WorldWideScience

Sample records for dosimetric measurement results

  1. Results of dosimetric measurements in space missions

    International Nuclear Information System (INIS)

    Reitz, G.; Strauch, K.; Beaujean, R.; Kopp, J.; Leicher, M.; Heilmann, C.

    1997-01-01

    Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different locations inside spacecraft. The detector systems, which supplement each other in their registration characteristics, allow the recording of biologically relevant portions of the radiation field independently. Results are presented and compared with calculations. Dose equivalents for the astronauts have been calculated based on the measurements; they lie between 190 μSv.d -1 and 860 μSv.d -1 . (author)

  2. Results of dosimetric measurements in space missions

    Science.gov (United States)

    Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Leicher, M.; Strauch, K.

    Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 muSv d^-1 to 770 muSv d^-1. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported.

  3. Dosimetric methods and results of measurement for total body electron irradiation

    International Nuclear Information System (INIS)

    Feng Ningyuan; Yu Geng; Yu Zihao

    1987-01-01

    A modified 'STANFORD TSEI TECHNIQUE' e.g. dual angled gantry, 6 turntable angles and 12 fields was developed on PHILIPS SL 75-20 linear accelerator to treat mycosis fungoides. A plastic scatter screen, 5 mm in thickness was used to reduce the primary electron energy to 4 MeV in order to control treatment depth (d 80 approx.= 1.2 cm) and skin dose up to 89%. The X-ray contamination was at an acceptable level of 2%. This measurement which involved multiple dosimetric methods, showed that the distance between the scattor screen and the patient, within 10-30 cm, had no influence on PDD and the dose distribution on the body surface was reasonably homogeneous, but strongly dependent on the anatomic positions. For those sites which were located in the electron beam shadows, boosting irradiation might be necessary. The preliminary clinical trials indicated that this technique is valid and feasible

  4. Dosimetric system for measurement of radioactive contaminations

    International Nuclear Information System (INIS)

    Litynski, Z.; Pienkos, J.P.; Witkowski, J.; Zadrozny, S.

    1985-01-01

    A dosimetric system for personnel dosimetry and monitoring measuring a contamination without time delay and dead time is described. The system ensures many-point measurement and minimalization of background radiation influence. 1 fig. (A.S.)

  5. Dosimetric results of Cosmos 2044

    International Nuclear Information System (INIS)

    Reitz, G.; Buecker, H.; Facius, R.; Schaefer, M.; Beaujean, R.

    1992-01-01

    The experiment flown on Cosmos 2044 is part of the Biostack program. Its objective is to provide data on the composition of the space radiation field inside and outside spacecraft. The experiment consists of plastic track detectors, nuclear emulsions and thermoluminescence (TL) detectors. This detector combination allows for measurement of the LET spectra of the heavy ion component, the number of nuclear disintegrations, the total absorbed dose and the neutron dose. In this report, data on total dose measurements and two preliminary LET spectra of heavy ions are given. The data are compared with those obtained for the Cosmos 1887 mission. (author)

  6. Juridical utilization of dosimetric results

    International Nuclear Information System (INIS)

    Hebert, J.

    1976-01-01

    The problems of the legal use of the results of dosimetry, for the solution of an action for instance, are considered first with respect to civil and occasionally administrative third part liability law making a distinction between common law and the special regime of civil liability for nuclear damage, secondly with respect to social security law [fr

  7. Computerized tomography in Community of Madrid. Reference dosimetric measurements

    International Nuclear Information System (INIS)

    Ruiz Sanz, S.; Calzado, A.; Melchor, M.; Marco, M.

    1994-01-01

    A total of about 43 computed tomography scanners were operating in the Autonomous Community of Madrid during 1991. A sample of 14 facilities was selected to perform dosimetric measurements in order to obtain characteristic dose profiles. From these, some quantities as the computed tomography dose index and the enhancement factor were calculated and analysed for the most common technique settings. Relations were established between the dosimetric results and technical characteristics of the scanners. (Author)

  8. Neutron dosimetric measurements in shuttle and MIR

    International Nuclear Information System (INIS)

    Reitz, G.

    2001-01-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6 LiF (TLD600) and 7 LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6 LiF is sensitive. Based on the difference of absorbed doses in the 6 LiF and 7 LiF chips, thermal neutron fluxes from 1 to 2.3 cm -2 s -1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm -2 is 1.6x10 -10 Gy (Horrowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6x10 -12 Gy cm 2 (for a 10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 μGy d -1 and 120 μGy d -1 . In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with

  9. Dosimetric measurement of the disintegration rate of fission products

    International Nuclear Information System (INIS)

    Solymosi, J.; Nagy, L.G.; Zagyvai, P.

    1992-01-01

    Investigations on the disintegration rate of fission products of 238 U and 239 Pu are presented. The intensity of the β-and γ-radiation of fission products were measured continously in an interval of 1-1300 hours following the fission, offering the possibility for determining the general and specific characteristics of the individual fission products. A universal measuring procedure was elaborated for the rapid in situ determination of the dosimetric features of fission products, which is suitable for the accurate evaluation and prediction of external absorbed dose even in case of fission products of various origin and unknown composition. (author) 6 refs.; 7 figs.; 1 tab

  10. Dosimetric measurements of Onyx embolization material for stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Roberts, Donald A.; Balter, James M.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.

    2012-01-01

    Purpose: Arteriovenous malformations are often treated with a combination of embolization and stereotactic radiosurgery. Concern has been expressed in the past regarding the dosimetric properties of materials used in embolization and the effects that the introduction of these materials into the brain may have on the quality of the radiosurgery plan. To quantify these effects, the authors have taken large volumes of Onyx 34 and Onyx 18 (ethylene-vinyl alcohol copolymer doped with tantalum) and measured the attenuation and interface effects of these embolization materials. Methods: The manufacturer provided large cured volumes (∼28 cc) of both Onyx materials. These samples were 8.5 cm in diameter with a nominal thickness of 5 mm. The samples were placed on a block tray above a stack of solid water with an Attix chamber at a depth of 5 cm within the stack. The Attix chamber was used to measure the attenuation. These measurements were made for both 6 and 16 MV beams. Placing the sample directly on the solid water stack and varying the thickness of solid water between the sample and the Attix chamber measured the interface effects. The computed tomography (CT) numbers for bulk material were measured in a phantom using a wide bore CT scanner. Results: The transmission through the Onyx materials relative to solid water was approximately 98% and 97% for 16 and 6 MV beams, respectively. The interface effect shows an enhancement of approximately 2% and 1% downstream for 16 and 6 MV beams. CT numbers of approximately 2600–3000 were measured for both materials, which corresponded to an apparent relative electron density (RED) ρ e w to water of approximately 2.7–2.9 if calculated from the commissioning data of the CT scanner. Conclusions: We performed direct measurements of attenuation and interface effects of Onyx 34 and Onyx 18 embolization materials with large samples. The introduction of embolization materials affects the dose distribution of a MV therapeutic beam

  11. RPL-SC dosimetric system for measuring gamma and neutron irradiation in case of emergency

    International Nuclear Information System (INIS)

    Khristova, M. G.

    1993-01-01

    A RPL-SC dosimetric system is designed based on radiophotoluminescence (RPL) and on the effect of fast neutron bombardment of silicon semiconductor (SC) diodes. The experimental prototype consists of a computerized automatic measurement system and an individual dosimetric cassette accommodating RPL and SC detectors. The equipment includes: a device for measurement of the direct voltage of Si diodes and the RPL light emitted by RPL detectors; a compartment with dosimetric cassettes to be measured; a manipulator with three positions executing automatic measurement of cassettes; a computer and a printer. The system operates in both manual and automatic modes. In the manual mode each step of the manipulator is set up by the operator who changes the ranges after they have been filled to capacity and registers the results. In the automatic mode the whole process of maintaining the supply and control voltage, of manipulator's operation, measuring, data recording and data processing are controlled by a specially designed computer programme. Main technical parameters: 1) Measurement range of absorbed dose: gamma rays - 10 -3 to 10 2 Gy; thermal neutrons - 10 -3 to 10 2 Gy; fast neutrons - 10 to 30 Gy. 2) Energy range: gamma rays - 0.04 to 1.25 MeV; thermal neutrons - 0.024 eV; fast neutrons - 0.3 to 14 MeV. 3) Relative measurement error - ±15% 4) Recurrent measurement of one and the same dose. 5) Measurement time of 1 detector - 15 sec. (author)

  12. Use of a dosimetric system using a SMT phototransistor in the measurement for some dosimetric parameters in conventional radiotherapy

    International Nuclear Information System (INIS)

    Silva, J.O. da; Magalhaes, C.M.S. de; Santos, L.A.P.

    2008-01-01

    For monitoring the delivered dose in the patient undergoing a cancer treatment with high-energy ionizing radiation beams is necessary to use appropriate dosimeters for the beam control quality and if it is possible, to obtain the dose information during the treatment. For this, semiconductor-based devices are used because of their high spatial resolution and to be easy to handle in spite of the ionization chambers. Nowadays the bipolar phototransistors are being proposed as ionizing radiation detectors for presenting, beyond these characteristics, the signal amplification factor (gain). So, the aim of this work is to present the use of a dosimetric system using a SMT phototransistor in the measurement for some dosimetric parameters in conventional radiotherapy: the field factor and the off-axis ratio. The phototransistors readings were compared with ones obtained from a PTW 23343 Markus chamber, under the same conditions. (author)

  13. Dosimetric and spectrometric neutron measurements around an annular vessel containing a plutonium nitrate fissile solution

    CERN Document Server

    Tournier, B; Medioni, R; Rich, C; Mussoni, F; Camus, L; Pichenot, G; Crovisier, P; Cutarella, D; Asselineau, B; Groetz, J E

    2002-01-01

    The new ICPR60 recommendations and the consideration of the ALARA principle have led the operators of nuclear facilities to evaluate with a higher care, the doses received by workers. The aim of this paper is to present a recent study concerning mixed field characterisation at a workplace located in a reprocessing laboratory. As a first step, neutron spectrum determination was achieved by two ways: simulation using MCNP code and experimental measurements with Bonner spheres and recoil proton counters. Neutron spectrum allowed the evaluation of dosimetric quantities. Measurements were then performed with different devices routinely used in radioprotection. The describe the measurement techniques, present the results obtained, and finally compare and discuss them.

  14. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin [Laboratory of Experimental Radiotherapy, KU Leuven Department of Oncology, Herestraat 49, 3000 Leuven (Belgium); Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Defraene, Gilles [Laboratory of Experimental Radiotherapy, KU Leuven Department of Oncology, Herestraat 49, 3000 Leuven, Belgium and KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven (Belgium); Van Herck, Hans [KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven, Belgium and KU Leuven Department of Electrical Engineering (ESAT)–PSI, Center for Processing Speech and Images, 3000 Leuven (Belgium); Maes, Frederik [KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven (Belgium); KU Leuven Department of Electrical Engineering (ESAT)–PSI, Center for Processing Speech and Images, 3000 Leuven (Belgium); Medical IT Department, KU Leuven iMinds, 3000 Leuven (Belgium); Van den Heuvel, Frank [Department of Oncology, MRC-CR-UK Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford OX1 2JD (United Kingdom)

    2016-05-15

    Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously

  15. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Labby, Zacariah E., E-mail: zelabby@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin–Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Chaudhary, Neeraj [Division of Neurointerventional Radiology, Departments of Radiology and Neurosurgery, University of Michigan Hospital and Health Systems, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Gemmete, Joseph J. [Division of Neurointerventional Radiology, Departments of Radiology, Neurosurgery, and Otolaryngology, University of Michigan Hospital and Health Systems, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Pandey, Aditya S. [Department of Neurosurgery, University of Michigan Hospital and Health Systems, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Roberts, Donald A. [Radiation Physics Division, Department of Radiation Oncology, University of Michigan Hospital and Health Systems, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States)

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively

  16. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd source

    International Nuclear Information System (INIS)

    Sadeghi, Mahdi; Hosseini, Hamed; Raisali, Gholamreza

    2008-01-01

    Full text: The use of 103 Pd seed sources for permanent prostate implantation has become a popular brachytherapy application. As recommended by AAPM the dosimetric characteristics of the new source must be determined using experimental and Monte Carlo simulations, before its use in clinical applications thus The goal of this report is the experimental and theoretical determination of the dosimetric characteristics of this source following the recommendations in the AAPM TG-43U1 protocol. Figure 1 shows the geometry of the IRA- 103 Pd source. The source consists of a cylindrical silver core, 0.3 cm long x 0.05 cm in diameter, onto which 0.5 nm layer of 103 Pd has been uniformly adsorbed. The effective active length of source is 0.3 cm and the silver core encapsulated inside a hollow titanium tube with 0.45 cm long, 0.07 cm and 0.08 inner and outer diameters and two caps. The Monte Carlo N-Particle (MCNP) code, version 4C, was used to determine the relevant dosimetric parameters of the source. The geometry of the Monte Carlo simulation performed in this study consisted of a sphere with 30 cm diameter. Dose distributions around this source were measured in two Perspex phantom using enough TLD chips. For these measurements, slabs of Perspex material were machined to accommodate the source and TLD chips. A value of 0.67± 1% cGy.h -1 .U -1 for, Λ, was calculated as the ratio of d(r 0 ,θ 0 ) and s K , that may be compared with Λ values obtained for 103 Pd sources. Result of calculations and measurements values of dosimetric parameters of the source including radial dose function, g(r), and anisotropy function, F(r,θ), has been shown in separate figures. The radial dose function, g(r), for the IRA- 103 Pd source and other 103 Pd sources is included in Fig. 2. Comparison between measured and Monte Carlo simulated dose function, g(r), and anisotropy function, F(r,θ), of this source demonstrated that they are in good agreement with each other and The value of Λ is

  17. Recognition of the dosimetric calibration capacities of Cuba by the International Bureau of Weights and Measures

    International Nuclear Information System (INIS)

    Walwyn S, G.; Gutierrez L, S.; Tamayo G, J.A.; Gonzalez R, N.; Alonso V, G.

    2006-01-01

    The declared mission of the International Bureau of Weights and Measures are the world uniformity of the measurement, however until some years ago a formal mechanism didn't exist for its complete implementation. With this end arose the Mutual Recognition Agreement whose specific objective is to establish the grade of equivalence of the national standards, the one of mutually recognizing the calibration and measurement certificates and the one of providing to the governments of a sure technical tool in its commercial negotiations and regulatory matters at international level. Cuba like an associated country to the Meter Convention, signed the agreement and it intended to demonstrate the international equivalence of its standards. The best measurement and calibration capacities of the country in the dosimetric magnitudes are in the Secondary Laboratory of Dosimetric Calibration of the Protection and Hygiene of Radiations Center. This capacities were included in the Regional Metrological Organization COOMET in the year 2003. In June of the 2005 the metrological capacities have been approved and published in the databases of the International Bureau of Weights and Measures as demonstration of the high competition of the calibration works that its are carried out in the laboratory. This approval is one of the maximum international recognitions that the patterns of a country can receive and its are the result of 10 years of work of the laboratory like part of the international net OIEA/OMS, which has given it the possibility to gauge the patterns and of adopting internationally validated calibration methodologies. On the other hand, it has been decisive the participation of the laboratory in multiple international comparisons of their patterns, as well as the implementation of a system of administration of the quality credited by the competent national organ. The article reviews the technical work of the laboratory during several years that it gave as result this

  18. Effect of the exothermal polymerization reaction on polymer gel dosimetric measurements

    International Nuclear Information System (INIS)

    Sedaghat, Mahbod; Bujold, Rachel; Lepage, Martin

    2010-01-01

    Discrepancies in polymer gel dosimetric measurements have been observed between containers of different sizes receiving the same radiation dose. We hypothesized that these deviations are caused by a change in the rate of polymerization due to internal heat increase in the gel containers resulting from the exothermic polymerization of monomers. Here, we test this hypothesis in a polyacrylamide gel dosimeter by recording the temperature in glass phantoms of different sizes during and after irradiation. The dose response of the samples was determined with magnetic resonance imaging. The difference of R 2 values along the depth of the containers was below ±1%. We discuss that this small difference can be attributed to variations in the rate of gelatin cooling during manufacture rather than to the measured heat increase during irradiation.

  19. Measurement of dosimetric parameters and dose verification in stereotactic radiosurgery (SRS)

    International Nuclear Information System (INIS)

    Reduan Abdullah; Nik Ruzman Nik Idris; Ahmad Lutfi Yusof; Mazurawati Mohamed

    2013-01-01

    Full-text: The purpose of this study was to measure the dosimetric parameters for small photon beams to be used as input data treatment planning computer system (TPS) and to verify dose calculated by TPS in Stereotactic Radiosurgery (SRS) procedure. The beam data required were Percentage Depth Dose (PDD), Off-axis Ratio (OAR), and Scatter Factor of Relative Output Factor. Small beams of 5 mm to 45 mm diameter circular cone collimators used in SRS were utilized for beam data measurements measured using pinpoint 3D ionization chamber (0.016 cc). For second part of this study, we reported the important quality assurance (QA) procedures before SRS treatment that influenced the dose delivery. These QA procedures consist of measurements on the accuracy in target localization and room laser alignment. The dose calculated to be delivered for treatment was verified using pinpoint 3D ionization chamber and TLD 100H. The mean deviation of measured dose using TLD 100H compared to calculated dose was 3.37 %. Beside that, pinpoint ionization 3D chamber give more accurate results of dose compared to TLD 100H. The measured dose using pinpoint 3D ionization chamber are good agreement with calculated dose by TPS with deviation of 2.17 %. The results are acceptable such as recommended by International Commission on Radiation Units and Measurements (ICRU) Report No. 50 (1993) that dose delivered to the target volume must be within ±5 % error. (author)

  20. Development of film dosimetric measurement system for verification of RTP

    International Nuclear Information System (INIS)

    Chen Yong; Bao Shanglian; Ji Changguo; Zhang Xin; Wu Hao; Han Shukui; Xiao Guiping

    2007-01-01

    Objective: To develop a novel film dosimetry system based on general laser scanner in order to verify patient-specific Radiotherapy Treatment Plan(RTP) in three-Dimensional Adaptable Radiotherapy(3D ART) and Intensity Modulated Radiotherapy (IMRT). Methods: Some advanced methods, including film saturated development, wavelet filtering with multi-resolution thresholds and discrete Fourier reconstruction are employed in this system to reduce artifacts, noise and distortion induced by film digitizing with general scanner; a set of coefficients derived from Monte Carlo(MC) simulation are adopted to correct the film over-response to low energy scattering photons; a set of newly emerging criteria, including γ index and Normalized Agreement Test (NAT) method, are employed to quantitatively evaluate agreement of 2D dose distributions between the results measured by the films and calculated by Treatment Planning System(TPS), so as to obtain straightforward presentations, displays and results with high accuracy and reliability. Results: Radiotherapy doses measured by developed system agree within 2% with those measured by ionization chamber and VeriSoft Film Dosimetry System, and quantitative evaluation indexes are within 3%. Conclusions: The developed system can be used to accurately measure the radiotherapy dose and reliably make quantitative evaluation for RTP dose verification. (authors)

  1. Dosimetric and clinical results of three-dimensional conformal radiotherapy for locally recurrent nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zheng Xiaokang; Ma Jun; Chen Longhua; Xia Yunfei; Shi Yusheng

    2005-01-01

    Purpose: To assess the dosimetric and clinical results of three-dimensional conformal radiotherapy (3D CRT) for locally recurrent nasopharyngeal carcinoma (NPC). Methods: A total of 86 patients with locally recurrent NPC were retreated with 3D CRT. The median prescribed dose was 68 Gy with 2 Gy per fractionation. Dosimetric quality was evaluated with dose distribution in planning target volume (PTV) and specified organs at risk (OAR), dose conformity index (CI) and dose homogeneity index (HI). The actuarial rate of local failure-free (LFF), overall survival (OS) and major late toxicities (MLT) were estimated with Kaplan-Meier method. Multivariate analysis for prognosis was performed using the Cox regression proportional hazards model. Results: The mean dose to PTV averaged 66.8 Gy, and the dose to specified OAR was acceptable. The average value of CI and HI was 0.59 and 9.1%. The 5-year actuarial rate of LFF and OS was 71 and 40%, respectively. The 5-year actuarial incidence of MLT≥Grade 3 and ≥Grade 4 were 100 and 49%, respectively. The major prognostic factors were T stage and the size of gross tumor volume (GTV). Advanced T stage and large GTV volume were associated with poor LFF and OS and high risk of MLT. Conclusion: The dosimetric quality of 3D CRT for locally recurrent NPC is generally excellent. A relatively high local control was achieved with this technique. However, the incidence of late toxicities were not found to decrease as originally expected. Early diagnosis of the recurrence and reasonable definition of the target volume are crucial to achieve a better outcome

  2. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    International Nuclear Information System (INIS)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-01-01

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom

  3. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  4. Adaptive radiotherapy for head and neck cancer—Dosimetric results from a prospective clinical trial

    International Nuclear Information System (INIS)

    Schwartz, David L.; Garden, Adam S.; Shah, Shalin J.; Chronowski, Gregory; Sejpal, Samir; Rosenthal, David I.; Chen, Yipei; Zhang, Yongbin; Zhang, Lifei; Wong, Pei-Fong; Garcia, John A.; Kian Ang, K.; Dong, Lei

    2013-01-01

    Purpose: To conduct a clinical trial evaluating adaptive head and neck radiotherapy (ART). Methods: Patients with locally advanced oropharyngeal cancer were prospectively enrolled. Daily CT-guided setup and deformable image registration permitted mapping of dose to avoidance structures and CTVs. We compared four planning scenarios: (1) original IMRT plan aligned daily to marked isocenter (BB); (2) original plan aligned daily to bone (IGRT); (3) IGRT with one adaptive replan (ART1); and (4) actual treatment received by each study patient (IGRT with one or two adaptive replans, ART2). Results: All 22 study patients underwent one replan (ART1); eight patients had two replans (ART2). ART1 reduced mean dose to contralateral parotid by 0.6 Gy or 2.8% (paired t-test; p = 0.003) and ipsilateral parotid by 1.3 Gy (3.9%) (p = 0.002) over the IGRT alone. ART2 further reduced the mean contralateral parotid dose by 0.8 Gy or 3.8% (p = 0.026) and ipsilateral parotid by 4.1 Gy or 9% (p = 0.001). ART significantly reduced integral body dose. Conclusions: This pilot trial suggests that head and neck ART dosimetrically outperforms IMRT. IGRT that leverages conventional PTV margins does not improve dosimetry. One properly timed replan delivers the majority of achievable dosimetric improvement. The clinical impact of ART must be confirmed by future trials

  5. Determination of fast neutron spectra from dosimetric measurements

    International Nuclear Information System (INIS)

    Fiebig, R.

    1986-01-01

    For the evaluation of integrated dose rate measurements the following methods are described: the spectral indices method, the curve fitting method, and the ''optimum fit'' method with a number of simplification for this. Their efficiency and their restrictions are discussed. A proposal is made for combining these methods in a suitable way. (orig.) [de

  6. A system for measuring and processing personnel dosimetric data

    International Nuclear Information System (INIS)

    Neetzel, C.R.; Rochetti, Luis

    1981-01-01

    An operative system for the measurement and on-line processing of personnel dosimetry data is described. The aim is to organize and rationalize the work involved in a personnel dosimetry service. The method considers the application to other areas of radiation protection, as well as the connection and exchange of files among the different personnel monitoring groups. The system can be interfaced with different computers (M.E.L.) [es

  7. Dosimetric pens: evaluation of calibration results in the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes do Instituto de Radioprotecao e Dosimetria (IRD/LNMRI), RJ, Brazil

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Ramos, M.M.O.; Cabral, T.S.; Peixoto, J.G.P.

    2005-01-01

    Dosimetric pens are direct reading personal dosemeters that are used in the practices of radiation protection in industries, hospitals, universities, and research institutes in the country. Quality control of measurements made with these instruments must include their periodical calibration in one of the laboratories of the Calibration Laboratory Network for Ionizing Radiation with the aim to compare the behavior of the measurements made in dosimetric pens of different models and manufacturers, submitted for calibration in the LNMRI/IRD/CNEN (Brazilian Lab for Metrology of Ionizing Radiations of the Institute for Radioprotection and Dosimetry of the Brazilian Nuclear Energy Commission), RJ or national reference laboratory and a member of the Network, in the years of 2000 to 2002. The parameters considered for the purpose of this work were: accuracy and linearity of response and measurement uncertainty evaluated. The results show that among the analyzed models there are changes in behavior

  8. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    International Nuclear Information System (INIS)

    Genebes, Caroline; Filleron, Thomas; Graff, Pierre; Jonca, Frédéric; Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard; Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc

    2013-01-01

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes

  9. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Genebes, Caroline, E-mail: genebes.caroline@claudiusregaud.fr [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France); Filleron, Thomas; Graff, Pierre [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France); Jonca, Frédéric [Department of Urology, Clinique Ambroise Paré, Toulouse (France); Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard [Department of Urology and Andrology, CHU Rangueil, Toulouse (France); Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France)

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  10. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning

    Science.gov (United States)

    Liu, Hongcheng; Dong, Peng; Xing, Lei

    2017-08-01

    Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution

  11. Measurement of dosimetric parameters for Hi-ART helical tomotherapy unit

    International Nuclear Information System (INIS)

    Wang Yunlai; Sha Xiangyou; Dai Xiangkun; Ma Lin; Feng Linchun; Qu Baolin

    2008-01-01

    Objective: To develop a measurement method of dosimetric parameters for Hi-ART tomotherapy unit. Methods: Percentage depth doses and beam profiles were measured using the dedicated mini water phantom, and compared to the results of 6 MV X-ray from Primus accelerator. Following the AAPM TG51 protocol, absolute dose calibration was carried out under SSD of 8.5 cm at depth of 1.5 cm for field of 5 cm x 40 cm. The output linearity and reproducibility were evaluated. The output variation with the gantry rotation was also investigated using 0.6 cm 3 ion chamber in cylindrical perplex phantom and on-board MVCT detectors. Leaf fluence output factors were quantified for the leaf of interest and its adjacent leaves. Results: The buildup depth was around 1.0 cm. The PDD values at 10 cm for Hi-ART and Primus were 59.7% and 64.7%, respectively. Varying with the field width, the lateral and longitudinal beam profiles were not so homogeneous as the Primus fields. The measured dose rate was 848.38 cGy/min. The fitted linear function between the readings of dosimeter and the irradiated time was R(nC) =-0.017 + 0.256· t(sec), with a relative coefficient of 0.999. The maximum deviation and standard deviation of output were 1.6% and less than 0.5%; The maximum deviation and standard deviation of output changed by gantry angle were 1.1% and 0.5%, respectively. Leaf fluence output factors did not increase significantly when leaves were opened beyond the two adjacent leaves. Conclusions: Hi-ART Tomotherapy unit has a very high dose output and inhomogeneous beam profiles owing to its special design of the treatment head. This may be useful in dose calculation and treatment delivery. (authors)

  12. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with {sup 131}I-metaiodobenzylguanidine with implications for the activity to administer

    Energy Technology Data Exchange (ETDEWEB)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.net [Department of Medical Radiation Physics, Lund University, Lund 22185, Sweden and Department of Medical Physics, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Flux, Glenn [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT (United Kingdom); Genollá, José; Guayambuco, Sonía; Delgado, Alejandro; Fombellida, José Cruz [Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Sjögreen Gleisner, Katarina [Department of Medical Radiation Physics, Lund University, Lund 22185 (Sweden)

    2015-07-15

    Purpose: The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with {sup 131}I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. Methods: Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. Results: Dosimetric data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6–1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. Conclusions: The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.

  13. Dosimetric results from a feasibility study of a novel radiosurgical source for irradiation of intracranial metastases

    International Nuclear Information System (INIS)

    Douglas, Robert M.; Beatty, John; Gall, Kenneth; Valenzuela, Raul F.; Biggs, Peter; Okunieff, Paul; Pardo, Francisco S.

    1996-01-01

    Purpose: A feasibility study addressing the role of a new miniature x-ray device, the Photon Radiosurgery System (PRS), for interstitial radiosurgical treatment of intracranial metastatic neoplasms, was conducted at our institution. To gain insight into the role of PRS vis-a-vis other currently available radiosurgical treatment modalities, dosimetric comparisons of Linac Radiosurgery and proton beam therapy were performed in the treatment of a small approximately spherical metastasis. Methods and Materials: The photon radiosurgery system is a miniature, battery operated, high-voltage x-ray generator that produces low-energy x-rays with an effective energy of 10-20 keV emanating from the tip of a probe stereotactically inserted into small tumors (< 3 cm in diameter) in humans. Patients, 18 years or older, with supratentorial mass lesions less than 3 cm in diameter were eligible if they were likely to survive their systemic cancer and be capable of self-care for more than 4 months. Patients were ineligible if presenting with infratentorial lesions, contraindications for biopsy, or receipt of chemotherapy or radiotherapy within 4 weeks were ineligible. Results: Fourteen patients with metastatic supratentorial lesions were treated from December 1992 to December 1993 for metastatic tumors to the brain. Single doses of 10-20 Gy were delivered to spherical targets of 10 to 35 mm in diameter. Treatment, including biopsy, pathologic review and radiation treatment, generally took less than 3 h. One patient, later found to have an ischemic stroke, developed a small hemorrhage from the biopsy that preceded interstitial irradiation. There were no other complications. Median survival was 10 months. Three locally recurrent lesions failed at 3.5, 4, and 10 months after treatment. All patients had stable or improved Karnofsky status for 2 weeks to 21 months after treatment. The PRS dosimetry appears at least as good as that obtained using 6 MV Linac or 160 MeV protons. Analyses of

  14. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source

    International Nuclear Information System (INIS)

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang

    2008-01-01

    This article presents a brachytherapy source having 103 Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model 103 Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA- 103 Pd source in water was found to be 0.678 cGy h -1 U -1 with an approximate uncertainty of ±0.1%. The anisotropy function, F(r,θ), and the radial dose function, g(r), of the IRA- 103 Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms

  15. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM

    Science.gov (United States)

    Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D'Agostino, M.; Belmusto, G.

    2017-01-01

    In this article natural radioactivity measurements and dosimetric evaluations in soil samples contaminated by Naturally Occurring Radioactive Materials (NORM) are made, in order to assess any possible radiological hazard for the population and for workers professionally exposed to ionizing radiations. Investigated samples came from the district of Crotone, Calabria region, South of Italy. The natural radioactivity investigation was performed by high-resolution gamma-ray spectrometry. From the measured gamma spectra, activity concentrations were determined for 226Ra , 234-mPa , 224Ra , 228Ac and 40K and compared with their clearance levels for NORM. The total effective dose was calculated for each sample as due to the committed effective dose for inhalation and to the effective dose from external irradiation. The sum of the total effective doses estimated for all investigated samples was compared to the action levels provided by the Italian legislation (D.Lgs.230/95 and subsequent modifications) for the population members (0.3mSv/y) and for professionally exposed workers (1mSv/y). It was found to be less than the limit of no radiological significance (10μSv/y).

  16. Dosimetric evaluation of the OneDoseTM MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures.

    Science.gov (United States)

    Ding, George X; Coffey, Charles W

    2010-09-01

    The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  17. Radiodine treatment of hyperthyroidism with a simplified dosimetric approach. Clinical results

    International Nuclear Information System (INIS)

    Giovanella, L.; De Palma, D.; Ceriani, L.; Garancini, S.; Vanoli, P.; Tordiglione, M.; Tarolo, G. L.

    2000-01-01

    In this article is evaluated the clinical and effectiveness of a simplified dosimetric approach to the iodine-131 treatment of hyperthyroidism due to Graves' disease or uninodular and multinodular toxic goiter. 189 patients with biochemically confirmed hyperthyroidism and performed thyroid ultrasonography and scintigraphy obtaining the diagnosis of Graves' disease in 43 patients, uninodular toxic goiter in 57 patients and multinodular toxic goiter in 89 patients were enrolled in order to be examined. It was found in 28 patients cold thyroid nodules and performed fine-needle aspiration with negative cytology for thyroid malignancy in all cases. Antithyroid drugs were stopped 5 days till radioiodine administration and, if necessary, restored 15 days after the treatment. Radioiodine uptake test was performed in all patients and therapeutic activity calculated to obtain a minimal activity of 185 MBq in the thyroid 24 hours after administration. The minimal activity was adjusted based on clinical, biochemical and imaging data to obtain a maximal activity of 370 MBq after 24 hours. Biochemical and clinical tests were scheduled at 3 and 12 months posttreatment and thyroxine treatment was started when hypothyroidism occurred. In Graves' disease patients a mean activity of 370 MBq (distribution 259-555 MBq) was administered. Three months after treatment and at least 15 days after methimazole discontinuation 32 of 43 (74%) patients were hypothyroid , 5 of 43 (11%) euthyroid and 6 of 43 (15%) hyperthyroid. Three of the latter were immediately submitted to a new radioiodine administration while 32 hypothyroid patients received thyroxine treatment. One year after the radioiodine treatment no patient had hyperthyroidism; 38 of 43 (89%) were on a replacement treatment while 5 (11%) remained euthyroid. In uni-and multinodular toxic goiter a mean activity of 444 MBq (distribution 259-555 MBq) was administered. Three months posttreatment 134 of 146 (92%) patients were euthyroid and

  18. Cancer of the uterine cervix: dosimetric guidelines for prevention of late rectal and rectosigmoid complications as a result of radiotherapeutic treatment

    International Nuclear Information System (INIS)

    Pourquier, H.; Dubois, J.B.; Delard, R.

    1982-01-01

    This paper is the report of a dosimetric study of 41 rectal and rectosigmoid complications after radiotherapeutic treatment (1974-1978) of 287 cervical uterine tumors. Treatment consisted of external irradiation (25 MeV linear accelerator) and intracavitary irradiation (Fletcher-Suit applicator) at different doses depending on tumor stage. Dosimetric measurements were expressed as the maximum rectal dose and mean rectal dose on the anterior surface of the rectum, as proposed by the Groupe Europeen de Curietherapie. Rectal doses were also studied as a function of intracavitary irradiation and intracavitary + external irradiation (maximum rectal and mean cummulative doses for each). The results show a significant difference in the state of the patients with and without complications, based on the dose reaching the rectum. The maximum and the mean cumulative rectal doses serve as one of the primary indicators for predicting complications. These values should therefore be determined before placement of intracavitary sources or, at the latest, before the second intracavitary applications. We have shown that there is no fixed threshold dose, but that it varies from one region to another, depending on level of external irradiation. Our results argue in favor of adapting individual patient therapy based on simple precautions, which are adjustable to all treatment modalities. This method could lead to complete elimination of late rectal and rectosigmoid complications arising from radiotherapeutic treatment of cervical uterine cancer

  19. Dosimetric evaluation of lithium carbonate (Li2CO3) as a dosemeter for gamma-radiation dose measurements.

    Science.gov (United States)

    Popoca, R; Ureña-Núñez, F

    2009-06-01

    This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.

  20. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139,7, Bobadela LRS 2695-066 (Portugal); Figueira, Catarina [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN (United Kingdom); Sarmento, Marta; Orvalho, Lurdes [Serviço de Imagiologia, Hospital da Luz, Avenida Lusíada, 100, Lisboa 1500-650 (Portugal)

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  1. Radiochromic film for dosimetric measurements in radiation shielding composites synthesized for applied in radiology procedures of high dose

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C. C. P. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Baptista N, A. T.; Faria, L. O., E-mail: crissia@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: Medical radiology offers great benefit to patients. However, although specifics procedures of high dose, as fluoroscopy, Interventional Radiology, Computed Tomography (CT) make up a small percent of the imaging procedures, they contribute to significantly increase dose to population. The patients may suffer tissue damage. The probability of deterministic effects incidence depends on the type of procedure performed, exposure time, and the amount of applied dose at the irradiated area. Calibrated radiochromic films can identify size and distribution of the radiated fields and measure intensities of doses. Radiochromic films are sensitive for doses ranging from 0.1 to 20 c Gy and they have the same response for X-rays effective energies ranging from 20 to 100 keV. New radiation attenuators materials have been widely investigated resulting in dose reduction entrance skin dose. In this work, Bi{sub 2}O{sub 3} and ZrO{sub 2}:8 % Y{sub 2}O{sub 3} composites were obtained by mixing them with P(VDF-Tr Fe) copolymers matrix from casting method and then characterized by Ftir. Dosimetric measurements were obtained with Xr-Q A2 Gafchromic radiochromic films. In this setup, one radiochromic film is directly exposed to the X-rays beam and another one measures the attenuated beam were exposed to an absorbed dose of 10 mGy of RQR5 beam quality (70 kV X-ray beam). Under the same conditions, irradiated Xr-Q A2 films were stored and scanned measurement in order to obtain a more reliable result. The attenuation factors, evaluated by Xr-Q A2 radiochromic films, indicate that both composites are good candidates for use as patient radiation shielding in high dose medical procedures. (Author)

  2. SU-E-T-628: Effect of Dose Rate and Leakage Correction for Dosimetric Leaf Gap Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States); Chu, A [Yale New Haven Hospital, New Haven, CT (United States); Chi, Y [Winter Park Cancer Center, Winter Park, FL (United States); Hu, J [Wayne State University, Detroit, MI (United States)

    2014-06-15

    Purpose: To study the dose rate response of Mapcheck and quantify/correct dose rate/leakage effect on IMRT QA. Evaluate the dose rate/leakage effect on dosimetric leaf gap (DLG) measurement. Methods: Varian Truebeam Linac with HD120 MLC was used for all measurement, it is capable to adjust dose rate from 600MU/min to 5MU/min. Fluke Advanced Therapy Doisemter and PTW 30013 Farmer chamber for chamber measurement; SunNuclear Mapcheck2 with 5cm total buildup for diode measurement. DLG was measured with both chamber and diode.Diode response was measured by varies dose rate, while fixed mapcheck setup and total MU. MLC Leakage was measured with both chamber and diode. Mapcheck measurement was saved as movie file (mcm file), which include measurement updated every 50mSec. The difference between intervals can be converted to dose and dose rate and leakage response correction can be applied to them. Results: DLG measurement results with chamber and diode were showed as follows, the DLG value is 0.36 vs. 0.24mm respectively. Diode dose rate response drops from 100% at 600MU/min to 95.5% at 5MU/min as follows. MLC Leakage measured with diode is 1.021%, which is 9% smaller than 1.112% from chamber measurement. By apply the dose rate and leakage correction, the residue error reduced 2/3. Conclusions: Diode has lower response at lower dose rate, as low as 4.5% for 5MU/min; diode has lower energy response for low energy too, 5% lower for Co-60 than 6MV. It partially explains the leakage difference of 9% between chamber and diode. Lower DLG with diode is because of the lower response at narrower gap, in Eclipse however DLG need to increase to makeup lower response, which is over correction for chamber though. Correction can reduce error by 2/3, the rest 1/3 can be corrected by scatter effect, which is under study.

  3. Pilot study of the radiodiagnostic quality control in Habana (Cuba). Dosimetric results in chest and spin cords radiographs

    International Nuclear Information System (INIS)

    Saez Nunnez, D.G.; Borroto Valdes, M.; Mesa Hernandez, M.; Risco Reyma, L. del; Borras, C

    1998-01-01

    This paper presents the results of a quality control pilot study in diagnostic radiology carried out in 10 hospitals of Havana City, Cuba. The study included dosimetric determinations for two common radiographic protections: posterior-anterior chest and lateral lumbosacral spine. A total of 21 x-ray units and 12 dark rooms were evaluated. The deficiencies related to film processing, as well as other problems associated with the dark room are presented. The most significant problems related to equipment were: the lack of reproducibility and linearity of the x-ray generator and the non-coincidence of radiation and light fields. A great variability of the entrance surface dose for the same type of patient was recorded. Organ doses and effective dose for each radiographic projection were calculated for a reference patient. A plan of corrective actions to solve the deficiencies was implemented. It was decided to develop a national quality control program in diagnostic radiology. (Author) 12 refs

  4. Dosimetric characteristics of radiation fields on board Czechoslovak Airlines' aircraft as measured with different active and passive detectors

    International Nuclear Information System (INIS)

    Spurney, F.; Obraz, O.; Pernicka, F.; Votockova, I.; Turek, K.; Vojtisek, O.; Starostova, V.

    1993-01-01

    Dosimetric characteristics on board Czechoslovak Airlines' aircraft (TU 154M; A310-300) were studied with different active and passive detectors (ionisation chamber RSS 112; scintillator based rate meter; GM counter based rate meter; neutron remmeter based on neutron moderation; thermoluminescence detectors, CR 39 track detectors and bubble-damage neutron detectors). Results obtained are analysed and discussed. It is estimated that the dose equivalent rates at altitudes of about 10 km are at least 3-4 μSv.h-1. Conclusions and recommendations for further studies and for radiation protection are given. (author)

  5. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  6. Interrelation between results of individual dosimetric control and regulatory control in Cuba

    International Nuclear Information System (INIS)

    Diaz Bernal, E.D.; Jova Sed, L.A.; Capote Ferrera, E.; Lopez Bejerano, G.M.

    1997-01-01

    The increasing use of various applications of ionizing radiation in Cuba made it necessary to create a harmonic system of facilities that guarantees the radiological safety of radiation workers, the public and the environment. Therefore, in 1985 a Centre of Radiation Protection and Hygiene (CPHR) was created. Thereafter, in 1991, the regulatory function and the inspection of radiological and nuclear safety was assigned to the National Centre of Nuclear Safety. The introduction of this service has provided the regulatory body with a tool to control the existing situation with respect to registration and licensing. The results of the service in the period 1994-1996 and a comparison with previous years are given. The results obtained reflect that the system of supervision in general has guaranteed keeping levels of doses low. The dose values registered demonstrate the possibility to establish in the country as a does limit an annual average dose limit of 20 mSv which might rise to but shall on no account exceed 50 mSv per year without the need for costly investment and based on organizational measures

  7. EDF program for cleaning of PWR high dosimetric NPPs results and perspectives of radiological cleanup engineering

    International Nuclear Information System (INIS)

    Ider, Samir

    2012-09-01

    In 2002 EDF's PWRs presented significant disparities in their integrated dose results. In order to treat the PWR with highest dose per shutdown ratio, EDF/DPN (Nuclear Production Division) decided to develop an engineering project for 'PWR high dosimetry cleaning'. A specific financial support and staff resource was allocated to each reactor on this project. On every reactor, equipment is decontaminated using chemical process. The average dose reduction is estimated at 0,5 Man.mSv per reactor treated over the five following years. During the power operation of a nuclear reactor, corrosion products from the primary circuit undergo activation through their circulation in the reactor core. These activated products can be integrated into the oxide layer that builds up during the power operation on the primary piping. Additionally, highly radioactive particles can fall by gravity to the bottom of the reactor vessel. Being highly mobile, these can be dispersed throughout the circuit system by the water movement during the shutdown of the Unit. These particles will become hot spots when trapped in specific features of the primary cooling circuit and its auxiliaries. This contamination of the primary circuit leads to high dosimetry of the personnel during the maintenance of the Unit. To decrease the dose received during the maintenance operations, curative actions must be taken to eliminate hot spots and reduce contamination, as well as preventatives measures to curb future new contamination. For each PWR concerned, the studies begin with a diagnostic of the origins of the contamination, the type of pollution, its form (mobile hot spots, oxide layers) and its location. Many types of measuring equipment are used to make a radiological diagnostic (portable gamma-ray spectroscopy, video cartography, and gamma camera system). Experience and knowledge of the underlying chemistry in decontamination process, leads to a Decontamination Factor (DF) per system for

  8. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  9. Thermoluminescence emission spectrometry of glass display in mobile phones and resulting evaluation of the dosimetric properties of a specific type of display glass

    International Nuclear Information System (INIS)

    Discher, Michael; Woda, Clemens

    2014-01-01

    Glass displays of mobile phones are sensitive to ionizing radiation and can be used for retrospective dosimetry for the purpose of triage after a radiological accident or attack. In this study the two main types of glass display that are used in modern mobile phones were investigated using thermoluminescence (TL) emission spectrometry. A different TL spectrum was observed for the glass display of category A (lime-aluminosilicate glass) and category B (boron-silicate glass). Based on the spectral measurements an optimized detection window was chosen to re-evaluate the dosimetric properties (dose response, optical and long-term stability) of glass display category B. - Highlights: • Two display glass types show similar TL emission peaks but with strongly different relative intensities. • The intrinsic background TL signal peaks at similar wavelengths as the radiation induced signal. • Dosimetric properties of one display glass type were re-evaluated using an optimized detection window

  10. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Son, Jaeman; Baek, Taesung; Lee, Boram; Shin, Dongho; Park, Sung Yong; Park, Jeonghoon; Lim, Young Kyung; Lee, Se Byeong; Kim, Jooyoung; Yoon, Myonggeun

    2015-01-01

    This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used. Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm. The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools. QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA

  11. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy.

    Science.gov (United States)

    Son, Jaeman; Baek, Taesung; Lee, Boram; Shin, Dongho; Park, Sung Yong; Park, Jeonghoon; Lim, Young Kyung; Lee, Se Byeong; Kim, Jooyoung; Yoon, Myonggeun

    2015-09-01

    This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used. Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm. The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools. QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA.

  12. Accelerated Intensity-Modulated Radiotherapy to Breast in Prone Position: Dosimetric Results

    International Nuclear Information System (INIS)

    De Wyngaert, J. Keith; Jozsef, Gabor; Mitchell, James; Rosenstein, Barry; Formenti, Silvia C.

    2007-01-01

    Purpose: To report the physics and dosimetry results of a trial of accelerated intensity-modulated radiotherapy to the whole breast with a concomitant boost to the tumor bed in patients treated in the prone position. Methods and Materials: Patients underwent computed tomography planning and treatment in the prone position on a dedicated treatment platform. The platform has an open aperture on the side to allow for the index breast to fall away from the chest wall. Noncontrast computed tomography images were acquired at 2.5- or 3.75-mm-thick intervals, from the level of the mandible to below the diaphragm. A dose of 40.5 Gy was delivered to the entire breast at 2.7-Gy fractions in 15 fractions. An additional dose of 0.5 Gy was delivered as a concomitant boost to the lumpectomy site, with a 1-cm margin, using inverse planning, for a total dose of 48 Gy in 15 fractions. No more than 10% of the heart and lung volume was allowed to receive >18 and >20 Gy, respectively. Results: Between September 2003 and August 2005, 91 patients were enrolled in the study. The median volume of heart that received ≥18 Gy was 0.5%, with a maximal value of 4.7%. The median volume of ipsilateral lung that received ≥20 Gy was 0.8%, with a maximum of 7.2%. Conclusion: This technique for whole breast radiotherapy is feasible and enables an accelerated regimen in the prone position while sparing the lung and heart

  13. External radiotherapy in macular degeneration: Our technique, dosimetric calculation, and preliminary results

    International Nuclear Information System (INIS)

    Akmansu, M.; Dirican, Bahar; Oeztuerk, Berrin; Egehan, Ibrahim; Subasi, Mahmut; Or, Meral

    1998-01-01

    Purpose: This study was performed to determine the toxicity and efficacy of external-beam radiotherapy in patients with age-related subfoveal neovascularization. Methods and Materials: Between January 1996 and September 1996, 25 patients with a mean age of 70.5 (60-84) years were enrolled. All patients underwent fluorescein angiographic evaluation and documentation of their neovascular disease prior to irradiation. A total of 25 patients were treated with a total dose of 12 Gy in 6 fractions over 8 days. We used a lens-sparing technique and patients were treated with a single lateral 6-MV photon beam. To assess the risk of radiation carcinogenesis after treatment of age-related subfoveal neovascularization, we estimated the effective dose for a standard patient on the basis of tissue-weighting factors as defined by the International Commission on Radiological Protection (ICRP). The calculations were made with TLD on a male randophantom. The lens dose was found to be 0.217 Gy per fraction. Results: No significant acute morbidity was noted. Visual acuity was maintained or improved in 76% and 80% of treated patients at their 1- and 3-month follow-up examinations, respectively. On angiographic imaging, there was stabilization of subfoveal neovascular membranes in 23 patients (92%) at 3 months after irradiation. Conclusion: Our observations on these 25 patients in this study indicate that many patients will have improved or stable vision after radiotherapy treatment with low-dose irradiation

  14. Dosimetric Changes Resulting From Patient Rotational Setup Errors in Proton Therapy Prostate Plans

    International Nuclear Information System (INIS)

    Sejpal, Samir V.; Amos, Richard A.; Bluett, Jaques B.; Levy, Lawrence B.; Kudchadker, Rajat J.; Johnson, Jennifer; Choi, Seungtaek; Lee, Andrew K.

    2009-01-01

    Purpose: To evaluate the dose changes to the target and critical structures from rotational setup errors in prostate cancer patients treated with proton therapy. Methods and Materials: A total of 70 plans were analyzed for 10 patients treated with parallel-opposed proton beams to a dose of 7,600 60 Co-cGy-equivalent (CcGE) in 200 CcGE fractions to the clinical target volume (i.e., prostate and proximal seminal vesicles). Rotational setup errors of +3 o , -3 deg., +5 deg., and -5 deg. (to simulate pelvic tilt) were generated by adjusting the gantry. Horizontal couch shifts of +3 deg. and -3 deg. (to simulate longitudinal setup variability) were also generated. Verification plans were recomputed, keeping the same treatment parameters as the control. Results: All changes shown are for 38 fractions. The mean clinical target volume dose was 7,780 CcGE. The mean change in the clinical target volume dose in the worse case scenario for all shifts was 2 CcGE (absolute range in worst case scenario, 7,729-7,848 CcGE). The mean changes in the critical organ dose in the worst case scenario was 6 CcGE (bladder), 18 CcGE (rectum), 36 CcGE (anterior rectal wall), and 141 CcGE (femoral heads) for all plans. In general, the percentage of change in the worse case scenario for all shifts to the critical structures was <5%. Deviations in the absolute percentage of volume of organ receiving 45 and 70 Gy for the bladder and rectum were <2% for all plans. Conclusion: Patient rotational movements of 3 deg. and 5 deg. and horizontal couch shifts of 3 deg. in prostate proton planning did not confer clinically significant dose changes to the target volumes or critical structures.

  15. Dosimetric measurements of an 192Ir HDR source with a diamond detector

    International Nuclear Information System (INIS)

    Rustgi, Surendra N.

    1996-01-01

    Purpose: To study the feasibility of using a diamond detector for the dosimetry of a high dose rate (HDR) 192 Ir source and to compare the measurement results with published data and calculations from a commercial treatment planning system. Materials and methods: The sensitive volume of the diamond detector consists of a disk of 0.26 mm thickness and 3 mm diameter. The detector was applied an external bias of +100 V and was preirradiated to a dose of 500 cGy to stabilize its response. The 192 Ir source from the Nucletron microSelectron unit has an active diameter of 0.6 mm and a length of 3.5 mm. Photon fluence anisotropy factors in air were measured at distances of 5 and 10 cm from two sources and compared with TLD measurements. Dose profiles and isodose distributions were measured at several distances from the source and compared with calculations from a Nucletron treatment planning system. These dose calculations in water use a point source approximation with the anisotropy factors independent of the radial distance from the source. Results: The photon fluence around the 192 Ir HDR source, measured with a diamond detector at distances of 5 and 10 cm from the source, is very anisotropic. Compared to the source transverse direction, the photon fluence intensity along the source axis reduces to approximately 60%. Measurements performed on two sources indicate that the photon anisotropy does not change with distance in air. Within experimental uncertainty, similar results were obtained with TLD rods and are in excellent agreement with published anisotropy factors 1 . Dose profiles, measured with the diamond detector in a water phantom, at distances of 1,2,3 and 5 cm from the source, are found to be in excellent agreement with the Nucletron planning system calculations. Similar excellent agreement is observed between the measured and calculated isodose curves in planes parallel to the source plane. Conclusion: The diamond detector has been demonstrated to be suitable

  16. Hair-sparing whole brain radiotherapy with volumetric arc therapy in patients treated for brain metastases: dosimetric and clinical results of a phase II trial

    International Nuclear Information System (INIS)

    De Puysseleyr, Annemieke; Ost, Piet; Van De Velde, Joris; Speleers, Bruno; Vercauteren, Tom; Goedgebeur, Anneleen; Van Hoof, Tom; Boterberg, Tom; De Neve, Wilfried; De Wagter, Carlos

    2014-01-01

    To report the dosimetric results and impact of volumetric arc therapy (VMAT) on temporary alopecia and hair-loss related quality of life (QOL) in whole brain radiotherapy (WBRT). The potential of VMAT-WBRT to reduce the dose to the hair follicles was assessed. A human cadaver was treated with both VMAT-WBRT and conventional opposed field (OF) WBRT, while the subcutaneously absorbed dose was measured by radiochromic films and calculated by the planning system. The impact of these dose reductions on temporary alopecia was examined in a prospective phase II trial, with the mean score of hair loss at 1 month after VMAT-WBRT (EORTC-QOL BN20) as a primary endpoint and delivering a dose of 20 Gy in 5 fractions. An interim analysis was planned after including 10 patients to rule out futility, defined as a mean score of hair loss exceeding 56.7. A secondary endpoint was the global alopecia areata severity score measured with the “Severity of Alopecia Tool” (SALT) with a scale of 0 (no hair loss) to 100 (complete alopecia). For VMAT-WBRT, the cadaver measurements demonstrated a dose reduction to the hair follicle volume of 20.5% on average and of 41.8% on the frontal-vertex-occipital medial axis as compared to OF-WBRT. In the phase II trial, a total of 10 patients were included before the trial was halted due to futility. The EORTC BN20 hair loss score following WBRT was 95 (SD 12.6). The average median dose to the hair follicle volume was 12.6 Gy (SD 0.9), corresponding to a 37% dose reduction compared to the prescribed dose. This resulted in a mean SALT-score of 75. Compared to OF-WBRT, VMAT-WBRT substantially reduces hair follicle dose. These dose reductions could not be related to an improved QOL or SALT score

  17. SU-C-210-06: Quantitative Evaluation of Dosimetric Effects Resulting From Positional Variations of Pancreatic Tumor Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S; Sehgal, V; Wei, R; Lawrenson, L; Kuo, J; Hanna, N; Ramsinghani, N; Daroui, P; Al-Ghazi, M [University of California, Orange, CA (United States)

    2015-06-15

    Purpose: The aim of this study is to quantify dosimetric effects resulting from variation in pancreatic tumor position assessed by bony anatomy and implanted fiducial markers Methods: Twelve pancreatic cancer patients were retrospectively analyzed for this study. All patients received modulated arc therapy (VMAT) treatment using fiducial-based Image Guided Radiation Therapy (IGRT) to the intact pancreas. Using daily orthogonal kV and/or Cone beam CT images, the shift needed to co-register the daily pre-treatment images to reference CT from fiducial to bone (Fid-Bone) were recorded as Left-Right (LR), Anterior-Posterior (AP) and Superior-Inferior (SI). The original VMAT plan iso-center was shifted based on KV bone matching positions at 5 evenly spaced fractions. Dose coverage of the planning target volumes (PTVs) (V100%), mean dose to liver, kidney and stomach/duodenum were assessed in the modified plans. Results: A total of 306 fractions were analyzed. The absolute fiducial-bone positional shifts were greatest in the SI direction, (AP = 2.7 ± 3.0, LR = 2.8 ± 2.8, and SI 6.3 ± 7.9 mm, mean ± SD). The V100% was significantly reduced by 13.5%, (Fid-Bone = 95.3 ± 2.0 vs. 82.3 ± 11.8%, p=0.02). This varied widely among patients (Fid-Bone V100% Range = 2–60%), where 33% of patients had a reduction in V100% of more than 10%. The impact on OARs was greatest to the liver (Fid-Bone= 14.6 vs. 16.1 Gy, 10%), and stomach, (Fid-Bone = 23.9 vx. 25.5 Gy, 7%), however was not statistically significant (p=0.10 both). Conclusion: Compared to matching by fiducial markers, matching by bony anatomy would have substantially reduced the PTV coverage by 13.5%. This reinforces the importance of online position verification based on fiducial markers. Hence, implantation of fiducial markers is strongly recommended for pancreatic cancer patients undergoing intensity modulated radiation therapy treatments.

  18. In-phantom dosimetric measurements as quality control for brachytherapy. System check and constancy check; Messungen im Festkoerperphantom als Qualitaetskontrolle in der Brachytherapie. Systempruefung und Konstanzpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark [Universitaetsklinik Freiburg (Germany). Klinik fuer Strahlenheilkunde

    2015-09-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogeneities. Typically in routine clinical practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the positioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clinical brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) {sup 192}Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monthly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity.

  19. Dosimetric And Fluence Measurements At Hadron Facilities For LHC Radiation Damage Studies

    CERN Document Server

    León-Florián, E

    2001-01-01

    Dosimetry plays an essential role in experiments assessing radiation damage and hardness for the components of detectors to be operated at the future Large Hadron Collider (LHC), CERN (European Laboratory for Particle Physics), Geneva, Switzerland. Dosimetry is used both for calibration of the radiation fields and estimate of fluences and doses during the irradiation tests. The LHC environment will result in a complex radiation field composed of hadrons (mainly neutrons, pions and protons) and photons, each having an energy spectrum ranging from a few keV to several hundreds of MeV or several GeV, even. In this thesis, are exposed the results of measurements of particle fluences and doses at different hadron irradiation facilities: SARA, πE1-PSI and ZT7PS used for testing the radiation hardness of materials and equipment to be used in the future experiments at LHC. These measurements are applied to the evaluation of radiation damage inflicted to various semiconductors (such as silicon) and electronics ...

  20. Measuring instruments of the Physikalisch-Technische Bundesanstalt for realization of the units of the dosimetric quantities standard ion dose, photon-equivalent dose and air-kerma

    International Nuclear Information System (INIS)

    Engelke, B.A.; Oetzmann, W.; Struppek, G.

    1988-08-01

    The realization of the units of the dosimetric quantities exposure, air-kerma and photon-equivalent dose is an important task of the Physikalisch-Technische Bundesanstalt. The report describes the measuring instruments and other technical equipment as well as the determination of the numerous corrections needed. All data and correction factors required for the realization of the units mentioned above are given in many diagrams and tables. (orig.) [de

  1. Single-fraction flattening filter–free volumetric modulated arc therapy for lung cancer: Dosimetric results and comparison with flattened beams technique

    Energy Technology Data Exchange (ETDEWEB)

    Barbiero, Sara [Medical Physics Division, Centro di Riferimento Oncologico, Aviano (Italy); Specialty School in Medical Physics, University of Pisa, Pisa (Italy); Rink, Alexandra [Radiation Physics Department, Princess Margaret Cancer Centre, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Matteucci, Fabrizio [Radiation Oncology Department, S.Chiara University Hospital, Pisa (Italy); Fedele, David [Radiotherapy Department, Casa di Cura S. Rossore, Pisa (Italy); Paiar, Fabiola; Pasqualetti, Francesco [Radiation Oncology Department, S.Chiara University Hospital, Pisa (Italy); Avanzo, Michele, E-mail: mavanzo@cro.it [Medical Physics Division, Centro di Riferimento Oncologico, Aviano (Italy)

    2016-01-01

    Purpose: To report on single-fraction stereotactic body radiotherapy (RT) (SBRT) with flattening filter (FF)–free (FFF) volumetric modulated arc therapy (VMAT) for lung cancer and to compare dosimetric results with VMAT with FF. Methods and materials: Overall, 25 patients were treated with 6-MV FFF VMAT (Varian TrueBeam STx LINAC) to a prescribed dose of 24 Gy in a single fraction. Treatment plans were recreated using FF VMAT. Dose-volume indices, monitor units (MU), and treatment times were compared between FFF and FF VMAT techniques. Results: Dose constraints to PTV, spinal cord, and lungs were reached in FFF and FF plans. In FFF plans, average conformity index was 1.13 (95% CI: 1.07 to1.38). Maximum doses to spinal cord, heart, esophagus, and trachea were 2.9 Gy (95% CI: 0.4 to 6.7 Gy), 0.8 Gy (95% CI: 0 to 3.6 Gy), 3.3 Gy (95% CI: 0.02 to 13.9 Gy), and 1.5 Gy (95% CI: 0 to 4.9 Gy), respectively. Average V7 Gy, V7.4 Gy, and mean dose to the healthy lung were 126.5 cc (95% CI: 41.3 to 248.9 cc), 107.3 cc (95% CI: 18.7 to 232.8 cc), and 1.1 Gy (95% CI: 0.3 to 2.2 Gy), respectively. No statistically significant differences were found in dosimetric results and MU between FF and FFF treatments. Treatment time was reduced by an average factor of 2.31 (95% CI: 2.15 to 2.43) from FF treatments to FFF, and the difference was statistically significant. Conclusions: FFF VMAT for lung SBRT provides equivalent dosimetric results to the target and organs at risk as FF VMAT while significantly reducing treatment time.

  2. Dosimetric measurement of scattered radiation from dental implants in simulated head and neck radiotherapy.

    Science.gov (United States)

    Wang, R; Pillai, K; Jones, P K

    1998-01-01

    The purpose of this study was to examine the dose enhancement at bone-implant interfaces from scattered radiation during simulated head and neck radiotherapy. Three cylindric implant systems with different compositions (pure titanium, titanium-aluminum-vanadium alloy, titanium coated with hydroxyapatite) and a high gold content transmandibular implant system (gold-copper-silver alloy) were studied. Extruded lithium fluoride single crystal chips were used as thermoluminescent material to measure radiation dose enhancement at 0, 1, and 2 mm from the bone-implant interface. The relative doses in buccal, lingual, mesial, and distal directions were also recorded and compared. The results indicated that the highest dose enhancement occurred at a distance of 0 mm from the bone-implant interface for all the implant systems studied. The transmandibular implants had higher scattered radiation than other groups at 0 mm and at 1 mm from the bone-implant interface. There was no significant difference of dose enhancement between buccal, lingual, mesial, and distal directions. Titanium implants coated with hydroxyapatite demonstrated the best results under the simulated irradiation.

  3. Evaluation of the influence of the TH-GEM detector components in dosimetric measurements of standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natália F.; Castro, Maysa C.; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: maysadecastro@gmail.com, E-mail: fbelonsi@gmail.com, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, Tiago F.; Cintra, Felipe B.; Luz, Hugo N. da, E-mail: tfsilva@if.usp.br, E-mail: hugonluz@if.usp.br [Universidade de São Paulo (IF/USP), São Paulo, SP (Brazil). Instituto de Física

    2017-07-01

    GEM detectors have found applications in many areas due to their simplicity of construction, low cost, ruggedness and diversity of shape. A dosimeter with these qualities presents utility in several applications, as for example in diagnostic and therapeutic medicine, industrial radiography and nuclear meters. Furthermore, the high sensitivity provided by GEM detectors may extend their applications in low dose dosimetry. Based on these facts, it may be interesting to produce a prototype of a portable TH-GEM type detector with characteristics suitable for dosimetric use in X-rays with low and medium energies. The precise determination of the dosimeter characteristics is very important for laboratories of instrument calibration, as well as to determine how the various components of the detector may influence on the energy deposited in the sensitive volume. In this work, the results obtained about the influence of each one of the components present in this type of detector in standard mammography beams is presented. The code MCNP5 was used. The results allowed the adaptation of the detector to the desired conditions. (author)

  4. Comparison between dose calculation in XiO® and dosimetric measurements in virtual wedge photon beams

    International Nuclear Information System (INIS)

    Almeida, Laila G.; Amaral, Leonardo L.; Oliveira, Harley F.; Maia, Ana F.

    2012-01-01

    The virtual wedge is useful tool in the radiation treatment planning since it has series of advantages over the hard wedge. Quality control tests ensure correct performance of the planning done in treatment planning systems (TPS). This study aimed to compare doses calculated by TPS and doses measured by ionization chamber (CI) and an ionization chambers array in virtual wedge photon beams of 6 MV. Measures carried out in Primus linear accelerator with a solid water phantom and dosimeter positioned at 10 cm depth with gantry at 0° in many fields sizes and angles in the virtual wedge. Measurements on the central axis used as dosimeter an IC and on off-axis used an IC array. The simulation in CMS-XiO used the CT images of the phantom in the same configuration of the irradiation. Maximum and minimum values of the percentage differences between the doses provided by TPS and measurements with ionization chamber on the central axis were 1.43 and -0.10%, respectively, with average percentage difference of 0.08% and confidence limit of Δ=1.72%. In the region off-axis, the average percentage difference was 0.04%, with a maximum of 1.9%, minimum of 0% and confidence limit of Δ=1.91%. All values for dose percentage differences were below 2% and lower confidence limit of 3% are thus, according to the recommendations of the Technical Report Series - TRS-430. (author)

  5. Chest wall thickness measurements and the dosimetric implications for male workers in the uranium industry

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Hauck, Barry M.; Allen, Steve A.

    2000-01-01

    The Human Monitoring Laboratory has measured the chest wall thickness and adipose mass fraction of a group of workers at three Canadian uranium refinery, conversion plant, and fuel fabrication sites using ultrasound. A site specific biometric equation has been developed for these workers, who seem to be somewhat larger than other workers reported in the literature. The average chest wall thickness of the seated persons measured at the uranium conversion plant and refinery was about 3.8 cm, and at the fuel fabrication facility was 3.4 cm. These values are not statistically different. Persons measured in a seated geometry had a thinner chest wall thickness than persons measured in a supine geometry - the decrease was in the range of 0.3 cm to 0.5 cm. It follows that a seated geometry will give a lower MDA (or decision level) than a supine geometry. Chest wall thickness is a very important modifier for lung counting efficiency and this data has been put into the perspective of the impending Canadian dose limits that will reduce the limit of occupationally exposed workers to essentially 20 mSv per year. Natural uranium must be measured based on the 235 U emissions at these type of facilities. The refining and conversion process removes 234 Th and the equilibrium is disturbed. This is unfortunate as the MDA values for this nuclide are approximately a factor of three lower than the values quoted below. The sensitivity of the germanium and phoswich based lung counting system has been compared. Achievable MDA's (30 minute counting time) with a four-phoswich-detector array lie in the range of 4.7 mg to 13.5 mg of natural uranium based on the 235 U emissions over a range of chest wall thicknesses of 1.6 cm to 6.0 cm. The average achievable MDA is about 8.5 mg which can be reduced to about 6.2 mg by doubling the counting time. Similarly, MDA's (30 minute counting time) obtainable with a germanium lung counting system will lie in the range of 3 mg to 28 mg of natural uranium

  6. CaSO4: Dy + Teflon dosimetric pellets for X, beta and gamma radiation detection

    International Nuclear Information System (INIS)

    Campos, L.L.; Lima, M.F.

    1987-08-01

    CaSO 4 : Dy + TEFLON dosimetric pellets with high sensitivity and low cost for X, beta and gamma radiation monitoring were studied and developed by the Dosimetric Material Production Laboratory of the Radiological Protection Departament and are disposable for sale. The thickness of the pellets are suitable for X, beta and gamma radiation measurements. The dosimetric properties of these pellets were determined and presented in this work. The results show the usefulness of 0,20mm thick pellets for beta radiation monitoring and 0,80mm thick pellets for x and gamma radiation detection. (Author) [pt

  7. SU-E-T-342: Use of Patient Geometry Measurements to Predict Dosimetric Gain with VMAT Over 3D for Chestwall and Regional Nodal Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dumane, V; Knoll, M; Green, S; Bakst, R [The Mount Sinai Medical Center, NY, NY (United States); Hunt, M [Mem Sloan-Kettering Cancer Ctr, NY, NY (United States); Steinberger, E [The Mount Sinai School of Medicine, NY, NY (United States)

    2014-06-01

    Purpose: To predict the dosimetric gain of VMAT over 3D for the treatment ofchestwall/IMN/supraclavicular nodes using geometric parameters acquired during simulation Methods: CT scans for 20 left and 20 right sided patients were retrospectively analyzed toobtain percent ipsilateral lung volume included in the PWT and supraclavicular fields, central lung depth (CLD), maximum lung depth (MLD), separation, chestwall concavity (defined here as the product of CLD and separation) and the maximum heart depth (MHD). VMAT, PWT and P/E plans were done for each case. The ipsilateral lung V20 Gy and mean, total lung V20 Gy and mean, heart V25 Gy and mean were noted for each plan. Correlation coefficients were obtained and linear regression models were built using data from the above training set of patients and then tested on 4 new patients. Results: The decrease in ipsilateral lung V20 Gy, total lung V20 Gy, ipsilateral lung mean and total lung mean with VMAT over PWT significantly (p<0.05) correlated with the percent volume of ipsilateral lung included in the PWT and supraclavicular fields with correlation coefficient values of r = 0.83, r = 0.77, r = 0.78 and r = 0.75 respectively. Significant correlations were also found between MHD and the decrease in heart V25 Gy and mean of r = 0.77 and r = 0.67 respectively. Dosimetric improvement with VMAT over P/E plans showed no correlation to any of the geometric parameters investigated in this study. The dosimetric gain predicted for the 4 test cases by the linear regression models given their respective percent ipsilateral lung volumes fell within the 95% confidence intervals around the best regression fit. Conclusion: The percent ipsilateral lung volume appears to be a strong predictor of the dosimetric gain on using VMAT over PWT apriori.

  8. SU-E-T-342: Use of Patient Geometry Measurements to Predict Dosimetric Gain with VMAT Over 3D for Chestwall and Regional Nodal Radiation

    International Nuclear Information System (INIS)

    Dumane, V; Knoll, M; Green, S; Bakst, R; Hunt, M; Steinberger, E

    2014-01-01

    Purpose: To predict the dosimetric gain of VMAT over 3D for the treatment ofchestwall/IMN/supraclavicular nodes using geometric parameters acquired during simulation Methods: CT scans for 20 left and 20 right sided patients were retrospectively analyzed toobtain percent ipsilateral lung volume included in the PWT and supraclavicular fields, central lung depth (CLD), maximum lung depth (MLD), separation, chestwall concavity (defined here as the product of CLD and separation) and the maximum heart depth (MHD). VMAT, PWT and P/E plans were done for each case. The ipsilateral lung V20 Gy and mean, total lung V20 Gy and mean, heart V25 Gy and mean were noted for each plan. Correlation coefficients were obtained and linear regression models were built using data from the above training set of patients and then tested on 4 new patients. Results: The decrease in ipsilateral lung V20 Gy, total lung V20 Gy, ipsilateral lung mean and total lung mean with VMAT over PWT significantly (p<0.05) correlated with the percent volume of ipsilateral lung included in the PWT and supraclavicular fields with correlation coefficient values of r = 0.83, r = 0.77, r = 0.78 and r = 0.75 respectively. Significant correlations were also found between MHD and the decrease in heart V25 Gy and mean of r = 0.77 and r = 0.67 respectively. Dosimetric improvement with VMAT over P/E plans showed no correlation to any of the geometric parameters investigated in this study. The dosimetric gain predicted for the 4 test cases by the linear regression models given their respective percent ipsilateral lung volumes fell within the 95% confidence intervals around the best regression fit. Conclusion: The percent ipsilateral lung volume appears to be a strong predictor of the dosimetric gain on using VMAT over PWT apriori

  9. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations.

    Science.gov (United States)

    Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R; St James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles

    2017-09-12

    RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within  ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and  >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within  ±3% and distal fall-off to within 2

  10. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations

    Science.gov (United States)

    Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R.; St. James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles

    2017-10-01

    RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within  ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and  >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within  ±3% and distal fall-off to within 2

  11. Dosimetric essay in dental radiology

    International Nuclear Information System (INIS)

    Lopez Salaberry, M.

    1998-01-01

    A neck study was observated in the tiroids glands,laryngeal zone, sensitive organs for the ionizing radiation for increase dental xray exams. Was selected 29th patients with radiography prescription complete (in the Odontology Faculty Clinics Uruguaian). It took radiographies with and without tiroids necklace and apron lead using dosemeters. Dosimetric studies had demonstrated good dose between patients. For measuring the radiation dose have been used TLD thermoluminescence dosimetric and Harshaw 6600 for read it. The thyroids necklace use and odontology postgrading for training course for dentistry was the two recommendations advised

  12. Volumetric modulated arc therapy with flattening filter free beams for isolated abdominal/pelvic lymph nodes: report of dosimetric and early clinical results in oligometastatic patients

    Directory of Open Access Journals (Sweden)

    Alongi Filippo

    2012-12-01

    Full Text Available Abstract Background SBRT is a safe and efficient strategy to locally control multiple metastatic sites. While research in the physics domain for Flattening Filter Free Beams (FFF beams is increasing, there are few clinical data of FFF beams in clinical practice. Here we reported dosimentric and early clinical data of SBRT and FFF delivery in isolated lymph node oligometastatic patients. Methods Between October 2010 and March 2012, 34 patients were treated with SBRT for oligometastatic lymph node metastasis on a Varian TrueBeamTM treatment machine using Volumetric Modulated Arc Therapy (RapidArc. We retrospectively evaluated a total of 25 patients for isolated lymph node metastases in abdomen and/or pelvis treated with SBRT and FFF (28 treatments. Acute toxicity was recorded. Local control evaluation was scored by means of CT scan and/or PET scan. Results All dosimetric results are in line with what published for the same type of stereotactic abdominal lymph node metastases treatments and fractionation, using RapidArc. All 25 FFF SBRT patients completed the treatment. Acute gastrointestinal toxicity was minimal: one patient showed Grade 1 gastrointestinal toxicity. Three other patients presented Grade 2 toxicity. No Grade 3 or higher was recorded. All toxicities were recovered within one week. The preliminary clinical results at the median follow up of 195 days are: complete response in 12 cases, partial response in 11, stable disease in 5, with an overall response rate of 82%; no local progression was recorded. Conclusions Data of dosimetrical findings and acute toxicity are excellent for patients treated with SBRT with VMAT using FFF beams. Preliminary clinical results showed a high rate of local control in irradiated lesion. Further data and longer follow up are needed to assess late toxicity and definitive clinical outcomes.

  13. The results of dosimetric type tests on the sample of LiF:Mg,Ti thermoluminescence dosimeters produced in Iran

    International Nuclear Information System (INIS)

    Jafarizadeh, M.; Hosseini Pooya, S. M.; Firoozi, B.; Kamali Shoroodani, A. R.; Mohammadi, Kh.

    2011-01-01

    In this investigation, the standard type tests performed on the LiF:Mg,Ti chip samples which have been produced in Iran. The dosimetry tests are consisting of sensitivity, homogeneity, linearity, reproducibility, minimum measurable dose, self and residual doses. The obtained results show that some of the tests such as sensitivity, minimum measurable dose, self and residual doses fulfill the criteria given by IEC 61066 and ASTM E668 standards; however, the remaining tests show some discrepancies in comparison with the standards. Also the sensitivity was measured to be 0.92 of that of commercially available TLD-100 (Harshaw) sample. So, the produced LiF:Mg,Ti dosimeter can be used in a routine personal/environmental and medical dosimetry with considering its precision.

  14. Correlations of post-implant regional dosimetric parameters at 24 hours and one month, with clinical results of low-dose-rate brachytherapy for localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Eiichiro Okazaki

    2017-12-01

    Full Text Available Purpose : To evaluate the correlations of post-implant regional dosimetrics at 24 hours (24 h and 1 month after implant procedures, with clinical outcomes of low-dose-rate (LDR brachytherapy for localized prostate cancer. Material and methods : Between January 2008 and December 2014, 130 consecutive patients treated for localized prostate cancer, receiving definitive iodine-125 ( 125 I brachytherapy treatment were retrospectively analyzed. All patients underwent post-implant CT imaging for dosimetric analysis at 24 h and 1 month after implantation procedure. Prostate contours were divided into quadrants: anterior-superior (ASQ, posterior-superior (PSQ, anterior-inferior (AIQ, and posterior-inferior (PIQ. Predictive factors and cut-off values of biochemical failure-free survival (BFFS and toxicities of LDR brachytherapy were analyzed. Results : The median follow-up time was 69.5 months. Seven patients (5.4% had biochemical failure. The 3-year and 5-year BFFS rates were 96.7% and 93.1%, respectively. On multivariate analysis, prostate-specific antigen and Gleason score were significant prognostic factors for biochemical failure. D 90 (the minimal dose received by 90% of the volume of PSQ and PIQ at 24 h, and D 90 of PSQ at 1 month were also significant factors. The cut-off values of PSQ D 90 were 145 Gy at 24 h and 160 Gy at 1 month. D 90 of the whole prostate was not significant at 24 h and at 1 month. D 90 of PSQ at 1 month was a significant factor for rectal hemorrhage. Conclusions : Post-implant D 90 of PSQ is significantly associated with BFFS for localized prostate cancer not only at 1 month, but also at 24 hours. D 90 of PSQ at 1 month is also a significant factor for rectal hemorrhage.

  15. Radiochromic film in the dosimetric verification of intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Zhou Yingjuan; Huang Shaomin; Deng Xiaowu

    2007-01-01

    Objective: Objective To investigate the dose-response behavior of a new type of radio- chromic film( GAFCHROMIC EBT) and explore the clinical application means and precision of dosage measurement, which can be applied for: (1) plan-specific dosimetric verification for intensity modulated radiation therapy, (2) to simplify the process of quality assurance using traditional radiographic film dosimetric system and (3) to establish a more reliable, more efficient dosimetric verification system for intensity modulated radiation therapy. Methods: (1) The step wedge calibration technique was used to calibrate EBT radiochromic film and EDR2 radiographic film. The dose characteristics, the measurement consistency and the quality assurance process between the two methods were compared. (2) The in-phantom dose-measurement based verification technique has been adopted. Respectively, EBT film and EDR2 film were used to measure the same dose plane of IMRT treatment plans. The results of the dose map, dose profiles and iso- dose curves were compared with those calculated by CORVUS treatment planning system to evaluate the function of EBT film for dosimetric verification for intensity modulated radiation therapy. Results: (1) Over the external beam dosimetric range of 0-500 cGy, EBT/VXR-16 and EDR2/VXR-16 film dosimetric system had the same measurement consistency with the measurement variability less then 0.70%. The mean measurement variability of these two systems was 0.37% and 0.68%, respectively. The former proved to be the superior modality at measurement consistency, reliability, and efficiency over dynamic clinical dose range , furthermore, its quality assurance showed less process than the latter. (2) The dosimetric verification of IMRT plane measured with EBT film was quite similar to that with EDR2 film which was processed under strict quality control. In a plane of the phantom, the maximal dose deviation off axis between EBT film measurement and the TPS calculation was

  16. SU-G-TeP2-15: Feasibility Study of Fiber-Optic Cerenkov Radiation Sensors for in Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lah, J [Myongji Hospital, Goyang-si (Korea, Republic of); Son, J [Korea University, Seoul (Korea, Republic of); Kim, G [University of California, San Diego, La Jolla, CA (United States); Shin, D [National Cancer Center, Goyang-si (Korea, Republic of)

    2016-06-15

    Purpose: To evaluate the possibility of a fiber-optic Cerenkov radiation sensor (FCRS) for in vivo dose verification in proton therapy. Methods: The Cerenkov radiation due to the proton beam was measured using a homemade phantom, consisting of a plastic optical fiber (POF, PGSCD1001-13-E, Toray, Tokyo, Japan) connected to each channel of a multianode photomultiplier tube (MAPMT:H7546, Hamamatsu Photonics, Shizuoka, Japan). Data were acquired using a multi-anode photomultiplier tube with the NI-DAQ system (National Instruments Texas, USA). The real-time monitoring graphic user interface was programmed using Labview. The FCRS was analyzed for its dosimetrics characteristic in proton beam. To determine the accuracy of the FCRS in proton dose measurements, we compared the ionization chamber dose measurements using a water phantom. We investigated the feasibility of the FCRS for the measurement of dose distributions near the superficial region for proton plans with a varying separation between the target volume and the surface of 3 patients using a humanoid phantom. Results: The dose-response has good linearity. Dose-rate and energy dependence were found to be within 1%. Depth-dose distributions in non-modulated proton beams obtained with the FCRS was in good agreement with the depth-dose measurements from the ionization chamber. To evaluate the dosimetric accuracy of the FCRS, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the FCRS was within 3%. With in vivo dosimetry using the humanoid phantom, the calculated surface doses overestimated measurements by 4%–8% using FCRS. Conclusion: In previous study, our results indicate that the performance of the array-type FCRS was comparable to that of the currently used a multi-layer ion chamber system. In this study, we also believe that the fiber-optic Cerenkov radiation sensor has considerable potential for use with in vivo patient proton dosimetry.

  17. Postoperative telegammatherapy of breast cancer (Dosimetric studies)

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, J; Mitrov, G [Nauchno-Izsledovatelski Onkologichen Inst., Sofia (Bulgaria); Konstantinov, B; Dobrev, D [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1977-01-01

    The method employed for postoperative radiation therapy of breast cancer at the Radiologic Clinic of the Medical Academy in Sofia is described. Results are reported and discussed of dosimetric studies carried out with the T-100 on heterogeneous tissue-equivalent Rando phantom for dose distributions in the regional lymph basin and the underlying tissues and organs. The results show coincidence between calculated and measured doses in the regional lymph basin and the thoracic wall. It was demonstrated that maximal radiation loading (3600 to 5500 rad) occurs in the apical and the hilar lung area.

  18. Recognition of the dosimetric calibration capacities of Cuba by the International Bureau of Weights and Measures; Reconocimiento de las capacidades de calibracion dosimetrica de Cuba por el Buro Internacional de Pesas y Medidas

    Energy Technology Data Exchange (ETDEWEB)

    Walwyn S, G.; Gutierrez L, S.; Tamayo G, J.A.; Gonzalez R, N.; Alonso V, G. [CPHR, Calle 20 No. 4113 e/ 41 y 47, Playa C.P. 11300, La Habana (Cuba)]. e-mail: gonzalo@cphr.edu.cu

    2006-07-01

    The declared mission of the International Bureau of Weights and Measures are the world uniformity of the measurement, however until some years ago a formal mechanism didn't exist for its complete implementation. With this end arose the Mutual Recognition Agreement whose specific objective is to establish the grade of equivalence of the national standards, the one of mutually recognizing the calibration and measurement certificates and the one of providing to the governments of a sure technical tool in its commercial negotiations and regulatory matters at international level. Cuba like an associated country to the Meter Convention, signed the agreement and it intended to demonstrate the international equivalence of its standards. The best measurement and calibration capacities of the country in the dosimetric magnitudes are in the Secondary Laboratory of Dosimetric Calibration of the Protection and Hygiene of Radiations Center. This capacities were included in the Regional Metrological Organization COOMET in the year 2003. In June of the 2005 the metrological capacities have been approved and published in the databases of the International Bureau of Weights and Measures as demonstration of the high competition of the calibration works that its are carried out in the laboratory. This approval is one of the maximum international recognitions that the patterns of a country can receive and its are the result of 10 years of work of the laboratory like part of the international net OIEA/OMS, which has given it the possibility to gauge the patterns and of adopting internationally validated calibration methodologies. On the other hand, it has been decisive the participation of the laboratory in multiple international comparisons of their patterns, as well as the implementation of a system of administration of the quality credited by the competent national organ. The article reviews the technical work of the laboratory during several years that it gave as result this

  19. The Uncertainty of Measurement Results

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)

    2009-07-15

    Factors affecting the uncertainty of measurement are explained, basic statistical formulae given, and the theoretical concept explained in the context of pesticide formulation analysis. Practical guidance is provided on how to determine individual uncertainty components within an analytical procedure. An extended and comprehensive table containing the relevant mathematical/statistical expressions elucidates the relevant underlying principles. Appendix I provides a practical elaborated example on measurement uncertainty estimation, above all utilizing experimental repeatability and reproducibility laboratory data. (author)

  20. Dosimetric inter-institutional comparison in European radiotherapy centres: Results of IAEA supported treatment planning system audit.

    Science.gov (United States)

    Gershkevitsh, Eduard; Pesznyak, Csilla; Petrovic, Borislava; Grezdo, Joseph; Chelminski, Krzysztof; do Carmo Lopes, Maria; Izewska, Joanna; Van Dyk, Jacob

    2014-05-01

    One of the newer audit modalities operated by the International Atomic Energy Agency (IAEA) involves audits of treatment planning systems (TPS) in radiotherapy. The main focus of the audit is the dosimetry verification of the delivery of a radiation treatment plan for three-dimensional (3D) conformal radiotherapy using high energy photon beams. The audit has been carried out in eight European countries - Estonia, Hungary, Latvia, Lithuania, Serbia, Slovakia, Poland and Portugal. The corresponding results are presented. The TPS audit reviews the dosimetry, treatment planning and radiotherapy delivery processes using the 'end-to-end' approach, i.e. following the pathway similar to that of the patient, through imaging, treatment planning and dose delivery. The audit is implemented at the national level with IAEA assistance. The national counterparts conduct the TPS audit at local radiotherapy centres through on-site visits. TPS calculated doses are compared with ion chamber measurements performed in an anthropomorphic phantom for eight test cases per algorithm/beam. A set of pre-defined agreement criteria is used to analyse the performance of TPSs. TPS audit was carried out in 60 radiotherapy centres. In total, 190 data sets (combination of algorithm and beam quality) have been collected and reviewed. Dosimetry problems requiring interventions were discovered in about 10% of datasets. In addition, suboptimal beam modelling in TPSs was discovered in a number of cases. The TPS audit project using the IAEA methodology has verified the treatment planning system calculations for 3D conformal radiotherapy in a group of radiotherapy centres in Europe. It contributed to achieving better understanding of the performance of TPSs and helped to resolve issues related to imaging, dosimetry and treatment planning.

  1. Dosimetric verification of IMRT plans

    International Nuclear Information System (INIS)

    Bulski, W.; Cheimicski, K.; Rostkowska, J.

    2012-01-01

    Intensity modulated radiotherapy (IMRT) is a complex procedure requiring proper dosimetric verification. IMRT dose distributions are characterized by steep dose gradients which enable to spare organs at risk and allow for an escalation of the dose to the tumor. They require large number of radiation beams (sometimes over 10). The fluence measurements for individual beams are not sufficient for evaluation of the total dose distribution and to assure patient safety. The methods used at the Centre of Oncology in Warsaw are presented. In order to measure dose distributions in various cross-sections the film dosimeters were used (radiographic Kodak EDR2 films and radiochromic Gafchromic EBT films). The film characteristics were carefully examined. Several types of tissue equivalent phantoms were developed. A methodology of comparing measured dose distributions against the distributions calculated by treatment planning systems (TPS) was developed and tested. The tolerance level for this comparison was set at 3% difference in dose and 3 mm in distance to agreement. The so called gamma formalism was used. The results of these comparisons for a group of over 600 patients are presented. Agreement was found in 87 % of cases. This film dosimetry methodology was used as a benchmark to test and validate the performance of commercially available 2D and 3D matrices of detectors (ionization chambers or diodes). The results of these validations are also presented. (authors)

  2. Dosimetric fundamentals

    International Nuclear Information System (INIS)

    Nahum, A.E.

    2004-01-01

    This text covers some important concepts in radiation dosimetry with an emphasis on cavity theory, i.e. the theoretical evaluation of D med /D det , for two important classes of detector, 'large' and Bragg-Gray. Monte Carlo simulation continues to play a major role in evaluating this expression through its ability to compute the fluence spectra of electrons and photons as a function of their position in a medium. The key results in the paper can be summarised thus: - Fluence Φ = dN/da Σds/dV and is a scalar quantity. - Kerma K = dE tr /dm, i.e. kinetic energy (k.e.) transferred per unit mass; collision kerma K c excludes charged-particle k.e. converted to Bremsstrahlung. - Kerma and fluence are related by K med = Φ (μ tr /ρ) med for photons of energy E; for collision kerma, K c , the mass energy-absorption coefficient μ en replaces μ tr . - D med = (K c ) med under conditions of charged particle equilibrium (CPE), for a medium med irradiated by photons. - For a fluence Φ of charged particles, e.g. electrons, in medium med, the absorbed dose D med = Φ (S col /ρ) med provided there is δ-ray equilibrium. - For large detectors under photon irradiation (i.e. in which there is CPE as e - ranges - detector size), D med /D det is given by (μ en /ρ) med /(μ en /ρ) det which is evaluated over the photon spectrum at the detector position: e.g. TLD (e.g. LiF) in kV X-ray beams are large. - For 'small' or Bragg-Gray detectors under photon or electron irradiation (e - ranges - detector dimensions), D med /D det is given by (S col /ρ) med /(S col /ρ) det , the (mass) stopping-power ratio, usually written S med.det : e.g. (air-filled) ionisation chambers behave as Bragg -Gray detectors in megavoltage photon and electron beams, but not in kV X-ray beams. - Bragg-Gray theory was extended by Spencer and Attix to take into account the finite range of δ-rays. - General cavity theory provides an approximate treatment of detectors which are neither 'large' nor 'small

  3. Dosimetric investigations in mammography

    International Nuclear Information System (INIS)

    Metges, P.J.; Lorrain, S.

    1981-01-01

    The development film-screen detectors in radiological equipment has led us to study how to improve standard mammographic pictures (focus 0.3 x 0.3 mm, focus-film distance: 65) of thick and dense breasts by the use of an anti-scatter grid and by magnification. A dosimetric study was necessary to assess the doses delivered during mammographic examinations carried out according to various procedures. The results led to modify breast examination procedures and use an anti-scatter grid for breasts thicker than 4 cm or known as dense. The dose increase due to a better quality image is the lowest provided depth penetration is increased by 2 kV as compared to a standard picture. Absorbed doses on the X-ray axis, at 3 cm depth, are below 0.1 rad [fr

  4. Parotid gland-sparing 3-dimensional conformal radiotherapy results in less severe dry mouth in nasopharyngeal cancer patients: A dosimetric and clinical comparison with conventional radiotherapy

    International Nuclear Information System (INIS)

    Jen, Y.-M.; Shih Rompin; Lin, Y.-S.; Su, W.-F.; Ku, C.-H.; Chang, C.-S.; Shueng, P.-W.; Hwang, J.-M.; Liu, D.-W.; Chao, H.-L.; Lin, H.-Y.; Chang, L.-P.; Shum, W.-Y.; Lin, C.-S.

    2005-01-01

    Background and purpose: This study examined the efficacy of parotid gland sparing of three-dimensional conformal radiotherapy (3DCRT) compared with conventional radiotherapy for NPC patients. Both the dose given to the parotids and clinical assessment of dry mouth were conducted. Materials and methods: Dry mouth was assessed for 108 patients treated with conventional technique and 72 treated with 3DCRT. Dose analysis was performed in 48 patients of the 3DCRT group. A dose of 70 Gy was given to the midplane in conventional radiotherapy and to 90% isodose volume in 3DCRT. Prognostic factors affecting the severity of dry mouth were analyzed using Generalized Estimating Equation (GEE). Results: In the 3DCRT group about 50% of the patients' parotid glands received less than 25 Gy. Parallel analysis of dry mouth shows a significant decrease in the incidence of severe xerostomia after 3DCRT. The proportion of patients without dry mouth was also significantly higher in the 3DCRT group than the conventional group at 1-3 years after completion of radiotherapy. Although 3DCRT delivered a higher dose to the tumor, it spared the parotid gland significantly better than the conventional treatment. Late toxicities were mostly similar between the 2 groups while local control in T4 patients and survival were improved for 3DCRT. Conclusion: Dosimetrically and clinically 3DCRT is better than conventional technique regarding parotid gland protection

  5. Evolution of dosimetric phantoms

    International Nuclear Information System (INIS)

    Reddy, A.R.

    2010-01-01

    In this oration evolution of the dosimetric phantoms for radiation protection and for medical use is briefly reviewed. Some details of the development of Indian Reference Phantom for internal dose estimation are also presented

  6. The Residual Setup Errors of Different IGRT Alignment Procedures for Head and Neck IMRT and the Resulting Dosimetric Impact

    International Nuclear Information System (INIS)

    Graff, Pierre; Kirby, Neil; Weinberg, Vivian; Chen, Josephine; Yom, Sue S.; Lambert, Louise; Pouliot, Jean

    2013-01-01

    Purpose: To assess residual setup errors during head and neck radiation therapy and the resulting consequences for the delivered dose for various patient alignment procedures. Methods and Materials: Megavoltage cone beam computed tomography (MVCBCT) scans from 11 head and neck patients who underwent intensity modulated radiation therapy were used to assess setup errors. Each MVCBCT scan was registered to its reference planning kVCT, with seven different alignment procedures: automatic alignment and manual registration to 6 separate bony landmarks (sphenoid, left/right maxillary sinuses, mandible, cervical 1 [C1]-C2, and C7-thoracic 1 [T1] vertebrae). Shifts in the different alignments were compared with each other to determine whether there were any statistically significant differences. Then, the dose distribution was recalculated on 3 MVCBCT images per patient for every alignment procedure. The resulting dose-volume histograms for targets and organs at risk (OARs) were compared to those from the planning kVCTs. Results: The registration procedures produced statistically significant global differences in patient alignment and actual dose distribution, calling for a need for standardization of patient positioning. Vertically, the automatic, sphenoid, and maxillary sinuses alignments mainly generated posterior shifts and resulted in mean increases in maximal dose to OARs of >3% of the planned dose. The suggested choice of C1-C2 as a reference landmark appears valid, combining both OAR sparing and target coverage. Assuming this choice, relevant margins to apply around volumes of interest at the time of planning to take into account for the relative mobility of other regions are discussed. Conclusions: Use of different alignment procedures for treating head and neck patients produced variations in patient setup and dose distribution. With concern for standardizing practice, C1-C2 reference alignment with relevant margins around planning volumes seems to be a valid

  7. Dosimetric studies in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamadain, K. E. M.

    2004-04-01

    A dosimetric study in pediatric radiology and adult patients was currently being carried out at the pediatrics units of two large hospitals in Rio de Janeiro city: IPPMG (Instituto de Pediatric e Puericultura Martagao Gesteira, University hospital of federal University of Rio de Janeiro), IFF (Instituto Fernandes Figueira, FIOCRUZ) and Hospital Geral de Bonsucesso, a large public hospital in Rio de Janeiro city (HGB) Brazil. The dosimetric study was also performed at three pediatrics units in Sudan, namely, Ahmed Gasim, Khartoum and Omdurman hospitals. For chest x-ray examination the entrance skin dose(ESD) for AP, PA and LAT projections of pediatric patients, and the scattered dose at the thyroid, ovary and gonads have been obtained with thermoluminescent dosimeters (TLD) and with use of a software package Dosecal in thr Brazilian hospitals, and with the software dosecal in the Sudanese hospitals.The aim of this work was to estimate the entrance skin dose (ESD), the effective dose (ED) and the body organ dose (BOD) for chest x-ray exposure in pediatric patients, and different exams for adults patients, and to compare the results obtained in the tow Countries Sudan and Brazil with the reference dose level. For ESD evaluation of the chest x-ray, three different TL dosimeters have been used, namely LiF: Mg, Ti (TLD 100) CaSo 4 : Dy and LiF:Mg, Cu,P (TLD 100 H). The age intervals considered were: 0-1 years, 1-5 years, 5-10 years and 10-15 years. The results obtained with all dosimeters were in good agreement with, those obtained by the dosecal software, especially for AP and PA projection. However, some discrepancies were found for the LAT projection. The results within Brazil were some what consistent while in Sudan, large difference were observed, it was also noted that the doses in Brazil hospitals were less than the reference dose levels while in Sudanese hospitals the doses were higher than the reference dose levels. For adult patients only the software dosecal

  8. Dosimetric Aspects of Personnel Skin Contamination by Radionuclides - Estimate of a Skin Dose, Monitoring and Interpretation of Results

    International Nuclear Information System (INIS)

    Husak, V.; Kleinbauer, K.

    2001-01-01

    Full text: On the basis of a critical comparison of literary data, tables are compiled of beta and gamma dose rate in mSvh -1 (kBqcm -1 ) to the basal layer of the skin at 0.07 mm depth from contamination by 75 radionuclides unsealed sources; radioactive substances are assumed to reside on the skin surface. The residence time needed for the estimate of the skin dose is calculated assuming that a residual activity per unit area of any radionuclide on the skin, which could not be removed by the repeated careful decontamination, is supposed to be eliminated with the biological half-life of 116 h as a consequence of the natural sloughing off of the skin. Radionuclides are divided into five groups according to the dose estimate in mSv (kBqcm -2 ): ≥250 (e.g. 32 P, 89 Sr, 137 Cs/ 137m Ba), 100-250 (e.g. 90 Y, 131 I, 186 Re), 10-100 (e.g. 35 S, 67 Ga, 200 Tl), 1-10 (e.g. 18 F, 51 Cr, 99m Tc), ≤1 (e.g. 63 Ni, 144 Pr, 238 U). If it is possible, doses can be determined more precisely by measuring the effective half-life of the residual activity on the contaminated area. Our dose estimates are approximately valid on the condition that, after decontamination, residual activity of radionuclides persists predominantly in the superficial layers of epidermis. This and further uncertainties connected with the dose assessment are discussed. Our tables can help to determine easily rough values of doses to personnel in contamination incidents and to interpret them in relation to regulatory derived limits. This work was supported by State Office for Nuclear Safety in Prague. (author)

  9. Dosimetric adaptive IMRT driven by fiducial points

    International Nuclear Information System (INIS)

    Crijns, Wouter; Van Herck, Hans; Defraene, Gilles; Van den Bergh, Laura; Haustermans, Karin; Slagmolen, Pieter; Maes, Frederik; Van den Heuvel, Frank

    2014-01-01

    (CTV mean dose, conformity index) and clinical (tumor control probability, and normal tissue complication probability) measures. Results: Based on the current experiments, the intended target dose and tumor control probability could be assured by the proposed method (TCP ≥ TCP intended ). Additionally, the conformity index error was more than halved compared to the current clinical practice (ΔCI 95% from 40% to 16%) resulting in improved organ at risk protection. All the individual correction steps had an added value to the full correction. Conclusions: A limited number of fiducial points (no organ contours required) and an in-room (CB)CT are sufficient to perform a full dosimetric correction for IMRT plans. In the presence of interfraction variation, the corrected plans show superior dose distributions compared to our current clinical practice

  10. Dosimetric adaptive IMRT driven by fiducial points

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be [Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Medical Imaging Research Center, KU Leuven, Herestraat 49, 3000 Leuven (Belgium); Van Herck, Hans [Medical Imaging Research Center, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Department of Electrical Engineering (ESAT) – PSI, Center for the Processing of Speech and Images, KU Leuven, 3000 Leuven (Belgium); Defraene, Gilles; Van den Bergh, Laura; Haustermans, Karin [Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Herestraat 49, 3000 Leuven (Belgium); Slagmolen, Pieter [Medical Imaging Research Center, KU Leuven, Herestraat 49, 3000 Leuven (Belgium); Department of Electrical Engineering (ESAT) – PSI, Center for the Processing of Speech and Images, KU Leuven, 3000 Leuven (Belgium); iMinds-KU Leuven Medical IT Department, KU Leuven, 3000 Leuven (Belgium); Maes, Frederik [Medical Imaging Research Center, KU Leuven, Herestraat 49, 3000 Leuven (Belgium); Department of Electrical Engineering (ESAT) – PSI, Center for the Processing of Speech and Images, KU Leuven and iMinds, 3000 Leuven (Belgium); Van den Heuvel, Frank [Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Department of Oncology, MRC-CR-UK Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford OX1 2JD (United Kingdom)

    2014-06-15

    (CTV mean dose, conformity index) and clinical (tumor control probability, and normal tissue complication probability) measures. Results: Based on the current experiments, the intended target dose and tumor control probability could be assured by the proposed method (TCP ≥ TCP{sub intended}). Additionally, the conformity index error was more than halved compared to the current clinical practice (ΔCI{sub 95%} from 40% to 16%) resulting in improved organ at risk protection. All the individual correction steps had an added value to the full correction. Conclusions: A limited number of fiducial points (no organ contours required) and an in-room (CB)CT are sufficient to perform a full dosimetric correction for IMRT plans. In the presence of interfraction variation, the corrected plans show superior dose distributions compared to our current clinical practice.

  11. Comparative Analysis of Different Measurement Techniques for MLC Characterization: Preliminary Results

    International Nuclear Information System (INIS)

    Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Moreno-Jimenez, S.; Celis, M. A.

    2008-01-01

    Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence

  12. Slice-based supine-to-standing posture deformation for chinese anatomical models and the dosimetric results with wide band frequency electromagnetic field exposure: Simulation

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Standing Chinese adult anatomical models are obtained from supine-postured cadaver slices. This paper presents the dosimetric differences between the supine and the standing postures over wide band frequencies and various incident configurations. Both the body level and the tissue/organ level differences are reported for plane wave and the 3T magnetic resonance imaging radiofrequency electromagnetic field exposure. The influence of posture on the whole body specific absorption rate and tissue specified specific absorption rate values is discussed. . (authors)

  13. A national dosimetric audit of IMRT

    International Nuclear Information System (INIS)

    Budgell, Geoff; Berresford, Joe; Trainer, Michael; Bradshaw, Ellie; Sharpe, Peter; Williams, Peter

    2011-01-01

    Background and purpose: A dosimetric audit of IMRT has been carried out within the UK between June 2009 and March 2010 in order to provide an independent check of safe implementation and to identify problems in the modelling and delivery of IMRT. Methods and materials: A mail based audit involving film and alanine dosimeters was utilized. Measurements were made for each individual field in an IMRT plan isocentrically in a flat water-equivalent phantom at a depth of 5 cm. The films and alanine dosimeters were processed and analysed centrally; additional ion chamber measurements were made by each participating centre. Results: 57 of 62 centres participated, with a total of 78 plans submitted. For the film measurements, all 176 fields from the less complex IMRT plans (including prostate and breast plans) achieved over 95% pixels passing a gamma criterion of 3%/3 mm within the 20% isodose. For the more complex IMRT plans (mainly head and neck) 8/245 fields (3.3%) achieved less than 95% pixels passing a 4%/4 mm gamma criterion. Of the alanine measurements, 4/78 (5.1%) of the measurements differed by >5% from the dose predicted by the treatment planning system. Three of these were large deviations of -77.1%, -29.1% and 14.1% respectively. Excluding the three measurements outside 10%, the mean difference was 0.05% with a standard deviation of 1.5%. The out of tolerance results have been subjected to further investigations. Conclusions: A dosimetric audit has been successfully carried out of IMRT implementation by over 90% of UK radiotherapy departments. The audit shows that modelling and delivery of IMRT is accurate, suggesting that the implementation of IMRT has been carried out safely.

  14. SU-E-T-225: Correction Matrix for PinPoint Ionization Chamber for Dosimetric Measurements in the Newly Released Incise™ Multileaf Collimator Shaped Small Field for CyberKnife M6™ Machine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Li, T; Heron, D; Huq, M [University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA (United States)

    2015-06-15

    Purpose: For small field dosimetry, such as measurements of output factors for cones or MLC-shaped irregular small fields, ion chambers often Result in an underestimation of the dose, due to both the volume averaging effect and the lack of lateral charged particle equilibrium. This work presents a mathematical model for correction matrix for a PTW PinPoint ionization chamber for dosimetric measurements made in the newly released Incise™ Multileaf collimator fields of the CyberKnife M6™ machine. Methods: A correction matrix for a PTW 0.015cc PinPoint ionization chamber was developed by modeling its 3D dose response in twelve cone-shaped circular fields created using the 5mm, 7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm cones in a CyberKnife M6™ machine. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. The contribution of each dose pixel to a measurement point depended on the radial distance and the angle to the chamber axis. These readings were then compared with the theoretical dose as obtained with Monte Carlo calculation. A penalized least-square optimization algorithm was developed to generate the correction matrix. After the parameter fitting, the mathematical model was validated for MLC-shaped irregular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for PinPoint chamber for dosimetric measurements in small MLC-shaped irregular fields. The correction matrix is dependent on detector, treatment unit and the geometry of setup. The model can be applied to non-standard composite fields and provides an access to IMRT point dose validation.

  15. SU-E-T-225: Correction Matrix for PinPoint Ionization Chamber for Dosimetric Measurements in the Newly Released Incise™ Multileaf Collimator Shaped Small Field for CyberKnife M6™ Machine

    International Nuclear Information System (INIS)

    Zhang, Y; Li, T; Heron, D; Huq, M

    2015-01-01

    Purpose: For small field dosimetry, such as measurements of output factors for cones or MLC-shaped irregular small fields, ion chambers often Result in an underestimation of the dose, due to both the volume averaging effect and the lack of lateral charged particle equilibrium. This work presents a mathematical model for correction matrix for a PTW PinPoint ionization chamber for dosimetric measurements made in the newly released Incise™ Multileaf collimator fields of the CyberKnife M6™ machine. Methods: A correction matrix for a PTW 0.015cc PinPoint ionization chamber was developed by modeling its 3D dose response in twelve cone-shaped circular fields created using the 5mm, 7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm cones in a CyberKnife M6™ machine. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. The contribution of each dose pixel to a measurement point depended on the radial distance and the angle to the chamber axis. These readings were then compared with the theoretical dose as obtained with Monte Carlo calculation. A penalized least-square optimization algorithm was developed to generate the correction matrix. After the parameter fitting, the mathematical model was validated for MLC-shaped irregular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for PinPoint chamber for dosimetric measurements in small MLC-shaped irregular fields. The correction matrix is dependent on detector, treatment unit and the geometry of setup. The model can be applied to non-standard composite fields and provides an access to IMRT point dose validation

  16. Radiometric and dosimetric characteristics of HgI2 detectors

    International Nuclear Information System (INIS)

    Zaletin, V.M.; Krivozubov, O.V.; Torlin, M.A.; Fomin, V.I.

    1988-01-01

    The characteristics of HgI 2 detectors in x-ray and gamma detection in applications to radiometric and dosimetric monitoring and as portable instruments for such purposes was considered. Blocks with mosaic and sandwich structures were prepared and tested against each other and, for comparative purposes, against CdTe detectors for relative sensitivities at various gamma-quanta energies. Sensitivity dependencies on gamma radiation energy were plotted for the detector materials and structures as were current dependencies on the dose rate of x rays. Results indicated that the mercury iodide detectors could be used in radiometric and dosimetric measurements at gamma quantum energies up to and in excess of 1000 KeV

  17. Dosimetric considerations and radiation protection of patients in interventional cardiology

    International Nuclear Information System (INIS)

    Ciraj-Bjelac, O.; Arandjic, D.; Kosutic, D.; Loncar, B.

    2009-01-01

    The paper summarizes results of measurements of relevant dosimetric quantities in interventional cardiology. Dosimetric data were collected for 117 coronary angiography (CA) procedures, 69 percutaneous coronary interventions (PCI) and 41 combined procedures (CA+PCI), taking into account two quantities: air kerma area product (KAP) d air kerma in international reference point (K IRP ). Mean KAP values were 78 Gy·cm 2 , 113 Gy·cm 2 and 141 Gy·cm 2 for CA, PCI i CA+PCI, respectively. Corresponding mean K IRP values were 1.2 Gy, 1.8 Gy and 2.2 Gy. With respect to high dose values, risk for stochastic effects and tissue reactions, dose management methods were proposed. (author) [sr

  18. Preliminary dosimetric methodology for a new cobalt-60 irradiator for radioinduced necrosis

    International Nuclear Information System (INIS)

    Moura, Eduardo S.; Mosca, Rodrigo C.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M.; Mathor, Monica B.; Sakuraba, Roberto K.; Goncalves, Vinicius D.

    2011-01-01

    The use of ionizing radiation in medical procedures, as radiotherapy, is a well-established clinical process and it has been used for several decades with good clinical results and continuous technology development for treatment optimization. On the contrary, some injuries such as necrosis, may occur with patients, due to wrong administration of the absorbed dose or with expected side effects. To evaluate how these injuries could be investigated and how they can be treated, a new Cobalto-60 irradiator was developed to induce radionecrosis in mice. This irradiator is composed by a cylindrical size and it was set up with eleven Cobalt-60 sources aligned in the surface of a cylindrical lead. This alignment guarantees a small dose focal area in a longitudinal table, with proper frames for positioning mice precisely during the irradiations period. The dosimetric procedure will measure the absorbed dose in the dose focal area, delimited the area of irradiation with penumbra regions (gradients absorbed dose profiles) and others anatomical regions of the mice with high radiosensitivity. Possible dosimetric procedures and related devices will be present in this work,. The obtained dosimetric data will be applied to ensure the accurate period of radiation of a given position. This preliminary study assures that the fundamental dosimetric process of this new Cobalt-60 irradiator and it predicates that dosimetric processes area feasible to be conducted. (author)

  19. Preliminary dosimetric methodology for a new cobalt-60 irradiator for radioinduced necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo S.; Mosca, Rodrigo C.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M.; Mathor, Monica B., E-mail: esmoura@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sakuraba, Roberto K.; Goncalves, Vinicius D. [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil)

    2011-07-01

    The use of ionizing radiation in medical procedures, as radiotherapy, is a well-established clinical process and it has been used for several decades with good clinical results and continuous technology development for treatment optimization. On the contrary, some injuries such as necrosis, may occur with patients, due to wrong administration of the absorbed dose or with expected side effects. To evaluate how these injuries could be investigated and how they can be treated, a new Cobalto-60 irradiator was developed to induce radionecrosis in mice. This irradiator is composed by a cylindrical size and it was set up with eleven Cobalt-60 sources aligned in the surface of a cylindrical lead. This alignment guarantees a small dose focal area in a longitudinal table, with proper frames for positioning mice precisely during the irradiations period. The dosimetric procedure will measure the absorbed dose in the dose focal area, delimited the area of irradiation with penumbra regions (gradients absorbed dose profiles) and others anatomical regions of the mice with high radiosensitivity. Possible dosimetric procedures and related devices will be present in this work,. The obtained dosimetric data will be applied to ensure the accurate period of radiation of a given position. This preliminary study assures that the fundamental dosimetric process of this new Cobalt-60 irradiator and it predicates that dosimetric processes area feasible to be conducted. (author)

  20. Study of dosimetric systems-ferrous sulfate-ferric sulfate, glass slides and dyed aqueous solutions

    International Nuclear Information System (INIS)

    Fernandes, L.

    1979-01-01

    The effect of some variables which can effect the preparation of the ferrous sulfate used as dosimetric solution has been studied. Among these variables the purity of the water used for the preparation of the solution and the presence (or absence) of oxygen in the dosimetric solution were considered. The dose rate distribution according to the transverse and longitudinal sections of the Co 60 irradiator was studied experimentally, using the dosimetric solution, and theoretically, using a computer program (KIFE). The results obtained with the ferrous sulface dosimetric solution were used as reference for the study of the application of EM and MSG glass slide as a dosimetric system. For this purpose the effects of the weakening of the coloration induced in the glass by gamma rays (Co 60 ) and the relationship between the absorbed dose of radiation and the ratio between the variation in absorbation value and the thickness of the glass irradiated, were studied. A study was also made of the use of the dye indicators bromothymol-blue, methyl-orange, Congo-red, neutral-red and p-nitrophenol, in aqueous solution, for radiation dose measurements. The bleaching of each indicator solution, under gamma-radiation (Co 60 ) was studied in oxygen and nitrogen atmospheres.(Author) [pt

  1. Program proposed for dosimetric measures to be carried out during the start-up of the Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Romero Cabrera, J.L.

    1996-01-01

    The present measurement program fulfills two main tasks the first aimed at showing the staff permissible magnitudes of radiation doses and the second to the control of radiation protection and the gathering of necessary data for optimum radiation protection measures

  2. A Monte Carlo dosimetric quality assurance system for dynamic intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Takegawa, Hideki; Yamamoto, Tokihiro; Miyabe, Yuki; Teshima, Teruki; Kunugi, Tomoaki; Yano, Shinsuke; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2005-01-01

    We are developing a Monte Carlo (MC) dose calculation system, which can resolve dosimetric issues derived from multileaf collimator (MLC) design for routine dosimetric quality assurance (QA) of intensity-modulated radiotherapy (IMRT). The treatment head of the medical linear accelerator equipped with MLC was modeled using the EGS4 MC code. A graphical user interface (GUI) application was developed to implement MC dose computation in the CT-based patient model and compare the MC calculated results with those of a commercial radiotherapy treatment planning (RTP) system, Varian Eclipse. To reduce computation time, the EGS4 MC code has been parallelized on massive parallel processing (MPP) system using the message passing interface (MPI). The MC treatment head model and MLC model were validated by the measurement data sets of percentage depth dose (PDD) and off-center ratio (OCR) in the water phantom and the film measurements for the static and dynamic test patterns, respectively. In the treatment head model, the MC calculated results agreed with those of measurements for both of PDD and OCR. The MC could reproduce all of the MLC dosimetric effects. A quantitative comparison between the results of MC and Eclipse was successfully performed with the GUI application. Parallel speed-up became almost linear. An MC dosimetric QA system for dynamic IMRT has been developed, however there were large dose discrepancies between the MC and the measurement in the MLC model simulation, which are now being investigated. (author)

  3. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  4. Dosimetric evaluation program for dental radiology practices

    International Nuclear Information System (INIS)

    Gregori, B.; Milat, J.; Fernandez, J.; Micinquevich, S.; Andrieu, J.

    1992-01-01

    The preliminary results of a program undertaken to estimate the doses to patients associated with dental radiology practices in Argentine, are presented. Information collected from the search demonstrated that the Dieck and coronal techniques are the most commonly used practices, while all the examinations are performed by using a circular collimator. For both practices, the dosimetric studies were carried out on a Rando Alderson phantom. All dose measurements were made using thermoluminescent detectors LiF and Ca 2 F. In addition, a mathematical model was developed by applying the Monte Carlo method to a MIRD-V phantom. Circular and rectangular collimators were used. Absorbed dose distribution on head and neck, as well as surface dose distribution, were estimated. The comparison of the performance of both collimators shows that the use of the rectangular one allows for a dose reduction of 80%. Besides, a good correlation between the physical and mathematical models applied was found. (author)

  5. Dosimetric management during a criticality accident

    International Nuclear Information System (INIS)

    Lebaron-Jacobs, L.; Fottorino, R.; Racine, Y.; Miele, A.; Barbry, F.; Briot, F.; Distinguin, S.; Le Goff, J.P.; Berard, P.; Boisson, P.; Cavadore, D.; Lecoix, G.; Persico, M.H.; Rongier, E.; Challeton-De Vathaire, C.; Medioni, R.; Voisin, P.; Exmelin, L.; Flury-Herard, A.; Gaillard-Lecanu, E.; Lemaire, G.; Gonin, M.; Riasse, C.

    2008-01-01

    A working group from health occupational and clinical biochemistry services on French sites has issued essential data sheets on the guidelines to follow in managing the victims of a criticality accident. Since the priority of the medical management after a criticality accident is to assess the dose and the distribution of dose, some dosimetric investigations have been selected in order to provide a prompt response and to anticipate the final dose reconstruction. Comparison exercises between clinical biochemistry laboratories on French sites were carried out to confirm that each laboratory maintained the required operational methods for hair treatment and the appropriate equipment for 32 P activity in hair and 24 Na activity in blood measurements, and to demonstrate its ability to rapidly provide neutron dose estimates after a criticality accident. As a result, a relation has been assessed to estimate the dose and the distribution of dose according to the neutron spectrum following a criticality accident. (authors)

  6. Dosimetric confirmation of a software for the design of radiotherapy

    International Nuclear Information System (INIS)

    Alfonso, R.; Huerta, U.; Torres, M.; Alonso, J.L.

    1995-01-01

    A software for radiotherapy treatment has been recently designed by specialists in medical physics form Hermanos Ameijeiras Clinical and Surgical Hospital. Several locations in the distributions of dose calculations. The results of dosimetric measurements with TLD-700 powder in a human-like manikin were taken as reference. The different options available for the entry of patients shape data are explained. A comparison of the results of measurements with calculations, is presented. Causes of discrepancies are analyzed and recommendations regarding the usefulness of the different for the collection of data from patients are made

  7. Dosimetric monitoring in Ukraine - present status and path to the future

    International Nuclear Information System (INIS)

    Chumak, V.; Boguslavskaya, A.

    2005-01-01

    Full text: Ukraine is the country which utilizes radiation in many peaceful areas. So, nuclear energy sector includes 15 power units (including two new units commissioned in 2004), nuclear fuel cycle also include uranium mines, radiation sources are widely used in industry, science and medicine. As a result, about 50,000 occupationally exposed workers require dosimetric monitoring. However, presently dosimetry services in Ukraine cover only about 38,000 occupationally exposed workers, including 9,100 medical professionals, 16,400 employees of 5 nuclear power plants and ca. 12,400 workers dealing with other sources of occupational exposure (industry, research). Territorial dosimetry services, responsible for dosimetric monitoring in industry and medicine operate in 13 of 25 oblasts (regions) of Ukraine. The coverage of critical groups by dosimetric monitoring is variable and ranges from 38 % to 100 % depending on the oblast. With rare exception, instrumentation is represented by outdated manual TLD systems (inaccurate and insufficiently sensitive) capable of measurement of deep photon dose only; no personal monitoring of beta and neutron exposure is possible now. Quality assurance is limited to the annual metrological attestation of the dosimetric instruments. No information exchange infrastructure and dosimetric registry are in place. The dosimetric data is stored in home-made data environments or even in paper log-books, no data on individual doses is conveyed to central depository, which could be easily accessible for regulating authorities. Although the standing law requires elaboration of the United System for monitoring and registration individual doses, little was done so far, mainly due to lack of domestic funding. However, intention is strong to build such network in accordance with the best practice, covering not only the aspects of physical measurement and data storage, but also quality assurance, accreditation programs and training of the local personnel

  8. Daily measure of the constancy of rotation in the evaluation of geometric and dosimetric parameters of the tomotherapy

    International Nuclear Information System (INIS)

    Erzilbengoa, M.; Moral, S.; Bragado, L.; Guisasola, M. A.

    2011-01-01

    The daily test performance called ''Rotating Constancia'', based on the methodology developed by Balog ''Helical tomotherapy dynamic quality assurance'' (2006), has allowed us over these 2 years to assess the response to TomoTherapy machine parameters given dose, travel speed table offset of the same, position of the green lasers, field size, rotation time and energy index of the beam parameters can be measured without intensity modulation.

  9. Basic Principles and Practices of Integrated Dosimetric Passportization of the Settlements in Ukraine.

    Science.gov (United States)

    Likhtarov, I A; Kovgan, L M; Masiuk, S V; Ivanova, O M; Chepurny, M I; Boyko, Z N; Gerasymenko, V B

    2015-12-01

    The purpose of the review is to demonstrate the results of dosimetric passportization (performed in 1991-2014) for the settlements of Ukraine which suffered from radioactive contamination caused by the Chornobyl accident. The dosimetric passportization played a key role in the National program on the liquidation of aftermath of the Chornobyl accident directed on recovery through all stages of the current radiation situation control and decision support touching upon various types of interventions and social benefits to the population of radioactively contaminated areas. The works being performed under dosimetric passportization did not have analogues among the researches which took place after other large-scale industrial and municipal accidents as well their scales as the duration of both radio-ecological and dosimetric monitoring.The new methodological approaches to the assessment of so-called passport doses of a settlement as well as to the definition of the concept of annual dose being the dose used to make decisions for providing both direct and indirect emergency countermeasures for the settlements of Ukraine became pioneering ones. During all the post-accident period there were issued sixteen collections of general dosimetric passportization data which accumulate the results of hundreds of thousands spectrometric, radiochemical and radiation levels measurements and WBC measurements carried out in 1991-2014.The annual passport doses calculated on the basis of these measurements (including their components) are unique information that quantifies the level and time dynamics of the radiation situation for each of the 2161 settlements of 74 raions in 12 oblasts during all the post-accident period. Thanks to the works of dosimetric passportization of the settlements of Ukraine there were created databases to be unique in their structure and content with quantitative characteristics of the territorial and temporal distribution, the dynamics of changes of a number

  10. Basic principles and practices of integrated dosimetric passportization of the settlements in Ukraine

    International Nuclear Information System (INIS)

    Lyikhtar'ov, Yi.A.; Kovgan, L.M.; Masyuk, S.V.; Yivanova, O.M.; Chepurnij, M.Yi.; Bojko, Z. N.; Gerasimenko, V.B.

    2015-01-01

    The objective of the review is to demonstrate the results of dosimetric passportization (performed in 1991- 2014) for the settlements of Ukraine which suffered from radioactive contamination caused by the Chornobyl accident. The dosimetric passportization played a key role in the National program on the liquidation of after- math of the Chornobyl accident through all stages of the current radiation situation control and decision support touching upon various types of interventions and social benefits to the population of radioactively contaminated areas. The works being performed under dosimetric passportization did not have analogues among the researches which took place after other large-scale industrial and municipal accidents as well their scales as the duration of both radio-ecological and dosimetric monitoring. The new methodological approaches to the assessment of so-called passport doses of a settlement as well as to the definition of the concept of annual dose being the dose used to make decisions for providing both direct and indirect emergency countermeasures for the settlements of Ukraine became pioneering ones. During all the post-accident period there were issued sixteen collections of general dosimetric passportization data which accumulate the results of hundreds of thousands spectrometric, radiochemical and radiation levels measurements and WBC measurements carried out in 1991-2014. The annual passport doses calculated on the basis of these measurements (including their components) are unique information that quantifies the level and time dynamics of the radiation situation for each of the 2161 settlements of 74 districts in 12 regions during all the post-accident period. Thanks to the works of dosimetric passportization of the settlements of Ukraine there were created databases to be unique in their structure and content with quantitative characteristics of the territorial and temporal distribution, the dynamics of changes of a number of important

  11. Determination of Absorbed Dose Using a Dosimetric Film

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Badita, E.; Mitru, E.

    2009-01-01

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  12. Dosimetric study of prostate brachytherapy using techniques of Monte-Carlo simulation, experimental measurements and comparison with a treatment plan

    International Nuclear Information System (INIS)

    Teles, Pedro; Barros, Silvia; Vaz, Pedro; Goncalves, Isabel; Facure, Alessandro; Rosa, Luiz da; Santos, Maira; Pereira Junior, Pedro Paulo; Zankl, Maria

    2013-01-01

    Prostate Brachytherapy is a radiotherapy technique, which consists in inserting a number of radioactive seeds (containing, usually, the following radionuclides 125 l, 241 Am or 103 Pd ) surrounding or in the vicinity of, prostate tumor tissue . The main objective of this technique is to maximize the radiation dose to the tumor and minimize it in other tissues and organs healthy, in order to reduce its morbidity. The absorbed dose distribution in the prostate, using this technique is usually non-homogeneous and time dependent. Various parameters such as the type of seed, the attenuation interactions between them, their geometrical arrangement within the prostate, the actual geometry of the seeds,and further swelling of the prostate gland after implantation greatly influence the course of absorbed dose in the prostate and surrounding areas. Quantification of these parameters is therefore extremely important for dose optimization and improvement of their plans conventional treatment, which in many cases not fully take into account. The Monte Carlo techniques allow to study these parameters quickly and effectively. In this work, we use the program MCNPX and generic voxel phantom (GOLEM) where simulated different geometric arrangements of seeds containing 125 I, Amersham Health model of type 6711 in prostates of different sizes, in order to try to quantify some of the parameters. The computational model was validated using a phantom prostate cubic RW3 type , consisting of tissue equivalent, and thermoluminescent dosimeters. Finally, to have a term of comparison with a treatment real plan it was simulate a treatment plan used in a hospital of Rio de Janeiro, with exactly the same parameters, and our computational model. The results obtained in our study seem to indicate that the parameters described above may be a source of uncertainty in the correct evaluation of the dose required for actual treatment plans. The use of Monte Carlo techniques can serve as a complementary

  13. Applications of sensitivity function to dosimetric data adjustments

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu

    1984-01-01

    Sensitivity functions are applied to the dosimetric field in the spectrum unfolding technique, also called as the data adjustment technique which are statistical estimation procedures of the neutron spectrum or relating dosimetric quantities basing on the reaction-rate data measurements. Using the practical formulae and numerical examples of the sensitivity functions in the dosimetric data adjustments, two comments are made that (1) present sensitivity values are highly depending on the initial spectrum inputs and (2) more attention should be paid to the dependency of the sensitivity on the very uncertain covariance data inputs of the initial neutron spectrum. (author)

  14. Monthly results of measurements, May 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  15. Monthly results of measurements, october 1987

    International Nuclear Information System (INIS)

    1987-10-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface waters, underground water, drinking water, sewage water, food chain (milk, vegetables, fishes), seawater around nuclear plant sites and other sites, sediments. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  16. Monthly results of measurements, October 1986

    International Nuclear Information System (INIS)

    1986-11-01

    This October 1986 report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident, with an exceptional control of migratory birds [fr

  17. Monthly results of measurements, february 1987

    International Nuclear Information System (INIS)

    1987-03-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobylsk accident [fr

  18. Monthly results of measurements, Nov 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  19. Monthly results of measurements, May 1987

    International Nuclear Information System (INIS)

    1987-06-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface waters, underground water, drinking water, sewage water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites, sediments. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  20. Monthly results of measurements, November 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  1. Monthly results of measurements, August 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface waters, underground water, drinking water, sewage water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites, sediments. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  2. Monthly results of measurements, January 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, cattle thyroids, fishes), sea water around nuclear plant sites and other sites, sediments. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident, in various food samples [fr

  3. Monthly results of measurements, August 1986

    International Nuclear Information System (INIS)

    1986-08-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes) seawater around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  4. Monthly results of measurements, July 1986

    International Nuclear Information System (INIS)

    1986-08-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accidents [fr

  5. Monthly results of measurements, Oct 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  6. Monthly results of measurements, Aug 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  7. Monthly results of measurements, Oct 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  8. Monthly results of measurements, november 1986

    International Nuclear Information System (INIS)

    1986-12-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  9. Monthly results of measurements, Jul 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  10. Monthly results of measurements April 1987

    International Nuclear Information System (INIS)

    1987-05-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  11. Monthly results of measurements, Apr 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables. This report exposes also the results of special radiation measurements resulting from the Chernobyl accident [fr

  12. Dosimetric radiation measurements in space

    International Nuclear Information System (INIS)

    Benton, E.V.

    1983-01-01

    In reviewing radiation exposures recorded during spaceflights of the United States and the Soviet Union, this paper examines absorbed dose and dose rates as a function of parameters such as inclination, altitude, spacecraft type and shielding. Complete shielding from galactic cosmic rays does not appear practical because of spacecraft weight limitations. Preliminary data on neutron and HZE-particle components and LET spectra are available. Most of the data in this paper are from manned missions; for low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence on inclination. The doses range from about 6 millirad per day for the Space Transportation System (STS) No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. (author)

  13. Radioecological and dosimetric consequences of the Chernobyl accident in France

    International Nuclear Information System (INIS)

    Renaud, Ph.; Beaugelin, K.; Maubert, H.; Ledenvic, Ph.

    1997-11-01

    This study has as objective a survey of the radioecological and dosimetric consequences of the Chernobyl accident in France, as well as a prognosis for the years to come. It was requested by the Direction of Nuclear Installation Safety (DSIN) in relation to different organisms which effected measurements after this accident. It is based on the use of combined results of measurements and modelling by means of the code ASTRAL developed at IPSN. Various measurements obtained from five authorities and institutions, were made available, such as: activity of air and water, soil, processed food, agricultural and natural products. However, to achieve the survey still a modelling is needed. ASTRAL is a code for evaluating the ecological consequences of an accident. It allows establishing the correspondence between the soil Remnant Surface Activities (RSA, in Bq.m -2 ), the activity concentration of the agricultural production and the individual and collective doses resulting from external and internal exposures (due to inhalation and ingestion of contaminated nurture). The results of principal synthesis documents on the Chernobyl accident and its consequences were also used. The report is structured in nine sections, as follows: 1.Introduction; 2.Objective and methodology; 3.Characterization of radioactive depositions; 4;Remnant surface activities; 5.Contamination of agricultural products and foods; 6.Contamination of natural, semi-natural products and of drinking water; 7.Dosimetric evaluations; 8.Proposals for the environmental surveillance; 9.Conclusion. Finally, after ten years, one concludes that at present the dosimetric consequences of the Chernobyl accident in France were rather limited. For the period 1986-2046 the average individual effective dose estimated for the most struck zone is lower than 1500 μSv, which represents almost 1% of the average natural exposure for the same period. At present, the cesium 137 levels are at often inferior to those recorded before

  14. Dosimetric verification of the intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Zou Huawei; Jia Mingxuan; Wu Rong; Xiao Fuda; Dong Xiaoqi

    2004-01-01

    Objective: To discuss the methods of the dosimetric verification in the intensity-modulated radiation therapy (IMRT) and insure correct execution of the IMRT planning in the clinical practice. Methods: The CMSFOCUS9200 inverse planning system was used to provide optimized 5-field IMRT treatment plans for the patients. A phantom was made from true water-equivalent material. The doses of the interesting points and isodose distributions of the interesting planes in the phantom were calculated using patients' treatment plan. The phantom was placed on the couch of the accelerator and was irradiated using the phantom's treatment planning data. The doses of interesting points were measured using a 0.23 cc chamber and the isodose distributions of interesting planes were measured using RIT 113 film dosimetry system in the phantom. The results were compared with those from calculation in planning system for verification. Results: The doses and isodose distributions measured by the chamber and the film were consistent with those predicted by the planning. The error between the measured dose and calculated dose in the interesting points was less than 3%. Conclusion: The dosimetric verification of IMRT is a reliable measure in the course of its implementation. (authors)

  15. CIME: last results of magnetic measurements

    International Nuclear Information System (INIS)

    Duval, M.

    1997-01-01

    This paper reports about the magnetic measurements recently finished at the CIME cyclotron. The measurements were carried out over two stages, first in January 1997 dedicated to the magnetic chart acquisition (for the main field only) and the other from 16 April to 2 June dedicated to the chart acquisition of the isochronous fields (main field + 11 correction magnetic coils). These charts have a closed enough meshing to ensure good interpolations and to define the current intensity values for any working point. This has been tested by measuring the fields calculated for a 18 O +4 beam. The results confirmed all the calculations done with TOSCA code. Calculations of current intensities for 11 isochronous coils were made by using only field response given by TOSCA for each coil and each induction level. (author)

  16. Establishment of a dosimetric system for high doses using glasses

    International Nuclear Information System (INIS)

    Correa Quezada, Valeria de la Asuncion

    1997-01-01

    A routine dosimetric system was developed using commercial glass samples. The dosimetric characteristics of national and imported samples were studied: batch uniformity, response repeatability, reutilization, absorbed dose response, detection range, response stability as a function of absorbed dose, storage temperature and thermal treatments pre- and post-irradiation, using the optical absorption technique. As an application, the dosimetric system was tested in a flower irradiation process at IPEN. All the obtained results show the usefulness of the proposed system for high dose dosimetry. (author)

  17. CMS latest results on Higgs measurements

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Since the discovery of a Higgs boson by the CMS and ATLAS Collaborations in 2012, physicists at the LHC have been making intense efforts to measure this new particle’s properties. Last week, at the 37th International Conference on High Energy Physics, the CMS Collaboration has presented a broad set of results from new studies of the Higgs boson. They are based on the full Run 1 data from pp collisions at centre-of-mass energies of 7 and 8 TeV. The analyses include the final calibration and alignment constants and contains about 25 fb−1 of data. These new results will be summarized here.

  18. WE-DE-201-01: BEST IN PHYSICS (THERAPY): A Fast Multi-Target Inverse Treatment Planning Strategy Optimizing Dosimetric Measures for High-Dose-Rate (HDR) Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Guthier, C [Brigham and Women’s Hospital, Boston, MA (United States); University Medical Center Mannheim, Mannheim (Germany); Harvard Medical School, Boston, MA (United States); Damato, A; Viswanathan, A; Cormack, R [Dana Farber Cancer Institut/Brigham and Women’s Hospital, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Hesser, J [University Medical Center Mannheim, Mannheim (Germany)

    2016-06-15

    Purpose: Inverse treatment planning (ITP) for interstitial HDR brachytherapy of gynecologic cancers seeks to maximize coverage of the clinical target volumes (tumor and vagina) while respecting dose-volume-histogram related dosimetric measures (DMs) for organs at risk (OARs). Commercially available ITP tools do not support DM-based planning because it is computationally too expensive to solve. In this study we present a novel approach that allows fast ITP for gynecologic cancers based on DMs for the first time. Methods: This novel strategy is an optimization model based on a smooth DM-based objective function. The smooth approximation is achieved by utilizing a logistic function for the evaluation of DMs. The resulting nonconvex and constrained optimization problem is then optimized with a BFGS algorithm. The model was evaluated using the implant geometry extracted from 20 patient treatment plans under an IRB-approved retrospective study. For each plan, the final DMs were evaluated and compared to the original clinical plans. The CTVs were the contoured tumor volume and the contoured surface of the vagina. Statistical significance was evaluated with a one-sided paired Wilcoxon signed-rank test. Results: As did the clinical plans, all generated plans fulfilled the defined DMs for OARs. The proposed strategy showed a statistically significant improvement (p<0.001) in coverage of the tumor and vagina, with absolute improvements of related DMs of (6.9 +/− 7.9)% and (28.2 +/− 12.0)%, respectively. This was achieved with a statistically significant (p<0.01) decrease of the high-dose-related DM for the tumor. The runtime of the optimization was (2.3 +/− 2.0) seconds. Conclusion: We demonstrated using clinical data that our novel approach allows rapid DM-based optimization with improved coverage of CTVs with fewer hot spots. Being up to three orders of magnitude faster than the current clinical practice, the method dramatically shortens planning time.

  19. WE-DE-201-01: BEST IN PHYSICS (THERAPY): A Fast Multi-Target Inverse Treatment Planning Strategy Optimizing Dosimetric Measures for High-Dose-Rate (HDR) Brachytherapy

    International Nuclear Information System (INIS)

    Guthier, C; Damato, A; Viswanathan, A; Cormack, R; Hesser, J

    2016-01-01

    Purpose: Inverse treatment planning (ITP) for interstitial HDR brachytherapy of gynecologic cancers seeks to maximize coverage of the clinical target volumes (tumor and vagina) while respecting dose-volume-histogram related dosimetric measures (DMs) for organs at risk (OARs). Commercially available ITP tools do not support DM-based planning because it is computationally too expensive to solve. In this study we present a novel approach that allows fast ITP for gynecologic cancers based on DMs for the first time. Methods: This novel strategy is an optimization model based on a smooth DM-based objective function. The smooth approximation is achieved by utilizing a logistic function for the evaluation of DMs. The resulting nonconvex and constrained optimization problem is then optimized with a BFGS algorithm. The model was evaluated using the implant geometry extracted from 20 patient treatment plans under an IRB-approved retrospective study. For each plan, the final DMs were evaluated and compared to the original clinical plans. The CTVs were the contoured tumor volume and the contoured surface of the vagina. Statistical significance was evaluated with a one-sided paired Wilcoxon signed-rank test. Results: As did the clinical plans, all generated plans fulfilled the defined DMs for OARs. The proposed strategy showed a statistically significant improvement (p<0.001) in coverage of the tumor and vagina, with absolute improvements of related DMs of (6.9 +/− 7.9)% and (28.2 +/− 12.0)%, respectively. This was achieved with a statistically significant (p<0.01) decrease of the high-dose-related DM for the tumor. The runtime of the optimization was (2.3 +/− 2.0) seconds. Conclusion: We demonstrated using clinical data that our novel approach allows rapid DM-based optimization with improved coverage of CTVs with fewer hot spots. Being up to three orders of magnitude faster than the current clinical practice, the method dramatically shortens planning time.

  20. Radiodine treatment of hyperthyroidism with a simplified dosimetric approach. Clinical results; Terapia radiometabolica dell'ipertiroidismo con approccio dosimetrico semplificato. Risultati clinici

    Energy Technology Data Exchange (ETDEWEB)

    Giovanella, L.; De Palma, D.; Ceriani, L.; Garancini, S. [Azienda Ospedaliera Universitaria, Ospedale di Circolo e Fondazione Macchi, Dipt. di Diagnostica per Immagini e Radioterapia, Unita' Operativa di Medicina Nucleare, Varese (Italy); Vanoli, P.; Tordiglione, M. [Azienda Ospedaliera Universitaria, Ospedale di Circolo e Fondazione Macchi, Unita' Operativa di Radioterapia, Varese (Italy); Tarolo, G. L. [Milan Univ., Milan (Italy). Cattedra di Medicina Nucleare, Ist. di Scienze Radiologiche

    2000-12-01

    In this article is evaluated the clinical and effectiveness of a simplified dosimetric approach to the iodine-131 treatment of hyperthyroidism due to Graves' disease or uninodular and multinodular toxic goiter. 189 patients with biochemically confirmed hyperthyroidism and performed thyroid ultrasonography and scintigraphy obtaining the diagnosis of Graves' disease in 43 patients, uninodular toxic goiter in 57 patients and multinodular toxic goiter in 89 patients were enrolled in order to be examined. It was found in 28 patients cold thyroid nodules and performed fine-needle aspiration with negative cytology for thyroid malignancy in all cases. Antithyroid drugs were stopped 5 days till radioiodine administration and, if necessary, restored 15 days after the treatment. Radioiodine uptake test was performed in all patients and therapeutic activity calculated to obtain a minimal activity of 185 MBq in the thyroid 24 hours after administration. The minimal activity was adjusted based on clinical, biochemical and imaging data to obtain a maximal activity of 370 MBq after 24 hours. Biochemical and clinical tests were scheduled at 3 and 12 months posttreatment and thyroxine treatment was started when hypothyroidism occurred. In Graves' disease patients a mean activity of 370 MBq (distribution 259-555 MBq) was administered. Three months after treatment and at least 15 days after methimazole discontinuation 32 of 43 (74%) patients were hypothyroid , 5 of 43 (11%) euthyroid and 6 of 43 (15%) hyperthyroid. Three of the latter were immediately submitted to a new radioiodine administration while 32 hypothyroid patients received thyroxine treatment. One year after the radioiodine treatment no patient had hyperthyroidism; 38 of 43 (89%) were on a replacement treatment while 5 (11%) remained euthyroid. In uni-and multinodular toxic goiter a mean activity of 444 MBq (distribution 259-555 MBq) was administered. Three months posttreatment 134 of 146 (92%) patients were

  1. Thermoluminescence dosimetric characteristics of thulium doped ZnB2O4 phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Madhusoodanan, U.; Subramanian, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10 3 Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB 2 O 4 lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out

  2. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  3. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  4. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  5. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  6. Monte Carlo generation of dosimetric parameters for eye plaque dosimetry

    International Nuclear Information System (INIS)

    Cutajar, D.L.; Green, J.A.; Guatelli, S.; Rosenfeld, A.B.

    2010-01-01

    Full text: The Centre for Medical Radiation Physics have undertaken the dcvelopment of a quality assurance tool, using silicon pixelated detectors, for the calibration of eye plaques prior to insertion. Dosimetric software to correlate the measured and predicted dose rates has been constructed. The dosimetric parameters within the software, for both 1-125 and Ru-I 06 based eye plaques, were optimised using the Geant4 Monte Carlo toolkit. Methods For 1-125 based plaques, an novel application was developed to generate TG-43 parameters for any seed input. TG-43 parameters were generated for an Oncura model 6711 seed, with data points every millimetre up to 25 mm in the radial direction, and every 5 degrees in polar angle, and correlated to published data. For the Ru106 based plaques, an application was developed to generate dose rates about a Bebig model CCD plaque. Toroids were used to score the deposited dose, taking advantage of the cylindrical symmetry of the plaque, with radii in millimetre increments up to 25 mm, and depth from the plaque surface in millimetre increments up to 25 mm. Results TheTG43 parameters generated for the 6711 seed correlate well with published TG43 data at the given intervals, with radial dose function within 3%, and anisotropy function within 5% for angles greater than 30 degrees. The Ru-l 06 plaque data correlated well with the Bebig protocol of measurement. Conclusion Geant4 is a useful Monte Carlo tool for the generation of dosimetric data for eye plaque dosimetry. which may improve the quality assurance of eye plaque treatment. (author)

  7. Computerized dosimetric system for studying radiation fields of afterloading apparatus

    International Nuclear Information System (INIS)

    Andryushin, O.S.; Gorshkov, M.I.

    1988-01-01

    Works on designing a computerized dosimetric scanner (CODOS) for studying radiation fields of remote therapeutic apparatus, providing dosimetric data input from semiconductor transducers and ionization chambers directly into the computer memory were carried out. The basic problems were to provide reproducibility and accuracy of the initial dosimetric data, formation of the data bank on LUEhV-15M1 accelerator bremsstrahlung and electron radiation fields. An extra problem was to provide isodose curves for manual scheduling of radiotherapy. The 15 VUMS-28-025 complex based on Elektronika-60 computer was chosen as a host computer, photodiodes were used as a semiconductor detector, the 70108 rod chamber and VA-J-18 dosemeters were used as an ionization chamber. The results of studies with the CODOS system have been shown that it meets the dosimetric requirements for therapeutic apparatus

  8. Description and Results: Antenna Measurement Facility Comparisons [Measurements Corner

    DEFF Research Database (Denmark)

    Alberica Saporetti, Maria; Foged, Lars; Sierra Castañer, Manuel

    2017-01-01

    In recent years, formalized facility comparison activities have become important for the documentation and validation of laboratory proficiency and competence and mandatory for achieving accreditation such as that of the International Organization for Standardization (ISO) 17025 or similar...... for Antennas (VISTA) IC1102, including still ongoing campaigns [3]-[5]. Results of these activities have led to improvements in antenna measurement procedures and protocols in facilities and standards [6], [7]. Due to the direct benefits available to the participants, the activities have been very successful...

  9. Manche centre. Environment surveillance. Measurement results

    International Nuclear Information System (INIS)

    1998-11-01

    This booklet reports on the environmental radioactivity measurements performed around the Manche plant (France) during the third quarter of 1998 in rainwater, surface and underground waters, air and grass. Measurements concern the alpha and beta activity, tritium, 137 Cs, 241 Am, 7 Be and 40 K. Other pollutant (metals) measurements on rainwater, rivers surface water and sediments are given. (J.S.)

  10. Dosimetric verification of a software for planning of radio therapeutical treatments

    International Nuclear Information System (INIS)

    Alfonso, R.; Huerta, U.; Alfonso, J.L.; Torres, M.

    1995-01-01

    A software for radiation treatment planning was recently developed by medical physicists at the Hermanos Ameijeiras Hospital in Havana. Selected locations in head and neck region were used to evaluate the reliability of calculated dose distributions in patients, taking as a reference the results of dosimetric measurements with TLD-700 powder in a RANDO type phantom. The different options is shown. Causes of discrepancies are analyzed and recommendations are made for the use of data acquisitions options

  11. Dosimetric analysis of radiation sources to use in dermatological lesions

    International Nuclear Information System (INIS)

    Tada, Ariane

    2010-01-01

    Skin lesions undergoing therapy with radiation sources may have different patterns of malignancy. Malignant lesions or cancer most commonly found in radiotherapy services are carcinomas. Radiation therapy in skin lesions is performed with low penetration beams and orthovoltage X-rays, electron beams and radioactive sources ( 192 Ir, 198 Au, e 90 Sr) arranged on a surface mold or in metal applicator. This study aims to analyze the therapeutic radiation dose profile produced by radiation sources used in skin lesions radiotherapy procedures. Experimental measurements for the analysis of dosimetric radiation sources were compared with calculations obtained from a computer system based on the Monte Carlo Method. Computational results had a good agreement with the experimental measurements. Experimental measurements and computational results by the MCNP4C code have been used to validate the calculations obtained by MCNP code and to provide a reliable medical application for each clinical case. (author)

  12. Recent results on Electroweak measurements from ATLAS

    Directory of Open Access Journals (Sweden)

    Benekos Nektarios Chr.

    2015-01-01

    Full Text Available ATLAS measurements of multiboson production processes involving combinations of W,Z and isolated photons are summarized. Measurements using data at 7 TeV and at 8 TeV are presented. The measurements are performed using leptonic decay modes, including the invisible decay Z → v v̅, as well as semileptonic channels. Measurements of single and diboson production in association with two forward jets is sensitive to electroweak vector boson fusion and scattering processes. An observation of the electroweak production of the Z boson and an evidence of same sign WW production are reported.

  13. Assessment of the potential implementation of the Fricke dosimetric system to measure the gamma dose rate in a mixed field at the Central Irradiation Facility of the Thermal Column at RA-3

    International Nuclear Information System (INIS)

    Curotto, P.; Pozzi, E.C.C.; Thorp, S.I.; Casal, M.

    2013-01-01

    Introduction: The characterization of the mixed field, i.e. neutron and gamma radiation, at the Central Irradiation Facility of the Thermal Column (FCCT) at RA-3 is pivotal to the radiobiology experiments carried out there. One of the greatest difficulties of gamma dosimetry in a mixed field such as the FCCT field is to discriminate the perturbation induced by the high neutron flux. Given that the neutron spectrum of the source is very well characterized, it is of interest to have an alternative way of measuring gamma dose rate to be able to compare the results with those currently derived from an ionization chamber (IC). The Fricke dosimetric system is widely used as an absolute dosimeter in pure, very high dose radiation fields. The experimental set-up of these dosimeters exhibits advantages compared to instrumentation with IC. The aim of the present study was to adapt the system to use it as a measuring method at FCCT and perform a comparative analysis. Materials and Methods: Once the technique to prepare the dosimeters was adapted at our laboratory the following irradiations were carried out: one in a pure, known, gamma field, and four in the mixed FCCT field in the same position, employing 3 different configurations to obtain different relations between the radiation components in the field. The following configurations were employed: a) with closed neutron shielding, b) with open neutron shielding and c) no shielding. The results were compared with those derived from measurements with the IC. Results: In pure gamma field experience the following results were obtained: the dose measured by the IC was (44.6 ± 0.5) Gy (in air) and Fricke dose was (48.2 ± 1.1) Gy. Comparing the configurations with closed and open neutron shielding, the IC signal rose by 4% (considered not significant) whereas the Fricke dose rate increased by 15%. Comparing the configurations with closed shielding and no shielding, the gamma dose rate measured with the Fricke system rose by 153

  14. A transuranic aerosol measurement system: Preliminary results

    International Nuclear Information System (INIS)

    Prevo, C.T.; Kaifer, R.C.; Rueppel, D.W.; Delvasto, R.M.; Biermann, A.H.; Phelps, P.L.

    1986-10-01

    We have completed the design, fabrication, and assembly of a computer-based prototype system for the measurement of transuranic aerosols in the workplace and environment. This system (called WOTAMS for Workplace Transuranic Aerosol Measurement System) incorporates two detectors: (1) an in-line solid-state alpha detector that sends out an alarm the moment a transuranic release occurs, and (2) an in-vacuum detector that increases off-line-analysis sensitivity. The in-line sensitivity of the system is better than 5.0 MPC-h, and the in-vacuum sensitivity exceeds 0.5 MPC-h. 5 refs., 8 figs., 1 tab

  15. Dosimetric characterization of a bi-directional micromultileaf collimator for stereotactic applications.

    Science.gov (United States)

    Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P

    2002-07-01

    A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry.

  16. Combined Risk Measures: Representation Results and Applications

    NARCIS (Netherlands)

    Göttsche, O.E.

    2014-01-01

    The analysis and interpretation of risk play a crucial role in different areas of modern finance. This includes pricing of financial products, capital allocation and derivation of economic capital. Key to this analysis is the quantification of the risk via risk measures. A promising approach is to

  17. Measuring Competition: Inconsistent Definitions, Inconsistent Results

    Science.gov (United States)

    Linick, Matthew Allen

    2014-01-01

    There is a developing literature examining how charter schools, through the effects of competition, impact performance in public school districts and district-run public schools, also known as the second-level effects of competition. What follows is an examination of how competition is measured in this literature that offers a critique of existing…

  18. With Great Measurements Come Great Results

    Science.gov (United States)

    Williams, Carl

    Measurements are the foundation for science and modern life. Technologies we take for granted every day depend on them-cell phones, CAT scans, pharmaceuticals, even sports equipment. Metrology, or measurement science, determines what industry can make reliably and what they cannot. At the National Institute of Standards and Technology (NIST) we specialize in making world class measurements that an incredibly wide range of industries use to continually improve their products - computer chips with nanoscale components, atomic clocks that you can hold in your hand, lasers for both super-strong welds and delicate eye surgeries. Think of all the key technologies developed over the last 100 years and better measurements, standards, or analysis techniques played a role in making them possible. NIST works collaboratively with industry researchers on the advanced metrology for tomorrow's technologies. A new kilogram based on electromagnetic force, cars that weigh half as much but are just as strong, quantum computers, personalized medicine, single atom devices - it's all happening in our labs now. This talk will focus on how metrology creates the future.

  19. Development and application of a dosimetric methodology of therapeutic X radiation beams using a tandem system

    International Nuclear Information System (INIS)

    Sartoris, Carla Eri

    2001-01-01

    In radiotherapy the use of orthovoltage X radiation beams is still recommended; to obtain satisfactory results, a periodic control is necessary to check the performance of the ionization chambers and the radiation beams characteristics. This control is performed by using standard dosimetric procedures, as for example the determination of half-value layers and the absorbed dose rates. A Tandem system was established in this work using a pair of ionization chambers (a thimble type and a superficial type) used for measures in a medical institution, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The results obtained show the application of this method in dosimetric procedures of orthovoltage beams (radiotherapy) as a complement for a quality control program. (author)

  20. Determination of dosimetric quantities in pediatric abdominal computed tomography scans

    Energy Technology Data Exchange (ETDEWEB)

    Jornada, Tiago da Silva [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostipo por Imagem; Silva, Teogenes Augusto da, E-mail: silvata@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2014-09-15

    Objective: aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods: the study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results: No significant difference was observed in the values for weighted air kerma index (C{sub W}), but the differences were relevant in values for volumetric air kerma index (C{sub VOL}), air kerma-length product (P{sub KL,CT}) and effective dose. Conclusion: Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, P{sub KL,CT} and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. (author)

  1. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    Science.gov (United States)

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  2. Introduction dosimetric data of cobalt-60 unit in planning new Win-PTL- 3D

    International Nuclear Information System (INIS)

    Gonzalez Perez, Yelina; Rodriguez Zayas, Michael; Perez Guevara, Adrian; Sanchez Zamora, Luis; Reyes Gonzalez, Tommy; Sola Rodriguez, Yeline; Caballero, Roberto; Cruz Marcane, Viviana

    2009-01-01

    3D planning is based on the individual and image reconstruction formation of fields, allowing better absorption of dose volume White minimizing damage to surrounding healthy tissue. During the clinical implementation of the Win-PLT software includes validation from the implementation of dosimetric acceptance tests through a series of precise experimental measurements, reflecting different clinical situations (test cases). For the commissioning characterized the photon beam Cobalt Unit 60, taking measurements with a set consisting of a phantom dosimetric automatic ionization chambers and electrometer Tandem. The measured data are used to power the TPS through WINCOM auxiliary program that lets you adjust a number of parameters to model the photon beam. This adjustment is made by comparing the PDD curves and profiles of experimental data with modeled data. The test cases performed are in compliance with the requirements proposed in the geometric of the AAPM TG55. The modeling of beam dosimetry data was successful, since the discrepancies were within the criteria TRS-430. The cases involved events where points near the edge of the field and in the presence of blocking a discrepancy outside the tolerance, suggesting not to use these items for purposes of limitation. Win TPS-PLT is suitable for clinical use with the photon beam Cobalt Unit 60, backed by the reliability that dropped on the results of beam modeling and verification of dosimetric calculations. (Author)

  3. Monthly results of measurements; May 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  4. Monthly results of measurements: June 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  5. Monthly results of measurements: May 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  6. Monthly results of measurements. Jun 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  7. Monthly results of measurements: November 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  8. Monthly results of measurements: Dec 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  9. Monthly results of measurements: Jul 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  10. Monthly results of measurements: September 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  11. Monthly results of measurements: Aug 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  12. Monthly results of measurements: April 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  13. Monthly results of measurements: July 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  14. Monthly results of measurements: October 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  15. Monthly results of measurements: May 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  16. Monthly results of measurements: Sep 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  17. Monthly results of measurements: Jun 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  18. Monthly results of measurements: Sep 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  19. Monthly results of measurements: February 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  20. Monthly results of measurements. July 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  1. Monthly results of measurements. January 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  2. Monthly results of measurements: Jun 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  3. Monthly results of measurements: Dec 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  4. Monthly results of measurements: Feb 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  5. Monthly results of measurements: Nov 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  6. Monthly results of measurements. Apr 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  7. Monthly results of measurements: Mars 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  8. Monthly results of measurements: December 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  9. Monthly results of measurements: Oct 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  10. Monthly results of measurements: July 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  11. Monthly results of measurements: November 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  12. Monthly results of measurements: November 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  13. Monthly results of measurements: January 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  14. Monthly results of measurements: Jan 1997

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  15. Monthly results of measurements: Apr 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  16. Monthly results of measurements. Mar 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  17. Monthly results of measurements: Dec 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  18. Monthly results of measurements: March 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  19. Monthly results of measurements: December 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  20. Monthly results of measurements: Oct 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  1. Monthly results of measurements: July 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  2. Monthly results of measurements; July 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  3. Monthly results of measurements: Feb 1997

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  4. Monthly results of measurements: Jan 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  5. Monthly results of measurements: April 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  6. Monthly results of measurements: Aug 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  7. Monthly results of measurements. May 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  8. Monthly results of measurements: January 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  9. Monthly results of measurements: Feb 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  10. Monthly results of measurements: November 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  11. Monthly results of measurements: February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  12. Monthly results of measurements: May 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  13. Monthly results of measurements: Jan 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  14. Monthly results of measurements. May 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  15. Monthly results of measurements: March 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  16. Monthly results of measurements: November 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  17. Monthly results of measurements; August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  18. Monthly results of measurements: Mar 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  19. Monthly results of measurements: Mars 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  20. Monthly results of measurements: November 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  1. Monthly results of measurements; December 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  2. Monthly results of measurements: October 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  3. Monthly results of measurements, October 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables [fr

  4. Monthly results of measurements: Apr 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  5. Monthly results of measurements: January 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  6. Monthly results of measurements; July 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  7. Monthly results of measurements; October 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  8. Monthly results of measurements: November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  9. Monthly results of measurements, May 1990

    International Nuclear Information System (INIS)

    1990-05-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  10. Monthly results of measurements: July 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  11. Monthly results of measurements, May 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  12. Monthly results of measurements; December 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  13. Monthly results of measurements; September 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  14. Monthly results of measurements, April 1990

    International Nuclear Information System (INIS)

    1990-04-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  15. Monthly results of measurements: October 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  16. Monthly results of measurements; March 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the main results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  17. Monthly results of measurements; February 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. 22 tabs

  18. Monthly results of measurements; November 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  19. Monthly results of measurements, April 1991

    International Nuclear Information System (INIS)

    1991-04-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  20. Monthly results of measurements; June 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  1. Monthly results of measurements; March 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  2. Monthly results of measurements; May 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the main results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  3. Monthly results of measurements; April 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the main results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  4. Monthly results of measurements, October 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  5. Monthly results of measurements; July 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the main results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  6. Monthly results of measurements; September 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the main results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  7. Monthly results of measurements. August 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the main results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  8. Monthly results of measurements, Jul 1990

    International Nuclear Information System (INIS)

    1990-07-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  9. Monthly results of measurements: August 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  10. Monthly Results of Measurements, February 1991

    International Nuclear Information System (INIS)

    1991-02-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  11. Monthly results of measurements. February 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  12. Monthly results of measurements, February 1990

    International Nuclear Information System (INIS)

    1990-02-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  13. Monthly Results of Measurements, Jan 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  14. Monthly results of measurements, August 1991

    International Nuclear Information System (INIS)

    1991-08-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  15. Monthly results of measurements. January 1992

    International Nuclear Information System (INIS)

    1991-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  16. Monthly results of measurements: September 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  17. Monthly results of measurements: October 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  18. Monthly results of measurements: February 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  19. Monthly results of measurements: Sep 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  20. Monthly results of measurements: Aug 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  1. Monthly results of measurements, Aug 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report of the SCPRI exposes an interpretation of the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables [fr

  2. Monthly results of measurements. April 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  3. Monthly results of measurements; Jun 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  4. Monthly results of measurements; April 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  5. Monthly results of measurements: February 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  6. Monthly results of measurements: August 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiation) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  7. Monthly results of measurements: Sep 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  8. Monthly results of measurements: Aug 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  9. Monthly results of measurements: February 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report of the SCPRI exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. 20 refs., 10 tabs

  10. Monthly results of measurements: October 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  11. Monthly results of measurements. Jun 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report of the OPRI (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables

  12. Dosimetric systems developed in Brazil for the radiation processes quality control

    International Nuclear Information System (INIS)

    Galante, Ana Maria Sisti; Campos, Leticia Lucente

    2011-01-01

    In order to apply new technologies to the industrial processing of materials aiming economy, efficiency, speed and high quality, ionizing radiation has been used in medicine, archaeology, chemistry, food preservation and other areas. For this reason, the dosimetry area looks for improve current dosimeters and develop new materials for application on quality control of these processes. In Brazil, the research in the dosimetry area occurs with great speed providing many different dosimetric systems. The chemical dosimetry is the most used technique in routine dosimetry, which requires fast and accurate responses. This technique involves determination of absorbed dose by measuring chemical changes radiation induced in the materials. Different dosimetric systems were developed at IPEN for application on radiation process quality and all of them present excellent results; the low cost of these materials allows a more effective dose control, therefore, a larger area or volume can be monitored. (author).

  13. Dosimetric verification for radiotherapy quality audit under reference and non-reference conditions in Jiangsu province

    International Nuclear Information System (INIS)

    Wang Jin; Yu Ningle; Yang Chunyong; Du Xiang; Chen Wei; Luo Suming

    2014-01-01

    Objective: To verify the methodology for auditing dosimetric parameters in reference and non-reference conditions with thermoluminescent dosimeters (TLDs). Methods: Under reference and non-reference conditions, the established TLD methods were used to observe the absorbed dose variations with depth, SSD, field size and 45 wedges for 10 photon beams at 5 hospitals. Dosimetric parameters, including doses at D_m_a_x points in axis, on 5 electron beams of 9 MeV were measured. The measurement results were compared between the TLDs and plane parallel ionization chambers. Results: For 6 MV photon beams, the relative deviation of between finger ionization chamber method and TLD chips was in the range of -1.7% to 5.4% under on-axis non-reference conditions, and -6.3% to -0.6% under off-axis non-reference conditions, respectively, all within the range of ≤ ±7% as required by the IAEA. The relative deviation between plane parallel chamber and TLD method was -2.3% to 3.7%, within ±5% as required by the IAEA. Conclusions: It is convenient and feasible to use TLD method for quality audits of dosimetric parameters in radiotherapy. (authors)

  14. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    Science.gov (United States)

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-07

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  15. Dosimetric system for prolonged manned flights

    International Nuclear Information System (INIS)

    Akatov, Yu.A.; Kovalev, E.E.; Sakovich, V.A.; Deme, Sh.; Fekher, I.; Nguen, V.D.

    1991-01-01

    Comments for the All-Union state standard 25645.202-83 named Radiation safety of a spacecraft crew during space flight. Requirements for personnel dosimetric control, are given. Devices for the dosimetric control used in manned space flights nowadays are reviewed. The performance principle and structure of the FEDOR dosimetric complex under development are discussed

  16. The dosimetric control in radiotherapy

    International Nuclear Information System (INIS)

    Veres, A.

    2009-01-01

    The author first presents the thermoluminescent dosimetry method developed by the Equal-Estro Laboratory to control radiotherapy systems, according to which dosimeters are mailed by the radiotherapy centres to the laboratory, and then analyzed with respect to the level of dose bias. In a second part, he discusses the different techniques used for the dosimetric control of new radiotherapy methods (intensity-modulated radiation therapy, tomo-therapy) for which film dosimetry is applied. He also evokes the development of new phantoms and the development of a method for the dosimetric control of proton beams

  17. Scale Model Thruster Acoustic Measurement Results

    Science.gov (United States)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  18. Dosimetric characterization of KMgF3:Tb+PTFE

    International Nuclear Information System (INIS)

    Ramirez R, M. I.; Garcia S, L.; Villicana M, M.; Huirache A, R.; Apolinar C, J.; Gonzalez M, P. R.

    2017-10-01

    In this work the results obtained from the dosimetric characterization of the new radiation detectors of KMgF 3 :Tb+PTFE are presented. The host salt was obtained by means of the microwave technique, with the polycrystalline powder obtained, dosimeters were made in tablet form, using as Ptfe binder. The thermoluminescent response of these new detectors presented a linear behavior, in the dose range between 1 and 1000 Gy of 60 Co gamma radiation, the reproducibility test in the measurements, during ten cycles of heat treatment, irradiation and reading presented ± 3.7% Ds, in the stability test of thermoluminescent signal, during two months showed that the fading is practically null. Due to the results obtained, this new detector could be very useful for the dosimetry of ionizing radiation in different clinical applications. (Author)

  19. Measuring stations for gamma radiation - measured results 1982

    International Nuclear Information System (INIS)

    Kjelle, P.E.

    1983-01-01

    Gamma radiation is recorded continuously at 25 stations in Sweden. The evaluation of the data from five of the stations is made in a most accurate way, and the results are presented in this report. (G.B.)

  20. Dosimetric verification for primary focal hypermetabolism of nasopharyngeal carcinoma patients treated with dynamic intensity-modulated radiation therapy.

    Science.gov (United States)

    Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen

    2012-01-01

    To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

  1. Dosimetric essay in dental radiology; Experiencia dosimetrica en radiologia odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Salaberry, M [Ministerio de Industria, Energia y Mineria, Montevideo (Uruguay). Direccion Nacional de Tecnologia Nuclear; Dato Carfagna, A; Rodriguez Dorgia, R [Universidad de la Republica, Facultad de Odontologia , Montevideo (Uruguay)

    1999-12-31

    A neck study was observated in the tiroids glands,laryngeal zone, sensitive organs for the ionizing radiation for increase dental xray exams. Was selected 29th patients with radiography prescription complete (in the Odontology Faculty Clinics Uruguaian). It took radiographies with and without tiroids necklace and apron lead using dosemeters. Dosimetric studies had demonstrated good dose between patients. For measuring the radiation dose have been used TLD thermoluminescence dosimetric and Harshaw 6600 for read it. The thyroids necklace use and odontology postgrading for training course for dentistry was the two recommendations advised

  2. Slice-based supine to standing postured deformation for chinese anatomical models and the dosimetric results by wide band frequency electromagnetic field exposure: Morphing

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Digital human models are frequently obtained from supine-postured medical images or cadaver slices, but many applications require standing models. This paper presents the work of reconstructing standing Chinese adult anatomical models from supine postured slices. Apart from the previous studies, the deformation works on 2-D segmented slices. The surface profile of the standing posture is adjusted by population measurement data. A non-uniform texture amplification approach is applied on the 2-D slices to recover the skin contour and to redistribute the internal tissues. Internal organ shift due to postures is taken into account. The feet are modified by matrix rotation. Then, the supine and standing models are utilised for the evaluation of electromagnetic field exposure over wide band frequency and different incident directions. . (authors)

  3. Clinical and dosimetric results of three-dimensional image-guided and pulsed dose rate curie-therapy in locally advanced cervical cancers

    International Nuclear Information System (INIS)

    Mazeron, R.; Gilmore, J.; Dumas, I.; Abrous-Anane, S.; Haberer, S.; Verstraet, R.; Champoudry, J.; Martinetti, F.; Morice, P.; Haie-Meller, C.

    2011-01-01

    The authors report a review of data obtained between 2004 and 2009 on 130 women who had been treated by optimized pulsed-rate curie-therapy for a locally advanced cervical cancer. Results are discussed in terms of cancer stage, treatment (with or without concomitant chemotherapy), planning method (MRI, scanography), delivered doses in the clinical target volumes, surgery, relapse occurrence and localizations, global survival probability, local control, undesirable side effects, occurrence of intestine or urinary toxicity. It appears that the association of a concomitant chemo-radiotherapy and optimized curie-therapy results in a good local-regional control and a low toxicity level. Short communication

  4. Dosimetric and patient correlates of quality of life after prostate stereotactic ablative radiotherapy

    International Nuclear Information System (INIS)

    Elias, Evelyn; Helou, Joelle; Zhang, Liying; Cheung, Patrick; Deabreu, Andrea; D’Alimonte, Laura; Sethukavalan, Perakaa; Mamedov, Alexandre; Cardoso, Marlene; Loblaw, Andrew

    2014-01-01

    Background and purpose: Initial results of Stereotactic Ablative Body Radiotherapy (SABR) in the treatment of localized prostate cancer appear promising however long-term quality of life (QOL) outcomes and dosimetric correlates are necessary. Material and methods: A phase I/II study was performed where low risk prostate cancer patients received SABR 35 Gy in 5 fractions, once weekly. Patient self-reported QOL was measured using the Expanded Prostate Cancer Index Composite (EPIC) at baseline and q6 month up to 5 years. Urinary, bowel and sexual domains were analyzed. A minimally clinical important change (MCIC) was defined as 0.5 ∗ standard deviation of the baseline. Univariate and multivariate logistic regression were used to identify dosimetric predictors of MCIC. Results: 84 patients were included. The median follow-up was 50.8 months (interquartile range [IQR], 44.7–56.3). 17.9%, 26.2% and 37.5% of patients reported worse QOL on follow up in the urinary, bowel and sexual domains respectively. On univariate analysis Rectal V31.8 > 10%, D1cc > 35 Gy were associated with bowel MCIC, penile bulb (PB) V35 > 4%, V20 > 40% with sexual MCIC. Of these factors only rectal D1cc and PB V35 were predictors of worse QOL on multivariate analysis. Conclusions: Long-term single-institution QOL outcomes are encouraging. Rigorous dosimetric constraints are needed to keep bothersome side effects low

  5. Discussion on concepts for radiological dosimetric quantities in the Japan Health Physics Society

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Oda, Keiji

    2007-01-01

    Many dosimetric quantities have been used for radiation protection purpose. The International Commission on Radiological Protection (ICRP) has recommended protection quantities and the International Commission on Radiation Units and Measurements (ICRU) has introduced operational quantities to provide a reasonable estimate of the protection quantities. Enthusiastic discussions are continuously made on the issues of the dosimetric quantities, such as basic biological data for the definition of these quantities and applicability of the quantities to actual radiation protection practice. At the moment, some changes are being proposed concerning dosimetric quantities in the draft recommendations of ICRP, opened for consultation in recent years. Thus, the Japan Health Physics Society (JHPS) established the Expert Committee on concepts of Dosimetric Quantities used in radiological protection (ECDQ) in April 2005 to reviewed and discuss issues in the dosimetric quantities. (author)

  6. SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, N; Narayanasamy, G; Zhang, X; Penagaricano, J; Morrill, S [University of Arkansas for Medical Sciences, Little Rock, AR (United States); Mavroidis, P [University North Carolina, Chapel Hill, NC (United States); Pyakuryal, A [National Cancer Institute, Rockville, MD (United States); Han, E [UT MD Anderson Cancer Center, Houston, TX (United States); Liang, X [University of Florida Health Proton Therapy Institute, Jacksonville, FL (United States); Kim, D [Kyung Hee University Hospital, Seol (Korea, Republic of)

    2016-06-15

    Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis. Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite conclusion

  7. Dose reader of dosimetric foil; Czytnik dawki folii dozymetrycznej

    Energy Technology Data Exchange (ETDEWEB)

    Machaj, B.; Strzalkowski, J.; Smolko, K.

    1997-12-31

    Read out the absorbance of a dosimetric foil is accomplished by two beam spectrophotometer. Such a solution makes possible the compensation of light source instabilities and ensures higher stability of the dose reader. The error of absorbance measurement caused by the instabilities does not exceed 0.0004 A. (author). 3 refs, 3 figs.

  8. SU-F-T-195: Systematic Constraining of Contralateral Parotid Gland Led to Improved Dosimetric Outcomes for Multi-Field Optimization with Scanning Beam Proton Therapy: Promising Results From a Pilot Study in Patients with Base of Tongue Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R; Liu, A; Poenisch, F; Palmer, M; Gillin, M; Zhu, X [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Crowford, C; Georges, R; Amin, M [Department of Medical Dosimetry, MD Anderson Cancer Ctr, Houston, TX (United States); Sio, T; Gunn, B; Frank, S [Radiation Oncology Department MD Anderson Cancer Ctr, Houston, TX (United States)

    2016-06-15

    Purpose: Treatment planning for Intensity Modulated Proton Therapy (IMPT) for head and neck cancer is time-consuming due to the large number of organs-at-risk (OAR) to be considered. As there are many competing objectives and also wide range of acceptable OAR constraints, the final approved plan may not be most optimal for the given structures. We evaluated the dose reduction to the contralateral parotid by implementing standardized constraints during optimization for scanning beam proton therapy planning. Methods: Twenty-four (24) consecutive patients previously treated for base of tongue carcinoma were retrospectively selected. The doses were 70Gy, 63Gy and 57Gy (SIB in 33 fractions) for high-, intermediate-, and standard-risk clinical target volumes (CTV), respectively; the treatment included bilateral neck. Scanning beams using MFO with standardized bilateral anterior oblique and PA fields were applied. New plans where then developed and optimized by employing additional contralateral parotid constraints at multiple defined dose levels. Using a step-wise iterative process, the volume-based constraints at each level were then further reduced until known target coverages were compromised. The newly developed plans were then compared to the original clinically approved plans using paired student t-testing. Results: All 24 newly optimized treatment plans maintained initial plan quality as compared to the approved plans, and the 98% prescription dose coverage to the CTV’s were not compromised. Representative DVH comparison is shown in FIGURE 1. The contralateral parotid doses were reduced at all levels of interest when systematic constraints were applied to V10, V20, V30 and V40Gy (All P<0.0001; TABLE 1). Overall, the mean contralateral parotid doses were reduced by 2.26 Gy on average, a ∼13% relative improvement. Conclusion: Applying systematic and volume-based contralateral parotid constraints for IMPT planning significantly reduced the dose at all dosimetric

  9. SU-F-T-05: Dosimetric Evaluation and Validation of Newlydeveloped Well Chamber for Use in the Calibration of Brachytherapy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Saminathan, S; Godson, H; Ponmalar, R; Manickam, R [Kidwai Memorial Institute of Oncology, Bangalore, Karnataka (India); Mazarello, J [Rosalina India private limited, Mumbai, Maharastra (India)

    2016-06-15

    Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakage current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.

  10. Dosimetric commissioning and system for stereotactic radiation treatments based on linear accelerators with dynamic micromultilaminas collimators

    International Nuclear Information System (INIS)

    Ascension, Yudy; Alfonso, Rodolfo; Silvestre, Ileana

    2009-01-01

    Once installed and accepted, a system for stereotactic radiosurgery / stereotactic radiotherapy (CERs / RTE) requires, before starting to be used clinically in patients undergoing a process of commissioning dosimetry, which evaluates all geometric parameters, physical, Dosimetric and technical impact on the precision and accuracy of treatment to administer, and therefore its effectiveness. This process includes training and familiarization of the multidisciplinary team (medical physicists, radiation oncologists, neurosurgeons, dosimetrists, biomedical engineers) with the equipment and techniques used, the quality assurance program and special radiation protection standards for this technology. The aim of this work is to prepare the pre-clinical dosimetric conditions to ensure the quality and radiation safety of treatment with CER RTE. Treatment with CER RTE INOR has a linear accelerator equipped with a micro-multileaf collimator dynamic tertiary (dMLC 3Dline). The system aceleradordMLC geometric and dosimetric was calibrated, using ionization chambers miniature, diode and film dosimetry. The immobilization of the patient and location of the lesion is made by both invasive stereotactic frames and relocatable. The computerized planning of the CER / TEN is done with the ERGO system, for which commissioning is designed test cases of increasing complexity, using planes and anthropomorphic dummies, which help assess the accuracy of the dosimetric calculations and accuracy of the system as a whole. We compared the results of the planning system with measurements, showing that the discrepancies are within tolerances, so it is concluded that from the standpoint of physical dosimetry, the system-under-ERGO accelerator MLC is eligible for clinical use. (author)

  11. Personal and environmental dosimetric measurements using TLD method in Cardiac Catheterization Laboratory (CathLab) at the Rzeszow's Regional Hospital No 2, Poland

    International Nuclear Information System (INIS)

    Kisielewicz, K.; Truszkiewicz, A.; Wach, S.; Budzanowski, M.

    2007-01-01

    Complete test of publication follows. One of the basic problem in CathLab is the monitoring of ionizing radiation, calculations of doses for workers and finally to build a system to prevent workers from X-ray radiation. To measure doses from X-rays a passive method with thermoluminescent dosemeters (TLD) were applied. Experimental part was based on creating 3D grid of Tl environmental dosemeters with 2 high sensitive TL detectors based on MCP-N (LiF:Mg,Cu,P). Dosemeters were placed evenly (as far as staff's work conditions allowed such positioning) in operating room and a control room. Grid of about 100 dosemeters was designed to measure X-ray dose distribution present during interventional cardiology procedures. That part of the project was especially important for hospital's employee, because it has brought an information about most radiative dangerous areas of each room. Patient dosimetry measurements have been also made using TLD method just during the interventional cardiology procedures. Every patient got a few dosemeters dor different parts of body. Experimental part consists of measurements of absorbed dose equivalent, mean dose rate of absorbed dose equivalent, and mean dose of effective dose per each body part. That last measurements were accomplished by placing TLD's near patient's head, chest and gonads. Personal dosimetry for employees, has been made using TLD's during hemodynamics procedures. Every employee (medical doctors, nurses, technicians and charwoman) has received few dosemeters also based on high sensitive MCP-N detectors. The main dosimetry was done for whole body covered by led gown and additionally for unprotected parts: (hands, arm, eyes and protected by gown: chest, gonads). For individual dosimetry Hp(10) in mSv was calculated, while using environmental dosemeters KERMA in air in mGy. This work will present results obtained from ca. 100 environmental placed in CathLab room. Additionally personal doses for whole body and for parts of

  12. Study of dosimetric quantities and image quality in pediatric examinations of chest and abdomen computed tomography

    International Nuclear Information System (INIS)

    Jornada, Tiago da Silva

    2013-01-01

    This work had the objective to achieve the knowledge of the dosimetric quantities related to chest and abdomen computed tomography (CT) examinations of pediatric patients, in Belo Horizonte city. The reason of this work is based on the fact that the probability of health detriment in children, which it may be caused by radiation, is higher than in adults. Besides, although in many countries the knowledge and control of patient doses is a normal procedure, this safety culture does not exist in Brazil. Another objective of this work was to compare the dosimetric quantity values with the Diagnostic Reference Levels (DRLs); when it was needed, an optimization process was applied and the quality of the diagnostic image obtained with the optimized technical parameters was analyzed. This study was carried out in five hospitals, where the weighted air kerma index (Cw), the volumetric air kerma index (Cvol), the air kerma - length product (PKL,CT), the Effective Dose (E) and the Normalized Effective Dose (En) were determined; three methods were adopted for measurements: the ionization chamber inside a chest pediatric phantom, radiochromic films and the CT-EXPO software. The optimization process was applied to a single hospital through variations in the current (mA) and voltage (kV) of the x-ray tube for the protocols used for abdomen CT examinations. The analysis of the quality of the diagnostic image was done by Normal Distribution and ROC analysis; spatial resolution analysis was used through MTF determination and the noise level was judged in terms quantitative and qualitative. Results of the dosimetric quantities showed that they significantly differed between single-slice and multi-slice tomography units, but their values were always below the recommended DRLs. The optimized values of the dosimetric quantities obtained after the optimization process showed that it was possible to reduce the radiation exposure of pediatric patient without losing the image quality

  13. Study of a new dosimetric radio-thermoluminescent systems

    International Nuclear Information System (INIS)

    Cazac, T.C.

    1980-01-01

    This is the first Romanian study to investigate conditions to obtain the radio-thermo-luminescent systems: MgB 4 O 7 :A(A-Nd,Sm,Eu,Dy,Tb,Dy+Sm and Tb+Sm) MgF 2 A (A=Mn,Dy,Tb,Sm,Li), their essential dosimetric characters, as well as the (MgF 2 =Mn) thermophosphorus mixture with a ( 6 LiF) lithium target. An investigation was developed upon a new category of radio-thermoluminescent detectors with low radiation energy dependence and fading, magnesjum boride activated by several elements of the lanthanides class (Nd,Sm,Eu,Dy,Tb). A new radio-thermoluminescent dosimetric system with high sensitivity and moderate dependence on energy radiation - (Mnsup(2+)) manganese activated magnesium fluoride - was also studied. The author explored application of investigated detectors MgF 2 =Mn, MgB 4 O 7 =Dy and MgB 4 O 7 :Tb in neutron dosimetry in complex gamma-neutron fields. It is deemed that by using the dosimetric systems reported in the thesis in order to measure gamma, beta and neutron radiation doses, dosimetric control can be ensured both in professional dosimetry and in nuclear accident dosimetry, as well as in various basic and applicative investigations. A modest contribution is thus made towards achieving the national nuclear program through an extension of the thermophosphorus range with practical applications in nuclear radiation dosimetry. (author)

  14. Universal modular dosimetric cassette

    International Nuclear Information System (INIS)

    Plichta, J.; Singer, J.; Trousil, J.; Pohnetal, F.; Kreisinger, F.; Feik, K.; Vaclavek, Z.; Jansky, B.

    1987-01-01

    The personnel dosemeter cassette is made of plastic and consists of front and rear parts joined with projections and a lock. The inner part is provided with recesses for securing different filters in position by gluing. A connecting part allows to firmly and easily lock more cassettes for the purposes of simultaneous measurement using different dosemeters. (M.D.). 6 figs

  15. Comparison of dosimetric methods for virtual wedge analysis

    International Nuclear Information System (INIS)

    Bailey, M.; Nelson, V.; Collins, O.; West, M.; Holloway, L.; Rajapaske, S.; Arts, J.; Varas, J.; Cho, G.; Hill, R.

    2004-01-01

    Full text: The Siemens Virtual Wedge (Concord, USA) creates wedged beam profile by moving a single collimator jaw across the specified field size whilst varying the dose rate and jaw speed for use in the delivery of radiotherapy treatments. The measurement of the dosimetric characteristics of the Siemens Virtual Wedge poses significant challenges to medical physicists. This study investigates several different methods for measuring and analysing the virtual wedge for data collection for treatment planning systems and ongoing quality assurance. The beam profiles of the Virtual Wedge (VW) were compared using several different dosimetric methods. Open field profiles were measured with Kodak X-Omat V (Rochester, NY, USA) radiographic film and compared with measurements made using the Sun Nuclear Profiler with a Motorized Drive Assembly (MDA) (Melbourne, FL, USA) and the Scanditronix Wellhofer CC13 ionisation chamber and 24 ion Chamber Array (CA24) (Schwarzenbruck, Germany). The resolution of each dosimetric method for open field profiles was determined. The Virtual Wedge profiles were measured with radiographic film the Profiler and the Scanditronix Wellhofer CA 24 ion Chamber Array at 5 different depths. The ease of setup, time taken, analysis and accuracy of measurement were all evaluated to determine the method that would be both appropriate and practical for routine quality assurance of the Virtual Wedge. The open field profiles agreed within ±2% or 2mm for all dosimetric methods. The accuracy of the Profiler and CA24 are limited to half of the step size selected for each of these detectors. For the VW measurements a step size of 2mm was selected for the Profiler and the CA24. The VW profiles for all dosimetric methods agreed within ±2% or 2mm for the main wedged section of the profile. The toe and heel ends of the wedges showed the significant discrepancies dependent upon the dosimetry method used, up to 7% for the toe end with the CA24. The dosimetry of the

  16. Dosimetric effects of an air cavity for the SAVI partial breast irradiation applicator

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Susan L.; Pino, Ramiro [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, Methodist Hospital, Houston, Texas 77030 and Texas Cancer Clinic, San Antonio, Texas 78240 (United States)

    2010-08-15

    Purpose: To investigate the dosimetric effect of the air inside the SAVI partial breast irradiation device. Methods: The authors have investigated how the air inside the SAVI partial breast irradiation device changes the delivered dose from the homogeneously calculated dose. Measurements were made with the device filled with air and water to allow comparison to a homogenous dose calculation done by the treatment planning system. Measurements were made with an ion chamber, TLDs, and film. Monte Carlo (MC) simulations of the experiment were done using the EGSnrc suite. The MC model was validated by comparing the water-filled calculations to those from a commercial treatment planning system. Results: The magnitude of the dosimetric effect depends on the size of the cavity, the arrangement of sources, and the relative dwell times. For a simple case using only the central catheter of the largest device, MC results indicate that the dose at the prescription point 1 cm away from the air-water boundary is about 9% higher than the homogeneous calculation. Independent measurements in a water phantom with a similar air cavity gave comparable results. MC simulation of a realistic multidwell position plan showed discrepancies of about 5% on average at the prescription point for the largest device. Conclusions: The dosimetric effect of the air cavity is in the range of 3%-9%. Unless a heterogeneous dose calculation algorithm is used, users should be aware of the possibility of small treatment planning dose errors for this device and make modifications to the treatment delivery, if necessary.

  17. SU-F-E-06: Dosimetric Characterization of Small Photons Beams of a Novel Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Almonte, A; Polanco, G; Sanchez, E [Instituto Oncologico Dr. Heriberto Pieter, Santo Domingo, Distrito Nacional (Dominican Republic)

    2016-06-15

    Purpose: The aim of the present contribution was to measure the main dosimetric quantities of small fields produced by UNIQUE and evaluate its matching with the corresponding dosimetric data of one 21EX conventional linear accelerator (Varian) in operation at the same center. The second step was to evaluate comparative performance of the EDGE diode detector and the PinPoint micro-ionization chamber for dosimetry of small fields. Methods: UNIQUE is configured with MLC (120 leaves with 0.5 cm leaf width) and a single low photon energy of 6 MV. Beam data were measured with scanning EDGE diode detector (volume of 0.019 mm{sup 3}), a PinPoint micro-ionization chamber (PTW) and for larger fields (≥ 4×4cm{sup 2}) a PTW Semi flex chamber (0.125 cm{sup 3}) was used. The scanning system used was the 3D cylindrical tank manufactured by Sun Nuclear, Inc. The measurement of PDD and profiles were done at 100 cm SSD and 1.5 depth; the relative output factors were measured at 10 cm depth. Results: PDD and the profile data showed less than 1% variation between the two linear accelerators for fields size between 2×2 cm{sup 2} and 5×5cm{sup 2}. Output factor differences was less than 1% for field sizes between 3×3 cm{sup 2} and 10×10 cm{sup 2} and less of 1.5 % for fields of 1.5×1.5 cm{sup 2} and 2×2 cm{sup 2} respectively. The dmax value of the EDGE diode detector, measured from the PDD, was 8.347 mm for 0.5×0,5cm{sup 2} for UNIQUE. The performance of EDGE diode detector was comparable for all measurements in small fields. Conclusion: UNIQUE linear accelerator show similar dosimetrics characteristics as conventional 21EX Varian linear accelerator for small, medium and large field sizes.EDGE detector show good performance by measuring dosimetrics quantities in small fields typically used in IMRT and radiosurgery treatments.

  18. ARDENT to develop advanced dosimetric techniques

    CERN Document Server

    Antonella Del Rosso

    2012-01-01

    Earlier this week, the EU-supported Marie Curie training network ARDENT kicked off at a meeting held at CERN. The overall aim of the project is the development of advanced instrumentation for radiation dosimetry. The applications range from radiation measurements around particle accelerators, onboard commercial flights and in space, to the characterization of radioactive waste and medicine, where accurate dosimetry is of vital importance.   The ARDENT (Advanced Radiation Dosimetry European Network Training) project is both a research and a training programme, which aims at developing new dosimetric techniques while providing 15 Early-Stage Researchers (ESR) with state-of-the-art training. The project, coordinated by CERN, is funded by the European Union with a contribution of about 3.9 million euros over four years. The ARDENT initiative will focus on three main technologies: gas detectors, in particular Gas Electron Multipliers (GEM) and Tissue Equivalent Proportional Counters (TEPC); solid stat...

  19. Dosimetric analysis of radiation sources for use dermatological lesions

    International Nuclear Information System (INIS)

    Tada, Ariane

    2010-01-01

    Skin lesions undergoing therapy with radiation sources may have different patterns of malignancy. Malignant lesions or cancer most commonly found in radiotherapy services are carcinomas. Radiation therapy in skin lesions is performed with low penetration beams and orthovoltage X-rays, electron beams and radioactive sources ( 192 Ir, 198 Au, e 90 Sr) arranged on a surface mold or in metal applicator. This study aims to analyze the therapeutic radiation dose profile produced by radiation sources used in skin lesions radiotherapy procedures . Experimental measurements for the analysis of dosimetric radiation sources were compared with calculations obtained from a computer system based on the Monte Carlo Method. Computational results had a good agreement with the experimental measurements. Experimental measurements and computational results by the MCNP4C code were both physically consistent as expected. These experimental measurements compared with calculations using the MCNP-4C code have been used to validate the calculations obtained by MCNP code and to provide a reliable medical application for each clinical case. (author)

  20. Prospective study of postoperative whole breast radiotherapy for Japanese large-breasted women: a clinical and dosimetric comparisons between supine and prone positions and a dose measurement using a breast phantom

    International Nuclear Information System (INIS)

    Takahashi, Kana; Morota, Madoka; Kagami, Yoshikazu; Okamoto, Hiroyuki; Sekii, Shuhei; Inaba, Koji; Murakami, Naoya; Igaki, Hiroshi; Ito, Yoshinori; Uno, Takashi; Itami, Jun

    2016-01-01

    This prospective study aimed to compare dose volume histograms (DVH) of the breasts and organs at risk (OARs) of whole breast radiotherapy in the supine and prone positions, and frequency and severity of acute and late toxicities were analyzed. Early-stage breast cancer patients with large breasts (Japanese bra size C or larger, or the widest measurements of the bust ≥ 95 cm) undergoing partial mastectomy participated in this study. CT-based treatment plans were made in each position, and various dosimetric parameters for the breast and OARs were calculated to compare the supine and prone radiotherapy plans. The actual treatment was delivered in the position regarded as better. From 2009 to 2010, 22 patients were prospectively accrued. Median follow-up period was 58 months. The homogeneity index and lung doses were significantly lower in the prone position (P = 0.008, P < 0.0001 and P < 0.0001, respectively). Cardiac dose showed no significant differences between two positions. By comparing two plans, the prone position was chosen in 77 % of the patients. In the prone position, ≥ grade 2 acute dermatitis were seen in 47 % of patients treated, whereas 20 % of the patients treated in the supine position had grade 2 and no cases of grade 3, although without a statistical significance of the rates of ≥ grade 2 acute dermatitis between the two positions (P = 0.28). The actual dose measurement using a breast phantom revealed significantly higher surface dose of the breast treated in the prone position than that in the supine position. Breast irradiation in the prone position improves PTV homogeneity and lowers doses to the OARs in the Japanese large-breast patients. However meticulous positioning of the breast in the prone board avoiding the bolus effect is necessary to prevent acute dermatitis

  1. Dosimetric analysis of SMD phototransistor in dental phantom of different geometries

    International Nuclear Information System (INIS)

    Belinato, W.; Magalhaes, C. M. S.; Souza, D. N.; Santos, L. A. P.

    2009-10-01

    A commercial surface mount device (SMD) phototransistor, OP520, was inserted in two dental phantoms for dosimetric analysis. The irradiations were accomplished in a dental x-ray equipment of 80 kV using different exposition times. A standard ionization chamber was irradiated at the same conditions and the air kerma measured with it was compared with the electrical charge evaluated by the phototransistor. The results showed satisfactory correspondence among the detectors readings. Moreover, the phototransistor showed up quite sensitively for dental applications, allowing verifying the variations for the different phantoms configurations. (Author)

  2. Dosimetric methodology of the ICRP

    International Nuclear Information System (INIS)

    Eckerman, K.F.

    1994-01-01

    Establishment of guidance for the protection of workers and members of the public from radiation exposures necessitates estimation of the radiation dose to tissues of the body at risk. The dosimetric methodology formulated by the International Commission on Radiological Protection (ICRP) is intended to be responsive to this need. While developed for radiation protection, elements of the methodology are often applied in addressing other radiation issues; e.g., risk assessment. This chapter provides an overview of the methodology, discusses its recent extension to age-dependent considerations, and illustrates specific aspects of the methodology through a number of numerical examples

  3. Dosimetric study for characterization of a postal system of quality control in brachytherapy

    International Nuclear Information System (INIS)

    Alves, Victor Gabriel Leandro; Queiroz Filho, Pedro Pacheco de; Santos, Denison de Souza; Begalli, Marcia

    2009-01-01

    This work presents a dosimetric study of a postal system, to be developed for measurements of brachytherapy. It was projected a PMMA phantom with orifices for insertion of the high dose 192 Ir source and the T L dosemeters. The system was characterized with using of Monte Carlo simulations, using the dosimetric magnitudes defined at the T G-43 of AAPM, as function of radial dose g(f)

  4. Comparison of three dosimetric techniques to take in account lung tumor motion: gating-like technique results lead to advice the use of gating device even in the cases of pre-operative irradiation

    International Nuclear Information System (INIS)

    Beneyton, V.; Billaud, G.; Niederst, C.; Meyer, P.; Schumacher, C.; Karamanoukian, D.; Noel, G.; Bourhala, K.

    2010-01-01

    Purpose: Comparison of three dosimetric techniques of lung tumor delineation to integrate tumor motion during breathing. Patients and method: Nineteen patients with T1-3N0M0 malignant lung tumor were treated with definitive chemoradiotherapy (14 cases) or pre-surgery chemo radiation. Doses were, respectively, 66 and 46 Gy. CT-scan for delineation was performed during three phases of breathing: free breathing and deep breath-hold inspiration and expiration. G.T.V. (gross tumor volume) was delineated on the three sequences. The classic technique included G.T.V. from the free-breathing sequence plus a C.T.V. (clinical target volume) margin of 5 to 8 mm plus a P.T.V. (planning target volume) margin of 7 to 10 mm (including I.T.V. [internal target volume] margin and set-up margin). The gating-like technique included G.T.V. from the deep breath-hold inspiration sequence plus a C.T.V. margin of 5 to 8 mm plus a P.T.V. margin of 2 mm. The three-volume technique, included G.T.V. as a result of the fusion of G.T.V.s from the three sequences plus a C.T.V. margin of 5 to 8 mm plus a P.T.V. margin of 2 mm. Dosimetry was calculated for the three P.T.V.s, if possible, with the same fields number and position. Dose constraints and rules were imposed to accept dosimetries: firstly spinal cord maximal dose less than 45 Gy, followed by V95 % for P.T.V. greater than or equal to 95 %, and V20 GY Gy for lung less than or equal to 30 %, V30 GY Gy for lung less than or equal to 20 %. Results: G.T.V.s were not statistically different between the three methods of delineation. P.T.V.s were significantly lower with the gating-like technique. V95% of the P.T.V. were not different between the three techniques. With the classic-, the gating-like- and the 3-volume techniques, dosimetry was considered as acceptable, respectively in 15, 18 and 15 cases. Comparisons of constraint values showed that the gating-like method gave the best results. In the case of pre-operative management, the gating

  5. SU-F-BRB-15: Dosimetric Study of Radiation Therapy for Head/Neck Patients with Metallic Dental Fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L; Allan, E; Putten, M Van; Gupta, N; Blakaj, D [OH State University, Columbus, OH (United States)

    2015-06-15

    Purpose: To investigate the dose contributions of scattered electrons from dental amalgams during head and neck radiotherapy, and to evaluate the protective role of dosimetric dental stents during treatment to prevent oral mucositis. Methods: A phantom was produced to accurately simulate the oral cavity and head. The oral cavity consisted of a tissue equivalent upper and lower jaw and complete set of teeth. A set of 4 mm ethylene copolymer dosimetric stents was made for the upper and lower teeth. Five removable gold caps were fitted to apposing right molars, and the phantom was crafted to accomodate horizontal and vertical film for 2D dosimetry and NanoDot dosimeter for recording point doses. The head was simulated using a small cylindrical glass water bath. CT simulation was performed on the phantom with and without metal fittings and, in each case, with and without the dental stent. The CT image sets were imported into Eclipse treatment planning system for contouring and treatment planning, and a 9-field IMRT treatment plan was developed for each scenario. These plans were delivered using a Varian TrueBeam linear accelerator. Doses were recorded using GafChromic EBT2 films and NanoDot dosimeters. Results: The measurements revealed a 43% relative increase in dose measured adjacent to the metal fixtures in the horizontal plane without the use of the dental stent. This equates to a total dose of 100 Gy to the oral mucosa during a standard course of definitive radiotherapy. To our knowledge, this is the first dosimetric analysis of dental stents using an anatomically realistic phantom and modern beam arrangement. Conclusion: These results support the use of dosimetric dental stents in head and neck radiotherapy for patients with metallic dental fixtures as a way to effectively reduce dose to nearby mucosal surfaces and, hence, reduce the risk and severity of mucositis.

  6. SU-F-BRB-15: Dosimetric Study of Radiation Therapy for Head/Neck Patients with Metallic Dental Fixtures

    International Nuclear Information System (INIS)

    Lu, L; Allan, E; Putten, M Van; Gupta, N; Blakaj, D

    2015-01-01

    Purpose: To investigate the dose contributions of scattered electrons from dental amalgams during head and neck radiotherapy, and to evaluate the protective role of dosimetric dental stents during treatment to prevent oral mucositis. Methods: A phantom was produced to accurately simulate the oral cavity and head. The oral cavity consisted of a tissue equivalent upper and lower jaw and complete set of teeth. A set of 4 mm ethylene copolymer dosimetric stents was made for the upper and lower teeth. Five removable gold caps were fitted to apposing right molars, and the phantom was crafted to accomodate horizontal and vertical film for 2D dosimetry and NanoDot dosimeter for recording point doses. The head was simulated using a small cylindrical glass water bath. CT simulation was performed on the phantom with and without metal fittings and, in each case, with and without the dental stent. The CT image sets were imported into Eclipse treatment planning system for contouring and treatment planning, and a 9-field IMRT treatment plan was developed for each scenario. These plans were delivered using a Varian TrueBeam linear accelerator. Doses were recorded using GafChromic EBT2 films and NanoDot dosimeters. Results: The measurements revealed a 43% relative increase in dose measured adjacent to the metal fixtures in the horizontal plane without the use of the dental stent. This equates to a total dose of 100 Gy to the oral mucosa during a standard course of definitive radiotherapy. To our knowledge, this is the first dosimetric analysis of dental stents using an anatomically realistic phantom and modern beam arrangement. Conclusion: These results support the use of dosimetric dental stents in head and neck radiotherapy for patients with metallic dental fixtures as a way to effectively reduce dose to nearby mucosal surfaces and, hence, reduce the risk and severity of mucositis

  7. Contura Multi-Lumen Balloon Breast Brachytherapy Catheter: Comparative Dosimetric Findings of a Phase 4 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Douglas W., E-mail: darthur@mcvh-vcu.edu [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States); Todor, Dorin A. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Julian, Thomas B. [Allegheny General Hospital, Temple University School of Medicine, Pittsburgh, Pennsylvania (United States); Cuttino, Laurie W.; Mukhopadhyay, Nitai D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States)

    2013-06-01

    Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125% of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.

  8. Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGETM125I brachytherapy source

    International Nuclear Information System (INIS)

    Meigooni, Ali S.; Hayes, Joshua L.; Zhang Hualin; Sowards, Keith

    2002-01-01

    125 I brachytherapy sources are being used for interstitial implants in tumor sites such as the prostate. Recently, the ADVANTAGE TM 125 I, Model IAI-125, source became commercially available for interstitial brachytherapy treatment. Dosimetric characteristics (dose rate constant, radial dose function, and anisotropy function) of this source were experimentally and theoretically determined, following the AAPM Task Group 43 recommendations. Derivation of the dose rate constant was based on recent NIST WAFAC calibration performed in accordance with their 1999 standard. Measurements were performed in Solid Water TM phantom using LiF thermoluminescent dosimeters. The theoretical calculations were performed in both Solid Water TM and water using the PTRAN Monte Carlo code. The results indicated that a dose rate constant of the new source in water was 0.98±0.03 cGy h -1 U -1 . The radial dose function of the new source was measured in Solid Water TM and calculated both in water and Solid Water TM at distances up to 10.0 cm. The anisotropy function, F(r,θ), of the new source was measured and calculated in Solid Water TM at distances of 2 cm, 3 cm, 5 cm, and 7 cm and also was calculated in water at distances ranging from 1 cm to 7 cm from the source. From the anisotropy function, the anisotropy factors and anisotropy constant were derived. The anisotropy constant of the ADVANTAGE TM 125 I source in water was found to be 0.97±0.03. The dosimetric characteristics of this new source compared favorably with those from the Amersham Health Model 6711 source. Complete dosimetric parameters of the new source are presented in this paper

  9. EchoSeed Model 6733 Iodine-125 brachytherapy source: Improved dosimetric characterization using the MCNP5 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S. [Center for Research in Medical Physics and Biomedical Engineering and Physics Unit, Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz 71936-13311 (Iran, Islamic Republic of); Radiation Research Center and Medical Radiation Department, School of Engineering, Shiraz University, Shiraz 71936-13311 (Iran, Islamic Republic of); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States)

    2012-08-15

    This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.

  10. Dosimetric pre-treatment verification of IMRT using an EPID; clinical experience

    International Nuclear Information System (INIS)

    Zijtveld, Mathilda van; Dirkx, Maarten L.P.; Boer, Hans C.J. de; Heijmen, Ben J.M.

    2006-01-01

    Background and purpose: In our clinic a QA program for IMRT verification, fully based on dosimetric measurements with electronic portal imaging devices (EPID), has been running for over 3 years. The program includes a pre-treatment dosimetric check of all IMRT fields. During a complete treatment simulation at the linac, a portal dose image (PDI) is acquired with the EPID for each patient field and compared with a predicted PDI. In this paper, the results of this pre-treatment procedure are analysed, and intercepted errors are reported. An automated image analysis procedure is proposed to limit the number of fields that need human intervention in PDI comparison. Materials and methods: Most of our analyses are performed using the γ index with 3% local dose difference and 3 mm distance to agreement as reference values. Scalar parameters are derived from the γ values to summarize the agreement between measured and predicted 2D PDIs. Areas with all pixels having γ values larger than one are evaluated, making decisions based on clinically relevant criteria more straightforward. Results: In 270 patients, the pre-treatment checks revealed four clinically relevant errors. Calculation of statistics for a group of 75 patients showed that the patient-averaged mean γ value inside the field was 0.43 ± 0.13 (1 SD) and only 6.1 ± 6.8% of pixels had a γ value larger than one. With the proposed automated image analysis scheme, visual inspection of images can be avoided in 2/3 of the cases. Conclusion: EPIDs may be used for high accuracy and high resolution routine verification of IMRT fields to intercept clinically relevant dosimetric errors prior to the start of treatment. For the majority of fields, PDI comparison can fully rely on an automated procedure, avoiding excessive workload

  11. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, O. A.; Sriprisan, S. I.; Lopatiuk-Tirpak, O.; Kupelian, P. A.; Meeks, S. L.; Hsi, W. C.; Li, Z.; Palta, J. R.; Maryanski, M. J. [M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); MGS Research, Inc., Madison, Connecticut 06443 (United States)

    2010-05-15

    Purpose: The aim of this study is to evaluate the dosimetric performance of a newly developed proton-sensitive polymer gel formulation for proton therapy dosimetry. Methods: Using passive scattered modulated and nonmodulated proton beams, the dose response of the gel was assessed. A next-generation optical CT scanner is used as the readout mechanism of the radiation-induced absorbance in the gel medium. Comparison of relative dose profiles in the gel to ion chamber profiles in water is performed. A simple and easily reproducible calibration protocol is established for routine gel batch calibrations. Relative stopping power ratio measurement of the gel medium was performed to ensure accurate water-equivalent depth dose scaling. Measured dose distributions in the gel were compared to treatment planning system for benchmark irradiations and quality of agreement is assessed using clinically relevant gamma index criteria. Results: The dosimetric response of the gel was mapped up to 600 cGy using an electron-based calibration technique. Excellent dosimetric agreement is observed between ion chamber data and gel. The most notable result of this work is the fact that this gel has no observed dose quenching in the Bragg peak region. Quantitative dose distribution comparisons to treatment planning system calculations show that most (>97%) of the gel dose maps pass the 3%/3 mm gamma criterion. Conclusions: This study shows that the new proton-sensitive gel dosimeter is capable of reproducing ion chamber dose data for modulated and nonmodulated Bragg peak beams with different clinical beam energies. The findings suggest that the gel dosimeter can be used as QA tool for millimeter range verification of proton beam deliveries in the dosimeter medium.

  12. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy

    International Nuclear Information System (INIS)

    Zeidan, O. A.; Sriprisan, S. I.; Lopatiuk-Tirpak, O.; Kupelian, P. A.; Meeks, S. L.; Hsi, W. C.; Li, Z.; Palta, J. R.; Maryanski, M. J.

    2010-01-01

    Purpose: The aim of this study is to evaluate the dosimetric performance of a newly developed proton-sensitive polymer gel formulation for proton therapy dosimetry. Methods: Using passive scattered modulated and nonmodulated proton beams, the dose response of the gel was assessed. A next-generation optical CT scanner is used as the readout mechanism of the radiation-induced absorbance in the gel medium. Comparison of relative dose profiles in the gel to ion chamber profiles in water is performed. A simple and easily reproducible calibration protocol is established for routine gel batch calibrations. Relative stopping power ratio measurement of the gel medium was performed to ensure accurate water-equivalent depth dose scaling. Measured dose distributions in the gel were compared to treatment planning system for benchmark irradiations and quality of agreement is assessed using clinically relevant gamma index criteria. Results: The dosimetric response of the gel was mapped up to 600 cGy using an electron-based calibration technique. Excellent dosimetric agreement is observed between ion chamber data and gel. The most notable result of this work is the fact that this gel has no observed dose quenching in the Bragg peak region. Quantitative dose distribution comparisons to treatment planning system calculations show that most (>97%) of the gel dose maps pass the 3%/3 mm gamma criterion. Conclusions: This study shows that the new proton-sensitive gel dosimeter is capable of reproducing ion chamber dose data for modulated and nonmodulated Bragg peak beams with different clinical beam energies. The findings suggest that the gel dosimeter can be used as QA tool for millimeter range verification of proton beam deliveries in the dosimeter medium.

  13. Dosimetric behavior of thermoluminescent dosimeters at low doses in diagnostic radiology

    International Nuclear Information System (INIS)

    Del Sol F, S.; Garcia S, R.; Guzman M, J.; Sanchez G, D.; Rivera M, T.; Ramirez R, G.; Gaona, E.

    2015-10-01

    Thermoluminescent (Tl) characteristics of TLD-100, LiF:Mg,Cu,P, and CaSO 4 : Dy the under homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescent dosimetry is presented. The irradiations were performed utilizing an X-ray beam generated by a Radiology Mexican Company: MRH-II E GMX 325-AF SBV-1 model, with Rotating Anode X-Ray Tube installed in the Hospital Juarez Norte de Mexico in Mexico City. Different thermoluminescent characteristics of dosimetric material were studied, such as, batch homogeneity, Tl glow curve, Tl response as a function of X-ray dose, reproducibility and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and positioned in a generic Phantom was used. Dose verification and comparison with the measurements made with that obtained by TLD-100 were analyzed. Preliminary results indicate the dosimetric peak appears at 243, 236 and 277 ± 5 degrees C respectively, these peaks are in agreement with that reported in the literature. Tl glow curve as a function of X-ray dose showed a linearity in the range from 1.76 mGy up to 14.70 mGy for all materials. Fading for a period of one month at room temperature showed low fading LiF:Mg,Cu,P, medium and high for TLD-100 and CaSO 4 : Dy. The results suggest that the three materials are suitable for measurements at low doses in radiodiagnostic, however, for its dosimetric characteristics are most effective for individual applications: personal dosimetry and monitors limb (LiF:Mg,Cu,P), clinical dosimetry and environmental (TLD-100 and CaSO 4 : Dy). (Author)

  14. Thermoluminescent dosimetric properties of Descalvado sand

    International Nuclear Information System (INIS)

    Teixeira, M.I.; Caldas, L.V.E.

    2006-01-01

    Sand samples proceeding from Descalvado, Sao Paulo, were studied with regard to their dosimetric properties using the thermoluminescence technique (TL) for high doses. These sand samples present steady physical and chemical characteristics to the end items, and they are used in the glass industry and for casting. The TL curves of the samples were obtained after an irradiation at the Gamma-Cell system ( 60 Co), of IPEN. The glow curves present two peaks at 80 C and 220 C approximately. Calibration curves were obtained for doses between 50 Gy and 5 kGy. The results indicate that the sand samples can be used for high-doses dosimetry in several areas of applications of ionizing radiation. (Author)

  15. Thermoluminescent dosimetric properties of Descalvado sand

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, M.I.; Caldas, L.V.E

    2006-07-01

    Sand samples proceeding from Descalvado, Sao Paulo, were studied with regard to their dosimetric properties using the thermoluminescence technique (TL) for high doses. These sand samples present steady physical and chemical characteristics to the end items, and they are used in the glass industry and for casting. The TL curves of the samples were obtained after an irradiation at the Gamma-Cell system ({sup 60} Co), of IPEN. The glow curves present two peaks at 80 C and 220 C approximately. Calibration curves were obtained for doses between 50 Gy and 5 kGy. The results indicate that the sand samples can be used for high-doses dosimetry in several areas of applications of ionizing radiation. (Author)

  16. Dosimetric characterization of two radium sources for retrospective dosimetry studies

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Karlsson, M. [Division of Radiological Sciences, Department of Medical and Health Sciences, Linköping University, Linköping SE 581 85 (Sweden); Lundell, M. [Department of Medical Physics and Oncology, Karolinska University Hospital and Karolinska Institute, Stockholm SE 171 76 (Sweden); Ballester, F. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Tedgren, Å. Carlsson [Division of Radiological Sciences, Department of Medical and Health Sciences, Linköping University, Linköping SE 581 85, Sweden and Swedish Radiation Safety Authority, Stockholm SE 171 16 (Sweden)

    2015-05-15

    Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that

  17. Gamma dosimetric parameters in some skeletal muscle relaxants

    Science.gov (United States)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  18. Spectral measurements in critical assemblies: MCNP specifications and calculated results

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie C. Frankle; Judith F. Briesmeister

    1999-12-01

    Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k{sub eff} measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a {sup 252}Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented.

  19. Spectral measurements in critical assemblies: MCNP specifications and calculated results

    International Nuclear Information System (INIS)

    Frankle, Stephanie C.; Briesmeister, Judith F.

    1999-01-01

    Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k eff measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a 252 Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented

  20. The estimation of the measurement results with using statistical methods

    International Nuclear Information System (INIS)

    Ukrmetrteststandard, 4, Metrologichna Str., 03680, Kyiv (Ukraine))" data-affiliation=" (State Enterprise Ukrmetrteststandard, 4, Metrologichna Str., 03680, Kyiv (Ukraine))" >Velychko, O; UkrNDIspirtbioprod, 3, Babushkina Lane, 03190, Kyiv (Ukraine))" data-affiliation=" (State Scientific Institution UkrNDIspirtbioprod, 3, Babushkina Lane, 03190, Kyiv (Ukraine))" >Gordiyenko, T

    2015-01-01

    The row of international standards and guides describe various statistical methods that apply for a management, control and improvement of processes with the purpose of realization of analysis of the technical measurement results. The analysis of international standards and guides on statistical methods estimation of the measurement results recommendations for those applications in laboratories is described. For realization of analysis of standards and guides the cause-and-effect Ishikawa diagrams concerting to application of statistical methods for estimation of the measurement results are constructed

  1. The estimation of the measurement results with using statistical methods

    Science.gov (United States)

    Velychko, O.; Gordiyenko, T.

    2015-02-01

    The row of international standards and guides describe various statistical methods that apply for a management, control and improvement of processes with the purpose of realization of analysis of the technical measurement results. The analysis of international standards and guides on statistical methods estimation of the measurement results recommendations for those applications in laboratories is described. For realization of analysis of standards and guides the cause-and-effect Ishikawa diagrams concerting to application of statistical methods for estimation of the measurement results are constructed.

  2. Practical Use of the Braking Attributes Measurements Results

    Directory of Open Access Journals (Sweden)

    Ondruš Ján

    2017-01-01

    Full Text Available This contribution deals with issues of braking the passenger car. The measurement of braking deceleration of the vehicle Kia Cee´d 1,6 16 V was carried out by an optical device Correvit system. The measurement was carried out on the airport of the village of Rosina located close to Zilina. 10 drivers of different age, praxis, and kilometers driven participated in the measurement. The measured process was the vehicle full braking with the service brake of the initial speed of approximately 50 km.h-1. Each of the drivers had 10 attempts. In the closure of this contribution the results of the performed measurements, their evaluation and comparison are presented. Practical result from the contribution is mainly the measurement set of braking deceleration of the respective vehicle during intensive braking.

  3. Impact of post-implant dosimetric parameters on the quality of life of patients treated with low-dose rate brachytherapy for localised prostate cancer: results of a single-institution study

    International Nuclear Information System (INIS)

    Veccia, Antonello; Caffo, Orazio; Fellin, Giovanni; Mussari, Salvatore; Ziglio, Francesco; Maines, Francesca; Tomio, Luigi; Galligioni, Enzo

    2015-01-01

    To assess the relationship between dosimetric parameters and the quality of life (QL) outcomes of patients with low-intermediate-risk localised prostate cancer (LPC) treated with low-dose-rate brachytherapy (LDR-BT). We evaluated the participants in two consecutive prospective studies of the QL of patients treated with LDR-BT for LPC. QL was evaluated by means of a patient-completed questionnaire assessing non functional [physical (PHY) and psychological (PSY) well-being, physical autonomy (POW), social relationships (REL)] and functional scales [urinary (URI), rectal (REC), and sexual (SEX) function]; a scale for erectile function (ERE) was included in the second study. Urethra (D10 ≤ 210 Gy) and rectal wall constraints (V100 ≤ 0.5 cc) were used for pre-planning dosimetry and were assessed with post planning computerized tomography one month later for each patient. QL was assessed in 251 LPC patients. Dosimetry did not influence the non-functional scales. As expected, a progressive impairment in sexual and erectile function was reported one month after LDR-BT, and became statistically significant after the third year. Rectal function significantly worsened after LDR-BT, but the differences progressively decreased after the 1-year assessment. Overall urinary function significantly worsened immediately after LDR-BT and then gradually improved over the next three years. Better outcomes were reported for V100 rectal wall volumes of ≤ 0.5 cc and D10 urethra values of ≤ 210 Gy. The findings of this study show that dosimetric parameters influence only functional QL outcomes while non-functional outcomes are only marginally influenced

  4. The dilemma of parotid gland and pharyngeal constrictor muscles preservation—Is daily online image guidance required? A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Olivia; Forde, Elizabeth; Leech, Michelle, E-mail: leechm@tcd.ie

    2017-04-01

    With margin reduction common in head and neck radiotherapy, it is critical that the dosimetric effects of setup deviations are quantified. With past studies focusing on the quantification of positional and volumetric changes of organs at risk (OARs), this study aimed to measure the dose delivered to these the parotid gland (PG) and pharyngeal constrictor muscles (PCMs) using cone beam computed tomography (CBCT). Furthermore, this investigation sought to establish a potential time trend of change in dose delivered to target volumes secondary to ascertaining the need for daily image guidance (IG) to reduce the dose burden to these important OARs. Intensity modulated radiotherapy (IMRT) plans for 5 locally advanced head and neck patients' plans were created and mapped to weekly CBCTs. Each plan was recalculated without heterogeneity correction allowing for dosimetric comparison. Dosimetric endpoints recorded to assess the effect of positional variation were as per ICRU 83 and included D{sub 95} and D{sub 98} for the target volumes, mean dose (MD) and V{sub 30} {sub Gy} for the PGs, and V{sub 50} {sub Gy} and MD for the PCMs. Results were deemed statistically significant if p < 0.05. No significant time trends were established for these OARs. A significant decrease in V{sub 50} {sub Gy} was observed for all PCMs (p < 0.001) on all CBCTs relative to the original plan. Regarding target volumes, a highly significant decrease in MD (MD = 20 Gy, CI: −20.310 to −19.820) in D{sub 98} of the high-dose planning target volume (PTV [70 Gy]; PTVD{sub 98%} = 70 Gy) for case 3 was found (p ≤ 0.001). A nonpredictable, yet significant dosimetric effect was found. A clinically acceptable balance must be achieved between OAR dosimetry and target coverage as can be achieved by frequent IG.

  5. Results of tritium measurement in environmental samples and drainage

    International Nuclear Information System (INIS)

    Koike, Ryoji; Hirai, Yasuo

    1983-01-01

    In Ibaraki prefecture, the tritium concentration in the drainage from the nuclear facilities has been measured since 1974. Then, with the start of operation of the fuel reprocessing plant in 1977, the tritium concentration in environmental samples was to be measured also in order to examine the effect of the drainage on the environment. The results of the tritium measurement in Ibaraki prefecture up to about 1980 are described: sampling points, sampling and measuring methods, the tritium concentration in the drainage, air, inland water and seawater, respectively. The drainages have been taken from Japan Atomic Power Company, Japan Atomic Energy Research Institute, and Power Reactor and Nuclear Fuel Development Corporation (with the fuel reprocessing plant). The samples of air, inland water and seawater have been taken in the areas concerned. The tritium concentration was measured by a low-background liquid scintillation counter. The measured values in the environment have been generally at low level, not different from other areas. (Mori, K.)

  6. Results and conclusions of stress measurements at Stripa

    International Nuclear Information System (INIS)

    Doe, T.W.; Hustrulid, W.A.; Leijon, B.; Ingevald, K.; Strindell, L.; Carlsson, Hans

    1983-01-01

    This paper describes the results of stress measurements at Stripa, compares the results obtained by different techniques, and recommends a stress measurement program for a hard rock repository site. The state of stress at the Stripa Mine has been measured both in a 381m deep hole drilled from the surface and in holes drilled from the drifts underground. The results of overcoring and hydraulic fracturing agree well, particularly for the magnitude and orientation of the greatest stress. A recommended program for stress measurement at a repository site would include hydraulic fracturing and deep-hole overcoring in a deep hole drilled from surface, and ovecoring and hydraulic fracturing from holes drilled from underground openings when access is available. Propagation of the hydraulic fractures should be monitored acoustically to determine their location and orientation

  7. Clinical and dosimetric predictors of acute hematologic toxicity in rectal cancer patients undergoing chemoradiotherapy

    International Nuclear Information System (INIS)

    Yang, T. Jonathan; Oh, Jung Hun; Apte, Aditya; Son, Christina H.; Deasy, Joseph O.; Goodman, Karyn A.

    2014-01-01

    Background and purpose: To identify clinical and dosimetric factors associated with hematologic toxicity (HT) during chemoradiotherapy for rectal cancer. Materials and methods: We analyzed 120 rectal cancer patients treated with neoadjuvant pelvic radiotherapy (PRT) with concurrent 5-fluorouracil-based chemotherapy. The coxal (ilium, ischium, and pubis) bone marrow (BM), sacral BM, and femoral BM were contoured and dose-volume parameters were extracted. Associations between cell count trend and clinical predictors were tested using repeated-measures analysis of variance (ANOVA) test. Associations between clinical variables, Vx (percentage volume receiving x Gy), and cell count ratio at nadir were tested using linear regression models. Results: Nadirs for white blood cell count (WBC), absolute neutrophil count (ANC), and platelets (PLT) occurred in the second week of PRT and the fifth week for hemoglobin and absolute lymphocyte count (ALC). Using cell count ratio, patients treated with 3DCRT had a lower WBC ratio trend during PRT compared to patients treated with IMRT (p = 0.04), and patients ⩾59 years of age had a lower hemoglobin ratio trend during PRT (p = 0.02). Using absolute cell count, patients treated with 3DCRT had lower ANC cell count trend (p = 0.03), and women had lower hemoglobin cell count trend compared to men (p = 0.03). On univariate analysis, use of 3DCRT was associated with a lower WBC ratio at nadir (p = 0.02). On multiple regression analysis using dosimetric variables, coxal BM V45 (p = 0.03) and sacral BM V45 (p = 0.03) were associated with a lower WBC and ANC ratio at nadir, respectively. Conclusions: HT trends during PRT revealed distinct patterns: WBC, ANC, and PLT cell counts reach nadirs early and recover, while hemoglobin and ALC decline steadily. Patients who were treated with 3DCRT and older patients experienced lower cell count ratio trend during PRT. Dosimetric constraints using coxal BM V45 and sacral BM V45 can be considered

  8. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    International Nuclear Information System (INIS)

    Kakinohana, Y; Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S

    2014-01-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm 2 (two) and 4×5 cm 2 (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm 2 pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm 2 pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film

  9. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kakinohana, Y [University of the Ryukyus, Okinawa (Japan); Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S [University of the Ryukyus, Nishihara-cho, Okinawa (Japan)

    2014-06-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.

  10. An evaluation of the dosimetric performance characteristics of N-vinylpyrrolidone-based polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, A E [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Maris, T G [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Zacharopoulou, F [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Pappas, E [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Zacharakis, G [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), PO Box 1527, Iraklion, Crete (Greece); Damilakis, J [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece)

    2007-08-21

    The aim of this work was to investigate the dosimetric performance properties of the N-vinylpyrrolidone argon (VIPAR) based polymer gel as a dosimetric tool in clinical radiotherapy. VIPAR gels with a larger concentration of gelatin than the standard recipe were manufactured and irradiated up to 68 Gy using a 6 and 18 MV linear accelerator. Using MRI, the R2-dose response was recorded at different imaging sessions within a 34 day time period post-irradiation. The R2-dose response was found to be linear between 5 and 68 Gy. Although dose sensitivity did not show significant variation with time, the measured R2-dose values showed an increasing trend, which was less evident beyond 17 days. At one day post-irradiation, calculated dose standard uncertainties at 20 Gy and 56 Gy were 2.2% and 1.7%, providing a dose resolution of 0.45 Gy and 0.97 Gy, respectively. Although these values fulfilled the 2% limit of ICRU, when gels were imaged at one day post-irradiation, it was shown that the temporal evolution of the R2 values deteriorated the per cent standard uncertainty and the dose resolution by {approx}57%, when imaged 17 days post-irradiation. Variation in the coagulation temperature of the gels did not impact the R2-dose sensitivity. This study has shown that the VIPAR gel has the properties of a dosimetric tool required in clinical radiotherapy, especially in applications where a wide dose dynamic range is employed. For results with the lowest per cent uncertainty and the optimum dose resolution, the dosimetry gels used in this work should be MR scanned at one day post-irradiation. Furthermore, a preliminary study on the R2-dose response of a new normoxic N-vinylpyrrolidone-based polymer gel showed that it could potentially replace the traditional VIPAR gel formulation, while preserving the wide dynamic dose response inherent to that monomer.

  11. Dosimetric control of radiotherapy treatments by Monte Carlo simulation of transmitted portal dose image

    International Nuclear Information System (INIS)

    Badel, Jean-Noel

    2009-01-01

    This research thesis addresses the dosimetric control of radiotherapy treatments by using amorphous silicon digital portal imagery. In a first part, the author reports the analysis of the dosimetric abilities of the imager (iViewGT) which is used in the radiotherapy department. The stability of the imager response on a short and on a long term has been studied. A relationship between the image grey level and the dose has been established for a reference irradiation field. The influence of irradiation parameters on the grey level variation with respect to the dose has been assessed. The obtained results show the possibility to use this system for dosimetry provided that a precise calibration is performed while taking the most influencing irradiation parameters into account, i.e. photon beam nominal energy, field size, and patient thickness. The author reports the development of a Monte Carlo simulation to model the imager response. It models the accelerator head by a generalized source point. Space and energy distributions of photons are calculated. This modelling can also be applied to the calculation of dose distribution within a patient, or to study physical interactions in the accelerator head. Then, the author explores a new approach to dose portal image prediction within the frame of an in vivo dosimetric control. He computes the image transmitted through the patient by Monte Carlo simulation, and measures the portal image of the irradiation field without the patient. Validation experiments are reported, and problems to be solved are highlighted (computation time, improvement of the collimator simulation) [fr

  12. IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices

    International Nuclear Information System (INIS)

    Siauw, Timmy; Cunha, Adam; Atamtuerk, Alper; Hsu, I-Chow; Pouliot, Jean; Goldberg, Ken

    2011-01-01

    Purpose: Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution is controlled by abstract parameters. The purpose of this study is to develop a new approach for HDR brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. Methods: The authors developed inverse planning by integer program (IPIP), an optimization model for computing HDR brachytherapy dose plans and a fast heuristic for it. They used their heuristic to compute dose plans for 20 anonymized prostate cancer image data sets from patients previously treated at their clinic database. Dosimetry was evaluated and compared to dosimetric criteria. Results: Dose plans computed from IPIP satisfied all given dosimetric criteria for the target and healthy tissue after a single iteration. The average target coverage was 95%. The average computation time for IPIP was 30.1 s on an Intel(R) Core TM 2 Duo CPU 1.67 GHz processor with 3 Gib RAM. Conclusions: IPIP is an HDR brachytherapy planning system that directly incorporates dosimetric criteria. The authors have demonstrated that IPIP has clinically acceptable performance for the prostate cases and dosimetric criteria used in this study, in both dosimetry and runtime. Further study is required to determine if IPIP performs well for a more general group of patients and dosimetric criteria, including other cancer sites such as GYN.

  13. The TL and OSL study of hydroxyapatites for dosimetric applications

    International Nuclear Information System (INIS)

    Alencar, Marcus A. Vallim de

    2009-01-01

    The hydroxyapatite, the principal mineral component of the bone and tooth enamel, is one of the dosimetric materials that has distinguished itself in the high dose and accidents dosimetry, as well as in the dating, for the Electron Paramagnetic Resonance (EPR) technique. For this reason, the hydroxyapatite could also be used as Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) dosimeter in the dosimetry of high doses and accidents, and also in the archaeological and geological dating. This work presents a brief study of the TL and OSL behaviour of the B type synthetic carbonated hydroxyapatite, observing the possibility to use this material in TL and OSL dosimetry. The samples were irradiated to a dose of 100 Gy and 1000 Gy, and the TL and OSL measurements were obtained by the RISOE TL/OSL reader, model TL/OSL-DA-15B. The first results demonstrate the presence of three peaks in the TL glow curve in the temperatures of 100 deg C, 150 deg C and 280 deg C. The synthetic carbonated hydroxyapatite also presents an OSL signal when the sample is stimulated with blue light and a small OSL signal for stimulation with infrared light (IR). These results indicate the possibility of this synthetic carbonated hydroxyapatite to be used as dose indicator material using the TL and OSL techniques. (author)

  14. Effective atomic numbers and electron density of dosimetric material

    Directory of Open Access Journals (Sweden)

    Kaginelli S

    2009-01-01

    Full Text Available A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, m/r, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates. The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes.

  15. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  16. Evaluation of measuring results, statement of uncertainty in dosimeter calibrations

    International Nuclear Information System (INIS)

    Reich, H.

    1978-05-01

    The method described starts from the requirement that the quantitative statement of a measuring result in dosimetry should contain at least three figures: 1) the measured value or the best estimate of the quantity to be measured, 2) the uncertainty of this value given by a figure, which indicates a certain range around the measured value, and which is strongly linked with 3) a figure for the confidence level of this range, i.e. the probability that the (unknown) correct value is embraced by the given uncertainty range. How the figures 2) and 3) can be obtained and how they should be quoted in calibration certificates is the subject of these lectures. In addition, the means by which the method may be extended on determining the uncertainty of a measurement performed under conditions which deviate from the calibration conditt ions is briefly described. (orig.) [de

  17. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Frank, H.; Petr, I.

    1977-01-01

    The structure of MOS transistors is described and their characteristics given. The experiments performed and data in the literature show the following dosimetric properties of MOS transistors: while for low gamma doses the transistor response to exposure is linear, it shows saturation for higher doses (exceeding 10 3 Gy in tissue). The response is independent of the energy of radiation and of the dose rate (within 10 -2 to 10 5 Gy/s). The spontaneous reduction with time of the spatial charge captured by the oxide layer (fading) is small and acceptable from the point of view of dosimetry. Curves are given of isochronous annealing of the transistors following irradiation with 137 Cs and 18 MeV electrons for different voltages during irradiation. The curves show that in MOS transistors irradiated with high-energy electrons the effect of annealing is less than in transistors irradiated with 137 Cs. In view of the requirement of using higher temperatures (approx. 400 degC) for the complete ''erasing'' of the captured charge, unsealed systems must be used for dosimetric purposes. The effect was also studied of neutron radiation, proton radiation and electron radiation on the MOS transistor structure. For MOS transistor irradiation with 14 MeV neutrons from a neutron generator the response was 4% of that for gamma radiation at the same dose equivalent. The effect of proton radiation was studied as related to the changes in MOS transistor structure during space flights. The response curve shapes are similar to those of gamma radiation curves. The effect of electron radiation on the MOS structure was studied by many authors. The experiments show that for each thickness of the SiO 2 layer an electron energy exists at which the size of the charge captured in SiO 2 is the greatest. All data show that MOS transistors are promising for radiation dosimetry. The main advantage of MOS transistors as gamma dosemeters is the ease and speed of evaluation, low sensitivity to neutron

  18. Fast neutron irradiation effects on CR-39 nuclear track detector for dosimetric applications

    International Nuclear Information System (INIS)

    Kader, M.H.

    2005-01-01

    The effect of neutron irradiation on the dosimetric properties of CR-39 solid-state nuclear track detector have been investigated. CR-39 samples were irradiated with neutrons of energies follow a Maxwellian distribution centered about 2 MeV. These samples were irradiated with different doses in the range 0.1-1 Sv. The background and track density were measured as a function of etching time. In addition, the dependence of sensitivity of CR-39 detector on the neutrons dose has been investigated. The results show that the Sensitivity started to increase at 0.4 Sv neutrons dose, so this sample were chosen to be a subject for further study to investigate the effect of gamma dose on its properties. The sample irradiated with 0.4 Sv were exposed to different doses of gamma rays at levels between 10 and 80 kGy. The effect of gamma doses on the bulk etching rate VB, the track diameter and the sensitivity of the CR-39 samples was investigated. The results show that the dosimetric properties of CR-39 SSNTD are greatly affected by both neutron and gamma irradiation

  19. Dosimetric study in iodine-125 seeds for brachytherapy application

    International Nuclear Information System (INIS)

    Zeituni, Carlos Alberto

    2008-01-01

    The demand for iodine-125 seeds for use in brachytherapy treatments has experienced an increase along recent years in Brazil and all over the world. All iodine-125 seed must have its operational parameters measured and/or calculated every time changes in the production process are carried out. A complete dosimetric measurement is very expensive, and it is recommended that this procedure must be repeated at least once a year. Thus, this work developed a methodology for the entire dosimetric process. This methodology is based on the scarce information available in the literature, once almost all the methodology used in large industrial laboratories is commercial secret. The proposed methodology was tested using seeds of Amersham-Oncura-Ge Healthcare, which is the largest seed manufactory in the world. In this new methodology, an automatic reader was employed in order to reduce the time required in the selection process of the TLD-100 dosimeters used and a postprocessing of the obtained spectra was carried out. A total of 142 dosimeters were used and only 29 have been selected using the new methodology. Measurements were performed using slabs of Solid Water RW1 to simulate measuring in the 'water', using three different experimental apparatus and each measurement was repeated at least three times. The TLD-100 calibration was performed using a Dermopan II - Siemens. The measured values showed a good agreement with the ones available in the literature. Finally, these measured values were compared with calculated ones obtained by a semiempirical simulation program, showing a good agreement and, therefore, demonstrating the validity of the proposed methodology regarding dosimetric calculations. (author)

  20. Diamagnetic measurements on ISX-B: method and results

    International Nuclear Information System (INIS)

    Neilson, G.H.

    1983-10-01

    A diamagnetic loop is used on the ISX-B tokamak to measure the change in toroidal magnetic flux, sigma phi, caused by finite plasma current and perpendicular pressure. From this measurement, the perpendicular poloidal beta β/sub I perpendicular to/ is determined. The principal difficulty encountered is in identifying and making corrections for various noise components which appear in the measured flux. These result from coupling between the measuring loops and the toroidal and poloidal field windings, both directly and through currents induced in the vacuum vessel and coils themselves. An analysis of these couplings is made and techniques for correcting them developed. Results from the diamagnetic measurement, employing some of these correction techniques, are presented and compared with other data. The obtained values of β/sub I perpendicular to/ agree with those obtained from the equilibrium magnetic analysis (β/sub IΔ/) in ohmically heated plasmas, indicating no anisotropy. However, with 0.3 to 2.0 MW of tangential neutral beam injection, β/sub IΔ/ is consistently greater than β/sub I pependicular to/ and qualitatively consistent with the formation of an anisotropic ion velocity distribution and with toroidal rotation. Quantitatively, the difference between β/sub IΔ/ and β/sub I perpendicular to/ is more than can be accounted for on the basis of the usual classical fast ion calculations and spectroscopic rotation measurements

  1. Measurement model choice influenced randomized controlled trial results.

    Science.gov (United States)

    Gorter, Rosalie; Fox, Jean-Paul; Apeldoorn, Adri; Twisk, Jos

    2016-11-01

    In randomized controlled trials (RCTs), outcome variables are often patient-reported outcomes measured with questionnaires. Ideally, all available item information is used for score construction, which requires an item response theory (IRT) measurement model. However, in practice, the classical test theory measurement model (sum scores) is mostly used, and differences between response patterns leading to the same sum score are ignored. The enhanced differentiation between scores with IRT enables more precise estimation of individual trajectories over time and group effects. The objective of this study was to show the advantages of using IRT scores instead of sum scores when analyzing RCTs. Two studies are presented, a real-life RCT, and a simulation study. Both IRT and sum scores are used to measure the construct and are subsequently used as outcomes for effect calculation. The bias in RCT results is conditional on the measurement model that was used to construct the scores. A bias in estimated trend of around one standard deviation was found when sum scores were used, where IRT showed negligible bias. Accurate statistical inferences are made from an RCT study when using IRT to estimate construct measurements. The use of sum scores leads to incorrect RCT results. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Assessment of quality of measurement results in interlaboratory comparisons

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Matel, L.; Rajec, P.

    2009-01-01

    Testing laboratory accredited according to ISO/IEC 17025:2005 has to ensure the quality of their results. Important aspect of correct evaluation of the result is the accuracy and uncertainty. Requirement of ISO/IEC 17025:2005 is the accredited laboratories to express their results with the corresponding uncertainty. Participation of laboratories in interlaboratory comparisons provides objective evidence of the level of reliability and quality of their results. Thereby the competency of accredited laboratories verified, including the verification of the declared measurement uncertainty. Some interlaboratory comparisons in which took participation the Testing Laboratory of Radiochemical Analysis (LARCHA) are presented.

  3. Dosimetric approaches: pregnancy and lactation

    International Nuclear Information System (INIS)

    Rojo, Ana M.

    2001-01-01

    The female nuclear medicine patient is of special concern to the evaluation of radiation dose since radiation protection point of view: a)- The females overall body size and organ sizes are generally smaller than those of her male counterpart (thus her radiation doses will be higher, given the same amounts of administered activity and similar biokinetics), the effective doses could be 25 per cent higher than a man; b)- Female gonads are inside the body instead of outside and are near several organs often important as source organs in internal dosimetry; female gonads doses could be up to 10 or 30 higher than male gonads (usually 3 order); c)- Risk of breast cancer is significantly higher among females than males; d)- During the pregnancy due to placental transfer of radiopharmaceuticals or radiation exposure from the urinary bladder the embryo/fetus could receive doses that must be avoid; e)- In the case of nursing infant is of special concern in such an analysis to determine the interruption period to avoid doses in the nursing infant. The dosimetric approaches to take account to assess internal doses in the pregnant woman and during the breast feeding are discussed. (author)

  4. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Larsson, Tobias; Keall, P.

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced......-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results were evaluated using gamma index evaluation with static target measurements as reference. Results: The plan quality...

  5. Managing for Results--Linking Performance Measures and Budgets.

    Science.gov (United States)

    McGee, William L.; Fountain, James R., Jr.

    1995-01-01

    The Government Accounting Standards Board notion of service efforts and accomplishments reporting is one step in a process of managing for results that includes strategic planning, development and use of performance measures of managing ongoing programs, and outputs to budgetary appropriation. Reports a trial application to one school district.…

  6. First results and future projects for Petula ECE measurements

    International Nuclear Information System (INIS)

    How, J.; Melin, G.; Girard, A.

    1985-01-01

    Electron cyclotron emission (ECE) diagnostics are being installed on the Petula-B tokamak. First results include extensive measurements of the total ECE radiation, integrated over 50-1000 GHz, during ohmic and current drive operation, and preliminary interferograms from the polarizing interferometer. Future plans are discussed

  7. Recent results on Higgs measurements and searches in ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The excellent operation of the LHC, and a fast processing and analysis, has enabled ATLAS to produce many new results during the last months with similar or better sensitivity than the one reached during Run 1 of the LHC. The seminar will give an overview of the Standard Model Higgs boson measurements and of searches for non-standard scalar states or decay modes.

  8. Quantifying the measurement uncertainty of results from environmental analytical methods.

    Science.gov (United States)

    Moser, J; Wegscheider, W; Sperka-Gottlieb, C

    2001-07-01

    The Eurachem-CITAC Guide Quantifying Uncertainty in Analytical Measurement was put into practice in a public laboratory devoted to environmental analytical measurements. In doing so due regard was given to the provisions of ISO 17025 and an attempt was made to base the entire estimation of measurement uncertainty on available data from the literature or from previously performed validation studies. Most environmental analytical procedures laid down in national or international standards are the result of cooperative efforts and put into effect as part of a compromise between all parties involved, public and private, that also encompasses environmental standards and statutory limits. Central to many procedures is the focus on the measurement of environmental effects rather than on individual chemical species. In this situation it is particularly important to understand the measurement process well enough to produce a realistic uncertainty statement. Environmental analytical methods will be examined as far as necessary, but reference will also be made to analytical methods in general and to physical measurement methods where appropriate. This paper describes ways and means of quantifying uncertainty for frequently practised methods of environmental analysis. It will be shown that operationally defined measurands are no obstacle to the estimation process as described in the Eurachem/CITAC Guide if it is accepted that the dominating component of uncertainty comes from the actual practice of the method as a reproducibility standard deviation.

  9. Dosimetric assessment of swallowing examinations with videofluoroscopy

    International Nuclear Information System (INIS)

    Costa, M.M.B.; Canevaro, L.V.; Azevedo, A.C.P.

    2001-01-01

    Dosimetric analysis measurements of the Dose-Area-Product (DAP) of 7 individuals were estimated for the deglutition dynamic using the videofluoroscopic method. The aim of this study is to establish in a preliminary way, typical DAP values for this kind of study. The DAP values were obtained attaching to the X ray tube exit, an ionization chamber from PTW and a Diamentor M4 meter. The typical DAP values obtained during the videofluoroscopic evaluation of the deglutition dynamic, including its three phases, was: 4101 ± 881 cGy.cm 2 and the typical DAP rate was 577 ± 94 cGy.cm 2 /min. These values refer to a standard patient (1.57 cm height, 56 kg. weight) and a protocol that can be performed in about 7 minutes. The values, defined herein as typical refer to the used protocol. To our knowledge, the mean DAP rate is a good parameter to estimate radiation exposure from videofluoroscopic study of swallowing process. (author)

  10. Results and conclusions of stress measurements at Stripa

    International Nuclear Information System (INIS)

    Doe, T.W.; Hustrulid, W.A.; Leijon, B.; Ingevald, K.; Strindell, L.; Carlsson, H.

    1982-10-01

    This paper describes the results of stress measurements at Stripa, compares the results obtained by different techniques, and recommends a stress measurement program for a hard rock repository site. The state of stress at the Stripa Mine has been measured both in a 381-m-deep hole drilled from the surface and in holes drilled from the drifts underground. Hydraulic fracturing and several overcoring methods have been used (Lulea triaxial gauge, CSIRO gauge, USBM gauge, Swedish State Power Board deep-hole Leeman triaxial gauge). The results of overcoring and hydraulic fracturing agree well, particularly for the magnitude and orientation of the greatest stress. A recommended program for stress measurement at a repository site would include hydraulic fracturing and deep-hole overcoring in a deep hole drilled from surface, and overcoring (Lulea gauge and USBM gauge) and hydraulic fracturing from holes drilled from underground openings when access is available. Propagation of the hydraulic fractures should be monitored acoustically to determine their location and orientation

  11. Recent results from the MISTRAL mass measurement program at ISOLDE

    CERN Document Server

    Lunney, M D; Audi, G; Bollen, G; Borcea, C; Doubre, H; Gaulard, C; Henry, S; De Saint-Simon, M; Thibault, C; Toader, C F; Vieira, N

    2001-01-01

    The MISTRAL experiment (Mass measurements at ISOLDE with a Transmission and Radiofrequency spectrometer on-Line), conceived for very short-lived nuclides, has reached the end of its commissioning phase. Installed in 1997, results have been obtained consistent with all aspects of the projected spectrometer performance: nuclides with half-lives as short as 30 ms have been measured and accuracies of $\\pm$0.4 have been achieved, despite the presence of a systematic shift and difficulties with isobaric contamination. Masses of several nuclides, including $^{25-26}\\!$Ne and $^{32}$Mg that forms the famous island of inversion around N=20, have been significantly improved.

  12. Isolated systems with wind power. Results of measurements in Egypt

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Saleh, L.; Hafiez, S.A.

    2001-01-01

    different sites. Three of the sites were in Hurghada, where the power system is rather large. The last two measurement sites were at village systems: one large system and one with only power ca. five hours perday. The measured load profiles were quite different at the different sites. The power quality...... at the different sites was adequate even at the small village sites where the load is almost constant. The impact of different load profiles on the technicaland economic performance of a wind diesel system in the feasibility phase was investigated. The results indicate that when the profile has low values...

  13. Neutron sources and its dosimetric characteristics

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.; Gallego D, E.; Lorente F, A.

    2005-01-01

    By means of Monte Carlo methods the spectra of the produced neutrons 252 Cf, 252 Cf/D 2 O, 241 Am Be, 239 Pu Be, 140 La Be, 239 Pu 18 O 2 and 226 Ra Be have been calculated. With the information of the spectrum it was calculated the average energy of the neutrons of each source. By means of the fluence coefficients to dose it was determined, for each one of the studied sources, the fluence factors to dose. The calculated doses were H, H * (10), H p,sIab (10, 0 0 ), E AP and E ISO . During the phase of the calculations the sources were modeled as punctual and their characteristics were determined to 100 cm in the hole. Also, for the case of the sources of 239 Pu Be and 241 Am Be, were carried out calculations modeling the sources with their respective characteristics and the dosimetric properties were determined in a space full with air. The results of this last phase of the calculations were compared with the experimental results obtained for both sources. (Author)

  14. Dosimetric effects of edema in permanent prostate seed implants: a rigorous solution

    International Nuclear Information System (INIS)

    Chen Zhe; Yue Ning; Wang Xiaohong; Roberts, Kenneth B.; Peschel, Richard; Nath, Ravinder

    2000-01-01

    Purpose: To derive a rigorous analytic solution to the dosimetric effects of prostate edema so that its impact on the conventional pre-implant and post-implant dosimetry can be studied for any given radioactive isotope and edema characteristics. Methods and Materials: The edema characteristics observed by Waterman et al (Int. J. Rad. Onc. Biol. Phys, 41:1069-1077; 1998) was used to model the time evolution of the prostate and the seed locations. The total dose to any part of prostate tissue from a seed implant was calculated analytically by parameterizing the dose fall-off from a radioactive seed as a single inverse power function of distance, with proper account of the edema-induced time evolution. The dosimetric impact of prostate edema was determined by comparing the dose calculated with full consideration of prostate edema to that calculated with the conventional dosimetry approach where the seed locations and the target volume are assumed to be stationary. Results: A rigorous analytic solution on the relative dosimetric effects of prostate edema was obtained. This solution proved explicitly that the relative dosimetric effects of edema, as found in the previous numerical studies by Yue et. al. (Int. J. Radiat. Oncol. Biol. Phys. 43, 447-454, 1999), are independent of the size and the shape of the implant target volume and are independent of the number and the locations of the seeds implanted. It also showed that the magnitude of relative dosimetric effects is independent of the location of dose evaluation point within the edematous target volume. It implies that the relative dosimetric effects of prostate edema are universal with respect to a given isotope and edema characteristic. A set of master tables for the relative dosimetric effects of edema were obtained for a wide range of edema characteristics for both 125 I and 103 Pd prostate seed implants. Conclusions: A rigorous analytic solution of the relative dosimetric effects of prostate edema has been

  15. Results form RESUME 95. Measurements with mobile equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lidstroem, K.; Ulvsand, T.; Aagren, G. [National Defence Research Establisment, Div. of Ionising Radiation and Fallout, Umeaa (Sweden)

    1997-12-31

    This paper presents the results obtained during the NKS, (EKO-3), Exercise Resume-95 by a group from the Division of Ionising Radiation and Fallout, FOA, Umeaa, Sweden. Field gamma measurements were performed in two areas with a HPGe-detector (p-type, 50% relative efficiency) mounted vertically 1 m above the ground or horizontally in a car. One of the areas was an airfield, Vesivehmaa, where 19 measurements were done. The calculated Cs-137 activity was 52.1 {+-} 4.5 kBq/m{sup 2} assuming a two slice distribution model with a homogenous density and activity distribution in each slice. The report contains also the results from a task which included the finding, classification and estimation of the activity of hidden sources within two 10{sup *} 10 m-areas. (au).

  16. Results form RESUME 95. Measurements with mobile equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lidstroem, K; Ulvsand, T; Aagren, G [National Defence Research Establisment, Div. of Ionising Radiation and Fallout, Umeaa (Sweden)

    1998-12-31

    This paper presents the results obtained during the NKS, (EKO-3), Exercise Resume-95 by a group from the Division of Ionising Radiation and Fallout, FOA, Umeaa, Sweden. Field gamma measurements were performed in two areas with a HPGe-detector (p-type, 50% relative efficiency) mounted vertically 1 m above the ground or horizontally in a car. One of the areas was an airfield, Vesivehmaa, where 19 measurements were done. The calculated Cs-137 activity was 52.1 {+-} 4.5 kBq/m{sup 2} assuming a two slice distribution model with a homogenous density and activity distribution in each slice. The report contains also the results from a task which included the finding, classification and estimation of the activity of hidden sources within two 10{sup *} 10 m-areas. (au).

  17. Use of secondary phosphorescence for determination of the dose absorbed in dosimetric phosphors

    CERN Document Server

    Yaek, I V

    2002-01-01

    The measuring method of optically stimulated persistence (OSP) based on both the time division of the stimulating irradiation and luminescent response registration was applied for the radiation dosimetry. It was shown that the stimulation by the short-wave radiation crossing with spectrum of the dosimetric phosphor is possible. The spectrum of the stimulation of industry dosimetric phosphors was measured. The characteristics of the OSP registration for the phosphors which has manganese Mn sup 2 sup + as the activator is considered. Decay time of inner center luminescence is 40-50 ms. This method is used for the dosimetry of the natural quartzes to determine their age.

  18. Dosimetric control on board the MIR space station during the solar proton events of September-October 1989

    International Nuclear Information System (INIS)

    Benghin, V.V.; Petrov, V.M.; Chernykh, I.V.; Teltsov, M.V.; Shumshurov, V.I.

    1992-01-01

    A set of dosimetric units for the control of radiation doses to cosmonauts on board the MIR space station contains an active dosimeter R-16 and a personal display dosimeter IPD-2. During the powerful solar proton events (SPE) in September-October 1989, the readings of these devices were used for the control of the crew's radiation damage. Results of the dose measurements and analysis of the dynamics caused by some heliogeophysical factors are given. It is shown that the total doses from SPE registered by the dosimeters R-16 and IPD-2 were 3.6 x 10 -2 and 0.9 x 10 -2 Gy, respectively. (author)

  19. Study of some characteristic dosimetric of the LIF:Mg, You (JR1152C) for their employment as environmental dosemeter

    International Nuclear Information System (INIS)

    Molina Perez, D.; Diaz Bernal, E.; Prendes Alonso, M.

    1998-01-01

    As the interest grows in knowing the effects on the health of the drops dose of natural or artificial radiation, it is made but necessary a system dosimetric able to measure those dose levels accurately. P but of twenty years the dosemeters thermoluminescent (TL) they have constituted a simple and beautiful method for such mensurations. In the work the rehearsals of homogeneity, reproducibility, line lay, detection threshold, auto irradiation, residual, fading and angular dependence are described. The results demonstrate that the dosemeter satisfies the main requirements to be an employee in the environmental monitoring

  20. Results of ozone measurements in Northern Germany: A case study

    Science.gov (United States)

    Schmidt, Manfred

    1994-01-01

    At most of the German ozone recording stations which have records over a sufficiently long period, the results of the summer months of 1989 showed the highest values since the beginning of the measurements. One of the reasons for this phenomenon was the high duration of sunshine in that summer; for example, in Potsdam near Berlin in May 1989 the sunshine duration was the highest in May since the beginning of the records in 1893. For that reason we selected this summer for a case study. The basis for the study was mainly the ozone measuring stations of the network of Lower Saxony and the Federal Office of Environment (Umweltbundesamt). The results of these summer measurements point to intense sources of ozone, probably in form of gaseous precursors, in the Middle German industrial areas near Leipzig and Halle and in Northwestern Czechoslovakia, with coal-mining, chemical and petrochemical industries, coking plants and others. The maps of average ozone concentrations, number or days with high ozone maxima, ozone-windroses of the stations, etc., suggest that these areas could be a main source of precursors and of photochemical ozone production in summer smog episodes in Central Europe. Stations on the North Sea coast, at which early ozone measurements were made by our institute in 1973/74 are compared with similarly located stations of the Lower Saxon network in 1989 and the results show a reversal of the ozone-windroses. In 1973/74, the highest ozone concentrations were correlated with wind directions from the sea while in 1989 these concentrations were correlated with directions from the continent. In the recent years, photochemical ozone production on the continent is probably predominant, while in former years the higher ozone content of the maritime subpolar air masses has been explained by stratospheric-tropospheric exchange.

  1. Dosimetric feature of natural biotite mineral

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2015-01-01

    A thermoluminescence (TL) study relevant to radiation dosimetry has been carried out for X-ray irradiated biotite mineral under un-annealed and different annealed (473, 573, 673 and 773 K) conditions. Some significant variations in dosimetric characteristics have been observed with annealing treatment. Due to generation of an additional shallow trap level at depth 0.78 eV in 673 and 773 K annealed samples, the dose response is found to improve. For the 773 K annealed sample, a linear dose response has been observed from 10 to 1100 mGy. The fading is ∼13 % within 5 d after irradiation and onward it reduces to 7 % up to 60 d. Reproducibility of this (773 K) sample is excellent. After 10 recycles the coefficient of variations in the results for the 60, 180 and 1000 mGy dose-irradiated samples are found to be 0.97, 1.31 and 1.03 %, respectively. The potential use of biotite as a natural X-ray dosemeter is discussed. (authors)

  2. Dosimetric accuracy of Kodak EDR2 film for IMRT verifications.

    Science.gov (United States)

    Childress, Nathan L; Salehpour, Mohammad; Dong, Lei; Bloch, Charles; White, R Allen; Rosen, Isaac I

    2005-02-01

    Patient-specific intensity-modulated radiotherapy (IMRT) verifications require an accurate two-dimensional dosimeter that is not labor-intensive. We assessed the precision and reproducibility of film calibrations over time, measured the elemental composition of the film, measured the intermittency effect, and measured the dosimetric accuracy and reproducibility of calibrated Kodak EDR2 film for single-beam verifications in a solid water phantom and for full-plan verifications in a Rexolite phantom. Repeated measurements of the film sensitometric curve in a single experiment yielded overall uncertainties in dose of 2.1% local and 0.8% relative to 300 cGy. 547 film calibrations over an 18-month period, exposed to a range of doses from 0 to a maximum of 240 MU or 360 MU and using 6 MV or 18 MV energies, had optical density (OD) standard deviations that were 7%-15% of their average values. This indicates that daily film calibrations are essential when EDR2 film is used to obtain absolute dose results. An elemental analysis of EDR2 film revealed that it contains 60% as much silver and 20% as much bromine as Kodak XV2 film. EDR2 film also has an unusual 1.69:1 silver:halide molar ratio, compared with the XV2 film's 1.02:1 ratio, which may affect its chemical reactions. To test EDR2's intermittency effect, the OD generated by a single 300 MU exposure was compared to the ODs generated by exposing the film 1 MU, 2 MU, and 4 MU at a time to a total of 300 MU. An ion chamber recorded the relative dose of all intermittency measurements to account for machine output variations. Using small MU bursts to expose the film resulted in delivery times of 4 to 14 minutes and lowered the film's OD by approximately 2% for both 6 and 18 MV beams. This effect may result in EDR2 film underestimating absolute doses for patient verifications that require long delivery times. After using a calibration to convert EDR2 film's OD to dose values, film measurements agreed within 2% relative

  3. Dosimetric al confirmation of a software for the design of radiotherapy treatments

    International Nuclear Information System (INIS)

    Alfonso, Rodolfo; Huerta, Ubaldo; Torres, Miguel; Alonso, Jose L.

    1995-01-01

    A software for the planning of treatments of Radiotherapy was developed recently by medical physics of the Hospital Clinicoquirurgico Hermanos Ameijeiras, to evaluate the dependability of the results of the dose distributions calculated in the patients, localizations were chosen in the region of the head and the neck and I take like reference the results of measurement dosimetric with powder TLD-700 in a human phantoms. The different options are explained for the entrance of data of the patient's contours. A comparison of the results of the mensurations is shown with those calculated. The causes of the discrepancies are analyzed and recommendations are made regarding the utility of the different options of acquisition of the patient's data

  4. Thermoluminescent dosimetric characterization of the perovskite, KMgF3, activated with lanthanum

    International Nuclear Information System (INIS)

    Sepulveda M, F.

    2003-01-01

    The new ICRP regulation about the Radiological Protection allows to the different groups to study new thermoluminescent materials highly sensitive for dosimetric applications (personal and environmental). This work reports the relative experimental results to the thermoluminescent characteristic of a new preparation of the fluorine perovskite activated with lanthanum absorbed in polytetrafluoroethylene (KMgF 3 : LaF 3 + Ptfe). The main thermoluminescent properties investigated were: the TL response like a function of the absorbed dose, the attainable accuracy in the dose measurement, the reproducibility of the TL readings and the threshold dose. The obtained results were compared with the requirements of the ANSI protocol for the environmental dosimetry, resulting in a very good agreement with the required yields. (Author)

  5. Results of radioactivity measurements on foodstuffs in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Ferdes, O [National Agency for Atomic Energy, Bucharest (Romania); Cojocariu, T [Institute for Food Research, Bucharest (Romania)

    1997-12-31

    There are presented the results of gamma-spectrometric measurements performed between 1986-1995 on: milk and dairy products; meat and meat products; fish; wheat flour; fresh fruits and vegetables. The foodstuffs are sampled from some representative areas like: Bucharest, Bechet (affected by Kozloduj NPP, Bulgaria), Cernavoda, middle of Transylvania, Neamt. The radioactivity measurements are performed by high-resolution {gamma}-ray spectrometry. There are identified and analysed mainly {sup 134}Cs, {sup 137}Cs, {sup 40}K and, sometimes, other radionuclides. There are pointed out: the constancy of natural radionuclides amounts; the drastic increasing in radioactive concentration in May 1986; the seasonal variation of radioactivity in some food items; the time - exponential diminution of radioactivity in 1991-1995; and the maximum permitted levels of radioactive contamination of foodstuffs following a nuclear accident. (author). 2 figs., 2 tabs., 8 refs.

  6. Results from power quality measurements in Germany - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, G.J.; Santjer, F. [German Wind Energy Inst, Wilhelmshaven (Germany)

    1996-12-31

    Grid interferences caused by wind turbines (WT) are getting a severe problem in Germany with the fast increasing number of installed turbines. The wind energy capacity was doubled annually in the past three years. The actual situation and the plannings for the next years will lead to a situation, where high wind energy penetration will exercise a big influence on the power and voltage quality of local utility networks. Measurements performed in Germany according to a national guideline show a big variety in power quality performance of WT`s, which does affect the requirements for grid connection and thus the economical situation of wind energy projects to a large extent. The results from more than 25 power quality measurements will be discussed in this paper. 5 refs., 5 figs., 1 tab.

  7. Results of radioactivity measurements on foodstuffs in Romania

    International Nuclear Information System (INIS)

    Ferdes, O.; Cojocariu, T.

    1996-01-01

    There are presented the results of gamma-spectrometric measurements performed between 1986-1995 on: milk and dairy products; meat and meat products; fish; wheat flour; fresh fruits and vegetables. The foodstuffs are sampled from some representative areas like: Bucharest, Bechet (affected by Kozloduj NPP, Bulgaria), Cernavoda, middle of Transylvania, Neamt. The radioactivity measurements are performed by high-resolution γ-ray spectrometry. There are identified and analysed mainly 134 Cs, 137 Cs, 40 K and, sometimes, other radionuclides. There are pointed out: the constancy of natural radionuclides amounts; the drastic increasing in radioactive concentration in May 1986; the seasonal variation of radioactivity in some food items; the time - exponential diminution of radioactivity in 1991-1995; and the maximum permitted levels of radioactive contamination of foodstuffs following a nuclear accident. (author)

  8. Measuring systems of hard to get objects: problems with analysis of measurement results

    Science.gov (United States)

    Gilewska, Grazyna

    2005-02-01

    The problem accessibility of metrological parameters features of objects appeared in many measurements. Especially if it is biological object which parameters very often determined on the basis of indirect research. Accidental component predominate in forming of measurement results with very limited access to measurement objects. Every measuring process has a lot of conditions limiting its abilities to any way processing (e.g. increase number of measurement repetition to decrease random limiting error). It may be temporal, financial limitations, or in case of biological object, small volume of sample, influence measuring tool and observers on object, or whether fatigue effects e.g. at patient. It's taken listing difficulties into consideration author worked out and checked practical application of methods outlying observation reduction and next innovative methods of elimination measured data with excess variance to decrease of mean standard deviation of measured data, with limited aomunt of data and accepted level of confidence. Elaborated methods wee verified on the basis of measurement results of knee-joint width space got from radiographs. Measurements were carried out by indirectly method on the digital images of radiographs. Results of examination confirmed legitimacy to using of elaborated methodology and measurement procedures. Such methodology has special importance when standard scientific ways didn't bring expectations effects.

  9. Computer processing of the Δlambda/lambda measured results

    International Nuclear Information System (INIS)

    Draguniene, V.J.; Makariuniene, E.K.

    1979-01-01

    For the processing of the experimental data on the influence of the chemical environment on the radioactive decay constants, five programs have been written in the Fortran language in the version for the monitoring system DUBNA on the BESM-6 computer. Each program corresponds to a definite stage of data processing and acquirement of the definite answer. The first and second programs are calculation of the ratio of the pulse numbers measured with different sources and calculation of the mean value of dispersions. The third program is the averaging of the ratios of the pulse numbers. The fourth and the fifth are determination of the change of the radioactive decay constant. The created programs for the processing of the measurement results permit the processing of the experimental data beginning from the values of pulse numbers obtained directly in the experiments. The programs allow to treat a file of the experimental results, to calculated various errors in all the stages of the calculations. Printing of the obtained results is convenient for usage

  10. Measurement results obtained from air quality monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Turzanski, P.K.; Beres, R. [Provincial Inspection of Environmental Protection, Cracow (Poland)

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  11. Results from preliminary FlowAct measurements during June 1995

    International Nuclear Information System (INIS)

    Linden, P.

    1997-02-01

    Flow measurements based on the pulsed neutron activation (PNA) method have been done and analysed. The results show that the accuracy of the PNA based FlowAct method is, under certain conditions, in the same range as the reference flow meter used. Also, the behaviour of the time distributions obtained is discussed, though the influence of velocity profile, radial mixing or other hydrodynamical questions is not taken into account. However, the objective of this work was to gain sufficient confidence in the method, and sufficient experience to be able to design and build a dedicated loop with stable flow and high-accuracy calibration. 4 refs, 12 figs

  12. The pitfalls of dosimetric commissioning for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Tohyama, Naoki; Kodama, Takashi; Hatano, K.

    2013-01-01

    Intensity modulated radiation therapy (IMRT) allows higher radiation dose to be focused to the target volumes while minimizing the dose to OAR. To start of clinical treatment in IMRTvwe must perform commissioning strictly than 3D-conformal radiotherapy (CRT). In this report, pitfalls of dosimetric commissioning for intensity modulated radiation therapy were reviewed. Multileaf collimator (MLC) offsets and MLC transmissions are important parameters in commissioning of RTPS for IMRT. Correction of depth scaling and fluence scaling is necessary for dose measurement using solid phantom. (author)

  13. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects.

    Directory of Open Access Journals (Sweden)

    Dimitris J Panagopoulos

    Full Text Available PURPOSE: To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. METHODS: We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. RESULTS: WE FIND THAT: a The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. CONCLUSIONS: SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar

  14. Application of Terahertz Radiation to Soil Measurements: Initial Results

    Science.gov (United States)

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  15. Circulation in the Gulf of Trieste: measurements and model results

    International Nuclear Information System (INIS)

    Bogunovici, B.; Malacic, V.

    2008-01-01

    The study presents seasonal variability of currents in the southern part of the Gulf of Trieste. A time series analysis of currents and wind stress for the period 2003-2006, which were measured by the coastal oceanographic buoy, was conducted. A comparison between these data and results obtained from a numerical model of circulation in the Gulf was performed to validate model results. Three different approaches were applied to the wind data to determine the wind stress. Similarities were found between Kondo and Smith approaches while the method of Vera shows differences which were particularly noticeable for lower (= 1 m/s) and higher wind speeds (= 15 m/s). Mean currents in the surface layer are generally outflow currents from the Gulf due to wind forcing (bora). However in all other depth layers inflow currents are dominant. With the principal component analysis (Pca) major and minor axes were determined for all seasons. The major axis of maximum variance in years between 2003 and 2006 is prevailing in Ne-Sw direction, which is parallel to the coastline. Comparison of observation and model results is showing that currents are similar (in direction) for the surface and bottom layers but are significantly different for the middle layer (5-13 m). At a depth between 14-21 m velocities are comparable in direction as well as in magnitude even though model values are higher. Higher values of modelled currents at the surface and near the bottom are explained by higher values of wind stress that were used in the model as driving input with respect to the stress calculated from the measured winds. Larger values of modelled currents near the bottom are related to the larger inflow that needs to compensate for the larger modelled outflow at the surface. However, inspection of the vertical structure of temperature, salinity and density shows that the model is reproducing a weaker density gradient which enables the penetration of the outflow surface currents to larger depths.

  16. Dosimetric evaluation of Radiotherapy units wit 60Co

    International Nuclear Information System (INIS)

    Leon, B. Salinas de; Tovar M, V.; Becerril V, A.

    2000-01-01

    The SSDL network of the IAEA performs, every year, quality audit tests for radiotherapy services ( 60 Co units and linear accelerators), and for national SSDL as well. Because of the SSDL-Mexico results in these tests and due to our enthusiasm and confidence in our work, a parallel test has been done , which is described in this talk as well as the results. Nowadays, a second parallel test goes up, which could confirm our optimism and open the possibility to our country to start a national dosimetric audit of 60 Co radiotherapy units. (Author)

  17. Simulation of The ICRP-30 Dosimetric Model for the Respiratory Tract

    International Nuclear Information System (INIS)

    Giaddui, T.; Atia, M. A.

    2004-01-01

    Matlab was used to write a simulation program (ACID1) to simulate the ICRP-30 dosimetric model for the respiratory tract. The program (a new version of the one presented at the sixth Arab conference held in Cairo 2002) calculates a series of dosimetric quantities for the reference man as a result of the inhalation of any radionuclide. The program also plots the variation of activity with time for all organs and provided with a graphical user interface to make it friendly user. The results obtained by this program was compared with similar results obtained by other source and found to be very close. (Authors)

  18. Applichation of the sulphate ceric dosimetric in the high doses range

    International Nuclear Information System (INIS)

    Prieto Miranda, F.

    1991-01-01

    The ceric-cerous dosimetric system is one of the system more employed in the high dose dosimetry. The spectrophotometric procedure to measure the ceric-concentration is an usual analityc method to determine the absorbed dose. On the other hand, due at increase employ of the irradiation process control. In this paper is realized the ceric-cerous dosimetric calibration in the dose range of 0,6 - 5 kGy and the application in the irradiation process control to differents absorbed dose values

  19. Development of an algorithm simulator of the planar radioactive source for dosimetric evaluations in accidents with radiopharmaceuticals used in nuclear medicine

    International Nuclear Information System (INIS)

    Claudino, Gutemberg L. Sales; Vieira, Jose Wilson; Leal Neto, Viriato; Lima, Fernando R. Andrade

    2013-01-01

    Objective of this work is to develop an algorithm simulator for dosimetric evaluation of accidents that may happen in Nuclear Medicine using PDF NT (Probability Density Functions). A software was developed using C# and WPF technology, in the integrated environment of Microsoft Visual Studio to organize and present the dosimetric results

  20. Internal dosimetric evaluation due to uranium aerosols

    International Nuclear Information System (INIS)

    Garcia Aguilar Juan; Delgado Avila Gustavo

    1991-01-01

    The present work has like object to carry out the internal dosimetric evaluation to the occupationally exposed personnel, due to the inhalation of aerosols of natural uranium and enriched in the pilot plant of nuclear fuel production of the National Institute of Nuclear Research

  1. ESR dosimetric properties of some biomineral materials

    International Nuclear Information System (INIS)

    Hassan, Gamal M.; Sharaf, M.A.

    2005-01-01

    Dosimetric properties of g-irradiated modern coral and bioactive glass (Bio-G) samples analyzed with electron spin resonance (ESR) have been separately reported (Hassan et al., 2004; Sharaf and Hassan, 2004) and compared with alanine. These are combined here to allow a three-way comparison between these materials

  2. ESR dosimetric properties of some biomineral materials

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Gamal M. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)]. E-mail: gamalhassan65@hotmail.com; Sharaf, M.A. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)

    2005-02-01

    Dosimetric properties of g-irradiated modern coral and bioactive glass (Bio-G) samples analyzed with electron spin resonance (ESR) have been separately reported (Hassan et al., 2004; Sharaf and Hassan, 2004) and compared with alanine. These are combined here to allow a three-way comparison between these materials.

  3. A computer-based measure of resultant achievement motivation.

    Science.gov (United States)

    Blankenship, V

    1987-08-01

    Three experiments were conducted to develop a computer-based measure of individual differences in resultant achievement motivation (RAM) on the basis of level-of-aspiration, achievement motivation, and dynamics-of-action theories. In Experiment 1, the number of atypical shifts and greater responsiveness to incentives on 21 trials with choices among easy, intermediate, and difficult levels of an achievement-oriented game were positively correlated and were found to differentiate the 62 subjects (31 men, 31 women) on the amount of time they spent at a nonachievement task (watching a color design) 1 week later. In Experiment 2, test-retest reliability was established with the use of 67 subjects (15 men, 52 women). Point and no-point trials were offered in blocks, with point trials first for half the subjects and no-point trials first for the other half. Reliability was higher for the atypical-shift measure than for the incentive-responsiveness measure and was higher when points were offered first. In Experiment 3, computer anxiety was manipulated by creating a simulated computer breakdown in the experimental condition. Fifty-nine subjects (13 men, 46 women) were randomly assigned to the experimental condition or to one of two control conditions (an interruption condition and a no-interruption condition). Subjects with low RAM, as demonstrated by a low number of typical shifts, took longer to choose the achievement-oriented task, as predicted by the dynamics-of-action theory. The difference was evident in all conditions and most striking in the computer-breakdown condition. A change of focus from atypical to typical shifts is discussed.

  4. Election results of Southwest ballot measures affecting healthcare

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2016-11-01

    Full Text Available No abstract available. Article truncated after 150 words. Earlier this week an article was posted listing Southwest ballot measures that affect healthcare. Below are the results obtained from various internet sources. States: Arizona: 1. Recreational marijuana. Proposition 205: Legalizes recreational marijuana use for people 21 and older. Opponents of the measure include the Arizona Health and Hospital Association and Insys Therapeutics, a company that makes a cannabis-based pain medication. Defeated: Yes 929,518 (48% No 1,011,836 (52%. California 1.Medi-Cal hospital fee program. Proposition 52: Requires the legislature to get voter approval to use fee revenue for purposes other than generating federal matching funds and funding enhanced Medicaid payments and grants for hospitals. The initiative, which was written by the California Hospital Association and is supported by most state lawmakers, would also make the program permanent, requiring a supermajority in the legislature to end it. Passed: Yes 5,950,642 (70% No 2,599,764 (30%. 2. Tobacco tax. Proposition 56: Increases the ...

  5. Recent results from the ICARUS experiment - Measurements concerning neutrino velocity

    International Nuclear Information System (INIS)

    Cieslik, K.

    2014-01-01

    The ICARUS T600 detector at the LNGS Gran Sasso underground Laboratory is the first large mass Liquid Argon Time Projection Chamber (LAr-TPC) designed to study the ν μ → ν τ oscillation for neutrinos from the CERN-CNGS beam, the atmospheric neutrinos and matter stability. In stable conditions the detector has been collecting data since October 2010. The results, presented here, of the search for analogue to the Cherenkov radiation at superluminal speeds and the measurement of the neutrino time of flight are incompatible with the OPERA collaboration claiming that CNGS muon neutrinos arrive to Gran Sasso, after covering a distance of about 732 km, earlier than expected from the luminal speed. (author)

  6. Revision of the dosimetric parameters of the CSM11 LDR Cs-137 source.

    Science.gov (United States)

    Otal, Antonio; Martínez-Fernández, Juan Manuel; Granero, Domingo

    2011-03-01

    The clinical use of brachytherapy sources requires the existence of dosimetric data with enough of quality for the proper application of treatments in clinical practice. It has been found that the published data for the low dose rate CSM11 Cs-137 source lacks of smoothness in some regions because the data are too noisy. The purpose of this study was to calculate the dosimetric data for this source in order to provide quality dosimetric improvement of the existing dosimetric data of Ballester et al . [1]. In order to obtain the dose rate distributions Monte Carlo simulations were done using the GEANT4 code. A spherical phantom 40 cm in radius with the Cs-137 source located at the centre of the phantom was used. The results from Monte Carlo simulations were applied to derive AAPM Task Group 43 dosimetric parameters: anisotropy function, radial dose function, air kerma strength and dose rate constant. The dose rate constant obtained was 1.094 ± 0.002 cGy h -1 U -1 . The new calculated data agrees within experimental uncertainties with the existing data of Ballester et al . but without the statistical noise of that study. The obtained data presently fulfills all the requirements of the TG-43U1 update and thus it can be used in clinical practice.

  7. Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with yttrium-90-labeled microspheres.

    Science.gov (United States)

    Garin, Etienne; Lenoir, Laurence; Rolland, Yan; Laffont, Sophie; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Ardisson, Valérie; Bourguet, Patrick; Clement, Bruno; Boucher, Eveline

    2011-12-01

    The goal of this study was to assess the use of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) analysis for vascularized volume measurements in the use of the yttrium-90-radiolabeled microspheres (TheraSphere). A phantom study was conducted for the validation of SPECT/CT volume measurement. SPECT/CT quantitative analysis was used for the measurement of the volume of distribution of the albumin macroaggregates (MAA; i.e., the vascularized volume) in the liver and the tumor, and the total activity contained in the liver and the tumor in four consecutive patients presenting with a complex liver vascularization referred for a treatment with TheraSphere. SPECT/CT volume measurement proved to be accurate (mean error <7%) and reproducible (interobserver concordance 0.99). For eight treatments, in cases of complex hepatic vascularization, the hepatic volumes based on angiography and CT led to a relative overestimation or underestimation of the vascularized hepatic volume by 43.2 ± 32.7% (5-87%) compared with SPECT/CT analyses. The vascularized liver volume taken into account calculated from SPECT/CT data, instead of angiography and CT data, results in modifying the activity injected for three treatments of eight. Moreover, quantitative analysis of SPECT/CT allows us to calculate the absorbed dose in the tumor and in the healthy liver, leading to doubling of the injected activity for one treatment of eight. MAA SPECT/CT is accurate for volume measurements. It provides a valuable contribution to the therapeutic planning of patients presenting with complex hepatic vascularization, in particular for calculating the vascularized liver volume, the activity to be injected and the absorbed doses. Studies should be conducted to assess the role of quantitative MAA/SPECT CT in therapeutic planning.

  8. A database for storing the results of material radiopurity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Loach, J.C. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720 (United States); Cooley, J. [Department of Physics, Southern Methodist University, Dallas, TX75275 (United States); Cox, G.A. [Institute for Nuclear Physics, Karlsruhe Institute of Technology, Karlsruhe 76131 (Germany); Li, Z. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Nguyen, K.D.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720 (United States)

    2016-12-11

    Searches for rare nuclear processes, such as neutrinoless double beta-decay and the interactions of WIMP dark matter, are motivating experiments with ever-decreasing levels of radioactive backgrounds. These background reductions are achieved using various techniques, but amongst the most important is minimizing radioactive contamination in the materials from which the experiment is constructed. To this end there have been decades of advances in material sourcing, manufacture and certification, during which researchers have accumulated many thousands of measurements of material radiopurity. Some of these assays are described in publications, others are in databases, but many are still communicated informally. Until this work, there has been no standard format for encoding assay results and no effective, central location for storing them. The aim of this work is to address these long-standing problems by creating a concise and flexible material assay data format and powerful software application to manipulate it. A public installation of this software, available at (http://www.radiopurity.org), is the largest database of assay results ever compiled and is intended as a long-term repository for the community's data.

  9. SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Papanikolaou, P; Watts, L; Kirby, N; Rasmussen, K; Gutierrez, A; Stathakis, S [University of Texas HSC SA, San Antonio, TX (United States); Pappas, E [National and Kapodistrian University of Athens, Athens, Attiki (Greece); Kalaitzakis, G; Maris, T [University Of Crete, Heraklion, Crete (Greece); Pappas, E [Technological Educational Institute Of Athens, Athens, Attiki (Greece)

    2016-06-15

    Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylic phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.

  10. SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry

    International Nuclear Information System (INIS)

    Papanikolaou, P; Watts, L; Kirby, N; Rasmussen, K; Gutierrez, A; Stathakis, S; Pappas, E; Kalaitzakis, G; Maris, T; Pappas, E

    2016-01-01

    Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylic phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.

  11. Dosimetric results in implant and post-implant and low rate in brachytherapy prostate cancer with loose seeds and attached; Resultados dosimetricos en el implante y post-impante en braquiterapia de baja tasa en cancer de prostata con semillas sueltas y unidas

    Energy Technology Data Exchange (ETDEWEB)

    Juan-Senabre, X. J.; Albert Antequera, M.; Lopez-Tarjuelo, J.; Santos Serra, A.; Perez-Mestre, M.; Sanchez Iglesias, A. L.; Conde Moreno, A. J.; Gonzalez Vidal, V.; Beltran Persiva, J.; Muelas Soria, R.; Ferrer Albiach, C.

    2015-07-01

    The objective is determine differences dosimetry statistics on the dosimetry of the implant and post-implant in brachytherapy of low rate with implants permanent in prostate using seed of 125-I loose and attached Both in lives and in the post-prostatic plans dosimetric coverage is good and restrictions in urethra and rectum for both groups of patients are met. Not migrating with joined is evident, as well as better dosimetric homogeneity. (Author)

  12. Results from laboratory and field testing of nitrate measuring spectrophotometers

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Five ultraviolet (UV) spectrophotometer nitrate analyzers were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) during a two-phase evaluation. In Phase I, the TriOS ProPs (10-millimeter (mm) path length), Hach NITRATAX plus sc (5-mm path length), Satlantic Submersible UV Nitrate Analyzer (SUNA, 10-mm path length), and S::CAN Spectro::lyser (5-mm path length) were evaluated in the HIF Water-Quality Servicing Laboratory to determine the validity of the manufacturer's technical specifications for accuracy, limit of linearity (LOL), drift, and range of operating temperature. Accuracy specifications were met in the TriOS, Hach, and SUNA. The stock calibration of the S::CAN required two offset adjustments before the analyzer met the manufacturer's accuracy specification. Instrument drift was observed only in the S::CAN and was the result of leaching from the optical path insert seals. All tested models, except for the Hach, met their specified LOL in the laboratory testing. The Hach's range was found to be approximately 18 milligrams nitrogen per liter (mg-N/L) and not the manufacturer-specified 25 mg-N/L. Measurements by all of the tested analyzers showed signs of hysteresis in the operating temperature tests. Only the SUNA measurements demonstrated excessive noise and instability in temperatures above 20 degrees Celsius (°C). The SUNA analyzer was returned to the manufacturer at the completion of the Phase II field deployment evaluation for repair and recalibration, and the performance of the sensor improved significantly.

  13. Results of Sexbierum Wind Farm: single wake measurements

    NARCIS (Netherlands)

    Cleijne, J.W.

    1993-01-01

    In the framework of the JOULE-0064 'Full-scale Measurements in Wind Turbine Arrays' in the period between June-November 1992 measurements have been performed in the Sexbierum Wind Farm. The aim of the measurements is to provide data for the validation of wake and wind farm models, which are being

  14. The dependence of prostate postimplant dosimetric quality on CT volume determination

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Dorsey, Anthony T.; Lief, Jonathan H.

    1999-01-01

    the ultrasound volume approach. Despite the volume determinations being markedly different, no significant differences between the approaches were appreciated for V100, V150, V200, and D90. Large variations seen in D100 were uncorrelated to any of the other parameters and make D100 unsuitable as a quality indicator. Conclusions: In terms of a logarithmic measure, the variation between volumetric approach for V100, V150, V200, and D90 was less than one-fifth the variation of the CT volumes. These results which indicate relative independence of postimplant CT volume determination and dosimetric quality are only valid for a planning philosophy that includes the prostate with a periprostatic margin as the target volume

  15. Dosimetric characteristics and radiation monitoring with CaSO4(Dy):NaCl pellets

    International Nuclear Information System (INIS)

    Kathuria, S.P.; Campos, L.L.; Gordon, A.M.P.L.

    1981-06-01

    CaSO 4 (Dy):NaCl Tl dosimeters, in the form of pellets, are used in the field for a period of one month. Before using these pellets for environmental and personnel radiation monitoring some of the important dosimetric characteristics like fading reusability and effect of ambient light are investigated and described. The pellets are used with plastic and lead filters for personnel and environmental radiation monitoring and the results obtained with the lead filters are in good agreement with those of the energy independent LiF dosimeters. A new combination of plastic, aluminium and lead filters is suggested for dose measurements in a mixed field of X, gamma and beta radiations. (Author) [pt

  16. Elaboration of pellets of LiF: Mg, Cu, P and its dosimetric properties

    International Nuclear Information System (INIS)

    Gutierrez C, A.; Gonzalez M, P.R.; Azorin N, J.

    1991-03-01

    The LiF: Mg, Cu, P is at the moment in the entire world one of the TL materials of more interest, by its equivalence with the tissue, as well as for its high sensitivity, which is 25 to 35 times greater than of the TLD-100 of Harshaw (USA). In our laboratory dosemeters of this material have been developed in form of sinterized pellets. The importance of these new dosemeters in pellet form is due to that in this form its manipulation is facilitated. Due to its high sensitivity, these dosemeters result to be those but appropriate to measure the ionizing radiations, in intervals of extremely low dose. In this report the method of elaboration of the pellets, as well as its main dosimetric characteristics are presented. (Author)

  17. Influence of the scan mode on the dosimetric characteristics of an irradiator Beta

    International Nuclear Information System (INIS)

    Bouzid, Radhia

    2014-01-01

    For the electron beam irradiation, the uniformity of dose applied on the surface along the scan have to be inspected because it can disturb the validity of the processed product and affect it. In order to make the qualification of the new installation in the CNSTN, dosimetric measurements were performed and done to verify the homogeneity of the accelerator's irradiation area in CNSTN. the result shows that the dose is unstable along the irradiation's field.To explain this variation, a performed study is done using the BETA calculation's code. As a conclusion, this study explains the variation in the scanning dose along the irradiated field by a beta irradiator.

  18. Dosimetric characteristics of a TLD dosemeter with extremities

    International Nuclear Information System (INIS)

    Molina P, D.; Diaz B, E.; Lien V, R.

    1999-01-01

    It was designed a TLD dosemeter for the monitoring of the extremities. This one consists in a metallic ring with a circular orifice where is arranged a T L detector of LiF: Mg,Ti (Model JR1152C) 5 x 5 x 0.8 mm 3 covered by a polyethylene fine layer. In this work were studied the dosimetric properties of the dosemeter for its application in the dosimetry of extremities for photonic radiation. the results obtained allow conclude that the designed dosemeter can be used for the extremities monitoring. (Author)

  19. Dosimetry in radiodiagnosis. Individual irradiation card. Dosimetric application of electrets

    International Nuclear Information System (INIS)

    Lisbona, Albert.

    1981-09-01

    This study deals with a radiodiagnosis dosimetry, and contains two parts. First of all, the combination between a dosimetric data acquisition from an ionization chamber and a micro-computer allows the realization of individual irradiation card for a well established examination. The method is extensible to almost totality of radiological examinations. The second part describes the following of an original work about the application of electrets in radiodiagnosis dosimetry. At least a theorical study is shown; it takes account of different involving phenomena and allows a starting interpretation of experimental results [fr

  20. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    International Nuclear Information System (INIS)

    Davis, William; Crewson, Cody; Alexander, Andrew; Cranmer-Sargison, Gavin; Kundapur, Vijayananda

    2016-01-01

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimator inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.

  1. SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus

    International Nuclear Information System (INIS)

    Rasmussen, K; Corbett, M; Pelletier, C; Huang, Z; Feng, Y; Jung, J

    2015-01-01

    Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes were analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry

  2. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William; Crewson, Cody; Alexander, Andrew; Cranmer-Sargison, Gavin; Kundapur, Vijayananda [University of Saskatchewan Department of Physics and engineering Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics (Canada)

    2016-08-15

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimator inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.

  3. SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, K; Corbett, M; Pelletier, C; Huang, Z; Feng, Y; Jung, J [East Carolina Univ, Greenville, NC (United States)

    2015-06-15

    Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes were analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.

  4. Biologic data, models, and dosimetric methods for internal emitters

    International Nuclear Information System (INIS)

    Weber, D.A.

    1990-01-01

    The absorbed radiation dose from internal emitters has been and will remain a pivotal factor in assessing risk and therapeutic utility in selecting radiopharmaceuticals for diagnosis and treatment. Although direct measurements of absorbed dose and dose distributions in vivo have been and will continue to be made in limited situations, the measurement of the biodistribution and clearance of radiopharmaceuticals in human subjects and the use of this data is likely to remain the primary means to approach the calculation and estimation of absorbed dose from internal emitters over the next decade. Since several approximations are used in these schema to calculate dose, attention must be given to inspecting and improving the application of this dosimetric method as better techniques are developed to assay body activity and as more experience is gained in applying these schema to calculating absorbed dose. Discussion of the need for considering small scale dosimetry to calculate absorbed dose at the cellular level will be presented in this paper. Other topics include dose estimates for internal emitters, biologic data mathematical models and dosimetric methods employed. 44 refs

  5. Comprehensive Australasian multicentre dosimetric intercomparison: issues, logistics and recommendations.

    Science.gov (United States)

    Ebert, M A; Harrison, K M; Cornes, D; Howlett, S J; Joseph, D J; Kron, T; Hamilton, C S; Denham, J W

    2009-02-01

    The present paper describes the logistics of the 2004-2008 Australasian Level III Dosimetry Intercomparison. Dosimetric intercomparisons (or 'audits') can be used in radiotherapy to evaluate the accuracy and quality of radiation delivery. An intercomparison was undertaken in New Zealand and Australia to evaluate the feasibility and logistics of ongoing dosimetric intercomparisons that evaluate all steps in the radiotherapy treatment process, known as a 'Level III' intercomparison. The study commenced in 2002 with the establishment of a study team, definition of the study protocol, acquisition of appropriate equipment and recruitment of participating radiotherapy centres. Measurements were undertaken between October 2004 and March 2008, and included collation of data on time, costs and logistics of the study. Forty independent Australian and New Zealand radiotherapy centres agreed to participate. Measurement visits were made to 37 of these centres. Data is presented on the costs of the study and the level of support required. The study involved the participation of 16 staff at the study centre who invested over 4000 hours in the study, and of over 200 professionals at participating centres. Recommendations are provided for future phantom-based intercomparisons. It is hoped that the present paper will be of benefit to any centres or groups contemplating similar activities by identifying the processes involved in establishing the study, the potential hazards and pitfalls, and expected resource requirements.

  6. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  7. Measurement of ability emotional intelligence: results for two new tests.

    Science.gov (United States)

    Austin, Elizabeth J

    2010-08-01

    Emotional intelligence (EI) has attracted considerable interest amongst both individual differences researchers and those in other areas of psychology who are interested in how EI relates to criteria such as well-being and career success. Both trait (self-report) and ability EI measures have been developed; the focus of this paper is on ability EI. The associations of two new ability EI tests with psychometric intelligence, emotion perception, and the Mayer-Salovey-Caruso EI test (MSCEIT) were examined. The new EI tests were the Situational Test of Emotion Management (STEM) and the Situational Test of Emotional Understanding (STEU). Only the STEU and the MSCEIT Understanding Emotions branch were significantly correlated with psychometric intelligence, suggesting that only understanding emotions can be regarded as a candidate new intelligence component. These understanding emotions tests were also positively correlated with emotion perception tests, and STEM and STEU scores were positively correlated with MSCEIT total score and most branch scores. Neither the STEM nor the STEU were significantly correlated with trait EI tests, confirming the distinctness of trait and ability EI. Taking the present results as a starting-point, approaches to the development of new ability EI tests and models of EI are suggested.

  8. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Senthi, Sashendra, E-mail: sasha.senthi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Gill, Suki S. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Haworth, Annette; Kron, Tomas; Cramb, Jim [Department of Physical Sciences, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Rolfo, Aldo [Radiation Therapy Services, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Thomas, Jessica [Biostatistics and Clinical Trials, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Duchesne, Gillian M. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Hamilton, Christopher H.; Joon, Daryl Lim [Radiation Oncology Department, Austin Repatriation Hospital, Heidelberg, VIC (Australia); Bowden, Patrick [Radiation Oncology Department, Tattersall' s Cancer Center, East Melbourne, VIC (Australia); Foroudi, Farshad [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia)

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  9. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-01-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V 95% and V 100% , respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V 95% , PTV sigma index, and conformity number. The mean PTV V 95% was 92.5% (95% confidence interval, 91.3–93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90–2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76–0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p 95% only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures of coverage, homogeneity, and conformity for the treatment of prostate cancer using IMRT. The differences seen between centers and planning systems and the coverage

  10. Dosimetric impact of interplay effect in lung IMRT and VMAT treatment using in-house dynamic thorax phantom

    International Nuclear Information System (INIS)

    Mukhlisin; Pawiro, S A

    2016-01-01

    Tumor motion due to patient's respiratory is a significant problem in radiotherapy treatment of lung cancer. The purpose of this project is to study the interplay effect through dosimetry verification between the calculated and delivered dose, as well as the dosimetric impact of leaf interplay with breathing-induced tumor motion in IMRT and VMAT treatment. In this study, a dynamic thorax phantom was designed and constructed for dosimetry measurement. The phantom had a linear sinusoidal tumor motion toward superior-inferior direction with variation of amplitudes and periods. TLD-100 LiF:Mg,Ti and Gafchromic EBT2 film were used to measure dose in the midpoint target and the spinal cord. The IMRT and VMAT treatment had prescription dose of 200 cGy per fraction. The dosimetric impact due to interplay effect during IMRT and VMAT treatment were resulted in the range of 0.5% to -6.6% and 0.9% to -5.3% of target dose reduction, respectively. Meanwhile, mean dose deviation of spinal cord in IMRT and VMAT treatment were around 1.0% to -6.9% and 0.9% to -6.3%, respectively. The results showed that if respiratory management technique were not implemented, the presence of lung tumor motion during dose delivery in IMRT and VMAT treatment causes dose discrepancies inside tumor volume. (paper)

  11. Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Science.gov (United States)

    Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.

    2012-12-01

    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential

  12. Dosimetric and geometric evaluation of a novel stereotactic radiotherapy device for breast cancer: The GammaPod Trade-Mark-Sign

    Energy Technology Data Exchange (ETDEWEB)

    Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl; D' Souza, Warren D.; Regine, William F.; Feigenberg, Steven J. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Zhang Jin [Xcision Medical Systems, Columbia, Maryland 21045 (United States); Yu, Cedric X. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and Xcision Medical Systems, Columbia, Maryland 21045 (United States)

    2013-04-15

    Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Sign intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver

  13. A dosimetric intercomparison of brachytherapy facilities in Ireland, Scotland and the North of England

    International Nuclear Information System (INIS)

    Heeney, Conor; McClean, Brendan; Kelly, Colin

    2005-01-01

    Background and purpose: A dosimetric intercomparison of brachytherapy remote afterloading units in Ireland, Scotland and the North of England has been carried out involving 9 radiotherapy centres, and sampling 5 HDR and 6 LDR units. Materials and methods: Absolute calibrations have been performed in air on both HDR and LDR sources. The results are expressed in terms of a ratio of local to calibrated value. Frequency distributions were obtained for the multi-source LDR units by individually measuring each source. Using these distributions the effect of non-uniform source strength on the dose rate at Manchester point A was assessed for a typical clinical brachytherapy insertion for carcinoma of the cervix. Both frequency and dose rate distribution curves were modeled using normal statistics and characterised in terms of the mean (μ) and standard deviation (σ). Results: Evaluation of the HDR units indicated a mean ratio of 1.008 (±0.01) while for LDR the mean ratio was 0.997 (±0.02). The LDR frequency distributions demonstrated a variation of σ values extending from 1.4 to 3.0% of μ. It was shown that this non-uniformity in source strength introduced an uncertainty in the treatment planning process of between 0.8 and 1.8% when compared to the assumption of uniform source strength. Conclusions: The results of this intercomparison indicate dosimetric consistency between centres for both LDR and HDR units. The distribution of LDR source strengths were within expected limits and the resultant dose rate distributions were considered clinically acceptable

  14. Dosimetric quality control in radiotherapy using TLD methodology

    International Nuclear Information System (INIS)

    Saravi, M.C.; Kessler, C.; Alvarez, P.E.; Feld, D.B.

    2002-01-01

    In the frame of the IAEA Co-ordinated Research Project 'Development of a Quality Assurance Program for Radiation Therapy Dosimetry in Developing Countries' a Dosimetric Quality Control Group was set up in Argentina in 1996, to develop a program in order to improve radiotherapy in the country. Nowadays, this Group, briefly called External Audit Group (EAG), is composed by the national Secondary Standard Dosimetry Laboratory (SSDL), which has the responsibility for dose determinations, traceability to international dosimetry chain and TLD measurements, and two Medical Physicists from CNEA who are working at the Oncology Hospital 'Marie Curie' in Buenos Aires. The present paper reports the activities performed by the EAG with external high energy photon beams in reference conditions and the results of two pilot studies on cobalt 60 beams in non-reference conditions. The first step of the program was to update the existing data base about the radiotherapy centres operating in the country. A form was sent to each of them in order to obtain basic information about their staff, number and type of treatment machines, brachytherapy sources, measuring devices, beam calibration, treatment planning system, simulator and other relevant data. 90 radiotherapy centres were registered in the EAG data base. Forms were completed by 75/90 centres. There are nowadays 69 cobalt 60 units and 42 LINACs operating in the country (18/42 LINACs producing high energy X ray and electron beams). EAG deals with measurements performed with mailed TLD irradiated at radiotherapy centres. Internal quality control on our TLD system is made during each audit by means of reference capsules irradiated by IAEA; external controls consist in blind tests performed by IAEA once a year. The correction factor, K en , determined at our SSDL for high energy X-rays was checked with the collaboration of IAEA and Prague National Radiation Protection Institute (PNRPI) by means of a blind test. Results for 4 MV, 6 MV

  15. Attainment of dosimetric pediatrics grandeur to computed tomography examinations of the abdomen

    International Nuclear Information System (INIS)

    Jormada, Tiago S.

    2013-01-01

    Currently, 10% of all computerized tomography exams (CT) are made in pediatric patients. In developed countries, the practice of obtaining the dosimetric quantities (weighted index dose C w , index air kerma volumetric C vol product kerma-length P KL , CT ) and effective dose (E) in pediatric CT scans is common. In Brazil, data like these are practically nonexistent. The goal of this work is to obtain the dosimetric quantities and the dose effective in pediatric CT scans, and study its application in the optimization process. The study took place in a thermographs' Toshiba Asteion Single-Slice and a GE Brightsped's multi-slice where measurements were made with type pencil ionization chamber and a trunk's phantom of PMMA with diameter of 16 cm. In single-slice CT scanner, the results obtained for the C vol , P KL , CT and E were 18.73 mGy, 15.61 mGy and 6.87 mSv mGy.cm 343.51, respectively, whereas in multi-slice CT scanner the results were 18.81 mGy, 20.07 mGy, 441.64 mGy.cm and 8,83 mSv. There was no significant difference between the values of C w obtained already in the values of the Cvol, P KL , CT and E dose the differences between the results were quite significant. Comparing the C w and P KL , CT and with the values recommended by UCRP 87 (25 mGy for C vol and 360 mGy.cm for P KL , CT in pediatric CT scans of the abdomen), the two scanners were below reference levels for C w and not require an start on process of optimization. (author)

  16. Results of ACRO's measurements in Japan (6 March 2013 update)

    International Nuclear Information System (INIS)

    2013-01-01

    Following the Fukushima accident, the ACRO Organization has carried out extensive radioactivity measurements on various samples from the Fukushima and Miyagi provinces showing alarming contamination data. These data are chronologically presented in a series of publications from March 2011 to January 2013 and summarizing in numerous tables the measurements made on soil and water samples, vegetables and mushrooms, sea water, algae, grass, children's urine from various Japanese regions, tap water, milk, fishes, potatoes, vacuum cleaner dust, oysters, and other food products

  17. Comparison of microstickies measurement methods. Part II, Results and discussion

    Science.gov (United States)

    Mahendra R. Doshi; Angeles Blanco; Carlos Negro; Concepcion Monte; Gilles M. Dorris; Carlos C. Castro; Axel Hamann; R. Daniel Haynes; Carl Houtman; Karen Scallon; Hans-Joachim Putz; Hans Johansson; R. A. Venditti; K. Copeland; H.-M. Chang

    2003-01-01

    In part I of the article we discussed sample preparation procedure and described various methods used for the measurement of microstickies. Some of the important features of different methods are highlighted in Table 1. Temperatures used in the measurement methods vary from room temperature in some cases, 45 °C to 65 °C in other cases. Sample size ranges from as low as...

  18. Analytical calculation of central-axis dosimetric data for a dedicated 6-MV radiosurgery linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, James N.; Pino, Ramiro [Department of Radiation Physics, Unit 94, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiology, Baylor College of Medicine and Methodist Hospital, Houston, Texas 77030 (United States)

    2008-10-15

    Narrow beams are extensively used in stereotactic radiosurgery. The accuracy of treatment planning dose calculation depends largely on how well the dosimetric data are measured during the machine commissioning. Narrow beams are characterized by the lack of lateral electronic equilibrium. The lateral electronic disequilibrium in the radiation field and detector's finite size are likely to compromise the accuracy in dose measurements in these beams. This may have a profound impact on outcome in patients who undergo stereotactic radiosurgery. To confirm the measured commissioning data for a dedicated 6-MV linear accelerator-based radiosurgery system, we developed an analytical model to calculate the narrow photon beam central-axis dose. This model is an extension of a previously reported method of Nizin and Mooij for the calculation of the absorbed dose under lateral electronic disequilibrium conditions at depth of d{sub max} or greater. The scatter factor and tissue-maximum ratio were calculated for narrow beams using the parametrized model and compared to carefully measured results for the same beams. For narrow beam radii ranging from 0.2 to 1.5 cm, the differences between the analytical and measured scatter factors were no greater than 1.4%. In addition, the differences between the analytical and measured tissue-maximum ratios were within 3.3% for regions greater than the maximum dose depth. The estimated error of this analytical calculation was less than 2%, which is sufficient to validate measurement results.

  19. Quality control of dosimetric systems using thermoluminescent crystals

    International Nuclear Information System (INIS)

    Mahecha, L.; Plazas, M. C.; Machado, M.; Perea, M. D.

    2006-01-01

    To achieve an optimal tumoral control to prostate cancer in early and locally advanced stages, it is necessary to increase the dose with a low mobility probability at the vesicle an rectal level. This is achieved through conformal radiotherapy. The Instituto Nacional de Cancerologia uses this technique, but two questions arise from the medical-physicists and medical radio-oncologist: In accordance with clinical protocols, the conformal radiotherapy delivers a low dose to the adjacent healthy tissues. What experimental method exists that can prove with certainly the veracity of this affirmation?. And, Do the dosimetric simulation system calculate suitable the dose for each tissues?. Through thermoluminescent dosimetry and the use of a physical simulator,we measured the absorbed dose at the target volume and the adjacent tissues using conformal and conventional radiotherapy. We proved that organs such as the rectum and bladder, receiver a minor dose in conformal radiotherapy, hence reducing their mobility probability. In addition, the readings from the thermoluminescent dosimeters and the doses calculated by the ECLIPSE dosimetric system were compared, concluding that the patient's prescribed dose is effectively delivered as recommended by the quality control program in radiotherapy. (Author)

  20. Dosimetric properties of the fast neutron therapy beams at TAMVEC

    International Nuclear Information System (INIS)

    Almond, P.R.; Smith, A.R.; Smathers, J.R.; Otte, V.A.

    1975-01-01

    In October 1972, M.D. Anderson Hospital and Tumor Institute of the University of Texas System Cancer Center initiated a clinical trial of fast neutron radiotherapy using the cyclotron at Texas A and M University. Initially, the study used neutrons produced by bombarding beryllium with 16 MeV deuterons, but since March, 1973, neutrons from 50 MeV deuterons have been used. The dosimetric properties of the 30 MeV beams have also been measured for comparison with the neutron beams from D-T generators. The three beams are compared in terms of dose rate, skin sparing, depth dose and field flatness. Isodose curves for treatment planning were generated using the decrement line method and compared to curves measured by a computer controlled isodose plotter. This system was also used to measure the isodose curves for wedge fields. Dosimetry checks on various patients were made using silicon diodes as in vivo fast neutron dosimeters

  1. Dosimetric characterization of a commercial two-dimensional array detector; Caracterizacao dosimetrica de um detector matricial bidimensional comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gialluisi, Bruno L.; Santos, Gabriela R. dos; Sales, Camila P. de; Resende, Guilherme R.A.; Habitzreuter, Angela B.; Rodrigues, Laura N., E-mail: brunogialluisi@gmail.com [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2013-04-15

    This paper investigates the dosimetric characteristics and performance of an array detector commercially available. The device is the I'mRT MatriXX® which is a two-dimensional detector array used in the verification of complex radiotherapy plans. It consists of 1,020 parallel plate ion chamber arranged in a 32x32 grid. Dose linearity was studied and its response was linear within the range of 5 to 1000 MU (R{sup 2} = 1). Dose rate dependence showed a maximum deviation of 0,62% comparatively with readings to 320 cGy/min. The detector stability was verified through repeated irradiations. Output factors matched well with measurements made with a Farmer chamber with an average deviation of 1,54%. The detector's effective point of measurement was determined and the inverse square law was also verified with a percentage deviation smaller than 3%. The results show that this detector can be used for quality control in IMRT thus reducing the time spent in the dosimetric verification of radiation fields. (author)

  2. Dosimetric characterization of a commercial two-dimensional array detector; Caracterizacao dosimetrica de um detector matricial bidimensional comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gialluisi, Bruno L.; Santos, Gabriela R. dos; Sales, Camila P. de; Resende, Guilherme R.A.; Habitzreuter, Angela B.; Rodrigues, Laura N., E-mail: brunogialluisi@gmail.com [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2013-04-15

    This paper investigates the dosimetric characteristics and performance of an array detector commercially available. The device is the I'mRT MatriXX® which is a two-dimensional detector array used in the verification of complex radiotherapy plans. It consists of 1,020 parallel plate ion chamber arranged in a 32x32 grid. Dose linearity was studied and its response was linear within the range of 5 to 1000 MU (R{sup 2} = 1). Dose rate dependence showed a maximum deviation of 0,62% comparatively with readings to 320 cGy/min. The detector stability was verified through repeated irradiations. Output factors matched well with measurements made with a Farmer chamber with an average deviation of 1,54%. The detector's effective point of measurement was determined and the inverse square law was also verified with a percentage deviation smaller than 3%. The results show that this detector can be used for quality control in IMRT thus reducing the time spent in the dosimetric verification of radiation fields. (author)

  3. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  4. Model dosimetric for Radon and Daughters

    International Nuclear Information System (INIS)

    Puerta, J.A.; Cardenas, H.F.

    1998-01-01

    You elaborates a model dosimetric for radon and their products of decline of short half life starting from the new model of the breathing tract of the publication 66 of the ICRP and the use of the systemic models proposed in the publication 67, 68 and 69 of the same commission. The correlated used methodology the incorporation of these radionuclides with the activity in organs and you excrete, considering the difference of metabolic behavior of the products of decline and of their predecessor

  5. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    International Nuclear Information System (INIS)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-01-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD 10 of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R 80 matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs

  6. Rectenna array measurement results. [Satellite power transmission and reception

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  7. Quantitative dosimetric verification of an IMRT planning and delivery system

    International Nuclear Information System (INIS)

    Low, D.A.; Mutic, S.; Dempsey, J.F.; Gerber, R.L.; Bosch, W.R.; Perez, C.A.; Purdy, J.A.

    1998-01-01

    Background and purpose: The accuracy of dose calculation and delivery of a commercial serial tomotherapy treatment planning and delivery system (Peacock, NOMOS Corporation) was experimentally determined. Materials and methods: External beam fluence distributions were optimized and delivered to test treatment plan target volumes, including three with cylindrical targets with diameters ranging from 2.0 to 6.2 cm and lengths of 0.9 through 4.8 cm, one using three cylindrical targets and two using C-shaped targets surrounding a critical structure, each with different dose distribution optimization criteria. Computer overlays of film-measured and calculated planar dose distributions were used to assess the dose calculation and delivery spatial accuracy. A 0.125 cm 3 ionization chamber was used to conduct absolute point dosimetry verification. Thermoluminescent dosimetry chips, a small-volume ionization chamber and radiochromic film were used as independent checks of the ion chamber measurements. Results: Spatial localization accuracy was found to be better than ±2.0 mm in the transverse axes (with one exception of 3.0 mm) and ±1.5 mm in the longitudinal axis. Dosimetric verification using single slice delivery versions of the plans showed that the relative dose distribution was accurate to ±2% within and outside the target volumes (in high dose and low dose gradient regions) with a mean and standard deviation for all points of -0.05% and 1.1%, respectively. The absolute dose per monitor unit was found to vary by ±3.5% of the mean value due to the lack of consideration for leakage radiation and the limited scattered radiation integration in the dose calculation algorithm. To deliver the prescribed dose, adjustment of the monitor units by the measured ratio would be required. Conclusions: The treatment planning and delivery system offered suitably accurate spatial registration and dose delivery of serial tomotherapy generated dose distributions. The quantitative dose

  8. SU-E-J-167: Dosimetric Consequences From Minimal Displacements in APBI with SAVI Applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekara, S; Dumitru, N [Bucharest (Romania); Hyvarinen, M [Florida Atlantic University, Boca Raton, FL (United States); Pella, S [South Florida Radiation Oncology, Boca Raton, FL (United States)

    2015-06-15

    Purpose: To determine the importance of providing proper solid immobilization in every fraction of treatment in APBI with brachytherapy. Methods: 125 patients treated with APBI brachytherapy with SAVI applicators at SFRO Boca Raton, from 2013–2015 were considered for this retrospective study. The CT scans of each patient, which were taken before each treatment, were imported in to the Oncentra treatment planning system. Then they were compared with the initial CT scan which was used for the initial plan. Deviation in displacements in reference to ribs and skin surface was measured and dosimetric evaluations respective to the initial image were performed. Results: Small deviations in displacements were observed from the SAVI applicator to the ribs and the skin surface. Dosimetric evaluations revealed, very small changes in the inter-fractionation position make significant differences in the maximum dose to critical organs. Additionally, the volume of the cavity also changed between fractions. As a Result, the maximum dose manifested variance between 10% and 32% in ribs and skin surface respectively. Conclusion: It appears that taking a CT scan before each treatment is necessary to minimize the risk of delivering undesired high doses to the critical organs. This study indicates, in 30% of the cases re-planning was necessary between treatments. We conclude that, treatment planning teams should evaluate the placement of the device by analyzing the CT images before each treatment and they must be prepared for re-planning if needed. This study also reveals the urgent need of improving the immobilization methods with APBI when treating with the SAVI applicator.

  9. 26 CFR 801.6 - Business results measures.

    Science.gov (United States)

    2010-04-01

    ... Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INTERNAL REVENUE PRACTICE BALANCED SYSTEM FOR MEASURING ORGANIZATIONAL AND EMPLOYEE PERFORMANCE WITHIN THE INTERNAL REVENUE SERVICE...-free telephone sites. The quality review of telephone services will focus on such factors as whether...

  10. Urban traffic noise assessment by combining measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Graafland, F.; Wessels, P.W.; Basten, T.G.H.

    2013-01-01

    A model based monitoring system is applied on a local scale in an urban area to obtain a better understanding of the traffic noise situation. The system consists of a scalable sensor network and an engineering model. A better understanding is needed to take appropriate and cost efficient measures,

  11. Results of measurements of emission from internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Jovanovska, Vangelica

    1999-01-01

    A mathematical model for solving the emission from internal combustion engines on the cross roads are made. The exhausted pipes from vehicles are substituted with a pipe in a centre of the cross road. This model is proved with measurement made on vehicles in the city of Bitola (Macedonia). (Author)

  12. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  13. A simple approach for EPID dosimetric calibration to overcome the effect of image-lag and ghosting

    International Nuclear Information System (INIS)

    Alshanqity, Mukhtar; Duane, Simon; Nisbet, Andrew

    2012-01-01

    EPID dosimetry has known drawbacks. The main issue is that a measurable residual signal is observed after the end of irradiation for prolonged periods of time, thus making measurement difficult. We present a detailed analysis of EPID response and suggest a simple, yet accurate approach for calibration that avoids the complexity of incorporating ghosting and image-lag using the maximum integrated signal instead of the total integrated signal. This approach is linear with dose and independent of dose rate. - Highlights: ► Image-lag and ghosting effects dosimetric accuracy. ► Image-lag and ghosting result in the reduction of total integrated signal for low doses. ► Residual signal is the most significant result for the image-lag and ghosting effects. ► Image-lag and ghosting can result in under-dosing of up to 2.5%.

  14. Results of environmental radio hygienic measurements in Hungary in 2002

    International Nuclear Information System (INIS)

    Edit Bokori; Andor Kerekes; Judit Guczi; Capote-Cuellar Antonio; Ibolya Maschek; Gyula Szabo; Agota Ugron

    2004-01-01

    The laboratories of the Radiological Monitoring and Data Acquisition Network act within the organizational frame of the National Public Health and Medical Officers Service (NPHMOS). The tasks of the network are defined by the duties of Ministry of Health, Social and Family Affairs in the field of environmental radiation protection and radiation hygiene under normal situation and radiological emergency, as well. The monitoring program includes the measurements of samples and radionuclides necessary for estimation of the radiation burden of population. On the basis of measurements and dose assessment it can be stated that the effective dose of the Hungarian population from man-made sources (3.6 μSv x y -1 ) is almost three orders of magnitude lower than the dose from natural radiation sources. (author)

  15. SU-D-BRE-03: Dosimetric Impact of In-Air Spot Size Variations for Commissioning a Room-Matched Beam Model for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Zhang, Y; Giebeler, A; Mascia, A; Piskulich, F; Perles, L; Lepage, R; Dong, L

    2014-01-01

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the two treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms

  16. TL dosimetric properties BAM:EU

    International Nuclear Information System (INIS)

    Rao, Bellam N.; Murthy, K.V.R.; Subba Rao, B.; Saiprasad, A.S.

    2011-01-01

    In phosphor area today top priority is the replacement of the high performance but very expensive rare earth activated phosphors with cheaper materials. This essentially means replacing the rare earth ions with transition metal ions or post transition ions. Now a day's phosphors are used in various fields. After World War II, the advances in the optical spectroscopy of solids, especially those of transition metals ions help to evolve research on phosphor and solid state luminescence. In 1960 efficient rare earth activated phosphors were developed for use in color TV (Tb 3+ green, Eu 3+ red, and Dy 3+ yellow). In 1970 tricolor lamp was introduced blue emission from Ce 3+ + Tb 3+ pair was used in tricolor lamps. At present combination of halo phosphor and tri-band phosphor blend is used in many lamp as a compromise between performance, phosphor cost and the lamp making Cost. Thermo luminescence of 0.5 Gy X-ray irradiated BAM.Eu has been studied. The irradiated phosphor has been studied for its TL dosimetric properties one week after irradiation and after 100 weeks of storage. Interesting TL results are reported in the present paper. Heating rate used in the present experiment is 6.6 deg C/Sec. The following two figures are on TL recorded 100 weeks after irradiation and TL recorded after 235 weeks of storage. Before storage for 100 weeks the TL glow curve with a hump around 180 deg C followed by a peak at 273 deg C. After storage for 100 weeks the TL pattern changes entirely. i.e. the composite TL peak structure emerged as two well resolved peaks and with slightly higher TL peak temperatures at 215 deg C and 300 deg C. Normally after storage for 100 weeks the peak at 190 deg C reduces in its intensity or disappears in some cases, instead of that the peak appears at 215 deg C as well resolved peak and its intensity is almost comparable to that of 300 deg C peak. Since the TL phenomenon observed is interesting the two well resolved, isolated, high intensity peaks

  17. Dosimetric characteristics of muscovite mineral studied under different annealing conditions

    International Nuclear Information System (INIS)

    Kalita, J M; Wary, G

    2015-01-01

    The annealing effect on the thermoluminescence (TL) characteristics of x-ray irradiated muscovite mineral relevant to dosimetry has been studied. For un-annealed and 473 K annealed samples an isolated TL peak has been observed at around 347 K; however, annealing at 573, 673 and 773 K two composite peaks have been recorded at around 347 and 408 K. Kinetic analysis reveals that there is a trap level at a depth of 0.71 eV, and due to annealing at 573 K (or above), a new trap level generates at 1.23 eV. The dosimetric characteristics, such as dose response, fading and reproducibility, have been studied in detail for all types of samples. The highest linear dose response has been observed from 10 to 2000 mGy in the 773 K annealed sample. Due to generation of the deep trap level, fading is found to reduce significantly just after annealing above 573 K. Reproducibility analysis shows that after 10 cycles of reuse the coefficient of variations in the results for 60, 180 and 1000 mGy dose irradiated 773 K annealed samples are found to be 1.78%, 1.37% and 1.58%, respectively. These analyses demand that after proper annealing muscovite shows important dosimetric features that are essentially required for a thermoluminescence dosimeter (TLD). (paper)

  18. A biokinetic and dosimetric model for the metabolism of uranium

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Bertelli, L.; Durbin, P.W.; Eckerman, K.F.; Lipsztein, J.L.; Singh, N.P.

    1995-10-01

    Experiments involving injection and inhalation of uranium compounds into several animal species as well as those associated with humans are described and analyzed. A revised biokinetic and dosimetric model for the metabolism of uranium suitable for bioassay procedures is proposed. The model consists of a systematic part coupled to a model of the respiratory tract. The model has been tested against human data which incorporates in vivo measurements over the chest and measurements of urine, feces, and autopsy and biopsy samples.In particular the lung model of the International Commission on Radiological Protection, Publication 30 ( ICRP-30 ), has been modified in order to provide a model which more nearly predicts urinary excretion in accord with the experiences in humans and animals. We have also tested the data against the new ICRP (LUDEP) lung model. (author). 55 refs., 14 tabs., 33 figs

  19. Dosimetric evaluation of the conformation of the multileaf collimator to irregularly shaped fields

    International Nuclear Information System (INIS)

    Frazier, Arthur; Du, Maria; Wong, John; Vicini, Frank; Taylor, Roy; Yu, Cedric; Matter, Richard; Martinez, Alvaro; Yan Di

    1995-01-01

    distribution in the penumbra region of the irregular fields for the MLC, which had a standard deviation of 1 mm (a factor of 5 larger than the conventional block). The dosimetry for the circular fields showed that the LAD-TRN, LAD-(1(2)), and LAD-(1(3)) approximated the conventional blocking well in terms of d20 and d80; however, no single convention produced the best conformation for both measures. The dosimetric result of the patient treatment fields was similar for all sites. The LAD-(1(3)), LAD-(1(2)), and LAD-TRN strategies conformed to within 1 to 1.5 mm of the d80 of the conventional block for both 6 MV and 18 MV, respectively. The LAD-(1(2)) and LAD-TRN conformations were virtually identical, although it is proven analytically that the LAD-(1(2)) convention has the least overall area discrepancy of all conventions. Conclusions: The five MLC conformation conventions resulted in similar dosimetric penumbrae for all field shapes studied. The LAD-(1(3)), LAD-TRN, and LAD-(1(2)) produced the more favorable approximation to conventional block. The field penumbra width, although useful for evaluating irregular field shapes, could not describe the large local variations in the penumbra along the field edge for the MLC. These local variations could be of clinical concern when they appear near vital organs. However, the variation in a local region can potentially be reduced by minimizing the jaggedness of the leaf steps in that local region. The dosimetric results were useful as guidelines for the clinicians in the evaluation and adjustment of MLC leaf positions

  20. SU-F-T-240: EPID-Based Quality Assurance for Dosimetric Credentialing

    Energy Technology Data Exchange (ETDEWEB)

    Miri, N [University of Newcastle, Newcastle, NSW (Australia); Lehmann, J [Calvary Mater Newcastle, Newcastle, NSW (Australia); Vial, P [Liverpool Hospital, Sydney, NSW (Australia); Greer, P [Calvary Mater Newcastle, Newcastle, NSW (Australia); University of Newcastle, Newcastle, NSW (Australia)

    2016-06-15

    Purpose: We propose a novel dosimetric audit method for clinical trials using EPID measurements at each center and a standardized EPID to dose conversion algorithm. The aim of this work is to investigate the applicability of the EPID method to different linear accelerator, EPID and treatment planning system (TPS) combinations. Methods: Combination of delivery and planning systems were three Varian linacs including one Pinnacle and two Eclipse TPS and, two ELEKTA linacs including one Pinnacle and one Monaco TPS. All Varian linacs had the same EPID structure and similarly for the ELEKTA linacs. Initially, dose response of the EPIDs was investigated by acquiring integrated pixel value (IPV) of the central area of 10 cm2 images versus MUs, 5-400 MU. Then, the EPID to dose conversion was investigated for different system combinations. Square field size images, 2, 3, 4, 6, 10, 15, 20, 25 cm2 acquired by all systems were converted to dose at isocenter of a virtual flat phantom then the dose was compared to the corresponding TPS dose. Results: All EPIDs showed a relatively linear behavior versus MU except at low MUs which showed irregularities probably due to initial inaccuracies of irradiation. Furthermore, for all the EPID models, the model predicted TPS dose with a mean dose difference percentage of 1.3. However the model showed a few inaccuracies for ELEKTA EPID images at field sizes larger than 20 cm2. Conclusion: The EPIDs demonstrated similar behavior versus MU and the model was relatively accurate for all the systems. Therefore, the model could be employed as a global dosimetric method to audit clinical trials. Funding has been provided from Department of Radiation Oncology, TROG Cancer Research and the University of Newcastle. Narges Miri is a recipient of a University of Newcastle postgraduate scholarship.

  1. Design, manufacture, and evaluation of an anthropomorphic pelvic phantom purpose-built for radiotherapy dosimetric intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. M.; Ebert, M. A.; Kron, T.; Howlett, S. J.; Cornes, D.; Hamilton, C. S.; Denham, J. W. [Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Physics, University of Newcastle, New South Wales 2308 (Australia); Department of Radiation Oncology, Sir Charles Gairdner Hospital, Western Australia, Australia and School of Physics, University of Western Australia, Western Australia 6009 (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Victoria 8006 (Australia); Australiasian College of Physical Scientists and Engineers in Medicine, Sydney, New South Wales 2020 (Australia); Trans-Tasman Radiation Oncology Group, Calvary Mater Newcastle, New South Wales 2298 (Australia); Heidelberg Repatriation Hospital, Victoria 3081 (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Medicine and Population Health, University of Newcastle, New South Wales 2308 (Australia)

    2011-10-15

    Purpose: An anthropomorphic pelvic phantom was designed and constructed to meet specific criteria for multicenter radiotherapy dosimetric intercomparison. Methods: Three dimensional external and organ outlines were generated from a computed tomography image set of a male pelvis, forming the basis of design for an anatomically realistic phantom. Clinically relevant points of interest were selected throughout the dataset where point-dose values could be measured with thermoluminescence dosimeters and a small-volume ionization chamber. Following testing, three materials were selected and the phantom was manufactured using modern prototyping techniques into five separate coronal slices. Time lines and resource requirements for the phantom design and manufacture were recorded. The ability of the phantom to mimic the entire treatment chain was tested. Results: The phantom CT images indicated that organ densities and geometries were comparable to those of the original patient. The phantom proved simple to load for dosimetry and rapid to assemble. Due to heat release during manufacture, small air gaps and density heterogeneities were present throughout the phantom. The overall cost for production of the prototype phantom was comparable to other commercial anthropomorphic phantoms. The phantom was shown to be suitable for use as a ''patient'' to mimic the entire treatment chain for typical external beam radiotherapy for prostate and rectal cancer. Conclusions: The phantom constructed for the present study incorporates all characteristics necessary for accurate Level III intercomparison studies. Following use in an extensive Level III dosimetric comparison over a large time scale and geographic area, the phantom retained mechanical stability and did not show signs of radiation-induced degradation.

  2. Study of dosimetric quantities applied to patient undergoing routine chest examinations by computed tomography

    International Nuclear Information System (INIS)

    Gonzaga, Natalia Barbosa

    2012-01-01

    The radiological protection system has established a standard to protect persons against the harmful effects caused by ionizing radiation that is based on the justification, optimization and dose limitation principles. The increasing use of radiation in medicine and the related risks have stressed the discussion on patient radiation protection. The computed tomography (CT) is the diagnostic radiology technique that most contributes to patient doses and it requires optimization efforts. Diagnostic reference levels (DRL) has been established in many countries in terms of CT dosimetric quantities; in Brazil, the DRLs are still under investigation since the culture of patient protection is not very strong yet. The objective of this work was to investigate the dosimetric and protection quantities related to patients undergoing CT routine chest examinations. The ImPACT CT, CT Expo and ImpactDose softwares were used for calculations of the weight and volumetric air-kerma indexes (CW and CVOL), the air kerma - length product (P K,L ), organ equivalent dose (H T ) and the effective dose (E) for CT routine chest protocols in 19 tomographs in Belo Horizonte city. The CT Expo was selected to be validated against experimental measurements in three hospitals with thermoluminescent dosimeters and CT pencil ionization chamber in anthropomorphic and standard CT body phantoms. Experimental and calculated results indicated differences up to 97% for H T and E and acceptable agreement for C W ,C VOL and P K,L . All data from 19 tomographs showed that local DRLs for CT routine chest examinations may be chosen smaller than DRLs adopted in other countries; this would contribute to increase the radiological protection of patients. (author)

  3. Some dosimetric properties of the LiF:Mg,Ti evaluated by the automatic 6600 thermoluminescent reader

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shachar, B; Weinstein, M; German, U [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Some dosimetric properties of the new LiF:Mg,Ti TLD cards were checked, when evaluated by the new automatic 6600 TLD reader. The cards were calibrated to a dose of 1.0 mGy by five identical irradiations, and the TL-dose response was measured for a range of 75 - 1100 mGy. A very high accuracy was found for the three kind of chips measured (TLD-100, TLD-700 and TLD-600) and a low minimum measurable dose (MMD) was found, too. There is a good fit between the analytical evaluation and the theoretical calculation of the MMD. The results obtained are much better than those of the LiF:Mg,Ti cards evaluated by the older automatic 2271 reader used in the last two decades (authors).

  4. Determination of Dosimetric Parameters of the Second Model of Pd-103 Seed Manufactured at Agricultural, Medical and Industrial Research School

    Directory of Open Access Journals (Sweden)

    Gholamreza Raisali

    2008-06-01

    Full Text Available Introduction: The use of low energy isotopes such as  103 Pd in brachytherapy for the treatment of cancers  such as prostate, eye, head, neck, breast and cervix is increasing. In this regard, different models of Pd- 103  seeds  have  been  designed  and  manufactured  at  the  Agricultural,  Medical  and  Industrial  Research  School (AMIRS of Atomic Energy Organization of Iran. In this research, the dosimetric parameters of  the second model of Pd-103 seed manufactured at AMIRS have been calculated and measured.   Materials and Methods: The dosimetric parameters of the second Pd-103 seed manufactured at AMIRS  were determined according to TG-43U1 protocol using Monte Carlo calculations (MCNP4C computer  code  and  measurements  performed  using  TLD-GR200A  dosimeters  in  a  Perspex  phantom.  The  parameters  include  dose  rate  constant,  geometry  function,  radial  dose  function,  anisotropy  function,  anisotropy factor and anisotropy constant.  Results:  It  was  found  that  by  using  MCNP4C  code  the  calculated  dose  rate  constant  in  water  and  Perspex  was  0.706±0.001   and  0.501±0.001  cGyh -1 U -1 , respectively.  Using  the  calculated  geometry  function,  the  radial  dose  function  and  the  anisotropy  function  were  determined  by  experimental  and  theoretical methods in water and Perspex phantom. Also, the calculated value of anisotropy constant in  water was equal to 0.88.  Discussion and Conclusion: A discrepancy of less than 10% between the calculated and the measured  values indicates a reasonable agreement between the simulation and the measurement method. Also, the  dosimetric parameters of this seed have been compared to the dosimetric parameters of the first Pd-103  seed  manufactured  at  AMIRS  and  some  other  seeds.  The  obtained  results  indicate  that  the  seeds  manufactured at AMIRS

  5. Development and application of a dosimetric methodology of therapeutic X radiation beams using a tandem system; Desenvolvimento e aplicacao de metodologia dosimetrica de feixes terapeuticos de raios X com sistema tandem

    Energy Technology Data Exchange (ETDEWEB)

    Sartoris, Carla Eri

    2001-07-01

    In radiotherapy the use of orthovoltage X radiation beams is still recommended; to obtain satisfactory results, a periodic control is necessary to check the performance of the ionization chambers and the radiation beams characteristics. This control is performed by using standard dosimetric procedures, as for example the determination of half-value layers and the absorbed dose rates. A Tandem system was established in this work using a pair of ionization chambers (a thimble type and a superficial type) used for measures in a medical institution, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The results obtained show the application of this method in dosimetric procedures of orthovoltage beams (radiotherapy) as a complement for a quality control program. (author)

  6. First results of the ECE measurements on Tore Supra

    International Nuclear Information System (INIS)

    Garcin, M.; Javon, C.; Laurent, L.; Masset, R.; Rodriguez, L.; Talvard, M.

    1989-01-01

    Since the beginning of the Tore Supra experiments in april 1988, the ECE diagnostic has been partially operated. The main elements of the diagnostic have been tested and first results have been obtained with a Michelson interferometer and a vertical array of antennae. According to the latter arrangement, the first inverted emissivity profiles are presented

  7. SU-F-T-431: Dosimetric Validation of Acuros XB Algorithm for Photon Dose Calculation in Water

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, L [Rajiv Gandhi Cancer Institute & Research Center, New Delhi, Delhi (India); Yadav, G; Kishore, V [Bundelkhand Institute of Engineering & Technology, Jhansi, Uttar pradesh (India); Bhushan, M; Samuvel, K; Suhail, M [Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi (India)

    2016-06-15

    Purpose: To validate the Acuros XB algorithm implemented in Eclipse Treatment planning system version 11 (Varian Medical System, Inc., Palo Alto, CA, USA) for photon dose calculation. Methods: Acuros XB is a Linear Boltzmann transport equation (LBTE) solver that solves LBTE equation explicitly and gives result equivalent to Monte Carlo. 6MV photon beam from Varian Clinac-iX (2300CD) was used for dosimetric validation of Acuros XB. Percentage depth dose (PDD) and profiles (at dmax, 5, 10, 20 and 30 cm) measurements were performed in water for field size ranging from 2×2,4×4, 6×6, 10×10, 20×20, 30×30 and 40×40 cm{sup 2}. Acuros XB results were compared against measurements and anisotropic analytical algorithm (AAA) algorithm. Results: Acuros XB result shows good agreement with measurements, and were comparable to AAA algorithm. Result for PDD and profiles shows less than one percent difference from measurements, and from calculated PDD and profiles by AAA algorithm for all field size. TPS calculated Gamma error histogram values, average gamma errors in PDD curves before dmax and after dmax were 0.28, 0.15 for Acuros XB and 0.24, 0.17 for AAA respectively, average gamma error in profile curves in central region, penumbra region and outside field region were 0.17, 0.21, 0.42 for Acuros XB and 0.10, 0.22, 0.35 for AAA respectively. Conclusion: The dosimetric validation of Acuros XB algorithms in water medium was satisfactory. Acuros XB algorithm has potential to perform photon dose calculation with high accuracy, which is more desirable for modern radiotherapy environment.

  8. Dosimetric and qualitative analysis of kinetic properties of millennium 80 multileaf collimator system for dynamic intensity modulated radiotherapy treatments

    Directory of Open Access Journals (Sweden)

    Bhardwaj Anup

    2007-01-01

    Full Text Available The aim of this paper is to analyze the positional accuracy, kinetic properties of the dynamic multileaf collimator (MLC and dosimetric evaluation of fractional dose delivery for the intensity modulated radiotherapy (IMRT for step and shoot and sliding window (dynamic techniques of Varian multileaf collimator millennium 80. Various quality assurance tests such as accuracy in leaf positioning and speed, stability of dynamic MLC output, inter and intra leaf transmission, dosimetric leaf separation and multiple carriage field verification were performed. Evaluation of standard field patterns as pyramid, peaks, wedge, chair, garden fence test, picket fence test and sweeping gap output was done. Patient dose quality assurance procedure consists of an absolute dose measurement for all fields at 5 cm depth on solid water phantom using 0.6cc water proof ion chamber and relative dose verification using Kodak EDR-2 films for all treatment fields along transverse and coronal direction using IMRT phantom. The relative dose verification was performed using Omni Pro IMRT film verification software. The tests performed showed acceptable results for commissioning the millennium 80 MLC and Clinac DHX for dynamic and step and shoot IMRT treatments.

  9. A Summary of NORA Project Results Related to Reactivity Measurements

    International Nuclear Information System (INIS)

    Berg, J.O.; Døderlein, J-M-; Haugset, K

    1969-01-01

    The NORA Project has been an international undertaking within the field of reactor physics, resulting from an agreement signed by the International Atomic Energy Agency and the Norwegian Government in April 1961, and subsequently renewed for three years in 1964 and one year in 1967. A summary of the research performed in the period 1961-1964 has been published in IAEA Technical Report Series no. 67. The Project work carried out through the years 1964-1968 will be covered in a forthcoming IAEA Technical Report. The main experimental facility used in the Project has been the zero-power reactor NORA Reactor kinetics, both experimental end theoretical, has been a major item of research in the NORA Project. The present report will briefly summarize results and conclusions considered relevant to the topic discussed by this Panel. Extensive referencing will be made to the final NORA Project Report

  10. The features of radiation induced lung fibrosis related with dosimetric parameters

    International Nuclear Information System (INIS)

    Oh, Young-Taek; Noh, O Kyu; Jang, Hyunsoo; Chun, Mison; Park, Kyung Joo; Park, Kwang Joo; Kim, Mi-Hwa; Park, Hae-Jin

    2012-01-01

    Background and purpose: Radiation induced lung fibrosis (RILF) is a major complication after lung irradiation and is very important for long term quality of life and could result in fatal respiratory insufficiency. However, there has been little information on dosimetric parameters for radiotherapy planning in the aspect of RILF. The features of RILF related with dosimetric parameters were evaluated. Methods and materials: Forty-eight patients with non-small cell lung carcinoma who underwent post-operative radiation therapy (PORT) without adjuvant chemotherapy were analyzed. The degree of lung fibrosis was estimated by fibrosis volume and the dosimetric parameters were calculated from the plan of 3-dimensional conformal radiotherapy. Results: The fibrosis volume and V-dose as dosimetric parameters showed significant correlation and the correlation coefficient ranged from 0.602 to 0.683 (P < 0.01). The degree of the correlation line was steeper as the dose increase and threshold dose was not found. Mean lung dose (MLD) showed strong correlation with fibrosis volume (correlation coefficient = 0.726, P < 0.01). Conclusions: The fibrosis volume is continuously increased with V-dose as the reference dose increases. MLD is useful as a single parameter for comparing rival plans in the aspect of RILF.

  11. Geometric factors influencing dosimetric sparing of the parotid glands using IMRT

    International Nuclear Information System (INIS)

    Hunt, Margie A.; Jackson, Andrew; Narayana, Ashwatha; Lee, Nancy

    2006-01-01

    Purpose/Objective: To determine the relationship between the parotid volume, parotid-planning target volume (PTV) overlap, and dosimetric sparing of the parotid with intensity-modulated radiation therapy (IMRT). Methods and Materials: Parotid data were collected retrospectively for 51 patients treated with simultaneous boost IMRT. Unresectable patients received 54 or 59.4 Gy to subclinical disease, 70 Gy to gross disease. Patients treated postoperatively received 54, 60, and 66 Gy to low-risk, high-risk, and tumor bed regions. Volume and mean dose of each gland and gland segments outside of and overlapping the PTV were collected. Proximity of each gland to each PTV was recorded. Results: Dosimetric sparing (mean dose ≤26.5 Gy) was achieved in 66 of 71 glands with ≤21% parotid-PTV overlap and 8 of 23 glands with >21% overlap (p = 21%. Median mean dose was 25.9 Gy to glands overlapping PTV 54 or PTV 59 alone and 30.0 Gy to those abutting PTV 7 (p 7 was associated with higher parotid dose, satisfactory sparing was achieved in 24 of 43 ipsilateral glands. Conclusions: Dosimetric sparing of the parotid is feasible when the parotid-PTV overlap is less than approximately 20%. With more overlap, sparing may result in low doses within the overlap region, possibly leading to inadequate PTV coverage. Gland proximity to the high-dose PTV is associated with higher mean dose but does not always preclude dosimetric sparing

  12. Impact of Multileaf Collimator Configuration Parameters on the Dosimetric Accuracy of 6-MV Intensity-Modulated Radiation Therapy Treatment Plans.

    Science.gov (United States)

    Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui

    2017-01-01

    The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  13. Impact of multileaf collimator configuration parameters on the dosimetric accuracy of 6-MV Intensity-Modulated radiation therapy treatment plans

    Directory of Open Access Journals (Sweden)

    Nick Petersen

    2017-01-01

    Full Text Available The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC transmission and rounded leaf offset in a commercial treatment planning system (TPS (Pinnacle3, Philips Medical Systems, Andover, MA, USA on the accuracy of intensity-modulated radiation therapy (IMRT dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2 and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being −0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  14. Tumescent liposuction report performance measurement initiative: national survey results.

    Science.gov (United States)

    Hanke, William; Cox, Sue Ellen; Kuznets, Naomi; Coleman, William P

    2004-07-01

    This study was created by the Accreditation Association for Ambulatory Health Care Institute for Quality Improvement to measure clinical performance and improvement opportunities for physicians and ambulatory health-care organizations. Data were collected prospectively between February 2001 and August 2002. Thirty-nine study centers participated, and 688 patients who had tumescent liposuction were surveyed and followed for 6 months. The objective was to determine patient satisfaction with tumescent liposuction and examine current liposuction practice and the safety of tumescent liposuction in a representative cohort of patients. The Accreditation Association for Ambulatory Health Care Institute for Quality Improvement collected prospective data from February 2001 to August 2002 from 68 organizations registered for this study. Ultimately 39 organizations submitted 688 useable cases performed totally with local anesthesia, "tumescent technique." The overall clinical complication rate found in the Accreditation Association for Ambulatory Health Care Institute for Quality Improvement study was 0.7% (5 of 702). There was a minor complication rate of 0.57%. The major complication rate was 0.14% with one patient requiring hospitalization. Seventy-five percent of the patients reported no discomfort during their procedures. Of the 59% of patients who responded to a 6-month postoperative survey, 91% were positive about their decision to have liposuction (rating of 4 or 5 on a scale of 1-5) and 84% had high levels (4 or 5 on a scale of 1-5) of overall satisfaction with the procedure. Our findings are consistent with others in that tumescent liposuction is a safe procedure with a low complication rate and high patient satisfaction.

  15. Radioecological and dosimetric consequences of the Chernobyl accident in France; Consequences radioecologiques et dosimetriques de l'accident de Tchernobyl en France

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, Ph; Beaugelin, K; Maubert, H; Ledenvic, Ph [Inst. de Protection et de Surete Nucleaire, CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (France)

    1997-11-01

    This study has as objective a survey of the radioecological and dosimetric consequences of the Chernobyl accident in France, as well as a prognosis for the years to come. It was requested by the Direction of Nuclear Installation Safety (DSIN) in relation to different organisms which effected measurements after this accident. It is based on the use of combined results of measurements and modelling by means of the code ASTRAL developed at IPSN. Various measurements obtained from five authorities and institutions, were made available, such as: activity of air and water, soil, processed food, agricultural and natural products. However, to achieve the survey still a modelling is needed. ASTRAL is a code for evaluating the ecological consequences of an accident. It allows establishing the correspondence between the soil Remnant Surface Activities (RSA, in Bq.m{sup -2}), the activity concentration of the agricultural production and the individual and collective doses resulting from external and internal exposures (due to inhalation and ingestion of contaminated nurture). The results of principal synthesis documents on the Chernobyl accident and its consequences were also used. The report is structured in nine sections, as follows: 1.Introduction; 2.Objective and methodology; 3.Characterization of radioactive depositions; 4;Remnant surface activities; 5.Contamination of agricultural products and foods; 6.Contamination of natural, semi-natural products and of drinking water; 7.Dosimetric evaluations; 8.Proposals for the environmental surveillance; 9.Conclusion. Finally, after ten years, one concludes that at presentthe dosimetric consequences of the Chernobyl accident in France were rather limited. For the period 1986-2046 the average individual effective dose estimated for the most struck zone is lower than 1500 {mu}Sv, which represents almost 1% of the average natural exposure for the same period. At present, the cesium 137 levels are at often inferior to those recorded

  16. Radioecological and dosimetric consequences of the Chernobyl accident in France; Consequences radioecologiques et dosimetriques de l'accident de Tchernobyl en France

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, Ph.; Beaugelin, K.; Maubert, H.; Ledenvic, Ph. [Inst. de Protection et de Surete Nucleaire, CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (France)

    1997-11-01

    This study has as objective a survey of the radioecological and dosimetric consequences of the Chernobyl accident in France, as well as a prognosis for the years to come. It was requested by the Direction of Nuclear Installation Safety (DSIN) in relation to different organisms which effected measurements after this accident. It is based on the use of combined results of measurements and modelling by means of the code ASTRAL developed at IPSN. Various measurements obtained from five authorities and institutions, were made available, such as: activity of air and water, soil, processed food, agricultural and natural products. However, to achieve the survey still a modelling is needed. ASTRAL is a code for evaluating the ecological consequences of an accident. It allows establishing the correspondence between the soil Remnant Surface Activities (RSA, in Bq.m{sup -2}), the activity concentration of the agricultural production and the individual and collective doses resulting from external and internal exposures (due to inhalation and ingestion of contaminated nurture). The results of principal synthesis documents on the Chernobyl accident and its consequences were also used. The report is structured in nine sections, as follows: 1.Introduction; 2.Objective and methodology; 3.Characterization of radioactive depositions; 4;Remnant surface activities; 5.Contamination of agricultural products and foods; 6.Contamination of natural, semi-natural products and of drinking water; 7.Dosimetric evaluations; 8.Proposals for the environmental surveillance; 9.Conclusion. Finally, after ten years, one concludes that at presentthe dosimetric consequences of the Chernobyl accident in France were rather limited. For the period 1986-2046 the average individual effective dose estimated for the most struck zone is lower than 1500 {mu}Sv, which represents almost 1% of the average natural exposure for the same period. At present, the cesium 137 levels are at often inferior to those recorded

  17. Dosimetric characteristics of the Best registered double-wall 103Pd brachytherapy source

    International Nuclear Information System (INIS)

    Meigooni, A.S.; Bharucha, Z.; Yoe-Sein, M.; Sowards, Keith

    2001-01-01

    103 Pd and 125 I brachytherapy sources are being used for interstitial implants in tumor sites such as the prostate. Recently, a double-wall 103 Pd source has been introduced, which has a design different from that of sources presently on the market. Dosimetric characteristics (dose rate constant, radial dose function, and anisotropy function) of this source were experimentally and theoretically determined following the AAPM Task Group 43 recommendations and were related to the October 10, 2000 revision of the NIST 1999 S K Standard for 103 Pd. Measurements were performed in a Solid Water trade mark sign phantom using LiF thermoluminescent dosimeters. For these measurements, slabs of Solid Water trade mark sign phantom material were machined to accommodate the source and LiF TLD chips of dimensions (3.1x3.1x0.8 mm 3 ) and (1.0x1.0x1.0 mm 3 ). The TLD chips were surrounded by at least 10 cm of Solid Water trade mark sign phantom material to provide full scattering conditions. The Monte Carlo simulations were performed in Solid Water trade mark sign and liquid water using the PTRAN code. The results of this investigation show an excellent agreement (within 5%) between the measured (0.67±8% cGy h -1 U -1 ) and calculated (to be 0.65±3% cGy h -1 U -1 ) dose rate constant in Solid Water trade mark sign . The Monte Carlo calculated dose rate constant of the Best registered 103 Pd in water was found to be 0.67±0.02 cGy h -1 U -1 . The radial dose function, g(r), of the new 103 Pd source was measured at distances ranging from 0.5 and 7 cm using LiF TLD in Solid Water trade mark sign phantom material. Moreover, the radial dose function of the new source was calculated in liquid water and Solid Water trade mark sign at distances ranging from 0.1 to 7 cm using the PTRAN Monte Carlo Code. The anisotropy function, F(r,θ), of the new 103 Pd source was also measured in Solid Water trade mark sign and calculated in both Solid Water trade mark sign and water phantom material

  18. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    Science.gov (United States)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  19. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Mein, Stewart [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Cai, Bin; Curcuru, Austen [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Juang, Titania; Miles, Devin [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Mutic, Sasa; Wang, Yuhe [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Oldham, Mark [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)

    2017-04-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  20. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    International Nuclear Information System (INIS)

    Rankine, Leith J.; Mein, Stewart; Cai, Bin; Curcuru, Austen; Juang, Titania; Miles, Devin; Mutic, Sasa; Wang, Yuhe; Oldham, Mark; Li, H. Harold

    2017-01-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  1. Dosimetric response evaluation of tooth enamel for accelerator-based neutron radiation

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    To study the neutron response of human tooth enamel, a number of experiments with an accelerator-based neutron source have been designed. The neutron beam was produced with the low gamma yield, 7 Li(p,n) 7 Be type thick target, using the 3 MV McMaster K.N. Van de Graaff accelerator. The dosimetry was done using a pre-calibrated snoopy type neutron dosimeter. Neutron irradiation induces a dosimetric signal in the tooth enamel at the same defect site as gamma produced damage with the same g-values (g parallel =1.9973, width 0.4 mT g perpendicular =2.002, width 0.3 mT). The dosimetric signal grows linearly with neutron dose from 6-35 Gy tissue dose. Dosimetric response in two different grain sizes (300-500 μm, and grains <4 mm) has shown increased dosimetric amplitude in the larger grains. Dose build up effect on tooth inside the mouth due to cheek was simulated by placing a 4 mm thick paraffin wax layer between the beam and tooth, but had little effect. These results show that for mean neutron energy of 280 keV, the relative neutron response of the human tooth enamel ranges from 8% to 12% of the equivalent gamma ray response

  2. EPR dosimetric properties of nano-barium sulfate

    International Nuclear Information System (INIS)

    Aboelezz, E.; Hassan, G.M.; Sharaf, M.A.; El-Khodary, A.

    2015-01-01

    Nano/micro BaSO 4 were prepared through the co-precipitation method to measure ionizing radiation doses using electron paramagnetic resonance (EPR). The nano-BaSO 4 sample was characterized using X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The dose response and fading properties of nano- and micro-phase BaSO 4 were compared in EPR spectra. The prepared nano- and micro-BaSO 4 samples have the same hole and electron centers, which may be attributed to SO 4 − and SO 3 − , respectively. The dosimetric signals for prepared nano- and micro-BaSO 4 have spectroscopic splitting factor (g) with values 2.0025±0.0006 and 2.0027±0.0006, respectively. The nanocrystalline sample has a linear γ-ray dose response over the range 0.4 Gy–1 kGy. The performance parameters which including detection limit and critical level calculated from weighted and unweighted least-squares fitting. The sensitivity of nano-BaSO 4 to γ-ray is one and a half times more than alanine. The lifetime and activation energy for nano-BaSO 4 were estimated by conducting a thermal stability study, and were 5.7±1.1×10 4 years and 0.73±0.14 eV, respectively. The combined and expanded uncertainties accompanying measurements were ±3.89% and ±7.78%, respectively. - Highlights: • Preparation of nano-BaSO 4 using the co-precipitation method. • Study of the dosimetric properties of nano-barium sulfate using the EPR technique. • Comparison between a new EPR dosimeter using nano-materials and standard alanine. • Calculation of the uncertainty budget for nano-BaSO 4

  3. The theoretical and practical principles of determining doses and carrying out dosimetric audit programmes in radiotherapy units in Poland (adjustment to the European Union Council Directive 97/43 EURATOM)

    International Nuclear Information System (INIS)

    Bulski, W.

    2011-01-01

    This project was aimed at developing research and organizational programmes to implement in Poland the Council Directive 97143 EURATOM in the field of dosimetric audits. The project included two types of research in detail: (1) the preparation of precise and reproducible standards of radiation doses, or, in other words, the investigation, development and determination of exact and effective principles of the standardization of ionization chambers used in carrying out dosimetric audit programmes, (2) the investigation of TL detectors used in audits, with the aim of obtaining the best possible measurement accuracy as well as analysis of available results of audits under reference conditions, and the development and implementation of audits for non-reference conditions, including computer-assisted treatment planning systems (TPS) indispensable in present-day radiotherapy practices. (author)

  4. Production of LiF films for dosimetric thermoluminescence application

    International Nuclear Information System (INIS)

    Mauricio, Claudia Lucia de Pinho

    2000-12-01

    This work studies the LiF monolayer and multilayer polycrystalline film's dosimetric properties. The films were produced by electron beam evaporation technique in aluminium and stainless steel substrates maintained at several temperatures. As dosimetric variable, the intensity of the thermoluminescent (TL) glow curve of the films was used. effects of the substrate type and temperature; of the addition of layers of Mg F 2 NaF and Cu F 2 to the LiF films; and of thermal treatments in the TL response of the produced films were studied. The microstructural characterization of the films was accomplished through measures of scanning electronic microscopy and grazing incidence X-rays diffraction analysis. The dosimetric characterization was made of gamma radiation exposure in a 60 Co source, with kerma from 0,1 to 500 Gy. Studies of reproducibility, homogeneity, stability and other environmental effects were also made. LiF and Cu F 2 : LiF; Mg F 2 films were the only ones that presented mechanical stability and reproducibility of the TL emission. There is a strong indication of some correlation between the residual tension fields inside the films and the intensity of its TL emission peaks. LiF monolayer films present supralinear behaviour from 0,2 to 100 Gy. These films present a main TL glow peak around 150 deg C, whose half-time is about 30 days. Its volumetric sensitivity can reach about 60 times that of LiF powder and about 0,25 that of TLD100 (LiF:Mg, Ti commercial dosimeter from Harshaw Chemical Co.) The homogeneity and reproducibility inside a same film batch is better than 12% for 95% confidence level. Cu F 2 : LiF: Mg F 2 films present linear behaviour from 3 to 500 Gy and its main TL glow peak around 200 deg C did not present any fading for a a period of 30 days, in laboratory conditions. This glow peak is characteristic of the Mg doping of LiF, which confirms the diffusion of Mg ions from the Mg F 2 layer to the LiF layer. The TL volumetric sensitivity of these

  5. Investigation of the dosimetric properties of an a-Si flat panel epid

    International Nuclear Information System (INIS)

    Fielding, A.L.; Jahangir, S.T.

    2004-01-01

    Full text: Electronic portal imaging devices (EPIDs) are primarily used as an electronic replacement for film to verify the set-up of radiotherapy patients based on imaged anatomy. There has recently been much interest in the use of amorphous silicon (a-Si) flat panel EPIDs for dosimetric verification in radiotherapy. The work presented here has been carried out to determine their suitability for dosimetric applications by investigating some of the basic response characteristics and the implications these might have. The measurements reported in this paper were performed using 6-MV photon beams from an Elekta Precise linear accelerator fitted with Elekta iViewGT amorphous silicon flat panel EPIDs. Measurements were performed to investigate the response of the EPID as a function of exposure and field size. Similar measurements were made with an ionisation chamber for comparison. Further measurements were carried out to investigate the response of the EPID to multiple low dose exposures (e.g. 5x2 MU) such as might be encountered in Intensity Modulated Radiotherapy (IMRT). This was compared with the response to a single high dose exposure (e.g. 10 MU) and repeated for a range of exposures. The results show the response of the EPID, to a good approximation, to be linear with dose over the range of 1 -200 MU. However, 'under-responses' in the EPID of up to 5% were seen at the lowest exposures. For multiple low dose segments the sum of the EPID responses was found to be less than the response to the same total exposure in a single large segment. This effect reduces with increase in the magnitude of the low dose segments. The variation in EPID response with field size was found to be greater than that indicated by the ionisation chamber. The results show that the a-Si detector responds to dose, to a good approximation, in a linear manner. The EPID under-response at low doses is thought to be related to the so called ghosting effect. Each image frame has a residual

  6. Decree of the 17 July 2013 related to the medical supervision form and to the dosimetric follow-up of workers exposed to ionizing radiations

    International Nuclear Information System (INIS)

    Combrexelle, J.D.; Ligeard, C.; Gandil, P.

    2013-01-01

    This legal text addresses the delivery modalities and content of the individual medical supervision form, the implementation modalities and conditions for the reference individual dosimetric follow-up, the implementation modalities and conditions for the operational individual dosimetric follow-up, the access to dosimetry individual results. Appendices address the modalities of the individual dosimetric follow-up, the dosimetry for internal exposure follow-up, the dosimetry for external exposure follow-up, the dosimetry for the follow-up of professional exposure to natural radioactivity, and the technical modalities of information exchange

  7. Results of special radiation measurements resulting from the Chernobyl accident and regional analysis of environmental radioactivity

    International Nuclear Information System (INIS)

    1986-07-01

    This report of the SCPRI exposes an interpretation of the results concerning the monitoring of the environmental radioactivity in France following Chernobyl accident. Atmospheric dusts, milk and milk products, vegetables, water and various beverages are analyzed. More than 1500 additional food samples are presented. Regional analysis of radioactivity and human gamma-spectrometric investigations are included [fr

  8. Dosimetric study for characterization of a postal system of quality control in brachytherapy; Estudo dosimetrico para caracterizacao de um sistema postal de controle de qualidade em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Victor Gabriel Leandro, E-mail: vgalves@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil); Queiroz Filho, Pedro Pacheco de; Santos, Denison de Souza, E-mail: queiroz@ird.gov.b, E-mail: santosd@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Begalli, Marcia, E-mail: begalli@uerj.b [Universidade do Estado do Rio de Janeiro (IF/UERJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    This work presents a dosimetric study of a postal system, to be developed for measurements of brachytherapy. It was projected a PMMA phantom with orifices for insertion of the high dose {sup 192}Ir source and the T L dosemeters. The system was characterized with using of Monte Carlo simulations, using the dosimetric magnitudes defined at the T G-43 of AAPM, as function of radial dose g(f)

  9. A dosimetric study during cardiac angiography in young children

    International Nuclear Information System (INIS)

    Amiel, M.; Clermont, A.; Jocteur-Monrozier, D.; Moroni, J.P.; Brun, P.

    1976-01-01

    A dosimetric study was carried out in collaboration with the SCPRI in 30 infants during cardiac catheterization for a congenital cardiopathy. As far as the doctor is concerned, the results show that the dose received by the right hand of the operator is the only one that is relatively high and notably higher than in the adult; the other results are in agreement with those published in the literature. For the manipulator the doses received are practically negligible. This finding does not agree with those of certain publications in the literature and it emphasizes the importance of the working conditions for these personnel. For infants, the gonadal dose is much higher than in the adult and the magnitude of the dose relative to the dose at the place of entry of the incident beam, taking into account the weight of the infant, certaintly represents a long-term risk, in particular, in patients who must undergo repeated examinations [fr

  10. Radiation hazards in uranium mining. Epidemiological and dosimetric approaches

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1989-01-01

    Potential health hazards resulting from exposure to various sources of radiation associated with uranium mining have been reviewed: 1) epidemiological observations on groups of miners exposed in the past to high concentrations of radon progeny have been interpreted to suggest a lifetime risk of about 3 x 10 -4 lung cancers per WLM; 2) the total risk of serious health effects resulting from exposure of workers to whole body gamma-radiation might be taken to be about 2 x 10 -2 per Sv; and 3) the potential health effects of inhalation of thoron progeny or of radioactive ore dusts can only be estimated from dosimetric calculations. A review of the uncertainties involved in these calculations suggests that ICRP estimates of the potential toxicity of inhaled thoron progeny are as good as those for inhaled radon progeny. However, the potential health hazards from inhaled uranium and thorium ore dusts have probably been overestimated by a factor of 2 to 10-fold

  11. SU-F-P-11: Long Term Dosimetric Stability of 6 TomoTherapy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, J; Dunkerley, D; Geurts, M; Hill, P; Yadav, P [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The dosimetric stability of six TomoTherapy units was analyzed to investigate changes in performance over time and with system upgrades. Methods: Energy and output were tracked using monitor chamber signal, onboard MVCT detector signal and external ion chamber measurements. The systems (and monitoring periods) include 3 Hi-Art (67, 61 and 65 mos.), 2 HDA (29 and 25 mos.) and one research unit (7 mo.). Dose Control Stability system (DCS) was installed on 4 systems. Output stability is reported as deviation from reference monitor chamber signal for all systems, and from an external chamber for 4 systems. Energy stability was monitored using the relative (center versus off-axis) MVCT detector signal and/or the ratio of chamber measurements at 2 depths. The results from the clinical systems were used to benchmark the stability of the research unit, which has the same linear accelerator but runs at a higher dose rate. Results: The output based on monitor chamber data of all six systems is very stable. Non- DCS had a standard deviation of 1.7% and 1.8%. As expected, DCS systems had improved standard deviation: 0.003–0.05%. The energy was also very stable for all units. The standard deviation in exit detector flatness was 0.02–0.3%. Ion chamber output and 20/10 cm ratios supported these results. The stability for the research system, as monitored with a variety of metrics, is on par with the existing systems. Conclusion: The output and energy of six TomoTherapy units over a total of almost 10 years is quite stable. For each system, the results are consistent between the different measurement tools and techniques, proving not only the dosimetric stability, but that these quality parameters can be confirmed with various metrics. A research unit operating at a higher dose rate performed as well as the clinical treatment units. University of Wisconsin and Accuray Inc. (vendor of TomoTherapy systems) have a research agreement which supplies funds for research to

  12. Dosimetric validation of planning system Eclipse 10 in partial breast irradiation treatments with IMRT

    International Nuclear Information System (INIS)

    Velazquez T, J. J.; Gutierrez M, J. G.; Ortiz A, C. S.; Chagoya G, A.; Gutierrez C, J. G.

    2015-10-01

    Partial breast irradiation is a new type of external radiation therapy to treat breast cancer in early clinical stages. Consist of administering to the channel surgical high doses of radiation in few treatment sessions. In this paper the dose calculations of the planning system Eclipse version 10 for a treatment of partial breast irradiation with X-rays beams (6 MV) intensity modulated were compared against the measurements made with OSL dosimeters and radio-chromic dye film. An anthropomorphic mannequin was used in which OSL dosimeters were collocated near the surface, an inside the radio-chromic dye film one plate; with this latest one dimensional dose distribution was measured. Previously dosimeters were calibrated irradiating them with a beam of X-rays 6 MV under the conditions specified in the IAEA-398 protocol. The OSL dosimeters were read in the Micro star Landauer equipment, the radio-chromic dye films were read with a scanner Epson 10000-Xl and analyzed with FilmCal and PTW Verisoft programs. The differences between measured and calculated dose were as follows: 3.6±1% for the OSL dosimeter and 96.3±1% of the analyzed points approved the gamma index criterion (3%, 3m m) when comparing the matrices of calculated dose and measured with the radio-chromic dye film. These results confirm the good dosimetric performance of planning system used under specific conditions used in the partial breast irradiation technique. (Author)

  13. The Need for New Dosimetric Approach in CT Dosimetry

    International Nuclear Information System (INIS)

    Ben-Shlomo, A.; Iacobovici, E.

    2004-01-01

    Three decades after the invention of the first CT in 1972, it became a major tool in diagnostic radiology. The use of CT for various applications is getting wider every year. The quantity of CT procedures performed in Israel every year is estimated as 500,000. About 10% of those are pediatric procedures, for children under age 10. CT procedures increase is estimated at 5-10 % per annum. In spite the fact that CT contributes to about 1/8 of the total number of diagnostic X-ray procedures in Israel, the CT collective dosage is about 40% of the total collective dosage in the said procedures (about 3,500 Man*Sv per year). Medical radiation dosage is the first contributor to population dosage, resulting from artificial radiation sources. Diagnostic X-ray radiation dosage is the first contributor to medical radiation dose (including radiation dose from diagnostic X-ray, nuclear medicine and radiotherapy with exclusion of the target organ dose). Among medical X-ray different applications, CT procedure is the first cause to radiation dose of the population according to X-ray diagnostic procedures. The above facts emphasize the need to focus on CT in order to reduce the medical collective dose of the public. Several dosimetric units have appeared in recent years in order to comply with the need for CT Dosimetry. The CTDI Unit that served so well during the first CT years is no longer sufficient, as is, for modern instruments. This basic unit has become a complex concept that covers new units: CTDI W , CTDI VOL , CTDI 100 , MSAD and DLP. The search for a simple way to apply these units in order to calculate effective dosage during CT examinations is not straightforward. Modern equipment is simultaneously using 4 and 16 slices. Manufacturers are endeavoring to develop the next generation equipment with 256 slices used simultaneously (expected on the market in the next 1-2 years). This situation sets technology one step forward regarding the dosimetry methods used for organ

  14. ESR dosimetric properties of modern coral reef

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf, M.A. E-mail: mokhtar_sharaf@yahoo.com; Hassan, Gamal M

    2004-06-01

    Modern coral reef samples from Egypt were irradiated with {sup 60}Co{gamma}-rays to study radicals for dosimetric materials with electron spin resonance (ESR). The ESR spectrum for the radical species in unirradiated coral is characterized by four signals with spectroscopic splitting factors of g=2.0056, 2.0030, 2.0006 and 1.997. The signal at g=2.0006{+-}0.0005 is ascribed to free rotation CO{sub 2}{sup -} radicals and used as a dosimetric one. The response to {gamma}-ray doses ranging from 5 to 10{sup 3} Gy and the thermal stability has been studied. The number of free radicals per 100 eV (G-value) was found to be 0.45 {+-} 0.1 and 0.9 {+-} 0.18 for coral and alanine, respectively. The lifetime of radicals and the activation energy were estimated from Arrhenius plots to be approximately 8 x 10{sup 5} {+-} 1.6 x 10{sup 5} years, and 1.12 eV, respectively.

  15. Dosimetric monitoring at time of Chernobyl clean-up. A retrospective view

    International Nuclear Information System (INIS)

    Chumak, V.V.; Bakhanova, E.V.; Musijachenko, N.V.; Krjuchkov, V.P.

    2000-01-01

    affiliation at the time of clean-up, dosimetric methods used, workplace locations and tasks executed in Chernobyl. As a result of postal survey, response rate of 34% was achieved, yielding in 4,634 completed questionnaires. It was determined that in many cases (>50%) dose records were assigned by group method (one dosimeter for a group of liquidators) and group commitment (calculation in advance) methods. Personal dosimetry was applied only in less than 9% cases. The information acquired in course of this survey made possible stratification of the liquidator population according to dosimetric monitoring practice, tasks and places of work at time of clean-up. Obviously, uncertainty of recorded doses depends on the method of dose evaluation at time of clean up. Therefore, acquired information about the dosimetric practices should be used for evaluation of uncertainties associated with individual records. This work, being in progress now, involves both assignment of beforehand known uncertainty intervals to the records yielded by well known methods (like TLD dosimetry) and retrospective evaluation of errors for some less precise methods by applying independent dosimetric methods to the same subjects. The discussed work, done on retrospective basis, allows verification of a good deal of dosimetric information and make sensible use of many thousands of individual doses records of the Chernobyl clean-up workers. (author)

  16. Harmonization of dosimetric information obtained by different EPR methods: Experience of the Techa river study

    Energy Technology Data Exchange (ETDEWEB)

    Volchkova, A. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Shishkina, E.A., E-mail: ElenaA.Shishkina@gmail.com [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Ivanov, D. [Institute of Metal Physics, Russian Academy of Sciences, 18, S. Kovalevskoy Str., 620041 Yekaterinburg (Russian Federation); Timofeev, Yu. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Fattibene, P.; Della Monaca, S. [Istituto Superiore di Sanita and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161 Rome (Italy); Wieser, A. [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, D-85764 Neuherberg (Germany); Degteva, M.O. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation)

    2011-09-15

    Between 1949 and 1956 the Techa River (Southern Urals, Russia) was contaminated as a result of releases of radioactive waste by the Mayak Production Association. EPR dosimetry with tooth enamel has been used to estimate the external exposure of Techa riverside residents over the last 17 years. The database 'Tooth' of the Urals Research Center for Radiation Medicine (URCRM) has accumulated about 1000 EPR measurements of tooth enamel from the rural population of the Urals region. The teeth were investigated by laboratories of Russia, USA, Germany and Italy. Most of the enamel samples were measured several times in different laboratories. Each laboratory used different equipment and its own methods for sample preparation and EPR spectra analysis. Even measurements performed at the same laboratory over 10-15 years may not be assumed as uniform: methods change with time, and equipment is subject to aging. These two factors influenced EPR performance. The purpose of this study is, therefore, the harmonization of EPR data accumulated during long-term dosimetric investigations in the Southern Urals for further pooled analysis. The results will be used for external dose evaluation in the Techa River region.

  17. Dosimetric behavior of thermoluminescent dosimeters at low doses in diagnostic radiology; Comportamiento dosimetrico de dosimetros termoluminiscentes a bajas dosis en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Del Sol F, S.; Garcia S, R.; Guzman M, J.; Sanchez G, D.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Ramirez R, G. [Hospital Juarez de Mexico, Av. IPN 5160, Col. Magdalena de las Salinas, 07760 Mexico D. F. (Mexico); Gaona, E., E-mail: susi2489@hotmail.com [Universidad Autonoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1100, Col. Villa Quietud, 04960 Mexico D. F. (Mexico)

    2015-10-15

    Thermoluminescent (Tl) characteristics of TLD-100, LiF:Mg,Cu,P, and CaSO{sub 4}: Dy the under homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescent dosimetry is presented. The irradiations were performed utilizing an X-ray beam generated by a Radiology Mexican Company: MRH-II E GMX 325-AF SBV-1 model, with Rotating Anode X-Ray Tube installed in the Hospital Juarez Norte de Mexico in Mexico City. Different thermoluminescent characteristics of dosimetric material were studied, such as, batch homogeneity, Tl glow curve, Tl response as a function of X-ray dose, reproducibility and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and positioned in a generic Phantom was used. Dose verification and comparison with the measurements made with that obtained by TLD-100 were analyzed. Preliminary results indicate the dosimetric peak appears at 243, 236 and 277 ± 5 degrees C respectively, these peaks are in agreement with that reported in the literature. Tl glow curve as a function of X-ray dose showed a linearity in the range from 1.76 mGy up to 14.70 mGy for all materials. Fading for a period of one month at room temperature showed low fading LiF:Mg,Cu,P, medium and high for TLD-100 and CaSO{sub 4}: Dy. The results suggest that the three materials are suitable for measurements at low doses in radiodiagnostic, however, for its dosimetric characteristics are most effective for individual applications: personal dosimetry and monitors limb (LiF:Mg,Cu,P), clinical dosimetry and environmental (TLD-100 and CaSO{sub 4}: Dy). (Author)

  18. Dosimetric commissioning of a CBCT system for IGRT purposes

    International Nuclear Information System (INIS)

    Alfonso, R.; Ascencion, Y.; Castillo, D.; Linares, H.; Argota, R.; Garcia, F.

    2015-01-01

    During the last few years the use of tomographic imaging systems based on kilo voltage, cone shaped photon beams (kV-CBCT) for ensuring an accurate positioning of patients in radiotherapy treatments has expanded to low income departments, such as those existing in public health systems of low and middle income countries (LMIC). Although several dosimetric studies have been published so far, showing results of collateral dose in patients exposed to kV-CBCT studies for image guidance radiotherapy purposes (IGRT), their main objective is to demonstrate that these doses are significantly lower than the prescribed dose to the target volume and even the dose to organs and healthy tissues. In the actual study a methodology is proposed to reduce the CBCT dose during IGRT procedures for tumor targets located in the thorax region, where motion management is crucial. Criteria for dose optimization, based on image quality indexes and automated positioning accuracy, were implemented. (Author)

  19. Dosimetric of extremities with Dosemeters thermoluminescent in Cuba

    International Nuclear Information System (INIS)

    Molina Perez, D.; Diaz Bernal, E.; Vera Alonso, L.

    1998-01-01

    From final of the year 1995 in the CPHR implement the service of monitoring of the extremities using Dosemeter thermoluminescent (TL). The dosemeter consists on a metallic ring with a circular hole where a detector of LiF:Mg,Ti is placed (model JR1152C) of 5x5x0.9 mm 3 , covered by a fine layer of polyethylene. In the work the characteristic dosimetric as of the dosemeter is studied it satisfies the main requirements for their use in the monitoring from the exhibition to radiation photonic of the extremities. The doses are also presented registered during the first two years of operation of the service. The results obtained until the moment point out to you practice them of nuclear medicine, radiotherapy and production of substances radioactive how as of more contribution

  20. Study on the neutron dosimetric characteristics of Tissue Equivalent Proportional Counter

    Energy Technology Data Exchange (ETDEWEB)

    Nunomiya, T.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Tsujimura, N.; Momose, T.; Shinohara, K. [Japan Nuclear Cycle Development Inst., Environment and Safety Division, Tokai Works, Tokai, Ibaraki (Japan)

    1999-03-01

    The neutron dosimetric characteristics of TEPC (Tissue Equivalent Proportional Counter) has been investigated under a cooperative study between Tohoku University and JNC since 1997. This TEPC is a spherical, large volume, single-wire proportional counter (the model LETSW-5, manufactured by Far West Technology, Inc.) and filled with a tissue equivalent gas in a spherical detector of the A-150 tissue equivalent plastic. The TEPC can measure the spectra of absorbed dose in LET and easily estimate the tissue equivalent dose to neutron. This report summarizes the dosimetric characteristics of TEPC to the monoenergetic neutrons with energy from 8 keV to 15 MeV. It is found that TEPC can estimate the ambient dose equivalent, H*(10), with an accuracy from 0.9 to 2 to the neutron above 0.25 MeV and TEPC has a good counting efficiency enough to measure neutron doses with low dose rate at the stray neutron fields. (author)

  1. Late Urinary Side Effects 10 Years After Low-Dose-Rate Prostate Brachytherapy: Population-Based Results From a Multiphysician Practice Treating With a Standardized Protocol and Uniform Dosimetric Goals

    International Nuclear Information System (INIS)

    Keyes, Mira; Miller, Stacy; Pickles, Tom; Halperin, Ross; Kwan, Winkle; Lapointe, Vincent; McKenzie, Michael; Spadinger, Ingrid; Pai, Howard; Chan, Elisa K.; Morris, W. James

    2014-01-01

    Purpose: To determine late urinary toxicity (>12 months) in a large cohort of uniformly treated low-dose-rate prostate brachytherapy patients. Methods and Materials: From 1998 to 2009, 2709 patients with National Comprehensive Cancer Network–defined low-risk and low-tier intermediate-risk prostate cancer were treated with Iodine 125 ( 125 I) low-dose-rate prostate brachytherapy; 2011 patients with a minimum of 25 months of follow-up were included in the study. Baseline patients, treatment, implant factors, and late urinary toxicity (Radiation Therapy Oncology Group [RTOG] grading system and International Prostate Symptom Score [IPSS]) were recorded prospectively. Time to IPSS resolution, late RTOG genitourinary toxicity was examined with Kaplan-Meier and log-rank tests. Cox proportional hazards regression was done for individual covariates and multivariable models. Results: Median follow-up was 54.5 months (range, 2-13 years). Actuarial toxicity rates reached 27% and 10% (RTOG ≥2 and ≥3, respectively) at 9-13 years. Symptoms resolved quickly in the majority of patients (88% in 6-12 months). The prevalence of RTOG 0, 1, 2, 3, and 4 toxicity with a minimum of 7 years' follow-up was 70%, 21%, 6.4%, 2.3%, and 0.08%, respectively. Patients with a larger prostate volume, higher baseline IPSS, higher D90, acute toxicity, and age >70 years had more late RTOG ≥2 toxicity (all P≤.02). The IPSS resolved slower in patients with lower baseline IPSS and larger ultrasound prostate volume, those not receiving androgen deprivation therapy, and those with higher D90. The crude rate of RTOG 3 toxicity was 6%. Overall the rate of transurethral resection of the prostate was 1.9%; strictures, 2%; incontinence, 1.3%; severe symptoms, 1.8%; late catheterization, 1.3%; and hematuria, 0.8%. The majority (80%) resolved their symptoms in 6-12 months. Conclusion: Long-term urinary toxicity after brachytherapy is low. Although actuarial rates increase with longer follow

  2. Late Urinary Side Effects 10 Years After Low-Dose-Rate Prostate Brachytherapy: Population-Based Results From a Multiphysician Practice Treating With a Standardized Protocol and Uniform Dosimetric Goals

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Mira, E-mail: mkeyes@bccancer.bc.ca; Miller, Stacy; Pickles, Tom; Halperin, Ross; Kwan, Winkle; Lapointe, Vincent; McKenzie, Michael; Spadinger, Ingrid; Pai, Howard; Chan, Elisa K.; Morris, W. James

    2014-11-01

    Purpose: To determine late urinary toxicity (>12 months) in a large cohort of uniformly treated low-dose-rate prostate brachytherapy patients. Methods and Materials: From 1998 to 2009, 2709 patients with National Comprehensive Cancer Network–defined low-risk and low-tier intermediate-risk prostate cancer were treated with Iodine 125 ({sup 125}I) low-dose-rate prostate brachytherapy; 2011 patients with a minimum of 25 months of follow-up were included in the study. Baseline patients, treatment, implant factors, and late urinary toxicity (Radiation Therapy Oncology Group [RTOG] grading system and International Prostate Symptom Score [IPSS]) were recorded prospectively. Time to IPSS resolution, late RTOG genitourinary toxicity was examined with Kaplan-Meier and log-rank tests. Cox proportional hazards regression was done for individual covariates and multivariable models. Results: Median follow-up was 54.5 months (range, 2-13 years). Actuarial toxicity rates reached 27% and 10% (RTOG ≥2 and ≥3, respectively) at 9-13 years. Symptoms resolved quickly in the majority of patients (88% in 6-12 months). The prevalence of RTOG 0, 1, 2, 3, and 4 toxicity with a minimum of 7 years' follow-up was 70%, 21%, 6.4%, 2.3%, and 0.08%, respectively. Patients with a larger prostate volume, higher baseline IPSS, higher D90, acute toxicity, and age >70 years had more late RTOG ≥2 toxicity (all P≤.02). The IPSS resolved slower in patients with lower baseline IPSS and larger ultrasound prostate volume, those not receiving androgen deprivation therapy, and those with higher D90. The crude rate of RTOG 3 toxicity was 6%. Overall the rate of transurethral resection of the prostate was 1.9%; strictures, 2%; incontinence, 1.3%; severe symptoms, 1.8%; late catheterization, 1.3%; and hematuria, 0.8%. The majority (80%) resolved their symptoms in 6-12 months. Conclusion: Long-term urinary toxicity after brachytherapy is low. Although actuarial rates increase with longer

  3. Verification of dosimetric methodology for auditing radiotherapy quality under non-reference condition in Hubei province

    International Nuclear Information System (INIS)

    Ma Xinxing; Luo Suming; He Zhijian; Zhou Wenshan

    2014-01-01

    Objective: To verify the reliability of TLD-based quality audit for radiotherapy dosimetry of medical electron accelerator in non-reference condition by monitoring the dose variations from electron beams with different field sizes and 45° wedge and the dose variations from photon beams with different field sizes and source-skin distance. Methods: Both TLDs and finger ionization chambers were placed at a depth of 10 cm in water to measure the absorbed dose from photon beams, and also placed at the depth of maximum dose from electron beams under non-reference condition. TLDs were then mailed to National Institute for Radiological Protection, China CDC for further measurement. Results: Among the 70 measuring points for photon beams, 58 points showed the results with a relative error less than ±7.0% (IAEA's acceptable deviation: ±7.0%) between TLDs and finger ionization chambers measurements, and the percentage of qualified point numbers was 82.8%. After corrected by Ps value, 62 points were qualified and the percentage was up to 88.6%. All of the measuring points for electron beams, with the total number of 24, presented a relative error within ±5.0% (IAEA's acceptable deviation: ±5.0%) between TLDs and finger ioization cylindrical chambers measurements. Conclusions: TLD-based quality audit is convenient for determining radiotherapy dosimetric parameters of electron beams in non-reference condition and can improve the accuracy of the measuring parameters in connection with finger chambers. For electron beams of 5 MeV < E_0 < 10 MeV, the absorbed dose parameters measured by finger ionization chambers, combined with TLD audit, can help obtain the precise and reliable results. (authors)

  4. Weekly Volume and Dosimetric Changes During Chemoradiotherapy With Intensity-Modulated Radiation Therapy for Head and Neck Cancer: A Prospective Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Shreerang A [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Davies, Mark; Burke, Kevin; McNair, Helen A; Hansen, Vibeke [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Barbachano, Y [Department of Statistics, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); El-Hariry, I A [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Newbold, Kate [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Harrington, Kevin J [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Nutting, Christopher M., E-mail: chris.nutting@rmh.nhs.u [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom)

    2010-04-15

    Purpose: The aim of this study was to investigate prospectively the weekly volume changes in the target volumes and organs at risk and the resulting dosimetric changes during induction chemotherapy followed by chemoradiotherapy with intensity-modulated radiation therapy (C-IMRT) for head-and-neck cancer patients. Methods and Materials: Patients receiving C-IMRT for head-and-neck cancer had repeat CT scans at weeks 2, 3, 4, and 5 during radiotherapy. The volume changes of clinical target volume 1 (CTV1) and CTV2 and the resulting dosimetric changes to planning target volume 1 (PTV1) and PTV2 and the organs at risk were measured. Results: The most significant volume differences were seen at week 2 for CTV1 and CTV2. The reductions in the volumes of CTV1 and CTV2 at week 2 were 3.2% and 10%, respectively (p = 0.003 and p < 0.001). The volume changes resulted in a significant reduction in the minimum dose to PTV1 and PTV2 (2 Gy, p = 0.002, and 3.9 Gy, p = 0.03, respectively) and an increased dose range across PTV1 and PTV2 (2.5 Gy, p < 0.001, and 5.1 Gy, p = 0.008, respectively). There was a 15% reduction in the parotid volumes by week 2 (p < 0.001) and 31% by week 4 (p < 0.001). There was a statistically significant increase in the mean dose to the ipsilateral parotid only at week 4 (2.7 Gy, p = 0.006). The parotid glands shifted medially by an average of 2.3 mm (p < 0.001) by week 4. Conclusion: The most significant volumetric changes and dosimetric alterations in the tumor volumes and organs at risk during a course of C-IMRT occur by week 2 of radiotherapy. Further adaptive radiotherapy with replanning, if appropriate, is recommended.

  5. Evaluation of the dosimetric performance characteristic of fluoroscopy system used in medicine

    International Nuclear Information System (INIS)

    Qi Xuesong; Wei Kedao; Cheng Yuxi; Zhou Qifu; Ge Lijuan; Hou Changsong

    2001-01-01

    Objective: To discuss establishment of diagnostic reference dose value in fluoroscopic examinations for survey of 16 different types of fluoroscopy systems. Methods: Choosing dosimetric characteristic parameters including: IIESDR, ESDR (typical value) and ESDR max (ESDR maximum), and DAP, which was calibrated in situ on the X-ray unit. Results: Results of dose survey are summarized in three tables, from these we could get wide changes in accordance with those in many other countries resulting from maximum and minimum of IIESDR, ESDR and ESDRmax when measurements were performed at same entrance field size on I.I. Image Intensifier of the 15 fluoroscopy systems and under conditions of ABC. And also we could get less changes of DAP mean values, though differences for patient weight, technological parameters of fluoroscopic exam setting, fluoroscopic time and number of film were more remarkable. Conclusions: Measurements on IIESDR, ESDR (typical value) and ESDRmax (ESDR maximum) are not satisfied as diagnostic reference level. But it is suggested that DAP values, in fluoroscopic exam, are used as a tool to achieve this. (author)

  6. Beam standardization and dosimetric methodology in computed tomography

    International Nuclear Information System (INIS)

    Maia, Ana Figueiredo

    2005-01-01

    Special ionization chambers, named pencil ionization chambers, are used in dosimetric procedures in computed tomography beams (CT). In this work, an extensive study about pencil ionization chambers was performed, as a contribution to the accuracy of the dosimetric procedures in CT beams. The international scientific community has recently been discussing the need of the establishment of a specific calibration procedure for CT ionization chambers, once these chambers present special characteristics that differentiate them from other ionization chambers used in diagnostic radiology beams. In this work, an adequate calibration procedure for pencil ionization chambers was established at the Calibration Laboratory, of the Institute de Pesquisas Energeticas e Nucleares, in accordance with the most recent international recommendations. Two calibration methodologies were tested and analyzed by comparative studies. Moreover, a new extended length parallel plate ionization chamber, with a transversal section very similar to pencil ionization chambers, was developed. The operational characteristics of this chamber were determined and the results obtained showed that its behaviour is adequate as a reference system in CT standard beams. Two other studies were performed during this work, both using CT ionization chambers. The first study was about the performance of a pencil ionization chamber in standard radiation beams of several types and energies, and the results showed that this chamber presents satisfactory behaviour in other radiation qualities as of diagnostic radiology, mammography and radiotherapy. In the second study, a tandem system for verification of hal'-value layer variations in CT equipment, using a pencil ionization chamber, was developed. Because of the X rays tube rotation, the determination of half-value layers in computed tomography equipment is not an easy task, and it is usually not performed within quality control programs. (author)

  7. Mevatron-74 10MeV photon beam: a study of dosimetric quantities

    International Nuclear Information System (INIS)

    Souza, C.N. de

    1986-01-01

    The Mevatron-74 linear accelerator dosimetric quantities were studied. In water and polystyrene measurements with an ionization chamber were done for following physical parameters: maximum dose depth and surface dose, field size dependence, central axis percentage depth dose, beam flatness and simmetry, and also verification the inverse square law for the distances normally used in therapy. Isodose curves were generated by the decrement lines method. (Author) [pt

  8. Dosimetric validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator.

    Science.gov (United States)

    Narayanasamy, Ganesh; Saenz, Daniel L; Defoor, Dewayne; Papanikolaou, Niko; Stathakis, Sotirios

    2017-11-01

    The purpose of this study is to perform dosimetric validation of Monaco treatment planning system version 5.1. The Elekta VersaHD linear accelerator with high dose rate flattening filter-free photon modes and electron energies was used in this study. The dosimetric output of the new Agility head combined with the FFF photon modes warranted this investigation into the dosimetric accuracy prior to clinical usage. A model of the VersaHD linac was created in Monaco TPS by Elekta using commissioned beam data including percent depth dose curves, beam profiles, and output factors. A variety of 3D conformal fields were created in Monaco TPS on a combined Plastic water/Styrofoam phantom and validated against measurements with a calibrated ion chamber. Some of the parameters varied including source to surface distance, field size, wedges, gantry angle, and depth for all photon and electron energies. In addition, a series of step and shoot IMRT, VMAT test plans, and patient plans on various anatomical sites were verified against measurements on a Delta 4 diode array. The agreement in point dose measurements was within 2% for all photon and electron energies in the homogeneous phantom and within 3% for photon energies in the heterogeneous phantom. The mean ± SD gamma passing rates of IMRT test fields yielded 93.8 ± 4.7% based on 2% dose difference and 2 mm distance-to-agreement criteria. Eight previously treated IMRT patient plans were replanned in Monaco TPS and five measurements on each yielded an average gamma passing rate of 95% with 6.7% confidence limit based on 3%, 3 mm gamma criteria. This investigation on dosimetric validation ensures accuracy of modeling VersaHD linac in Monaco TPS thereby improving patient safety. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, E; Mabhouti, H; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target were also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.

  10. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    International Nuclear Information System (INIS)

    Sanli, E; Mabhouti, H; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H

    2016-01-01

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target were also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose

  11. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer.

    Science.gov (United States)

    Tsuruta, Yusuke; Nakata, Manabu; Nakamura, Mitsuhiro; Matsuo, Yukinori; Higashimura, Kyoji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-01

    To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. The results from AXB and XVMC agreed with measurements within ± 3.0% for the lung-equivalent phantom with a 6 × 6 cm(2) field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ± 3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124-358 s), 66.1 ± 16.0 s (range, 42-94 s), and 6.7 ± 1.1 s (range, 5-9 s) for XVMC, AXB, and AAA, respectively. In the phantom evaluations, AXB and XVMC agreed better with

  12. Dosimetric comparison of water phantoms, ion chambers, and data acquisition modes for LINAC characterization

    International Nuclear Information System (INIS)

    Cruz, Wilbert; Narayanasamy, Ganesh; Papanikolaou, Niko; Stathakis, Sotirios

    2015-01-01

    Purpose: In this study a dosimetric comparison utilizing continuous data acquisition and discrete data acquisition is examined using IBA Blue Phantom (IBA Dosimetry, Schwarzenbruck, Germany) and PTW (PTW, Freiberg, Germany) MP3-M water tanks. The tanks were compared according to several factors including set up time, ease of use, and data acquisition times. A tertiary objective is to study the response of several ionization chambers in the two tanks examined. Methods: Measurements made using a Varian 23EX LINAC (Varian Medical Systems, Palo Alto, CA) include PDDs and beam profiles for various field sizes with IBA CC13, PTW Semiflex 31010, PTW Pinpoint N31016, and PTW 31013 ion chambers for photons (6, 18 MV) and electrons (6, 9, 12, 15, and 18 MeV). Radial and transverse profile scans were done at depths of maximum dose, 5 cm, 10 cm, and 20 cm using the same set of tanks and detectors for the photon beams. Radial and transverse profile scans were done at depth of maximum dose for the electron beams on the same tanks and chambers. Data processing and analysis was performed using PTW's MEPHYSTO Navigator software and IBA's OmniPro Accept version 6.6 for the respective water tank systems. Results: PDD values agree to within 1% and dmax to within 1 mm for the PTW MP3-M tank using PTW 31010 and Blue Phantom using IBA CC13 chamber, respectively and larger discrepancy with the PTW PinPoint N31016 chamber at 6 MV. With respect to setup time the PTW MP3-M and IBA Blue phantom tank took about 20 and 40 min, respectively. Scan times were longer by 5–15 min per field size in the PTW MP3-M tank for the square field sizes from 1 cm to 40 cm as compared to the IBA Blue phantom. However, data processing times were higher by 7 min per field size with the IBA system. Conclusions: Tank measurements showed little deviation with the higher energy photons as compared to the lower energy photons with regards to the PDD measurements. Chamber construction as well as tank

  13. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques

    NARCIS (Netherlands)

    Jager, D. H. J.; Vieira, A. M.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  14. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques.

    NARCIS (Netherlands)

    Jager, D.H.; Vieira, A.M.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  15. Dosimetric evaluation in heterogeneous tissue of anterior electron beam irradiation for treatment of retinoblastoma

    International Nuclear Information System (INIS)

    Kirsner, S.M.; Hogstrom, K.R.; Kurup, R.G.; Moyers, M.F.

    1987-01-01

    A dosimetric study of anterior electron beam irradiation for treatment of retinoblastoma was performed to evaluate the influence of tissue heterogeneities on the dose distribution within the eye and the accuracy of the dose calculated by a pencil beam algorithm. Film measurements were made in a variety of polystyrene phantoms and in a removable polystyrene eye incorporated into a tissue substitute phantom constructed from a human skull. Measurements in polystyrene phantoms were used to demonstrate the algorithm's ability to predict the effect of a lens block placed in the beam, as well as the eye's irregular surface shape. The eye phantom was used to measure dose distributions within the eye in both the sagittal and transverse planes in order to test the algorithm's ability to predict the dose distribution when bony heterogeneities are present. Results show (1) that previous treatment planning conclusions based on flat, uniform phantoms for central-axis depth dose are adequate; (2) that a three-dimensional heterogeneity correction is required for accurate dose calculations; and (3) that if only a two-dimensional heterogeneity correction is used in calculating the dose, it is more accurate for the sagittal than the transverse plane

  16. A custom made phantom for dosimetric audit and quality assurance of three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Radaideh, K.M.; Matalqah, L.M.; Matalqah, L.M.; Tajuddin, A.A.; Luen, F.W.L.; Bauk, S.; Abdel Munem, E.M.E.

    2012-01-01

    The ultimate check of the actual dose delivered to a patient in radiotherapy can be achieved by using dosimetric measurements. The aims of this study were to develop and evaluate a custom handmade head and neck phantom for evaluation of Three-Dimensional Conformal Radiation Therapy (3D-CRT) dose planning and delivery. A phantom of head and neck region of a medium built male patient with nasopharyngeal cancer was constructed from Perspex material. Primary and secondary Planning Target Volume (PTV) and twelve Organs at Risk (OAR) were delineated using Treatment Planning System (TPS) guided by computed tomography printout transverse images. One hundred and seven (107) holes distributed among the organs were loaded with Rod-shaped Thermoluminescent dosimeters (LiF:Mg, Ti TLDs) after common and individual calibration. Head and neck phantom was imaged, planned and irradiated conformally (3D-CRT) by linear accelerator (LINAC Siemens Artiste). The planned predicted doses by TPS at PTV and OAR regions were obtained and compared with the TLD measured doses using the phantom. Repeated TLD measurements were reproducible with a percent standard deviation of < 3.5 %. Moreover, the average of dose discrepancies between TLDs reading and TPS predicted doses were found to be < 5.3 %. The phantom's preliminary results have proved to be a valuable tool for 3D-CRT treatment dose verification. (author)

  17. A design of ambient dose equivalent dosimeter and its dosimetric performance

    International Nuclear Information System (INIS)

    Zhao Shian; Ou Xiangming; Li Kaibao

    1997-01-01

    Objective: To design an ambient dose equivalent dosimeter with digital display for radiation protection, which is based on the definition of the new operational radiation quantity for environmental monitoring-ambient dose equivalent recommended by the International Commission on Radiation Units and Measurements (ICRU) Report 39. Methods: Considering the energy response of the instrument, the inner wall of ionizing chamber is coated with gum graphite added with a bit of metal powder. Results: Using this chamber, measurement of H * (10) for photon radiation with unknown spectrum distribution is possible in the energy range from 47 keV to 230 keV with an uncertainty of better than 5%. The configuration, technology and dosimetric performance of the chamber and automatic functions of the reader are presented. Conclusion: The ambient dose equivalent dosimeter can be used as not only a working reference dosimeter, but also a field dosimeter for radiation protection because the readings are expressed directly in ambient dose equivalent and averaged automatically in the period of measurement. Also, its power is supplied by battery for the portable purpose and the readings are displayed on the screen with light-background for dim field

  18. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    Science.gov (United States)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in

  19. Dosimetric and biological assessment in the Cuban program for children from areas affected by the Chernobyl accidents

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cruz, R.; Valdez, M.; Cardenas, J.; Jova, L.; Lopez, G.; Arado, O.; Lamadrid, A.I.; Morera, L.

    1996-01-01

    Since 1990 Cuba has been developing health care program to offer highly specialized medical assistance and to develop a rehabilitation program for children affected by the Chernobyl accident. as part of the program a group of dosimetric and biomedical studies have been performed tom asses the impact of the accident. The results obtained from the study with 4500 children streets the fact that external radiation was the most important contributor to the total dose, which was estimated between 1-170 mSv during 70 years, for an equal period of time the 137C s internal dose ranged between 1.5 and 565 Bq/Kg. The biomedical studies have been carried out in groups formed according to the surface contamination of the field and to the 137C s activity measured, The thyroid hyperplasia tend to increase with the increment of both parameters. The other analyzed factors did not show differences among the groups

  20. Quality Control in the Dosimetric System of the Personnel Dosimetry Service of the Spanish National Health Service

    Energy Technology Data Exchange (ETDEWEB)

    Casal, E.; Gil, J.A.; Roig, F.; Soriano, A. [Valencia (Spain)

    1999-07-01

    The main operating and quality control procedures implemented at the Centro Nacional de Dosimetria (CND) of the Spanish National Health Service to ensure the acceptance of the dosimetry service are described. The operating procedures are routinely performed at every step, since the dosemeters are received from the manufacturer until the doses are assigned to the dosimetric history and their main aim is to ensure the traceability of the doses. They make use of control and background dosemeters and frequent cross reference (automatic and manual) of different sources of data. The control procedures are performed at the end of each monthly process to detect possible errors or systematic bias in the dosimetry service and include analysis of the measurements of quality control dosemeters irradiated at the CND's laboratory and randomly read. The results of this analysis since 1996 are presented. (author)