBRA Inter-University Research Institute, Eindhoven University of Technology, P.O. Box 513, NL-5600MB Eindhoven (Netherlands)

    2014-07-21

    We report on Sb surfactant growth of InAs nanostructures on GaAs{sub 0.51}Sb{sub 0.49} layers deposited on InP (001) and on (113)B oriented substrates. On the (001) orientation, the presence of Sb significantly favors the two-dimensional growth regime. Even after the deposition of 5 mono-layers of InAs, the epitaxial film remains flat and InAs/GaAs{sub 0.51}Sb{sub 0.49} type-II quantum wells are achieved. On (113)B substrates, same growth runs resulted in formation of high density InAs islands. Microscopic studies show that wetting layer is missing on (113)B substrates, and thus, a Volmer-Weber growth mode is concluded. These different behaviors are attributed to the surface energy changes induced by Sb atoms on surface.

  13. The Integration and Excision of CTnDOT.

    Science.gov (United States)

    Wood, Margaret M; Gardner, Jeffrey F

    2015-04-01

    Bacteroides species are one of the most prevalent groups of bacteria present in the human colon. Many strains carry large, integrated elements including integrative and conjugative elements (ICEs). One such ICE is CTnDOT, which is 65 kb in size and encodes resistances to tetracycline and erythromycin. CTnDOT has been increasing in prevalence in Bacteroides spp., and is now found in greater than 80% of natural isolates. In recent years, CTnDOT has been implicated in the spread of antibiotic resistance among gut microbiota. Interestingly, the excision and transfer of CTnDOT is stimulated in the presence of tetracycline. The tyrosine recombinase IntDOT catalyzes the integration and excision reactions of CTnDOT. Unlike the well-characterized lambda Int, IntDOT tolerates heterology in the overlap region between the sites of cleavage and strand exchange. IntDOT also appears to have a different arrangement of active site catalytic residues. It is missing one of the arginine residues that is conserved in other tyrosine recombinases. The excision reaction of CTnDOT is complex, involving excision proteins Xis2c, Xis2d, and Exc, as well as IntDOT and a Bacteroides host factor. Xis2c and Xis2d are small, basic proteins like other recombination directionality factors (RDFs). Exc is a topoisomerase; however, the topoisomerase function is not required for the excision reaction. Exc has been shown to stimulate excision frequencies when there are mismatches in the overlap regions, suggesting that it may play a role in resolving Holliday junctions (HJs) containing heterology. Work is currently under way to elucidate the complex interactions involved with the formation of the CTnDOT excisive intasomes.

  14. Electro-Optical Characteristics of P+n In0.53Ga0.47As Hetero-Junction Photodiodes in Large Format Dense Focal Plane Arrays

    Science.gov (United States)

    DeWames, R.; Littleton, R.; Witte, K.; Wichman, A.; Bellotti, E.; Pellegrino, J.

    2015-08-01

    This paper is concerned with focal plane array (FPA) data and use of analytical and three-dimensional numerical simulation methods to determine the physical effects and processes limiting performance. For shallow homojunction P+n designs the temperature dependence of dark current for T InGaAs interface. In this description the fitting property is the effective conductivity, σ eff( T), in mho cm-1. Variation in the data suggests σ eff (300 K) values of 1.2 × 10-11-4.6 × 10-11 mho cm-1). Substrate removal extends the quantum efficiency (QE) spectral band into the visible region. However, dead-layer effects limit the QE to 10% at a wavelength of 0.5 μm. For starlight-no moon illumination conditions, the signal-to-noise ratio is estimated to be 50 at an operating temperature of 300 K. A major result of the 3D numerical simulation of the device is the prediction of a perimeter G-R current not associated with the properties of the metallurgical interface. Another is the prediction that for a junction positioned in the larger band gap InP cap layer the QE is bias-dependent and that a relatively large reverse bias ≥0.9 V is needed for the QE to saturate to the shallow homojunction value. At this higher bias the dark current is larger than the shallow homojunction value. The 3D numerical model and the analytical model agree in predicting and explaining the measured radiatively limited diffusion current originating at the n-side of the junction. The calculations of the area-dependent G-R current for the condition studied are also in agreement. Unique advantages of the 3D numerical simulation are the ability to mimic real device structures, achieve deeper understanding of the real physical effects associated with the various methods of junction formation, and predict how device designs will function.

  15. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  16. A compact thermal infrared imaging radiometer with high spatial resolution and wide swath for a small satellite using a large format uncooled infrared focal plane array

    Science.gov (United States)

    Tatsumi, Kenji; Sakuma, Fumihiro; Kikuchi, Masakuni; Tanii, Jun; Kawanishi, Toneo; Ueno, Shinichi; Kuga, Hideki

    2014-10-01

    In this paper, we present a feasibility study for the potential of a high spatial resolution and wide swath thermal infrared (TIR) imaging radiometer for a small satellite using a large format uncooled infrared focal plane array (IR-FPA). The preliminary TIR imaging radiometer designs were performed. One is a panchromatic (mono-band) imaging radiometer (8-12μm) with a large format 2000 x 1000 pixels uncooled IR-FPA with a pixel pitch of 15 μm. The other is a multiband imaging radiometer (8.8μm, 10.8μm, 11.4μm). This radiometer is employed separate optics and detectors for each wave band. It is based on the use of a 640 x 480 pixels uncooled IR-FPA with a pixel pitch of 25 μm. The thermal time constant of an uncooled IR-FPA is approximately 10-16ms, and introduces a constraint to the satellite operation to achieve better signal-to-noise ratio, MTF and linearity performances. The study addressed both on-ground time-delayintegration binning and staring imaging solutions, although a staring imaging was preferred after trade-off. The staring imaging requires that the line of sight of the TIR imaging radiometer gazes at a target area during the acquisition time of the image, which can be obtained by rotating the satellite or a steering mirror around the pitch axis. The single band radiometer has been designed to yield a 30m ground sample distance over a 30km swath width from a satellite altitude of 500km. The radiometric performance, enhanced with staring imaging, is expected to yield a NETD less than 0.5K for a 300K ground scene. The multi-band radiometer has three spectral bands with spatial resolution of 50m and swath width of 24km. The radiometric performance is expected to yield a NETD less than 0.85K. We also showed some preliminary simulation results on volcano, desert/urban scenes, and wildfire.

  17. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  18. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.

    Science.gov (United States)

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2012-02-01

    Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.

  19. Correlation effects in strain-induced quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, R.; DeVittorio, M.; Cingolani, R.; Molinari, E. [Ist. Nazionale per la Fisica della Materia (INFM) and Dipt. di Ingegneria dell' Innovazione, Univ. Lecce (Italy); Hohenester, U. [INFM and Dipt. di Fisica, Univ. Modena e Reggio E. (Italy); Lipsanen, H.; Tulkki, J. [Optoelectronics Lab. and Lab. of Computational Engineering, Helsinki Univ. of Technology (Finland); Ahopelto, J. [VTT Electronics (Finland); Uchida, K.; Miura, N. [Inst. for Solid State Physics, Univ. of Tokyo (Japan); Arakawa, Y. [Inst. of Industrial Science, Univ. of Tokyo (Japan)

    2001-03-08

    We report on Coulomb correlation effects in the luminescence of strain-induced quantum dots. In single dots, under low power excitation, we observe the rising of sharp lines associated to the formation of excitonic molecules. In the grand-ensemble, in magnetic fields up to 45 T, we observe Darwin-Fock states of the dots to merge into a unique Landau level, with a considerable reduction in the total diamagnetic shift due to the enhanced electron-hole correlation caused by the increased degeneracy of the state. (orig.)

  20. Fabrication and optical properties of multishell InAs quantum dots on GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xin; Zhang, Xia, E-mail: xzhang@bupt.edu.cn; Li, Junshuai; Cui, Jiangong; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-02-07

    Hybrid nanostructures combining nanowires with quantum dots promote the development of nanoelectronic and nanophotonic devices with integrated functionalities. In this work, we present a complex nanostructure with multishell quantum dots grown on nanowires. 1–4 shells of Stranski-Krastanov InAs quantum dots are grown on the sidewalls of GaAs nanowires by metal organic chemical vapor deposition. Different dot shells are separated by 8 nm GaAs spacer shells. With increasing the number of shells, the quantum dots become sparser and tend to align in one array, which is caused by the shrinkage of facets on which dots prefer to grow as well as the strain fields produced by the lower set of dots which influences the migration of In adatoms. The size of quantum dots increases with the increase of shell number due to enhanced strain fields coupling. The spectra of multishell dots exhibit multiwavelength emission, and each peak corresponds to a dot shell. This hybrid structure may serve as a promising element in nanowire intermediate band solar cells, infrared nanolasers, and photodetectors.

  1. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance

    Science.gov (United States)

    Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang

    2016-04-01

    In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a

  2. dot-app: a Graphviz-Cytoscape conversion plug-in [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Braxton Fitts

    2016-10-01

    Full Text Available dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (*.dot, *.gv files, also known as DOT files due to the *.dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including GraphViz, Gephi, neato, smyrna, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes and advanced analysis and formatting, they do not offer all of the styling options that DOT-based applications (particularly GraphViz do. dot-app enables the interchange of networks between Cytoscape and DOT-based applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users.

  3. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance.

    Science.gov (United States)

    Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang

    2016-04-28

    In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm(-2) at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm(-2)), the pristine ZnO nanorod array (0.39 mA cm(-2)), and the ZnSe electrode (0.21 mA cm(-2)), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.

  4. Multiplexed charge-locking device for large arrays of quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Puddy, R. K., E-mail: rkp27@cam.ac.uk; Smith, L. W; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Smith, C. G. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Al-Taie, H.; Kelly, M. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, 9 J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Pepper, M. [Department of Electronic and Electrical Engineering, University College London, WC1E 7JE (United Kingdom)

    2015-10-05

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  5. Multiplexed charge-locking device for large arrays of quantum devices

    Science.gov (United States)

    Puddy, R. K.; Smith, L. W.; Al-Taie, H.; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Kelly, M. J.; Pepper, M.; Smith, C. G.

    2015-10-01

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  6. Designing artificial 2D crystals with site and size controlled quantum dots.

    Science.gov (United States)

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS2), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS2. By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  7. Monolithic photovotaic PbS-on-Si infrared-sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Masek, J.; Zogg, H.; Maissen, C.; Blunier, S. (Arbeitsgemeinschaft fur Industrielle Forschung, Swiss Federal Inst. of Tech., ETH-Honggerberg, CH-8093 Zurich (CH)); Ishida, A. (Shizuoka Univ., Hamamatsu (Japan). Faculty of Engineering)

    1990-01-01

    The authors have grown epitaxial narrow-gap PbS-on-Si substrates using a stacked CaF{sub 2}-BaF{sub 2} intermediate buffer layer, and have fabricated linear arrays of photovoltaic infrared (IR) sensors in the PbS layer for the first time. The sensors of the array exhibit resistance-area products at zero bias of 3{Omega}{center dot}cm{sup 2} at 200 K (3.4-{mu}m cutoff wavelength) and 2{center dot}10{sup 5} {Omega}{center dot}cm{sup 2} at 84 K (4-{mu}m cutoff), with corresponding detectivities of 2{center dot}10{sup 10} and 1{center dot}10{sup 13}cm{center dot}{radical}Hz/W, respectively.

  8. Non-liftoff block copolymer nanolithography of magnetic nanodot arrays

    Science.gov (United States)

    Baruth, A.; Rodwogin, M. D.; Shankar, A.; Torija, M. A.; Erickson, M. J.; Hillmyer, M. A.; Leighton, C.

    2011-03-01

    Nanolithographic techniques based on self-assembled block copolymer templates offer exceptional potential for fabrication of large-area nanostructure arrays from a wide variety of functional materials. Despite significant progress with control of the template ordering, and development of pattern transfer schemes, significant issues exist with common techniques such as lift-off and etching. Here, we demonstrate successful execution of a nanolithographic process based on climate-controlled solvent annealing of easily degradable cylinder-forming poly(styrene- b -lactide) block copolymer films that avoids both lift-off and the most challenging aspects of etching. Essentially, we use an overfill/planarize/etch-back ``Damascene-type'' process, exploiting the large Ar ion beam etch rate contrast between polystyrene and typical metals. The process is demonstrated via formation of a large-area array of 12 nm thick, 25 +/- 3 nm diameter Ni 80 Fe 20 nanodots (~ 0.4 x 1012 dots/ in 2) with hexagonally-close-packed local order. Extensive microscopy, magnetometry, and electrical measurements provide detailed characterization of the pattern formation and fidelity. We argue that this generic approach can be applied to a wide variety of materials and is scalable to even smaller feature sizes. Funded by NSF MRSEC.

  9. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.

    Science.gov (United States)

    Chung, Hyun Suk; Han, Gill Sang; Park, So Yeon; Shin, Hee-Won; Ahn, Tae Kyu; Jeong, Sohee; Cho, In Sun; Jung, Hyun Suk

    2015-05-20

    We report on the direct growth of anatase TiO2 nanorod arrays (A-NRs) on transparent conducting oxide (TCO) substrates that can be directly applied to various photovoltaic devices via a seed layer mediated epitaxial growth using a facile low-temperature hydrothermal method. We found that the crystallinity of the seed layer and the addition of an amine functional group play crucial roles in the A-NR growth process. The A-NRs exhibit a pure anatase phase with a high crystallinity and preferred growth orientation in the [001] direction. Importantly, for depleted heterojunction solar cells (TiO2/PbS), the A-NRs improve both electron transport and injection properties, thereby largely increasing the short-circuit current density and doubling their efficiency compared to TiO2 nanoparticle-based solar cells.

  10. Interfacial effects of the Cu{sub 2}O nano-dots decorated Co{sub 3}O{sub 4} nanorods array and its photocatalytic activity for cleaving organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.P. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yu, J.S. [Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, CT 06516 (United States); Xu, H.M.; Chen, W.X.; Hu, W. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chen, G.L., E-mail: glchen@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-30

    Highlights: • Co{sub 3}O{sub 4} rods were grown on plasma treated Ti foil. • Cu{sub 2}O QDs were uniformly distributed on the surface of nanorods. • Ti/Co{sub 3}O{sub 4}/Cu{sub 2}O exhibited visible light photocatalytic activity with KHSO{sub 5}. • Degradation mechanism was supported by ESR technique and radical scavenger tests. • The heterojunction was highly stable even after recycling many times. - Abstract: A heterogeneous nanocomposite catalyst constructed by the Co{sub 3}O{sub 4} nanorods decorated with the Cu{sub 2}O quantum dots (QDs) were successfully synthesized via a simple hydrothermal method followed by an oxidation-reduction processing. The fabricated Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite was characterized by the SEM, TEM, XPS, XRD, UV–vis and PL, and the (2 2 0) and (3 1 1) facets of the Co{sub 3}O{sub 4} were exposed. Compared with the original Co{sub 3}O{sub 4} nanorods with an average diameter of 350 nm, a substantial decrease in the band gap was observed after doping the nanorods with the Cu{sub 2}O QDs (average diameter of 5 nm). Such a dramatic decrease in the band gap indicated a significant enhancement of the photocatalytic activities under visible light. The methylene blue (MB) dye and the phenol were used as model organic pollutants, and the Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite catalyst exhibited both high catalytic activity and good recycling stability. The catalytic activities of the Cu{sub 2}O/Co{sub 3}O{sub 4}/potassium monopersulfate triple salt (PMS) system for cleaving the MB and the phenol were dependent on the dosages of the Cu{sub 2}O QDs, and the calculated degradation rates achieved by 7.0 wt% Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite catalyst were about 11.3 and 1.8 times than that of the pristine Co{sub 3}O{sub 4} nanorod catalyst for the MB and the phenol, respectively. The reactive species of ·O{sub 2}{sup −} and the holes were determined to be the main active species for the phenol photocatalytic

  11. The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/β-catenin coactivators essential for intestinal homeostasis.

    Directory of Open Access Journals (Sweden)

    Tokameh Mahmoudi

    Full Text Available Wnt signaling maintains the undifferentiated state of intestinal crypt progenitor cells by inducing the formation of nuclear TCF4/β-catenin complexes. In colorectal cancer, activating mutations in Wnt pathway components cause inappropriate activation of TCF4/β-catenin-driven transcription. Despite the passage of a decade after the discovery of TCF4 and β-catenin as the molecular effectors of the Wnt signal, few transcriptional activators essential and unique to the regulation of this transcription program have been found. Using proteomics, we identified the leukemia-associated Mllt10/Af10 and the methyltransferase Dot1l as Tcf4/β-catenin interactors in mouse small intestinal crypts. Mllt10/Af10-Dot1l, essential for transcription elongation, are recruited to Wnt target genes in a β-catenin-dependent manner, resulting in H3K79 methylation over their coding regions in vivo in proliferative crypts of mouse small intestine in colorectal cancer and Wnt-inducible HEK293T cells. Depletion of MLLT10/AF10 in colorectal cancer and Wnt-inducible HEK293T cells followed by expression array analysis identifies MLLT10/AF10 and DOT1L as essential activators to a large extent dedicated to Wnt target gene regulation. In contrast, previously published β-catenin coactivators p300 and BRG1 displayed a more pleiotropic target gene expression profile controlling Wnt and other pathways. tcf4, mllt10/af10, and dot1l are co-expressed in Wnt-driven tissues in zebrafish and essential for Wnt-reporter activity. Intestinal differentiation defects in apc-mutant zebrafish can be rescued by depletion of Mllt10 and Dot1l, establishing these genes as activators downstream of Apc in Wnt target gene activation in vivo. Morpholino-depletion of mllt10/af10-dot1l in zebrafish results in defects in intestinal homeostasis and a significant reduction in the in vivo expression of direct Wnt target genes and in the number of proliferative intestinal epithelial cells. We conclude that

  12. Effect of Applied Potential on the Formation of Self-Organized TiO2 Nanotube Arrays and Its Photoelectrochemical Response

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2011-01-01

    Full Text Available Self-organized TiO2 nanotube arrays have been fabricated by anodization of Ti foil in an electrochemical bath consisting of 1 M of glycerol with 0.5 wt% of NH4F. The effects of applied potential on the resulting nanotubes were illustrated. Among all of the applied potentials, 30 V resulted in the highest uniformity and aspect ratio TiO2 nanotube arrays with the tube's length approximately 1 μm and pore's size of 85 nm. TiO2 nanotube arrays were amorphous in as-anodized condition. The anatase phase was observed after annealing at 400∘C in air atmosphere. The effect of crystallization and effective surface area of TiO2 nanotube arrays in connection with the photoelectrochemical response was reported. Photoelectrochemical response under illumination was enhanced by using the annealed TiO2 nanotube arrays which have larger effective surface area to promote more photoinduced electrons.

  13. Fabrieation and Characterization of CdS Quantum Dots on TiO2 Array Photovoltaic Cell Sensitization%CdS对TiO2纳米管光伏电池的量子点敏化作用的研究

    Institute of Scientific and Technical Information of China (English)

    何瑶; 罗新泽

    2015-01-01

    In this paper, the TiO2 nanotube (NT) arrays were prepared by anodic oxidation, the preparation con⁃ditions of HF solution concentration, oxidation voltage and time were optimized, the preparation conditions were rea⁃sonable. By electrodeposition on TiO2 NT composite a layer of CdS nanoparticles, CdS quantum dot sensitized TiO2 NT, the CdS/TiO2 NT composites, respectively by XRD and SEM were used to characterize the photoelectric conver⁃sion properties, determination of them under UV light irradiation. The results show that, with the photoelectric con⁃version of CdS/TiO2 NT composite CdS quantum dot sensitized the efficiency is 6.1660%, is 8 times that of TiO2 NT, significantly improve the photoelectric conversion properties of TiO2 NT.%采用阳极氧化法制备了TiO2纳米管阵列,对其制备条件HF溶液的浓度、氧化电压和时间进行了优化,得到了较为合理的制备条件.通过电沉积法在TiO2纳米管上复合了一层CdS纳米颗粒,用CdS量子点敏化了TiO2纳米管材料,得到了CdS/TiO2纳米管复合材料,分别用XRD和SEM对其进行了表征,在紫外灯照射下测定它们的光电转化性能.结果表明,用CdS量子点敏化后的CdS/TiO2纳米管复合材料的光电转换效率为6.1660%,是TiO2纳米管材料的8倍多,显著地提高了TiO2纳米管材料光电转换性能.

  14. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  15. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  16. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, S.

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  17. Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation.

    Science.gov (United States)

    Luo, C W; Lee, C C; Li, C H; Shih, H C; Chen, Y-J; Hsieh, C C; Su, C H; Tzeng, W Y; Wu, K H; Juang, J Y; Uen, T M; Chen, S P; Lin, J-Y; Kobayashi, T

    2008-12-08

    We report on the formation of organized sub-micron YBa(2)Cu(3)O(7) (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21 approximately 0.53 J/cm(2). The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (approximately 0.21 J/cm(2)) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm(2) changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm(2), however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with T(c) = 89.7 K were obtained.

  18. Spin-polarized quantum transport through an Aharonov-Bohm quantum-dot-ring

    Institute of Scientific and Technical Information of China (English)

    Wang Jian-Ming; Wang Rui; Liang Jiu-Qing

    2007-01-01

    In this paper the quantum transport through an Aharonov-Bohm (AB) quantum-dot-ring with two dot-array arms described by a single-band tight-binding Hamiltonian is investigated in the presence of additional magnetic fields applied to the dot-array arms to produce spin flip of electrons. A far richer interference pattern than that in the charge transport alone is found. Besides the usual AB oscillation the tunable spin polarization of the current by the magnetic flux is a new observation and is seen to be particularly useful in technical applications. The spectrum of transmission probability is modulated by the quantum dot numbers on the up-arc and down-arc of the ring, which, however, does not affect the period of the AB oscillation.

  19. Heterovalent cation substitutional doping for quantum dot homojunction solar cells

    Science.gov (United States)

    Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-12-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%.

  20. Optically induced magnetization in diluted magnetic quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    John Peter, A. [Government Arts College, Melur 625 106, Madurai (India)], E-mail: a_johnpeter@rediffmail.com; Lily Mary Eucharista, K. [Arul Anandar College, Karumathur 625 514, Madurai (India)

    2009-03-15

    We report the effect of intense laser field on donor impurities in a semimagnetic Cd{sub 1-x{sub in}}Mn{sub x{sub in}}Te/Cd{sub 1-x{sub out}}Mn{sub x{sub out}}Te quantum dot. The spin polaronic energy of different Mn{sup 2+} is evaluated for different dot radii using a mean field theory in the presence of laser field. Magnetization is calculated for various concentrations of Mn{sup 2+} ions with different dot sizes. Significant magnetization of Mn spins can be obtained through the formation of polarized exciton magnetic polarons (EMPs). A rapid decrease of the laser dressed donor ionization energy for different values of dot sizes with increasing field intensity is predicted. Also, it is found that the polarization of EMPs increases rapidly at higher excitation energies.

  1. Fuzzy Dot Structure of BG-algebras

    Directory of Open Access Journals (Sweden)

    Tapan Senapati

    2014-09-01

    Full Text Available In this paper, the notions of fuzzy dot subalgebras is introduced together with fuzzy normal dot subalgebras and fuzzy dot ideals of BG-algebras. The homomorphic image and inverse image are investigated in fuzzy dot subalgebras and fuzzy dot ideals of BG-algebras. Also, the notion of fuzzy relations on the family of fuzzy dot subalgebras and fuzzy dot ideals of BG-algebras are introduced with some related properties.

  2. Modification of Single-Crystal TiO2 Nanorod Arrays and Its Application in Quantum Dot-Sensitized Solar Cells%单晶二氧化钛纳米棒阵列的修饰及其在量子点敏化太阳电池中的应用

    Institute of Scientific and Technical Information of China (English)

    王时茂; 董伟伟; 方晓东; 邓赞红; 邵景珍; 胡林华; 朱俊

    2014-01-01

    使用TiCl4溶液对单晶TiO2纳米棒阵列(TNRs)进行修饰,通过在TiO2纳米棒表面合成TiO2纳米颗粒来提高TNRs的表面积,提高TNRs对量子点的吸附能力,并在此基础上研究了TiCl4修饰时间对基于单晶TNRs的CdS/CdSe量子点敏化太阳电池光伏性能的影响,同时结合强度调制光电流谱(IMPS)研究了TiO2纳米棒阵列的电子传输性能.结果表明: TiCl4修饰可以大幅提高基于单晶TNRs的CdS/CdSe量子点敏化太阳电池的光伏性能,在TiCl4修饰时间为60 h时,其短路电流密度和光电转换效率分别由修饰前的(2.93±0.07) mA∙cm-2和0.36%±0.02%提高至(8.19±0.12) mA∙cm-2和1.17%±0.07%.同时, IMPS测试表明电子在单晶TiO2纳米棒阵列中的传输速率高于在TiO2纳米颗粒薄膜中的传输速率,证明了单晶TiO2纳米棒阵列在电子传输方面的优越性.%Single-crystal TiO2 nanorod arrays (TNRs) are proposed to increase the electron transport rate and improve the cellperformance of quantum dot-sensitized solar cells (QDSCs). However, the specific surface area of TNRs is much lower than that of TiO2 nanoparticle films, which leads to lower quantum dot adsorption and lower power conversion efficiency (η). In our investigation, TiCl4 solution was used to modify single-crystal rutile TNRs. The modification resulted in the synthesis of a large number of TiO2 nanoparticles on the surfaces of nanorods, which significantly increased the surface area and quantum dot adsorption of TNRs. When the TiCl4 modification time was 60 h, the short-circuit photocurrent density (Jsc) and η of TNRs based CdS/CdSe co-sensitized QDSCs increased from (2.93±0.07) mA∙cm-2 and 0.36%±0.02% to (8.19± 0.12) mA∙cm-2 and 1.17%±0.07%, respectively. In addition, intensity modulated photocurrent spectroscopy measurements indicated that the electron transport rate in modified single-crystal rutile TNRs is faster than that in anatase TiO2 nanoparticle films

  3. Electron nuclear spin transfer in quantum-dot networks

    Science.gov (United States)

    Prada, M.; Toonen, R. C.; Blick, R. H.; Harrison, P.

    2005-05-01

    We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of different geometries of a two-dimensional network of quantum dots and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalized to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in the presence of nuclear spin relaxation. We find that the gradual depolarization of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.

  4. Electron correlations in quantum dots

    CERN Document Server

    Tipton, D L J

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining p...

  5. Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor.

    Science.gov (United States)

    Orlova, A O; Gromova, Yu A; Maslov, V G; Andreeva, O V; Baranov, A V; Fedorov, A V; Prudnikau, A V; Artemyev, M V; Berwick, K

    2013-08-23

    The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.

  6. Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor

    Science.gov (United States)

    Orlova, A. O.; Gromova, Yu A.; Maslov, V. G.; Andreeva, O. V.; Baranov, A. V.; Fedorov, A. V.; Prudnikau, A. V.; Artemyev, M. V.; Berwick, K.

    2013-08-01

    The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.

  7. Formation of anodic TiO2 nanotube arrays in NaOH added fluoride-ethylene glycol electrolyte for dye-sensitized solar cells

    Science.gov (United States)

    Nyein, Nyein; Tan, Wai Kian; Kawamura, Go; Matsuda, Atsunori; Lockman, Zainovia

    2017-07-01

    TiO2 nanotube (TNT) arrays were formed by anodizing titanium foil in fluoride-ethylene glycol (EG) electrolyte added to it either water (H2O) or sodium hydroxide (NaOH) as oxidant. In NaOH added fluoride-EG electrolyte, 10 µm long TNT arrays were formed compared to 5 μm long nanotubes in H2O added fluoride-EG electrolyte. When NaOH was added to EG, the electrolyte pH was 9. As the pH of the electrolyte was rather high, surface etching of the nanotubes was reduced resulting in tubes with longer length. Moreover, the addition of NaOH into fluoride-EG resulted in the crystallization of anatase in the as-made TNT arrays. Annealing obviously improved the crystallinity of the oxide. The TNT arrays were then used as a photoanode in a dye-sensitized solar cell (DSSC). A photoconversion efficiency of 2.4 % was recorded with photocurrent of 6.9 mA/cm2.

  8. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small

  9. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  10. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  11. CdS量子点敏化TiO2纳米线束阵列太阳能电池的研究%Researches on TiO2 nanowires arrays for CdS quantum dot sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    左志鹏; 肖思达; 魏爱香; 刘俊

    2012-01-01

    采用水热合成技术,以盐酸、去离子水和酞酸丁酯为反应前驱物,在透明导电玻璃衬底(FTO)上生长TiO2纳米线束阵列,以化学浴沉积技术制备CdS量子点敏化TiO2纳米线束阵列光阳极.研究了CdS量子点敏化的循环周期对太阳能电池的光伏性能、单色光光子-电子转换效率、静态和动态光电流的特性的影响规律.结果表明:CdS量子点的大小和密度随着敏化循环周期的增加而增加,当敏化循环的周期为15次时,单色光光子-电子转换效率最高,电池的短路电流密度为0.61 mA/cm2,开路电压为0.65 V,填充因子为0.50,光电转换效率为0.20%.通过强度调制的光电流谱分析,得到光生电子在光阳极中的扩散系数为3.2×10-6 cm2/s,传输时间为2.1×10-2 s.%TiO2 nanowires arrays of rutile phase on transparent conductive fluorine -doped tin oxide (FTO) substrates were prepared by hydrothermal Synthesis method using the precursors of hydrochloric acid, deionized water and tetrabutyl titanate. The CdS quantum dots sensitized TiO2 nanowires arrays were prepared by chemical bath deposition technique. The influence of sensitized cycles on the photovoltaic performance, the monochromatic incident photon-electron conversion efficiency (IPCE), static and dynamic characteristics of the solar cells was studied. The result shows that, with the increasing of sensitization cycles, the size and density of the CdS quantum dot increase. For solar cell assembled with 15 sensitized cycles, the short circuit current density is 0.61 mA/cm2,open circuit voltage 0.65 V, fill factor 0.50, and IPCE 0.20%. Diffusion coefficient and electron transport time, which are obtained from the intensity modulated photocurrent spectroscopy (IMPS), are 3.2×10-6 cmVs and 2.1× 10-2 s respectively.

  12. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  13. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    CERN Document Server

    Jamil, Ayesha; Kalliakos, Sokratis; Schwagmann, Andre; Ward, Martin B; Brody, Yarden; Ellis, David J P; Farrer, Ian; Griffiths, Jonathan P; Jones, Geb A C; Ritchie, David A; Shields, Andrew J

    2014-01-01

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device scale arrays of quantum dots are formed by a two step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the exit of the waveguide is 12 \\pm 5 % before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  14. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J., E-mail: andrew.shields@crl.toshiba.co.uk [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom); Schwagmann, Andre; Brody, Yarden [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom)

    2014-03-10

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12% ± 5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  15. Optical Properties of Self-Organized PbS Quantum Dot Superlattices

    Institute of Scientific and Technical Information of China (English)

    YE Chang-Hui; YAO Lian-Zeng; MU Ji-Mei; SHI Gang; ZHANG Li-De

    2000-01-01

    Self-organization of PbS into quantum dot superlattices has been demonstrated for the first time, and hexaplanar colloidal crystals 1 - 10 μm in size made from PbS quantum dots 3 - 6 nm in diameter are revealed in transmissionelectron microscope micrographs, and the inner structures of the superlattices can be seen by a high resolution transmission electron microscopy. The optical absorption and photoluminescence spectra have been recorded. The ordering of the superlattices is crucial for the understanding of the fundamental properties of quantum-dot arrays, as well as for their optimal utilization in optical and electronic applications.

  16. Synthesis of Density-controllable TiO2 Nanowire Bundle Arrays and Their Application in Quantum Dot Sensitized Solar Cell%密度可控的TiO2纳米线束阵列合成及其在量子点敏化太阳能电池上的应用

    Institute of Scientific and Technical Information of China (English)

    刘俊; 魏爱香; 张春星

    2013-01-01

    Highly oriented single-crystalline rutile TiO2 nanowire bundle arrays on transparent conductive fluorinedoped tin oxide (FTO) substrates were synthesized by hydrothermal method using the precursors of tetrabutyl titanate,deionized water and hydrochloric acid.The density of the TiO2 nanowire bundle can be tuned by changing the concentration of tetrabutyl titanate.Using the nanowire bundle array as the photoanode,CdS as sensitizer,the quantum dot sensitized solar cell (QDSSC) was assembled.The effects of nanowires density on photovoltaic performance of solar cell were investigated.It is found that the cell presents poor photovoltaic performance if the nanowires density is too high or too low.The optimal nanowires density for highest photovoltaic performance is 11.8 x 106/mm2 when the photoelectric conversion efficiency reaches 0.947%.%采用水热合成技术,以盐酸、去离子水和钛酸丁酯为反应前驱物,直接在透明导电玻璃(FTO)衬底上合成了具有金红石结构的TiO2纳米线束阵列.通过改变反应前驱物中钛酸丁酯的添加量,实现了对TiO2纳米线束阵列密度的调控.以TiO2纳米线束阵列为光阳极、CdS为敏化剂,组装了量子点敏化太阳能电池器件,并研究了纳米线束阵列的密度对电池光伏性能的影响.结果表明:纳米线的密度过高或过低均不利于电池光伏性能的提高.纳米线的优化密度为11.8×106/mm2,此时电池的光电转换效率达到了0.947%.

  17. Mid-infrared surface plasmon coupled emitters utilizing intersublevel transitions in InAs quantum dots.

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Stephen A. (Princeton University, Princeton, NJ); Chow, Weng Wah; Passmore, Brandon Scott; Ribaudo, Troy (University of Massachusetts Lowell, Lowell, MA); Adams, David (University of Massachusetts Lowell, Lowell, MA); Wasserman, Daniel (University of Massachusetts Lowell, Lowell, MA); Shaner, Eric Arthur

    2010-08-01

    We demonstrate mid-infrared electroluminescence from intersublevel transitions in self-assembled InAs quantum dots coupled to surface plasmon modes on metal hole arrays. Subwavelength metal hole arrays with different periodicity are patterned into the top contact of the broadband (9-15 {micro}m) quantum dot material and the measured electroluminescence is compared to devices without a metal hole array. The resulting normally directed emission is narrowed and a splitting in the spectral structure is observed. By applying a coupled quantum electrodynamic model and using reasonable values for quantum dot distributions and plasmon linewidths we are able to reproduce the experimentally measured spectral characteristics of device emission when using strong coupling parameters.

  18. Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Takafumi, E-mail: takafumi-uchida@frontier.hokudai.ac.jp; Jo, Mingyu; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo [Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814 Japan (Japan); Fujiwara, Akira [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, 243-0198 Japan (Japan)

    2015-11-15

    Series-connected triple quantum dots were fabricated by a simple two-step oxidation technique using the pattern-dependent oxidation of a silicon nanowire and an additional oxidation of the nanowire through the gap of the fine gates attached to the nanowire. The characteristics of multi-dot single-electron devices are obtained. The formation of each quantum dot beneath an attached gate is confirmed by analyzing the electrical characteristics and by evaluating the gate capacitances between all pairings of gates and quantum dots. Because the gate electrode is automatically attached to each dot, the device structure benefits from scalability. This technique promises integrability of multiple quantum dots with individual control gates.

  19. SELF-ORGANIZATION OF LEAD SULFIDE QUANTUM DOTS INTO SUPERSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova

    2014-11-01

    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  20. Bit-Serial Adder Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    quantum-mechanical sense) between neighboring dots within the cell. The Coulomb repulsion between the two electrons tends to make them occupy antipodal dots in the cell. For an isolated cell, there are two energetically equivalent arrangements (denoted polarization states) of the extra electrons. The cell polarization is used to encode binary information. Because the polarization of a nonisolated cell depends on Coulomb-repulsion interactions with neighboring cells, universal logic gates and binary wires could be constructed, in principle, by arraying QCA of suitable design in suitable patterns. Again, for reasons too complex to describe here, in order to ensure accuracy and timeliness of the output of a QCA array, it is necessary to resort to an adiabatic switching scheme in which the QCA array is divided into subarrays, each controlled by a different phase of a multiphase clock signal. In this scheme, each subarray is given time to perform its computation, then its state is frozen by raising its inter-dot potential barriers and its output is fed as the input to the successor subarray. The successor subarray is kept in an unpolarized state so it does not influence the calculation of preceding subarray. Such a clocking scheme is consistent with pipeline computation in the sense that each different subarray can perform a different part of an overall computation. In other words, QCA arrays are inherently suitable for pipeline and, moreover, systolic computations. This sequential or pipeline aspect of QCA would be utilized in the proposed bit-serial adders.

  1. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.

    Science.gov (United States)

    Yang, Yawei; Que, Wenxiu; Zhang, Xinyu; Xing, Yonglei; Yin, Xingtian; Du, Yaping

    2016-11-05

    Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS2 quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS2 heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS2 film with the deposition duration of 80min showed the highest degradation rate and photocurrent density (0.95mA/cm(2)), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS2 QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS2 loading and well-maintained one-dimensional nanostructure.

  2. Sequential shrink photolithography for plastic microlens arrays.

    Science.gov (United States)

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-18

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  3. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    Science.gov (United States)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  4. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    Science.gov (United States)

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10(5) cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines.

  5. Site-Control of InAs/GaAs Quantum Dots with Indium-Assisted Deoxidation

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2016-03-01

    Full Text Available Site-controlled epitaxial growth of InAs quantum dots on GaAs substrates patterned with periodic nanohole arrays relies on the deterministic nucleation of dots into the holes. In the ideal situation, each hole should be occupied exactly by one single dot, with no nucleation onto planar areas. However, the single-dot occupancy per hole is often made difficult by the fact that lithographically-defined holes are generally much larger than the dots, thus providing several nucleation sites per hole. In addition, deposition of a thin GaAs buffer before the dots tends to further widen the holes in the [110] direction. We have explored a method of native surface oxide removal by using indium beams, which effectively prevents hole elongation along [110] and greatly helps single-dot occupancy per hole. Furthermore, as compared to Ga-assisted deoxidation, In-assisted deoxidation is efficient in completely removing surface contaminants, and any excess In can be easily re-desorbed thermally, thus leaving a clean, smooth GaAs surface. Low temperature photoluminescence showed that inhomogeneous broadening is substantially reduced for QDs grown on In-deoxidized patterns, with respect to planar self-assembled dots.

  6. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  7. Quantum dot nanostructures

    Directory of Open Access Journals (Sweden)

    Mohamed Henini

    2002-06-01

    These sophisticated technologies for the growth of high quality epitaxial layers of compound semiconductor materials on single crystal semiconductor substrates are becoming increasingly important for the development of the semiconductor electronics industry. This article is intended to convey the flavor of the subject by focusing on the technology and applications of self-assembled quantum dots (QDs and to give an introduction to some of the essential characteristics.

  8. Evaporating metal nanocrystal arrays

    Science.gov (United States)

    Zhang, Xue; Joy, James C.; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J. M.; Valles, James M., Jr.

    2017-03-01

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  9. Inter-dot coupling effects on transport through correlated parallel coupled quantum dots

    Indian Academy of Sciences (India)

    Shyam Chand; G Rajput; K C Sharma; P K Ahluwalia

    2009-05-01

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.

  10. Site-controlled growth of InP/GaInP quantum dots on GaAs substrates

    Science.gov (United States)

    Baumann, V.; Stumpf, F.; Steinl, T.; Forchel, A.; Schneider, C.; Höfling, S.; Kamp, M.

    2012-09-01

    A technology platform for the epitaxial growth of site-controlled InP quantum dots (QDs) on GaAs substrates is presented. Nanoholes are patterned in a GaInP layer on a GaAs substrate by electron beam lithography and dry chemical etching, serving as QD nucleation centers. The effects of a thermal treatment on the structured surfaces for deoxidation are investigated in detail. By regrowth on these surfaces, accurate QD positioning is obtained for square array arrangements with lattice periods of 1.25 μm along with a high suppression of interstitial island formation. The optical properties of these red-emitting QDs (λ ˜ 670 nm) are investigated by means of ensemble- and micro-photoluminescence spectroscopy at cryogenic temperatures.

  11. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  12. Interference and interactions in open quantum dots

    CERN Document Server

    Bird, J P; Ferry, D K; Moura, A P S; Lai, Y C; Indlekofer, K M

    2003-01-01

    In this report, we review the results of our joint experimental and theoretical studies of electron-interference, and interaction, phenomena in open electron cavities known as quantum dots. The transport through these structures is shown to be heavily influenced by the remnants of their discrete density of states, elements of which remain resolved in spite of the strong coupling that exists between the cavity and its reservoirs. The experimental signatures of this density of states are discussed at length in this report, and are shown to be related to characteristic wavefunction scarring, involving a small number of classical orbits. A semiclassical analysis of this behaviour shows it to be related to the effect of dynamical tunnelling, in which electrons are injected into the dot tunnel through classically forbidden regions of phase space, to access isolated regular orbits. The dynamical tunnelling gives rise to the formation of long-lived quasi-bound states in the open dots, and the many-body implications a...

  13. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the line

  14. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the

  15. Fiber Optic Geophysics Sensor Array

    Science.gov (United States)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  16. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

    Science.gov (United States)

    Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A

    2017-02-08

    Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σhom(2):σinh(2) > 19:1, σinh/kBT quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.

  17. Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes.

    Science.gov (United States)

    Engtrakul, Chaiwat; Kim, Yong-Hyun; Nedeljković, Jovan M; Ahrenkiel, S Phil; Gilbert, Katherine E H; Alleman, Jeff L; Zhang, S B; Mićić, Olga I; Nozik, Arthur J; Heben, Michael J

    2006-12-21

    Ligand-stabilized nanocrystals (NCs) were strongly bound to the nanotube surfaces by simple van der Waals forces. Linear arrays of CdSe and InP quantum dots were formed by self-assembly using the grooves in bundles of carbon single-walled nanotubes (SWNTs) as a one-dimensional template. A simple geometrical model explains the ordering in terms of the anisotropic properties of the nanotube surface. CdSe quantum rods were also observed to self-organize onto SWNTs with their long axis parallel to the nanotube axis. This approach offers a route to the formation of ordered NC/SWNT architectures that avoids problems associated with surface derivatization.

  18. Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-Cheng; TU Tao; GUO Guo-Ping

    2011-01-01

    We propose an efficient method to create multipartite spin entangled states in quantum dots coupled to a nano electro-mechanical resonator array. Our method, based on the interaction between electron spins confined in quantum dots and the motion of magnetized nano electro-mechanical resonators, can enable a coherent spin-spin coupling over long distances and in principle be applied to an arbitrarily large number of electronic spins.%@@ We propose an efficient method to create multipartite spin entangled states in quantum dots coupled to a nano electro-mechanical resonator array.Our method, based on the interaction between electron spins confined in quantum dots and the motion of magnetized nano electro-mechanical resonators, can enable a coherent spin-spin coupling over long distances and in principle be applied to an arbitrarily large number of electronic spins.

  19. Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles

    Science.gov (United States)

    Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat

    2001-03-01

    We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001

  20. Nanofabrication of gate-defined GaAs/AlGaAs lateral quantum dots.

    Science.gov (United States)

    Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel

    2013-11-01

    A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe.

  1. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

    Directory of Open Access Journals (Sweden)

    Nadezhda M. Zholobak

    2016-12-01

    Full Text Available Luminescent organic dots (O-dots were synthesized via a one-pot, solvent-free thermolysis of citric acid in urea melt. The influence of the ratio of the precursors and the duration of the process on the properties of the O-dots was established and a mechanism of their formation was hypothesized. The multicolour luminescence tunability and toxicity of synthesized O-dots were extensively studied. The possible applications of O-dots for alive/fixed cell staining and labelling of layer-by-layer polyelectrolyte microcapsules were evaluated.

  2. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling.

    Science.gov (United States)

    Zholobak, Nadezhda M; Popov, Anton L; Shcherbakov, Alexander B; Popova, Nelly R; Guzyk, Mykhailo M; Antonovich, Valeriy P; Yegorova, Alla V; Scrypynets, Yuliya V; Leonenko, Inna I; Baranchikov, Alexander Ye; Ivanov, Vladimir K

    2016-01-01

    Luminescent organic dots (O-dots) were synthesized via a one-pot, solvent-free thermolysis of citric acid in urea melt. The influence of the ratio of the precursors and the duration of the process on the properties of the O-dots was established and a mechanism of their formation was hypothesized. The multicolour luminescence tunability and toxicity of synthesized O-dots were extensively studied. The possible applications of O-dots for alive/fixed cell staining and labelling of layer-by-layer polyelectrolyte microcapsules were evaluated.

  3. Facile synthesis of ZnO/CuInS{sub 2} nanorod arrays for photocatalytic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yawei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Zhang, Xinyu [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Xing, Yonglei; Yin, Xingtian [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Du, Yaping, E-mail: ypdu2013@mail.xjtu.edu.cn [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-11-05

    Highlights: • Vertically-aligned ZnO nanorod arrays were synthesized by the hydrothermal process. • Monodisperse CuInS{sub 2} QDs were synthesized by the one-pot colloidal chemistry method. • ZnO/CuInS{sub 2} nanorod arrays films were fabricated by the EPD process. • The homogeneous CuInS{sub 2} loading was optimized by EPD duration. • The photoelectrochemical and photocatalytic activities of the ZnO/CuInS{sub 2} nanorod arrays films were discussed. - Abstract: Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS{sub 2} quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS{sub 2} heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS{sub 2} film with the deposition duration of 80 min showed the highest degradation rate and photocurrent density (0.95 mA/cm{sup 2}), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS{sub 2} QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS{sub 2} loading and well-maintained one-dimensional nanostructure.

  4. Engineering the hole confinement for CdTe-based quantum dot molecules

    Science.gov (United States)

    Kłopotowski, Ł.; Wojnar, P.; Kret, S.; Parlińska-Wojtan, M.; Fronc, K.; Wojtowicz, T.; Karczewski, G.

    2015-06-01

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  5. Engineering the hole confinement for CdTe-based quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kłopotowski, Ł., E-mail: lukasz.klopotowski@ifpan.edu.pl; Wojnar, P.; Kret, S.; Fronc, K.; Wojtowicz, T.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Parlińska-Wojtan, M. [Facility for Electron Microscopy and Sample Preparation, Center for Microelectronics and Nanotechnology, Faculty of Mathematics and Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-959 Rzeszów (Poland)

    2015-06-14

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  6. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits

    Directory of Open Access Journals (Sweden)

    Ahmed Moustafa

    2015-01-01

    Full Text Available Quantum-dot cellular automata (QCA are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs.

  7. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits.

    Science.gov (United States)

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs.

  8. Quantum Dots: Proteomics characterization of the impact on biological systems

    Science.gov (United States)

    Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.

    2009-05-01

    Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a

  9. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  10. Probing the mystery of Liesegang band formation: revealing the origin of self-organized dual-frequency micro and nanoparticle arrays.

    Science.gov (United States)

    Tóth, Rita; Walliser, Roché M; Lagzi, István; Boudoire, Florent; Düggelin, Marcel; Braun, Artur; Housecroft, Catherine E; Constable, Edwin C

    2016-10-12

    Periodic precipitation processes in gels can result in impressive micro- and nanostructured patterns known as periodic precipitation (or Liesegang bands). Under certain conditions, the silver nitrate-chromium(vi) system exhibits the coexistence of two kinds of Liesegang bands with different frequencies. We now present that the two kinds of bands form independently on different time scales and the pH-dependent chromate(vi)-dichromate(vi) equilibrium controls the formation of the precipitates. We determined the spatial distribution and constitution of the particles in the bands using focused ion beam-scanning electron microscopy (FIB-SEM) and scanning transmission X-ray spectromicroscopy (STXM) measurements. This provided the necessary empirical input data to formulate a model for the pattern formation; a model that quantitatively reproduces the experimental observations. Understanding the pattern-forming process at the molecular level enables us to tailor the size and the shape of the bands, which, in turn, can lead to new functional architectures for a range of applications.

  11. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    Science.gov (United States)

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  12. Electron-Nuclear Spin Transfer in Triple Quantum Dot Networks

    Science.gov (United States)

    Prada, Marta; Toonen, Ryan; Harrison, Paul

    2005-03-01

    We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of delta- and y-junction networks and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalised to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in presence of nuclear spin relaxation. We find that the gradual depolarisation of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.

  13. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    Science.gov (United States)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  14. Global Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  15. Method for reuse of wafers for growth of vertically-aligned wire arrays

    Science.gov (United States)

    Spurgeon, Joshua M; Plass, Katherine E; Lewis, Nathan S; Atwater, Harry A

    2013-06-04

    Reusing a Si wafer for the formation of wire arrays by transferring the wire arrays to a polymer matrix, reusing a patterned oxide for several array growths, and finally polishing and reoxidizing the wafer surface and reapplying the patterned oxide.

  16. Quantum dots: Rethinking the electronics

    Science.gov (United States)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  17. Quantum dots in cell biology.

    Science.gov (United States)

    Barroso, Margarida M

    2011-03-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.

  18. Hydrophobin-Encapsulated Quantum Dots.

    Science.gov (United States)

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  19. Quantum Dots in Cell Biology

    OpenAIRE

    Barroso, Margarida M.

    2011-01-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated t...

  20. Self-organized dots of GaN:Mn grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, S.; Marcet, S. [CEA-CNRS Group ' ' Nanophysique et Semiconducteurs' ' , Laboratoire de Spectrometrie Physique, Universite Joseph Fourier, Grenoble I and CEA/DRFMC/SP2M, 17 avenue des Martyrs, 38054 Grenoble, Cedex 9 (France); Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Halley, D.; Ferrand, D.; Mariette, H. [CEA-CNRS Group ' ' Nanophysique et Semiconducteurs' ' , Laboratoire de Spectrometrie Physique, Universite Joseph Fourier, Grenoble I and CEA/DRFMC/SP2M, 17 avenue des Martyrs, 38054 Grenoble, Cedex 9 (France); Cibert, J. [Laboratoire Louis Neel, CNRS, BP 166, 38042 Grenoble (France); Yamamoto, S.; Sakai, T.; Ohshima, T.; Itoh, H. [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gumma 370-1292 (Japan)

    2006-07-01

    Self-organized dots of Mn-doped GaN were grown on AlN by plasma-assisted molecular beam epitaxy. The growth was performed in the nitrogen-rich growth regime with the addition of small amount of Mn flux. The in-situ surface observation using reflection high energy electron diffraction (RHEED) and the ex-situ examination using atomic force microscope (AFM) revealed that the dot formation was observed only in the case where the amount of Mn flux was small. The estimate of Mn composition using particle induced X-ray emission (PIXE) experiment showed that the Mn composition in the dots layer was much higher than in thick (Ga,Mn)N layers grown with the same amount of Mn flux. The maximum Mn composition for the high-density dot formation was about x=0.01. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Fabrication of self-organized dots of GaN:Mn using plasma-assisted MBE

    Science.gov (United States)

    Kuroda, S.; Marcet, S.; Bellet-Amalric, E.; Halley, D.; Ferrand, D.; Cibert, J.; Mariette, H.

    2005-02-01

    The growth of self-organized dots of Mn-doped GaN on AlN by plasma-assisted molecular beam epitaxy was studied. The observations of reflection high-energy electron diffraction (RHEED) revealed that the transition of the growth mode from 2D to 3D was delayed by adding a small amount of Mn flux and it disappeared with the further increase in Mn flux. By atomic force microscope (AFM) measurement on a surface with uncapped dots, it was found that the 2D-3D transition occurs with the formation of high dots density only when a tiny amount of Mn flux was added. A possible mechanism for the suppression of the dot formation by additional Mn atoms is discussed.

  2. Evidences for a leaky scanning mechanism for the synthesis of the shorter M23 protein isoform of aquaporin-4: implication in orthogonal array formation and neuromyelitis optica antibody interaction.

    Science.gov (United States)

    Rossi, Andrea; Pisani, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2010-02-12

    Aquaporin-4 (AQP4) exists as two major isoforms that differ in the length of the N terminus, the shorter AQP4-M23 and the longer AQP4-M1. Both isoforms form tetramers, which can further aggregate in the plasma membrane to form typical orthogonal arrays of particles (OAPs) whose dimension depends on the ratio of the M1 and M23. In this study, we tested the hypothesis that the M23 isoform can be produced directly by the M1 mRNA. In cells transiently transfected with AQP4-M1 coding sequence we observed besides AQP4-M1 the additional presence of the AQP4-M23 isoform associated with the formation of typical OAPs observable by two-dimensional blue native/SDS-PAGE and total internal reflection microscopy. The mutation of the second in-frame methionine M23 in AQP4-M1 (AQP4-M1(M23I)) prevented the expression of the M23 isoform and the formation of OAPs. We propose "leaky scanning" as a translational mechanism for the expression of AQP4-M23 protein isoform and that the formation of OAPs may occur even in the absence of AQP4-M23 mRNA. This mechanism can have important pathophysiological implications for the cell regulation of the M1/M23 ratio and thus OAP size. In this study we also provide evidence that AQP4-M1 is mobile in the plasma membrane, that it is inserted and not excluded into immobile OAPs, and that it is an important determinant of OAP structure and size.

  3. Fuzzy dot ideals and fuzzy dot H-ideals of BCH-algebras

    Institute of Scientific and Technical Information of China (English)

    PENG Jia-yin

    2008-01-01

    The notions of fuzzy dot ideals and fuzzy dot H-ideals in BCH-algebras are intro duced,several appropriate examples are provided,and their some properties are investigated.The relations among fuzzy ideal,fuzzy H-ideal,fuzzy dot ideal and fuzzy dot H-ideals in BCH algebras are discussed,several equivalent depictions of fuzzy dot ideal are obtained. How to deal with the homomorphic image and inverse image of fuzzy dot ideals (fuzzy dot H-ideals) are studied. The relations between a fuzzy dot ideal (fuzzy dot H-ideal) in BCH-algebras and a fuzzy dot ideal (fuzzy dot H-ideal) in the product algebra of BCH-algebras are given.

  4. Single-photon emission from InAsP quantum dots embedded in density-controlled InP nanowires

    Science.gov (United States)

    Yanase, Shougo; Sasakura, Hirotaka; Hara, Shinjiro; Motohisa, Junichi

    2017-04-01

    We attempted to control the density and size of InP-based nanowires (NWs) and nanowire quantum dots (NW-QDs) during selective-area metalorganic vapor phase epitaxy. InP nanowire arrays with a 5 µm pitch and an average NW diameter d of 67 nm were successfully grown by optimization of growth conditions. InAsP quantum dots were embedded in these density-controlled InP NW arrays, and clear single-photon emission and exciton-biexciton cascaded emission were confirmed by excitation-dependent photoluminescence and photon correlation measurements.

  5. Single to quadruple quantum dots with tunable tunnel couplings

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Otsuka, T.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan)

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  6. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix

    Science.gov (United States)

    Buljan, M.; Radić, N.; Sancho-Paramon, J.; Janicki, V.; Grenzer, J.; Bogdanović-Radović, I.; Siketić, Z.; Ivanda, M.; Utrobičić, A.; Hübner, R.; Weidauer, R.; Valeš, V.; Endres, J.; Car, T.; Jerčinović, M.; Roško, J.; Bernstorff, S.; Holy, V.

    2015-02-01

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  7. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  8. Three-Dimensional Dissipative Optical Solitons in a Dielectric Medium with Quantum Dots

    Directory of Open Access Journals (Sweden)

    Gubin M.Yu.

    2015-01-01

    Full Text Available We consider the problem of formation of three-dimensional spatio-temporal dissipative solitons (laser bullets in a dense ensemble of two-level quantum dots. The principal possibility of effective laser bullets generation in an all-dielectric metamaterials with quantum dots is shown. The phenomenon arises due to the simultaneous appearance of strong local field effects and significant corrections to diffraction effects during the propagation of short optical pulses in such medium.

  9. Enhanced photocatalytic performances of n-TiO2 nanotubes by uniform creation of p-n heterojunctions with p-Bi2O3 quantum dots

    Science.gov (United States)

    Ge, Mingzheng; Cao, Chunyan; Li, Shuhui; Zhang, Songnan; Deng, Shu; Huang, Jianying; Li, Qingsong; Zhang, Keqin; Al-Deyab, Salem S.; Lai, Yuekun

    2015-07-01

    An ultrasonication-assisted successive ionic layer adsorption and reaction (SILAR) strategy was developed for uniform deposition of high density p-type Bi2O3 quantum dots on n-type TiO2 nanotube arrays (Bi2O3@TiO2 NTAs), which were constructed by electrochemical anodization in ethylene glycol containing the electrolyte. Compared with pristine TiO2 NTAs, the Bi2O3 quantum dots sensitized TiO2 NTAs exhibited highly efficient photocatalytic degradation of methyl orange (MO). The kinetic constant of Bi2O3@TiO2 NTAs prepared by an ultrasonication-assisted SILAR process of 4 cycles was 1.95 times higher than that of the pristine TiO2 NTA counterpart. The highly efficient photocatalytic activity is attributed to the synergistic effect between the formation of a uniform p-n heterojunction with high-density for enhancing light absorption and facilitating photogenerated electron-hole separation/transfer. The results suggest that Bi2O3@TiO2 p-n heterojunction nanotube arrays are very promising for enhancing the photocatalytic activity and open up a promising strategy for designing and constructing high efficiency heterogeneous semiconductor photocatalysts.An ultrasonication-assisted successive ionic layer adsorption and reaction (SILAR) strategy was developed for uniform deposition of high density p-type Bi2O3 quantum dots on n-type TiO2 nanotube arrays (Bi2O3@TiO2 NTAs), which were constructed by electrochemical anodization in ethylene glycol containing the electrolyte. Compared with pristine TiO2 NTAs, the Bi2O3 quantum dots sensitized TiO2 NTAs exhibited highly efficient photocatalytic degradation of methyl orange (MO). The kinetic constant of Bi2O3@TiO2 NTAs prepared by an ultrasonication-assisted SILAR process of 4 cycles was 1.95 times higher than that of the pristine TiO2 NTA counterpart. The highly efficient photocatalytic activity is attributed to the synergistic effect between the formation of a uniform p-n heterojunction with high-density for enhancing light

  10. Reversible, Temperature-Dependent Supramolecular Assembly of Aquaporin-4 Orthogonal Arrays in Live Cell Membranes

    Science.gov (United States)

    Crane, Jonathan M.; Verkman, A.S.

    2009-01-01

    Abstract The shorter “M23” isoform of the glial cell water channel aquaporin-4 (AQP4) assembles into orthogonal arrays of particles (OAPs) in cell plasma membranes, whereas the full-length “M1” isoform does not. N-terminal residues are responsible for OAP formation by AQP4-M23 and for blocking of OAP formation in AQP4-M1. In investigating differences in OAP formation by certain N-terminus mutants of AQP4, as measured by freeze-fracture electron microscopy versus live-cell imaging, we discovered reversible, temperature-dependent OAP assembly of certain weakly associating AQP4 mutants. Single-particle tracking of quantum-dot-labeled AQP4 in live cells and total internal reflection fluorescence microscopy showed >80% of M23 in OAPs at 10–50°C compared to 70% at 10°C for the double mutant M1-C13A/C17A. OAP assembly by this mutant, but not by native M23, could also be modulated by reducing its membrane density. Exposure of native M1 and single cysteine mutants to 2-bromopalmitate confirmed the presence of regulated OAP assembly by S-palmitoylation. Kinetic studies showed rapid and reversible OAP formation during cooling and OAP disassembly during heating. Our results provide what to our knowledge is the first information on the energetics of AQP4 OAP assembly in plasma membranes. PMID:19948131

  11. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masayuki; Nagai, Yasuyoshi; Tang, Zheng; Yubuta, Kunio [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) in a Fe-Cu single crystal and was agreed well with that from a band structure calculation. Theoretical calculation of positron confinement in Fe-Cu model alloys showed that a positron quantum dot state induced by positron affinity is attained for the embedded precipitates larger than 1 nm. A new position sensitive detector with a function of one dimensional angular correlation of annihilation radiation (1D-ACAR) has been developed that enables high resolution experiments over wide ranges of momentum distribution. (author)

  12. Cobalt double-ring and double-dot structures: Magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    López-Urías, F., E-mail: flo@ipicyt.edu.mx [Advanced Materials Department, IPICYT, Camino a la presa San José 2055, Col. Lomas 4a sección, 78216, San Luis Potosí S.L.P., México (Mexico); Torres-Heredia, J.J. [Instituto Tecnológico Superior de Las Choapas, Col. J. M. Rosa do, 96980, Las Choapas, Veracruz (Mexico); Muñoz-Sandoval, E. [Advanced Materials Department, IPICYT, Camino a la presa San José 2055, Col. Lomas 4a sección, 78216, San Luis Potosí S.L.P., México (Mexico)

    2016-02-15

    The magnetization reversal mechanism of nanostructures of cobalt double-rings (D-rings) and double-dots (D-dots) is investigated in the framework of micromagnetic simulations. The arrays contain two identical coupled rings (wide and narrow) or dots with outer diameter of 200 nm and thicknesses ranging from 2–20 nm. Hysteresis loops, dipole–dipole and exchange energies are systematically calculated for the cases of the structures touching and the structures with a 50-nm inter-magnet separation; moreover, magnetization states along the hysteresis curve are analyzed. The results of both dot and ring D-magnets are compared with the corresponding individual magnets. Our results reveal that all D-ring (in contact and separated) arrays containing narrow rings exhibit non-null remanent magnetization; furthermore, higher coercive fields are promoted when the magnet thickness is increased. It is observed that the magnetization reversal is driven mainly by a clockwise rotation of onion-states, followed by states of frustrated vortices. Our results could help improve the understanding of the magnetic interactions in nanomagnet arrays.

  13. Synthesis and electron emission properties of aligned carbon nanotube arrays

    Science.gov (United States)

    Neupane, Suman

    Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy

  14. Optically active quantum dots

    Science.gov (United States)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  15. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    Energy Technology Data Exchange (ETDEWEB)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  16. Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO2 nanorods equipped with Prussian blue electrochromic display.

    Science.gov (United States)

    Wang, Yanhu; Ge, Shenguang; Zhang, Lina; Yu, Jinghua; Yan, Mei; Huang, Jiadong

    2017-03-15

    In this study, based on in situ generation of CdS quantum dots (QDs) on the surface of branched TiO2 (B-TiO2) nanorods, an solar innovative photoelectrochemical (PEC) sensing platform was constructed for real-time, and sensitive detection of cellular H2S. Specifically, B-TiO2 nanorods arrays consisting of TiO2 nanorods directly grown on fluorine-doped tin oxide (FTO) further using TiCl3 mediated surface treatment of TiO2 nanorods are designed and fabricated as a new type of photoelectrode. CdS quantum dots (QDs) was formed on the surface of B-TiO2 nanorods arrays through the reaction between Cd(2+) and S(2-). And a significant enhancement in the photocurrent was obtained that ascribed to the formation of CdS-B-TiO2 heterostructures, thus leading to sensitive PEC recording of the H2S level in buffer and cellular environments. By using Prussian blue (PB) a electrochromic material to capture the photoelectron generated from the photoelectrode, a new visual system was proposed due to the formation of Prussian white (PW), which could be used to visualize the quantum photoelectric effect. This novel PEC sensing platform not only achieved satisfied analysis results toward S(2-), but also showed excellent sensitivity, selectivity, low cost, and portable features. The strategy through the in situ generation of semiconductor nanoparticles on the surface of wide band-gap semiconductor paves the way for the improvements of PEC analytical performance. Meanwhile, the quantitative read-out electrochromic display paves a facile avenue and initiates new opportunities for creation of cheap, miniaturization sensors for other relevant analytes.

  17. Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems.

    Directory of Open Access Journals (Sweden)

    Noboru Nakano

    Full Text Available The Dot/Icm type IVB secretion system (T4BSS is a pivotal determinant of Legionella pneumophila pathogenesis. L. pneumophila translocate more than 100 effector proteins into host cytoplasm using Dot/Icm T4BSS, modulating host cellular functions to establish a replicative niche within host cells. The T4BSS core complex spanning the inner and outer membranes is thought to be made up of at least five proteins: DotC, DotD, DotF, DotG and DotH. DotH is the outer membrane protein; its targeting depends on lipoproteins DotC and DotD. However, the core complex structure and assembly mechanism are still unknown. Here, we report the crystal structure of DotD at 2.0 Å resolution. The structure of DotD is distinct from that of VirB7, the outer membrane lipoprotein of the type IVA secretion system. In contrast, the C-terminal domain of DotD is remarkably similar to the N-terminal subdomain of secretins, the integral outer membrane proteins that form substrate conduits for the type II and the type III secretion systems (T2SS and T3SS. A short β-segment in the otherwise disordered N-terminal region, located on the hydrophobic cleft of the C-terminal domain, is essential for outer membrane targeting of DotH and Dot/Icm T4BSS core complex formation. These findings uncover an intriguing link between T4BSS and T2SS/T3SS.

  18. Towards a feasible implementation of quantum neural networks using quantum dots

    Science.gov (United States)

    Altaisky, Mikhail V.; Zolnikova, Nadezhda N.; Kaputkina, Natalia E.; Krylov, Victor A.; Lozovik, Yurii E.; Dattani, Nikesh S.

    2016-03-01

    We propose an implementation of quantum neural networks using an array of quantum dots with dipole-dipole interactions. We demonstrate that this implementation is both feasible and versatile by studying it within the framework of GaAs based quantum dot qubits coupled to a reservoir of acoustic phonons. Using numerically exact Feynman integral calculations, we have found that the quantum coherence in our neural networks survive for over a hundred ps even at liquid nitrogen temperatures (77 K), which is three orders of magnitude higher than current implementations, which are based on SQUID-based systems operating at temperatures in the mK range.

  19. Towards a feasible implementation of quantum neural networks using quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Altaisky, Mikhail V., E-mail: altaisky@mx.iki.rssi.ru, E-mail: nzolnik@iki.rssi.ru; Zolnikova, Nadezhda N., E-mail: altaisky@mx.iki.rssi.ru, E-mail: nzolnik@iki.rssi.ru [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation); Kaputkina, Natalia E., E-mail: nataly@misis.ru [National University of Science and Technology “MISIS,” Leninsky prospect 4, Moscow 119049 (Russian Federation); Krylov, Victor A., E-mail: kryman@jinr.ru [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation); Lozovik, Yurii E., E-mail: lozovik@isan.troitsk.ru [Institute of Spectroscopy, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Electronics and Mathematics, National Research University – Higher School of Economics, Moscow 109028 (Russian Federation); Dattani, Nikesh S., E-mail: dattani.nike@gmail.com [Quantum Chemistry Laboratory, Kyoto University, Kyoto 606-8502 (Japan); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Department of Chemistry, Oxford University, Oxford OX1 3QZ (United Kingdom)

    2016-03-07

    We propose an implementation of quantum neural networks using an array of quantum dots with dipole-dipole interactions. We demonstrate that this implementation is both feasible and versatile by studying it within the framework of GaAs based quantum dot qubits coupled to a reservoir of acoustic phonons. Using numerically exact Feynman integral calculations, we have found that the quantum coherence in our neural networks survive for over a hundred ps even at liquid nitrogen temperatures (77 K), which is three orders of magnitude higher than current implementations, which are based on SQUID-based systems operating at temperatures in the mK range.

  20. Charge transport-induced recoil and dissociation in double quantum dots.

    Science.gov (United States)

    Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2014-11-12

    Colloidal quantum dots (CQDs) are free-standing nanostructures with chemically tunable electronic properties. This combination of properties offers intriguing new possibilities for nanoelectromechanical devices that were not explored yet. In this work, we consider a new scanning tunneling microscopy setup for measuring ligand-mediated effective interdot forces and for inducing motion of individual CQDs within an array. Theoretical analysis of a double quantum dot structure within this setup reveals for the first time voltage-induced interdot recoil and dissociation with pronounced changes in the current. Considering realistic microscopic parameters, our approach enables correlating the onset of mechanical motion under bias voltage with the effective ligand-mediated binding forces.

  1. High Efficiency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires.

    Science.gov (United States)

    Dutta, Mrinal; Thirugnanam, Lavanya; Trinh, Pham Van; Fukata, Naoki

    2015-07-28

    We report on an efficient hybrid Si nanocrystal quantum dot modified radial p-n junction thinner Si solar cell that utilizes the advantages of effective exciton collection by energy transfer from nanocrystal-Si (nc-Si) quantum dots to underlying radial p-n junction Si nanowire arrays with excellent carrier separation and propagation via the built-in electric fields of radial p-n junctions. Minimization of recombination, optical, and spectrum losses in this hybrid structure led to a high cell efficiency of 12.9%.

  2. Silicon nanowire charge-trap memory incorporating self-assembled iron oxide quantum dots.

    Science.gov (United States)

    Huang, Ruo-Gu; Heath, James R

    2012-11-19

    Charge-trap non-volatile memory devices based upon the precise integration of quantum dot storage elements with silicon nanowire field-effect transistors are described. Template-assisted assembly yields an ordered array of FeO QDs within the trenches that separate highly aligned SiNWs, and injected charges are reversibly stored via Fowler-Nordheim tunneling into the QDs. Stored charges shift the transistor threshold voltages, providing the basis for a memory device. Quantum dot size is found to strongly influence memory performance metrics.

  3. Sb2S3 Quantum-Dot Sensitized Solar Cells with Silicon Nanowire Photoelectrode

    Directory of Open Access Journals (Sweden)

    You-Da Hsieh

    2015-01-01

    Full Text Available We propose a novel quantum-dot sensitized solar cell (QDSSC structure that employs a quantum dot/semiconductor silicon (QD/Si coaxial nanorod array to replace the conventional dye/TiO2/TCO photoelectrode. We replaced the backlight input mode with top-side illumination and used a quantum dot to replace dye as the light-absorbing material. Photon-excited photoelectrons can be effectively transported to each silicon nanorod and conveyed to the counter electrode. We use two-stage metal-assisted etching (MAE to fabricate the micro-nano hybrid structure on a silicon substrate. We then use the chemical bath deposition (CBD method to synthesize a Sb2S3 quantum dot on the surface of each silicon nanorod to form the photoelectrode for the quantum dot/semiconductor silicon coaxial nanorod array. We use a xenon lamp to simulate AM 1.5 G (1000 W/m2 sunlight. Then, we investigate the influence of different silicon nanorod arrays and CBD deposition times on the photoelectric conversion efficiency. When an NH (N-type with high resistance silicon substrate is used, the QD/Si coaxial nanorod array synthesized by three runs of Sb2S3 deposition shows the highest photoelectric conversion efficiency of 0.253%. The corresponding short-circuit current density, open-circuit voltage, and fill factor are 5.19 mA/cm2, 0.24 V, and 20.33%, respectively.

  4. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure.

    Directory of Open Access Journals (Sweden)

    Brendan Jones

    Full Text Available Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79. In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice deficient for Dot1L, the murine Dot1 homologue. Dot1L-deficient embryos show multiple developmental abnormalities, including growth impairment, angiogenesis defects in the yolk sac, and cardiac dilation, and die between 9.5 and 10.5 days post coitum. To gain insights into the cellular function of Dot1L, we derived embryonic stem (ES cells from Dot1L mutant blastocysts. Dot1L-deficient ES cells show global loss of H3K79 methylation as well as reduced levels of heterochromatic marks (H3K9 di-methylation and H4K20 tri-methylation at centromeres and telomeres. These changes are accompanied by aneuploidy, telomere elongation, and proliferation defects. Taken together, these results indicate that Dot1L and H3K79 methylation play important roles in heterochromatin formation and in embryonic development.

  5. Hemocompatibility of titania nanotube arrays.

    Science.gov (United States)

    Smith, Barbara S; Yoriya, Sorachon; Grissom, Laura; Grimes, Craig A; Popat, Ketul C

    2010-11-01

    Hemocompatibility is a key consideration for the long-term success of blood contacting biomaterials; hence, there is a critical need to understand the physiological response elicited from blood/nano-biomaterial interactions. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets, and clotting kinetics of whole blood on titania nanotube arrays. Previous studies have demonstrated improved mesenchymal stem cell functionality, osteoblast phenotypic behavior, localized drug delivery, and the production of endothelial cell ECM on titania nanotube arrays. Furthermore, these titania nanotube arrays have elicited minimal levels of monocyte activation and cytokine secretion, thus exhibiting a very low degree of immunogenicity. Titania nanotube arrays were fabricated using anodization technique and the surface morphology was examined through scanning electron microscopy (SEM). The crystalline phases were identified using glancing angled X-ray diffraction (GAXRD). Nanoindentation and scratch tests were used to characterize the mechanical properties of titania nanotube arrays. The adsorption of key blood proteins (albumin, fibrinogen, and immunoglobulin-g) was evaluated using a micro-BCA assay and X-ray photoelectron spectroscopy (XPS). The adhesion and activation of platelets was investigated using live-cell staining, MTT assay, and SEM. Whole blood clotting kinetics was evaluated by measuring the free hemoglobin concentration, and SEM was used to visualize the clot formation. Our results indicate increased blood serum protein adsorption, platelet adhesion and activation, and whole blood clotting kinetics on titania nanotube arrays.

  6. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    Science.gov (United States)

    2015-04-27

    SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS ...growth using metalorganic chemical vapor deposition (MOCVD). These methods allowed us to realize quantum dot active regions in which the injected carriers...temperature sensitivity , commonly observed in self-assembled QD lasers2. An alternate approach to SK QD formation is the use of nanopatterning with

  7. TiO2纳米管的“兼并”现象及机理分析%Formation Mechanism of Merger of Titania Nanotube Arrays via Anodization

    Institute of Scientific and Technical Information of China (English)

    杨硕; 刘冠鹏; 刘喜波; 薛建强; 张雪凤

    2011-01-01

    采用电化学阳极氧化法制备了高度有序Ti02纳米管阵列,并提出纳米管“兼并”的概念.结合FE-SEM分析并验证了Macak等人提出的pH值梯度理论,并在此基础上用双电层理论解释了“兼并”的形成机理,同时解释了初期纳米管管径进一步增大的原因.%In this article, highly ordered TiO2 nanotube arrays were prepared by electrochemical anodization. The concept of ' mergers' was proposed. pH gradient theory put forward by Macak was verified with SEM images and the formation mechanism of ' mergers' of titania nanotubes was explained by the effect of electric double layer. The reasons of the further augment of orig inal nanotubes' diameters were also analyzed.

  8. Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes.

    Science.gov (United States)

    Matthews, Percival G; Chesney, Dana L

    2015-05-01

    This study presents evidence that humans have intuitive, perceptually based access to the abstract fraction magnitudes instantiated by nonsymbolic ratio stimuli. Moreover, it shows these perceptually accessed magnitudes can be easily compared with symbolically represented fractions. In cross-format comparisons, participants picked the larger of two ratios. Ratios were presented either symbolically as fractions or nonsymbolically as paired dot arrays or as paired circles. Response patterns were consistent with participants comparing specific analog fractional magnitudes independently of the particular formats in which they were presented. These results pose a challenge to accounts that argue human cognitive architecture is ill-suited for processing fractions. Instead, it seems that humans can process nonsymbolic ratio magnitudes via perceptual routes and without recourse to conscious symbolic algorithms, analogous to the processing of whole number magnitudes. These findings have important implications for theories regarding the nature of human number sense - they imply that fractions may in some sense be natural numbers, too.

  9. Quantum-dot emitters in photonic nanostructures

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The spontaneous emission from self-assembled semiconductor quantum dots is strongly influenced by the environment in which they are placed. This can be used to determine fundamental optical properties of the quantum dots as well as to manipulate and control the quantum-dot emission itself....

  10. Membrane analysis with amphiphilic carbon dots.

    Science.gov (United States)

    Nandi, Sukhendu; Malishev, Ravit; Parambath Kootery, Kaviya; Mirsky, Yelena; Kolusheva, Sofiya; Jelinek, Raz

    2014-09-14

    Newly-synthesized amphiphilic carbon dots were used for spectroscopic analysis and multicolour microscopic imaging of membranes and live cells. We show that Förster resonance energy transfer (FRET) occurred from the amphiphilic carbon dots to different membrane-associated fluorescence acceptors. The amphiphilic carbon dots enabled imaging of membrane disruption by the beta-amyloid peptide.

  11. Beer's law in semiconductor quantum dots

    CERN Document Server

    Adamashvili, G T

    2010-01-01

    The propagation of a coherent optical linear wave in an ensemble of semiconductor quantum dots is considered. It is shown that a distribution of transition dipole moments of the quantum dots changes significantly the polarization and Beer's absorption length of the ensemble of quantum dots. Explicit analytical expressions for these quantities are presented.

  12. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  13. Ultrafast spectroscopy of quantum dots

    CERN Document Server

    Foo, E

    2001-01-01

    exchange-correlation interactions among the confined carriers inside the dots are suggested to be responsible. A density functional calculation for BGR of the ground state transition shows good agreement with our experimental results, especially in the high dot occupancy regime. Many-particle state scattering gives rise to large homogeneous spectral broadening of the PL peaks, from which an intradot relaxation time approx 300 fs is estimated. This observation supports the results obtained by direct excitation of carriers within the QDs. Femtosecond time-resolved photoluminescence measured by frequency up-conversion has been used to investigate carrier dynamics in InAs/GaAs self-assembled quantum dots (QDs). Our results reveal ultrafast carrier relaxation and sequential state filling. Carrier relaxation is proposed to occur by Auger-type processes, and the sequential state filling suggests that intradot relaxation is much faster than carrier capture from the InAs wetting layer. Measurements obtained by direct ...

  14. Resolution of Holliday junction recombination intermediates by wild-type and mutant IntDOT proteins.

    Science.gov (United States)

    Kim, Seyeun; Gardner, Jeffrey F

    2011-03-01

    CTnDOT encodes an integrase that is a member of the tyrosine recombinase family. The recombination reaction proceeds by sequential sets of genetic exchanges between the attDOT site in CTnDOT and an attB site in the chromosome. The exchanges are separated by 7 base pairs in each site. Unlike most tyrosine recombinases, IntDOT exchanges sites that contain different DNA sequences between the exchange sites to generate Holliday junctions (HJs) that contain mismatched bases. We demonstrate that IntDOT resolves synthetic HJs in vitro. Holliday junctions that contain identical sequences between the exchange sites are resolved into both substrates and products, while HJs that contain mismatches are resolved only to substrates. This result implies that resolution of HJs to products requires the formation of a higher-order nucleoprotein complex with natural sites containing IntDOT. We also found that proteins with substitutions of residues (V95, K94, and K96) in a putative alpha helix at the junction of the N and CB domains (coupler region) were defective in resolving HJs. Mutational analysis of charged residues in the coupler and the N terminus of the protein did not provide evidence for a charge interaction between the regions of the protein. V95 may participate in a hydrophobic interaction with another region of IntDOT.

  15. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    Science.gov (United States)

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  16. Quantum dots formed in InSb/AlAs and AlSb/AlAs heterostructures

    Science.gov (United States)

    Abramkin, D. S.; Rumynin, K. M.; Bakarov, A. K.; Kolotovkina, D. A.; Gutakovskii, A. K.; Shamirzaev, T. S.

    2016-06-01

    The crystal structure of new self-assembled InSb/AlAs and AlSb/AlAs quantum dots grown by molecularbeam epitaxy has been investigated by transmission electron microscopy. The theoretical calculations of the energy spectrum of the quantum dots have been supplemented by the experimental data on the steady-state and time-resolved photoluminescence spectroscopy. Deposition of 1.5 ML of InSb or AlSb on the AlAs surface carried out in the regime of atomic-layer epitaxy leads to the formation of pseudomorphically strained quantum dots composed of InAlSbAs and AlSbAs alloys, respectively. The quantum dots can have the type-I and type-II energy spectra depending on the composition of the alloy. The ground hole state in the quantum dot belongs to the heavy-hole band and the localization energy of holes is much higher than that of electrons. The ground electron state in the type-I quantum dots belongs to the indirect X XY valley of the conduction band of the alloy. The ground electron state in the type-II quantum dots belongs to the indirect X valley of the conduction band of the AlAs matrix.

  17. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  18. Surface processes during purification of InP quantum dots.

    Science.gov (United States)

    Mordvinova, Natalia; Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana

    2014-01-01

    Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  19. Imaging electrostatically confined Dirac fermions in graphene quantum dots

    Science.gov (United States)

    Lee, Juwon; Wong, Dillon; Velasco, Jairo, Jr.; Rodriguez-Nieva, Joaquin F.; Kahn, Salman; Tsai, Hsin-Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid S.; Crommie, Michael F.

    2016-11-01

    Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries. Reflection and transmission at these boundaries affect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states. Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.

  20. Nanoscale quantum-dot supercrystals

    Science.gov (United States)

    Baimuratov, Anvar S.; Turkov, Vadim K.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory allowing one to calculate the energy spectra and wave functions of collective excitations in twoand three-dimensional quantum-dot supercrystals. We derive analytical expressions for the energy spectra of twodimensional supercrystals with different Bravias lattices, and use them to analyze the possibility of engineering the supercrystals' band structure. We demonstrate that the variation of the supercrystal's parameters (such as the symmetry of the periodic lattice and the properties of the quantum dots or their environment) enables an unprecedented control over its optical properties, thus paving a way towards the development of new nanophotonics materials.

  1. Miniaturized fluorescent RNA dot blot method for rapid quantitation of gene expression

    Directory of Open Access Journals (Sweden)

    Yadetie Fekadu

    2004-06-01

    Full Text Available Abstract Background RNA dot blot hybridization is a commonly used technique for gene expression assays. However, membrane based RNA dot/slot blot hybridization is time consuming, requires large amounts of RNA, and is less suited for parallel assays of more than one gene at a time. Here, we describe a glass-slide based miniaturized RNA dot blot (RNA array procedure for rapid and parallel gene expression analysis using fluorescently labeled probes. Results RNA arrays were prepared by simple manual spotting of RNA onto amino-silane coated microarray glass slides, and used for two-color fluorescent hybridization with specific probes labeled with Cy3 and 18S ribosomal RNA house-keeping gene probe labeled with Cy5 fluorescent dyes. After hybridization, arrays were scanned on a fluorescent microarray scanner and images analyzed using microarray image analysis software. We demonstrate that this method gives comparable results to Northern blot analysis, and enables high throughput quantification of transcripts from nanogram quantities of total RNA in hundreds of samples. Conclusion RNA array on glass slide and detection by fluorescently labeled probes can be used for rapid and parallel gene expression analysis. The method is particularly well suited for gene expression assays that involve quantitation of many transcripts in large numbers of samples.

  2. Resolution of Mismatched Overlap Holliday Junction Intermediates by the Tyrosine Recombinase IntDOT.

    Science.gov (United States)

    Ringwald, Kenneth; Yoneji, Sumiko; Gardner, Jeffrey

    2017-05-15

    CTnDOT is an integrated conjugative element found in Bacteroides species. CTnDOT contains and transfers antibiotic resistance genes. The element integrates into and excises from the host chromosome via a Holliday junction (HJ) intermediate as part of a site-specific recombination mechanism. The CTnDOT integrase, IntDOT, is a tyrosine recombinase with core-binding, catalytic, and amino-terminal (N) domains. Unlike well-studied tyrosine recombinases, such as lambda integrase (Int), IntDOT is able to resolve Holliday junctions containing heterology (mismatched bases) between the sites of strand exchange. All known natural isolates of CTnDOT contain mismatches in the overlap region between the sites of strand exchange. Previous work showed that IntDOT was unable to resolve synthetic Holliday junctions containing mismatched bases to products in the absence of the arm-type sites and a DNA-bending protein. We constructed synthetic HJs with the arm-type sites and tested them with the Bacteroides host factor (BHFa). We found that the addition of BHFa stimulated resolution of HJ intermediates with mismatched overlap regions to products. In addition, the L1 site is required for directionality of the reaction, particularly when the HJ contains mismatches. BHFa is required for product formation when the overlap region contains mismatches, and it stimulates resolution to products when the overlap region is identical. Without this DNA bending, the N domain of IntDOT is likely unable to bind the L1 arm-type site. These findings suggest that BHFa bends DNA into the necessary conformation for the higher-order complexes, including the L1 site, that are required for product formation.IMPORTANCE CTnDOT is a mobile element that carries antibiotic resistance genes and moves by site-selective recombination and subsequent conjugation. The recombination reaction is catalyzed by an integrase IntDOT that is a member of the tyrosine recombinase family. The reaction proceeds through ordered

  3. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  4. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles.

    Science.gov (United States)

    Debnath, Ratan; Tang, Jiang; Barkhouse, D Aaron; Wang, Xihua; Pattantyus-Abraham, Andras G; Brzozowski, Lukasz; Levina, Larissa; Sargent, Edward H

    2010-05-05

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm(2) that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere.

  5. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    KAUST Repository

    Debnath, Ratan

    2010-05-05

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.

  6. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide

    Science.gov (United States)

    Chang, Geng-rong; Ma, Fei; Ma, Da-yan; Xu, Ke-wei

    2010-11-01

    Silicon quantum dots embedded in an amorphous matrix of silicon carbide were realized by a magnetron co-sputtering process and post-annealing. X-ray photoelectron spectroscopy, glancing x-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used to characterize the chemical composition and the microstructural properties. The results show that the sizes and size distribution of silicon quantum dots can be tuned by changing the annealing atmosphere and the atom ratio of silicon and carbon in the matrix. A physicochemical mechanism is proposed to demonstrate this formation process. Photoluminescence measurements indicate a multi-band configuration due to the quantum confinement effect of silicon quantum dots with different sizes. The PL spectra are further widened as a result of the existence of amorphous silicon quantum dots. This multi-band configuration would be extremely advantageous in improving the photoelectric conversion efficiency of photovoltaic solar cells.

  7. Electrostatic Control of Single IndiumArsenic Quantum Dots using IndiumPhosphorus Nanotemplates

    Science.gov (United States)

    Cheriton, Ross

    This thesis focuses on pioneering a scalable route to fabricate quantum information devices based upon single InAs/InP quantum dots emitting in the telecommunications wavelength band around lambda = 1550 nm. Using metallic gates in combination with nanotemplate, site-selective epitaxy techniques, arrays of single quantum dots are produced and electrostatically tuned with a high degree of control over the electrical and optical properties of each individual quantum dot. Using metallic gates to apply local electric fields, the number of electrons within each quantum dot can be tuned and the nature of the optical recombination process controlled. Four electrostatic gates mounted along the sides of a square-based, pyramidal nanotemplate in combination with a flat metallic gate on the back of the InP substrate allow the application of electric fields in any direction across a single quantum dot. Using lateral fields provided by the metallic gates on the sidewalls of the pyramid and a vertical electric field able to control the charge state of the quantum dot, the exchange splitting of the exciton, trion and biexciton are measured as a function of gate voltage. A quadrupole electric field configuration is predicted to symmetrize the product of electron and hole wavefunctions within the dot, producing two degenerate exciton states from the two possible optical decay pathways of the biexciton. Building upon these capabilities, the anisotropic exchange splitting between the exciton states within the biexciton cascade is shown to be reversibly tuned through zero for the first time. We show direct control over the electron and hole wavefunction symmetry, thus enabling the entanglement of emitted photon pairs in asymmetric quantum dots. Optical spectroscopy of single InAs/InP quantum dots atop pyramidal nanotemplates in magnetic fields up to 28T is used to examine the dispersion of the s, p and d shell states. The g-factor and diamagnetic shift of the exciton and charged

  8. Chemical Control of Lead Sulfide Quantum Dot Shape, Self-Assembly, and Charge Transport

    Science.gov (United States)

    McPhail, Martin R.

    Lead(II) sulfide quantum dots (PbS QDs) are a promising excitonic material for numerous application that require that control of fluxes of charge and energy at nanoscale interfaces, such as solar energy conversion, photo- and electrocatalysis, light emitting diodes, chemical sensing, single-electron logic elements, field effect transistors, and photovoltaics. PbS QDs are particularly suitable for photonics applications because they exhibit size-tunable band-edge absorption and fluorescence across the entire near-infrared spectrum, undergo efficient multi-exciton generation, exhibit a long radiative lifetime, and possess an eight-fold degenerate ground-state. The effective integration of PbS QDs into these applications requires a thorough understanding of how to control their synthesis, self-assembly, and charge transport phenomena. In this document, I describe a series of experiments to elucidate three levels of chemical control on the emergent properties of PbS QDs: (1) the role of surface chemistry in controlling PbS QD shape during solvothermal synthesis, (2) the role of QD shape and ligand functionalization in self-assembly at a liquid-air interface, and (3) the role of QD packing structure on steady-state conductivity and transient current dynamics. At the synthetic level (1), I show that the final shape and surface chemistry of PbS QDs is highly sensitive to the formation of organosulfur byproducts by commonly used sulfur reagents. The insight into PbS QD growth gained from this work is then developed to controllably tune PbS QD shape from cubic to octahedral to hexapodal while maintaining QD size. At the following level of QD self-assembly (2), I show how QD size and shape dictate packing geometry in extended 2D arrays and how this packing can be controllably interrupted in mixed monolayers. I also study the role of ligand structure on the reorganization of QD arrays at a liquid-air interface and find that the specific packing defects in QD arrays vary

  9. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Neeraj Kumar Kamal

    2012-05-01

    We describe a simple model mimicking diffusively coupled chemical micro-oscillators. We characterize the rich variety of dynamical states emerging from the model under variation of time delay in coupling, coupling strength and boundary conditions. The spatiotemporal patterns obtained include clustering, mixed dynamics, inhomogeneous steady states and amplitude death. Further, under delay in coupling, the model yields transitions from phase to antiphase oscillations, reminiscent of that observed in experiments [M Toiya et al, J. Chem. Lett. 1, 1241 (2010)].

  10. Full control of quadruple quantum dot circuit charge states in the single electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, M. R., E-mail: matthieu.delbecq@riken.jp; Nakajima, T.; Otsuka, T.; Amaha, S. [RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan); Watson, J. D. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, M. J. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Tarucha, S. [RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-05-05

    We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.

  11. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots.

    Science.gov (United States)

    Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin

    2016-04-01

    A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.

  12. Photoinduced band filling in strongly confined colloidal PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, B., E-mail: bruno@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210 (Mexico); Ullrich Photonics LLC, Wayne, Ohio 43466 (United States); Xi, H. [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio 43403-0209 (United States); Wang, J. S. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson AFB, Ohio 45433-7707 (United States)

    2014-06-21

    Increase in continuous wave laser excitation (6 W/cm{sup 2} to 120 W/cm{sup 2}) of colloidal PbS quantum dots in the strongly quantized regime (diameters 2.0 nm and 4.7 nm) deposited on semi-insulating GaAs and glass causes a clear blue shift (0.019 eV and 0.080 eV) of the emission spectra. Proof of the applicability of a dynamic three-dimensional band filling model is the significance of the presented results and demonstrates the effective electronic coupling in quantum dot arrays similar to superlattices. The work also reveals the influence of quantum dot sizes on photo-doping effects.

  13. Photoinduced band filling in strongly confined colloidal PbS quantum dots

    Science.gov (United States)

    Ullrich, B.; Xi, H.; Wang, J. S.

    2014-06-01

    Increase in continuous wave laser excitation (6 W/cm2 to 120 W/cm2) of colloidal PbS quantum dots in the strongly quantized regime (diameters 2.0 nm and 4.7 nm) deposited on semi-insulating GaAs and glass causes a clear blue shift (0.019 eV and 0.080 eV) of the emission spectra. Proof of the applicability of a dynamic three-dimensional band filling model is the significance of the presented results and demonstrates the effective electronic coupling in quantum dot arrays similar to superlattices. The work also reveals the influence of quantum dot sizes on photo-doping effects.

  14. Star Formation in Luminous Quasars at 2

    CERN Document Server

    Harris, Kathryn; Schulz, Bernhard; Hatziminaoglou, Evanthia; Viero, Marco; Anderson, Nick; Bethermin, Matthieu; Chapman, Scott; Clements, David L; Cooray, Asantha; Efstathiou, Andreas; Feltre, Anne; Hurley, Peter; Ibar, Eduardo; Lacy, Mark; Oliver, Sebastian; Page, Mathew J; Perez-Fournon, Ismael; Petty, Sara M; Pitchford, Lura K; Rigopoulou, Dimitra; Scott, Douglas; Symeonidis, Myrto; Vieira, Joaquin; Wang, Lingyu

    2016-01-01

    We investigate the relation between star formation rates ($\\dot{M}_{s}$) and AGN properties in optically selected type 1 quasars at $2dot{\\rm{M}}_s$ remains approximately constant with redshift, at $300\\pm100~\\rm{M}_{\\odot}$yr$^{-1}$. Conversely, $\\dot{\\rm{M}}_s$ increases with AGN luminosity, up to a maximum of $\\sim600~\\rm{M}_{\\odot}$yr$^{-1}$, and with CIV FWHM. In context with previous results, this is consistent with a relation between $\\dot{\\rm{M}}_s$ and black hole accretion rate ($\\dot{\\rm{M}}_{bh}$) existing in only parts of the $z-\\dot{\\rm{M}}_{s}-\\dot{\\rm{M}}_{bh}$ plane, dependent on the free gas fraction, the trigger for activity, and the processes that may quench star formation. The relations between $\\dot{\\rm{M}}_s$ and both AGN luminosity and CIV FWHM are consistent with star formation rates in quasars scaling with black hole mass, though we cannot rule out a separate relation with black hole accretion rate. Star formation rates...

  15. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Uddandarao, Priyanka, E-mail: uddandaraopriyanka@gmail.com; B, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2016-05-15

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  16. Different approaches to generate matching effects using arrays in contact with superconducting films.

    Science.gov (United States)

    del Valle, J.; Gomez, A.; Luis-Hita, J.; Rollano, V.; Gonzalez, E. M.; Vicent, J. L.

    2017-02-01

    Superconducting films in contact with non-superconducting regular arrays can exhibit commensurability effects between the vortex lattice and the unit cell of the pinning array. These matching effects yield a slowdown of the vortex flow and the corresponding dissipation decrease. The superconducting samples are Nb films grown on Si substrates. We have studied these matching effects with the array on top, embedded or threading the Nb superconducting films and using different materials (Si, Cu, Ni, Py dots and dots fabricated with Co/Pd multilayers). These hybrids allow for studying the contribution of different pinning potentials to the matching effects. The main findings are: (i) Periodic roughness induced in the superconducting film is enough to generate resistivity minima; (ii) A minor effect is achieved by magnetic pinning from periodic magnetic field potentials obtained by dots with out of plane magnetization grown on top of the superconducting film, (iii) In the case of array of magnetic dots embedded in the films, vortex flow probes the magnetic state; i.e. magnetoresistance measurements detect the magnetic state of very small nanomagnets. In addition, we have studied the role played by the local order in the commensurability effects. This was attained using an array that mimics a smectic crystal. We have found that preserving the local order is crucial. If the local order is not retained the magnetoresistance minima vanish.

  17. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy.

  18. Observation of Rabi Splitting from Surface-plasmon Coupled Conduction-state Transitions in Electrically-excited InAs Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Passmore, Brian S.; Adams, David C.; Ribaudo, Troy; Wasserman, Daniel; Lyon, Stephen; Chow, Weng W.; Shaner, Eric A.

    2011-02-09

    We demonstrate strong coupling between a surface plasmon and intersublevel transitions in self-assembled InAs quantum dots. The surface plasmon mode exists at the interface between the semiconductor emitter structure and a periodic array of holes perforating a metallic Pd/Ge/Au film that also serves as the top electrical contact for the emitters. Spectrally narrowed quantum-dot electroluminescence was observed for devices with varying subwavelength hole spacing. Devices designed for 9, 10, and 11 μm wavelength emission also exhibit a significant spectral splitting. The association of the splitting with quantum-dot Rabi oscillation is consistent with results from a calculation of spontaneous emission from an interacting plasmonic field and quantum-dot ensemble. The fact that this Rabi oscillation can be observed in an incoherently excited, highly inhomogeneously broadened system demonstrates the utility of intersublevel transitions in quantum dots for investigations of coherent transient and quantum coherence phenomena.

  19. Silanization of Low-Temperature-Plasma Synthesized Silicon Quantum Dots for Production of a Tunable, Stable, Colloidal Solution

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I. E.; Shircliff, R. A.; Macauley, C.; Smith, D. K.; Lee, B. G.; Agrawal, S.; Stradins, P.; Collins, R. T.

    2012-02-16

    We present a method for grafting silanes onto low-temperature-plasma synthesized silicon quantum dots. The resulting solution of dots is characterized with Fourier transform infrared spectroscopy and transmission electron microscopy, and determined to be a colloidal suspension. The silane is attached at a single point on the quantum dot surface to avoid cross-linking and multilayer formation, and photoluminescence spectroscopy shows the colloidal suspension of dots is stable for over two months in air. The hydroxyl-terminated surfaces required for silanization are created by wet chemical etch, which can be used to tune the luminescence of the silicon dots in the green- to red-wavelength range. We find, however, that the wet etch cannot move the emission into the blue-wavelength range and discuss this observation in terms of the nature of etching process and origin of the emission. In addition, we discuss the photoluminescence quantum yield in the context of other passivation and synthetic techniques.

  20. DOT strategies versus orbiter strategies

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    The Dutch Open Telescope is a high-resolution solar imager coming on-line at La Palma. The definition of the DOT science niche, strategies, and requirements resemble Solar Orbiter considerations and deliberations. I discuss the latter in the light of the former, and claim that multi-line observation

  1. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis, stro

  2. Colloidal quantum dot solar cells

    Science.gov (United States)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  3. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  4. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of addit

  5. Environmental conditions influence for real-time hologram formation on dichromated polyvinyl alcohol NiCl{sub 2}{center_dot}6H{sub 2}O doped films

    Energy Technology Data Exchange (ETDEWEB)

    Fontanilla-Urdaneta, R C; Olivares-Perez, A; Fuentes-Tapia, I; Rios-Velasco, M A, E-mail: rfontanilla@inaoep.mx, E-mail: olivares@inaoep.mx, E-mail: ifuentes@inaoep.mx, E-mail: moni_arv@hotmail.com [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro No. 1 Tonantzintla, Puebla (Mexico)

    2011-01-01

    The real-time holographic gratings recording are studied by the presence of a metallic salt. The experimental process refers to analysis of diffraction efficiency by the influence of humidity in the coating solution on holograms formation in presence of electrical potential. The diffraction efficiency is measured as a function of the exposure energy until reach the saturation. The influence of the hologram parameters to get the diffraction efficiency is studied at room conditions.

  6. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic...

  7. Colloidal quantum dot materials for infrared optoelectronics

    Science.gov (United States)

    Arinze, Ebuka S.; Nyirjesy, Gabrielle; Cheng, Yan; Palmquist, Nathan; Thon, Susanna M.

    2015-09-01

    Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.

  8. Ultrafast laser-induced formation of surface micro-structuring on quantum dot coated glass%超快激光对涂有量子点玻璃表面的微构造

    Institute of Scientific and Technical Information of China (English)

    任玉; 王玥; 秦沛; 胡思怡; 刘丽炜; 李野

    2016-01-01

    The fabrication induced by ultrafast laser illumination on solid surface has been widely illustrated in the field of la-ser physics.A new nanoscale-structure fabrication method based on the local surface plasmon resonance of the quantum dots (QDs)which are adhered on the substrate is demonstrated.By illuminating a K9 substrate which has been coated by Cu2 S QDs with femtosecond laser,a series of grating-like and sub-wavelength period strips are achieved.The interval between each strip is nearly 34 nm when the central wavelength,pulse duration and illumination power of the laser are 1300 nm,50 fs and 230 mW re-spectively.Moreover,the mechanism of inducing period strips has been demonstrated by the simulated near field distribution of the adhered QDs on substrate.The result shows that the period strips result from the interference between femtosecond laser and localized plasmon induced by QDs.This preparation method can not only reduce the laser threshold of nanoscale-structure fabrica-tion of transparent medium,but also improve the processing technology of the micro-nano structure on the surface of the trans-parent substrate.%基于金属量子点的局域等离激元效应,提出一种新的固体介质表面微结构的制备方法。利用飞秒激光辐照涂有 Cu2 S 量子点的 K9玻璃,在其表面制备出了类似光栅结构的亚波长周期性条纹。当飞秒激光的中心波长为1300 nm、脉宽为50 fs、激光功率为230 mW 时,玻璃表面的亚波长周期性条纹结构尺寸为34 nm。通过模拟得到了附有 Cu2 S 量子点玻璃表面的近场分布,模拟结果表明,出现这种周期性条纹结构是入射飞秒激光与量子点产生的等离激元场之间产生干涉引起的。该制备方法可以降低透明介质微构造的激光功率阈值,改善了透明基质表面的微纳结构加工工艺。

  9. Spin transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.T. da Cunha; Anda, Enrique V. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2003-07-01

    Full text: We investigate the spin polarized transport properties of a nanoscopic device constituted by a quantum dot connected to two leads. The electrical current circulates with a spin polarization that is modulated via a gate potential that controls the intensity of the spin-orbit coupling, the Rashba effect. We study a polarized field-effect transistor when one of its parts is constituted by a small quantum dot, which energies are controlled by another gate potential operating inside the confined region. The high confinement and correlation suffered by the charges inside the dot gives rise to novel phenomena. We show that through the manipulation of the gate potential applied to the dot it is possible to control, in a very efficient way, the intensity and polarization of the current that goes along the system. Other crucial parameters to be varied in order to understand the behavior of this system are the intensity of the external applied electric and magnetic field. The system is represented by the Anderson Impurity Hamiltonian summed to a spin-orbit interaction, which describes the Rashba effect. To obtain the current of this out-of-equilibrium system we use the Keldysh formalism.The solution of the Green function are compatible with the Coulomb blockade regime. We show that under the effect of a external magnetic field, if the dot is small enough the device operates as a complete spin filter that can be controlled by the gate potential. The behavior of this device when it is injected into it a polarized current and modulated by the Rashba effect is as well studied. (author)

  10. Encoded cell grating array in anti-counterfeit technology

    Institute of Scientific and Technical Information of China (English)

    Zhongyu Chen; N. K. Bao; Po S. Chung

    2005-01-01

    @@ The dot matrix hologram (DMH) has been widely used in anti-counterfeiting label. With the same technology and cell array configuration, we can encode to the incidence beam. These codes can be some image matrix grating with different grating gap and different grating orientation. When the multi-level phase diffractive grating is etched, the incidence beam on the cell appears as an encoding image. When the encoded grating and DMH are used in the same label synchronously, the technology of multi-encoded grating array enhances the anti-counterfeit ability.

  11. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Xuefeng, E-mail: zhuxf@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Zhou, Shenghai [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China); Gan, Wei [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yuan, Qunhui, E-mail: yuanqh@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-08-30

    Highlights: • First application of a DNA derived fluorescent bio-dot for metal sensing. • Bio-dot was conveniently obtained via a mild thermal hydro-thermal synthesis. • Bio-dot was directly used for fluorescent sensing without further modification. • Bio-dot showed good fluorescent sensing property for Hg(II) and Ag(I). • Formation of T–Hg–T and C–Ag–C structures played key roles in sensing. - Abstract: Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0–0.5 μM and 0.5–6 μM for Hg(II) and one linear range of 0–10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%.

  12. Magnetic domain structure and magnetization reversal in submicron-scale Co dots

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, C J; Fernandez, A; Gibbons, M; Wall, M A

    1998-09-24

    We present a magnetic force microscopy (MFM) analysis of arrays of submicron-scale Co dots fabricated by interference lithography. The dots are thin (180--300 Å) and elliptical in shape. MFM reveals that these structures relax into highly ordered remanent states whose symmetry and configuration are governed by their shape anisotropy. In particular, when the dots are saturated along their long-axis, a uniformly magnetized state persists at remanence. However, when the dots are saturated along their short-axis, they relax into a single-vortex state in which the circulation can have either sign. Both states are characterized by smoothly varying magnetization patterns and a high degree of uniformity across the array. We attribute the ordered behavior of these.structures to the film microstructure, which allows the shape anisotropy to dominate over magnetocrystalline anjsotropy. By imaging a series of minor-loop remanent states, we show that magnetization reversal in these structures occurs via the nucleation and annihilation of a single vortex. Magnetic hysteresis loop measurements are consistent with these observations and provide additional details. Furthermore, we present the results of micromagnetic simulations, which are in excellent agreement with both the MFM images and the hysteresis loop measurements. © 1998 Elsevier Science B.V. All rights reserved.

  13. Magnetic domain structure and magnetization reversal in submicron-scale Co dots

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A., LLNL

    1998-02-17

    We present a magnetic force microscopy (MFM) analysis of arrays of submicron-scale Co dots fabricated by interference lithography. The dots are thin (180-300 A) and are elliptical in shape. MFM of these structures reveals that they relax into highly ordered remanent states whose symmetry and configuration are governed by their shape anisotropy. In particular, when the dots are saturated along the easy-axis, a uniformly magnetized state persists at remanence. However, when the dots are saturated in hard-axis, they relax into a single-vortex state in which the circulation can have either sign. Both remanent states are characterized by smoothly varying magnetization patterns and a high degree of uniformity across the array. We attribute the ordered behavior of these structures to the film microstructure, which allows the shape anisotropy to dominate over magnetocrystalline anisotropy. By imaging a series of minor-loop remanent states, we show that magnetization reversal in these structures occurs via the nucleation and annihilation of a single vortex. Magnetic hysteresis loop measurements are consistent with these observations and provide additional details. Furthermore, we present the results of micromagnetic simulations, which are in excellent agreement with both the MFM images and the hysteresis loop measurements.

  14. Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array

    Science.gov (United States)

    Liu, W.; Zhong, W.; Qiu, L. J.; Lü, L. Y.; Du, Y. W.

    2006-06-01

    We have demonstrated a simple and universal morphology-controlled growth of 2D ordered Fe/SiO2 magnetic nanodots array, which was based on 2D colloidal monolayer template composed of polystyrene (PS) spheres and one-step sol-gel spin-coating technique. The Fe/SiO2 nanodots have a well-ordered structure arranged in a hexagonal pattern. The dots have the shape of quasi-pyramidal tetrahedron, which reside in the interstitial region between three PS spheres and the substrate. Magnetic measurements reveal that the nanodots array exhibits the in-plane easy magnetization direction. Compared with the unpatterned Fe/SiO2 thin film, the dots array has lower saturated field, higher remanence and coercivity. The present method is applicable to 2D ordered nanodots array of other magnetic materials.

  15. Nanostructured Quantum Dots or Dashes in Photovoltaic Devices and Methods Thereof

    Science.gov (United States)

    Raffaele, Ryne P. (Inventor); Wilt, David M. (Inventor)

    2015-01-01

    A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.

  16. Carbon dots as antioxidants and prooxidants.

    Science.gov (United States)

    Christensen, Ingeborg Lie; Sun, Ya-Ping; Juzenas, Petras

    2011-10-01

    In this study we report the effect of classical CdSe/ZnS quantum dots and novel spherical carbon dots on generation of singlet oxygen and other reactive oxygen species (ROS) in aqueous solutions in vitro. Free radicals were initiated either chemically using 2,2'-azodiisobutyramidine dihydrochloride (AAPH) or by radiation with a blue light source emitting 390-470 nm (peak 420 nm). Two reagents, dihydrorhodamine 123 (Dhr123) and singlet oxygen sensor green (SOSG), were used as radical probes. Quantum dots and carbon dots inhibited oxidation of the radical probes under decomposition of AAPH. However, when subjected to the blue light both the quantum dots and carbon dots induced oxidation of Dhr123 to a greater extent than SOSG in water. Generation of singlet oxygen was remarkably enhanced in deuterium oxide solutions while oxidation of Dhr123 remained unchanged. For comparison, traditional photosensitizer protoporphyrin IX mainly induced oxidation of SOSG in water. In conclusion, upon external radiation carbon dots or quantum dots generate reactive oxygen species acting as prooxidants. Carbon dots or quantum dots also scavenge free radicals that are generated chemically by an azo compound. Such dual properties of these nanoparticles can be used for photodynamic and photocatalytic or antioxidant applications.

  17. Probing silicon quantum dots by single-dot techniques

    Science.gov (United States)

    Sychugov, Ilya; Valenta, Jan; Linnros, Jan

    2017-02-01

    Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.

  18. Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots.

    Science.gov (United States)

    Raymond, S; Studenikin, S; Sachrajda, A; Wasilewski, Z; Cheng, S J; Sheng, W; Hawrylak, P; Babinski, A; Potemski, M; Ortner, G; Bayer, M

    2004-05-07

    Performing optical spectroscopy of highly homogeneous quantum dot arrays in ultrahigh magnetic fields, an unprecedently well resolved Fock-Darwin spectrum is observed. The existence of up to four degenerate electronic shells is demonstrated where the magnetic field lifts the initial degeneracies, which reappear when levels with different angular momenta come into resonance. The resulting level shifting and crossing pattern also show evidence of many-body effects such as the mixing of configurations and exciton condensation at the resonances.

  19. Implementing a Quantum Algorithm with Exchange-Coupled Quantum Dots: a Feasibility study

    CERN Document Server

    Myrgren, E S

    2003-01-01

    We present Monte Carlo wavefunction simulations for quantum computations employing an exchange-coupled array of quantum dots. Employing a combination of experimentally and theoretically available parameters, we find that gate fidelities greater than 98 % may be obtained with current experimental and technological capabilities. Application to an encoded 3 qubit (nine physical qubits) Deutsch-Josza computation indicates that the algorithmic fidelity is more a question of the total time to implement the gates than of the physical complexity of those gates.

  20. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    Science.gov (United States)

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  1. Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments.

    Science.gov (United States)

    Martynenko, Irina V; Orlova, Anna O; Maslov, Vladimir G; Baranov, Alexander V; Fedorov, Anatoly V; Artemyev, Mikhail

    2013-01-01

    The photoexcitation energy transfer is found and investigated in complexes of CdSe/ZnS cationic quantum dots and chlorin e6 molecules formed by covalent bonding and electrostatic interaction in aqueous solution and in porous track membranes. The quantum dots and chlorin e6 molecules form stable complexes that exhibit Förster resonance energy transfer (FRET) from quantum dots to chlorin e6 regardless of complex formation conditions. Competitive channels of photoexcitation energy dissipation in the complexes, which hamper the FRET process, were found and discussed.

  2. Ultrasmall colloidal PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Nick; Wehrung, Michael; O' Dell, Ryan Andrew [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Sun, Liangfeng, E-mail: lsun@bgsu.edu [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403 (United States)

    2014-09-15

    Ultrasmall colloidal lead sulfide quantum dots can increase the open circuit voltages of quantum-dot-based solar cells because of their large energy gap. Their small size and visible or near infrared light-emitting property make them attractive to the applications of biological fluorescence labeling. Through a modified organometallic route, we can synthesize lead sulfide quantum dots as small as 1.6 nm in diameter. The low reaction temperature and the addition of a chloroalkane cosolvent decrease the reaction rate, making it possible to obtain the ultrasmall quantum dots. - Highlights: • Ultrasmall colloidal PbS quantum dots as small as 1.6 nm in diameter are synthesized. • The quantum dots emit red light with photoluminescence peak at 760 nm. • The growth temperature is as low as 50 °C. • Addition of cosolvent 1,2-dichloroethane in the reaction decreases the reaction rate.

  3. Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture

    Science.gov (United States)

    Borovaya, Mariya N.; Burlaka, Olga M.; Naumenko, Antonina P.; Blume, Yaroslav B.; Yemets, Alla I.

    2016-02-01

    The present study describes a novel method for preparation of water-soluble CdS quantum dots, using bright yellow-2 (BY-2) cell suspension culture. Acting as a stabilizing and capping agent, the suspension cell culture mediates the formation of CdS nanoparticles. These semiconductor nanoparticles were determined by means of an UV-visible spectrophotometer, photoluminescence, high-resolution transmission electron microscopy (HRTEM), and XRD. Followed by the electron diffraction analysis of a selected area, transmission electron microscopy indicated the formation of spherical, crystalline CdS ranging in diameter from 3 to 7 nm and showed wurtzite CdS quantum dots. In the present work, the toxic effect of synthesized CdS quantum dots on Nicotiana tabacum protoplasts as a very sensitive model was under study. The results of this research revealed that biologically synthesized CdS nanoparticles in low concentrations did not induce any toxic effects.

  4. Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    Directory of Open Access Journals (Sweden)

    Güttinger Johannes

    2011-01-01

    Full Text Available Abstract We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of approximately 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field.

  5. Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.

    Science.gov (United States)

    Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín

    2016-04-05

    In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection.

  6. Brightness-equalized quantum dots

    Science.gov (United States)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  7. Synthesis and applications of carbon dots

    OpenAIRE

    Nolan, Andrew Steven

    2015-01-01

    The use of non-invasive methods to visualise and monitor processes inside living organisms is vital in the understanding and diagnosis of disease. The work in this thesis details the synthesis and applications of a new imaging modality; carbon dots, whose inherent fluorescence and non-toxic nature makes them attractive alternatives to more traditional ‘quantum dots’. In this thesis, different methods of carbon dot synthesis were attempted in order to produce carbon dots of t...

  8. Colloidal quantum dots: synthesis, properties and applications

    Science.gov (United States)

    Brichkin, S. B.; Razumov, V. F.

    2016-12-01

    Key recent results obtained in studies of a new class of luminophores, colloidal quantum dots, are analyzed. Modern methods for the synthesis and post-synthetic treatment of colloidal quantum dots that make it possible to achieve record high quantum yield of luminescence and to modify their characteristics for specific applications are considered. Currently important avenues of research on colloidal quantum dots and the problems in and prospects for their practical applications in various fields are discussed. The bibliography includes 272 references.

  9. Statistical Behavior of Formation Process of Magnetic Vortex State in Ni80Fe20 Nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Im, Mi-Young; Fischer, Peter; Keisuke, Yamada; Kasai, Shinya

    2011-01-14

    Magnetic vortices in magnetic nanodots, which are characterized by an in-plane (chirality) and an out-of-plane (polarity) magnetizations, have been intensively attracted because of their high potential for technological application to data storage and memory scheme as well as their scientific interest for an understanding of fundamental physics in magnetic nanostructures. Complete understanding of the formation process of vortex state in magnetic vortex systems is very significant issue to achieve storage and memory technologies using magnetic vortices and understand intrinsic physical properties in magnetic nanostructures. In our work, we have statistically investigated the formation process of vortex state in permalloy (Py, Ni{sub 80}Fe{sub 20}) nanodisks through the direct observation of vortex structure utilizing a magnetic transmission soft X-ray microscopy (MTXM) with a high spatial resolution down to 20 nm. Magnetic imaging in Py nanodots was performed at the Fe L{sub 3} (707 eV) absorption edge. Figure 1 shows in-plane and out-of-plane magnetic components observed in 40 nm thick nanodot arrays with different dot radius of r = 500 and 400 nm, respectively. Vortex chirality, either clockwise (CW) or counter-clockwise (CCW), and polarity, either up or down, are clearly visible in both arrays. To investigate the statistical behavior in formation process of the vortex state, the observation of vortex structure at a remanant state after saturation of nanodots by an external magnetic field of 1 kOe has been repeatedly performed over 100 times for each array. The typical MTXM images of vortex chirality taken in two successive measurements together with their overlapped images in nanodot arrays of r = 500 and 400 nm are displayed in Fig. 2. Within the statistical measurement, the formation process of chirality of either CW or CCW is quite stochastic in each nanodot. Similar behavior is also witnessed in the formation of vortex polarity observed in consecutive

  10. Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Flyvbjerg, Henrik K.;

    2009-01-01

    without additional chemical modification and achieve a high degree of control over local DNA conformation. DNA can be extended between two nanopits and in closely spaced arrays will self-assemble into "connect-the-dots" conformations consisting of locally pinned segments joined by fluctuating linkers...

  11. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  12. POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    L.C.Fai

    2004-01-01

    Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.

  13. Activation of silicon quantum dots for emission

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Miao Xin-Jian; Huang Zhong-Mei; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs.From this point of view,we can build up radiative matter for emission.Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots.Our experimental results demonstrate that annealing is important in the treatment of the activation,and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.

  14. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.

  15. Random Feature Maps for Dot Product Kernels

    CERN Document Server

    Kar, Purushottam

    2012-01-01

    Approximating non-linear kernels using feature maps has gained a lot of interest in recent years due to applications in reducing training and testing times of SVM classifiers and other kernel based learning algorithms. We extend this line of work and present low distortion embeddings for dot product kernels into linear Euclidean spaces. We base our results on a classical result in harmonic analysis characterizing all dot product kernels and use it to define randomized feature maps into explicit low dimensional Euclidean spaces in which the native dot product provides an approximation to the dot product kernel with high confidence.

  16. Thermoelectric energy harvesting with quantum dots.

    Science.gov (United States)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  17. Dissipative tunneling in structures with quantum dots and quantum molecules

    OpenAIRE

    Dahnovsky, Yu. I.; Krevchik, V. D.; Semenov, M. B.; Yamamoto, K.; Zhukovsky, V. Ch.; Aringazin, A. K.; Kudryashov, E. I.; Mayorov, V. G.

    2005-01-01

    The problem of tunneling control in systems "quantum dot - quantum well" (as well as "quantum dot - quantum dot" or quantum molecule) and "quantum dot - bulk contact" is studied as a quantum tunneling with dissipation process in the semiclassical (instanton) approximation. For these systems temperature and correlation between a quantum dot radius and a quantum well width (or another quantum dot radius) are considered to be control parameters. The condition for a single electron blockade is fo...

  18. Functional renormalization group study of parallel double quantum dots: Effects of asymmetric dot-lead couplings

    Science.gov (United States)

    Protsenko, V. S.; Katanin, A. A.

    2017-06-01

    We explore the effects of asymmetry of hopping parameters between double parallel quantum dots and the leads on the conductance and a possibility of local magnetic moment formation in this system using functional renormalization group approach with the counterterm. We demonstrate a possibility of a quantum phase transition to a local moment regime [so-called singular Fermi liquid (SFL) state] for various types of hopping asymmetries and discuss respective gate voltage dependencies of the conductance. We show that, depending on the type of the asymmetry, the system can demonstrate either a first-order quantum phase transition to an SFL state, accompanied by a discontinuous change of the conductance, similarly to the symmetric case, or the second-order quantum phase transition, in which the conductance is continuous and exhibits Fano-type asymmetric resonance near the transition point. A semianalytical explanation of these different types of conductance behavior is presented.

  19. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  20. The Murchison Widefield Array Correlator

    Science.gov (United States)

    Ord, S. M.; Crosse, B.; Emrich, D.; Pallot, D.; Wayth, R. B.; Clark, M. A.; Tremblay, S. E.; Arcus, W.; Barnes, D.; Bell, M.; Bernardi, G.; Bhat, N. D. R.; Bowman, J. D.; Briggs, F.; Bunton, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; deSouza, L.; Ewell-Wice, A.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Herne, D.; Hewitt, J. N.; Hindson, L.; Hurley-Walker, N.; Jacobs, D.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kincaid, B. B.; Koenig, R.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A.; Pathikulangara, J.; Pindor, B.; Prabu, T.; Procopio, P.; Remillard, R. A.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Sault, R. J.; Udaya Shankar, N.; Srivani, K. S.; Stevens, J.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2015-03-01

    The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio-astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA has commenced operations and the correlator is generating 8.3 TB day-1 of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.