WorldWideScience

Sample records for dose x-ray radiology

  1. Study of the variation of radiation dose in function of the radiological techniques used in X-ray diagnosis exams

    International Nuclear Information System (INIS)

    Fernandes, Marco A.R.; Reis, Charlene O.; Garcia, Paulo L.; Lima, Marcelo A.F.; Dalaqua, Fernando L.D.

    2011-01-01

    This paper values the importance of the implantation of a quality control program in medical x-ray diagnosis services that it seeks mainly to the reduction of the radiation dose applied in the radiology exams, and attempt to the precepts of the Effective Legislation as for the Basic Guidelines of Radiological Protection (law decree MS no. 453 in June 1 st 1998). The study was accomplished Radiology Section of the Medicine Faculty - FMB (UNESP - Botucatu) and it consisted of the accomplishment of measures of the radiation dose applied in the radiological exams, taking as base the x-rays techniques realized by four technicians in radiology the service, using only one x-rays equipment. Was intended analyze the variation of the radiation dose in function of the different applied technical parameters, and this way, guide the professionals as for the possibility of obtaining of x-ray images of better quality and smaller patient exposition. For radiation dose measure a detector of solid state was utilized. During the accomplishment of the measures it was verified that there no a general consensus among the technicians of the section being observed differences of the order of 80% in the mAs. In terms of radiation dose measured, the largest value of verified was 4.752 mGy (exam of lateral lumbar column) and the smallest value of 0.165 mGy (child's thorax).The results showed that a standardization in the x-ray techniques executed by the professionals of the section will be able to reduce significantly the radiation exposition of the assisted patients. (author)

  2. Study of the variation of radiation dose in function of the radiological techniques used in X-ray diagnosis exams

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marfernandes@fmb.unesp.br [Faculty of Medicine. UNESP, Botucatu (FMB), SP (Brazil); Reis, Charlene O.; Garcia, Paulo L. [Institute of Biosciences of Botucatu. UNESP, Botucatu, SP (Brazil); Nucleate Radiometry Ltd., Aracatuba, SP (Brazil); Lima, Marcelo A.F.; Dalaqua, Fernando L.D. [UNESP, Botucatu, SP (Brazil). Hospital. Radiology Service

    2011-07-01

    This paper values the importance of the implantation of a quality control program in medical x-ray diagnosis services that it seeks mainly to the reduction of the radiation dose applied in the radiology exams, and attempt to the precepts of the Effective Legislation as for the Basic Guidelines of Radiological Protection (law decree MS no. 453 in June 1{sup st} 1998). The study was accomplished Radiology Section of the Medicine Faculty - FMB (UNESP - Botucatu) and it consisted of the accomplishment of measures of the radiation dose applied in the radiological exams, taking as base the x-rays techniques realized by four technicians in radiology the service, using only one x-rays equipment. Was intended analyze the variation of the radiation dose in function of the different applied technical parameters, and this way, guide the professionals as for the possibility of obtaining of x-ray images of better quality and smaller patient exposition. For radiation dose measure a detector of solid state was utilized. During the accomplishment of the measures it was verified that there no a general consensus among the technicians of the section being observed differences of the order of 80% in the mAs. In terms of radiation dose measured, the largest value of verified was 4.752 mGy (exam of lateral lumbar column) and the smallest value of 0.165 mGy (child's thorax).The results showed that a standardization in the x-ray techniques executed by the professionals of the section will be able to reduce significantly the radiation exposition of the assisted patients. (author)

  3. Additional radiation dose to population due to X-ray diagnostic procedures

    International Nuclear Information System (INIS)

    Chougule, A.

    2006-01-01

    Full text of publication follows: Discovery of X rays has revolutionised the medical diagnosis but the fact that the diagnostic radiological procedures contribute about 80 to 90 % of the radiation dose to population as compared to other man made radiation sources cannot be ignored especially when X ray diagnostic facilities are being made available to larger section of the society. The estimated frequency of radiological procedures in India is 12,000 procedures/ year/100,000 population, though it is quite less as compared to developed countries, its increasing day by day. As part of the project, a radiation protection survey of X ray installations and patient radiation dose measurement during various radiological procedures was undertaken. 193 X ray installations were surveyed and the radiation doses received by the patient during various radiological procedure was measured. For measurement of radiation doses, CaSO 4 : Dy thermoluminescence (T.L.) discs of size 13.3 mm diameter and 0.8 mm thickness were used. Pre annealed T.L. discs were fixed by adhesive tape on the patient skin at the center of entrance beam before the exposure. After exposure the T.L. discs were estimated f or entrance skin dose during that particular projection/ examination. 10,000 measurements at different centers during various radiological procedures were done. It was found that chest radiography accounts for 37 % of all radiological procedures and further it was observed that 70 % of the chest X rays were normal with out any pathology indicating scope for curtailing the unwarranted radiological procedures. The special investigations like barium swallow, barium meal and fallow through accounts for about 1.5 % of the total radiological procedures. The entrance skin dose [E.S.D.] during chest radiography was 0.3 + 0.1 mGy where as during K.U.B. and cervical spine radiography it was 6.2 + 1.1 mGy and 5.1 + 0.9 mGy respectively. The details of frequency of various radiological procedures and the

  4. Assessment of patient radiation doses in chest X-ray examinations

    International Nuclear Information System (INIS)

    Orsini, S.; Scribano, V.S.; Merluzzi, F.; Tosca, L.

    1987-01-01

    The paper reports the initial results of a radioprotection programme for diagnostic radiology carried out in a major hospital in Milan. The data cover chest X-ray examinations. The dose values were obtained using different techniques, according to the specific diagnostic requirements in each departement. A wide radiation dose range was observed between the different techniques, with a ratio between maximum and minimum dose > 30 for the skin and the spine. The doses were however lower than those capable of inducing non-stochastic effects by about 10000 and were so low that the probability of a stochastics effect is minimal. Nevertheless, because chest X-rays are performed so frequently, it is recommended that radiologists take greater account of patient dose, as far as compatible with diagnostic requirements. Radiology technicians must strictly observe the regulations for radioprotection of the patient

  5. Effective doses in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, Olga; Diaconescu, Cornelia; Roca, Antoaneta

    2001-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study is to assess in terms of effective doses the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses to the patient. Effective doses have been derived from measurements of dose-area product (DAP) carried out on over 900 patients undergoing X-ray examinations, in five paediatric units. The conversion coefficients for estimating effective doses are those calculated by the NRPB using Monte-Carlo technique on a series of 5 mathematical phantoms representing 0, 1, 5, 10 and 15 year old children. The annual frequency of X-ray examinations necessary for collective dose calculation are those reported in our last national study on medical exposure, conducted in 1995. The annual effective doses from all medical examinations for the average paediatric patient are as follows: 1.05 mSv for 0 year old, 0.98 mSv for 1 year old, 0.53 mSv for 5 year old, 0.65 mSv for 10 year old and 0.70 mSv for 15 year old. The resulting annual collective effective dose was evaluated at 625 man Sv with the largest contribution of pelvis and hip examinations (34%). The annual collective effective associated with paediatric radiology in Romania represent 5% of the annual value resulting from all diagnostic radiology. Examination of the chest is by far the most frequent procedure for children, accounting for about 60 per cent of all annually performed X-ray conventional examinations. Knowledge of real level of patient dose is an essential component of quality assurance programs in paediatric radiology. (authors)

  6. Development of an international code of practice for dosimetry in X-ray diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.; Carlsson, G.A.; Dance, D.R.; DeWerd, L.A.; Kramer, H.-M.; Ng, K.-H.

    2001-01-01

    Medical x-ray examinations contribute greatly to the population dose from man-made radiation sources. There is a need to control this dose and therefore to optimise the design and use of x-ray imaging systems. A key stage in this process is the standardisation of the procedures for dose measurement in the clinic. The Dosimetry and Medical Radiation Physics Section of the IAEA has a number of activities to further advance the standards for x-ray diagnostics. One of these activities is the coordination of a working group to develop a code of practice, which will facilitate the IAEA calibration activities, TLD intercomparisons and audits, educational activities, and technical assistance to Member States. The code of practice will aid in the standardisation of various dosimetric techniques in x-ray diagnostic radiology. The CoP working group has had an initial meeting to review the current status of dosimetry for conventional radiology, fluoroscopy, mammography, computed tomography and dental radiology. The CoP will include the establishment of standards and calibrations at the SSDLs, phantom and patient measurements and procedures for dosimetry in the clinic. (author)

  7. Radiation doses for X-ray diagnosis teeth in dental medicine

    International Nuclear Information System (INIS)

    Direkov, Lyubomir

    2009-01-01

    X-rays are the first ionizing radiation, which are applied in medicine for diagnostic radiology and X-ray therapy. While in the beginning they are mainly used for X-ray photos of the chest /lungs and in severe fractures of the limbs, then in recent years they are widely applied in diagnostics of teeth in dental medicine. Considering that caries is a widespread disease, both in children and adults, and it requires repeated x-ray photographs of the damaged teeth for the individual, the total radiation doses, which reflect on people from the X-rays are at high values. In order to reduce external exposure to other organs /mainly thyroid gland/ by X-ray pictures of teeth, it should be used with special lead aprons with large coefficient of reduction. Keywords: doses of radiation, X-ray machines, dental, x-ray pictures of teeth, protection sources

  8. A survey of chest medical X-ray doses

    International Nuclear Information System (INIS)

    Lomba, M.; Conha, P.G. da; Almeida, C.E. de

    1996-01-01

    The medical X-ray exposures due to radiological examinations are responsible for the largest contribution to the population collective dose as result of the normal use of artificial sources of radiation. The relative impact of the medical exposures to the total dose received by the population from all kinds of radiation sources varies from country to country and in some cases within the same country. The dose variations observed for a specific type of examination are in general associated to several factors i.e. the type of film-ecran combination, the choice of the appropriate physical parameters of the X-ray generator (Kvp, filament current, exposure time) and finally to the film processing conditions. At the present moment the data available in Brazil are scarce and scanty to allow a complete analyzis of this question so needed by the health authorities to justify the implementation of a quality assurance and dose reduction programs. In addition, it is desirable to establish a cost effective operation based on simple administrative concepts in order to reduce the number of films retake, then increasing the life expectancy of the equipment and the number of radiological procedures. The aim of this work was to assess the typical doses of an PA and LAT chest wall X-ray examinations in five different public hospitals (a University Hospital, a Cancer Hospital, a Navy Hospital, an Emergency Hospital and a State General Hospital), as representative of the city of Rio de Janeiro, and compare the results with the international data and recommendations available. (author)

  9. X-ray absorbed doses evaluation on patients under radiological studies

    International Nuclear Information System (INIS)

    Medeiros, Regina Bitelli; Daros, Kellen A.C.

    1996-01-01

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  11. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun

    2003-02-01

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology

  12. Radiation exposure of children in pediatric radiology, Pt. 8. Radiation doses during thoracoabdominal babygram and abdominal X-ray examination of the newborn and young infants

    International Nuclear Information System (INIS)

    Schneider, Karl; Seidenbusch, M.C.

    2010-01-01

    Purpose: Reconstruction of radiation doses for the thoracoabdominal babygram and the abdomen X-ray from radiographic settings and exposure data acquired at Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007; comparison of these dose values with values reported in the literature; recommendation of a reference dose value for the thoracoabdominal babygram. Materials and Methods: The data from all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 1493 thoracoabdominal babygrams and 3632 abdomen X-rays of newborns and young infants. With the computer program PAeDOS, a specific dose reconstruction algorithm was developed. Results: the entrance dose values of thoracoabdominal babygrams and abdomen X-rays in DvHK could be reduced in the last 30 years by a factor of 5 to 8. They are far below the entrance dose values reported by other radiology departments in Europe. Nevertheless, a slight increase in the entrance doses that correlates with the introduction of a digital storage phosphor system could be observed in the last years. Conclusion: because nearly all radiosensitive body organs in early life are involved during a thoracoabdominal babygram and because of the high radiation sensitivity of newborns, thoracoabdominal babygrams should be performed in neonatology with caution. A dose value of 1.0 cGy cm 2 could serve as the actual reference dose value for the thoracoabdominal babygram of the newborn. (orig.)

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  14. X-ray beam qualities for dental radiology purposes

    International Nuclear Information System (INIS)

    Santos, Marcus Aurelio P. dos; Fragoso, Maria da Conceicao de F.; Lima, Ricardo de A.; Hazim, Clovis A.

    2009-01-01

    In order to establish characteristics or properties of equipment for diagnostic radiology, e.g. ion chambers and semiconductor detectors, calibration laboratories offer a set of well-defined radiation conditions, called X-ray qualities, which can be used for many Physics studies and medical purposes. The standardization of radiation qualities has been carried out in several fields of study, but little attention has been given to the area of dental radiology, mainly for medical and physical applications using single-phase units with half-wave rectification. For this reason, a single-phase dental unit with adjustable peak voltage and tube current, called 'variable potential X-ray equipment', was developed aiming to define X-ray beam qualities for test and calibrations purposes. X-ray spectra at 50, 60 and 70 kVp were determined by using a CdTe detector and compared with those obtained for ten commercial X-ray dental units. As a result of this study, a set of X-ray qualities for the variable potential X-ray equipment was determined. The X-ray qualities spectra were utilized as reference for determination of a new set of X-ray qualities characterized for a constant potential X-ray equipment. Thus, sets of X-ray qualities were standardized and implemented in two X-ray laboratories: one with the variable potential X-ray equipment and other with constant potential X-ray equipment. These reference X-ray beam qualities should be used for test and calibration purposes involving scientific studies and services. (author)

  15. An experimental investigation on reduced radiological penumbra for intermediate energy x-rays: Implications for small field radiosurgery

    Science.gov (United States)

    Keller, Brian Michael

    Current day external beam radiation therapy typically uses x-ray energies in the megavoltage (6--18 MV) or in the superficial/orthovoltage (80--350 kVp) energy ranges. It has been found that intermediate energy x-rays (those greater than orthovoltage but sub-megavoltage) may offer an advantage in the field of high precision radiation therapy such as in radiosurgery. This advantage is a reduction in the radiological penumbra associated with small (less than about 3 cm) radiation dose fields. A consequence of reduced radiological penumbra is a more homogenous, conformal dose distribution in the patient with dose escalation and organ sparing made more feasible. The objectives of this thesis were as follows: to produce and to characterize an intermediate energy x-ray beam, to establish a method of accurate penumbra measurement at the micron level for millimeter size fields, to measure the radiological penumbra of single small intermediate energy x-ray fields, and to show the clinical consequences of a multiple beam irradiation in a stereotactic head phantom. A maximum photon energy of 1.2 +/- 0.1 MeV was determined for the intermediate energy x-ray spectrum at the expense of a low dose rate. A digital microscope with a computer controlled translation stage was investigated for its ability to resolve steep dose gradients in Gafchromic EBT film for field sizes as small as 1 mm and for photon energies as low as 100 kVp. The microscope-film system resolved gradients to within about 30 mum, limited by the inherent spatial resolution of the film, the noise of the system, and the uncertainties of measurement. Penumbra widths were compared for 1.2 MV versus 6 MV for identical irradiation conditions. In some instances, there was a five-fold reduction in the radiological penumbra of single 1.2 MV x-ray beams. A multiple beam arc irradiation demonstrated that the advantages seen with single beams carry over to multiple beams. The benefits of reduced radiological penumbra for

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  17. Analysis of Patients' X-ray Exposure in 146 Percutaneous Radiologic Gastrostomies.

    Science.gov (United States)

    Petersen, Tim-Ole; Reinhardt, Martin; Fuchs, Jochen; Gosch, Dieter; Surov, Alexey; Stumpp, Patrick; Kahn, Thomas; Moche, Michael

    2017-09-01

    Purpose  Analysis of patient´s X-ray exposure during percutaneous radiologic gastrostomies (PRG) in a larger population. Materials and Methods  Data of primary successful PRG-procedures, performed between 2004 and 2015 in 146 patients, were analyzed regarding the exposition to X-ray. Dose-area-product (DAP), dose-length-product (DLP) respectively, and fluoroscopy time (FT) were correlated with the used x-ray systems (Flatpanel Detector (FD) vs. Image Itensifier (BV)) and the necessity for periprocedural placement of a nasogastric tube. Additionally, the effective X-ray dose for PRG placement using fluoroscopy (DL), computed tomography (CT), and cone beam CT (CBCT) was estimated using a conversion factor. Results  The median DFP of PRG-placements under fluoroscopy was 163 cGy*cm 2 (flat panel detector systems: 155 cGy*cm 2 ; X-ray image intensifier: 175 cGy*cm 2 ). The median DLZ was 2.2 min. Intraprocedural placement of a naso- or orogastric probe (n = 68) resulted in a significant prolongation of the median DLZ to 2.5 min versus 2 min in patients with an already existing probe. In addition, dose values were analyzed in smaller samples of patients in which the PRG was placed under CBCT (n = 7, median DFP = 2635 cGy*cm 2 ), or using CT (n = 4, median DLP = 657 mGy*cm). Estimates of the median DFP and DLP showed effective doses of 0.3 mSv for DL-assisted placements (flat panel detector 0.3 mSv, X-ray image converter 0.4 mSv), 7.9 mSv using a CBCT - flat detector, and 9.9 mSv using CT. This corresponds to a factor 26 of DL versus CBCT, or a factor 33 of DL versus CT. Conclusion  In order to minimize X-ray exposure during PRG-procedures for patients and staff, fluoroscopically-guided interventions should employ flat detector systems with short transmittance sequences in low dose mode and with slow image frequency. Series recordings can be dispensed with. The intraprocedural placement of a naso- or orogastric probe

  18. Estimation of the collective effective dose to the population from medical X-ray examinations in Finland

    International Nuclear Information System (INIS)

    Tenkanen-Rautakoskia, Petra; Jaervinen, Hannu; Bly, Ritva

    2008-01-01

    The collective effective dose to the population from all X-ray examinations in Finland in 2005 was estimated. The numbers of X-ray examinations were collected by a questionnaire to the health care units (response rate 100 %). The effective doses in plain radiography were calculated using a Monte Carlo based program (PCXMC), as average values for selected health care units. For computed tomography (CT), weighted dose length product (DLP w ) in a standard phantom was measured for routine CT protocols of four body regions, for 80 % of CT scanners including all types. The effective doses were calculated from DPL w values using published conversion factors. For contrast-enhanced radiology and interventional radiology, the effective dose was estimated mainly by using published DAP values and conversion factors for given body regions. About 733 examinations per 1000 inhabitants (excluding dental) were made in 2005, slightly less than in 2000. The proportions of plain radiography, computed tomography, contrast-enhanced radiography and interventional procedures were about 92, 7, 1 and 1 %, respectively. From 2000, the frequencies (number of examinations per 1000 inhabitants) of plain radiography and contrast-enhanced radiography have decreased about 8 and 33 %, respectively, while the frequencies of CT and interventional radiology have increased about 28 and 38 %, respectively. The population dose from all X-ray examinations is about 0.43 mSv per person (in 1997 0.5 mSv). About half of this is caused by CT (in 1997 only 20 %) although the relative number of CT examinations is only 7 %. The contribution by plain radiography is 19 %, interventional radiology 17 %, and contrast-enhanced radiology 14 %. It is concluded that CT examinations are the major source of the population dose, while interventional radiology gives about the same population dose as plain radiography. For plain radiography, body examinations cause the highest effective dose. (author)

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  20. Required doses for projection methods in X-ray diagnosis

    International Nuclear Information System (INIS)

    Hagemann, G.

    1992-01-01

    The ideal dose requirement has been stated by Cohen et al. (1981) by a formula basing on parallel beam, maximum quantum yield and Bucky grid effect depending on the signal to noise ratio and object contrast. This was checked by means of contrast detail diagrams measured at the hole phantom, and was additionally compared with measurement results obtained with acrylic glass phantoms. The optimal dose requirement is obtained by the maximum technically possible approach to the ideal requirement level. Examples are given, besides for x-ray equipment with Gd 2 O 2 S screen film systems for grid screen mammography, and new thoracic examination systems for mass screenings. Finally, a few values concerning the dose requirement or the analogous time required for fluorscent screening in angiography and interventional radiology, are stated, as well as for dentistry and paediatric x-ray diagnostics. (orig./HP) [de

  1. X ray spectra and qualities for use in diagnostic radiology and equipment calibration

    International Nuclear Information System (INIS)

    Souza, Karla Cristina de

    1996-12-01

    The goal of this work was the standardization of radiation qualities of diagnostic X ray equipment of the Assay Laboratory of the Institute for Radiation Protection and Dosimetry (IRD) of the National Commission of Nuclear Energy, Brazil. X ray spectra were determined from pulse height distribution measured directly on the primary beam using a high pure planar Ge detector. A program was developed to convert pulse height distribution into radiation spectra in the range from 20 to 150 keV. X ray qualities based on those used by the 'Physikalish-Technish Bundesantalt' (PTB) primary laboratory were implanted in three radiological equipment of the Assay Laboratory. These qualities simulate radiation beams on patients submitted to typical radiological examinations. Besides the spectrometric system, a reference measurement system based on an ionization chamber calibrated in air kerma was used to establish parameters such as kilovoltage, first and second half-value layer, mean energy, effective energy and inherent filtration. Our data have shown that the implantation of these radiation qualities in the Assay Laboratory results on a metrological basis for calibration of dose measurement assemblies and kV-meters, like those used by IRD to evaluate the parameters of X ray equipment around the country. A catalogue of spectral data resulting from this work is a data bank that allows various applications like dose calculation using Monte Carlo simulation techniques. (author)

  2. Assessment of patient doses and image quality in X-ray diagnostics in Norway

    International Nuclear Information System (INIS)

    Olerud, H.M.

    1998-01-01

    Results from other industrialized countries indicate that the annual number of diagnostic procedures approaches one for every member of the population, and in many cases the individual radiation doses are higher than from any other human activity. Furthermore, the doses to patients for the same type of examination differ widely from place to place, suggesting that there is a considerable potential for dose reduction. This motivated an investigation of the diagnostic use of X-rays in Norway. The trends in the number of X-ray examinations performed annually have been studied. The patient doses (all diagnostics) and image quality (mammography and computed tomography) have been assessed for various radiological procedures. This form the basis for the assessment of total collective effective dose (CED) from X-rays in Norway, and further risk estimates. The radiological practice has then been evaluated according to the radiation protection principles of justification and optimisation. Based on the 1993 examination frequency, the total CED was assessed to 3400 manSv (0.78 mSv/inhabitant). It is estimated that this radiation burden may cause about 100 excess cancer deaths annually. The frequency of CT examination has doubled every fifth year, and did in 1993 represent 7% of the total number of examinations and 30% of the total CED. 129 refs

  3. Assessment of patient doses and image quality in X-ray diagnostics in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Olerud, H M

    1998-06-01

    Results from other industrialized countries indicate that the annual number of diagnostic procedures approaches one for every member of the population, and in many cases the individual radiation doses are higher than from any other human activity. Furthermore, the doses to patients for the same type of examination differ widely from place to place, suggesting that there is a considerable potential for dose reduction. This motivated an investigation of the diagnostic use of X-rays in Norway. The trends in the number of X-ray examinations performed annually have been studied. The patient doses (all diagnostics) and image quality (mammography and computed tomography) have been assessed for various radiological procedures. This form the basis for the assessment of total collective effective dose (CED) from X-rays in Norway, and further risk estimates. The radiological practice has then been evaluated according to the radiation protection principles of justification and optimisation. Based on the 1993 examination frequency, the total CED was assessed to 3400 manSv (0.78 mSv/inhabitant). It is estimated that this radiation burden may cause about 100 excess cancer deaths annually. The frequency of CT examination has doubled every fifth year, and did in 1993 represent 7% of the total number of examinations and 30% of the total CED. 129 refs.

  4. Factors affecting patient dose in diagnostic radiology

    International Nuclear Information System (INIS)

    Poletti, J.L.

    1994-03-01

    The report, Factors Affecting Patient Dose in Diagnostic Radiology is divided into three main sections. Part one is introductory and covers the basic principles of x-ray production and image formation. It includes discussion of x-ray generators and x-ray tubes, radiation properties and units, specification and measurement of x-ray beams, methods of patient dose measurement, radiation effects, radiation protection philosophy and finally the essentials of imaging systems. Part two examines factors affecting the x-ray output of x-ray machines and the characteristics of x-ray beams. These include the influence of heat ratings, kVp, waveform, exposure timer, filtration, focus-film distance, beam intensity distribution, x-ray tube age and focal spot size. Part three examines x-ray machine, equipment and patient factors which affect the dose received by individual patients. The factors considered include justification of examinations, choice of examination method, film/screen combinations, kVp, mAs, focus-film distance, collimation and field size, exposure time, projection, scatter, generator calibration errors, waveform, filtration, film processing and patient size. The patient dose implications of fluoroscopy systems, CT scanners, special procedures and mammography are also discussed. The report concludes with a brief discussion of patient dose levels in New Zealand and dose optimisation. 104 refs., 32 figs., 27 tabs

  5. Estimation of dose challenge in radiological exams policontuses patients in public hospital in Santiago with digital radiology equipment

    International Nuclear Information System (INIS)

    Diaz-Munoz Ihmaidan, Gabriela

    2012-01-01

    lonizing radiation is always present in our natural environment and with the development of new technologies in diagnostic radiology we have elevated the exposure to radiation with an increased dose to both patient and professionals. This is of great importance for secondary stochastic effects that could be generated by exposure to ionizing radiation. There are different x-ray entrance dose studies in patients with radiological examinations in conventional radiology equipment, but not in trauma patients examinated with digital radiology equipment where there is a supposed greater exposure to radiation because of the increase of the number of radiological examinations requested. This study determined the doses received by trauma patients in a direct digital x ray equipment (in a ER in Santiago, Chile) and see if the doses are within the ones recommended by international societies. We used thermoluminescent crystals which were first properly calibrated and located in the center of the radiation beam. The results obtained show that using good practice we can obtain acceptable dose levels, independently of the digital equipment used where it is presumed that could give a higher dose of ionizing radiation exposure than conventional x-ray equipment

  6. X-ray scatter data for diagnostic radiology

    International Nuclear Information System (INIS)

    Dick, C.E.; Soares, C.G.; Motz, J.W.

    1978-01-01

    The ratio of the scattered to the total X-ray fluence (scatter fraction) at the centre of the image plane for X-rays transmitted through polystyrene phantoms has been measured for X-ray energies of 32 and 69 keV, X-ray beam diameters from 4 to 40 cm, phantom thicknesses from 5 to 30 cm and phantom-to-image-plane separations from 0.3 to 40 cm. The experimental values for this ratio have less than a 10% variation for these two X-ray energies and the experimental data show good agreement with Monte Carlo calculations and available experimental results for low atomic number materials. Based on these results, simple curves are generated which give estimates (+ - 10%) of the scatter fraction for all combinations of the geometric parameters encountered in diagnostic radiology. (author)

  7. Characterization of different qualities in X-rays, for instruments calibration in radiological protection

    International Nuclear Information System (INIS)

    Cejudo A, J.; Tovar M, V. M.; Vergara M, F.

    2010-09-01

    In the Secondary Laboratory of Dosimetric Calibration in Mexico was realized the qualities characterization of the series X-rays RQR reported in the International Code of Practices in Dosimetry and Diagnostic Radiology No. 457, using attenuator filters of high purity aluminum and ionizing radiation equipment of inherent filtration of 4 mm Be with and emergent X-radiation beam of 40 grades. For the attenuation was used a geometric arrangement with three beam limiters and a monitor camera prepared on the established form in the mentioned technical report, and a spherical ionization chamber with collection volume of 3.6 cm 3 , aligning its geometric center with the focus of X-rays tube to get that the incident radiation direction will be perpendicular to the ionization chamber. From the perspective of the radiological protection is important to know the X-radiation quality for the application dedicated to the instruments calibration and can to give to these the traceability to a reference laboratory, this way the quality combination and reference chamber can give as a result a procedure for the evaluation of the entrance in surface dose to estimate the dose orientate levels, specified in the basic standards of safety. (Author)

  8. Measurement of dose received in knee joint x-ray examination

    International Nuclear Information System (INIS)

    Abashar, Basamat Musa Hajo

    2014-11-01

    Diagnostic x-rays examinations play an important role in the health care of the population. These examinations may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study performed to assess the effective dose (ED) received in knee joint radiographic examination and to analyze dose (ed) received in knee joint radiographic examination and to analyze effective dose distribution among radiological departments under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded age, weight, height, body mass ines (BMI) derived from weight (Kg) and (Height (M)) and (height (m)) and exposure factors. The dose was measured for knee joint x-rays examination. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for knee joint Ap and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were then calculated from energy imparted using ED conversion factors proposed by IAEA. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were( 2.49 + 0.03) and (5.60 + 0.22) milli Grey for knee joint AP and lateral examinations, respectively, Further studies are recommended with more number of patients and using more two modalities for comparison.(Author)

  9. Current aspects in the development of the quality control in the conventional X-ray diagnostic radiology

    International Nuclear Information System (INIS)

    Stoeva, M.; Velkova, K.

    2004-01-01

    The role of the X-ray diagnostic radiology as one of the main factors forming the general public dose is indisputable. Following the requirement for justification of the application of X-rays for medical purposes, certain criteria for assessment of the parameters of the X-ray diagnostic equipment are formed and maximum permissible values defined. The latter are developed by the international and national radiation protection organizations and introduced both in the international and national legislation. The importance of the quality assurance concept for the radiation protection of the patient and staff in diagnostic radiology turned the quality control into main toll for obtaining high quality images with minimum dose to the patient and staff. X-ray diagnostics is one of the most common methods used in the medical practice. This is the main reason for the increase of the quality control protocols, winch makes their handling difficult. The latest developments in this area bring forward the idea for the development of specialized quality control software, which is capable of: 1) full or semi-automated calculation and assessment of the parameters of the X-ray diagnostic units; 2) tools for data handling and access; 3) tools for data analysis based on predefined procedures

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  11. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  12. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes

    International Nuclear Information System (INIS)

    Keller, Brian M.; Beachey, David J.; Pignol, Jean-Philippe

    2007-01-01

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator (2) to characterize the energy of this beam (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3x0.3 to 4.0x4.0 cm 2 , varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal

  13. Absorbed Doses to Embryo from Intravenous Urography at Selected Radiological Departments in Slovakia

    International Nuclear Information System (INIS)

    Karkus, R.; Nikodemova, D.; Horvathova, M.

    2003-01-01

    Actual legislation used in radiological protection requires quality assurance program for decreasing radiation load of patients from radiological examinations. The information about irradiation of pregnant women is very important, because the embryo is more radiosensitive as adult organism. On the basis of absence of unified calculations or measurements of absorbed doses to embryo from various radiological examinations in Slovakia we present in this study the values of absorbed doses to embryo from intravenous urography at selected radiological departments in Slovakia. Absorbed doses to embryo were obtained by measurement and calculation using the simulation of irradiation of pregnant woman by intravenous urography. The results of our study indicate, that absorbed doses to embryo were at various radiological departments considerably different, depending on type of X-ray machine and different settings of technical parameters of X-ray machine. In accordance with worldwide trend it is necessary to decrease radiation load of patients as low as possible level. Differences in radiation load between radiological departments indicate, that it is necessary to continue in solving of this problem and perform measurements and calculations of absorbed doses to embryo at different types of X-ray machines and at different examinations, where the embryo is in direct beam of X-ray. (author)

  14. Radiation exposure and image quality in X-ray diagnostic radiology. Physical principles and clinical applications. 2. ed.

    International Nuclear Information System (INIS)

    Saebel, Manfred; Aichinger, Horst; Dierker, Joachim; Joite-Barfuss, Sigrid

    2012-01-01

    Diagnostic X-rays are the largest contributor to radiation exposure to the general population, and protecting the patient from radiation damage is a major aim of modern health policy. Once the decision has been taken to use ionising radiation for imaging in a particular patient, it is necessary to optimize the image acquisition process taking into account the diagnostic quality of the images and the radiation dose to the patient. Both image quality and radiation dose are affected by a number of parameters, knowledge of which permits scientifically based decision making. The authors of this second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology have spent many years studying the optimization of radiological imaging. In this book they present in detail the basic physical principles of diagnostic radiology and their application to clinical problems. Particular attention is devoted to evaluation of the dose to the patient, the influence of scattered radiation on image quality, the use of antiscatter grids, and optimization of image quality and dose. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader's own programs. Since the first edition, the text, figures, tables, and references have all been thoroughly updated, and more detailed attention is now paid to image quality and radiation exposure when using digital imaging and computed tomography. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers. (orig.)

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  16. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  17. Factors affecting patient dose in diagnostic radiology

    International Nuclear Information System (INIS)

    Poletti, J.L.

    1985-01-01

    There are two stages in the X-ray image forming process; first the irradiation of the patient to produce the X-ray pattern in space, known as the primary radiological image, and second, the conversion of this pattern into a visible form. This report discusses the first stage and its interrelation with image quality and patient dose

  18. Neonatal doses from X ray examinations by birth weight in a neonatal intensive care unit

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K.; Akahane, K.; Aota, T.; Hada, M.; Takano, Y.; Kai, M.; Kusama, T

    2003-07-01

    The aim of this study was to investigate the frequency and type of X ray examinations performed on neonates classified according to their birth weight in a neonatal intensive care unit (NICU). In this study, the radiology records of 2408 neonates who were admitted to the NICU of Oita Prefectural Hospital between January 1994 and September 1999 were investigated. This study revealed that the neonates with earlier gestational ages and lower birth weights required longer NICU stays and more frequent X ray examinations made using a mobile X ray unit. The average number of X ray examinations performed on neonates of less than 750 g birth weight was 26 films per neonate. In regard to computed tomography and fluoroscopy, no significant relationship was found between the birth weight and number of X rays. This study revealed that the entrance-surface dose per neonate was dependent upon the birth weight, while the maximum dose was not dependent upon the birth weight. The average neonatal dose in the NICU was predominantly from computed tomography and fluoroscopy. The individual dose varied widely among neonates. (author)

  19. Neonatal doses from X ray examinations by birth weight in a neonatal intensive care unit

    International Nuclear Information System (INIS)

    Ono, K.; Akahane, K.; Aota, T.; Hada, M.; Takano, Y.; Kai, M.; Kusama, T.

    2003-01-01

    The aim of this study was to investigate the frequency and type of X ray examinations performed on neonates classified according to their birth weight in a neonatal intensive care unit (NICU). In this study, the radiology records of 2408 neonates who were admitted to the NICU of Oita Prefectural Hospital between January 1994 and September 1999 were investigated. This study revealed that the neonates with earlier gestational ages and lower birth weights required longer NICU stays and more frequent X ray examinations made using a mobile X ray unit. The average number of X ray examinations performed on neonates of less than 750 g birth weight was 26 films per neonate. In regard to computed tomography and fluoroscopy, no significant relationship was found between the birth weight and number of X rays. This study revealed that the entrance-surface dose per neonate was dependent upon the birth weight, while the maximum dose was not dependent upon the birth weight. The average neonatal dose in the NICU was predominantly from computed tomography and fluoroscopy. The individual dose varied widely among neonates. (author)

  20. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  1. The dose received by patients during dental X-ray examination and the technical condition of radiological equipment.

    Science.gov (United States)

    Bekas, Marcin; Pachocki, Krzysztof A

    2013-01-01

    Implementation of X-ray dental examination is associated with the patients exposure to ionizing radation. The size of the exposure depends on the type of medical procedure, the technical condition of the X-ray unit and selected exposure conditions. The aim of this study was to determine the dose received by patients during dental X-ray examination and the assessment of the technical condition of medical equipment, The study included a total number of 79 dental X-ray units located in the region of Mazovia. The test methods for the assessment of the technical condition of dental X-ray units and measurement of radiation dose received by patients were based on the procedures elaborated in the Department of Radiation Hygiene and Radiobiology in the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for the certification of compliance with PN-EN 17025. The research found that 69.6% fully meets the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 30.4% did not meet some of them. A tenfold difference in the size of the dose received by patients during dental X-ray examinations was discovered. For example, during a radiography of the canine teeth of a child, the recorded entrance surface dose (ESD) ranged from 72.8 to 2430 microGy with the average value of 689.1 microGy. Cases where the dose reference level defined in Polish legislation of 5 mGy was exceeded were also found. CONCKUSIONS: It is essential to constantly monitor the situation regarding the technical condition of X-ray units which affects the size of the population's exposure to ionizing radiation as well as raising dentists' awareness about the effects of X-rays on the human body.

  2. Radiological safety research of food irradiation with 7.5 MeV X-rays

    International Nuclear Information System (INIS)

    Yang Bin; Tang Weidong; Zhang Yue; Xu Tao; Jin Jianqiao; Ye Mingyang

    2012-01-01

    China and America both have 7.5 MeV high energy X-ray accelerator. The radiological safety of food irradiated with 7.5 MeV X-rays (bremsstrahlung) has been investigated. Samples of meat and meat ash were located in a large volume of fresh meat at the position of the highest photoneutron fluence and irradiated to an X-ray dose of 15 kGy, twice the maximum dose allowed by the US FDA for meat irradiation. An evaluation of the corresponding radiation exposure from ingestion of the irradiated product has been compared to natural background radiation. The paper concludes that the risk to individuals from intake of food irradiated with X-rays from 7.5 MeV electrons, even with a broad energy spectrum, would be trivial. The common target materials are Au, Ta and W. The U.S, requires only Au and Ta can be used as food irradiation target materials and China has not yet relevant provisions. The first 7.5 MeV accelerator for food irradiation in China is under built, and will do the explore research for the choice of target material. (authors)

  3. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India.

    Science.gov (United States)

    Sonawane, A U; Singh, Meghraj; Sunil Kumar, J V K; Kulkarni, Arti; Shirva, V K; Pradhan, A S

    2010-10-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  4. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    International Nuclear Information System (INIS)

    Sonawane, A.U.; Singh, Meghraj; Sunil Kumar, J.V.K.; Kulkarni, Arti; Shirva, V.K.; Pradhan, A.S.

    2010-01-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body. (author)

  5. Medical x-ray

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Gui Ah Auu; Husaini Salleh; Idris Besar; Mohd Ashhar Khalid; Muhammad Jamal Md Isa; Shaharuddin Mohd; Siti Najila Mohd Janib; Mohamed Ali Abdul Khader; Mahalatchimi Dave; Mohd Fazly Abdul Rahim; Ng Chee Moon; Ram Piari; Teoh Hoon Heng; Lee Peter

    2004-01-01

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  6. Assessment of organ doses by standard X-ray procedures in the GDR

    International Nuclear Information System (INIS)

    Tautz, M.; Brandt, G.A.

    1986-01-01

    A modern method has been described to assess the radiation burden by X-ray procedures with consideration of the standards of our Society for Medical Radiology in the GDR. The underlying methodology is a Monte Carlo computer technique, which simulates stochastically the energy deposition of X-ray photons in a mathematically described heterogeneous anthropomorphic phantom by Rosenstein (US Department of Health, Education and Welfare). To apply the procedure specific values for the following parameters must be determined for each dose estimation: projection and view, X-ray field size and location entrance exposure at skin surface, beam quality, source-to-image receptor distance. The base data are obtained in terms of tissue-air ratio. Organ doses were calculated for chest, urography, skull, cervical spine, thoracic spine, lumbar spine, pelvis and lymphography. Concluding possibilities have been discussed for reduction of radiation burden. 9 refs., 6 figs., 9 tabs. (author)

  7. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    Science.gov (United States)

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  8. The new X-ray ordinance: what's new?

    International Nuclear Information System (INIS)

    Reichow, H.

    2000-01-01

    The augmented requirements for the minimisation of the radiation dose in medical exposure and the experiences gained from the implementation of the ordinance in force call for more extensive measures for reducing radiation, for quality assurance and expertise in radiological protection. In future physicians, dentists, veterinarians and other people using X-rays will have to bring their necessary expert knowledge regarding radiological protection up to date at regular intervals, and prove that they have done so. To protect the public against radiation exposure from targeted use, the limit value of the effective dose is reduced to 1 mSv in the calendar year. The dose level for the protection of people professionally exposed to radiation is reduced to 20 mSv. The further development of information technology and digital imaging demands that appropriate framework conditions be laid down in response to the changing requirements for radiation protection such as those in telemedicine and in digital recording and documentation possibilities in radiology. The draft further clarifies the distinction between the Radiological Protection Ordinance and the X-Ray Ordinance in relation to accelerators, in which electrons are accelerated with the aim of producing ionizing radiation, and reduces the limit energy from 3 MeV to 1 MeV. It is discussed to remove the X-ray therapy from the X-ray Ordinance and to insert it into the Radiological Protection Ordinance, in order to conform to the higher protection requirements in X-ray therapy. (orig.) [de

  9. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    Directory of Open Access Journals (Sweden)

    Sonawane A

    2010-01-01

    Full Text Available We conducted a radiological safety and quality assurance (QA audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp, linearity of tube current (mA station and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM (Model RAD/FLU-9001, dose Test-O-Meter (ToM (Model 6001, ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%, lack of congruence of radiation and optical field (23%, nonlinearity of mA station (16% and timer (9%, improper collimator/diaphragm (19.6%, faulty adjustor knob for alignment of field size (4%, nonavailability of warning light (red light at the entrance of the X-ray room (29%, and use of mobile protective barriers without lead glass viewing window (14%. The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  10. Dose levels in conventional X-rays

    International Nuclear Information System (INIS)

    Guerra M, J. A.; Gonzalez G, J. A.; Pinedo S, A.; Salas L, M. A.; Vega C, H. R.; Rivera M, T.; Azorin N, J.

    2009-10-01

    There were a series of measures in the General Hospital of Fresnillo in the X-ray Department in the areas of X-1 and X-2-ray rooms and in the neonatal intensive care unit 2, was determined the dose surface entry in eyes, thyroid and gonads for patients undergoing to X-ray study of chest Tele by thermoluminescent dosimetry. Five dosemeters were used in each one of the scans; so find the following dose ranges 20 + - 23 mGy to 350 + - 41 mGy. With the results obtained we can conclude that the procedures used and the equipment calibration is adequate. (Author)

  11. Dosimetry measurements of X-Ray machine operating at ordinary radiology and fluoroscopic examinations

    International Nuclear Information System (INIS)

    Ayad, M.; Bakazi, A.; Elharby, H.

    2002-01-01

    An assessment of radiation dose levels inside diagnostic radiology rooms at King Khalid University Hospital was made. The measurements were taken using lithium Flouride detectors Also, an assessment of doses received by patients during some radiographic examinations especially at fluoroscopy has been measured. It has been noted that when rare-earth image intensifying screens were used the radiation dose received by the patient was reduced by 60%. It has been shown that a lead glass viewer caused a reduction of the radiation intensity by more than 50%. The variation of dose rate with the operating conditions of the X-ray tube has been studied, as well as the machine factor (P)

  12. National radiology standards in X-ray diagnostic incl. interventional radiology

    International Nuclear Information System (INIS)

    Valek, V.; Kratochvil, P.

    2005-01-01

    In 2004 the Ministry of Health care started within the frame of the program for support of quality in health care a project consisting of 4 separate tasks: creating of standards for medical irradiation in radiodiagnostics, in radiotherapy , in nuclear medicine and creating of standards for patients dose assessment in radiophysics. This document continues with description of a part of the project aimed on X-ray radiodiagnostics. The authors of the project were chosen based on their bids to the public grant issued by the Ministry of Health care. The authors used recommendations, guidelines and instructions of international professional societies and IAEA, as well as the already existing procedures and practices while considering possibilities and state of the praxis in the Czech Republic. The outcome of authors work is now an interim version of a document that will be published in the bulletin of the Ministry of Health care. The document contains a set of standards that cover the whole range o fall complimentarily performed ways of patients irradiation in X-ray diagnostics and interventional radiology . The standards are divided to several categories according to the requirement of the Ministry of Health care based on the diagnostic appliances used for diagnostic irradiation i.e. radiography , fluoroscopy, mammography, stomatology, computer tomography, angiography, interventional radiography and cardiography. (authors)

  13. Quality control of diagnostic x-ray units

    International Nuclear Information System (INIS)

    Marinkovic, O.; Milacic, S.; Jovicic, D.; Tanaskovic, I.

    2001-01-01

    The quality control program for diagnostic x-ray units has started at the Institute of Occupational and Radiological Health during 1990. It includes, among other measurements, reproducibility of dose, high voltage and exposure time. Dose reproducibility was less than 5% for 70% of tested x-ray units. The exposure time and high voltage reproducibility were less than 5% in 60% cases. The cassettes with amplifying foils made from components of rare earth are used in 10% of all x-ray departments. It is very important to work as much as it is possible to modernize general infrastructure as the radiological protection of patients would be better. (author)

  14. Shield device for controlling the dose of x-rays applied in an x-ray machine

    International Nuclear Information System (INIS)

    Charrier, P.

    1983-01-01

    This invention provides an improved shield for use with an x-ray machine. The shield can control the dose of x-rays applied by the machine in different areas without affecting the power of the x-rays. This is achieved with a shield especially designed and positioned to intercept with x-rays for longer or shorter periods in different areas during the taking of the picture, but not for the whole period of time necessary for taking this picture. Each area of the subject being x-rayed is exposed to full power x-rays. However, owing to the shield, the areas that require smaller dose receive these full power x-rays for a shorter portion of the time required to take the picture while the other areas that require larger dose of x-rays, receive the full power x-rays for a longer portion of the full period of time required to take the picture. To ensure this differential exposure, the shield is placed through the path of the x-rays and rotated about an axis which is generally transverse to the direction of travel of the x-rays to cut out some of said x-rays for different portions of the period of time necessary for taking the picture. The shield is preferably shaped to intercept x-rays for a longer period in some areas than in others depending on the required doses. A plurality of differently shaped shields can be provided to suit different picture taking situations

  15. Response of the 'patient dose calibrator' chamber for incident positions and sizes of X-ray fields

    International Nuclear Information System (INIS)

    Oliveira, Cassio M.; Abrantes, Marcos Eugenio S.; Ferreira, Flavia C. Bastos; Lacerda, Marco A. de Souza; Alonso, Thessa C.; Silva, Teogenes A. da; Oliveira, Paulo Marcio C.

    2009-01-01

    The evaluation of patient doses is an important tool for optimizing radiodiagnostic medical procedures with conventional X-ray equipment and for improving the quality of the radiographic image. The Patient Dose Calibrator (PDC) chamber is a dosimetric instrument that is used in the evaluation of the air kerma-area product (P KA ) quantity aiming the reduction of patient doses. The objective this work was to study the P KA variation caused by different field incident positions and sizes of the X-ray beam on the PDC chamber. Results showed that the PDC chamber has repeatability lower than 0.6%, beam position dependence of 3% and linearity response within ± 6%; these characteristics are to be taken into account during evaluation of the radiological protection conditions of conventional x-ray equipment. (author)

  16. Determination of Doses for X-Ray Examinations of Paranasal Sinuses of Children

    International Nuclear Information System (INIS)

    Milkovic, D.; Miljanic, S.; Knezevic, Z.; Ranogajec-Komor, M.; Beck, N; Zagar, I.

    2013-01-01

    The knowledge of the absorbed doses during X-ray examination is very important, especially in paediatric radiology in order to improve radiation protection. In childhood, the paranasal sinuses diseases are very frequent and the development of sinuses has some specialities which has to be taken into consideration in X-ray diagnostics. The aim of this work was the determination of the relative doses on the thyroid gland and eyes, in respect to the entrance dose on the anthropomorphic child phantom (CIRS). The entrance doses on the phantom to the entrance dose on patients of similar age. Simultaneously the influence of human working method was studied, i.e. the performance of the radiological technicians. The age of the patients varied from 7 to 15 years, the child phantom was equivalent to 10 years age. A protective lead apron on the necks of both children and phantom was used. Doses were measured with radiophotoluminescence (RPL) and thermoluminescence (TL) dosemeters. The mean doses on the thyroid and the eyes measured in the phantom after 10 expositions were 0.20 ± 0.05 mSv, and 0.32 ± 0.02 mSv, respectively. Relative doses were calculated in relation to entrance dose of 9.96 mSv for 10 exposures, and the results were 0.02 and 0.03 for the thyroid gland and the eyes, respectively. The dosimetry results on 45 patients showed that there was a good correlation between measured doses and the body mass index (BMI). The mean entrance dose measured on the 45 patients was 0.97 ± 0.08 mSv.(author)

  17. MONITORING OF INDIVIDUAL DOSES FOR MEDICAL WORKERS OF DENTAL POLYCLINIC’S X-RAY ROOMS IN DUSHANBE, THE REPUBLIC OF TADJIKISTAN

    Directory of Open Access Journals (Sweden)

    N. U. Hakimova

    2016-01-01

    Full Text Available The article presents the data and analyses of personnel’s average annual external exposure doses monitoring via the thermoluminescent dosimetry method used for X-ray radiological personnel in dental polyclinics of Dushanbe, Tadjikistan Republic over a 5-year period ( 2010–2014 . Out of 42 registered medical institutions dental polyclinics amounted up to only just 14%. For this work thermoluminescent dosimeters were used ( with LiF: Mg, Ti with the thermoluminescent dosimetric installation “ Harshaw – 4500” as the reader device. Monitoring results comparison of individual dose equivalent Hp ( 10 values was conducted for two groups of medical workers: medical doctors and X-ray lab technicians. It is demonstrated that radiological technicians’ professional exposure doses are on the average by 23% higher than those for medical doctors.The average individual exposure doses over the above indicated period amount to 0,93 mSv and 1,3 mSv for doctors and X-ray lab technicians, respectively, and are in the range from 0,45 mSv to 2,39 mSv. The doses include contribution from the natural background. The values of doses recorded for the personnel in dental polyclinic correspond to those recorded for the workers in the routine X-ray rooms.

  18. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment

    International Nuclear Information System (INIS)

    Unger, L.M.; Trubey, D.K.

    1982-05-01

    Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed

  19. Comparative study of radiation dose between digital panoramic X-ray unit and general panoramic X-ray unit

    International Nuclear Information System (INIS)

    Li Qingshan; Duan Tao; Wang Xiaoyun; Zhao Li; Dong Jian; Wei Lei

    2010-01-01

    Objective: To compare the actual dose of patients who receive the same medical practice by either digital panoramic X-ray unit and general panoramic X-ray unit and give evidence for better selection of oral X-ray examination method. Methods: Round sheet lithium fluoride (LiF) thermoluminescent dosimeters (TLD) were used. The experiment was divided into natural background contrast group, general panoramic X-ray children group, general panoramic X-ray adults group, digital panoramic X-ray children group and digital panoramic X-ray adults group. The dosimeter of natural background radiation was placed at the office of the doctor, the dosimeters of general panoramic X-ray children group and general panoramic X-ray adults group were irradiated by different conditions according to the clinical application of panoramic X-ray to children and adults, the dosimeters of digital panoramic X-ray children group and digital panoramic X-ray adults group were irradiated by different conditions according to the clinical application of digital panoramic X-ray to children and adults. The thermoluminescent dosimeter was used to count and calculate the exposure doses in various groups. Results: The dose of children exposed in general panoramic X-ray unit was 1.28 times of that in digital panoramic X-ray unit, there was significant difference (t=6.904, P<0.01). The dose of adults exposed in general panoramic X-ray unit was 1.55 times of that in the digital panoramic X-ray unit, there also was significant difference (t=-11.514. P< 0.01). Conclusion: The digital panoramic X-ray unit can reduce the dose of patients, so the digital panoramic X-ray unit should be used as far as possible. (authors)

  20. Thermoluminescent dosimeters for low dose X-ray measurements

    International Nuclear Information System (INIS)

    Del Sol Fernández, S.; García-Salcedo, R.; Sánchez-Guzmán, D.; Ramírez-Rodríguez, G.; Gaona, E.; León-Alfaro, M.A. de; Rivera-Montalvo, T.

    2016-01-01

    The response of TLD-100, CaSO_4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold. All dosimeters were exposed at the available air kerma values of 14.69 mGy within a field 10×10 cm"2 at 80 cm of SSD. Results of LiF:Mg,Cu,P X-ray irradiated showed 4.8 times higher sensitivity than TLD-100. Meanwhile, TL response of CaSO_4:Dy exposed at the same dose was 5.6 time higher than TLD-100. Experimental results show for low dose X-ray measurements a better linearity for LiF:Mg,Cu,P compared with that of TLD-100. CaSO_4:Dy showed a linearity from 0.1 to 60 mGy - Highlights: • Low dose X-ray doses for personal dosimetry were measured. • Radiation dose (µGy ) for environmental dosimetry were determined. • Scattering radiation dose were measured by TLDs. • Linearity of pair TLD system was successful in the range of microgray. • Pair TLDs composed by CaSO_4:Dy and by LiF:Mg,Cu,P. is suggested for clinical dosimetry.

  1. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  2. Using computational modeling to compare X-ray tube Practical Peak Voltage for Dental Radiology

    International Nuclear Information System (INIS)

    Holanda Cassiano, Deisemar; Arruda Correa, Samanda Cristine; Monteiro de Souza, Edmilson; Silva, Ademir Xaxier da; Pereira Peixoto, José Guilherme; Tadeu Lopes, Ricardo

    2014-01-01

    The Practical Peak Voltage-PPV has been adopted to measure the voltage applied to an X-ray tube. The PPV was recommended by the IEC document and accepted and published in the TRS no. 457 code of practice. The PPV is defined and applied to all forms of waves and is related to the spectral distribution of X-rays and to the properties of the image. The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. An X-ray tube for Dental Radiology (operated from a single phase power supply) and an X-ray tube used as a reference (supplied from a constant potential power supply) were used in simulations across the energy range of interest of 40 kV to 100 kV. Results obtained indicated a linear relationship between the tubes involved. - Highlights: • Computational Model was developed to X-ray tube Practical Peak Voltage for Dental Radiology. • The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. • The energy range was 40–100 kV. • Results obtained indicated a linear relationship between the Dental Radiology and reference X-ray tubes

  3. Update of diagnostic medical and dental x-ray exposures in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Sorop, Ioana; Mossang, Daniela; Dadulescu, Elena [Radiation Hygiene Laboratory of Public Health Authority Dolj, 2, Constantin Lecca Street, Craiova (Romania); Iacob, Mihai Radu [University ' Alexandru Ioan Cuza' , 11, Carol I Street, 700506, Iasi (Romania); Iacob, Olga [Institute of Public Health, 14, Victor Babes Street, 700465 Iasi (Romania)], E-mail: danamossang@sanpubdj.ro

    2008-12-15

    This national study, the third in the last 15 years, updates the magnitude of medical radiation exposure from conventional x-ray examinations, in order to optimise the radiological protection to the population in a cost-effective manner. Effective doses from diagnostic radiology were estimated for adult and paediatric patients undergoing the 20 most important types of x-ray examination. Data were collected from 179 x-ray departments, selected by their annual workload, throughout the country. Estimates were made using two dosimetric quantities: entrance surface dose, derived from the absorbed dose in air measured by simulation of radiographic examinations, and dose-area product, measured during fluoroscopic examinations performed on adult and paediatric patients. Conversion coefficients to effective dose of the UK National Radiological Protection Board (NRPB) have been used in all calculations. The effective dose per patient from all medical x-ray examinations was 0.74 mSv and the resulting annual collective effective dose was 6930 man Sv, with annual effective dose per caput of 0.33 mSv. The current size of population exposure from diagnostic radiology is lower than the previous one by 40%, but could be about 30% higher by taking into account the estimated contribution from computed tomography (CT) procedures.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review ...

  5. Forward and backscatter dose profile to diagnostic X-rays at gold/tissue interfaces

    International Nuclear Information System (INIS)

    Rosa, Luiz A.R. da; Seidenbusch, Michael; Regulla, Dieter F.

    1997-01-01

    The radiological and clinical significance of dose distributions in the vicinity of media interfaces in radiotherapy and the complex nature of these dose distributions have long been recognised. A possible dosimetry method for dose profile assessment near interfaces is the use of the so-called thermally stimulated exoelectron emission (TSEE) dosemeter. In this work the possibility of using Be O/TSEE dosimeters to assess the forward and backscatter dose profile at the interface soft tissue/gold was investigated for diagnostic heavily filtered X-rays spectrum A-60 of ISO Standard A-quality. Dose and range profiles are presented. (author). 14 refs., 3 figs

  6. Trends in Radiation Doses to Patients from Medical X-ray Examinations in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Olga Iacob; Irina Anca Popescu [Institute of Public Health, Iassy (Romania); Mihai Radu Iacob [University ' Al. I. Cuza' Iassy (Romania)

    2006-07-01

    Even if the doses received by patients during 2005 survey are lower than those estimated in the 2000 national survey on diagnostic medical radiation exposure by 27 percent, on average, their values still indicate an urgent need to develop radiation protection and optimization activities for X ray examinations, especially in pediatrics radiology. The increasing attention given in last years to radiation protection for conventional examinations, with development of national patient dosimetry protocols and reference doses, new radiation protection legislation and norms have played a significant part in this substantial reduction in effective doses. (N.C.)

  7. Determination of doses and cancer risk to patients undergoing digital x-ray examinations at the Tamale Teaching Hospital

    International Nuclear Information System (INIS)

    Aweligiba, S.A.

    2015-07-01

    Entrance surface and effective doses as well as cancer risk to patients for three common radiological examinations were estimated at the radiology department of the Tamale Teaching Hospital. The quality control assessment indicated that the digital x-ray equipment used, performed self-consistently in line with acceptable performance criteria. The study included eighty-two (82) adult patients undergoing three x-ray imaging modalities; Chest, Abdomen and Pelvis Examinations. From the study the mean entrance dose to abdomen and pelvis were found to be 0.6 ± 0.2 mGy whiles that of chest was found to be 0.2 ± 0.1 mGy. These were found to be lower than results of studies carried out elsewhere. The effective dose to patient was computed using PCXMC 2.0 software. The results shows an average effective dose of 0.036 mSv, 0.084 mSv and 0.067 mSv for chest, abdomen and pelvis examinations respectively. The risk of radiation induced cancer as a result to entrance surface dose was found to be 5.68 x 10-5 %, 1.58 x 10-4 % and 1.49 x 10-4 % for Chest, Abdomen and Pelvis examinations respectively. The third quartile values of the entrance surface dose were found to be lower than recommended diagnostic reference levels published by NRPB, UK and the IAEA for the examinations under study. (author)

  8. DXRaySMCS. First user friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation in Iran

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Zare, H.; Moradi Faradanbe, H.

    2008-01-01

    An accurate knowledge of the output energy spectra of an x-ray tube is essential in many areas of radiological studies. It forms the basis of almost all image quality simulations and enable system designers to predict patient dose more accurately. Many radiological physics problems that can be solved by Monte Carlo simulation methods require an x-ray spectra as input data. Computer simulation of x-ray spectra is one of the most important tools for investigation of patient dose and image quality in diagnostic radiology systems. In this work the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of x-ray spectra in diagnostic radiology, Electron's path in the target was followed until it's energy was reduced to 10 keV. A user friendly interface named 'Diagnostic X-ray Spectra by Monte Carlo Simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user friendly interface for modifying the MCNP input file, launching the MCNP program to simulate electron and photon transport and processing the MCNP output file to yield a summary of the results (Relative Photon Number per Energy Bin). In this article the development and characteristics of DXRaySMCS are outlined. As part of the validation process, out put spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study. (author)

  9. Adult and child doses in standardised X ray examinations

    International Nuclear Information System (INIS)

    Gallini, R.E.; Belletti, S.; Berna, V.; Giugni, U.

    1992-01-01

    Data are presented on patient doses measured during standard hospital routine in seven radiological departments in the Province of Brescia. This study is part of a Quality Assurance Programme, carried out to assess the possibility and validity of a regional protocol. Before collecting dose data, tests on the performance of the X ray units and processors were performed in every department according to a Quality Control Protocol. The following examinations were considered: chest, knee, lumbar spine, pelvis, skull and barium meal. The surface entrance doses of 314 adults and 216 children were measured. The sample size for barium meal was lower: 65 adults and only 10 children. The patients anthropometric data and the technical parameters used were collected at the same time. For adults the organ doses and effective dose equivalent (EDE) were calculated. A wide range of entrance doses were obtained both for adults and children. The reasons can be: patient size, performance of the equipment and processors, film-screen combination, use of AEC, use of fluoroscopy and grid, training and skill of the staff

  10. Adult and child doses in standardised X ray examinations

    International Nuclear Information System (INIS)

    Gallini, R.E.; Belletti, S.; Berna, V.; Giugni, U.

    1992-01-01

    Data are presented on patient doses measured during standard hospital routine in seven radiological departments in the Province of Brescia, as part of a Quality Assurance Programme, carried out to assess the possibility and validity of a regional protocol. Before collecting dose data, tests on the performance of the X ray units and processors were performed in every department according to a Quality Control Protocol. The following examinations were considered: chest, knee, lumbar spine, pelvis, skull and barium meal. Surface entrance doses of 314 adults and 216 children were measured. The sample size for barium meal was lower: 65 adults and 10 children. The patients anthropometric data and technical parameters used were collected at the same time. For adults the organ doses and effective dose equivalent (EDE) were calculated. A wide range of entrance doses were obtained both for adults and children, due to patient size, performance of the equipment and processors, film-screen combination, use of AEC, use of fluoroscopy and grid, training and skill of the staff. (author)

  11. Doses to patients from dental radiology in France

    International Nuclear Information System (INIS)

    Benedittini, M.; Maccia, C.; Lefaure, C.; Fagnani, F.

    1989-01-01

    In France, a national study was undertaken to estimate both dental radiology practices (equipment and activity) and the associated population collective dose. This study was done in two steps: A nationwide survey was conducted on the practitioner categories involved in dental radiology, and dosimetric measurements were performed on patients and on an anthropomorphic phantom by using conventional dental x-ray machines and pantomographic units. A total of 27.5 x 10(6) films were estimated to have been performed in 1984; 6% of them were pantomographic and 94% were conventional. Most of the organ doses measured for one intra-oral film were lower than 1 mGy (100 mrad); pantomogram dose values were generally higher than intra-oral ones. The collective effective dose equivalent figure was 2,000 person-Sv (2 x 10(5) person rem) leading to a per head dose equivalent of 0.037 mSv (3.7 mrem). The study allowed authors to identify ways to reduce the patient dose in France (e.g., implementing the use of long cone devices and controlling darkroom practices)

  12. Dose evaluation in paediatric patients undergoing chest X-ray examinations

    Science.gov (United States)

    Piantini, F.; Schelin, H. R.; Denyak, V.; Bunick, A. P.; Legnani, A.; Ledesma, J. A.; Filipov, D.; Paschuk, S. A.

    2017-11-01

    This study aimed to estimate the incident air kerma in chest X-ray examinations, for lateral (LAT) and anterior-posterior (AP) (together with posterior-anterior (PA)) projections, in one of the largest paediatric hospitals in Brazil, and to compare these with the results obtained in a general hospital of the same city. The dosimetric results were analysed along with the patient characteristics and radiographer strategies. The examinations of 225 (119 male and 106 female) patients were studied and 389 X-ray scans (200 AP/PA projections and 189 LAT projections) of paediatric patients were acquired. For analysis of the results, the patients were divided into the following age groups: 0-1 y, 1-5 y, 5-10 y, and 10-15 y. Patient's thickness can be determined from age, height or weight with an uncertainty of 20-30%. In different hospitals, the difference in patient's thicknesses between the same age groups can reach 25-55%. A minimal correlation between the patient dose and thickness was observed, with a 4-fold difference in the dose for patients of the same thickness. By standardizing radiological protocols, it should be possible to keep the dose within intervals of 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection.

  13. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  14. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  15. Computerized x-ray dose-monitoring system

    International Nuclear Information System (INIS)

    Hummel, R.H.; Wesenberg, R.L.; Amundson, G.M.

    1985-01-01

    An x-ray dose-monitoring system using a small digital computer is described. Initially, and for every 6 months afterward, the system is calibrated using an exposure meter. For each exposure, the computer receives values of x-ray technique and beam geometry from the x-ray generator through a specially designed electronic interface. Then, by means of calibration data, entrance exposure, area exposure product, and integral dose are obtained and printed for each patient examined. The overall accuracy of the system is better than +/-20%. Operation is semiautomatic, requiring minimum operator intervention. Over 2000 patients have been monitored with the device. Because the system is computer-based, it offers the opportunity for statistical analysis of the data base created, as the results for each patient are stored on computer disk

  16. Determination of Entrance Skin Doses and Organ Doses for Medical X Ray Examinations

    International Nuclear Information System (INIS)

    Tung, C.J.; Cheng, C.Y.; Chao, T.C.; Tsai, H.Y.

    1999-01-01

    A national survey of patient doses for diagnostic X ray radiographs is planned in Taiwan. Entrance skin doses and organ doses for all installed X ray machines will be investigated. A pilot study has been carried out for the national survey to develop a protocol for the dose assessment. Entrance skin doses and organ doses were measured by thermoluminescence dosemeters and calculated by Monte Carlo simulations for several X ray examinations. The conversion factor from free air entrance absorbed dose to entrance skin dose was derived. A formula for the computation of entrance skin doses from inputs of kV p , mA.s, source to skin distance, aluminium filtration, and generator rectifying was constructed. Organ doses were measured using a RANDO phantom and calculated using a mathematical phantom. All data will be passed to the Atomic Energy Council for developing a programme of national survey and regulatory controls for diagnostic X ray examinations. (author)

  17. Radiation doses to patients in medical diagnostic x-ray examinations in New Zealand: a 1983-84 survey

    International Nuclear Information System (INIS)

    Williamson, B.D.P.; Poletti, J.L.; Cartwright, P.H.; Le Heron, J.C.

    1993-06-01

    A survey of doses to patients undergoing diagnostic x-ray examinations was performed in 1983-84. Developments since 1983-84 were reviewed and estimates made of the frequency of x-ray examinations, and doses to patients, as at 1992. The collective effective dose from general medical diagnostic radiology in 1983-84 was estimated to have been about 443 μSv per capita per annum. The figure excluded computed tomography which was estimated to have contributed about 5.6 μSv per capita per annum and mammography gave 0.3 μSv per annum. The total per capital effective dose from all medical diag over the whole period from 1983-84 to 1992. The highest dose examinations in 1983-84 were the fluoroscopic procedures barium enema and meal. Over the whole period 1983-84 to 1992 the genetically significant dose (GSD) to the population of New Zealand from medical diagnostic radiology was estimated to have been in the range 200-250 μSv per capita per annum. The two opposing tendencies noted for effective dose, viz, the fall in frequency of some examination types and the rise of Computed tomography, acted also upon this dose index. 43 refs., tabs., figs., ills

  18. Physician-received scatter radiation with angiography systems used for interventional radiology: Comparison among many x-ray systems

    International Nuclear Information System (INIS)

    Chida, K.; Morishima, Y.; Inaba, Y.; Taura, M.; Ebata, A.; Takeda, K.; Shimura, H.; Zuguchi, M.

    2012-01-01

    Radiation protection for interventional radiology (IR) physicians is very important. Current IR X-ray systems tend to use flat-panel detectors (FPDs) rather than image intensifiers (IIs). The purpose of this study is to test the hypothesis that there is no difference in physician-received scatter radiation (PRSR) between FPD systems and II systems. This study examined 20 X-ray systems in 15 cardiac catheterisation laboratories (11 used a FPD and 9 used an II). The PRSR with digital cine-angiography and fluoroscopy were compared among the 20 X-ray systems using a phantom and a solid-state-detector electronic pocket dosemeter. The maximum PRSR exceeded the minimum PRSR by ∼12-fold for cine-angiography and ∼9-fold for fluoroscopy. For both fluoroscopy and digital cine-angiography, the PRSR had a statistically significant positive correlation with the entrance surface dose (fluoroscopy, r = 0.87; cine-angiography, r = 0.86). There was no statistically significant difference between the average PRSR of FPDs and IIs during either digital cine-angiography or fluoroscopy. There is a wide range of PRSR among the radiography systems evaluated. The PRSR correlated well with the entrance surface dose of the phantom in 20 X-ray units used for IR. Hence, decreasing the dose to the patient will also decrease the dose to staff. (authors)

  19. Medical imaging: Material change for X-ray detectors

    Science.gov (United States)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  20. Surveillance of X-ray machines in Israel

    International Nuclear Information System (INIS)

    Donagi, A.; Hai, J.; Kuszpet, M.

    1980-01-01

    A nationwide surveillance of X-ray machines is carried out in Israel by the Research Institute for Environmental Health, Ministry of Health. At present, diagnostic X-ray machines are surveyed at least once every two years, while dental machines are surveyed once every five years. The investigated parameters include measurement of output, scattered radiation, X-ray-light-field alignment, HVL, inherent filtration, structural shielding, etc. In order to compare X-ray techniques used in different hospitals in Israel, the NEXT (Nationwide Evaluation of X-ray Trends) program, which was developed by the BRH (Bureau of Radiological Health, USPHS) was utilized. On the basis of the findings of this project, necessary correction steps were taken in order to reduce the radiation doses to both personnel and patients. Further activities of the Institute include the estimation of doses delivered to pregnant women who were irradiated during the gestation period. This information is sent to a professional committee, which decides whether or not to perform an abortion. Recently, the new recommendations of ICRP 26 (International Commission on Radiological Protection) were implemented in Israel. Therefore, at present doses over 150 mR/month are reported to the Institute by the Soreq Personal Dosimetry Service, and the causes of this exposure are investigated. (author)

  1. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    Science.gov (United States)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  2. Monte Carlo simulation of the interaction of X-ray spectrum with human tissue, in the energies range of diagnostic radiology

    International Nuclear Information System (INIS)

    Cayllahua Q, L. F.; Apaza V, G.; Vega R, J. L.

    2015-10-01

    Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)

  3. Analysis of surface absorbed dose in X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-10-15

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.

  4. Analysis of surface absorbed dose in X-ray grating interferometry

    International Nuclear Information System (INIS)

    Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu

    2014-01-01

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  5. A review of radiology staff doses and dose monitoring requirements

    International Nuclear Information System (INIS)

    Martin, C. J.

    2009-01-01

    Studies of radiation doses received during X-ray procedures by radiology, cardiology and other clinical staff have been reviewed. Data for effective dose (E), and doses to the eyes, thyroid, hands and legs have been analysed. These data have been supplemented with local measurements to determine the most exposed part of the hand for monitoring purposes. There are ranges of 60-100 in doses to individual tissues reported in the literature for similar procedures at different centres. While ranges in the doses per unit dose-area product (DAP) are between 10 and 25, large variations in dose result from differences in the sensitivity of the X-ray equipment, the type of procedure and the operator technique, but protection factors are important in maintaining dose levels as low as possible. The influence of shielding devices is significant for determining the dose to the eyes and thyroid, and the position of the operator, which depends on the procedure, is the most significant factor determining doses to the hands. A second body dosemeter worn at the level of the collar is recommended for operators with high workloads for use in assessment of effective dose and the dose to the eye. It is proposed that the third quartile values from the distributions of dose per unit DAP identified in the review might be employed in predicting the orders of magnitude of doses to the eye, thyroid and hands, based on interventional operator workloads. Such dose estimates could be employed in risk assessments when reviewing protection and monitoring requirements. A dosemeter worn on the little finger of the hand nearest to the X-ray tube is recommended for monitoring the hand. (authors)

  6. Radiation doses to paediatric patients and comforters undergoing chest x rays

    International Nuclear Information System (INIS)

    Sulieman, A.; Vlychou, M.; Tsougos, I.; Theodorou, K.

    2011-01-01

    Pneumonia is an important cause of hospital admission among children in the developed world and it is estimated to be responsible for 3-18 % of all paediatric admissions. Chest X ray is an important examination for pneumonia diagnosis and for evaluation of complications. This study aims to determine the entrance surface dose (ESD), organ, effective doses and propose a local diagnostic reference level. The study was carried out at the university hospital of Larissa (Greece). Patients were divided into three groups: organ and effective doses were estimated using National Radiological Protection Board software. The ESD was determined by thermoluminescent dosemeters for 132 children and 76 comforters. The average ESD value was 55±8 μGy. The effective dose for patients was 11.2±5 μSv. The mean radiation dose for comforter is 22±3 mGy. The radiation dose to the patients is well within dose constraint, in the light of the current practice. (authors)

  7. Analyses of superficial and depth doses in intraoral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Silva Santos de Oliveira, C.; Morais, R.P. de; Nascimento Souza, D. do [Universidade Federal de Sergipe - CCET - Dept. de Fisica, Sao Cristovao, SE (Brazil)

    2006-07-01

    In this work dosimetric analysis using thermoluminescence technique to study the beams characteristics of x-rays employed in dental radiology has been carried out. The obtained results with CaSO{sub 4}:Dy thermoluminescent dosimeters (TLD) were compared to the doses obtained with parallel-plates ionization chamber. Dosimetric evaluations were also done using radiographic films of large dimensions. The x-rays equipments analyzed were installed in the radiological services of Odontology Department of Sergipe Federal University (U.F.S.). Depending on the anatomical region to be examined the proper exposure time was select, for a fix voltage of 70 kV. The results with TLD and ionization chamber have been determined to female and male individuals. The intraoral regions analysed were the peri apical of the incisors, molar and pre-molar teeth and the occlusive region. These regions were simulated using acrylic plates absorbers installed on the film packet holder. The evaluation of the depth doses in the intraoral tissue was obtained using different acrylic plate thickness. The air kerma values have been evaluated with the ionization chamber located in the dental cone exit of the x-rays equipments. The integrated areas of the thermoluminescent glow curves showed coherent values when compared to the ones obtained with the ionization chamber and both methods presented a linear dependence with the exposition time. The analyses with films have allowed the evaluation of the beam scattering in the simulator apparatus. The studies had proven that the analysis of superficial dose and in depth used in dental radiology can be carried with thermoluminescent dosimeters. (authors)

  8. Analyses of superficial and depth doses in intraoral radiology

    International Nuclear Information System (INIS)

    Silva Santos de Oliveira, C.; Morais, R.P. de; Nascimento Souza, D. do

    2006-01-01

    In this work dosimetric analysis using thermoluminescence technique to study the beams characteristics of x-rays employed in dental radiology has been carried out. The obtained results with CaSO 4 :Dy thermoluminescent dosimeters (TLD) were compared to the doses obtained with parallel-plates ionization chamber. Dosimetric evaluations were also done using radiographic films of large dimensions. The x-rays equipments analyzed were installed in the radiological services of Odontology Department of Sergipe Federal University (U.F.S.). Depending on the anatomical region to be examined the proper exposure time was select, for a fix voltage of 70 kV. The results with TLD and ionization chamber have been determined to female and male individuals. The intraoral regions analysed were the peri apical of the incisors, molar and pre-molar teeth and the occlusive region. These regions were simulated using acrylic plates absorbers installed on the film packet holder. The evaluation of the depth doses in the intraoral tissue was obtained using different acrylic plate thickness. The air kerma values have been evaluated with the ionization chamber located in the dental cone exit of the x-rays equipments. The integrated areas of the thermoluminescent glow curves showed coherent values when compared to the ones obtained with the ionization chamber and both methods presented a linear dependence with the exposition time. The analyses with films have allowed the evaluation of the beam scattering in the simulator apparatus. The studies had proven that the analysis of superficial dose and in depth used in dental radiology can be carried with thermoluminescent dosimeters. (authors)

  9. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    International Nuclear Information System (INIS)

    Goekce, Senem Divrik; Gekce, Erkan; Coskun, Melek

    2012-01-01

    Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A X 2 -test was used for the evaluation of data obtained. Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period.

  10. Trends in x-ray photography and patient exposure dose

    International Nuclear Information System (INIS)

    Orito, Takeo; Sanada, Shigeru; Maekawa, Ryuichi; Koshida, Kichiro; Hiraki, Tatsunosuke

    1980-01-01

    The exposure doses of patients in X-ray photography are influenced by such technological factors as X-ray tube voltage, filter, sensitizing screen, film and grid. Survey by questionnnaire was made previously in 1973 on the above factors. The trends five years after were surveyed similarly, in connection with the exposure doses of patients. Questionnaires were sent to 200 radiation technicians, and 121 (60.5%) answered the survey in March, 1979. The results in the cases of simple X-ray photography and obstetric, infant and breast X-ray photographings are described. X-ray tube voltage is generally on the increase. In the sensitizing screens, exposure doses are fairly decreased due to the use of improved intensifying screen (LT-II). In the grid, the ratio 8 : 1 is used more than 5 : 1. In the usage of additional filters and in the distance of photography, improvements are desired. (J.P.N.)

  11. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    Energy Technology Data Exchange (ETDEWEB)

    Almen, A J

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs.

  12. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    International Nuclear Information System (INIS)

    Almen, A.J.

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs

  13. Evaluation of entrance skin dose to the skull in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamed, Anas Ali Elbushari

    2015-12-01

    Diagnostic x-ray radiology is a common diagnostic practice.Despite of its increasing hazard to human beings, imaging procedures should be achieved with less radiation dose and sufficient image quality. The aim of this study was to estimate the entrance skin dose(ESD) for patients undergoing selected diagnostic x-ray examinations in four hospitals.The study included the examinations of the skull; posterior- anterior(PA) and lateral projections. Fifty patients were enrolled in this study. ESDs were estimated from patients specific exposure parameters using established relation between output (μGy/mAs) and tube voltage(kVp). The estimated ESDs ranged from 0.0097-0.1846 mGy for skull (PA), 0.0097-0.1399 mGy for skull (LAT). These values were acceptable as compared with the international reference dose levels. This study provides additional data that can help the regulatory authority to establish reference dose levels for diagnostic radiology in Sudan.(Author)

  14. Effects of X-rays spectrum on the dose

    International Nuclear Information System (INIS)

    Rodriguez I, J. L.; Hernandez A, P. L.; Vega C, H. R.; Rivera M, T.

    2015-10-01

    The X-ray equipment for diagnosis comes in different sizes and shapes depending on the scan type to perform. The X-ray spectrum is the energy distribution of the beam photons and consists of a continuous spectrum of photons braking and discrete spectrum due to the characteristic photons. The knowledge of the X-rays spectrum is important to understand like they affect the voltage changes (k Vp), current (m A), time (s) and the type of filter in the interaction mechanisms between X-rays and patient's body, the image receptor or other material that gets in the beam. Across the spectrum can be estimated the absorbed dose in any point of the patient, the quality of the image and the scattered radiation (which is related to the dose received by the equipment operator). The Monte Carlo method was used by MCNP5 code to calculate the spectrum of X-rays that occurs when a monoenergetic electron beam of 250 keV interact with targets of Mo, Rh and W. The spectra were calculated with and without filter, and the values of ambient dose equivalent were estimated, as well as the air kerma. (Author)

  15. Evaluation of skin entrance radiation dose in pediatric patients undergoing chest X-rays exams

    International Nuclear Information System (INIS)

    Gabardo, Farly Piantini

    2016-01-01

    The aim of this work was to estimate the incident air kerma of lateral (LAT) and anterior-posterior (AP) together with posterior-anterior (PA) projection chest X-ray exams in one of the largest pediatric hospitals in Brazil. Dosimetric results are accompanied with the detailed analysis of patient characteristics and radiographer strategy. The exams of 225 (119 male and 106 female) patients were studied and 389 X-ray exams (200 AP/PA projections and 189 LAT projections) of pediatric patients were acquired. Patient thickness can be restored from age, height or weight with the uncertainty of ∼20-30%. Very slight correlation between the patient dose and thickness was observed with the difference in dose for patients of the same thickness reaching 4 times. By standardization of radiological protocols, it should be possible to keep dose within the intervals 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection. The dose values are lower than those recommended by major European guidelines to good practice. (author)

  16. Patient dose evaluations from medical X-ray exposure in Italy: an analysis of next data

    International Nuclear Information System (INIS)

    Marchetti, A.; Paganini, F.M.; Susanna, A.

    1980-01-01

    NEXT (Nationwide Evaluation of X-ray Trends) is a program for the evaluation of patient exposure in X-ray diagnostic tests. The program is aimed at reducing patient exposure by pin-pointing poor radiological techniques and improving them. CNEN (Comitato Nazionale per l'Energia Nucleare) and ISS (Istituto Superiore di Sanita) have been developing such a program in Italy since 1976. Up to now two regional administrations applied the method and regional operators collected the needed data in all the medical institutions in their areas. The results show a wide spread of values for all the parameters studied in the 12 X-ray projections selected. Gonad dose and skin entrance exposure were found to be spread over a range up to about two orders of magnitude. (H.K.)

  17. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    International Nuclear Information System (INIS)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung

    2007-01-01

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines

  18. Digital image acquisition in the X-ray diagnostics. Its influence on the patients' exposure

    International Nuclear Information System (INIS)

    Hoberg, Bernd; Voigt, Stefan

    2012-01-01

    Radiation exposure in the classical X-ray diagnostics was continuously reduced during the past years. The annual report 2009 of the Bundesamt fuer Strahlenschutz (BfS) shows that 46% of the radiological examinations in Germany concern the skeleton, the lungs and the digestive and urogenital tract. The respective radiation dose is only 20% of the total dose of the public from X-ray diagnostic measures. Considering computerized tomography, angiography and interventional radiology, that amount to about 10% of the radiological examinations, their dose percentage reaches about 80%. Therefore, the emphasis of modern radiation protection has to be targeted to digital techniques in the future X-ray diagnostics. The authors describe digital detectors, direct and indirect digitalized image receivers, flat-panel detectors and dynamic detectors.

  19. Survey of radiation doses and health effects in medical diagnostic X-ray workers in China

    International Nuclear Information System (INIS)

    Wang Jixian; Zhang Liangan; Liu Jinzhong; Zhang Jingyuan

    1984-01-01

    The results of a nationwide survey of radiation doses and health effects in 26983 medical diagnostic X-ray workers in 28 provinces of China were reported. The control group was composed of 25785 non-X-ray medical workers in the same hospitals where the investigated X-ray workers worked. Of the radiological workers surveyed 75.3% received cumulative radiation doses below 50 mGy, only 2.7% received doses greater than 500 mGy, the average cumulative dose being 45.0 mGy. The average length of service was 11 years. The main radiation effects relating to radiation doses were the increase of frequencies of both chromosomal aberrations and micronuclei in peripheral blood lymphocytes, which were 0.362% and 0.0358% in the irradiated group, and 0.122% and 0.0138% in the control group, respectively. The incidence and mortality rate of leukemias increased significantly in the irradiated group. The incidence and standardized incidence of leukemias were 9.61 . 10 -5 and 9.67 . 10 -5 in the irradiated group and 2.74 . 10 -5 and 2.77 . 10 -5 in the control group. The leukemia mortality rates in the two groups were 8.60 . 10 -5 and 1.24 . 10 -5 respectively, and the standardized mortality rates were 8.60 . 10 -5 and 1.27 . 10 -5 respectively. (Author)

  20. Estimate of dose in interventional radiology: a study of cases

    International Nuclear Information System (INIS)

    Pinto, N.; Braz, D.; Lopes, R.; Vallim, M.; Padilha, L.; Azevedo, F.; Barroso, R.

    2006-01-01

    Values of absorbed dose taken by patients and professionals involved in interventional radiology can be significant mainly for the reason of these proceedings taking long time of fluoroscopy There are many methods to estimate and reduce doses of radiation in the interventional radiology, particularly because the fluoroscopy is responsible for the high dose contribution in the patient and in the professional. The aim of this work is the thermoluminescent dosimetry to estimate the dose values of the extremities of the professionals involved in the interventional radiology and the product dose-area was investigated using a Diamentor. This evaluation is particularly useful for proceedings that interest multiple parts of the organism. In this study were used thermoluminescent dosimeters (LiF:Mg, Ti - Harshaw) to estimate the dose values of the extremities of the professionals and to calibrate them. They were irradiated with X rays at 50 mGy, in Kerma in air and read in the reader Harshaw-5500. The product dose-area (D.A.P.) were obtained through the Diamentor (M2-P.T.W.) calibrated in Cgy.cm 2 fixed in the exit of the X-rays tube. The patients of these study were divided in three groups: individuals submitted to proceedings of embolization, individuals submitted to cerebral and renal arteriography and individuals submitted to proceedings of Transjungular Inthahepatic Porta Systemic Stent Shunt (TIPS). The texts were always carried out by the same group: radiologist doctor), an auxiliary doctor and a nursing auxiliary. The section of interventional radiology has an Angiostar Plus Siemens equipment type arc C, in which there is trifocal Megalix X-ray tube and a intensifier of image from Sirecon 40-4 HDR/33 HDR. In this work the dose estimated values were 137.25 mSv/year for the doctors, 40.27 mSv/year for the nursing and 51.95 mSv/year for the auxiliary doctor and they are below the rule, but in this study it was not taken in consideration the emergency texts as they were

  1. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    Energy Technology Data Exchange (ETDEWEB)

    Goekce, Senem Divrik [I. Ikad Community Health Center, Health Directorate, Samsun (Turkmenistan); Gekce, Erkan [Samsun Maternity and Women' s Disease and Pediatrics Hospital, Samsun (Turkmenistan); Coskun, Melek [Faculty of Medicine, Ondokuz May' s University, Samsun (Turkmenistan)

    2012-03-15

    Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A X{sup 2}-test was used for the evaluation of data obtained. Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period.

  2. Dose Matters: FDA's Guidance on Children's X-rays

    Science.gov (United States)

    ... Consumer Updates Dose Matters: FDA's Guidance on Children's X-rays Share Tweet Linkedin Pin it More sharing options ... exposure during medical procedures. The level of ionizing radiation from X-ray imaging is generally very low, but can ...

  3. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  4. Possible radiation dose reduction by using digital X-ray equipment

    International Nuclear Information System (INIS)

    Horvathova, M.; Nikodemova, D.; Prikazska, M.

    2001-01-01

    The radiation load of population all over the world from medical examinations clearly demonstrates the importance of the introduction of the quality assurance and quality control programmes into the activities of radiology departments. The basic aim of quality assurance program is to ensure that the radiation dose is kept as low as reasonably practicable while still providing an adequate image quality. As many other fields, the rapid development of techniques brought change-over from the conventional analogue technique to the digital technique. In this process, the conventional X-ray film is being abandoned and images are being viewed on either laser film or monitor. The main advantages of using digital equipment lay in improved image quality and diagnostic accuracy through digital image processing, reduction in patients exposure, cost reduction by reduction of the film usage, more efficient storage and retrieval of radiographic images through picture archiving. Several studies that have been conducted for comparison of various diagnostic examinations show , that there is potential for dose saving in the digital image intensifier technique. The aim of this study was to compare measured values of dose-area product for colon investigations using different X-ray equipment types, two digital and two analogue. Our material consisted of 169 randomly selected patients, 115 of them were examined with digital equipment and 54 patients with the analogue equipment. The obtained results have confirmed the dose reduction and increase of diagnostic accuracy when using the digital equipment, with the added benefit of a good image quality. (authors)

  5. Determination of conversion factors of kerma and fluence to ambient dose equivalent for X-rays generated between 50 kVp to 125 kVp

    International Nuclear Information System (INIS)

    Nogueira, Maria do Socorro

    1997-01-01

    The ambient dose equivalent was determined experimentally on the interval of energy of X ray applied in diagnostic radiology. A PMMA sphere was used to simulate the trunk human (phantom), based on the definition of the report ICRU 39. The absorbed dose in different positions in the phantom was determined using LiF-TLD 100. The X ray spectra were measured with a high-purity germanium detector (HP Ge). It was also determined the HVL and the effective energy in this energy range. The conversion coefficient of the K air and Φ to H * (d) were determined to 10, 50 and 60 mm deep in the PMMA sphere. The obtained values were compared with data of the literature. The maximum uncertainty obtained for the coefficients was 7.2%. All parameters were also determined to the X ray quality of the incident and transmitted beam by the patient, according to the recommendation of the standard DIN 6872. The conversion factor was calculated for those situations where the X-ray beam is transmitted by a layer and Pb and it is necessary to estimate the effective dose, as in the case of shielding project of radiology diagnosis room. (author)

  6. Adjustment and Prediction of X-Ray Machine Factors Based on Neural Artificial Inculcating

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Amin, E.S.; Ibrahim, M.S.

    2009-01-01

    Since the discovery of X-rays, their use in examination has become an integral part of medical diagnostic radiology. The use of X-rays is harmful to human beings but recent technological advances and regulatory constraints have made the medical X-rays much safer than they were at the beginning of the 20th century. However, the potential benefits of the engineered safety features can not be fully realized unless the operators are aware of these safety features. The aim of this work is to adjust and predict X-ray machine factors (current and voltage) using neural artificial network in order to obtain effective dose within the range of dose limitation system and assure radiological safety.

  7. Monochromatic x-rays for low-dose digital mammography: preliminary results.

    Science.gov (United States)

    Yoon, Kwon-Ha; Kwon, Young Man; Choi, Byoung-Jung; Son, Hyun Hwa; Ryu, Cheol Woo; Chon, Kwon Su; Park, Seong Hoon; Juhng, Sun Kwan

    2012-12-01

    The feasibility of using monochromatic x-ray imaging generated from an x-ray tube and a multilayer reflector for digital mammography with a low radiation dose was examined. A multilayer mirror was designed to select the x-ray peak with an energy of 21.5 keV generated from an x-ray tube with a tungsten target and was fabricated by the ion-beam sputtering deposition system. Monochromatic x-ray images were obtained from an experimental digital mammography setup with a scanning stage. The performance of the system was evaluated using a breast phantom, a spectrometer, and a radiation dosimeter. We measured the contrast-to-noise ratio and performed the 10% modulation function test to determine image quality and resolution. The monochromatic beam from the multilayer reflector had a full-width-at-half-maximum of 0.9 keV at 21.5 keV, and the reflectivity was 0.70, which was 90% of the designed value. The polychromatic and monochromatic x-rays showed radiation doses of 0.497 and 0.0415 mGy, respectively. The monochromatic x-ray image shows fibers, calcifications, and masses more clearly than the polychromatic x-ray images do. The image contrast of the monochromatic x-rays was 1.85 times higher than that of the polychromatic x-rays. The experimental mammography setup had a spatial resolution of 7 lp/mm with both x-rays. Monochromatic x-rays generated using a multilayer mirror may be a useful diagnostic tool for breast examination by providing high contrast imaging with a low radiation dose.

  8. Tissue doses in X-ray examinations of osteoarticular system

    International Nuclear Information System (INIS)

    Rabkin, I.Kh.; Stavitskij, R.V.; Blinov, N.N.; Vasil'ev, Yu.D.

    1985-01-01

    The X-ray method in diagnosis of the osteoarticular system disease is described. Problems on tissue dose distribution in X-ray examinations of a skeleton, a skull, humeral articulation, cervical, thoracic and lumbar vertebrae, hip joint, hipbones are considered. The values of specific tissue doses in roentgenography of the osteoarticular system are given

  9. Characterization of different qualities in X-rays, for instruments calibration in radiological protection; Caracterizacion de diferentes calidades en rayos X, para calibracion de instrumentos en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Cejudo A, J.; Tovar M, V. M.; Vergara M, F., E-mail: jesus.cejudo@inin.gob.m [ININ, Departamento de Metrologia de Radiaciones Ionizantes, Laboratorio Secundario de Calibracion Dosimetrica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    In the Secondary Laboratory of Dosimetric Calibration in Mexico was realized the qualities characterization of the series X-rays RQR reported in the International Code of Practices in Dosimetry and Diagnostic Radiology No. 457, using attenuator filters of high purity aluminum and ionizing radiation equipment of inherent filtration of 4 mm Be with and emergent X-radiation beam of 40 grades. For the attenuation was used a geometric arrangement with three beam limiters and a monitor camera prepared on the established form in the mentioned technical report, and a spherical ionization chamber with collection volume of 3.6 cm{sup 3}, aligning its geometric center with the focus of X-rays tube to get that the incident radiation direction will be perpendicular to the ionization chamber. From the perspective of the radiological protection is important to know the X-radiation quality for the application dedicated to the instruments calibration and can to give to these the traceability to a reference laboratory, this way the quality combination and reference chamber can give as a result a procedure for the evaluation of the entrance in surface dose to estimate the dose orientate levels, specified in the basic standards of safety. (Author)

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  11. Analisis Linearitas Keluaran Radiasi pada X-Ray Mobile dengan Menggunakan Piranha

    Directory of Open Access Journals (Sweden)

    Nur Mukminah R

    2014-07-01

    Full Text Available The research was conducted on the linearity of the output radiation in the mobile X-ray by using Piranha. This study aimed to measure the radiation dose exposure, to determine the relationship between the increase in the voltage of the radiation dose exposure and increase the tube current to the radiation dose exposure, as well as to analyze the radiation output and linearity of the output radiation. Data collection was conducted at the Dr. Tadjuddin Chalid Hospital Makassar in radiological installation. In this study the variables that measured the radiation dose and exposure variables that change the tube current and voltage. The data obtained and analyzed to calculate the value of the output radiation and radiation output linearity in the X- ray mobile. The analysis showed that the X-ray mobile with GE brand that are in radiological installation Dr. Tadjuddin Chalid Hospital has good linearity.

  12. Radiation exposure of the Yazd Population from medical conventional X-ray examinations

    International Nuclear Information System (INIS)

    Bouzarjomehri, F.; Zare, M. H.; Dashti, M. H.

    2007-01-01

    Radiation dose knowledge through X-ray examinations and their distribution in Iran provides useful guidance on patient dose reduction. The results of the entrance skin dose (ESD s ) of five common radiographs in all radiology centers in Yazd province were reported in our previous study (2003). In the present study we have evaluated the collective effective dose of conventional X-ray examinations, as well as the annual per caput of Yazd population.Materials and Methods: The annual frequencies of 18 different types of conventional radiology examinations during April 2005 to March 2006 were recorded from all 35 radiology centers in Yazd province. The exposure conditions consisted of kVp, mAs, and Focus surface distance (FSD) of the examinations for the mode of exposure in each X-ray unit. 620 ESD were measured by diode dosimeter in 35 hospitals and clinics. The real exposure kVp for each radiology unit was measured by a Molt-0-Meter. The conversion coefficient (effective dose - ESD ratio) for each radiology examination was determined by using SR262 tables. Finally, the patients' effective dose was calculated by multiplying the conversion factor to the ESD. Results: The patients' annual collective effective dose due to the conventional radiology examinations was 31.159 man-Sv (0.03 mSv per inhabitant). The frequency of examinations was 311813 i.e. 0.36 examinations per head of the population for one year. Conclusion: According to our findings, the effective per caput dose seems to be optimally relative to HCL-II countries, which may be due to low mean effective dose that could obscure high examination frequency. The number of radiology conventional examinations and frequency of radiologist per1000 population of Yazd was more and lower than HCL-II countries respectively. Thus the justification of radiography requests in this province must be revised

  13. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  14. Patient dose simulation in X-ray CT using a radiation treatment-planning system

    International Nuclear Information System (INIS)

    Nakae, Yasuo; Oda, Masahiko; Minamoto, Takahiro

    2003-01-01

    Medical irradiation dosage has been increasing with the development of new radiological equipment and new techniques like interventional radiology. It is fair to say that patient dose has been increased as a result of the development of multi-slice CT. A number of studies on the irradiation dose of CT have been reported, and the computed tomography dose index (CTDI) is now used as a general means of determining CT dose. However, patient dose distribution in the body varies with the patient's constitution, bowel gas in the body, and conditions of exposure. In this study, patient dose was analyzed from the viewpoint of dose distribution, using a radiation treatment-planning computer. Percent depth dose (PDD) and the off-center ratio (OCR) of the CT beam are needed to calculate dose distribution by the planning computer. Therefore, X-ray CT data were measured with various apparatuses, and beam data were sent to the planning computer. Measurement and simulation doses in the elliptical phantom (Mix-Dp: water equivalent material) were collated, and the CT irradiation dose was determined for patient dose simulation. The rotational radiation treatment technique was used to obtain the patient dose distribution of CT, and patient dose was evaluated through simulation of the dose distribution. CT images of the thorax were sent to the planning computer and simulated. The result was that the patient dose distribution of the thorax was obtained for CT examination. (author)

  15. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    Science.gov (United States)

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Radiological protection program in x-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Melara F, N.E.

    1996-01-01

    This paper presents a basic document to initiate a discussion which will originate a Unified Protocol in Latin America and the Caribbean for radiological protection in the installations of medical radiology. The following principal elements are considered an inherent part of radiology protection: 1. Quality control of equipment. 2. Conditions in the dark room which coincide in the quality of the image. Levels of patient exposure and the processes for the quality control of the processors are not discussed, and it is limited to the installation of radiographic medical x-ray equipment, stationary and mobile. Each point to be put into effect is presented in a diagram, frequency and criteria for acceptance. A detailed explanation of each point along with a clear explanation of the recommended method for each follows in the same order in which they are presented in the diagram. Finally adequate forms for easily acquiring data are presented. (author)

  17. Assessment of Patients Radiation Dose During Interventional Radiological Procedure in PPUKM

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Husaini Salleh; Muhammad Jamal Muhammad Isa

    2014-01-01

    Interventional Radiology (IR) is a relatively new subspecialty of radiology. It is subspecialty where minimally invasive procedures are performed under radiological guidance using X-ray. This procedure can deliver high radiation doses compared with other radiological method due to long screening time. Because of these it is important to determine radiation doses received by patients undergoing IR procedures. It is to ensure that the dose is within the range deemed to be saved. A total of 128 patients undergoing IR procedures in PPUKM between 2012 and 2013 were study retrospectively. Dose area product (DAP) meter were used to measure the integral dose for the whole procedures. Mean kerma-area products for abdomen, head, pelvis, and thorax were 243.1, 107.3, 39.05 and 45.7 Gycm 2 , respectively. This study may provide the useful information which can be use to establish baseline patient dose data for dose optimizing study and carried out a recommendation on effective method of patient dose reduction during IR procedures. A more detail results of this study are presented in this paper. (author)

  18. Intraoral radiology in general dental practices - a comparison of digital and film-based X-ray systems with regard to radiation protection and dose reduction.

    Science.gov (United States)

    Anissi, H D; Geibel, M A

    2014-08-01

    The purpose of this study was to gain insight into the distribution and application of digital intraoral radiographic techniques within general dental practices and to compare these with film-based systems in terms of patient dose reduction. 1100 questionnaires were handed out to general dental practitioners. Data was analyzed with respect to the type of system by using descriptive statistics and nonparametric tests, i.e. Kruskal-Wallis, Mann-Whitney and chi-square test (SPSS 20). 64% of the questioned dentists still use film-based radiology, 23% utilize storage phosphor plate (SPP) systems and 13% use a charge-coupled device (CCD). A strong correlation between the number of dentists working in a practice and the use of digital dental imaging was observed. Almost 3/4 of the film users work with E- or F-speed film. 45% of them refuse to change to a digital system. The use of lead aprons was popular, while only a minority preferred thyroid shields and rectangular collimators. A fourfold reduction of exposure time from D-speed film to CCD systems was observed. Due to detector size and positioning errors, users of CCD systems take significantly more single-tooth radiographs in total. Considering the number of radiographs per patient, there is only a slight tendency towards more X-rays with CCD systems. Up to image generation, digital systems seem to be as or even more difficult to handle than film-based systems, while their handling was favored after radiographic exposure. Despite a slight increase of radiographs taken with CCD systems, there is a significant dosage reduction. Corresponding to the decrease in exposure time, the patient dose for SPP systems is reduced to one half compared to film. The main issues in CCD technology are positioning errors and the size of the X-ray detectors which are difficult to eliminate. The usage of radiation protection measures still needs to be improved. ► Responsible use of digital intraoral radiology results in a significant

  19. CALDoseX: a software tool for absorbed dose calculations in diagnostic radiology

    International Nuclear Information System (INIS)

    Kramer, R.; Khourya, H.J.; Vieira, J.W.

    2008-01-01

    Conversion coefficients (CCs) between absorbed dose to organs and tissues at risk and measurable quantities commonly used in X-ray diagnosis have been calculated for the last 30 years mostly with mathematical MIRD5-type phantoms, in which organs are represented by simple geometrical bodies, like ellipsoids, tori, truncated cylinders, etc. In contrast, voxel-based phantoms are true to nature representations of human bodies. The purpose of this study is therefore to calculate CCs for common examinations in X-ray diagnosis with the recently developed MAX06 (Male Adult voXel) and FAX06 (Female Adult voXel) phantoms for various projections and different X-ray spectra and to make these CCs available to the public through a software tool, called CALDose X (CALculation of Dose for X-ray diagnosis). (author)

  20. Photoelectronic radiology 1983; X-ray imaging with the computer-assisted technologies

    International Nuclear Information System (INIS)

    Chalaoui, J.; Sylvestre, J.; Robillard, P.; Dussault, R.

    1984-01-01

    The development of the discipline of radiology has continued to progress from initial images depicting the structure of organs, to the exploration of dynamic and physiologic phenomena, improvements in the power of X-ray generators and with the refinement of non-toxic contrast media. Until the early part of the 1970s, radiology consisted in extrapolations from a two-dimensional image of a three-dimensional organ, and advances in diagnostic quality related chiefly to improvements in spatial resolution of the flat image. With the advent of cross-sectional imaging using computer reconstruction the emphasis has shifted to contrast resolution, to the acquisition of ''pure'' images in the XY plane and to an area-related approach in diagnosis, rather than to the traditional organ-oriented method. This new trend has only been made possible because of the influence of recent developments in the digital and electronics industry. This history of diagnostic radiology up to 1972 is reviewed, followed by a discussion of the major areas of interaction between X-ray and the computer, as represented by the major leading edge technologies that have already received broad acceptance by the health care profession. (author)

  1. Dose audit for patients undergoing two common radiography examinations with digital radiology systems.

    Science.gov (United States)

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey.

  2. Experimental study on x-rays dose enhancement effects for floating gate ROMs

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Han Fu Bin; He Chao Hui; Zhao Hui

    2002-01-01

    Experimental results of x-ray dose enhancement effects are given for floating gate read-only memory (ROMs) irradiated in the Beijing Synchrotron Radiation Facility. The wrong byte numbers vs. total irradiation dose have been tested and the equivalent relation of total dose damage is provided compared the response of devices irradiated with sup 6 sup 0 Co gamma-ray source. The x-ray dose enhancement factors for floating gate ROMs are obtained firstly in China. These results can be an effective evaluation data for x-rays radiation hardening technology

  3. X-ray and radioiodine dose to thyroid follicular cells

    International Nuclear Information System (INIS)

    Faw, R.E.

    1991-01-01

    Radiation doses to the epithelial cells of thyroid follicles have been calculated for internal exposure by radionuclides of iodine and by secondary radiations created as a result of interactions of externally administered x rays with iodine naturally occurring in the thyroid. Calculations were performed for the thyroids of subjects ranging from the newborn to the adult male. Results for internal radionuclides are reported as the dose rate to follicular-cell nuclei per unit specific activity of the radionuclide in the thyroid as a whole, i.e., as the specific ''S value'' as used in the MIRD method for internal dosimetry. Results for x rays are reported as the response function, i.e., the absorbed dose per unit fluence of primary x rays. Dose rates are subdivided into internal and external components, the former from radiations emitted within the colloid volume of any one follicle, and the latter from radiations emitted throughout the thyroid in follicles surrounding that one follicle. 37 refs., 5 figs., 3 tabs

  4. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    Science.gov (United States)

    Divrik Gökçe, Senem; Coşkun, Melek

    2012-01-01

    Objective Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. Materials and Methods A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A χ2-test was used for the evaluation of data obtained. Results Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Conclusion Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period. PMID:22438688

  5. Reduction of doses from diagnostic X-ray procedures

    International Nuclear Information System (INIS)

    Gudden, F.; Kuhn, H.

    1992-01-01

    More recent developments in the field of receiver systems for X-rays have made it possible for doses required in X-ray examinations to be gradually reduced to no more than 5% of the radiation patients were exposed to 30 years ago. Despite this fact, the image quality standards necessary to establish even considerably improved. The author suggests to repeat series of measurements carried out in the distant past to be able to make a population-based assessment of the current risk from the effective equivalence dose in one year. In all likelihood, such a survey would prove the quivalence dose to be much lower than the degree of environmental radiation exposure. (orig./DGD) [de

  6. Radiological techniques in X-ray diagnosis and radiotherapy. 2. enlarged ed.

    International Nuclear Information System (INIS)

    Koecher, E.; Kriester, A.

    1990-01-01

    Since this textbook's first edition appeared in 1981 (INIS:14(13):764471, EDB:83(15):134474), there has been sweeping change in the field of radiological techniques. This is evident from the refinements made to visualisation techniques already used in the past, the development of further methods of imaging and the important role increasingly assumed by innovative computerized procedures. In view of this fact, the relevant curricula and the textbook were thoroughly revised, to keep abreast of the most recent trends. As a result, the new version offers additional contributions on numerous subject groups like 'Transportable X-Ray Units', 'X-Ray Units for Stomatology', 'Fundamentals of Digital Technique' and 'Ultrasound Tomography' as well as sections dealing with quality assurance and electric safety measures. On the other hand, physical and methodological aspects of radiology and radiotherapy, which had been given ample coverage in the first edition, were deliberately neglected here. (orig./HP) With 136 figs., 20 tabs [de

  7. Toxicological and radiological safety of chicken meat irradiated with 7.5 MeV X-rays

    Science.gov (United States)

    Song, Beom-Seok; Lee, Yunjong; Park, Jong-Heum; Kim, Jae-Kyung; Park, Ha-Young; Kim, Dong-Ho; Kim, Chang-Jong; Kang, Il-Jun

    2018-03-01

    This study was conducted to evaluate the toxicological and radiological safety of chicken meat that had been irradiated at 30 kGy with 7.5 MeV X-rays. In a sub-chronic toxicity study, ICR mice were fed X-ray-irradiated chicken meat at 2500 mg/kg body weight daily for 90 days, and no mortality or abnormal clinical signs were observed throughout the study period. However, several hematological and serum biochemical parameters of the ICR mice differed significantly from those in the control group; nevertheless, the observed values were all within the normal range for the respective parameters. In addition, no toxicological effects were determined in male or female mice. Furthermore, no differences in gamma-ray spectrometric patterns were detected between the non-irradiated and irradiated samples, indicating that the radioactivity induced by 7.5 MeV X-ray irradiation was below the detection limit. These results tentatively suggest that chicken meat irradiated with 7.5 MeV X-rays would be safe for human consumption in terms of toxicology and radiology.

  8. Computerized method for X-ray angular distribution simulation in radiological systems

    International Nuclear Information System (INIS)

    Marques, Marcio A.; Oliveira, Henrique J.Q. de; Frere, Annie F.; Schiabel, Homero; Marques, Paulo M.A.

    1996-01-01

    A method to simulate the changes in X-ray angular distribution (the Heel effect) for radiologic imaging systems is presented. This simulation method is described as to predict images for any exposure technique considering that the distribution is the cause of the intensity variation along the radiation field

  9. Development of a real-time extremity dose monitor for personnel in interventional radiology

    International Nuclear Information System (INIS)

    Ban, Nobuhiko; Kusama, Tomoko; Adachi, Akiko

    2000-01-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  10. Development of a real-time extremity dose monitor for personnel in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Nobuhiko; Kusama, Tomoko [Oita University of Nursing and Health Sciences, Oita (Japan); Adachi, Akiko [Oita Medical University, Oita (JP)] [and others

    2000-05-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  11. Patient and population doses of x-ray diagnostics in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Rannikko, S; Karila, K T.K.; Toivonen, M

    1997-09-01

    Periodic surveys of patient and population doses are important because of the large contribution of x-ray diagnostics to the artificial population dose. Measured entrance surface doses and dose-area products are the main quantities used for monitoring patient doses in hospitals, and most population dose studies have been derived from these quantities and from the frequences of x-ray examinations. This study is based on the radiation, exposure geometry, and patient parameters recorded by experienced radiographers and postgraduated students. The software used in the work (ODS-60 of Rados Technology) suits the determination of effective and organ doses from such detailed data using a human-like patient phantom which can be adapted for sex and size. The program, together with the very detailed input data, made it possible to determine organ equivalent and effective doses for complicated dynamic x-ray examinations and interventions in more detail than in previous studies. Collective organ and effective doses were derived for 50 examination types. The annual collective dose from diagnostic x-ray examinations in 1994 was 0.5 mSv per capita in Finland. The five groups of examinations or examinations that had greatest contributions to the collective dose were CT, barium enema: double contrast, lumbar spine, carotid angiography, and intestinal transit. Together they represented for about 60 % of the total dose. The highest dose-area products (about 2000 Gy cm{sup 2}) were obtained from certain angiographic and interventional examinations. A literature survey showed that Finland patient doses are at the same average level as in other countries of a high standard of health care. (orig.). 125 refs.

  12. Patient and population doses of x-ray diagnostics in Finland

    International Nuclear Information System (INIS)

    Rannikko, S.; Karila, K.T.K.; Toivonen, M.

    1997-09-01

    Periodic surveys of patient and population doses are important because of the large contribution of x-ray diagnostics to the artificial population dose. Measured entrance surface doses and dose-area products are the main quantities used for monitoring patient doses in hospitals, and most population dose studies have been derived from these quantities and from the frequences of x-ray examinations. This study is based on the radiation, exposure geometry, and patient parameters recorded by experienced radiographers and postgraduated students. The software used in the work (ODS-60 of Rados Technology) suits the determination of effective and organ doses from such detailed data using a human-like patient phantom which can be adapted for sex and size. The program, together with the very detailed input data, made it possible to determine organ equivalent and effective doses for complicated dynamic x-ray examinations and interventions in more detail than in previous studies. Collective organ and effective doses were derived for 50 examination types. The annual collective dose from diagnostic x-ray examinations in 1994 was 0.5 mSv per capita in Finland. The five groups of examinations or examinations that had greatest contributions to the collective dose were CT, barium enema: double contrast, lumbar spine, carotid angiography, and intestinal transit. Together they represented for about 60 % of the total dose. The highest dose-area products (about 2000 Gy cm 2 ) were obtained from certain angiographic and interventional examinations. A literature survey showed that Finland patient doses are at the same average level as in other countries of a high standard of health care. (orig.)

  13. Effective dose calculations in conventional diagnostic X-ray examinations for adult and paediatric patients in a large Italian hospital

    International Nuclear Information System (INIS)

    Compagnone, G.; Pagan, L.; Bergamini, C.

    2005-01-01

    The effective dose E is an efficient and powerful parameter to study the radioprotection of the patient. In our hospital, eight radiological departments and more than 100 radiological X-ray tubes are present. The effective doses were calculated for adults and paediatric patients in 10 standard projections. To calculate E, first the entrance skin dose (ESD) was evaluated by a mathematical model that was validated by >400 direct measurements taken with an ionisation chamber on four different phantoms: the overall accuracy of the model was better than 12%. Second, to relate ESD to E, conversion coefficients calculated by Monte Carlo techniques were used. The E-values obtained were of the same order as those presented in the literature. Finally, we analysed how the study of E distributions among the various radiological departments can help to optimise the procedures, by identifying the most critical examinations or sub-optimal clinical protocols. (authors)

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  15. Radiation dose response of N channel MOSFET submitted to filtered X-ray photon beam

    Science.gov (United States)

    Gonçalves Filho, Luiz C.; Monte, David S.; Barros, Fabio R.; Santos, Luiz A. P.

    2018-01-01

    MOSFET can operate as a radiation detector mainly in high-energy photon beams, which are normally used in cancer treatments. In general, such an electronic device can work as a dosimeter from threshold voltage shift measurements. The purpose of this article is to show a new way for measuring the dose-response of MOSFETs when they are under X-ray beams generated from 100kV potential range, which is normally used in diagnostic radiology. Basically, the method consists of measuring the MOSFET drain current as a function of the radiation dose. For this the type of device, it has to be biased with a high value resistor aiming to see a substantial change in the drain current after it has been irradiated with an amount of radiation dose. Two types of N channel device were used in the experiment: a signal transistor and a power transistor. The delivered dose to the device was varied and the electrical curves were plotted. Also, a sensitivity analysis of the power MOSFET response was made, by varying the tube potential of about 20%. The results show that both types of devices have responses very similar, the shift in the electrical curve is proportional to the radiation dose. Unlike the power MOSFET, the signal transistor does not provide a linear function between the dose rate and its drain current. We also have observed that the variation in the tube potential of the X-ray equipment produces a very similar dose-response.

  16. Radiation safety and quality in diagnostic x-ray imaging 2001

    International Nuclear Information System (INIS)

    Servomaa, A.; Parviainen, T.

    2001-05-01

    The obligations of the medical exposure directive (97/43/Euratom) for hospitals dominate the current activities in radiation protection in medical radiology. The directive gives special emphasis to radiation exposure of children, to examinations with high radiation doses and to radiation exposure in health screening programmes. The most important examinations with high doses are radiological interventions, where even acute skin effects are possible, and the computed tomography where the number of CT examinations makes only about 5% from the total number of x-ray examinations but the collective effective dose about 40% from the combined collective effective dose of all x-ray examinations. In the research projects financed by the European Commission, radiation exposures to paediatric patients have been measured in radiography, fluoroscopy and CT, and various dose assessment methods have been compared to develop a method for national follow-up of patients' radiation dose. The newest research project is focused on dosimetry and quality assurance in interventional radiology and digital imaging. Other actual topics are the development of radiation protection regulations and quality systems, education and training programmes, and clinical audits. This report deals with new radiation protection guides and recommendations and the education and training of radiological staff in radiation protection. One important topic is the development of national follow-up method of radiation exposure to patients and comparison of various dose assessment methods. Quality assurance in health care and in paediatric radiology, and the acceptance test and quality assurance measurements of radiological equipment are also described. (orig.)

  17. Measurement of conversion coefficients between air Kerma and personal dose equivalent and backscatter factors for diagnostic X-ray beams

    International Nuclear Information System (INIS)

    Rosado, Paulo Henrique Goncalves

    2008-01-01

    Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm 3 Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with 133 Ba, 241 Am and 57 Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of conversion coefficients and

  18. Measurement and monitoring of entrance exposure dose rate in X-ray image intensifier television with dose rate control

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J [Bezirkskrankenhaus Brandenburg (German Democratic Republic)

    1981-03-01

    For X-ray image intensifier television operation very low entrance dose rates (about 5.2 nA/kg) are stated and demanded, respectively. These required values are often manifold exceeded in practice so that a check seems to be necessary. It is shown and proved how these measurements can be performed with simple, generally available means of measurement in the radiological practice. For ZnCdS-image intensifiers should be considered that about 13 nA/kg for the large entrance size are not to be exceeded; for the CsI type lower values (factor 1.5) are practicable because of the twofold quantum absorption efficiency. Furthermore, some tests for a semiquantitative function check of the automatic dose rate control are proposed.

  19. Fluorescent intensifying screens: contribution of secondary X-rays

    International Nuclear Information System (INIS)

    Barroso, R.C.; Goncalves, O.D.; Eichler, J.; Lopes, R.T.; Cardoso, S.C.

    1996-01-01

    The counting rate and angular distribution of secondary X-rays produced by fluorescent intensifying screens are studied. A source of 241 Am - gamma radiation of 59.54 keV - is used. Fluorescent intensifying screens reduce the radiation dose in radiology since they produce visible light which increases the efficiency of the film. In addition, secondary X-rays arise due to the photoelectric effect, elastic (Rayleigh) and inelastic (Compton) scattering

  20. Quality control of diagnostic radiology to reduce absorbed dose of patients in Iran

    International Nuclear Information System (INIS)

    Aghahadi, Bahman.

    1996-01-01

    In order to reduce absorbed dose, to increase the image quality and to reduce the numbers of rejected films various quality control parameters were applied to X ray machines. These parameter are Kilo Volt peak, Milli Ampere, Exposure Time Focal Film Distance, Inherent Filters, Additional Filters Half Value Layer, Processor Condition, Cassettes. To evaluate and to apply these parameters in diagnostic radiological centers, ten hospitals were selected and a total number of 12 X ray machines were kept under quality control program. Considering different kinds of diagnostic radiology examination and to compare the dose before and after implementation of a quality control program, two kinds of examinations include in chest and abdomen examinations were considered. For each X ray machine, ten patients and for all selected centers, 120 patients were selected for chest examination and 120 patients for abdomen examinations; before and after implementation of quality control program, a total of 480 patients were selected randomly to be controlled. Base on different examinations carried out, it was concluded that both exposure conditions and general situations in radiological centers were not acceptable. The dosimetry results show that the average ski dose for chest and abdomen examinations were 0.28 m Gy and 4.23 Gy respectively. Before implementation of quality control step to reduce the surface skin dose, quality control parameters were applied and the exposure conditions were imposed. On average the absorbed doses for chest and abdomen examination were decreased to 79% and 61% respectively after the implementation of the program. From dose reduction point of view, the results of a part of this project which made by co-operation of International Atomic Energy Agency showed that Iran acquired the first grade for chest examination and second grade for abdomen examination. Base on the results obtained, the number of patients under chest and abdomen examination were 4041588 and

  1. Introduction of radiological protection; Pengenalan kepada perlindungan radiologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: basic principles of radiological protection , dose limit which was suggested, stochastic and nonstochastic effects, equivalent dose and alternative of it`s calculation, limit for the publics, ICRP (International Commission for Radiological Protection) recommendations, and the principles of radiological protection. Dangerous radiation sources also briefly summarized i.e. x-ray generators, reactor nucleus.

  2. Diagnostic x-ray dosimetry using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ioppolo, J.L.; Tuchyna, T.; Price, R.I.; Buckley, C.E.

    2002-01-01

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1x10 7 ) than required for the calculation of dose profiles (1x10 9 ). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations. (author)

  3. Radiation doses in diagnostic radiology and methods for dose reduction. Report of a co-ordinated research programme (1991-1993)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs.

  4. Radiation doses in diagnostic radiology and methods for dose reduction. Report of a co-ordinated research programme (1991-1993)

    International Nuclear Information System (INIS)

    1995-04-01

    It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs

  5. Radiographic techniques adaptation for any conventional X-ray equipment

    International Nuclear Information System (INIS)

    Pina, Diana R.; Ghilardi Netto, Thomaz; Martinez, Alexandre S.; Duarte, Sergio B.; Trad, Clovis S.; Brochi, Marco Aurelio C.

    2001-01-01

    In order to obtain a better risk-benefice relation in diagnostic radiology it turns out to be essential the control and optimization of the radiographic techniques used to reduce the absorbed doses until its minimum, keeping or adjusting the diagnostic image at any X-ray equipment. The present work deals with the standardization of radiographic techniques of chest, skull and pelvis, which is more suitable for obtaining a safe diagnostic with smaller doses, for a standard patient, at any conventional X-ray equipment. (author)

  6. Estimation of dose to patients undergoing computed radiography x-ray examinations in some Khartoum hospitals

    International Nuclear Information System (INIS)

    Badri, Fatima Abulgasiem Abdulrhman

    2015-12-01

    This study was designed to evaluate the entrance surface air kerma to the patient during x-ray examination to (chest PA, lumbar spine AP and Lat, pelvis AP) by using computed radiography (CR) in different three hospitals in Khartoum. Three x-ray machines were covered. A total of 135 patients were evaluated. The entrance surface air kerma was calculated for each patient from the exposure parameters using cal dose software version 3.5. The obtained results showed that, the entrance surface air kerma range founded to be (0.28-1.59) for chest PA, (1.98-2.62) for lumbar spine and (0.438-2.47) for pelvis AP. The higher entrance surface air kerma for all projections were observed in Center 1, except for pelvis it is higher in center 2. And the lower entrance surface air kerma were observed in center 3. This study recommends that CR operator must to be used to achieve optimize the patient dose by use the best strategies available for reducing radiation dose, computed radiography must be used with high level of training for medical staff to reduce the dose, each radiology department should implement a patient dose measurement quality assurance programme, doses to the patients should be regularly monitored and the proposed national DRLs should be taken as guidance for optimization.(Author)

  7. Dose audit for patients undergoing two common radiography examinations with digital radiology systems

    Science.gov (United States)

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    PURPOSE We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. MATERIALS AND METHODS Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. RESULTS The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. CONCLUSION This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey. PMID:24317331

  8. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  9. Comparison of X-ray and gamma-ray dose-response curves for pink somatic mutations in Tradescantia clone 02

    International Nuclear Information System (INIS)

    Underbrink, A.G.; Kellerer, A.M.; Mills, R.E.; Sparrow, A.H.; Brookhaven National Lab., Upton, N.Y.

    1976-01-01

    Microdosimetric data indicate that the mean specific energy, xi, produced by individual charged particles from X rays and gamma rays is different for the two radiation qualities by nearly a factor of two. In order to test whether this influences the initial, linear component in the dose-effect relations, a comparison was made between dose-response curves for pink somatic mutations in Tradescantia clone 02 stamen hairs following X and gamma irradiations. Absorbed doses ranged from 2.66 to 300 rad. The results are in agreement with predictions made on the basis of microdosimetric data. At low doses gamma rays are substantially less effective than X rays. The RBE of gamma rays vs. X rays at low doses was approximately 0.6, a value lower than those usually reported in other experimental systems. (orig.) [de

  10. Measurements of X ray absorbed doses to dental patients in two dental X ray units in Nigeria

    International Nuclear Information System (INIS)

    Ogundare, F.O.; Oni, O.M.; Balogun, F.A.

    2002-01-01

    Measurements of absorbed doses from radiographic examinations to various anatomical sites in the head and neck of patients with an average age of 45 years using intra-oral dental radiography have been carried out. LiF (TLD-100) dosemeters were used for the measurements of the absorbed dose. The measured absorbed doses to the various anatomical sites in the two units are reported, discussed and compared with results from the literature. Quality control measurements were also performed using a Victoreen quality control test device on the X ray units. The tube voltage accuracies for the two units were found to be within acceptable limits (less than ±10%). On the other hand the exposure time accuracies for these units have large deviations (>20%). These results and those that have been reported in the literature may be an indication that high patient doses are common in most dental X ray centres and countries. As a result of this, regular compliance and performance checks of dental diagnostic X ray equipment are essential in order to ensure proper performance and to minimise unnecessary patient and operator doses. (author)

  11. Evaluating X-ray absorption of nano-bismuth oxide ointment for decreasing risks associated with X-ray exposure among operating room personnel and radiology experts

    Directory of Open Access Journals (Sweden)

    M. Rashidi

    2015-12-01

      Conclusion: It seems that due to higher atomic number and lower toxicity, Bi2O3 nanoparticles have better efficiency in X-ray absorbtion, comparing to the lead. Cream and ointment of bismuth oxide nanoparticles can be used as X-ray absorbant for different professions such as physicians, dentists, radiology experts, and operating room staff and consequently increase health and safety of these employees.

  12. Radiation doses and image quality in pediatric chest X-ray for the diagnosis of pneumonia in selected Latin American countries

    International Nuclear Information System (INIS)

    Jimenez, P.; Fleitas, I.; Cotelo, E.; Estevan, M.

    2008-01-01

    Full text: Pneumonia and acute lower respiratory infections in general, is the leading cause of child death in developing countries. According to the World Health Organization (WHO), 4 millions of children die annually due to this disease. Despite the growing use of vaccination as an alternate approach to reduce mortality, the increasing antimicrobial resistance and the high costs of vaccines remain important obstacles in the global struggle against the disease. The usual treatment strategy begins with a clinical examination of the patient followed by the prescription of a chest X-ray. Radiography would appear as the best available method for diagnosing pneumonia only if radiologists (and other health professionals such as pediatricians) knew how to interpret the images showed in the radiographs, and these meeting the standards of quality (anatomic structures, image contrast and optical density, and patient dose among other factors). On the other hand, special attention should be paid on patient doses due to children's specific radiosensitivity, repeated and extended use of chest x-ray in all Radiology Departments, and high rejection rate due to both equipment malfunction and to human skills shortcomings. Patient doses of chest X-ray performed to children less than 5 years old in PAHO Sentinel Hospitals for surveillance of bacterial pneumonias in various Latin American countries were estimated using technical parameters and equipment specifications. Image quality was compared to WHO criteria for chest X-rays quality. Results showing differences in patient doses translates on one hand the impact of specific characteristics of the radiological equipment, including equipment limitations and performance of the radiographs and on the other various and divers levels of health professionals skills and training on image quality interpretation and dose optimization. The study concludes that professionals' training and education on chest radiographs image quality constitutes

  13. The reduction methods of operator's radiation dose for portable dental X-ray machines.

    Science.gov (United States)

    Cho, Jeong-Yeon; Han, Won-Jeong

    2012-08-01

    This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

  14. The relative biological effectiveness of 60Co γ-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV electrons at low doses

    International Nuclear Information System (INIS)

    Spadinger, I.; Palcic, B.

    1992-01-01

    The RBE of selected low-LET radiation modalities (55 kVp X- rays, 250 kVp X-rays, 60 Co γ-rays, and 11 MeV electrons) was investigated for survival of two cell lines (V79 and CHO). Detailed measurements were made in the 0 to 3 Gy dose range using an image cytometry device to accurately determine the number of cells assayed at each dose point. Data were also collected in the high dose range (0 to 10 Gy) using conventional counting and plating techniques. RBE values (#+- #1 SE) varied from 1.0±0.07 (V79 cells) and 1.2± 0.05 (CHO cells) at high doses to 1.3±0.07 (V79) and 1.4±0.1 (CHO) at low doses for 55 kVp X-rays, from 1.1±0.05 (V79) and 1.1±0.04 (CHO) at high doses to 1.1±0.06 (V79) and 1.2±0.2 (CHO) at low doses for 250 kVp X-rays, and from 1.1±0.08 (V79) and 1.0±0.04 (CHO) at high doses to 1.0±0.06 (V79) and 0.9±0.1 (CHO) at low doses for 11 MeV electrons. Only the low and high dose RBEs for 55 kVp X-rays relative to 60 Co γ-rays were significantly different. (author)

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  16. Implementation of Ray Safe i2 System for staff dose measuring in interventional radiology

    International Nuclear Information System (INIS)

    Gershan, Vesna; Atsovska, Violeta

    2013-01-01

    Interventional radiology procedures usually delivered the highest radiation dose to the patients as well as to medical personal. Beside another factors like patient size, fluoroscopy time, machine calibration etc., a good clinical practice has strong effects to staff and patient’s radiation dose. Materials and methods: In August 2012, a Ray Safe i2 system was installed in a private hospital in Skopje. The main purpose of this dosimetry system is to provide real time indication for the current exposure level of the medical personal. Knowing that, the staff has prerequisites to adjust their behavior to minimize unnecessary exposure like changing distance from exposed volume, C-ram angulations, field of view etc. and on this way to develop a good clinical practice. The Ray Safe i2 system is consisted by ten digital dosimeters, two dock stations, real time display, dose viewer and dose manager software. During interventional procedures, each involved staff wears dosimeter which measures and records X-Ray exposure every second and transfer the data wirelessly to the real time display. Color indication bars (green, yellow, red) represents the intensity of the currently received exposure, whereas green zone indicates < 0.2 mSv/h, yellow zone from 0.2 to 2 mSv/h and red zone indications from 2 to 20 mSv/h. Additionally, accumulated dose per individual is displayed next to the color indication bars. By using the software, information about personal dose history, such as annual dose, dose per particular session, hour, day or week, can be viewed and analyzed. Results: In this work it was found that staff accumulated doses were constantly increased over time, but reported number of procedures does not correspond to this tendency. Our assumption is that there is a misleading between reported number and actual performed procedures. Doctor1 received 55 times more dose than Doctor2 and Nurse1 received 11 to 3 times more dose than another Nurses. It was found a correlation of R2

  17. Radiological protection and quality control for diagnostic radiology in China

    International Nuclear Information System (INIS)

    Baorong, Yue

    2008-01-01

    Full text: There are 43,000 diagnostic departments, nearly 70,000 X-ray diagnostic facilities, 7,000 CT, 250 million for the annual total numbers of X-ray examinations, 120,000 occupationally exposed workers in diagnostic radiology. 'Basic standards for protection against ionizing radiation and for the safety of radiation sources' is promulgated on October, 2002. This basic standard follows the BSS. 'Rule on the administration of radio-diagnosis and radiotherapy', as a order of the Ministry of Health No. 46, is promulgated by Minister of Health on January 24, 2006. It includes general provisions, requirements and practice, establishment and approval of radio-diagnosis and radiotherapy services, safeguards and quality assurance, and so on. There are a series of radiological protection standards and quality control standards in diagnostic radiology, including 'radiological protection standard for the examination in X-ray diagnosis', 'radiological health protection standards for X-ray examination of child-bearing age women and pregnant women', 'radiological protection standards for the children in X-ray diagnosis', 'standards for radiological protection in medical X-ray diagnosis', 'specification for radiological protection monitoring in medical X-ray diagnosis', 'guide for reasonable application of medical X-ray diagnosis', 'general aspects for quality assurance in medical X-ray image of diagnosis', 'specification of image quality control test for the medical X-ray diagnostic equipment', 'specification of image quality assurance test for X-ray equipment for computed tomography', 'specification for testing of quality control in computed radiography (CR)' and 'specification for testing of quality control in X-ray mammography'. With the X-ray diagnostic equipment, there are acceptant tests, status tests and routing tests in large hospitals. It is poor for routing test in middle and smaller hospitals. CT is used widely in diagnostic radiology, however most workers in CT

  18. The development of a postal method to assess X-ray beam parameters and image quality in dental radiology

    International Nuclear Information System (INIS)

    Fenton, D.M.

    1994-10-01

    Intraoral radiographs are an extremely valuable diagnostic tool in dentistry. Radiography permits the early detection and diagnosis of dental disease and consequently is used extensively. However, public concern about radiation exposure has increased in recent times. This concern is reflected in national and international law, to the extent that, the basic principles of radiological protection, that is, justification, optimisation and dose limitation are written into law. Furthermore, in Ireland, the regulations, as outlined in the Code of Practice for Radiological Protection in Dentistry, require intraoral dental X-ray machines to perform to certain standards. A report of a direct survey of 164 intraoral dental X-ray machines is given in this study. The survey covered mechanical, electrical as well as radiation safety. Inadequacies with respect to focus to skin distance and timer accuracy were found in 45% and 42% of the machines surveyed. Ninety eight machines were assessed for electrical safety in which 48% were found to be unsafe. The results indicate that a complete assessment of the performance of dental X-ray units in Ireland is required. However, as there are in excess of 800 dental X-ray machines located throughout the country, such an assessment would be very costly for the regulatory authority. The development of a postal method for the assessment of the performance of dental X-ray machines is described in this study. This postal method provides information on the kV, total filtration, beam width and timer linearity and is undertaken by means of a penetrameter and film envelopes for exposure to the X-ray set under examination, together with a questionnaire that requests information on environment in which the machine is located. Using this method an accuracy of +-5% of the actual value was achieved in the measurement of kVp. The penetrameter was also used to assess whether or not the filtration of a particular machine complies with the regulations. This

  19. X-ray hazards - diagnostic and therapeutic

    International Nuclear Information System (INIS)

    Putney, R.G.; Garvie, N.W.

    1985-01-01

    The subject is covered in sections, entitled: introduction; nature of X-rays; X-rays - effect on biological materials; X-ray measurement; radiation dosages to exposed groups; organizational structure of radiological protection; duties of the Radiological Safety Officer; general measures for radiological protection; protection of staff; protection of patients; safety measures in radiotherapy work - sealed sources laboratory -general safety rules; radiotherapy - duties of the Radiological Safety Officer (Radiotherapy); the custodian of sealed sources -duties and relevant radiological protection information; external beam therapy - radionuclide source unit - emergency procedure in the event of technical failure; safety aspects of brachytherapy in the patient's vicinity; diagnostic radiology; conclusion. (U.K.)

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  1. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    Science.gov (United States)

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    Dosimetric control of staff exposure during interventional procedures under fluoroscopy is of high relevance. In this paper, a novel ray casting approximation of radiation transport is presented and the potential and limitation vs. a full Monte Carlo transport and dose measurements are discussed. The x-ray source of a Siemens Axiom Artix C-arm is modeled by a virtual source model using single Gaussian-shaped source. A Geant4-based Monte Carlo simulation determines the radiation transport from the source to compute scatter from the patient, the table, the ceiling and the floor. A phase space around these scatterers stores all photon information. Only those photons are traced that hit a surface of phantom that represents medical staff in the treatment room, no indirect scattering is considered; and a complete dose deposition on the surface is calculated. To evaluate the accuracy of the approximation, both experimental measurements using Thermoluminescent dosimeters (TLDs) and a Geant4-based Monte Carlo simulation of dose depositing for different tube angulations of the C-arm from cranial-caudal angle 0° and from LAO (Left Anterior Oblique) 0°-90° are realized. Since the measurements were performed on both sides of the table, using the symmetry of the setup, RAO (Right Anterior Oblique) measurements were not necessary. The Geant4-Monte Carlo simulation agreed within 3% with the measured data, which is within the accuracy of measurement and simulation. The ray casting approximation has been compared to TLD measurements and the achieved percentage difference was -7% for data from tube angulations 45°-90° and -29% from tube angulations 0°-45° on the side of the x-ray source, whereas on the opposite side of the x-ray source, the difference was -83.8% and -75%, respectively. Ray casting approximation for only LAO 90° was compared to a Monte Carlo simulation, where the percentage differences were between 0.5-3% on the side of the x-ray source where the highest dose

  2. Development of a Real-time Hand Dose Monitor for Personnel in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, N.; Nakaoka, H.; Haruta, R.; Murakami, Y.; Kubo, T.; Maeda, T.; Kusama, T

    2001-07-01

    Medical procedures denoted as interventional radiology require operation near an X ray beam, which brings high dose exposures to the operators' hands. For the effectual control of their extremity doses, a prototype of a real-time wrist dosemeter has been developed, hand dose monitor (HDM), based on a single silicon detector. Experiments were performed to test its response to diagnostic X rays. The HDM was highly sensitive and showed a linear response down to doses of a few tens of microsieverts. Though dose rate, energy and angular dependence of the response were observed in some extreme conditions, the HDM was proved to be of practical use if it was appropriately calibrated. Since an HDM enables personnel to check their hand doses on a real-time basis, it would enable medical staff to control the exposure themselves. (author)

  3. Study of secondary X-rays from radiographic intensifying screens

    International Nuclear Information System (INIS)

    Barroso, R.C.; Eichler, J.; Lopes, R.T.; Cardoso, S.C.

    1998-01-01

    To reduce the radiation dose in radiology, fluorescent intensifying screens for X-ray films are used. They produce visible light which increases the efficiency of the film. In addition, there are two other effects that will degrade the image resolution. First, the gadolinium present in the screens produces X-rays isotropically. Second, the primary radiation can be scattered elastically (Rayleigh scattering) and inelastically (Compton scattering). The intensity and angular distribution of these secondary radiation were measured, showing that the ratio of secondary-to-primary radiation incident on the X-ray film is about 16%. (orig.)

  4. Course of radiological protection and safety in the medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Dominguez A, C.E.

    1997-01-01

    The obtention of images of human body to the medical diagnostic is one of the more old and generalized applications for X-ray. Therefore the design and performance of equipment and installations as well as the operation procedures must be oriented toward safety with the purpose to guarantee this radiological practice will bring a net positive benefit to the society. Given that in Mexico only exists the standardization related to source and equipment generators of ionizing radiation in the industrial area and medical therapy, but not so to the medical diagnostic area it is the purpose of this work to present those standards related with this application branch. Also it is presented the preparation of a manual for the course named Formation of teachers in radiological protection and safety in the X-ray medical diagnostic in 1997 which was imparted at ININ. (Author)

  5. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts.

    Science.gov (United States)

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R; Medlin, Donald; Zheng, Leon; Wilson, R Kevin; Rusin, Matthew; Takacs, Endre; Dean, Delphine

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial "pause" in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.

  6. Evaluation of the shielding of dental X-rays units

    International Nuclear Information System (INIS)

    Medrano, E.; Vega C, H. R.; Letechipia de L, C.; Hernandez D, V. M.; Salas L, M. A.

    2014-08-01

    The capacity of the walls of the dental radio-diagnostic rooms has been determined, to diminish the dose levels during the use of the X-rays equipment s. The study was carried out in the Dentistry Academic Unit of the campus Siglo X XI of the Universidad Autonoma de Zacatecas. The X-rays equipment s are a learning tool for the dentistry students and they are also used for offering health services to the population; for this reason is important to verify that the dose levels outside of the room walls are safe. During the evaluation process were used conservative approaches without prejudice of the thickness necessary in benefit of the radiological protection. Of the evaluation was found that all the walls satisfy their function thoroughly like barriers against the X-rays. (Author)

  7. Development of a Reference System for the determination of the personal dose equivalent and the constancy of X- Ray beams

    International Nuclear Information System (INIS)

    Vivolo, Vitor

    2006-01-01

    A reference system for the determination of the personal dose equivalent, Hp (10), and a quality control program of X-ray equipment used In radioprotection require the periodic verification of the X-ray beams constancy. In this work, two parallel-plate ionization chambers were developed with inner electrodes of different materials, and inserted into PMMA slab phantoms. One ionization chamber was developed with inner carbon electrodes and the other with inner aluminium electrodes. The two ionization chambers can be used as a Tandem system. The different energy response of the two ionization chambers allowed the development of the Tandem system that is very useful for the checking of the constancy of beam qualities. Standard intermediary energy X-ray beams (from 48 keV to 118 keV), radioprotection level, were established through the development of a dosimetric methodology and the analysis of their physical parameters. The ionization chambers were studied in relation to their operational characteristics, and they were calibrated in X-ray beams (radioprotection, diagnostic radiology, mammography and radiotherapy levels) in accordance to international recommendations. They presented good performance. The determination procedure of personal dose equivalent, Hp (10), was established. (author)

  8. Determination of entrance skin dose from diagnostic X-ray of human ...

    African Journals Online (AJOL)

    patient during x-ray examination in Federal Medical Centre, Keffi in Nasarawa state, Nigeria. Entrance skin doses (ESDs) for a common type of x-ray procedures, namely chest AP/PA (anterior/posterior) were measured. A total of 200 data were collected from patients who were exposed to diagnostic X-ray during their routine ...

  9. Dosimetric behavior of thermoluminescent dosimeters at low doses in diagnostic radiology

    International Nuclear Information System (INIS)

    Del Sol F, S.; Garcia S, R.; Guzman M, J.; Sanchez G, D.; Rivera M, T.; Ramirez R, G.; Gaona, E.

    2015-10-01

    Thermoluminescent (Tl) characteristics of TLD-100, LiF:Mg,Cu,P, and CaSO 4 : Dy the under homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescent dosimetry is presented. The irradiations were performed utilizing an X-ray beam generated by a Radiology Mexican Company: MRH-II E GMX 325-AF SBV-1 model, with Rotating Anode X-Ray Tube installed in the Hospital Juarez Norte de Mexico in Mexico City. Different thermoluminescent characteristics of dosimetric material were studied, such as, batch homogeneity, Tl glow curve, Tl response as a function of X-ray dose, reproducibility and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and positioned in a generic Phantom was used. Dose verification and comparison with the measurements made with that obtained by TLD-100 were analyzed. Preliminary results indicate the dosimetric peak appears at 243, 236 and 277 ± 5 degrees C respectively, these peaks are in agreement with that reported in the literature. Tl glow curve as a function of X-ray dose showed a linearity in the range from 1.76 mGy up to 14.70 mGy for all materials. Fading for a period of one month at room temperature showed low fading LiF:Mg,Cu,P, medium and high for TLD-100 and CaSO 4 : Dy. The results suggest that the three materials are suitable for measurements at low doses in radiodiagnostic, however, for its dosimetric characteristics are most effective for individual applications: personal dosimetry and monitors limb (LiF:Mg,Cu,P), clinical dosimetry and environmental (TLD-100 and CaSO 4 : Dy). (Author)

  10. X-rays individual dose assessment using TLD dosimeters

    International Nuclear Information System (INIS)

    Salas, Carlos

    2008-01-01

    This paper describes the methodology used in Embalse NPP for measuring individual X-ray dose in dentists and radiologists, who work in areas near the plant. Personnel is provided with TLD personal dosimeters for thoracic use, as well as TLD ring dosimeters. This individual X-ray dosimetry is fundamental in order to know the effective energy coming from the radiation field, since the dosimetry factors depend on it. On the other hand, the response of the TLD crystals also depends of the effective energy; this accentuates the problem when assessing the individual dose. The X-ray dosimeter must simultaneously determine the value of the effective energy and the corresponding dose value. The basic principle for determining effective energy is by using at least two different TLD materials covered by filters of different thickness. The TLD materials used have totally energy responses. Therefore, different readouts from each of the crystals are obtained. The ratio between both readouts provides a factor that depends of the effective energy but that is 'independent' from the exposure values irradiated to the dosimeter. The Personal TLD dosimeter currently in use is Bicron-Harshaw. It comprises a carrier model 8807. This carrier contains a card model 2211 which groups two TLD 200 crystals and two TLD 100 crystals. It has internal filters at each side of the TLD 200 crystals. The periodical calibration of these dosimeters consists in the irradiation of some dosimeters with different X-ray energy beams in the National Atomic Energy Commission (CNEA). This dosimeter was used, by the National Regulatory Authority (ARN) in several comparisons, always getting satisfactory results. (author)

  11. Survey results of output measurements in diagnostic X ray equipments using glass dosimeter and the questionnaire. Aichi association of radiological technologists 50 year anniversary memorial work

    International Nuclear Information System (INIS)

    Kondo, Yuji; Hirofuji, Yoshiaki; Saiga, Osamu; Ishibashi, Kazuto

    2003-01-01

    The Aichi Association of Radiological Technologists executed the survey according to the task of radiation control in Aichi prefecture. The survey investigated the number of clinics/hospitals who own radiation dosimeters. The association also measured outputs using glass dosimeter (GD-450) manufactured by Chiyoda Technical in diagnostic X ray. The purpose and significance of the survey are: to illustrate that the radiation control task is not involved as routine maintenance work, to examine why the task is not routinely performed, to investigate the number of clinics/hospitals who own diagnostic X ray radiation dosimeters, to inform that the use of dosimeter is essential to achieve accurate measurement for exposed dose, and to motivate the significance of radiation control in routine work. The result of the survey clearly indicated the necessity of radiation control, and suggested the information needed for the Aichi Association of Radiological Technologists to determine the guideline for the medical radiation exposed dose. (author)

  12. Radiation Dose Measurements in Routine X Ray Examinations

    International Nuclear Information System (INIS)

    Osman, H.; Sulieman, A.; Suliman, I.I.; Sam, A.K.

    2011-01-01

    The aim of current study was to evaluate patients radiation dose in routine X-ray examinations in Omdurman teaching hospital Sudan.110 patients was examined (134) radiographs in two X-ray rooms. Entrance surface doses (ESDs) were calculated from patient exposure parameters using DosCal software. The mean ESD for the chest, AP abdomen, AP pelvis, thoracic spine AP, lateral lumber spine, anteroposterior lumber spine, lower limb and for the upper limb were; 231±44 Gy,453± 29 Gy, 567±22 Gy, 311±33 Gy,716±39 Gy, 611±55 Gy,311±23 Gy, and 158±57 Gy, respectively. Data shows asymmetry in distribution. The results of were comparable with previous study in Sudan.

  13. Study of hard X-ray dose enhancement effects for some kinds of semiconductor devices

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Zhou Hui; He Chao Hui; Xie Ya Ning; Huang Yu Ying; He Wei; Hu Tian Dou

    2002-01-01

    Experimental results of X-ray dose enhancement effects are given for CMOS4069 and floating gate ROMs irradiated in Beijing Synchrotron Radiation Facility and in cobalt source. Shift of threshold voltage vs. total dose for CMOS4069 and the errors vs. total dose for 28f256 and 29c256 have been tested on line and the equivalent relation of total dose damage under the same accumulated dose is provided comparing the response of devices irradiated by X-ray and gamma-ray source. These results can be provided for X-ray radiation hardening technology as an effective evaluation data

  14. Dose distribution calculation for in-vivo X-ray fluorescence scanning

    International Nuclear Information System (INIS)

    Figueroa, R. G.; Lozano, E.; Valente, M.

    2013-01-01

    In-vivo X-ray fluorescence constitutes a useful and accurate technique, worldwide established for constituent elementary distribution assessment. Actually, concentration distributions of arbitrary user-selected elements can be achieved along sample surface with the aim of identifying and simultaneously quantifying every constituent element. The method is based on the use of a collimated X-ray beam reaching the sample. However, one common drawback for considering the application of this technique for routine clinical examinations was the lack of information about associated dose delivery. This work presents a complete study of the dose distribution resulting from an in-vivo X-ray fluorescence scanning for quantifying biohazard materials on human hands. Absorbed dose has been estimated by means of dosimetric models specifically developed to this aim. In addition, complete dose distributions have been obtained by means of full radiation transport calculations in based on stochastic Monte Carlo techniques. A dedicated subroutine has been developed using the Penelope 2008 main code also integrated with dedicated programs -Mat Lab supported- for 3 dimensional dose distribution visualization. The obtained results show very good agreement between approximate analytical models and full descriptions by means of Monte Carlo simulations. (Author)

  15. A Computer Program Method for Estimation of Entrance Skin Dose for some Individuals Undergoing X-ray Imaging

    International Nuclear Information System (INIS)

    Taha, T.M.; Allehyani, S.

    2012-01-01

    A computer program depends on practical measurements of entrance skin dose patients undergoing radiological examinations. Physical parameters such as field size, half value layer, backscatter factor, dose output, focal film distance, focal skin distance, normal operating conditions were taken into consideration for calculation entrance skin dose. It was measured by many techniques such as Thermo-luminescence dosimeters, ionization chambers. TLD technique characterized by high precision and reproducibility of dose measurement is checked by addressing pre-readout annealing, group sorting, dose evaluation, Fifty TLD chips were annealed for 1 hour at 400 degree C followed by 2 h at 100 degree C. After exposure to constant dose from X-ray generator. 0.6 cc Ionization chamber was located at surface of water chest phantom that has dimensions of 40 cm x 40 cm x 20 cm and connected with farmer dose master. Entrance Skin Dose was calculated using the generated software by changing the physical parameters and using the measured output doses. The obtained results were compared with the reference levels of International Atomic Energy Authority. The constructed computer program provides an easy and more practical mean of estimating skin dose even before exposure. They also provide the easiest and cheapest technique can be employed in any entrance skin dose measurement

  16. Radiation exposure and dose evaluation in intraoral dental radiology

    International Nuclear Information System (INIS)

    Poppe, B.; Looe, H. K.; Pfaffenberger, A.; Eenboom, F.; Chofor, N.; Sering, M.; Ruehmann, A.; Poplawski, A.; Willborn, K.

    2007-01-01

    In this study, dose area product measurements have been performed to propose diagnostic reference levels (DRLs) in intraoral dental radiology. Measurements were carried out at 60 X-ray units for all types of intraoral examinations performed in clinical routine. The third quartile values calculated range from 26.2 to 87.0 mGy cm 2 . The results showed that there exists a large difference between the patient exposures among different dental facilities. It was also observed that dentists working with faster film type or higher tube voltage are not always associated with lower exposure. The study demonstrated the necessity to have the DRLs laid out as guidelines in dental radiology. (authors)

  17. Survey on the frequency of typical X-Ray examinations and estimation of associated population doses in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Gershan, V.; Stikova, E.

    2013-01-01

    effective doses were estimated using literature data for values of the mean effective dose per typical examination procedure. Finally, normalization of the total collective effective dose from all TOP 20 X-ray procedures for the whole population in the Republic of Macedonia was performed. Results: 67% of X-ray departments present in the Republic of Macedonia at the time the survey was initiated provided data on the number of TOP20 X-ray examination procedures performed in 2010. On the basis of the data gathered, a total of 322039 TOP20 X-ray examination procedures were performed in 2010 for both adult and pediatric patients. Plain radiography examination procedures (dental excluded) were the most commonly performed procedures in the Republic of Macedonia that year and the plain radiography of chest/thorax had the highest frequency of examinations (64 examinations) per 1000 population. The Ba meal examination procedure with an annual frequency of 2.93 per 1000 population has the highest contribution to the annual collective effective dose of all other procedures. Still, in total, the contribution of X-ray examinations in the plain radiography modality to the collective effective dose is the highest. The total collective dose from TOP 20 X-ray examination procedures in 2010 is 507 man Sv, while the normalized collective dose to the population is 249.7 mSv/1000 population.Conclusions: The most common type of examination in the Republic of Macedonia for 2010 is X-ray projection of lungs. The contribution to the collective effective dose from X-ray examinations in the plain radiography modality is the highest, followed by contributions from fluoroscopy procedures, computer tomography and interventional radiology procedures. Comparison of the estimated collective dose from TOP20 X-ray examination procedures in other countries suggests possible underestimation in the estimated doses comparing to actual doses. A more comprehensive survey and analysis are needed to be carried out in

  18. Guidelines for the implementation of the X-ray Ordinance (RoeV). Vol. 2. Recommendations concerning data acquisition and archivation pursuant to paragraph 28 of the X-ray Ordinance passed by the Laender Committee for the X-ray Ordinance, 26/27 January 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The recommendations apply to biomedical radiography and X-ray therapy. They refer to: 1) Patients' personal data as required according to Paragraph 28, sub-sec. 1, X-ray Ordinance. 2) Scope of data to be recorded acc. to Paragraph 28, sub-sec. 2, X-ray Ordinance. 3) Archivation of data acc. to Paragraph 28, sub-sec., 4 + 5, X-ray Ordinance. 4) Passing on of data acc. to Paragraph 28, sub-sec. 6, X-ray Ordinance. 5) Archivation of technical standard data (X-ray equipment specification records). The recommendations' main aim is to provide for radiological protection of the patient and for data showing the radiation doses received by patients. (HP) [de

  19. Cytogenetics dosimetry: dose-response curve for low doses of X-ray

    International Nuclear Information System (INIS)

    Lara, Virginia E. Noval; Pineda Bolivar, William R.; Riano, Victor M. Pabon; Ureana, Cecilia Crane

    2013-01-01

    The purpose of this study was to conduct a preliminary study for the standardization in the future, the dose-response curve for low doses of X-rays, through the analysis of in vitro cultures of peripheral blood samples of 3 men and 3 women occupationally not exposed to artificial sources of ionizing radiation, age 18-40 years, where possible nonsmokers

  20. Commentary: progress in optimization of patient dose and image quality in x-ray diagnostics

    International Nuclear Information System (INIS)

    Carlsson, G.A.; Chan, H.-P.

    1999-01-01

    X-ray diagnostics gives the largest contribution to the population dose from man-made radiation sources. Strategies for reduction of patient doses without loss of diagnostic accuracy are therefore of great interest to society and have been focussed in general terms by the ICRP (ICRP 1996) through the introduction of the concept of diagnostic reference levels. The European Union has stimulated research in the field, and, based on patient dose measurements and radiologists' appreciation of acceptable image quality, good radiographic techniques have been identified and recommended (EUR 1996a, b) for conventional screen-film imaging. These efforts have resulted in notable dose reductions in clinical practices (Hart et al 1996). In spite of 100 years of use of x-rays for diagnostics, the choice of technique parameters still relies to a great extent on experience. Scientific efforts to optimize the choice in terms of finding the parameter settings which yield sufficient image quality at the lowest possible cost in dose are still rare. True optimization requires (1) estimation of the image quality needed to make a correct diagnosis and (2) methods to investigate all possible means of achieving this image quality in order to be able to decide which of them gives the lowest dose. The paper by Tapiovaara, Sandborg and Dance published in this issue of Physics in Medicine and Biology (pages 537-559) addresses the optimization of paediatric fluoroscopy, a timely and important topic. Fluoroscopy procedures, used to guide x-ray examinations or interventional procedures, are little standardized and may result in high dose levels; radiation exposure in childhood is likely to result in a higher lifetime risk than the same exposure later in life. The authors represent an interesting mix of expertise within various scientific fields: the theory of medical imaging and assessment of image quality, the physics of diagnostic radiology and radiation dosimetry. They provide good insights

  1. Modification of the radiological technique of Parma for reduction of irradiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Stampfel, G.; Ionesco-Farco, F.

    1982-04-01

    A modified radiological technique to demonstrate the temporo-mandibular joint is presented. An ordinary X-ray tube put on the skin is directed 10/sup 0/ dorso-ventrally and 10/sup 0/ caudo-cranially to the temporo-mandibular joint. The irradiation skin dose applied is ten times smaller than by using the conventional contact technique.

  2. Effects of low X-ray doses in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Jordan, A.; Laskowski, W.

    1987-01-01

    Three strains of Saccharomyces cerevisiae with different capacities for repair of radiation damage (RAD, rad18, and rad52) have been tested for their colony forming ability (CFA) and growth rates after application of small X-ray doses from 3.8 mGy to 40 Gy. There was no reproducible increase in CFA observable after application of doses between 3.8 mGy and 4.7 Gy.X-ray doses of 40 Gy causing an inactivation of CFA from 90% to 50%, depending on the repair capacity of the strains used, caused a reduced increase in optical density during 2 h buffer treatment in comparison to unirradiated cells. This reduction however, is reversible as soon as the cells are transferred into nutrient medium. One hour after transfer into growh medium the portions of cells with large buds (Gs and M phase) and cells with small buds (S phase) are drastically different in irradiated cells from those obtained in unirradiated cells. The time necessary for separation of mother and daughter cells is prolonged by X-ray irradiation and the formation of new buds is retarded. (orig.)

  3. Determination of organ doses in radiographic imaging and diagnostic radiology

    International Nuclear Information System (INIS)

    Rathjen, M.

    1981-01-01

    Earlier publications on diagnostic radiation exposure commonly presented data on the gonadal dose. This emphasis on the genetic radiation risk is no longer valid in view of recent radiobiological findings; equal attention should be paid to the somatic radiation risk which is manifested by the induction of malignant neoplasms, e.g. in the lungs, red bone marrow, thyroid and female breast (ICRP 26). The permissible radiation doses for these organs and the gonals for routine diagnostic radiology are determined. A formula is established on the basis of terms from relevant publications (e.g. open-air dose, backscattering factor) and from the author's own measurements in an Alderson-Rando phantom (depth dose curves, dose decrements). The measurements were carried out using CaP 2 thermoluminescence dosemeters, and the organ doses for the various techniques of X-ray examination were calculated by computer. Calculations of this type will enable the radiologist to determine the patient exposure quickly and easily from the records kept according to Sect. 29 of the X-ray Ordinance. Experimental value from relevant publications are compared with the author's own results. (orig./HP) [de

  4. Monte Carlo simulation of dose enhancement effect of X-ray at Au/Si interface

    International Nuclear Information System (INIS)

    Wu Zhengxin; He Chengfa; Lu Wu; Guo Qi; Yu Xin; Zhang Lei; Deng Wei; Zheng Qiwen; ARKIN Abulim

    2013-01-01

    Background: The dose enhancement factor of X-ray was found in 1970s, because of its bad damage to electronic devices. Purpose: This paper is mainly to calculate the dose-enhancement factor at Au/Si interfaces. Methods: The gradient distribution of dose with X-rays has been studied at and near the interface of Au/Si by Monte-Carlo simulation of particle transportation. The mechanism of dose enhancement is discussed based on the principles of interaction of photon with matter. A 3D Au/Si model has been established by MCNP5 program and the dose-enhancement factors of different thicknesses Au/Si interfaces were calculated by Monte Carlo method. Results: The calculated results demonstrate that there exists a stronger dose-enhancement in the Si side near the interface when the energy of X-ray is 30-300 keV. Conclusions: When the thickness of Au is 0-10 μm, dose-enhancement factor of X-ray increases along with the increase of the thickness of Au, when the thickness of Au exceeds 10 μm, dose-enhancement factor of X-ray decreases along with the increase of the thickness of Au. (authors)

  5. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    Science.gov (United States)

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2018-02-01

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The study on clinical conditions and skin dose of upper-gastrointestinal x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Kim, Sung Chul; Ahn, Sung Min; Jang, Sang Sup

    2007-01-01

    This study examined present conditions of upper-gastrointestinal X-ray fluoroscopy and patient skin dose. The authors elected 21 equipment to check the X-ray equipment and exposure factor of fluoroscopy and spot exposure in university hospitals, hospitals, and clinics where perform upper-gastrointestinal X-ray fluoroscopy more than five times every day in Incheon areas. The amount of patient's skin dose during upper-gastrointestinal X-ray fluoroscopy was measured by ionization chamber

  7. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons

    International Nuclear Information System (INIS)

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-01

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width ΔE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As ΔE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For ΔE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d max . Although increasing ΔE beyond 6.5 MeV increased the dose rate at d max by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude. (note)

  8. Initial radiation dose in critical organs el pediatric radiology in INEN

    International Nuclear Information System (INIS)

    Marquez, J. F.; Benavente, T.; Cisneros, F.

    2006-01-01

    The medical practices diagnostic, therapeutic and interventionists, the patients and professionals are exposed to a radiological risk that in many cases is a critic due to the severity of the damage that it might cause, for example for the cases of pregnant patients, children and in general in a the irradiation of organs of high risk as thyroid, gonads, crystalline, others. In this work I develop a methodology that allows determining the dose absorbed of the beam of X-ray. In the critical organs out of the region to examination in paediatric radiology of thorax, using a system shaped by detectors thermoluminescence of fluoride of lithium activated with magnesium and titanium (LiF: Mg, Ti), and of fluoride of calcium activated with disprosio (CaF2: Dy). The results show that by means of the implementation of this methodology it is possible to reduce up to 50% the dose received for the paediatric patients (in the critical organs thyroid, crystalline and gonads) in the diagnostic practices with X-ray. With this there would be to reducing up to 50% the possibility of appearance of an effect stochastic. (Author)

  9. Dose Evaluation and Quality Criteria in Dental Radiology

    International Nuclear Information System (INIS)

    Gori, C.; Rossi, F.; Stecco, A.; Villari, N.; Zatelli, G.

    2000-01-01

    Radioprotection in dental radiology is of particular interest in the framework of the Revised Medical Exposure Directive for the great number of examinations involving the adult as well as the paediatric population (Article 9: Special Practice). The present study is intended to find the quality criteria of orthodontic imaging and for evaluating the dose absorbed within the dental and maxillary volume in connection with radiological examinations performed with either spiral CT, dental panoramic tomography or teleradiography. The X ray dose to organs sited in the body, neck, ocular and intracranial area was measured using lithium fluoride dosemeters, positioned in a Rando phantom. Quality criteria have been established by an expert radiologist considering the diagnostic information obtained in the images. The dosimetric data obtained were comparable with other authors', although with some differences due to technical characteristics. These result data are useful for choosing the patient's diagnostic path, considering the radiobiological risk associated with increasing orthodontic imaging. (author)

  10. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  11. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.; Poston, J.W.; Warner, G.G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms

  12. Evaluation of quality control in the college of medical radiological sciences, conventional x-ray department

    International Nuclear Information System (INIS)

    Babiker, Esameldeen Mohamed Tom

    2002-02-01

    Quality control in diagnostic radiography aims to ensure continuous production of diagnostic images with optimum quality, using minimum necessary dose to the patients and staff. Therefore an ineffective quality control program can lead to poor quality images that can impair diagnosis, increase operating costs and contribute to unnecessary radiation exposure to both patients and staff. Apply basic quality control program is responsibility of each x-ray facility, and to achieve maximum benefits, all levels of management and technical staff must support and participate in operating the programme. The main parameters to be monitored during the quality control programme include: dose consistency, k Vp accuracy, k Vp variations, exposure timer accuracy, besides checking image receptors, recording system and processing conditions. The aims of this project is to evaluate the quality control in the x-ray department of the college of medical radiologic sciences. The evaluation was an experimental study done by checking the operational status of the radiographic equipment, beside data collection using questionnaires regarding quality control. In the applied experiments the results show that there is a noted variation in the accuracy of k Vp, exposure timer and also in the dose consistency. The obtained results from image receptors and processing system showed noted variations too. The results of the questionnaire and direct interviewing showed other causes of quality degradation such as absence of test tools, the status of the equipment, absence of regular quality control testing, in addition to absence of an organized team to deal with quality. (Author)

  13. Advance of the National Program of Radiological Protection and Safety for medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Verdejo S, M.

    1999-01-01

    The National Program of Radiological Protection and Safety for medical diagnostic with X-ray (Programa Nacional de Proteccion y Seguridad Radiologica para diagnostico medico con rayos X) was initiated in the General Direction of Environmental Health (Direccion General de Salud Ambiental) in 1995. Task coordinated with different dependences of the Public Sector in collaboration between the Secretary of Health (Secretaria de Salud), the National Commission of Nuclear Safety and Safeguards (Comision Nacional de Seguridad Nuclear y Salvaguardias) and, the National Institute of Nuclear Research (Instituto Nacional de Investigaciones Nucleares). The surveillance to the fulfilment of the standardization in matter of Radiological Protection and Safety in the medical diagnostic with X-rays has been obtained for an important advance in the Public sector and it has been arousing interest in the Private sector. (Author)

  14. Radiologic technologists versus X-ray-assistance. The differences of an occupational family in health organizations

    International Nuclear Information System (INIS)

    Rosenblattl, M.

    2015-01-01

    This article is an information for radiation protection experts. In Austria 2013, seven new jobs were enshrined in ''medical assistance law''. One is the X-ray assistant (Radiographic Assistant). The X-ray assistant may perform simple standardized radiographs. It represents the lowest common denominator to the profession ''Radiologic Technology''. This post will serve experts for radiation protection and employers to inform objectively about which profession has the competences and in which field of work X-ray assistants can be deployed. This article deals with the course content and the classification in the European Qualifications Framework and the legal anchorages.

  15. An investigation of dose changes for therapeutic kilovoltage x-ray beams with underlying lead shielding

    International Nuclear Information System (INIS)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Baldock, Clive

    2007-01-01

    Kilovoltage x-ray beams are used to treat cancer on or close to the skin surface. Many clinical cases use high atomic number materials as shielding to reduce dose to underlying healthy tissues. In this work, we have investigated the effect on both the surface dose and depth doses in a water phantom with lead shielding at depth in the phantom. The EGSnrc Monte Carlo code was used to simulate the water phantom and to calculate the surface doses and depth doses using primary x-ray beam spectra derived from an analytical model. The x-ray beams were in the energy range of 75-135 kVp with field sizes of 2, 5 and 8 cm diameter. The lead sheet was located beneath the water surface at depths ranging from 0.5-7.5 cm. The surface dose decreased as the lead was positioned closer to the water surface and as the field size was increased. The variation in surface dose as a function of x-ray beam energy was only small but the maximum reduction occurred for the 100 kVp x-ray beam. For the 8 cm diameter field with the lead at 1 cm depth and using the 100 kVp x-ray beam, the surface dose was reduced to 0.898 of the surface dose in the water phantom only. Measured surface dose changes, using a Farmer-type ionization chamber, agreed with the Monte Carlo calculated doses. Calculated depth doses in water with a lead sheet positioned below the surface showed that the dose fall-off increased as the lead was positioned closer to the water surface as compared to the depth dose in the water phantom only. Monte Carlo calculations of the total x-ray beam spectrum at the water surface showed that the total fluence decreased due to a reduction in backscatter from within the water and very little backscatter from the lead. The mean energy of the x-ray spectrum varied less than 1 keV, with the lead at 1 cm beneath the water phantom surface. As the Monte Carlo calculations showed good agreement with the measured results, this method can be used to verify surface dose changes in clinical situations

  16. Calculation of organ doses in X-ray examinations of premature babies

    International Nuclear Information System (INIS)

    Smans, K.

    2009-01-01

    As ionizing radiation has enabled great progress in the diagnostic and therapeutic aspects of medicine, its use is in most cases easily justifiable. General radiation protection principles require additionally that radiation doses of the patients should be as low as reasonably achievable within the medical purposes. In Europe this is stipulated in the directive 97/43/Euratom. This directive also requires that special attention should be given to the patient doses in pediatric examinations, of which premature babies constitute an important sub-group. All babies born before 37 weeks of gestation are defined as being prematurely born. Newborn and prematurely born babies are particularly sensitive to the detrimental effects of X-rays. Risk of cancer induction is believed to be 2 to 3 times higher than that of the average population and 6 to 9 times higher than the risk from an exposure at 60 years of age, for equal dose. A premature born child may be exposed to a large number of diagnostic X-ray examinations. Several of these infants may have underdeveloped lungs, which may lead directly to the respiratory distress syndrome (RDS) or to (lethal) lunghypoplasia/hypertension. Diagnosis and follow-up of the respiratory distress syndrome by means of chest radiography is justified. Risks associated with X-ray examinations are low compared to the other medical risks that these patients face, but even in this case the radiation dose should be kept as low as possible. Knowledge of the radiation dose is a first step in the optimization process. A recent study on 255 premature children in the University Hospital of Gasthuisberg found that they undergo 10 X-ray examinations, on the average. In this sample, the maximum was 78 X-ray examinations

  17. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  19. The survey of the surface doses of the dental x-ray machines

    International Nuclear Information System (INIS)

    Lee, Jae Seo; Kang, Byung Cheol; Yoon, Suk Ja

    2005-01-01

    The purpose of this study was to investigate variability of doses with same exposure parameters and evaluate radiographic density according to the variability of doses. Twenty-eight MAX-GLS (Shinhung Co, Seoul, Korea), twenty-one D-60-S (DongSeo Med, Seoul, Korea), and eleven REX-601 (Yoshida Dental MFG, Tokyo, Japan) dental x-ray machines were selected for this study. Surface doses were measured under selected combinations of tube voltage, tube current, exposure time, and constant distance 42 cm from the focal spot to the surface of the Multi-O-meter (Unfors Instrument, Billdal, Sweden). Radiographic densities were measured on the films at maximum, minimum and mean surface doses of each brand of x-ray units. With MAX-GLS, the maximum surface doses were thirteen to fourteen times as much as the minimum surfaces doses. With D-60-S, the maximum surface doses were three to eight times as much as the minimum surface doses. With REX-601, the maximum surface doses were six to ten times as much as the minimum surface doses. The differences in radiographic densities among maximum, mean, and minimum doses were significant (p<0.01). The surface exposure doses of each x-ray machine at the same exposure parameters were different within the same manufacturer's machines.

  20. Analysis of patients' X-ray exposure in 146 percutaneous radiologic gastrostomies; Analyse der Strahlenexposition fuer Patienten bei 146 perkutanen radiologischen Gastrostomien

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tim-Ole; Reinhardt, Martin; Fuchs, Jochen; Gosch, Dieter; Surov, Alexey; Stumpp, Patrick; Kahn, Thomas; Moche, Michael [Univ. Hospital Leipzig (Germany). Dept. of Diagnostic and Interventional Radiology

    2017-09-15

    Analysis of patient's X-ray exposure during percutaneous radiologic gastrostomies (PRG) in a larger population. Data of primary successful PRG-procedures, performed between 2004 and 2015 in 146 patients, were analyzed regarding the exposition to X-ray. Dose-area-product (DAP), dose-length-product (DLP) respectively, and fluoroscopy time (FT) were correlated with the used x-ray systems (Flatpanel Detector (FD) vs. Image Itensifier (BV)) and the necessity for periprocedural placement of a nasogastric tube. Additionally, the effective X-ray dose for PRG placement using fluoroscopy (DL), computed tomography (CT), and cone beam CT (CBCT) was estimated using a conversion factor. The median DFP of PRG-placements under fluoroscopy was 163 cGy{sup *}cm{sup 2} (flat panel detector systems: 155 cGy{sup *}cm{sup 2}; X-ray image intensifier: 175 cGy{sup *}cm{sup 2}). The median DLZ was 2.2min. Intraprocedural placement of a naso- or orogastric probe (n=68) resulted in a significant prolongation of the median DLZ to 2.5min versus 2min in patients with an already existing probe. In addition, dose values were analyzed in smaller samples of patients in which the PRG was placed under CBCT (n=7, median DFP=2635 cGy{sup *}cm{sup 2}), or using CT (n=4, median DLP=657mGy{sup *}cm). Estimates of the median DFP and DLP showed effective doses of 0.3mSv for DL-assisted placements (flat panel detector 0.3mSv, X-ray image converter 0.4mSv), 7.9mSv using a CBCT - flat detector, and 9.9mSv using CT. This corresponds to a factor 26 of DL versus CBCT, or a factor 33 of DL versus CT. In order to minimize X-ray exposure during PRG-procedures for patients and staff, fluoroscopically-guided interventions should employ flat detector systems with short transmittance sequences in low dose mode and with slow image frequency. Series recordings can be dispensed with. The intraprocedural placement of a naso- or orogastric probe significantly extends FT, but has little effect on the overall dose of the

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to X-ray (Radiography) - Bone Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  2. Patient and fetal dose in diagnostic x-rays and radiotherapy in Bangkok, Thailand

    International Nuclear Information System (INIS)

    Pataramontree, J.; Wangsuphachart, S.; Apaiphonlacharn, J.; Chaichan, P.; Sompradit, S.; Suteerakul, K.; Thamwerawong, W.

    2001-01-01

    In 1999 the multicenter study of the patient surface dose was conducted at Department of Radiology of Chulalongkorn Hospital, another two university hospitals and a hospital in the suburb. Adult female patients were selected to measure the entrance skin dose and accumulated dose by using the thermoluminescent dosimeters and the kerma area product meter, respectively. The fetal doses were calculated by Monte Carlo method using the computer program written by Le Heron J.C. The average fetal doses were studied for each diagnostic radiographic procedure. The fetus got 0.29, 0.35, 2.63 mGy when its mother had radiography of pelvis, lumbosacral spine, excretory urography respectively. The estimated fetal doses for barium meal, barium enema and renal angiography were 1.47, 33.5 and 3.68 mGy, respectively. The fetal dose varies so much about 2-3 times of the average fetal dose due to equipment and techniques. The study of lower abdomen by computed tomography gave 48.4 mGy on average to a fetus. The scattered dose level outside radiotherapeutic x-rays at fetal position in Random Phantom depends on the primary beam area rather than the energy of radiation. If the threshold dose for fetal malformation is 0.1 Gy, the minimum safety distance for him is 22 cm from beam edges for the tumor dose of 60 Gy. (author)

  3. Dose calculation of X-ray in medium

    International Nuclear Information System (INIS)

    Liu Yanmei; Xue Dingyu; Xu Xinhe; Chen Zhen; Dong Zaili

    2006-01-01

    The photon transportation in radiotherapy is studied based on Monte Carlo method. The dose calculation based on the MC simulation package DPM has been carried out, and the results have been visualized using MEX technology of Matlab. The dose results of X-ray in homogeneity and inhomogeneity medium have been compared with experimental data and those of other MC simulation package, and these results all agree. The calculation method we proposed has the advantage of high speed and good accuracy, therefore, is applicable in practice. (authors)

  4. Patient doses due to a diagnostic X-ray picture

    International Nuclear Information System (INIS)

    Riet, A. van 't.

    1977-09-01

    The influence of technical parameters on patient doses in X-ray diagnostics has been investigated. During an X-ray picture (30 x 40 or 35 x 43 cm 2 ) for general survey in intraveneous pyelography (IVP), skin exposure measurements in the centre of the radiation beam were carried out at 650 adult female patients in 46 Dutch hospitals. In addition, the first half-value layer of the radiation was measured. In 15 of these hospitals, similar measurements were also carried out at a Rando phantom. Small LiF thermoluminescent dosemeters were used for all measurements. The results show a remarkable variation in the mean entrance- and exit-exposure per hospital. The variation in the mean entrance-exposure per hospital (factor 8) is mainly caused by differences in radiation quality. In some hospitals, no added filtration is used while others use a relatively heavy filtration. The variation in the mean exit-exposure per hospital could not be explained uniquely from technical parameters like grid, screen and film sensivity. From phantom measurements it was found that other parameters like adjustment of the automatic exposure timer and film density required by the radiographer are of importance. The measuring system used has shown to be an adequate and simple tool for a crude selection of those hospitals where skin exposures are relatively high. On the basis of the collected data some recommendations are given to promote dose reduction in X-ray diagnostics. The use of fast screen-film combinations is of great potential importance. However further investigation seems desirable, especially concerning patient dose during fluoroscopy 0

  5. Training program for radiologic technologists for performing chest X-rays at inspiration in uncooperative children

    International Nuclear Information System (INIS)

    Langen, Heinz Jakob; Muras, S.; Kohlhauser-Vollmuth, C.; Stenzel, M.; Beer, M.

    2009-01-01

    A computer program was created to train technologists to perform chest X-rays in crying infants at maximum inspiration. Videos of 4 children were used. Using a computer program, the moment of deepest inspiration was determined in the video in the single frame view. During the normal running video, 14 technologists (3 with significant experience, 3 with little experience and 8 with very little experience in pediatric radiography) simulated a chest radiograph by pushing a button. The computer program stopped the video and the period of time to the optimal moment for a chest x-ray was calculated. Every technologist simulated 10 chest X-rays in each of the 4 video clips. The technologists then trained themselves to perform chest X-rays at optimal inspiration like playing a computer game. After training, the test was repeated. Changes were evaluated by t-test for unpaired samples (level of significance p < 0.05). Although the differences improved in all children, minimal deviation from the optimal moment for taking an X-ray at inspiration occurred in the periodically crying child (0.21 sec before and 0.13 sec after training). In a non-periodically crying infant, the largest differences were shown. The values improved significantly from 0.29 sec to 0.22 sec. The group with substantial experience in pediatric radiology improved significantly from 0.22 sec to 0.15 sec. The group with very little experience in pediatric radiology showed worse results (improvement from 0.29 sec to 0.21 sec). (orig.)

  6. A pilot experience launching a national dose protocol for vascular and interventional radiology

    International Nuclear Information System (INIS)

    Vano, E.; Segarra, A.; Fernandez, J. M.; Ordiales, J. M.; Simon, R.; Gallego, J. J.; Del Cerro, J.; Casasola, E.; Verdu, J. F.; Ballester, T.; Sotil, J.; Aspiazu, A.; Garcia, M. A.; Moreno, F.; Carreras, F.; Canis, M.; Soler, M. M.; Palmero, J.; Ciudad, J.; Diaz, F.; Hernandez, J.; Gonzalez, M.; Rosales, P.

    2008-01-01

    The design of a national dose protocol for interventional radiology has been one of the tasks during the European SENTINEL Coordination Action. The present paper describes the pilot experience carried out in cooperation with the Spanish Society on Vascular and Interventional Radiology (SERVEI). A prospective sample of procedures was initially agreed. A common quality control of the X-ray systems was carried out, including calibration of the air kerma area product (KAP) meters. Occupational doses of the radiologists involved in the survey were also included in the survey. A total of 10 Spanish hospitals with interventional X-ray units were involved. Six hundred and sixty-four patient dose data were collected from 397 diagnostic and 267 therapeutic procedures. Occupational doses were evaluated in a sample of 635 values. The obtained KAP median/mean values (Gy.cm 2 ) for the gathered procedures were: biliary drainage (30.6/68.9), fistulography (4.5/9.8), lower limb arteriography (52.2/60.7), hepatic chemoembolisation (175.8/218.3), iliac stent (45.9/73.2) and renal arteriography (39.1/59.8). Occupational doses (mean monthly values, in mSv) were 1.9 (over apron); 0.3 (under apron) and 4.5 (on hands). With this National experience, a protocol was agreed among the SENTINEL partners to conduct future similar surveys in other European countries. (authors)

  7. Exposure doses of the patient and the medical staff during urological X-ray examens

    International Nuclear Information System (INIS)

    Vogel, H.; Loehr, H.; Haug, P.; Schuett, B.

    1977-01-01

    During 32 intravenous urografies and 48 angiografies of the kidney and the suprarenal glands the X-ray doses at the patient's skin and gonades were determined. During the angiografies the doses were mesured at the hands. the gonades and the front (eyes) of the medical staff. The results are discussed. Because the X-ray doses are relatively high, the number of the pictures and the exposure time is to be reduced to the minimum. Clinical experience and special knowledge is the best X-ray protection. (orig.) [de

  8. Low-dose phase contrast tomography with conventional x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C. K., E-mail: charlotte.hagen.10@ucl.ac.uk; Endrizzi, M.; Diemoz, P. C.; Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Munro, P. R. T. [Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia and Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2014-07-15

    Purpose: The edge illumination (EI) x-ray phase contrast imaging (XPCi) method has been recently further developed to perform tomographic and, thus, volumetric imaging. In this paper, the first tomographic EI XPCi images acquired with a conventional x-ray source at dose levels below that used for preclinical small animal imaging are presented. Methods: Two test objects, a biological sample and a custom-built phantom, were imaged with a laboratory-based EI XPCi setup in tomography mode. Tomographic maps that show the phase shift and attenuating properties of the object were reconstructed, and analyzed in terms of signal-to-noise ratio and quantitative accuracy. Dose measurements using thermoluminescence devices were performed. Results: The obtained images demonstrate that phase based imaging methods can provide superior results compared to attenuation based modalities for weakly attenuating samples also in 3D. Moreover, and, most importantly, they demonstrate the feasibility of low-dose imaging. In addition, the experimental results can be considered quantitative within the constraints imposed by polychromaticity. Conclusions: The results, together with the method's dose efficiency and compatibility with conventional x-ray sources, indicate that tomographic EI XPCi can become an important tool for the routine imaging of biomedical samples.

  9. Doses from Hiroshima mass radiologic gastric surveys

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, S; Sawada, S; Russell, W J [Radiation Effects Research Foundation, Hiroshima (Japan)

    1980-05-01

    Doses to examinees from mass radiologic surveys of the stomach in Hiroshima Perfecture were estimated by surveying for the frequency of the examinations, and for the technical factors used in them, and by phantom dosimetry. The average surface, active bone marrow and male and female gonad doses per examination were 5.73 rad, 231 mrad, and 20.6 and 140 mrad, respectively. These data will be used in estimating doses from medical X-rays among atomic bomb survivors. By applying them to the Hiroshima population, the genetically significant, per caput mean marrow, and leukemia significant doses were 0.14,8.6 and 7.4 mrad, respectively. There was a benefit-to risk ratio of about 50 for mass gastric surveys performed in 1976. However, the calculated risk was greater than the benefit for examinees under 29 years of age because of the lower incidence of gastric cancer in those under 29 years.

  10. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Energy Technology Data Exchange (ETDEWEB)

    Ay, M R [Department of Physics and Nuclear Sciences, AmirKabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriari, M [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Sarkar, S [Department of Medical Physics, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Adib, M [TPP Co., GE Medical Systems, Iran Authorized Distributor, Tehran (Iran, Islamic Republic of); Zaidi, H [Division of Nuclear Medicine, Geneva University Hospital, 1211 Geneva (Switzerland)

    2004-11-07

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  11. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Science.gov (United States)

    Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.

    2004-11-01

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  12. Measurement of spectra for intra-oral X-ray beams using biological materials as attenuator

    International Nuclear Information System (INIS)

    Zenóbio, Madelon A.F.; Nogueira-Tavares, Maria S.; Zenóbio, Elton G.; Squair, Peterson Lima; Santos, Marcus A.P.; Silva, Teógenes A. da

    2011-01-01

    In diagnostic radiology, the radiation interaction probability in matter is a strong function of the X-ray energy. The knowledge of the X-ray energy spectral distribution allows optimizing the radiographic imaging system in order to obtain high quality images with as low as reasonably achievable patient doses. In this study, transmitted X-ray spectra through dentin and enamel that are existing materials in intra-oral radiology were experimentally determined in an X-ray equipment with 40–70 kV variable range. Dentin and enamel samples with 0.4–3.8 and 0.6–2.6 mm thick were used as attenuators. X-ray transmitted spectra were measured with XR-100T model CdTe detector and half-value layers (HVL) were determined. Characteristics of both dentin and enamel transmitted spectra showed that they have differences in the penetration power in matter and in the spectrum distribution. The results will be useful for phantom developments based on dentin and enamel for image quality control in dental radiology. - Highlights: ► The X-ray energy spectral distribution, optimize the radiographic imaging system. Transmitted X-ray spectra through dentin and enamel were experimentally determined. X-ray transmitted spectra were measured (XR-100T model CdTe detector). The transmitted spectra showed differences in the penetration power and spectrum distribution. Dentin and enamel transmitted spectra will be useful for phantom developments.

  13. Forensics, radiology, society. X-rays. Tool and document

    International Nuclear Information System (INIS)

    Vogel, Beatrice; Vogel, Hermann

    2014-01-01

    During the last years, the individual specialities of forensic medicine and diagnostic imaging have increasingly cooperated to create the interdisciplinary entity of forensic radiology. The book demonstrates the potential of this speciality: It has become evident that the combination of diagnostic imaging and forensic medicine solves more cases of death of unknown cause than each alone, and that a radiograph can be read like a document describing forces of modern time and its effects on current society. The posters of 6 exhibitions demonstrate the actual cause of death and its preceding violence. They aim at the medical as well as the interested lay-public: Causes of natural and of violent death become visible. For instance, stab- and gunshot wounds into a person's rear are contradictory of self-defence. Stab wounds with penetration of ribs indicate great force and, therefore, intentional homicide. The same is valid for multiple stabs, stabs through silicon prosthesis of a mammoplasty, and stabs into the breast cage of a defenceless toddler. X-rays of the living can indicate preceding torture. X-rays are part of the security technology employed at airports and countries' borders. They help to detect drugs, explosives, and human stow-aways. The x-ray examination of the deceased visualises success and failure of the preceding therapy. After reanimation, the position of a tracheal tube, the effects of a vascular puncture, and potential fractures of the breast cage can be evaluated. After cardiac and aortic interventions, the procedure of choice and its effects can be seen. Concerning general or intensive care, diagnostic imaging shows the position of urinary catheters, gastric tubes and vascular catheters. Prenatal diagnostic imaging can determine the sex of the foetus and possible malformations; and in peri- and postnatal death, it may show the effects of iatrogenic actions, and later on, of child-abuse.

  14. Forensics, radiology, society. X-rays. Tool and document

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Beatrice; Vogel, Hermann [Hamburg Univ. (Germany). Inst. of Forensic Medicine

    2014-07-01

    During the last years, the individual specialities of forensic medicine and diagnostic imaging have increasingly cooperated to create the interdisciplinary entity of forensic radiology. The book demonstrates the potential of this speciality: It has become evident that the combination of diagnostic imaging and forensic medicine solves more cases of death of unknown cause than each alone, and that a radiograph can be read like a document describing forces of modern time and its effects on current society. The posters of 6 exhibitions demonstrate the actual cause of death and its preceding violence. They aim at the medical as well as the interested lay-public: Causes of natural and of violent death become visible. For instance, stab- and gunshot wounds into a person's rear are contradictory of self-defence. Stab wounds with penetration of ribs indicate great force and, therefore, intentional homicide. The same is valid for multiple stabs, stabs through silicon prosthesis of a mammoplasty, and stabs into the breast cage of a defenceless toddler. X-rays of the living can indicate preceding torture. X-rays are part of the security technology employed at airports and countries' borders. They help to detect drugs, explosives, and human stow-aways. The x-ray examination of the deceased visualises success and failure of the preceding therapy. After reanimation, the position of a tracheal tube, the effects of a vascular puncture, and potential fractures of the breast cage can be evaluated. After cardiac and aortic interventions, the procedure of choice and its effects can be seen. Concerning general or intensive care, diagnostic imaging shows the position of urinary catheters, gastric tubes and vascular catheters. Prenatal diagnostic imaging can determine the sex of the foetus and possible malformations; and in peri- and postnatal death, it may show the effects of iatrogenic actions, and later on, of child-abuse.

  15. Dose evaluation for digital X-ray imaging of premature neonates

    International Nuclear Information System (INIS)

    Minkels, T.J.M.; Jeukens, C.R.L.P.N.; Andriessen, P.; Van der Linden, A.N.; Dam, A.J.; Van Straaten, H.L.M.; Cottaar, E.J.E.; Van Pul, C.

    2017-01-01

    X-ray radiography is a commonly used diagnostic method for premature neonates. However, because of higher radiosensitivity and young age, premature neonates are more sensitive to the detrimental effects of ionising radiation. Therefore, it is important to monitor and optimise radiation doses at the neonatal intensive care unit (NICU). The number of X-ray examinations, dose area product (DAP) and effective doses are evaluated for three Dutch NICUs using digital flat panel detectors. Thorax, thorax abdomen and abdomen protocols are included in this study. Median number of examinations is equal to 1 for all three hospitals. Median DAP ranges between 0.05 and 1.02 μGy m2 for different examination types and different weight categories. These examinations result in mean effective doses between 4 ± 4 and 30 ± 10 μSv per examination. Substantial differences in protocols and doses can be observed between hospitals. This emphasises the need for up-to-date reference levels formulated specifically for premature neonates. (authors)

  16. The Columbia University proton-induced soft x-ray microbeam.

    Science.gov (United States)

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  17. Radiation dose to the patient in several diagnostic X-ray examinations performed with conventional radiographic equipment in 3 major centers in Israel, a comparative study

    International Nuclear Information System (INIS)

    Ben-Shlomo, A.; Schlesinger, T.; Kushilevsky, A.

    1996-01-01

    In this survey we determined the effective dose to the patient in specific x-ray diagnostic procedures performed in the radiology Department and emergency rooms in 3 major hospitals (A, B, and C) in Israel. In each hospital we measured the dose area product (DAP) in a number of several major diagnostic procedures. In each hospital we carried out measurements in two X-ray departments (A1, A2. B1, B2, C1, C2). The DAP measurements were carried out using a Diamentor Dose Area Product meter (DAP). The entrance dose was obtained using calibration measurements relating the exposure at a reference distance to the imaging parameters (kVp, mAs, filtration and distance) that were recorded in the examinations. The results will be presented and compared to the reference international guidance values (authors)

  18. Radiation dose to the patient in several diagnostic X-ray examinations performed with conventional radiographic equipment in 3 major centers in Israel, a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shlomo, A; Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center; Kushilevsky, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel) Dept. of Biomedical Engineering

    1996-12-01

    In this survey we determined the effective dose to the patient in specific x-ray diagnostic procedures performed in the radiology Department and emergency rooms in 3 major hospitals (A, B, and C) in Israel. In each hospital we measured the dose area product (DAP) in a number of several major diagnostic procedures. In each hospital we carried out measurements in two X-ray departments (A1, A2. B1, B2, C1, C2). The DAP measurements were carried out using a Diamentor Dose Area Product meter (DAP). The entrance dose was obtained using calibration measurements relating the exposure at a reference distance to the imaging parameters (kVp, mAs, filtration and distance) that were recorded in the examinations. The results will be presented and compared to the reference international guidance values (authors).

  19. The patient dose survey and dose reduction in diagnostic radiology

    International Nuclear Information System (INIS)

    Dang Thanh Luong; Duong Van Vinh; Ha Ngoc Thach

    2000-01-01

    This paper presented the results of the patient dose survey in some hospitals in Hanoi from 1995 to 1997. The main investigated types of the X-ray examination were: Chest PA, LAT; Skull PA/AP, LAT; Lumbar spine AP, LAT; and Pelvis AP. The fluctuation of the entrance surface doses (ESD) was too large, even in the same type of X-ray examination and X-ray facility. It was found that the ratio of maximum and minimum ESD were ranged from 1.5 to 18. The mean values of ESD for chest and skull were higher than CEC recommended values, while the mean values of lumbar spine and pelvis were smaller than that of CEC recommended values. The result of dose intercomparison was also reported. Some methods of dose reduction were applied for improving the patient dose in X-ray departments such as a high kV technique, high sensitive screen-film combination. (author)

  20. Effects of X-rays spectrum on the dose; Efectos del espectro de rayos X sobre la dosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez I, J. L.; Hernandez A, P. L.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Rivera M, T., E-mail: johann_greenday@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The X-ray equipment for diagnosis comes in different sizes and shapes depending on the scan type to perform. The X-ray spectrum is the energy distribution of the beam photons and consists of a continuous spectrum of photons braking and discrete spectrum due to the characteristic photons. The knowledge of the X-rays spectrum is important to understand like they affect the voltage changes (k Vp), current (m A), time (s) and the type of filter in the interaction mechanisms between X-rays and patient's body, the image receptor or other material that gets in the beam. Across the spectrum can be estimated the absorbed dose in any point of the patient, the quality of the image and the scattered radiation (which is related to the dose received by the equipment operator). The Monte Carlo method was used by MCNP5 code to calculate the spectrum of X-rays that occurs when a monoenergetic electron beam of 250 keV interact with targets of Mo, Rh and W. The spectra were calculated with and without filter, and the values of ambient dose equivalent were estimated, as well as the air kerma. (Author)

  1. Methods of determining the effective dose in dental radiology

    International Nuclear Information System (INIS)

    Thilander-Klang, A.; Helmrot, E.

    2010-01-01

    A wide variety of X-ray equipment is used today in dental radiology, including intra-oral, ortho-pan-tomographic, cephalo-metric, cone-beam computed tomography (CBCT) and computed tomography (CT). This raises the question of how the radiation risks resulting from different kinds of examinations should be compared. The risk to the patient is usually expressed in terms of effective dose. However, it is difficult to determine its reliability, and it is difficult to make comparisons, especially when different modalities are used. The classification of the new CBCT units is also problematic as they are sometimes classified as CT units. This will lead to problems in choosing the best dosimetric method, especially when the examination geometry resembles more on an ordinary ortho-pan-tomographic examination, as the axis of rotation is not at the centre of the patient, and small radiation field sizes are used. The purpose of this study was to present different methods for the estimation of the effective dose from the equipment currently used in dental radiology, and to discuss their limitations. The methods are compared based on commonly used measurable and computable dose quantities, and their reliability in the estimation of the effective dose. (authors)

  2. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  3. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    International Nuclear Information System (INIS)

    Sisniega, A.; Vaquero, J. J.; Desco, M.

    2014-01-01

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  4. Evaluation of the shielding of dental X-rays units; Evaluacion del blindaje de unidades de rayos X dentales

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, E.; Vega C, H. R.; Letechipia de L, C.; Hernandez D, V. M.; Salas L, M. A., E-mail: edumeco@yahoo.com.mx [Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2014-08-15

    The capacity of the walls of the dental radio-diagnostic rooms has been determined, to diminish the dose levels during the use of the X-rays equipment s. The study was carried out in the Dentistry Academic Unit of the campus Siglo X XI of the Universidad Autonoma de Zacatecas. The X-rays equipment s are a learning tool for the dentistry students and they are also used for offering health services to the population; for this reason is important to verify that the dose levels outside of the room walls are safe. During the evaluation process were used conservative approaches without prejudice of the thickness necessary in benefit of the radiological protection. Of the evaluation was found that all the walls satisfy their function thoroughly like barriers against the X-rays. (Author)

  5. Variation in X-ray dose quantity using an amorphous selenium based flat-panel detector - a study on the dose reduction rate up to the limit of diagnostical utilization

    International Nuclear Information System (INIS)

    Lehnert, T.; Wohlers, J.; Manegold, K.; Wetter, A.; Jacobi, V.; Mack, M.G.; Vogl, T.J.; Streng, W.

    2006-01-01

    Purpose: To evaluate the diagnostic quality and minimum required dose to obtain acceptable images for diagnostic purposes in the field of musculoskeletal radiology. Materials and methods: A critical comparison of the image quality produced by a novel flat panel detector and the conventional screen/film system using a contrast-detail phantom was performed in phase I. Images from both systems were obtained with the same dose and displayed with similar contrast and density. In phase II images of significant anatomical structures in cadaver extremities obtained using the digital detector system and the standard film/screen system were critically evaluated. After a successive reduction in the X-ray dose for 84 patients in phase III, eight independent radiologists compared the image quality of the screen/film system to that of the novel flat panel detector. Results: Phases I and II revealed a difference in the image quality achieved by the standard screen/film system and the digital detector system to the advantage of the digital detector system. In 77 of 84 patients (91.7%), phase III showed equal image quality after a 50% reduction in the X-ray dose. In 3 cases (3.6%) the image quality and the level of contrast were better. No unified statement could be made for 4 patients (4.7%). Conclusion: Digital imaging of skeletal disorders using the novel flat panel detector makes it possible to reduce the X-ray dose by 50% with equal or even better image quality. (orig.)

  6. Efforts towards enhancing the quality of radiological services in Malaysia: review of patient dose surveys 1993-2007

    International Nuclear Information System (INIS)

    Hairuman, H.; Sapiin, B.; Muthuvelu, P.; Hatta, N.; Hambali, A.S.

    2008-01-01

    Full text: The Ministry of Health (MoH) Malaysia is continuously taking steps to improve the quality of radiological services provided by the public and private medical institutions. This is to ensure that optimum diagnostic information is obtained with the least exposure to patients as well as staff. Over the years, MOH has taken both administrative and legislative measures to enforce the various requirements under the Atomic Energy Licensing Act 1984. In order to further upgrade and enhance the quality, safety and efficacy of radiological services, implementation of the Quality Assurance Programme (QAP) has been made mandatory. Implementation of the QAP comprises certification of irradiating equipment, training of personnel (continuous professional education), film reject rate analysis and film auditing and assessment. All these particulars must be documented and submitted annually to the MoH in order to comply with licensing requirements. It is envisaged that with the implementation of QAP, the medical institutions will be able to institutionalise and internalise the culture of quality and safety in the applications of radiation in medicine. This implementation will indirectly result in reduction of dose to the patient and importantly in optimization the use of ionizing radiation in medicine. With the QAP in place a survey of doses to patient in 7 routine X-ray examinations was initiated in 1993 to provide a reference dose baseline in Malaysia. This was then followed by further dose surveys involving other modalities namely interventional radiology, mammography, adult chest and abdominal X-rays and computer tomography dose index (CTDI) for head and body phantom in CT scanner. The results of these dose surveys will be reviewed in this paper. The results of the mean entrance surface dose (ESD) (mGy) to patients in 7 routine X-ray examination done (1993 - 1995), the mean values of dose area product (DAP) (Gycm 2 ) for patient undergoing interventional radiology

  7. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  8. Status of X-ray CT photography in the radiology department of our school of dentistry

    International Nuclear Information System (INIS)

    Hokari, Seishi; Takahashi, Nobutoshi; Tsutsumi, Hiroyuki; Shirai, Yoshihiro; Inoue, Hiroshi; Inoue, Nobuyuki; Yamada, Hidehiko; Okumura, Yasuhiko

    1999-01-01

    Aided by the significant increase in its performance and reduction in cost, the X-ray CT, which originated from the EMI scanner of the 1970's, has become an essential tool in the field of diagnostic X-ray images in medicine. To comprehend in detail the status of X-ray CT photography used in a special diagnostic situation of an adjust hospital of a school of dentistry is beneficial for evaluating the use of exploratory X-ray photography to obtain useful diagnostic information as well as routine photography format. Also, knowledge of its status is necessary to address the issues of justification and optimization of X-ray examinations. Therefore, we conducted research and evaluation on various items, such as the number of cases photographed, number of contrast enhanced, and male to female ratio, over a six-years period to assess the status of photography conducted with a Toshiba CT Scanner TCT-700S, which was introduced to the Radiology Department of our school in September 1991. The following are part of our findings; 1. Status of photography in total. 1) The total number of cases photographed was 5,346 cases. 2) The number of cases contrast enhanced was 903 cases. 3) Contrast enhanced cases ratio was 16.9%. 4) Male to female ratio was 55.4: 44.6%. 2. Status of case photography by different department was: dentistry, 73.3%; medicine, 26.7%. In order to descending case frequency was oral surgery, 53.0%; internal medicine, 19.4%; and radiology 15.0%. 3. Status of case photography by age was, in order of descending frequency, 50s, 40s, and 60s. (author)

  9. Division delay after low x-ray doses and treatment with cyclohexionide

    International Nuclear Information System (INIS)

    Schneiderman, M.H.; Braby, L.A.; Roesch, W.C.

    1977-01-01

    Radiation-induced division delay of Chinese hamster ovary cells located in G 2 , and in G 2 between the cycloheximide and x-ray transition points, was measured by the mitotic cell selection technique. The mitotic yield (number of mitotic cells after treatment expressed as a fraction of the control) decreased with increasing radiation dose (4.5 to 34 rad). However, either because some cells were not delayed or because delayed cells recovered rapidly, the mitotic yield did not fall to zero. When cycloheximide was combined with radiation to prevent repair of the radiation damage, only cells which were past the cycloheximide transition point and not delayed by the radiation were selected. The location of the transition points determined from the combined drug plus low-dose radiation (4.5 to 34 rad) experiments indicate a dose-dependent relationship, with more cells delayed as the dose was increased. In addition, the transition point for cells treated with cycloheximide plus 150 rad of x rays was closer to division than the 150 rad of x rays alone. These results are discussed in light of a recent model for radiation-induced division delay proposed by Dewey and Highfield

  10. Reference doses and patient size in paediatric radiology

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.; Shrimpton, P.

    2000-01-01

    There is a wide range in patient size from a newborn baby to a 15 year old adolescent. Reference doses for paediatric radiology can sensibly be established only for specific sizes of children. Here five standard sizes have been chosen, representing 0 (newborn), 1, 5, 10 and 15 year old patients. This selection of standard ages has the advantage of matching the paediatric mathematical phantoms which are often used in Monte Carlo organ dose calculations. A method has been developed for calculating factors for normalising doses measured on individual children to those for the nearest standard-sized 'child'. These normalisation factors for entrance surface dose (ESD) and dose-area product (DAP) measurements depend on the thickness of the real child, the thickness of the nearest standard 'child', and an effective linear attenuation coefficient (μ) which is itself a function of the x-ray spectrum, the field size, and whether or not an antiscatter grid is used. Entrance and exit dose measurements were made with phantom material representing soft tissue to establish μ values for abdominal and head examinations, and with phantom material representing lung for chest examinations. These measurements of μ were confirmed and extended to other x-ray spectra and field sizes by Monte Carlo calculations. The normalisation factors are tabulated for ESD measurements for specific radiographic projections through the head and trunk, and for DAP measurements for complete multiprojection examinations in the trunk. The normalisation factors were applied to European survey data for entrance surface dose and dose-area product measurements to derive provisional reference doses for common radiographic projections and for micturating cystourethrography (MCU) examinations - the most frequent fluoroscopic examination on children. (author)

  11. Preliminary characterization of dose in personnel of interventional radiology

    International Nuclear Information System (INIS)

    Godolfim, Laura Larre; Anes, Mauricio; Bacelar, Alexandre; Lykawka, Rochelle

    2016-01-01

    Exposure to X-rays of Interventional Radiology professionals (IR) impacts in the high dose rate received by these individuals, and there are reports of biological effects of this professional activity. Therefore, it is fomented greater control over the doses received by these workers. This research intends to characterize the doses received by the professionals during IR procedures. We evaluated the doses of radiologists, anesthesiologists and nursing staff of the Hospital de Clinicas de Porto Alegre, through measures with dosimeters of the OSL type, distributed in up to six regions of the body of these professionals. Until now were accompanied 33 cholangiography procedures and 29 embolization procedures. As a preliminary result, it was possible to identify a wide variation between doses of the professionals of the same function in each procedure. In overview, the dose of the professionals presented in descending order as a radiologist 1> radiologist 2 > anesthetist > nursing. (author)

  12. Evaluation of dose to tooth enamel from medical diagnostic X-ray examinations at Mayak PA

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A., E-mail: wieser@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, D-85764 Neuherberg (Germany); Vasilenko, E. [Mayak Production Association, 456780 Ozyorsk (Russian Federation); Zankl, M.; Greiter, M.; Ulanovsky, A. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, D-85764 Neuherberg (Germany); Sabayev, A.; Knyazev, V.; Zahrov, P. [Mayak Production Association, 456780 Ozyorsk (Russian Federation)

    2011-09-15

    The nuclear workers of the Mayak Production Association had regular check-ups including medical diagnostic X-ray examinations since start of the production lines in 1948. Doses from diagnostic examinations need to be considered in reconstruction of occupational doses of the workers with electron paramagnetic resonance (EPR) of tooth enamel. The numbers and types of examinations of an individual worker can be assessed from the Mayak PA archives but no information was available on doses delivered to teeth by a single specific examination. Of the twenty one applied examination procedures only three affected the teeth, these being X-ray examinations of teeth, skull and cervical spine. For these three kinds of examinations operational procedures and operating modes of X-ray units were compiled from the archive and photon spectra were obtained from a catalog of spectral data for diagnostic X-rays. Entrance doses in air kerma were calculated using the fluence of photon spectra and absorbed dose in tooth enamel for various tooth positions and exposure geometry was then calculated using dose conversion coefficients obtained from Monte Carlo simulations. Doses were calculated for examinations in 1948-2000. Except for examination of the skull, absorbed doses in enamel of incisors were found to be about twice as large as in enamel of molars. In the period before 1970 the largest mean absorbed doses in tooth enamel were due to X-ray examination of teeth, with 64 mGy and 34 mGy calculated for incisors and molars, respectively. In the same period the lowest mean doses were due to X-ray examination of the skull, with 11 mGy and 12 mGy calculated for incisors and molars, respectively. In the period from 1970 to 2000, largest mean doses in enamel were due to X-ray examination of cervical spine, with 23 mGy and 12 mGy calculated for incisors and molars, respectively.

  13. Radiation safety and quality in diagnostic x-ray imaging 2001; Saeteilyturvallisuus ja laatu roentgendiagnostiikassa 2001

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A.; Parviainen, T. (eds.)

    2001-05-01

    The obligations of the medical exposure directive (97/43/Euratom) for hospitals dominate the current activities in radiation protection in medical radiology. The directive gives special emphasis to radiation exposure of children, to examinations with high radiation doses and to radiation exposure in health screening programmes. The most important examinations with high doses are radiological interventions, where even acute skin effects are possible, and the computed tomography where the number of CT examinations makes only about 5% from the total number of x-ray examinations but the collective effective dose about 40% from the combined collective effective dose of all x-ray examinations. In the research projects financed by the European Commission, radiation exposures to paediatric patients have been measured in radiography, fluoroscopy and CT, and various dose assessment methods have been compared to develop a method for national follow-up of patients' radiation dose. The newest research project is focused on dosimetry and quality assurance in interventional radiology and digital imaging. Other actual topics are the development of radiation protection regulations and quality systems, education and training programmes, and clinical audits. This report deals with new radiation protection guides and recommendations and the education and training of radiological staff in radiation protection. One important topic is the development of national follow-up method of radiation exposure to patients and comparison of various dose assessment methods. Quality assurance in health care and in paediatric radiology, and the acceptance test and quality assurance measurements of radiological equipment are also described. (orig.)

  14. The quality assurance in diagnostic radiology and their effect in the quality image and radiological protection of the patient

    International Nuclear Information System (INIS)

    Gaona, Enrique

    2002-01-01

    The quality assurance in diagnostic radiology in Mexico before 1997 was virtually nonexistent except in few academic institutions and hospitals. The purpose of this study was to carry out an exploratory survey of the issue of quality control parameters of general and fluoroscopy x-ray systems in the Mexican Republic and their effects in the quality image and radiological protection of the patient. A general result of the survey is that there is not significant difference in the observed frequencies among public and private radiology departments for α = 0.05, then the results are valid for both departments. 37% of x-ray systems belong to public radiology departments. In the radiology departments that didn't agree with the Mexican regulations in: light field to mach the x-ray field, light field intensity, kV, time and output. In those cases, we found a repeat rate of radiography studies >30% with non necessary dose to patient, low quality image and high operating costs of the radiology service. We found in x-ray fluoroscopy systems that 62% had a low quality image due to electronic noise in the television chain. In general the x-ray systems that didn't agree with Mexican regulations are 35% and they can affect in a way or other the quality image and the dose to patient

  15. Results of a dosimetry study in the European Community on frequent X ray examinations in infants

    International Nuclear Information System (INIS)

    Schneider, K.; Fendel, H.; Bakowski, C.

    1992-01-01

    This Europe-wide dosimetry study, covering 89 departments in 11 EC countries, measured entrance surface dose (ESD) using TLDs, and surveyed X ray equipment and radiographic techniques used for frequent paediatric X ray examinations of the chest, abdomen, pelvis, skull and spine. The survey was limited to infants (10 months, 4 months and prematures of ∼ 1 kg). Data analysis showed widely differing radiographic techniques. This was one of the reasons for the large variations in ESD of an order of magnitude of 1:50. A substantial number of departments used either very old X ray generators and/or techniques poorly suited for paediatric radiology. Significant dose reduction was seen when recommended guidelines for good radiographic technique were followed. This study emphasises the necessity for the adherence to easily followed guidelines for the improvement of training and equipment in paediatric radiology. (author)

  16. Entrance surface dose measurements in pediatric radiological examinations

    International Nuclear Information System (INIS)

    Ribeiro, L.A.; Yoshimura, E.M.

    2008-01-01

    A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo, in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0.068 mGy (5-9 years old); 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100 mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20 mGy, respectively) are above the European reference levels (1.5 mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a

  17. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Background: Medical x-ray exposures have the largest man made source of population exposure to ionizing radiation in different countries. Recent developments in medical imaging have led to rapid increases in a number of high dose xray examinations performed with significant consequences for individual patient doses ...

  18. X-ray conditions and response characteristics of automatic dose control in cinematography

    International Nuclear Information System (INIS)

    Arai, Hiroaki

    1997-01-01

    X-ray characteristics including subject thickness (copper plate), tube voltage, tube current and irradiation time were measured at stability, with an automatic dose control x-ray generator for cineangiography. Regardless of subject thickness, it is possible that the energy input to the x-ray tube in one frame may be decreased. The automatic control response was measured after rapid fluctuation in subject thickness. Two inverter-type x-ray generators with different automatic control units were studied. The older control unit changes exposure dose by tube voltage and tube current, while the newer one changes exposure dose by tube voltage, tube current and irradiation time. The maximum rate of change in tube voltage is greater with the newer control unit. In addition, the actual tube current response of the newer control unit in increasing nominal value is faster than the older one. In the new control unit, for each pulse, irradiation is cut off by means of a signal that the exposure has reached the proper value. Thus given the same differential in subject thickness, the newer control unit resumed stability faster than the older one. (author)

  19. X-ray conditions and response characteristics of automatic dose control in cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Hiroaki [Cardiovascular Institute Hospital, Tokyo (Japan)

    1997-11-01

    X-ray characteristics including subject thickness (copper plate), tube voltage, tube current and irradiation time were measured at stability, with an automatic dose control x-ray generator for cineangiography. Regardless of subject thickness, it is possible that the energy input to the x-ray tube in one frame may be decreased. The automatic control response was measured after rapid fluctuation in subject thickness. Two inverter-type x-ray generators with different automatic control units were studied. The older control unit changes exposure dose by tube voltage and tube current, while the newer one changes exposure dose by tube voltage, tube current and irradiation time. The maximum rate of change in tube voltage is greater with the newer control unit. In addition, the actual tube current response of the newer control unit in increasing nominal value is faster than the older one. In the new control unit, for each pulse, irradiation is cut off by means of a signal that the exposure has reached the proper value. Thus given the same differential in subject thickness, the newer control unit resumed stability faster than the older one. (author)

  20. CALDoseX-a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology

    International Nuclear Information System (INIS)

    Kramer, R; Khoury, H J; Vieira, J W

    2008-01-01

    CALDose X is a software tool that provides the possibility of calculating incident air kerma (INAK) and entrance surface air kerma (ESAK), two important quantities used in x-ray diagnosis, based on the output of the x-ray equipment. Additionally, the software uses conversion coefficients (CCs) to assess the absorbed dose to organs and tissues of the human body, the effective dose as well as the patient's cancer risk for radiographic examinations. The CCs, ratios between organ or tissue absorbed doses and measurable quantities, have been calculated with the FAX06 and the MAX06 phantoms for 34 projections of 10 commonly performed x-ray examinations, for 40 combinations of tube potential and filtration ranging from 50 to 120 kVcp and from 2.0 to 5.0 mm aluminum, respectively, for various field positions, for 29 selected organs and tissues and simultaneously for the measurable quantities, INAK, ESAK and kerma area product (KAP). Based on the x-ray irradiation parameters defined by the user, CALDose X shows images of the phantom together with the position of the x-ray beam. By using true to nature voxel phantoms, CALDose X improves earlier software tools, which were mostly based on mathematical MIRD5-type phantoms, by using a less representative human anatomy.

  1. Dose inspection and risk assessment on radiation safety for the use of non-medical X-ray machines in Taiwan

    Science.gov (United States)

    Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing

    2017-11-01

    The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the

  2. Nanoparticle-Assisted Scanning Focusing X-Ray Therapy with Needle Beam X Rays.

    Science.gov (United States)

    Davidson, R Andrew; Guo, Ting

    2016-01-01

    In this work, we show a new therapeutic approach using 40-120 keV X rays to deliver a radiation dose at the isocenter located many centimeters below the skin surface several hundred times greater than at the skin and how this dose enhancement can be augmented with nanomaterials to create several thousand-fold total dose enhancement effect. This novel approach employs a needle X-ray beam directed at the isocenter centimeters deep in the body while continuously scanning the beam to cover a large solid angle without overlapping at the skin. A Monte Carlo method was developed to simulate an X-ray dose delivered to the isocenter filled with X-ray absorbing and catalytic nanoparticles in a water phantom. An experimental apparatus consisting of a moving plastic phantom irradiated with a stationary 1 mm needle X-ray beam was built to test the theoretical predictions. X-ray films were used to characterize the dose profiles of the scanning X-ray apparatus. Through this work, it was determined that the X-ray dose delivered to the isocenter in a treatment voxel (t-voxel) underneath a 5 cm deep high-density polyethylene (HDPE) phantom was 295 ± 48 times greater than the surface dose. This measured value was in good agreement with the theoretical predicted value of 339-fold. Adding X-ray-absorbing nanoparticles, catalytic nanoparticles or both into the t-voxel can further augment the dose enhancement. For example, we predicted that adding 1 weight percentage (wp) of gold into water could increase the effective dose delivered to the target by onefold. Dose enhancement using 1 mm X-ray beam could reach about 1,600-fold in the t-voxel when 7.5 wp of 88 nm diameter silica-covered gold nanoparticles were added, which we showed in a previously published study can create a dose enhancement of 5.5 ± 0.46-fold without scanning focusing enhancement. Based on the experimental data from that study, mixing 0.02 wp 2.5 nm diameter small tetrakis hydroxymethyl phosphonium chloride (THPC

  3. Absorbed dose assessment in newborns during x-ray examinations

    Science.gov (United States)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  4. Radiation doses from some common paediatric X-ray examinations in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Elshiekh, E.H.A.

    2008-01-01

    Radiation doses to patients from some common paediatric X-ray examinations were studied in three hospitals in Khartoum state (Sudan)). Entrance surface dose (ESD) was determined from exposure settings using DosCal software. Totally, 459 patients were included in this study. Mean ESDs obtained from anteroposterior projection for chest, skull, abdomen and pelvis for neonates falls in the range of 52-100, 115-169, 145-183, 204-242 μGy, respectively. For a 1-y-old infant, mean ESD range was 80-114, 153-202, 204-209, 181-264 μGy, respectively. Some doses for neonates and infants were exceeding the reference doses by >20%. The results highlighted that a good technique has to adhere to guidelines necessarily. As demonstrated elsewhere, patients' doses were high in departments using single-phase generators compared with those using constant potential. The results presented will serve as a baseline data needed for deriving reference doses for paediatric X-ray examinations in Sudan. (authors)

  5. Magnitudes and units in the X-ray dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Tovar M, V. M.; Cejudo A, J.; Vergara M, F.

    2009-10-01

    The dosimetry objective in the radiological image is the quantification from the exposition to the radiation with a commitment of optimizing the image quality to the reason of the absorbed dose. The dosimetry has the meaning of avoiding excessive dose that could imply a significant risk of deterministic effects induction. The dosimetric magnitudes and dosimetry protocols in the radiological image, are those that are related to the risks for the patient. Exist in diagnostic radiology two fundamentals reason to measure or to estimate the patient radiation dose. First, the mensurations are a means to verify the good practices and an aid to the optimization of the patient protection. Second, the absorbed dose estimation to tissues and organs in the patient are necessary to determine the risks, and this way to indicate that the radiological techniques employees can be justified and in investigated cases of over exposition. (Author)

  6. Collective effective dose in Europe from x-ray and nuclear medicine procedures

    International Nuclear Information System (INIS)

    Bly, R.; Jaervinen, H.; Jahnen, A.; Olerud, H.; Vassileva, J.; Vogiatzi, S.

    2015-01-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547 500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605 000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30 700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31 100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput. (authors)

  7. Evaluation of skin entrance radiation dose in pediatric patients undergoing chest X-rays exams; Avaliacao da dose de entrada na pele em pacientes pediatricos submetidos a exames radiograficos do torax

    Energy Technology Data Exchange (ETDEWEB)

    Gabardo, Farly Piantini

    2016-07-01

    The aim of this work was to estimate the incident air kerma of lateral (LAT) and anterior-posterior (AP) together with posterior-anterior (PA) projection chest X-ray exams in one of the largest pediatric hospitals in Brazil. Dosimetric results are accompanied with the detailed analysis of patient characteristics and radiographer strategy. The exams of 225 (119 male and 106 female) patients were studied and 389 X-ray exams (200 AP/PA projections and 189 LAT projections) of pediatric patients were acquired. Patient thickness can be restored from age, height or weight with the uncertainty of ∼20-30%. Very slight correlation between the patient dose and thickness was observed with the difference in dose for patients of the same thickness reaching 4 times. By standardization of radiological protocols, it should be possible to keep dose within the intervals 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection. The dose values are lower than those recommended by major European guidelines to good practice. (author)

  8. [Radiation exposure of children in pediatric radiology. Part 5: organ doses in chest radiography].

    Science.gov (United States)

    Seidenbusch, M C; Schneider, K

    2009-05-01

    Reconstruction of organ doses of selected organs and tissues from radiographic settings and exposure data collected during chest X-ray examinations of children of various age groups performed in Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007. The dosimetric data of all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 119 150 chest radiographs of all age groups. Reconstruction of organ doses in 40 organs and tissues in X-ray examinations of the chest was performed based on the conversion factor concept. The radiation exposure of organs in projection radiography is determined by the exact site of the organs relative to the edges of the X-ray field and the beam direction of X-rays. Optimal collimation in chest radiography can reduce the exposure of organs located at the periphery of the X-ray field, e. g. thyroid gland, stomach and partially the liver, by a factor of 2 to 3, while organs located in the center of the X-ray-field, e. g. thymus, breasts, lungs, esophagus and red bone marrow, are not affected by exact collimation. The high frequency of the roentgen examination of the chest in early age groups increases the collective radiation burden to radiosensitive organs. Therefore, radiation protection of the patient during chest radiographies remains of great importance.

  9. Facial exposure dose assessment during intraoral radiography by radiological technologists

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwan; Yang, Han Joon [Dept. of International Radiological Science, Hallym University of Graduate Studies, Chuncheon (Korea, Republic of)

    2014-09-15

    The study examined the changes in the decreased facial exposure dose for radiological technologists depending on increased distance between the workers and the X-ray tube head during intraoral radiography. First, the facial phantom similar to the human tissues was manufactured. The shooting examination was configured to the maxillary molars for adults (60 kVp, 10 mA, 50 msec) and for children (60 kVp, 10 mA, 20 msec), and the chamber was fixed where the facial part of the radiation worker would be placed using the intraoral radiography equipment. The distances between the X-ray tube head and the phantom were set to 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, and 40 cm. The phantom was radiated 20 times with each examination condition and the average scattered doses were examined. The rate at the distance of 40 cm decreased by about 92.6% to 7.43% based on the scattered rays radiated at the distance of 10 cm under the adult conditions. The rate at the distance of 40 cm decreased by about 97.6% to 2.58% based on the scattered rays radiated at the distance of 10 cm under the children conditions. Protection from the radiation exposure was required during the dental radiographic examination.

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  11. The measurement of patient doses from diagnostic x-rays

    International Nuclear Information System (INIS)

    Morris, N.D.; Solomon, S.B.

    1980-06-01

    As part of the National Health and Medical Research Council survey to determine the genetic and mean bone-marrow doses to the Australian population from the medical, dental and chiropractic uses of radiation sources, doses to patients undergoing X-ray diagnostic procedures were evaluated. The doses were measured using capsules of LiF or CaF 2 :Dy thermoluminescent dosemeters (TLD). The evaluation of the TLD measurements is described and the mean values of the skin doses for patients undergoing various radiographic examinations in Australia in 1970 are presented

  12. Characterization of the adaptive response to ionizing radiation induced by low doses of X-rays to Vibrio cholerae cells

    International Nuclear Information System (INIS)

    Basak, Jayasri

    1996-01-01

    Pretreatment with sublethal doses of X-rays induced an adaptive response in Vibrio cholerae cells as indicated by their greater resistance to the subsequent challenging doses of X-irradiation. The adaptive response was maximum following a pre-exposure dose of 1.7 Gy X-rays and an optimum incubation period of 40 min at 37C. Pre-exposure to a sublethal dose of 1.7 Gy X-rays made the Vibrio cholerae cells 3.38-fold more resistant to the subsequent challenge by X-rays. Pretreatment with a sublethal dose of hydrogen peroxide offered a similar degree of protection to the bacterial cells against subsequent treatment with challenging doses of X-ray radiation. However, exposure of Vibrio cholerae cells to mild heat (42C for 10 min) before X-ray irradiation decreased their survival following X-irradiation

  13. Dose and energy dependence of response of Gafchromic XR-QA film for kilovoltage x-ray beams.

    Science.gov (United States)

    Rampado, O; Garelli, E; Deagostini, S; Ropolo, R

    2006-06-07

    There is a growing interest in Gafchromic films for patient dosimetry in radiotherapy and in radiology. A new model (XR-QA) with high sensitivity to low dose was tested in this study. The response of the film to different x-ray beam energies (range 28-145 kVp with various filtrations, dose range 0-100 mGy) and to visible light was investigated, together with the after exposure darkening properties. Exposed films were digitized with a commercially available, optical flatbed scanner. A single functional form for dose versus net pixel value variation has been determined for all the obtained calibration curves, with a unique fit parameter different for each of the used x-ray beams. The film response was dependent on beam energy, with higher colour variations for the beams in the range 80-140 kVp. Different sources of uncertainties in dose measurements, governed by the digitalization process, the film response uniformity and the calibration curve fit procedure, have been considered. The overall one-sigma dose measurement uncertainty depended on the beam energy and decreased with increasing absorbed dose. For doses above 10 mGy and beam energies in the range 80-140 kVp the total uncertainty was less than 5%, whereas for the 28 kVp beam the total uncertainty at 10 mGy was about 10%. The post-exposure colour variation was not negligible in the first 24 h after the exposure, with a consequent increase in the calculated dose of about 10%. Results of the analysis of the sensitivity to visible light indicated that a short exposure of this film to ambient and scanner light during the measurements will not have a significant impact on the radiation dosimetry.

  14. Evaluation of rate of unstable chromosomal changes in human blood irradiated by X-rays: establishment of dose-response curve

    International Nuclear Information System (INIS)

    Mendonça, J.C.G.; Mendes, M.E.; Melo, A.M.M.A.; Silva, L.M.; Andrade, A.M.G.; Hwang, S.F.; Lima, F.F.

    2017-01-01

    Since the discovery of ionizing radiation, and consequently of its properties, there has been an increasing in its use, which in turn has raised concerns about the biological damage that it could cause in exposed individuals. As a result, cytogenetic dosimetry has emerged: a method that can be used as a complement or, in the absence of physical dosimetry, relating the frequency of chromosomal changes found in the blood of the exposed individual and the dose absorbed through dose-response calibration curves. This work aimed to verify the frequencies of the unstable chromosomal changes in human blood lymphocytes irradiated by X-rays of 250 kVp with different absorbed doses and later establish the dose-response calibration curves. The irradiation was performed at the CRCN-NE/CNEN-PE, Brazil metrology service on a PANTAK X-ray machine, model HF 320. The blood samples had their lymphocytes cultured in culture media and, after the processing, the metaphases were obtained. The chromosomal alterations analyzed were chromosomes dicentric, ring and isolated actinic fragments. There was an increase in frequencies of all chromosomal changes with increased absorbed dose. The calibration curves of dicentric and dicentric + rings presented good adjustments with the values of the coefficients Y = 0.0013 + 0.0271D + 0.0556D 2 (X 2 = 10.36 / GL = 6) and Y = 0.0013 + 0.0263D + 0.0640D 2 (X 2 = 7.43 / GL = 6), respectively. The establishment of these curves enables the Laboratory of Biological Dosimetry of the CRCN/NE/CNEN-PE to estimate the dose absorbed by occupationally exposed individuals and in cases of radiological accidents

  15. Analysis of occupational doses in interventional radiology and cardiology installations

    International Nuclear Information System (INIS)

    Vano, E.; Gonzalez, L.; Ten, J.I.; Guibelalde, E.; Fernandez, J.M.

    1997-01-01

    The relationship between patient dose (PD) and occupational dose (OD) is not easily predictable in interventional radiology installations due to a large number of factors which can modify the occupational risk (OR). In the present work an analysis is made of the four main aspects which influence OR, namely, x-ray beam used, radiation protection (RP) tools available (aprons, thyroid protectors, gloves, screens, etc) and their regular use, type and number of procedures performed (diagnostic or therapeutic, complexity level, etc), and RP training level of the specialists. High filtration x-ray beams can entail a decrease of 20% in OD. A regular use of ceiling mounted faceplates can involve dose savings up to 65%. Mean values of dose per procedure for interventional radiologists are something greater (about 15%) than those recorded for cardiologists, except for the dosimeters placed on left forearm and shoulder. The ratio between OD and PD range around 100 μSv/1,000 cGy.cm 2 . The influence of the staff RP training level on OD is difficult to assess. In the IC Service from the Madrid San Carlos University Hospital (SCUH), PD have been reduced in above 30% and OD in a factor of 3, after running some training programmes. (author)

  16. [Effective Techniques to Reduce Radiation Exposure to Medical Staff during Assist of X-ray Computed Tomography Examination].

    Science.gov (United States)

    Miyajima, Ryuichi; Fujibuchi, Toshioh; Miyachi, Yusuke; Tateishi, Satoshi; Uno, Yoshinori; Amakawa, Kazutoshi; Ohura, Hiroki; Orita, Shinichi

    2018-01-01

    Medical staffs like radiological technologists, doctors, and nurses are at an increased risk of exposure to radiation while assisting the patient in a position or monitor contrast medium injection during computed tomography (CT). However, methods to protect medical staff from radiation exposure and protocols for using radiological protection equipment have not been standardized and differ among hospitals. In this study, the distribution of scattered X-rays in a CT room was measured by placing electronic personal dosimeters in locations where medical staff stands beside the CT scanner gantry while assisting the patient and the exposure dose was measured. Moreover, we evaluated non-uniform exposure and revealed effective techniques to reduce the exposure dose to medical staff during CT. The dose of the scattered X-rays was the lowest at the gantry and at the examination table during both head and abdominal CT. The dose was the highest at the trunk of the upper body of the operator corresponding to a height of 130 cm during head CT and at the head corresponding to a height of 150 cm during abdominal CT. The maximum dose to the crystalline lens was approximately 600 μSv during head CT. We found that the use of volumetric CT scanning and X-ray protective goggles, and face direction toward the gantry reduced the exposure dose, particularly to the crystalline lens, for which lower equivalent dose during CT scan has been recently recommended in the International Commission on Radiological Protection Publication 118.

  17. Evaluation of dose equivalent to the people accompanying patients in diagnostic radiology using MCNP4C Monte Carlo code

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.

    2007-01-01

    Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations

  18. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-01-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a

  19. Results of a dosimetry study in the European Community on frequent X ray examinations in infants

    International Nuclear Information System (INIS)

    Schneider, K.; Fendel, H.; Bakowski, C.; Stein, E.; Kohn, M.; Kellner, M.; Schweighofer, K.; Cartagena, G.; Panzer, W.; Scheurer, C.; Wall, B.

    1992-01-01

    This Europe-wide dosimetry study, covering 89 departments in 11 EC countries, measured entrance surface dose (ESD) using TLDs, and surveyed X ray equipment and radiographic techniques used for frequent paediatric X ray examinations of the chest, abdomen, pelvis, skull and spine. The survey was limited to infants (10 months, 4 months and prematures of ∼ 1 kg). Data analysis shows that radiographic techniques differed widely. This was one of the reasons for the large variations in ESD of an order of magnitude of 1:50. A substantial number of departments used either very old X ray generators and/or techniques which are poorly suited for paediatric radiology. A significant dose reduction was seen when recommended guidelines for good radiographic technique were followed. The results of this study emphasize the necessity for the adherence to easily followed guidelines for the improvement of training and equipment in paediatric radiology

  20. Monte Carlo simulation of the interaction of X-ray spectrum with human tissue, in the energies range of diagnostic radiology; Simulacion Monte Carlo de la interaccion del espectro de rayos X con el tejido humano, en el rango de energias de diagnostico radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Cayllahua Q, L. F.; Apaza V, G.; Vega R, J. L., E-mail: fredycayllahua@gmail.com [Universidad Nacional de San Agustin, Area de Fisica Medica, Av. Independencia s/n, Arequipa (Peru)

    2015-10-15

    Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)

  1. Clinical application of radiation dosimetry on X-ray radiotherapy

    International Nuclear Information System (INIS)

    Mizutani, Takeo

    1995-01-01

    In the case of radiotherapy, it is important to give proper dose for a tumor, to be treated with the objective of therapy, and to evaluate the dose, considering dose for other organs at risk to a sufficient extent. To provide an exposure dose at the target volume of tumor parts, it should be required to get a good understanding of the correct dosimetric method and also to apply this to clinical application in practice. All over the country, so as not to produce any difference in the given dose, 'A practical code for the dosimetry of high energy X-rays in radiotherapy' was issued by the Japanese Associations of radiological physicists in 1972. In 1986, it was revised. At about 85% of therapeutic facilities in the country, radiation engineers perform dose measurements and controls. Therefore, I have explained the process of measurement and dose calculation, with the main objective directed at the engineers in charge of the radiotherapy so as to easily radiation dosimetry of X-ray with dosemeters and phantom used at each facility according to the 'practical code'. (author)

  2. Long-term stability of beam quality and output of conventional X-ray units.

    Science.gov (United States)

    Fukuda, Atsushi; Matsubara, Kosuke; Miyati, Tosiaki

    2015-01-01

    Conventional diagnostic X-ray units are used for radiographic imaging in many countries. For obtaining entrance surface doses, a numerical dose determination method has been applied in Japan. Although this technique is effective, it has to account for errors, particularly fluctuations, due to the beam quality and output of X-ray tubes. As a part of our quality control procedures, we recorded the entrance surface air kerma, tube voltage, and half-value layer measurements made for four diagnostic X-ray tubes over a 103-week period. The entrance surface air kerma for one of the four X-ray tubes had increased significantly by 11.4 % over 1 year from its initial setting, whereas the tube voltages and half-value layers did not deviate significantly from their initial values. Medical physicists and radiological technologists should be aware of this fluctuation for diagnostic X-ray tubes and take it into consideration when calculating the entrance surface air kerma.

  3. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    Energy Technology Data Exchange (ETDEWEB)

    Chain, J N M; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 3P6 (Canada); Schreiner, L J, E-mail: kim.mcauley@chee.queensu.ca [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)

    2011-04-07

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range ({approx}0.88 H Gy{sup -1}) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent ({approx}0.80 H Gy{sup -1}). This new gel formulation results in enhanced dose resolution ({approx}0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  4. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    International Nuclear Information System (INIS)

    Chain, J N M; McAuley, K B; Jirasek, A; Schreiner, L J

    2011-01-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (∼0.88 H Gy -1 ) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (∼0.80 H Gy -1 ). This new gel formulation results in enhanced dose resolution (∼0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  5. Exposure of patients and creation of system of quality assurance in conventional x-ray radiology in Lithuania

    International Nuclear Information System (INIS)

    Morkunas, G.; Ziliukas, J.

    1999-01-01

    One of the most important sources of exposure is medical application of ionizing radiation. X-ray examination comprise a significant part of medical exposure. Doses received by patients and quality of diagnostic images are to be optimized. Measurements of these doses were started by the Radiation Protection Centre in 1997. These measurements are performed in randomly selected x-ray departments all around Lithuania during examinations of chest and lumbar spine. Dose and parameters related to exposure and patient are registered. Quality control measurements by PMX-III are being performed on each x-ray machine used for examination. The results show that in many cases the guidance levels are of entrance surface dose for standard patient determined by the Basic Radiation Protection Standard of Lithuania are exceeded. Quality control of x-ray machines performed in 1997-1999 shows that more than 30% of these machines did not comply with the requirements though in many cases shortcomings are minor and easily removed. (au)

  6. Controlled area for mobile medical X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, B; Taschner, P; Koenig, W [Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (German Democratic Republic); Fuehr, K P; Kucharz, R [Rostock Univ. (German Democratic Republic). Radiologische Klinik

    1976-10-01

    On the basis of dose rate measurements the radiation protection situation during operation of mobile X-ray machines is described. According to these results, the controlled area has been definitely fixed by the National Board of Nuclear Safety and Radiation Protection with respect to the following fields of application: stomatology, mobile radiography of patients confined to bed as well as performing radiological examinations in the operating theatre.

  7. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco

    2011-01-01

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  8. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Jones, Michael W.M.; Dearnley, Megan K.; Riessen, Grant A. van; Abbey, Brian; Putkunz, Corey T.; Junker, Mark D.; Vine, David J.; McNulty, Ian; Nugent, Keith A.; Peele, Andrew G.; Tilley, Leann

    2014-01-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging

  9. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Michael W.M., E-mail: michael.jones@latrobe.edu.au [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Dearnley, Megan K. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Riessen, Grant A. van [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Abbey, Brian [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Melbourne Centre for Nanofabrication, Victoria 3168 (Australia); Putkunz, Corey T. [ARC Centre of Excellence for Coherent X-Ray Science, School of Physics, The University of Melbourne, Victoria 3010 (Australia); Junker, Mark D. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Vine, David J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Centre for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nugent, Keith A. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Peele, Andrew G. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Australian Synchrotron, 800 Blackburn Road, Clayton 3168 (Australia); Tilley, Leann [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging.

  10. X-ray anatomy - radiological imaging, radiation protection. For auxiliary medical personnel, technicians, physicists. 3. rev. and enlarged ed. Roentgenanatomie - radiologische Darstellung, Strahlenschutz. Fuer aerztliches Hilfspersonal, Techniker, Physiker

    Energy Technology Data Exchange (ETDEWEB)

    Frik, W; Goering, U

    1988-01-01

    This third edition as the result of a complete revision of the second edition reflects the current state of the art and includes topical information on a variety of advances hitherto achieved, as for instance information on novel imaging techniques in diagnostic radiology that have been included in the chapters on physical fundamentals or examination methods, as well as in all chapters discussing the anatomy and the relevant radiological imaging methods. As practice has shown that the application of the latest standards on radiation doses and units still poses problems, the authors decided to add a section explaining dose concepts, terminology and units. The two chapters dealing with contrast media and with radiological examination methods have been updated and supplemented. The anatomy chapters, written for readers who are not doctors, and the survey of the relevant diagnostic radiology still form the core of the book, but all in all this third edition now puts equal emphasis on all three aspects concerned, namely X-ray anatomy, radiological imaging, and radiation protection. (orig./MG) With 96 figs.

  11. Optimum power of radiation dose in X ray television systems of flaw inspection in industry

    International Nuclear Information System (INIS)

    Denbnovetskii, S.V.; Troitskii, V.A.; Belyi, N.G.; Grom, V.S.; Kuz'micheva, N.V.; Leshchishin, A.V.; Mikhailov, V.N.; Shutenko, O.V.

    1990-01-01

    The authors present the experimental dose characteristics of a x ray television system based on x ray vidicons with the diameter of the working field of 900 mm which operate in the continuous and pulsed conditions with the longer time of cumulation of radiation images on the target of the x ray vidicon. For each type of the inspected material, its thickness, and cumulation time, the dose characteristics were used to determine the optimum power of the exposure dose ensuring the maximum signal/noise ratio and detectability of the defects at the output of the system. (author)

  12. Estimation of effective doses in pediatric X-ray computed tomography examination.

    Science.gov (United States)

    Obara, Hideki; Takahashi, Midori; Kudou, Kazuya; Mariya, Yasushi; Takai, Yoshihiro; Kashiwakura, Ikuo

    2017-11-01

    X-ray computed tomography (CT) images are used for diagnostic and therapeutic purposes in various medical disciplines. In Japan, the number of facilities that own diagnostic CT equipment, the number of CT examinations and the number of CT scanners increased by ~1.4-fold between 2005 and 2011. CT operators (medical radiological technologists, medical physicists and physicians) must understand the effective doses for examinations at their own institutions and carefully approach each examination. In addition, the patients undergoing the examination (as well as his/her family) must understand the effective dose of each examination in the context of the cumulative dose. In the present study, the numbers of pediatric patients (aged 0-5 years) and total patients who underwent CT at Hirosaki University Hospital (Hirosaki, Japan) between January 2011 and December 2013 were surveyed, and effective doses administered to children aged 0, 1 and 5 years were evaluated. Age- and region-specific conversion factors and dose-length products obtained from the CT scanner were used to estimate the effective doses. The numbers of CT examinations performed in 2011, 2012 and 2013 were 16,662, 17,491 and 17,649, respectively, of which 613 (1.2%) of the overall total involved children aged 0-5 years. The estimated effective doses per examination to children aged 0, 1 and 5 years were 6.3±4.8, 4.9±3.8 and 2.7±3.0 mSv, respectively. This large variation was attributed to several factors associated with scan methods and ranges in actual setting. In conclusion, the requirement for individual patient prospective exposure management systems and estimations of low-dose radiation exposure should be considered in light of the harmful effects of exposure.

  13. Frequency of medical and dental x-ray examinations in the UK. 1997/98

    International Nuclear Information System (INIS)

    Tanner, R.; Wall, B.; Shrimpton, P.

    2000-12-01

    A survey has been performed to assess the numbers of all types of radiological x-ray examination conducted in the UK during the period from April 1997 to March 1998. The survey covers all diagnostic and interventional procedures using x-rays for medical and dental purposes, both within and outside the National Health Service (NHS), but excludes a detailed analysis of magnetic resonance imaging (MRI), ultrasound and nuclear medicine. This is the first such national survey conducted by NRPB since 1983. The results provide a current picture of the pattern of medical x-ray imaging practice in the UK and will allow revised estimates to be made of the collective dose to the population from these procedures. The survey has utilised detailed information available from radiology management systems at a selected sample of 38 English NHS trusts. The different classifications of x-ray procedure have been re-arranged into 62 standardised categories based on anatomical location and whether they were conventional, computed tomography (CT) or interventional procedures. Extrapolation of the sample data to the whole of England was carried out using broad NHS radiology statistics (KH12 returns) for the period of the survey from the Department of Health. Additional data have been obtained covering NHS radiology practice in Wales and Northern Ireland and also for x-ray imaging practice outside NHS hospitals such as that performed in independent hospitals and by dentists and chiropractors. Results are presented giving the annual numbers and relative frequencies of x-ray examinations in the 62 categories and the contributions from radiology practice outside NHS hospitals and from the whole of the UK. Altogether, about 41.5 million medical and dental x-ray examinations were conducted in the UK in 1997/98, corresponding to 704 examinations per 1000 inhabitants. The increase since 1983 for medical examinations conducted in NHS hospitals has just kept pace with the increase in population

  14. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  15. The value of the X-ray examination

    International Nuclear Information System (INIS)

    Hardy, G.H.

    1980-01-01

    A prospective enquiry has been carried out into the diagnostic and management value of a number of X-ray examinations, which have been applied for by 16 general practitioners practising in a health centre. Both economical and biological aspects have received special attention and the relation between the G.P. and diagnostic radiology is elucidated. As regards biological aspects, the harmful effects caused by ionizing radiation are discussed and dose-restrictive measures are considered. (Auth.)

  16. Clay as Thermoluminescence Dosemeter in diagnostic Radiology ...

    African Journals Online (AJOL)

    This paper reports the investigation of the basic thermoluminescence properties of clay at x-rays in the diagnostic radiology range, including dose monitoring in abdominal radiography. Clay sourced from Calabar, Nigeria, was tested for thermoluminescence response after irradiation at diagnostic radiology doses, including ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  18. Ambient and personal dose assessment of a container inspection site using a mobile X-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.Y., E-mail: fyhsu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuangfu Rd., 300 Hsinchu, Taiwan (China); Lee, W.F., E-mail: 005679@webmail.customs.gov.tw [Taichung Customs Office, Ministry of Finance, 2, Sec. 3, Chung-Chie Rd., Sha Lu, 435 Taichung, Taiwan (China); Tung, C.J., E-mail: cjtung@mail.cgu.edu.tw [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, 333 Tao-Yuan, Taiwan (China); Lee, J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Peitou, 112 Taipei City, Taiwan (China); Wu, T.H., E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Peitou, 112 Taipei City, Taiwan (China); Hsu, S.M., E-mail: smhsu@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Rd., 404 Taichung, Taiwan (China); Su, H.T., E-mail: edwardsu1027@hotmail.com [School of Medical Imaging and Radiological Science, Chung Shan Medical University, 110, Sec. 1, Jianguo N. Rd., 402 Taichung, Taiwan (China); Chen, T.R., E-mail: trchen@csmu.edu.tw [School of Medical Imaging and Radiological Science, Chung Shan Medical University, 110, Sec. 1, Jianguo N. Rd., 402 Taichung, Taiwan (China); Department of Medical Image, Chung Shan Medical University Hospital, 402 Taichung, Taiwan (China)

    2012-03-15

    Ambient monitor and phantom studies of absorbed and effective doses by TLDs were carried out in a non-intrusive inspection station for containers, Terminal I, of Taichung harbor, Taiwan. The doses from the X-ray scan in the control room and driver waiting room, located outside of the radiation control area, were quite small and could not be distinguished from the natural background radiation. The doses in the driver cab and the inspector cab of the X-ray scan car were also within background radiation levels. The protection wall, a 40-cm thick concrete barrier, can effectively attenuate the intensity of the primary X-ray scan. The possible effective dose of a person in the container or trailer is about 3.15{+-}0.23 {mu}Sv/scan and 2.31{+-}0.38 {mu}Sv/scan. This dose is below the annual background dose. If someone was to be scanned by the X-ray, the effective dose would be at an acceptable level. - Highlights: Black-Right-Pointing-Pointer We used TLDs to evaluate the dose in the environment and in the Rando phantom. Black-Right-Pointing-Pointer The absorbed dose in the container Terminal showed a natural background level. Black-Right-Pointing-Pointer The protection wall effectively lowers the X-ray intensity. Black-Right-Pointing-Pointer The effective dose of a person in the container or trailer is about 3 {mu}Sv/scan.

  19. Dose corrections for field obliquity for 45-MV x-ray therapy

    International Nuclear Information System (INIS)

    McGinley, P.H.; Clanton, A.; Downes, B.; Nuskind, J.

    1983-01-01

    The degree of dose perturbation produced by a 25.7-cm-diam circular water phantom was determined for a 45-MV x-ray beam by direct measurement. Data obtained in a circular and a cubical water phantom was utilized to test three accepted techniques (isodose shift, TAR method, and effective SSD method) for the correction of isodose levels to account for patient curvature. In general, the effective SSD method yielded the most accurate results for all depth including the buildup region. An isodose shift factor of 0.8 was found for the 45-MV x-ray beam. Key words: curvature corrections, 45-MV x ray, isodose shift, TAR, effective SSD method

  20. Problems of radiation protection and their solution in afterloading therapy performed in a X-ray deep therapy chamber of the Radiological Clinic of the Martin-Luther-University Halle

    International Nuclear Information System (INIS)

    Rauh, G.

    1982-01-01

    The Radiological Clinic of the Martin-Luther-University Halle got the first afterloading therapy unit DECATRON in December 1973. After preceding physical measurements the first patient was irradiated in August 1974. At this time there was no experience with the afterloading therapy in the GDR. The afterloading therapy was performed in a former X-ray deep therapy chamber. The occuring problems of radiation protection are considered and the ways of solution are described. Radiation protection calculations were carried out, values of local dose measurements are given, interpreted and compared with the values of personal dosimetry. Also the terms 'incorporated activity' and 'threading out activity' ('effective activity') are discussed, which led to differences in dose measurements formerly. The special situation required to discuss radiation protection problems of X-ray deep therapy simultaneously. (author)

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  2. Radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Cechak, T.

    1994-01-01

    The author's achievements in the title field are summarized and discussed. The following topics are dealt with: (i) principles of radionuclide X-ray fluorescence analysis; (ii) mathematical methods in X-ray fluorescence analysis; (iii) Ross differential filters; (iv) application of radionuclide X-ray fluorescence analysis in the coal industry (with emphasis on the determination of the ash content, sulfur content, and arsenic content of coal); and (v) evaluation of the X-ray fluorescence analyzer from the radiological safety point of view. (P.A.)

  3. Relationship between radiation dose and changes of blood cells in medical diagnostic X-ray workers in China

    International Nuclear Information System (INIS)

    Zhao Wenzheng

    1984-01-01

    The hematological changes of 2867 cases of medical X-ray workers and 1152 cases of non-X-ray medical workers were compared. It was shown that the total number of leukocytes, the numbers of neutrophils, lymphocytes and platelets were significantly lower in X-ray workers than those in controls. However, the percentages of monocytes, eosinophils, basophils and the concentration of hemoglobin were higher in the irradiated group. the difference between the two groups was statistically significant. The degree of changes in the number of blood cells was dose-dependent. A negative correlation could be found between the changes of leukocyte and neutrophil counts and cumulative dose (<250 mGy), annual dose (<15 mGy/a) and length of service of the X-ray workers; and a positive correlation existed between the percentages of basophils, eosinophils and monocytes, and the radiation dose. The abnormality rate of blood picture in the irradiated group was higher than that in the control group. Most X-ray workers with abnormal blood picture were distributed in low-dose group. The data also showed that radiation effect on male X-ray workers was greater than that on female workers. (Author)

  4. [Development of an attitude-measurement questionnaire using the semantic differential technique: defining the attitudes of radiological technology students toward X-ray examination].

    Science.gov (United States)

    Tamura, Naomi; Terashita, Takayoshi; Ogasawara, Katsuhiko

    2014-03-01

    In general, it is difficult to objectively evaluate the results of an educational program. The semantic differential (SeD) technique, a methodology used to measure the connotative meaning of objects, words, and concepts, can, however, be applied to the evaluation of students' attitudes. In this study, we aimed to achieve an objective evaluation of the effects of radiological technology education. We therefore investigated the attitude of radiological students using the SeD technique. We focused on X-ray examinations in the field of radiological technology science. Bipolar adjective scales were used for the SeD questionnaire. To create the questionnaire, appropriate adjectives were selected from past reports of X-ray examination practice. The participants were 32 senior students at Hokkaido University at the Division of Radiological Technology at the School of Medicine's Department of Health Sciences. All the participants completed the questionnaire. The study was conducted in early June 2012. Attitudes toward X-ray examination were identified using a factor analysis of 11 adjectives. The factor analysis revealed the following three attitudes: feelings of expectation, responsibility, and resistance. Knowledge regarding the attitudes that students have toward X-ray examination will prove useful for evaluating the effects of educational intervention. In this study, a sampling bias may have occurred due to the small sample size; however, no other biases were observed.

  5. Low dose X -ray effects on catalase activity in animal tissue

    Science.gov (United States)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, pbonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  6. Dose and energy dependence of response of Gafchromic (registered) XR-QA film for kilovoltage x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Rampado, O; Garelli, E; Deagostini, S; Ropolo, R [Struttura Complessa fisica Sanitaria, Azienda Ospedaliera San Giovanni Battista, Corso Bramante 88, 10126 Turin (Italy)

    2006-06-07

    There is a growing interest in Gafchromic (registered) films for patient dosimetry in radiotherapy and in radiology. A new model (XR-QA) with high sensitivity to low dose was tested in this study. The response of the film to different x-ray beam energies (range 28-145 kVp with various filtrations, dose range 0-100 mGy) and to visible light was investigated, together with the after exposure darkening properties. Exposed films were digitized with a commercially available, optical flatbed scanner. A single functional form for dose versus net pixel value variation has been determined for all the obtained calibration curves, with a unique fit parameter different for each of the used x-ray beams. The film response was dependent on beam energy, with higher colour variations for the beams in the range 80-140 kVp. Different sources of uncertainties in dose measurements, governed by the digitalization process, the film response uniformity and the calibration curve fit procedure, have been considered. The overall one-sigma dose measurement uncertainty depended on the beam energy and decreased with increasing absorbed dose. For doses above 10 mGy and beam energies in the range 80-140 kVp the total uncertainty was less than 5%, whereas for the 28 kVp beam the total uncertainty at 10 mGy was about 10%. The post-exposure colour variation was not negligible in the first 24 h after the exposure, with a consequent increase in the calculated dose of about 10%. Results of the analysis of the sensitivity to visible light indicated that a short exposure of this film to ambient and scanner light during the measurements will not have a significant impact on the radiation dosimetry.

  7. Measurement of conversion coefficients between air Kerma and personal dose equivalent and backscatter factors for diagnostic X-ray beams; Determinacao experimental dos coeficientes de conversao de Kerma no ar para o equivalente de dose pessoal, Hp(d), e fatores de retroespalhamento em feixes de raios-x diagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, Paulo Henrique Goncalves

    2008-07-01

    Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm{sup 3} Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with {sup 133} Ba, {sup 241} Am and {sup 57} Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of

  8. Radiation doses from paediatric x-ray examinations in some hospitals in Khartoum Area

    International Nuclear Information System (INIS)

    Elshiekh, E.H.A.

    2007-10-01

    The aim of study was to evaluate the entrance surface doses (ESDs) and the effective dose (ED) to patients undergoing some common diagnostic x-ray examinations in large paediatric public hospitals in Khartoum State. ESD per examination was estimated from x-ray tube parameters in three hospitals comprising three units and sample of 449 radiographs. The entrance surface dose (ESD) and the effective dose (ED) were evaluated for chest, skull, abdomen, lumbar spine, and pelvis in antero-posterior (AP), postero-anterior (PA) and lateral (LAT) projections. For each examination, four age groups 0-1, 1-5, 5-10 and 10-15 years were studied. The DoseCal software was used to calculate these doses. In comparison between Sudanese hospitals with NRPB reference levels, all hospitals showed lower doses than reference levels except for the case of chest in A. Gasim and Khartoum hospitals. Wide variations for the chest examination have been detected. These variation were evident, in Sudan, from previous work. ESDs at Omdurman Hospital meet the reference levels for all years range. ESDs at Omdurman hospital were found to be 41μGy and 62 μGy for range 0-1 year, and 1-5 years, respectively, ESDs at A. Gasim Hospital was found found to be 65 μGy and 100 μGy for range 0-1 year, and 1-5 years, respectively. These values are above NRPB reference levels but lower than CEC1996 reference levels, and meet NRPB reference dose levels in range 5-10 years. In Khartoum Hospital the results present higher ESD than NRPB and CEC reference levels. The high ESDs reflect that ALARA principle is not being applied in chest examinations in Sudan. From comparison between results in this work with previous performed for chest cases in these Sudanese Hospitals at 2004, the ESDs in A. Gasim Hospital were above the previous result but meet the reference levels only range 5-10 years. Omdurman Hospital result but meet the reference levels for all years ranges and are lower than 2002 results. Khartoum Hospital

  9. Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids

    Science.gov (United States)

    Verwohlt, Jan; Reiser, Mario; Randolph, Lisa; Matic, Aleksandar; Medina, Luis Aguilera; Madsen, Anders; Sprung, Michael; Zozulya, Alexey; Gutt, Christian

    2018-04-01

    X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7 ×10-3 per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below TG . We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG .

  10. Measurement and Analysis of Output Radiation Dose on X-Ray Device over 10 Years at Hospitals in Medan City

    Directory of Open Access Journals (Sweden)

    Herty Afrina Sianturi

    2018-01-01

    Adhikari, Suraj Raj. 2012. Effect And Application      Of Ionization Radiation (X-Ray In Living  Organism. Kaski: Volume 3.The Himalaya  Physics. Badan Pengawas Tenaga Nuklir, Peraturan Kepala BAPETEN No. 8 Tahun 2011  tentang Keselamatan Radiasi dalam Penggunaan Pesawat Sinar-X Radiologi Diagnostik dan Intervensional, 2011. BAPETEN, 1999, Surat Keputusan Kepala Bapeten nomor 01/Ka-Bapeten/V-99 tentang Kesehatan terhadap radiasi pengion, Jakarta BATAN, 2005, Disain Penahan Ruang Sinar – X, Pusdiklat, BATAN, Jakarta Bushong, Steward C. 2013. Radologic Science for Technologists. 10th edition.United State of  America : CV. Mosby Company. Kramer, H. M., dan Selbach, H. J. 2008. Extension of the Range of Definition of the Practical Peak Voltage up to 300 kV. The British Journal of  Radiologhy (81:693-698. Rassad, S. dkk, Radiologi Diagnostik, Fakultas Kedokteran Universitas Indonesia Rumah Sakit Dr Cipto Mangunkusumo, Jakarta (2000. Suryanto, Sigit Bachtiar. 2011. Analisis Pembentukan Gambar Dan Batas Toleransi Uji Kesesuaian Pada Pesawat Sinar-X Diagnostik. Prosiding Seminar Penelitian Dan Pengelolaan Perangkat Nuklir. Trikasjono, T. dkk. 2009. Analisis Keselamatan Pesawat Sinar-X di Instalasi Radiologi Rumah Sakit Umum daerah Sleman Yogyakarta. Prosiding Seminar Nasional Sains dan Teknologi Nuklir PTNBR – BATAN. Vassileva, J. 2004. A Phantom for Dose Image Quality Optimization in Chest Radiography. The British Journal of Radiologhy 75:837-842. Wadianto, Azis Muslim. 2017. Uji Akurasi Tegangan Tinggi Alat Rontgen Radiography Mobile. INOVASI, Volume XIX Nomor 1,Januari 2017

  11. Routine chest X-ray in the allergy clinic

    International Nuclear Information System (INIS)

    Garcia-Barredo, M.R.; Usamentiaga, E.; Fidalgo, I.

    1997-01-01

    To determine whether routine chest X-ray is indicated in allergy patients when there is no evidence of cardiopulmonary involvement. A retrospective study to analyze the indications and radiologic findings in 515 consecutive patients who underwent chest X-ray: Positive findings were considered to be any radiological sing that led to the performance of additional diagnostic measures or a change in the therapeutic management of the patient. Positive radiologic findings were observed in 39 cases (7.59%). Only two patients (0.38%) were diagnosed as having diseases that were susceptible to proper treatment. In one of them (0.19%), the failure to perform chest X-ray would have impeded the introduction of proper treatment. We do not recommend carrying out routine chest X-ray in this patient population. (Author) 7 refs

  12. A study of gonad doses in X-ray radiographic examinations of the abdomen

    International Nuclear Information System (INIS)

    Brown, L.D.

    1980-01-01

    A phantom study has been made in an attempt to redetermine gonad dose associated with routine X-ray diagnostic procedures. Over a range of voltages between 60 kVp and 130 kVp, TLD measurements of skin, ovary, a standardised cassette dose of 1 mrad, and testicle doses were obtained for AP, PA and lateral radiographs. Whilst exact numerical results depended greatly on the characteristics of the film-screen combination used, the contrast required in the final radiograph and the efficiency of the Bucky grid, results of this redetermination did not support the view that a reduction in population genetic dose would follow any general increase in the typical operating potential used for abdominal x-ray examinations. (U.K.)

  13. Excess Cancer Risk Assessment from Some Common X-Ray Examinations in Sabzevar County

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2011-09-01

    Full Text Available Introduction: Nowadays ionizing radiation has a considerable contribution in medical diagnostic and treatment. Using ionizing radiation is increasing rapidly, so biological effects of ionizing radiation should be considered more. X-rays in the range of diagnostic radiology have hazardous effects and risks that are defined as random effects. These effects obey the LNT hypothesis that occur at low doses and include many types of cancer and genetic mutations. So it is very important to assess the risk of exposure in medical examinations. Cancer is one of these hazardous risks caused by low dose ionizing radiation that may occur during life after exposure. According to BEAR 7, low dose radiation is defined as radiation that produces doses near zero up to 100 mSv. Materials and Methods: This work was carried out in eight radiology centers in the Sabzevar county of Iran for 485 patients in eight typical x-ray examinations chosen for the study: chest PA, chest AP, lumbar spine AP, lumbar spine LAT, pelvis AP, abdomen AP, skull AP and Lat. In order to estimate the excess cancer risk, we need to obtain collective effective dose caused by radiation in the study population. Usually effective dose offers precise assessment of radiography examination injuries in adult patients. In this study, we used the PCXMC Monte Carlo based software to obtain effective dose and organ dose. This software calculates organ and effective dose following input of patient and radiographic conditions. Results: Average patient weight and height, entrance surface dose, parameters used for each type of examination, and DAP values were entered. Effective dose, collective effective dose, number of radiographs per year and the excess cancer risk arising from these radiographic examinations were then calculated.  Discussion and Conclusion: Excess risk of fatal cancer due to x-ray examinations in the study population was calculated by collective effective dose. This risk in the

  14. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  15. Radiochromic film for dosimetric measurements in radiation shielding composites synthesized for applied in radiology procedures of high dose

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C. C. P. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Baptista N, A. T.; Faria, L. O., E-mail: crissia@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: Medical radiology offers great benefit to patients. However, although specifics procedures of high dose, as fluoroscopy, Interventional Radiology, Computed Tomography (CT) make up a small percent of the imaging procedures, they contribute to significantly increase dose to population. The patients may suffer tissue damage. The probability of deterministic effects incidence depends on the type of procedure performed, exposure time, and the amount of applied dose at the irradiated area. Calibrated radiochromic films can identify size and distribution of the radiated fields and measure intensities of doses. Radiochromic films are sensitive for doses ranging from 0.1 to 20 c Gy and they have the same response for X-rays effective energies ranging from 20 to 100 keV. New radiation attenuators materials have been widely investigated resulting in dose reduction entrance skin dose. In this work, Bi{sub 2}O{sub 3} and ZrO{sub 2}:8 % Y{sub 2}O{sub 3} composites were obtained by mixing them with P(VDF-Tr Fe) copolymers matrix from casting method and then characterized by Ftir. Dosimetric measurements were obtained with Xr-Q A2 Gafchromic radiochromic films. In this setup, one radiochromic film is directly exposed to the X-rays beam and another one measures the attenuated beam were exposed to an absorbed dose of 10 mGy of RQR5 beam quality (70 kV X-ray beam). Under the same conditions, irradiated Xr-Q A2 films were stored and scanned measurement in order to obtain a more reliable result. The attenuation factors, evaluated by Xr-Q A2 radiochromic films, indicate that both composites are good candidates for use as patient radiation shielding in high dose medical procedures. (Author)

  16. The role of the dose-area product in the determination of doses to patients in diagnostic radiology. Experiences and current understanding

    International Nuclear Information System (INIS)

    Maier, W.

    1995-01-01

    Described are systems and procedures developed to assess the radiation exposure of patients. They may at the same time be used to reduce the doses to patients undergoing radiological examinations. As the digitalization of state-of-the-art X-ray equipments permits the technical data of any radiographic procedure to be retrieved, it is requested that these are fed into appropriate data systems so that information about any inadequate strategies or technical misfunctions would be available in due course. This request implies the general requirement of an automatic documentation of data relevant to radiological protection. (orig.) [de

  17. Paediatric x-ray radiation dose reduction and image quality analysis.

    Science.gov (United States)

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  18. Paediatric x-ray radiation dose reduction and image quality analysis

    International Nuclear Information System (INIS)

    Martin, L; Ruddlesden, R; Mistry, T; Starritt, H; Makepeace, C; Robinson, L

    2013-01-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%–55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children. (paper)

  19. Dose distribution at junctional area abutting X-ray and electron fields

    International Nuclear Information System (INIS)

    Yang, Kwang Mo

    2004-01-01

    For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1 Gy) were exposes to 8 cm depth and surface(SSD 100 cm) of phantom. The dose distribution to the junction line between photon(10 x 10 cm field with block) and electron(15 cm x 15 cm field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  20. Intraoral radiology in general dental practices. A comparison of digital and film-based X-ray systems with regard to radiation protection and dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anissi, H.D. [Ulm Univ. (Germany). Dentistry; Geibel, M.A. [Ulm Univ. (Germany). Dept. of Dentomaxillofacial Surgery

    2014-08-15

    Purpose: The purpose of this study was to gain insight into the distribution and application of digital intraoral radiographic techniques within general dental practices and to compare these with film-based systems in terms of patient dose reduction. Materials and Methods: 1100 questionnaires were handed out to general dental practitioners. Data was analyzed with respect to the type of system by using descriptive statistics and nonparametric tests, i.e. Kruskal-Wallis, Mann-Whitney and chi-square test (SPSS 20). Results: 64% of the questioned dentists still use film-based radiology, 23% utilize storage phosphor plate (SPP) systems and 13% use a charge-coupled device (CCD). A strong correlation between the number of dentists working in a practice and the use of digital dental imaging was observed. Almost 3/4 of the film users work with E- or F-speed film. 45% of them refuse to change to a digital system. The use of lead aprons was popular, while only a minority preferred thyroid shields and rectangular collimators. A fourfold reduction of exposure time from D-speed film to CCD systems was observed. Due to detector size and positioning errors, users of CCD systems take significantly more single-tooth radiographs in total. Considering the number of radiographs per patient, there is only a slight tendency towards more X-rays with CCD systems. Up to image generation, digital systems seem to be as or even more difficult to handle than film-based systems, while their handling was favored after radiographic exposure. Conclusion: Despite a slight increase of radiographs taken with CCD systems, there is a significant dosage reduction. Corresponding to the decrease in exposure time, the patient dose for SPP systems is reduced to one half compared to film. The main issues in CCD technology are positioning errors and the size of the X-ray detectors which are difficult to eliminate. The usage of radiation protection measures still needs to be improved. (orig.)

  1. Intraoral radiology in general dental practices. A comparison of digital and film-based X-ray systems with regard to radiation protection and dose reduction

    International Nuclear Information System (INIS)

    Anissi, H.D.; Geibel, M.A.

    2014-01-01

    Purpose: The purpose of this study was to gain insight into the distribution and application of digital intraoral radiographic techniques within general dental practices and to compare these with film-based systems in terms of patient dose reduction. Materials and Methods: 1100 questionnaires were handed out to general dental practitioners. Data was analyzed with respect to the type of system by using descriptive statistics and nonparametric tests, i.e. Kruskal-Wallis, Mann-Whitney and chi-square test (SPSS 20). Results: 64% of the questioned dentists still use film-based radiology, 23% utilize storage phosphor plate (SPP) systems and 13% use a charge-coupled device (CCD). A strong correlation between the number of dentists working in a practice and the use of digital dental imaging was observed. Almost 3/4 of the film users work with E- or F-speed film. 45% of them refuse to change to a digital system. The use of lead aprons was popular, while only a minority preferred thyroid shields and rectangular collimators. A fourfold reduction of exposure time from D-speed film to CCD systems was observed. Due to detector size and positioning errors, users of CCD systems take significantly more single-tooth radiographs in total. Considering the number of radiographs per patient, there is only a slight tendency towards more X-rays with CCD systems. Up to image generation, digital systems seem to be as or even more difficult to handle than film-based systems, while their handling was favored after radiographic exposure. Conclusion: Despite a slight increase of radiographs taken with CCD systems, there is a significant dosage reduction. Corresponding to the decrease in exposure time, the patient dose for SPP systems is reduced to one half compared to film. The main issues in CCD technology are positioning errors and the size of the X-ray detectors which are difficult to eliminate. The usage of radiation protection measures still needs to be improved. (orig.)

  2. Determination of conversion factors of kerma and fluence to ambient dose equivalent for X-rays generated between 50 kV{sub p} to 125 kV{sub p}; Determinacao dos fatores de conversao de kerma no ar e de fluencia para o equivalente de dose ambiental para raios-X gerados no intervalo de 50 kV{sub p} a 125 kV{sub p}

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Maria do Socorro

    1997-12-31

    The ambient dose equivalent was determined experimentally on the interval of energy of X ray applied in diagnostic radiology. A PMMA sphere was used to simulate the trunk human (phantom), based on the definition of the report ICRU 39. The absorbed dose in different positions in the phantom was determined using LiF-TLD 100. The X ray spectra were measured with a high-purity germanium detector (HP Ge). It was also determined the HVL and the effective energy in this energy range. The conversion coefficient of the K{sub air} and {Phi} to H{sup *}(d) were determined to 10, 50 and 60 mm deep in the PMMA sphere. The obtained values were compared with data of the literature. The maximum uncertainty obtained for the coefficients was 7.2%. All parameters were also determined to the X ray quality of the incident and transmitted beam by the patient, according to the recommendation of the standard DIN 6872. The conversion factor was calculated for those situations where the X-ray beam is transmitted by a layer and Pb and it is necessary to estimate the effective dose, as in the case of shielding project of radiology diagnosis room. (author) 51 refs., 35 figs., 15 tabs.

  3. Determination of conversion factors of kerma and fluence to ambient dose equivalent for X-rays generated between 50 kV{sub p} to 125 kV{sub p}; Determinacao dos fatores de conversao de kerma no ar e de fluencia para o equivalente de dose ambiental para raios-X gerados no intervalo de 50 kV{sub p} a 125 kV{sub p}

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Maria do Socorro

    1998-12-31

    The ambient dose equivalent was determined experimentally on the interval of energy of X ray applied in diagnostic radiology. A PMMA sphere was used to simulate the trunk human (phantom), based on the definition of the report ICRU 39. The absorbed dose in different positions in the phantom was determined using LiF-TLD 100. The X ray spectra were measured with a high-purity germanium detector (HP Ge). It was also determined the HVL and the effective energy in this energy range. The conversion coefficient of the K{sub air} and {Phi} to H{sup *}(d) were determined to 10, 50 and 60 mm deep in the PMMA sphere. The obtained values were compared with data of the literature. The maximum uncertainty obtained for the coefficients was 7.2%. All parameters were also determined to the X ray quality of the incident and transmitted beam by the patient, according to the recommendation of the standard DIN 6872. The conversion factor was calculated for those situations where the X-ray beam is transmitted by a layer and Pb and it is necessary to estimate the effective dose, as in the case of shielding project of radiology diagnosis room. (author) 51 refs., 35 figs., 15 tabs.

  4. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  5. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.

    1977-01-01

    The purpose of the study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which used Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input (i.e., the source routine) to the modified Monte Carlo codes which were used to calculate organ doses in children. Experimental work included the fabrication of child phantoms to match the existing mathematical models. These phantoms were constructed of molded lucite shells filled with differing materials to simulate lung, skeletal, and soft-tissue regions. The skeleton regions of phantoms offered the opportunity to perform meaningful measurements of absorbed dose to bone marrow and bone. Thirteen to fourteen sites in various bones of the skeleton were chosen for placement of TLDs. These sites represented important regions in which active bone marrow is located. Sixteen typical radiographic examinations were performed representing common pediatric diagnostic procedures. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms. For selected radiological exposures, the risk factors of leukemia, thyroid cancer, and genetic death are estimated for one-year- and five-year-old children

  6. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  7. The impact of diagnostic reference levels on patient doses from X-ray examinations

    International Nuclear Information System (INIS)

    Leitz, W.; Almen, A.

    2008-01-01

    The aim of this study was to evaluate the effect of diagnostic reference levels (DRL). For this study patient doses for the years 1999 and 2006 were available. Patient doses on a national level for eleven specified X-ray examinations were assessed. For the conventional examinations DRL have been used after the first survey in 1999, for computed tomography no DRL were used and for mammography DRL have been used for more than 20 years. Whereas the patient doses for conventional examinations were 30% lower in 2006 compared to 1999 the doses remained essentially the same for computed tomography and mammography. The widths of the dose distributions had only slightly decreased for conventional examinations and remained the same for computed tomography and mammography. This study has shown that after implementation of DRL a considerable dose reduction can be expected. Practices exceeding DRL will perform remedial actions with the aim to reduce dose, as demonstrated for the conventional examinations. Despite the fact that practices for computed tomography could compare doses with others practices, in the absence of DRL no actions to reduce doses were performed. The margin for further dose reductions in mammography is small due to the long term use of DRL. The impact of DRL on patient doses is changing with time. When introduced large dose reductions can be expected. After long term use DRL will counteract the introduction of new technique with unjustified high patient doses. Despite the merits in terms of dose saving it must be recognized that DRL has its limits - it has to be amended with other radiological protection activities. Other means and measures have to be developed, for example by the authorities, in order to ensure that optimisation is continued even when the patient doses are below the DRL. (author)

  8. Relationship between mutation frequency of GPA locus and cumulative dose among medical diagnostic X-ray workers

    International Nuclear Information System (INIS)

    Wang Jixian; Yu Wenru; Li Benxiao; Fan Tiqiang; Li Zhen; Gao Zhiwei; Chen Zhenjun; Zhao Yongcheng

    2000-01-01

    Objective: To explore the feasibility of using GPA locus mutation assay as a bio-dosimeter for occupational exposure to ionizing radiation. Methods: An improved technique of GPA locus mutation assay was used in th study. The frequencies of mutant RBC in peripheral blood of 55 medical X-ray workers and 50 controls employed in different calendar-year periods were detected. The relationship between mutation frequencies (MFs) and period of entry, working years and cumulative doses were analyzed. Results: The MFs were significantly elevated among X-ray workers employed before 1970. This finding is similar to the result of cancer epidemiological study among medical X-ray workers , in which the cancer risk was significantly increased only X-ray workers employed before 1970. The MFs of GPA increased with increasing cumulative dose. The dose-effect relationship of Nφ MF with cumulative dose was closer than that of NN MF. Conclusion: There are many problems to be solved for using GPA MF assay as a bio-dosimeter such as individual variation, specificity and calibration curve of dose-effect relationship

  9. 120 YEARS SINCE THE DISCOVERY OF X-RAYS.

    Science.gov (United States)

    Babic, Rade R; Stankovic Babic, Gordana; Babic, Strahinja R; Babic, Nevena R

    2016-09-01

    This paper is intended to celebrate the 120th anniversary of the discovery of X-rays. X-rays (Roentgen-rays) were discovered on the 8th ofNovember, 1895 by the German physicist Wilhelm Conrad Roentgen. Fifty days after the discovery of X-ray, on December 28, 1895. Wilhelm Conrad Roentgen published a paper about the discovery of X-rays - "On a new kind of rays" (Wilhelm Conrad Roentgen: Ober eine neue Art von Strahlen. In: Sitzungsberichte der Wurzburger Physik.-Medic.- Gesellschaft. 1895.). Therefore, the date of 28th ofDecember, 1895 was taken as the date of X-rays discovery. This paper describes the work of Wilhelm Conrad Roentgen, Nikola Tesla, Mihajlo Pupin and Maria Sklodowska-Curie about the nature of X-rays . The fantastic four - Wilhelm Conrad Roentgen, NikolaTesla, Mihajlo ldvorski Pupin and Maria Sklodowska-Curie set the foundation of radiology with their discovery and study of X-rays. Five years after the discovery of X-rays, in 1900, Dr Avram Vinaver had the first X-ray machine installed in abac, in Serbia at the time when many developed countries did not have an X-ray machine and thus set the foundation of radiology in Serbia.

  10. Assessment of dose to patients undergoing computed radiography and film screen x-ray examinations in some Khartoum Hospitals

    International Nuclear Information System (INIS)

    Mohamed Khair, Haiffa Daffa Allah Mustafa

    2015-12-01

    Medical ionizing radiation sources give by far the largest contribution to the population dose from man made sources and most of the contribution comes from diagnostic x-rays. The optimization principle of radiation protection requires the minimization of radiation dose to patients while acquiring diagnostic quality images in radiology. In radiography, the extent of patient dose reduction is limited by the characteristics of the system used and the quality (or penetrating ability) of the x-ray beam. In this study, the entrance surface air kerma doses (ESA Ks) to patients undergoing 7 selected x-ray examinations were estimated. The study was conducted in eight hospitals in Khartoum State, comprising nine x-ray units and a total of 1200 patients were involved. Four of the hospitals involved in this study use computed radiography (CR) technology while the other four use film screen (FS) technology. The selected examinations were, abdomen (AP), chest (PA), pelvis (AP), skull (AP/PA), skull (LAT), thoracic spine (AP) and thoracic spine (LAT). The entrance surface air kerma was calculated by two methods, utilizing software CAL Dose X-3.5 and a mathematical model. Average ESAK values calculated using the two methods for hospitals using (CR) technology in mGy were 2.99 and 2.98, 0.34 and 0.31, 2.79 and 2.58, 0.76 and 0.71, 0.94 and 0.79, 3.4 and 3,2 and 5.9 and 5.03, for the above mentioned selected investigations respectively. And average ESAK values calculated using two methods for hospital using FS technology in mGy were found 4.98 and 4.19, 0.37 and 0.34, 4.15 and 3.95, 2.2 and 2. 1.3 and 1.1, 3.9 and 3.9, 9.4 and 8.3 for the above mentioned selected investigations respectively. Average ESAK values obtained by two methods for FS were higher values than the obtained by CR by 37 and 29%, 50 and 25%, 8%, 32 and 34%, 65 and 64%, 27 and 28%, 12% and 73% and 39% for the above mentioned selected investigations, respectively. This shows that CR technique allows diagnostically

  11. Experimental determination of blurring in x-ray fluoroscopy last image hold due to patient movement and its repercussion to patient doses

    International Nuclear Information System (INIS)

    Guibelalde, E.; Gonzalez, L.; Vano, E.; Fernandez, J.M.; Alberdi, J.; Molinero, A.

    2001-01-01

    Significant dose reduction can be achieved in fluoroscopy and interventional radiology by using the last image hold (LIH). This feature in modern digital fluoroscopy x-ray units usually works with frame or temporal averaging techniques to reduce noise. This image quality works quite well for objects without motion but it could be a serious limitation in presence of motion blur. With an in-house developed robotic device, the authors have experimentally determined the image quality degradation introduced by normal physiological movements (i.e., respiratory and cardiac pulse movements). FAXIL test objects TO.10 and 18FG from Leeds University have been used for spatial resolution limit and threshold contrast detail detectability. Seven X-ray equipment with last image hold features from three different manufacturers were analysed. Although results show that motion blur affects LIH to different extends depending on equipment, magnification, entrance dose and detail size, it can be estimated that, on average for all equipment and analysed conditions, it represents 30% degradation in image quality parameters in comparison with static images. (author)

  12. Radiation doses to patients from x-ray examinations - development from 2005 to 2008

    International Nuclear Information System (INIS)

    Leitz, Wolfram; Almen, Anja

    2010-04-01

    Data has been compiled and analyzed and compared with the earlier reports. Radiation doses were tested for possible links with various parameters (eg type of x-ray equipment, image recording systems, different technique factors). In conventional x-ray examinations radiation doses were, for equipment with direct digital image receivers, in average 30% lower than for those with photo plates. Mammography doses were, with one exception, the same for all types of equipment and video receivers. The CT-examinations had a small trend for higher doses for new equipment as compared to earlier. Use of exposure automation did not affect radiation doses. Compared with 2006, the doses of conventional surveys decreased by an average of 21%. One third of this dose reduction can be attributed the introduction of direct digital system whose use grew by about 30%. Most of the dose reduction can be attributed to the actions carried out to lower the dose of the reference level. Doses for the CT scan showed only a weak downwards trend. Mammography Doses decreased by an average of just over 10% a large part dependent on increased number of Sectra equipment. The system of diagnostic reference levels have again shown to have positive influence on the radiation level at the x-ray examinations, this is most pronounced for conventional radiography. There is still a large potential for dose reduction, and a measure to achieve this is to reduce the current reference levels. Very few diagnostic Standard doses are higher than the reference level. A reduction of the reference levels corresponding to the third quartile of dose distribution could lead further dose decrease of 10-20%. The corresponding reduction in dose should be done also for the DT and mammograms when lowering the reference level, there are few standard doses higher than the current reference levels

  13. Differential dose albedo for high-energy X-rays on concrete slab

    International Nuclear Information System (INIS)

    Kato, Hideki

    2006-01-01

    We computed the differential dose albedo (α D ) for high-energy X-rays on a concrete slab when the incident angle, reflection angle, and azimuth angle were changed, by means of Monte Carlo simulation. We found that α D changed with incident, reflection, and azimuth angles to the concrete slab. On the whole, the larger the incident angle, the larger α D tended to become. If the incident angle and reflection angle were the same, the larger the azimuth angle, the smaller α D tended to become. When the incident, reflection, and azimuth angles were the same, the smaller the X-ray energy was, the larger α D became, in the order of 10 MV, 6 MV, and 4 MV X-rays. (author)

  14. NIKOLA TESLA AND THE X-RAY

    OpenAIRE

    Rade R. Babic

    2005-01-01

    After professor Wilhelm Konrad Röntgen published his study of an x-ray discovery (Academy Bulletin, Berlin, 08. 11. 1895.), Nikola Tesla published his first study of an x-ray on the 11th of March in 1896. (X-ray, Electrical Review). Until the 11th of August in 1897 he had published ten studies on this subject. All Tesla,s x-ray studies were experimental, which is specific to his work. Studying the nature of the x-ray, he established a new medical branch-radiology. He wrote:” There’s no doubt...

  15. The Role of Human Factor in Radiation Protection of Children During Chest X Ray Examination

    International Nuclear Information System (INIS)

    Beck, N.; Knezevic, Z.; Miljanic, S.; Ranogajec-Komor, M.; Milkovic, Dj.

    2011-01-01

    Radiation protection depends on many factors. Our study deals with the human factor, the radiology technicians' routine work. If all technical malfunctions are excluded they are responsible for the patient dose. Depending on their education and experience, technicians perform X ray examinations with various end results: image quality, entrance surface dose, patient interaction etc. In hospital setting we have consecutively chosen the study group of 20 children that had a clinical indication for a chest X ray examination (standard PA radiogram), for each of three technicians working at the radiology ward. A Shimadzu X ray machine was used in all cases. 60 children were from 6 to 12 years old and all parents were informed about the aim and the experimental details of the study. All of them gave their informed consent. Radiophotoluminescent (RPL) and thermoluminescent (TLD) dosimeters were applied at the entrance of the beam in the center of the X ray field to measure the entrance surface dose (ESD). Three differently experienced technicians were unaware of the objective of the study. Parameters that were noted were the kV, mAs and the size of the radiation field. The results show a good correlation in ESD between two technicians. Doses were significantly higher for the third one. After the results were known, protocols were designed and after educational interference, we continued to measure ESD again on a group of 40 children. The doses were reduced and there was a good correlation between all three technicians. With this work we want to clarify and show the importance of continuous education and good teamwork for dose reduction. In a sequel study, with the same three technicians, we hope to have results that would show a better dose reduction. (author)

  16. Estimation of the population dose from medical X-ray diagnostic examination in Shandong province, China

    International Nuclear Information System (INIS)

    Su Xieming

    1985-01-01

    The exposure doses on the examinated body surface for verious types of X-ray diagnostic examanition in Shandong Province were surveyed. The collective effective dose equivalent in per million population were calculated with the measured results, the ratios of orga absorbed doses to irradiated surface exposure doses and the frequencies of X-ray examination in Shandong Province. The result was 326 man.Sv per million total population in 1980, of which chest fluoroscopies. lumbar spine radiographies and G.I. examination were estimated to be about 78, 9 and 5 precent, respectively

  17. Monte Carlo method for dose calculation due to oral X-rays

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    1998-06-01

    The increasing utilization of oral X-rays, especially in youngsters and children, calls for the assessment of equivalent doses in their organs and tissues. With this purpose, a Monte Carlo code was adapted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM.FOR developed at the GSF-Germany) and the adapted program (MCDRO.PAS). Good agreement between results obtained with both codes was observed. Irradiations of the incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone narrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the larger the field area, the higher the dose in assessed organs and tissues. The variation of the source-skin distance does not change the conversion coefficients. On the other hand, the increase in the voltage applied to the X-ray tube causes an increase in the calculated conversion coefficients. (author)

  18. Assessment of Brain absorbed X-ray dose during CT- Scan using ImPACT software in Tehran Univeristy hospitals

    Directory of Open Access Journals (Sweden)

    Khalilpour M

    2009-07-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: CT scan was first introduced into clinical practice in 1972, and since then has grown into one of the predominant diagnostic procedures. In 1998, the UK National Radiological Protection Board reported that 20% of the national collective dose from medical X-ray examinations derived from CT-scans, although it represented only 2% of all X- ray examinations the aim of this study was to determine the X-ray dosage received by patients in brain CT scan."n"n Methods: In this work, we have estimated patient dose arising from CT examination of brain in five hospitals in Tehran. Organ and effective doses were estimated for 150 patients who underwent CT examination of brain. "ImPACT" version 0.99v was used to estimate organ and effective dose. Brain examinations were performed with fixed Kvp, mAs and T (slice thickness for each scanner. "n"n Results: Patients, who were scanned by CT of emam Khomeini center (Toshiba Xvision /EX Scanner, received maximum organ dose (brain and minimum organ dose was delivered to patients who were scanned by CT of amir alam center (Toshiba Xvision /EX Scanner. Maximum effective dose was 1.7 mSv acquired in this study for emam Khomeini haspital, smaller than

  19. Characterization of X-ray irradiator RS-2000; Caracterizacao do irradiador de raios X RS-2000

    Energy Technology Data Exchange (ETDEWEB)

    Mazaro, Sarah Jessica; Pavoni, Juliana Fernandes [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Departamento de Fisica; Silva, Maelson do Nascimento; Bianchini, Adriano L.B.; Amaral, Leonardo Lira do, E-mail: sarahmazaro@yahoo.com.br [Universidade de Sao Paulo (HC/FMRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Faculdade de Medicina. Servico de Radioterapia

    2014-04-15

    Gamma irradiators are being replaced by the x - rays ones which are more economical and have greater safety benefits compared to the radionuclide irradiators. Some tests are usually performed to ensure quality control while working with radiation, as constancy, linearity, repeatability, reproducibility, radiometric survey and security tests. Evaluating the technical parameters and the instrument and equipment performance quickly. The irradiator characterization determines its operation, by ensuring that the deposited dose is the one desired. This study aims to characterize x-rays irradiators through dosimetric tests. The equipment used in this study stable in dose rate free space and regularity for safety test. Furthermore, the measurements were reproducible with a maximum variation of 10% and the radiometric survey showed that the results are consistent with the exemption requirements of radiological protection described in regulatory position 3.01/001:2011. (author)

  20. The current contribution of diagnostic radiology to the population dose in Great Britain

    International Nuclear Information System (INIS)

    Wall, B.F.; Rae, S.; Kendall, G.M.; Darby, S.C.; Fischer, E.S.; Harries, S.V.

    1980-01-01

    The National Radiological Protection Board of the UK has just completed a national survey to determine the genetically significant dose (GSD) to the population of Great Britain from diagnostic radiology. A statistically selected sample of about 80 hospitals spread throughout England, Scotland and Wales has supplied information on the numbers of patients examined in their X-ray departments during a week in June 1977, together with details of age, sex and examination technique. This sample is sufficient to make a reliable estimate of the total diagnostic work-load in all National Health Service Hospitals throughout Great Britain for a year. Gonadal doses from 16 examination types that are likely to be the main contributors to the GSD have been measured on nearly 5000 patients at 20 hospitals throug'out the country using specially developed thermoluminescent dosemeters. These gonadal doses are combined with the examination frequency figures and current values for child expectancy derived from data supplied by tthe registrar general, to estimate the GSD. Those changes in practice which have occurred since the late 1950's which may have influenced the new value for the GSD are discussed, as well as the progress that has been made in estimating population somatic doses from diagnostic radiology using clinical measurements that are currently underway. (H.K.)

  1. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  2. Alkaline Comet Assay and Micronucleus Test Parameters in Children Exposed to Diagnostic X-Ray Examination

    International Nuclear Information System (INIS)

    Gajski, G.; Geric, M.; Garaj-Vrhovac, V.; Milkovic, Dj.; Beck, N.; Ranogajec-Komor, M.; Miljanic, S.; Knezevic, Z.

    2011-01-01

    Chest radiograms represent the basic radiological examination of thorax and are the most frequently performed radiological diagnostic procedure in the child population. Understanding the risks of low doses of radiation is an important aspect in the risk benefit analysis in paediatric populations. To provide the best care for the young patients the effects of radiation should be minimized thus chest X-rays must be performed by highest standards to ensure that the young patient has the lowest risk possible. Since children are the most sensitive to radiation, there is a need for follow up of the young populations that receive these X-ray diagnostic examinations. Follow up would be especially advisable for children that are at higher risk of radiation induced damage, for example children with a predisposition to DNA damage, or for children that are constantly exposed to numerous radiological examinations due to their illness. In that manner, present study was undertaken to evaluate application of different dosimetry systems in conjunction with alkaline comet assay and micronucleus test for the assessment of different types of DNA and chromosomal alterations in child population exposed to acute diagnostic X-rays examination. For that purpose doses were measured using thermoluminescence (TL) and radiophotoluminescent (RPL) dosimetry systems. The study demonstrated that immediately after exposure to diagnostic X-irradiation, mean percentage of DNA in tail of the comets, which is indirect measures of DNA damage, was significantly changed. The same was noticed for mean total number of micronuclei as well. It was shown that children with pulmonary diseases subjected to diagnostic procedure develop a significant increase in mean total number of each measured parameter which are the biomarkers of genetic damage for carcinogenesis, than prior to diagnostic procedure and that interindividual differences exist for each monitored child. Our results show that genetic damage arises

  3. Analysis of Dose and Dose Distribution for Patients Undergoing Selected X-Ray Diagnostic Procedures in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Schandorf, C.; Tetteh, G.K

    1998-07-01

    The levels of dose and dose distributions for adult patients undergoing five selected common types of X ray examination in Ghana were determined using thermoluminescence dosemeters (TLD) attached to the skin where the beam enters the patient. To assess the performance of each X ray room surveyed, the mean of the entrance surface dose for patients whose statistics were close to a standard patient (70 kg weight and 20 cm AP trunk thickness) were compared to the Commission of the European Communities guideline values for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP examinations. The third quartiles dose values were 1.3 mGy, 14.5 mGy, 12.0 mGy and 7.9 mGy for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP respectively. Analysis of the data show that 86%, 58%, 37.5% and 50% of radiographic rooms delivered a mean dose greater than the CEC guideline values for chest PA, lumbar spine AP, pelvis/abdomen and skull AP respectively. This suggests that radiographic departments should undertake a review of their radiographic practice in order to bring their doses to optimum levels. (author)

  4. Analysis of Dose and Dose Distribution for Patients Undergoing Selected X-Ray Diagnostic Procedures in Ghana

    International Nuclear Information System (INIS)

    Schandorf, C.; Tetteh, G.K.

    1998-01-01

    The levels of dose and dose distributions for adult patients undergoing five selected common types of X ray examination in Ghana were determined using thermoluminescence dosemeters (TLD) attached to the skin where the beam enters the patient. To assess the performance of each X ray room surveyed, the mean of the entrance surface dose for patients whose statistics were close to a standard patient (70 kg weight and 20 cm AP trunk thickness) were compared to the Commission of the European Communities guideline values for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP examinations. The third quartiles dose values were 1.3 mGy, 14.5 mGy, 12.0 mGy and 7.9 mGy for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP respectively. Analysis of the data show that 86%, 58%, 37.5% and 50% of radiographic rooms delivered a mean dose greater than the CEC guideline values for chest PA, lumbar spine AP, pelvis/abdomen and skull AP respectively. This suggests that radiographic departments should undertake a review of their radiographic practice in order to bring their doses to optimum levels. (author)

  5. Impact of thermoplastic mask on X-ray surface dose calculated with Monte Carlo code

    International Nuclear Information System (INIS)

    Zhao Yanqun; Li Jie; Wu Liping; Wang Pei; Lang Jinyi; Wu Dake; Xiao Mingyong

    2010-01-01

    Objective: To calculate the effects of thermoplastic mask on X-ray surface dose. Methods: The BEAMnrc Monte Carlo Code system, designed especially for computer simulation of radioactive sources, was performed to evaluate the effects of thermoplastic mask on X-ray surface dose.Thermoplastic mask came from our center with a material density of 1.12 g/cm 2 . The masks without holes, with holes size of 0.1 cm x 0.1 cm, and with holes size of 0. 1 cm x 0.2 cm, and masks with different depth (0.12 cm and 0.24 cm) were evaluated separately. For those with holes, the material width between adjacent holes was 0.1 cm. Virtual masks with a material density of 1.38 g/cm 3 without holes with two different depths were also evaluated. Results: Thermoplastic mask affected X-rays surface dose. When using a thermoplastic mask with the depth of 0.24 cm without holes, the surface dose was 74. 9% and 57.0% for those with the density of 1.38 g/cm 3 and 1.12 g/cm 3 respectively. When focusing on the masks with the density of 1.12 g/cm 3 , the surface dose was 41.2% for those with 0.12 cm depth without holes; 57.0% for those with 0. 24 cm depth without holes; 44.5% for those with 0.24 cm depth with holes size of 0.1 cm x 0.2 cm;and 54.1% for those with 0.24 cm depths with holes size of 0.1 cm x 0.1 cm.Conclusions: Using thermoplastic mask during the radiation increases patient surface dose. The severity is relative to the hole size and the depth of thermoplastic mask. The surface dose change should be considered in radiation planning to avoid severe skin reaction. (authors)

  6. Using thermoluminescence dosimetry (TLD) to determine the gonadal dose of patients under-going chest X-ray examinations at NKST hospital, Mkar

    International Nuclear Information System (INIS)

    Agba, E.H.; Akaagerger, N.B.; Kungur, S.T.

    2011-01-01

    The doses absorbed by the gonads of patients undergoing chest X-ray examinations at NKST Christian Hospital, Mkar was determined using the Thermoluminescence Dosimetry Technique of measurement. Also, the direct X-ray dose to the chest of patients undergoing the routine examinations was also determined using the Thermolumnescence Dosimetry technique of measurement. The mean gonadal dose and the X-ray dose to the patients were found to be 0.03±0.02μSv and 0.04±0.03mSv respectively after exposure. These X-ray doses to the patients is seen to be within the acceptable recommended X -ray dose limits of 1mGy recommended by ICRP.

  7. Estimation of population doses from diagnostic medical examinations in Japan, 1974. IV. Dose estimation of fetus exposed in utero to diagnostic x rays

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Maruyama, T; Kumamoto, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    1976-07-01

    In fetus exposed in utero to diagnostic x rays for the medical examinations of the mother, the absorbed dose has been estimated on the basis of a 1974 nation wide radiological survey. The results of the survey showed that the number of radiographs per year connected with pregnant women was 0.32 million for chest examination excluding mass surveys. 0.29 million for obstetrical examinations including pelvimetry, and 0.21 million for abdominal and pelvic examinations with a total of 0.82 million. The dose absorbed in the fetus was measured with an ionization chamber placed at the hypothetical center of the fetus in an ''average woman'' Rando phantom in which a maternal body was simulated by adding MixDp materials. ''The collective dose'' to the fetus in the pregnant women receiving a given type of examination was calculated from the number of radiographs per year connected with the pregnant women and the fetal doses. The percapita mean marrow dose (CMD), the leukemia significant dose (LSD) and the genetically significant dose (GSD) for the fetus were determined from the collective dose, taking into account the birth expectancy, the child expectancy, life expectancy and significant factor for the fetus. The collective dose to the fetus was estimated to be 9.3 x 10/sup 4/ man rad per year. The resultant values of CMD, LSD and GSD were 0.81 mrad per year, 0.79 mrad per person per year and 1.44 mrad per person per year, respectively.

  8. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-04-15

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 {mu}Gy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry.

  9. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    International Nuclear Information System (INIS)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H.

    2008-01-01

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 μGy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  12. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses

    International Nuclear Information System (INIS)

    Huda, Walter; Lieberman, Kristin A.; Chang, Jack; Roskopf, Marsha L.

    2004-01-01

    We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18x7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186±8 mm and 147±8 mm, respectively, with an average HU value of 209±40. An infant head was found to be equivalent to a water cylinder with a radius of ∼60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is ∼20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors

  13. Diagnostic x-ray equipment compliance and facility survey. Recommended procedures for equipment and facility testing

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has set out guidelines for the testing of diagnostic x-ray equipment and facilities. This guide provides information for the x-ray inspector, test engineer, technologist, medical physicist and any other person responsible for verifying the regulatory compliance or safety of diagnostic x-ray equipment and facilities. Diagnostic x-radiation is an essential part of present day medical practice. The largest contributor of irradiation to the general population comes from diagnostic x-radiation. Although individual irradiations are usually small, there is a concern of possible excess cancer risk when large populations are irradiated. Unnecessary irradiations to patients from radiological procedures can be significantly reduced with little or no decrease in the value of medical diagnostic information. This can be achieved by using well designed x-ray equipment which is installed, used and maintained by trained personnel, and by the adoption of standardized procedures. In general, when patient surface dose is reduced, there is a corresponding decrease in dose to x-ray equipment operators and other health care personnel. 2 tabs., 4 figs

  14. Diagnostic x-ray equipment compliance and facility survey. Recommended procedures for equipment and facility testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has set out guidelines for the testing of diagnostic x-ray equipment and facilities. This guide provides information for the x-ray inspector, test engineer, technologist, medical physicist and any other person responsible for verifying the regulatory compliance or safety of diagnostic x-ray equipment and facilities. Diagnostic x-radiation is an essential part of present day medical practice. The largest contributor of irradiation to the general population comes from diagnostic x-radiation. Although individual irradiations are usually small, there is a concern of possible excess cancer risk when large populations are irradiated. Unnecessary irradiations to patients from radiological procedures can be significantly reduced with little or no decrease in the value of medical diagnostic information. This can be achieved by using well designed x-ray equipment which is installed, used and maintained by trained personnel, and by the adoption of standardized procedures. In general, when patient surface dose is reduced, there is a corresponding decrease in dose to x-ray equipment operators and other health care personnel. 2 tabs., 4 figs.

  15. From quality control to quality systems in x-ray radiology. Step by step approach

    International Nuclear Information System (INIS)

    Gendrutis Morkunas; Julius Ziliukas

    2007-01-01

    Complete test of publication follows. Quality systems in x-ray radiology as in any area of medical exposure is an important tool of optimization of radiation protection. Creation of these systems is related with a number of problems: limited resources, lack of knowledge and experience, negative attitude of hospitals staff and administration, lack of advice from outside. Problems related with transitionary period might be softened by the step by step approach. The following steps might be indicated: providing information on quality systems to hospital staff and administration, simple quality control procedures done by outside experts in hospitals, preparation of quality related procedures by hospital staff, practical implementation of quality control procedures done by hospital staff, preparation of quality manual by hospital staff, its integration into common quality system of hospital (if it is available) and constant development, measurements of performance indicators (e.g., patients' doses) and introduction of corrective measures if necessary, dissemination of experience by expert organizations and more advanced hospitals. These steps are to be discussed in the presentations based on Lithuanian experience since 1998.

  16. X-Rays: MedlinePlus Health Topic

    Science.gov (United States)

    ... Radiological Society of North America) Also in Spanish Tracing the X-Ray Trail (American Society of Radiologic ... also links to health information from non-government Web sites. See our disclaimer about external links and ...

  17. Therapeutic abortion on account of x-ray examination during pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Hammer-Jacobsen, E

    1959-06-15

    Previous studies on radiation injury to the foetus are reviewed. Very little is known about possible injuries due to the small radiation doses in diagnostic radiology. Eleven pregnant women had one or more abdominal X-ray examinations during the first three months of pregnancy. Subsequently, 8 had therapeutic abortion, whereas 3 went to term. The case histories are reported. The calculated foetal doses range from 0.03 to 3.7 r (0.01-18.9). The author makes the following preliminary suggestions about irradiation during the first four months of pregnancy: Foetal doses below about one r do not indicate induction of abortion. Foetal doses between about one r and about ten r indicate therapeutic abortion only in the presence of additional indications. Foetal doses above about 10 r presumably always indicate abortion. One of the pregnancies that was carried to term ought to have been interrupted. Four of the induced abortions ought not to have been performed. X-ray examinations of the abdomen should not be performed during the first four months of pregnancy. In order to avoid irradiation in the early stages of pregnancy, the following routine precaution is suggested: In fertile women X-ray examination of the abdomen should be carried out only during the first ten days after a regular menstrual period of normal intensity and duration. (author)

  18. Therapeutic abortion on account of x-ray examination during pregnancy

    International Nuclear Information System (INIS)

    Hammer-Jacobsen, E.

    1959-06-01

    Previous studies on radiation injury to the foetus are reviewed. Very little is known about possible injuries due to the small radiation doses in diagnostic radiology. Eleven pregnant women had one or more abdominal X-ray examinations during the first three months of pregnancy. Subsequently, 8 had therapeutic abortion, whereas 3 went to term. The case histories are reported. The calculated foetal doses range from 0.03 to 3.7 r (0.01-18.9). The author makes the following preliminary suggestions about irradiation during the first four months of pregnancy: Foetal doses below about one r do not indicate induction of abortion. Foetal doses between about one r and about ten r indicate therapeutic abortion only in the presence of additional indications. Foetal doses above about 10 r presumably always indicate abortion. One of the pregnancies that was carried to term ought to have been interrupted. Four of the induced abortions ought not to have been performed. X-ray examinations of the abdomen should not be performed during the first four months of pregnancy. In order to avoid irradiation in the early stages of pregnancy, the following routine precaution is suggested: In fertile women X-ray examination of the abdomen should be carried out only during the first ten days after a regular menstrual period of normal intensity and duration. (author)

  19. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  20. Doses to patients from diagnostic radiology in Romania

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.

    2001-01-01

    Effective doses to over 2400 patients undergoing 20 of the most important types of X-ray examinations have been estimated from entrance surface doses or dose-area products, measured in 27 X-ray departments, and the appropriate conversion coefficients calculated by the NRPB for six mathematical phantoms representing 0, 1, 5, 10, 15 year old children and the adult. The patient-weighted mean effective dose from X-ray examinations performed annually in Romania is 1.32 mSv, with 1.40 mSv for the average adult patient and 0,59 mSv for the average paediatric patient. The corresponding annual collective effective dose is about 13,430 man Sv, with the main contribution belonging to adult patients (95%), the remainder of 5 percent - to paediatric patients. (author)

  1. Fractionated dose studies with X-rays and various alkylating agents in P388 mouse lymphoma cells

    International Nuclear Information System (INIS)

    Anderson, D.

    1981-01-01

    The fractionated dose technique has been used in P388F cells to examine the effects of X-rays and four alkylating agents on survival and induction of 5-iodo-2-deoxyuridine (IudR) resistant variants. Fractionation intervals up to 5 1/2 h were used for X-rays and for the alkylating agents up to 192 h. Fractionation of the X-ray dose resulted in a sparing effect for survival and variant induction. A sparing effect was also observed for survival after treatment with alkylating agents. However, variant frequencies were observed as large as or greater than those produced by the full doses of alkylating agents. For such agents this would suggest that survival and variant induction are independent events. Differences in the effects of X-rays and alkylating agents cannot be explained by differences in growth rate or the recovery of viability after treatment

  2. Fractionated dose studies with X-rays and various alkylating agents in P388 mouse lymphoma cells

    International Nuclear Information System (INIS)

    Anderson, D.

    1981-01-01

    The fractionated dose technique was used in P388F cells to examine the effects of X-rays and four alkylating agents on survival and induction of 5-iodo-2-deoxyuridine (IudR) resistant variants. Fractionation intervals up to 51/2 h were used for X-rays and for the alkylating agents up to 192 h. Fractionation of the X-ray dose resulted in a sparing effect for survival and variant induction. A sparing effect was also observed for survival after treatment with alkylating agents. However, variant frequencies were observed as large as or greater than those produced by the full doses of alkylating agents. For such agents this would suggest that survival and variant induction are independent events. Differences in the effects of X-rays and alkylating agents cannot be explained by differences in growth rate or the recovery of viability after treatment. (author)

  3. Impact of x-ray dose on the response of CR-39 to 1-5.5 MeV alphas

    International Nuclear Information System (INIS)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-01-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K α and K β x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula

  4. 21 CFR 892.1720 - Mobile x-ray system.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1720 Mobile x-ray system. (a) Identification. A mobile x-ray system is a transportable device system intended to be used to generate and control x-ray... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mobile x-ray system. 892.1720 Section 892.1720...

  5. Preliminary characterization of dose in personnel of interventional radiology; Caracterizacao preliminar da dose em profissionais de radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Godolfim, Laura Larre; Anes, Mauricio; Bacelar, Alexandre; Lykawka, Rochelle [Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS (Brazil)

    2016-07-01

    Exposure to X-rays of Interventional Radiology professionals (IR) impacts in the high dose rate received by these individuals, and there are reports of biological effects of this professional activity. Therefore, it is fomented greater control over the doses received by these workers. This research intends to characterize the doses received by the professionals during IR procedures. We evaluated the doses of radiologists, anesthesiologists and nursing staff of the Hospital de Clinicas de Porto Alegre, through measures with dosimeters of the OSL type, distributed in up to six regions of the body of these professionals. Until now were accompanied 33 cholangiography procedures and 29 embolization procedures. As a preliminary result, it was possible to identify a wide variation between doses of the professionals of the same function in each procedure. In overview, the dose of the professionals presented in descending order as a radiologist 1> radiologist 2 > anesthetist > nursing. (author)

  6. Cost Benefit Optimization of the Israeli Medical Diagnostic X-Ray Exposure

    International Nuclear Information System (INIS)

    Ben-Shlomo, A.; Shlesinger, T.; Shani, G.; Kushilevsky, A.

    1999-01-01

    Diagnostic and therapeutic radiology is playing a major role in modern medicine. A preliminary survey was carried out during 1997 on 3 major Israeli hospitals in order to assess the extent of exposure of the population to medical x-rays (1). The survey has found that the annual collective dose of the Israeli population to x-ray medical imaging procedures (excluding radio-therapy) is about 7,500 Man-Sv. The results of the survey were analyzed in order to. 1. Carry out a cost-benefit optimization procedure related to the means that should be used to reduce the exposure of the Israeli patients under x-ray procedures. 2. Establish a set of practical recommendations to reduce the x-ray radiation exposure of patients and to increase the image quality. . Establish a number of basic rules to be utilized by health policy makers in Israel. Based on the ICRP-60 linear model risk assessments (2), the extent of the annual risk arising A.om the 7,500 Man-Sv medical x-ray collective dose in Israel has been found to be the potential addition of 567 cancer cases per year, 244 of which to be fatal, and a potential additional birth of 3-4 children with severe genetic damage per year. This assessment take into account the differential risk and the collective dose according to the age distribution in the Israeli exposed population, and excludes patients with chronic diseases

  7. X-ray investigations in intensive care units

    Energy Technology Data Exchange (ETDEWEB)

    Pokieser, H.

    1981-10-01

    From special care following surgery and from arteficial respiration of polio patients the modern and very special intensive medical care has developed. At the same time the provisional bedside radiology was improved to one branch of clinical radiology with special organisation and methods of investigation. Importance and urgency of radiological information are requiring close cooperation of all medical branches. Functions of these different groups have to be defined. The movable X-ray apparatus of 20 kV output is necessary for every intensive care unit. Hard beam technique for lung X-rays, scattered radiation grids and adequate positioning of the patient are important to get the same high quality pictures than from the radiological department.

  8. X-ray investigations in intensive care units

    International Nuclear Information System (INIS)

    Pokieser, H.

    1981-01-01

    From special care following surgery and from arteficial respiration of polio patients the modern and very special intensive medical care has developed. At the same time the provisional bedside radiology was improved to one branch of clinical radiology with special organisation and methods of investigation. Importance and urgency of radiological information are requiring close cooperation of all medical branches. Functions of these different groups have to be defined. The movable X-ray apparatus of 20 kV output is necessary for every intensive care unit. Hard beam technique for lung X-rays, scattered radiation grids and adequate positioning of the patient are important to get the same high quality pictures than from the radiological department. (orig.) [de

  9. Dosimetry in thorax X-rays

    International Nuclear Information System (INIS)

    Pinedo S, A.; Hernandez O, M.; Duran M, H. A.; Gonzalez G, R.; Guerra M, J. A.; Salas L, M. A.; Vega C, H. R.; Rivera M, T.; Azorin N, J.

    2009-10-01

    The dose to the entrance of thorax during a radiological study has been measured in a phantom of paraffin and with thermoluminescent dosemeters. This work was realized in the living room 1 of the X-rays service of the General Hospital No. 1 IMSS in Zacatecas. For the study thermoluminescent dosemeters of CaSO 4 :Dy were used. The irradiation of the thoracic region is the more studied through the conventional radiology, method that continues occupying the first place as diagnostic in diverse pathologies due to generates images of the heart, lungs, spine, etc. As well as can to observe the location of subclavian catheters, nasogastric sound, endotracheal tubes and umbilical catheters. The magnitude of the dose that is received during the realization of this study type is not usually measured, since the main concern is to have a good image to make a good diagnostic. The measurements were carried out using parameters of the equipment that were defined with base to the experience of the technical radiologist. It was found that the irradiation field is not uniform and that in any point where the dose was measured it is not exceeded the 7 mGy settled by the Mexican Official Standard-157-SSA-1996 for a thorax study. (author)

  10. Entrance skin dose on patients undergoing X-ray examinations at ...

    African Journals Online (AJOL)

    survey was conducted on the Entrance Skin Dose (ESD) in patients undergoing X-ray examinations [Skull Postero-Anterior (PA), Skull Lateral (LAT), Chest Postero-Anterior (PA), Chest Lateral (LAT), Abdomen Antero-Posterior (AP) and Pelvis Antero-Posterior (AP)] in five hospitals/Xray centres in Yaba, Lagos State, Nigeria ...

  11. Stochastic risk estimation from medical x-ray diagnostic examinations, 2. Risk estimates of individuals from x-ray diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Maruyama, T; Noda, Y; Iwai, K; Tateno, Y [National Inst. of Radiological Sciences, Chiba (Japan); Nishizawa, K

    1981-01-01

    The risks of genetic, leukemia and malignant diseases from medical X-ray diagnostic examinations were estimated using the frequency of radiographic and fluoroscopic exposures per diagnostic examination, child expectancy, leukemia and malignancy significant factors, and using a weighting factor determined on the basis of data concerning the cancer mortality among atomic bomb survivors in Nagasaki and of a recommendation of International Commission of Radiological Protection. The organ or tissue doses with respect to the stochastic risks were determined with ionization chambers and thermoluminescent dosimeters placed at the positions of the organs or tissues in a RANDO woman phantom which was exposed to diagnostic X-rays according to technical factors of typical radiographic and fluoroscopic examinations obtained from a nationwide survey. The resultant risks by age-group and type of radiographic and fluoroscopic examination are tabulated in terms of risk level of 10/sup -6/. In general, the total risk defined as the sum of genetic, leukemia and malignant risks was a high value for the X-ray diagnosis of digestive organs involving barium meal and barium enema. For example, the total risk for young age-group was 100 to 200 x 10/sup -6/ for the X-ray diagnosis of digestive organs. The total risk from the chest radiography was lower value as compared with the risk from the X-ray diagnosis of other organs or tissues. On the contrary, the risk from the chest tomography was comparable to the risk from the diagnosis of digestive organs. The total risk decreased with increasing of age for every X-ray diagnostic examination.

  12. Low-dose X-ray CT reconstruction via dictionary learning.

    Science.gov (United States)

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  14. Dose reduction by x-ray beam filtration in screen-film radiography

    International Nuclear Information System (INIS)

    Koedooder, C.

    1986-01-01

    This thesis describes experimental and theoretical aspects of dose reduction by x-ray beam filtration in screen-film radiography. The thesis deals mainly with dose reduction under the constraint of constant image quality; an analytical approach is chosen. Therefore, part of the thesis deals with the development of an algorithm to calculate patient dose and exposure for different filter materials and different tube load conditions, under the constraint of constant contrast and constant optical density. (Auth.)

  15. Evaluation of build-up dose from 6 MV X-rays under pelvic and abdominal patient immobilisation devices

    Energy Technology Data Exchange (ETDEWEB)

    Cheung Tsang; Butson, M.J.Martin J. E-mail: mbutson@usa.netmbutson@guessmail.com; Yu, P.K.N

    2002-06-01

    The use of pelvic and abdominal immobilisation devices in radiotherapy is required for accurate positioning and repositioning of patients during their fractionated treatment delivered normally over a period of 5-6 weeks. 6 MV X-rays produced by a medical linear accelerator have a skin sparing effect whereby the skin dose delivered is considerably less than that received by the tumour. The treatment through a vacuum compressed immobilisation device (Vacbag) however increases the dose delivered to the skin by interactions of the X-rays within the Vacbag material. For example, the basal layer doses increased from 16% for an open field to 52% of maximum with a bag thickness of 2.5 cm for a 10 cmx10 cm field at 6 MV X-ray energy. At the same field size the dermal skin layer (1 mm depth) doses increased from 44% (no bag) to 60% for a bag thickness of 2.5 cm at 6 MV X-rays. The Vacbag should be placed outside the treatment field whenever possible to keep skin dose to a minimum level.

  16. Evaluation of build-up dose from 6 MV X-rays under pelvic and abdominal patient immobilisation devices

    International Nuclear Information System (INIS)

    Cheung Tsang; Butson, M.J.Martin J.; Yu, P.K.N.

    2002-01-01

    The use of pelvic and abdominal immobilisation devices in radiotherapy is required for accurate positioning and repositioning of patients during their fractionated treatment delivered normally over a period of 5-6 weeks. 6 MV X-rays produced by a medical linear accelerator have a skin sparing effect whereby the skin dose delivered is considerably less than that received by the tumour. The treatment through a vacuum compressed immobilisation device (Vacbag) however increases the dose delivered to the skin by interactions of the X-rays within the Vacbag material. For example, the basal layer doses increased from 16% for an open field to 52% of maximum with a bag thickness of 2.5 cm for a 10 cmx10 cm field at 6 MV X-ray energy. At the same field size the dermal skin layer (1 mm depth) doses increased from 44% (no bag) to 60% for a bag thickness of 2.5 cm at 6 MV X-rays. The Vacbag should be placed outside the treatment field whenever possible to keep skin dose to a minimum level

  17. Health risk assessment of doses to patients\\' eyes from dental X-ray ...

    African Journals Online (AJOL)

    The skin entry dose to patients\\' eyes during dental x-ray examination was carried out on one hundred and ten patients comprising infants and adult of both sexes. The dose measurements was performed at Alpha dental centre, Ibadan, using Lithium fluoride thermoluminiscent dosimeters (TLD). The results of the study ...

  18. The new X-ray ordinance: what's new?; Was bringt die neue Roentgenverordnung?

    Energy Technology Data Exchange (ETDEWEB)

    Reichow, H. [Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Bonn (Germany)

    2000-07-01

    The augmented requirements for the minimisation of the radiation dose in medical exposure and the experiences gained from the implementation of the ordinance in force call for more extensive measures for reducing radiation, for quality assurance and expertise in radiological protection. In future physicians, dentists, veterinarians and other people using X-rays will have to bring their necessary expert knowledge regarding radiological protection up to date at regular intervals, and prove that they have done so. To protect the public against radiation exposure from targeted use, the limit value of the effective dose is reduced to 1 mSv in the calendar year. The dose level for the protection of people professionally exposed to radiation is reduced to 20 mSv. The further development of information technology and digital imaging demands that appropriate framework conditions be laid down in response to the changing requirements for radiation protection such as those in telemedicine and in digital recording and documentation possibilities in radiology. The draft further clarifies the distinction between the Radiological Protection Ordinance and the X-Ray Ordinance in relation to accelerators, in which electrons are accelerated with the aim of producing ionizing radiation, and reduces the limit energy from 3 MeV to 1 MeV. It is discussed to remove the X-ray therapy from the X-ray Ordinance and to insert it into the Radiological Protection Ordinance, in order to conform to the higher protection requirements in X-ray therapy. (orig.) [German] Die erhoehten Anforderungen an die Minimierung der Strahlendosis bei medizinischer Exposition und die mit der Durchfuehrung der geltenden Verordnung gewonnenen Erfahrungen erfordern weiterreichende Massnahmen zur Strahlenreduktion, der Qualitaetssicherung und der Fachkunde im Strahlenschutz. Aerzte, Zahnaerzte, Tieraerzte und andere Roentgenstrahlung anwendende Personen muessen kuenftig die fuer den Strahlenschutz erforderliche

  19. Radiological protection in veterinary practice

    International Nuclear Information System (INIS)

    Konishi, Emiko; Tabara, Takashi; Kusama, Tomoko.

    1990-01-01

    To propose measures for radiological protection of veterinary workers in Japan, X-ray exposure of workers in typical conditions in veterinary clinics was assessed. Dose rates of useful beam and scattered radiation, worker exposure doses at different stations, and effectiveness of protective clothing were determined using TLD and ion chambers. As precausions against radiation, the following practices are important: (1) use of suitable and properly maintained X-ray equipment, (2) proper selection of safe working stations, (3) use of protective clothing. Regulations are necessary to restrict the use of X-rays in the veterinary field. Because the use of X-rays in the veterinary field is not currently controlled by law, the above precautions are essential for minimizing exposure of veterinary staff. (author)

  20. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    Yoshida, Yuri; Morita, Yasuhiko; Honda, Eiichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2008-01-01

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  1. A compliance testing program for diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Hutchinson, D.E.; Cobb, B.J.; Jacob, C.S.

    1999-01-01

    Compliance testing is nominally that part of a quality assurance program dealing with those aspects of X-ray equipment performance that are subject to radiation control legislation. Quality assurance programs for medical X-ray equipment should be an integral part of the quality culture in health care. However while major hospitals and individual medical centers may implement such programs with some diligence, much X-ray equipment can remain unappraised unless there is a comprehensive regulatory inspection program or some form of compulsion on the equipment owner to implement a testing program. Since the late 1950s all X-ray equipment in the State of Western Australia has been inspected by authorized officers acting on behalf of the Radiological Council, the regulatory authority responsible for administration of the State's Radiation Safety Act. However, economic constraints, coupled with increasing X-ray equipment numbers and a geographically large State have significantly affected the inspection rate. Data available from inspections demonstrate that regular compliance and performance checks are essential in order to ensure proper performance and to minimize unnecessary patient and operator dose. To ensure that diagnostic X-ray equipment complies with accepted standards and performance criteria, the regulatory authority introduced a compulsory compliance testing program for all medical, dental and chiropractic diagnostic X-ray equipment effective from 1 January 1997

  2. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    International Nuclear Information System (INIS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong; He, You; Zhou, Guangzhao; Xiao, Tiqiao; Huang, Qingjie

    2016-01-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  3. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Science.gov (United States)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  4. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong, E-mail: hdjiang@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); He, You; Zhou, Guangzhao; Xiao, Tiqiao [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Qingjie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2016-03-21

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  5. Genetic effects of low x-ray doses. Progress report, October 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Abrahamson, S.; Meyer, H.U.

    1976-09-01

    Experiments on dose-kinetics of x-ray induced sexlinked lethal mutations in Drosophila oogonia were continued. A wide range of doses was tested, with special emphasis on the low-dose range (20 to 500R). This year more data were added for O R, 200, 500, 1500R and some high doses. Oogonia of adult females were irradiated, and only one daughter from each experimental parent-female was analyzed for a new lethal in her maternal X-chromosome. Thus no clusters of mutations of identical origin are encountered. The extensive accumulated data do not support the linearity principle, firmly established for recessive mutations induced in mature spermatozoa for high doses down to very low x-ray doses. A mathematical model describing the mutational yield is included that suggests that recessive mutations, like chromosome aberrations, result from both one-track and two-track events, with the latter playing an increasingly important role at higher doses

  6. Fundamentals for cost calculations of X-ray equipment

    International Nuclear Information System (INIS)

    Bossard, F.

    1985-01-01

    Economic implications of running an X-ray departement in Switzerland will be illustrated by comparing operating costs of private radiological institutes with and without CT to the operating costs of large radiological departments in hospitals with and without CT and to the operating costs of simple X-ray equipment in general practicioners' offices. - These costs calculations form the basis for cost-benefit analyses. (orig.) [de

  7. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Chest Chest x-ray uses a very small dose ... Radiography? What is a Chest X-ray (Chest Radiography)? The chest x-ray is the most commonly performed diagnostic ...

  8. 21 CFR 892.1750 - Computed tomography x-ray system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended to...

  9. A study of changes in the primary dose penetrating the protective apron on SID in x-ray radiography

    International Nuclear Information System (INIS)

    Choi, Seong Kwan

    2016-01-01

    This study is to figure out the amount of primary X-ray generated in SID 50cm, 1m, and 2m penetrating protective aprons in X-ray radiography for hands, skull, and lumbar spine. Results are as follows: Firstly, the exposure dose of primary X-ray which is low such as that of hand X-ray may be reduced by 270 times if protective aprons are worn, but it still slightly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Secondly, the exposure dose of primary X-ray which is moderate such as that of skull X-ray may be reduced by 22 times if protective aprons are worn, but it still fairly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Thirdly, the exposure dose of primary X-ray which is very high such as that of lumbar spine X-ray may be reduced b y 13 times if protective aprons a re worn, but it still penetrates a lot 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Therefore, people in X-ray room should not only wear protective aprons at any spaces that the primary X-ray can reach, but also need to stand behind the thick Pb shield to protect the body if it is inevitable to stay in the room

  10. A study of changes in the primary dose penetrating the protective apron on SID in x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong Kwan [Dept. of Radiological Technology, Kwangju Health University, Gwangju (Korea, Republic of)

    2016-12-15

    This study is to figure out the amount of primary X-ray generated in SID 50cm, 1m, and 2m penetrating protective aprons in X-ray radiography for hands, skull, and lumbar spine. Results are as follows: Firstly, the exposure dose of primary X-ray which is low such as that of hand X-ray may be reduced by 270 times if protective aprons are worn, but it still slightly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Secondly, the exposure dose of primary X-ray which is moderate such as that of skull X-ray may be reduced by 22 times if protective aprons are worn, but it still fairly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Thirdly, the exposure dose of primary X-ray which is very high such as that of lumbar spine X-ray may be reduced b y 13 times if protective aprons a re worn, but it still penetrates a lot 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Therefore, people in X-ray room should not only wear protective aprons at any spaces that the primary X-ray can reach, but also need to stand behind the thick Pb shield to protect the body if it is inevitable to stay in the room.

  11. Automatic management system for dose parameters in interventional radiology and cardiology

    International Nuclear Information System (INIS)

    Ten, J. I.; Fernandez, J. M.; Vano, E.

    2011-01-01

    The purpose of this work was to develop an automatic management system to archive and analyse the major study parameters and patient doses for fluoroscopy guided procedures performed in cardiology and interventional radiology systems. The X-ray systems used for this trial have the capability to export at the end of the procedure and via e-mail the technical parameters of the study and the patient dose values. An application was developed to query and retrieve from a mail server, all study reports sent by the imaging modality and store them on a Microsoft SQL Server data base. The results from 3538 interventional study reports generated by 7 interventional systems were processed. In the case of some technical parameters and patient doses, alarms were added to receive malfunction alerts so as to immediately take appropriate corrective actions. (authors)

  12. Automatic management system for dose parameters in interventional radiology and cardiology.

    Science.gov (United States)

    Ten, J I; Fernandez, J M; Vaño, E

    2011-09-01

    The purpose of this work was to develop an automatic management system to archive and analyse the major study parameters and patient doses for fluoroscopy guided procedures performed in cardiology and interventional radiology systems. The X-ray systems used for this trial have the capability to export at the end of the procedure and via e-mail the technical parameters of the study and the patient dose values. An application was developed to query and retrieve from a mail server, all study reports sent by the imaging modality and store them on a Microsoft SQL Server data base. The results from 3538 interventional study reports generated by 7 interventional systems were processed. In the case of some technical parameters and patient doses, alarms were added to receive malfunction alerts so as to immediately take appropriate corrective actions.

  13. Skin Entrance dose to patients from routine P-A chest X-ray ...

    African Journals Online (AJOL)

    Background: Radiation of any amount is potentially hazardous and it should be minimized as much as possible during health care delivery. Objective: To determine and assess the variation of the dose received by patients undergoing chest x-ray examination, and to provide a useful baseline data to evaluate the dose to the ...

  14. A national survey of occupational radiation exposure among diagnostic radiologic technologists in South Korea

    International Nuclear Information System (INIS)

    Lee, Jeeyoung; Cha, Eun Shil; Jeong, Meeseon; Lee, Won Jin

    2015-01-01

    The objective of this study was to investigate representative occupational characteristics and radiation exposure for South Korean radiologic technologists. The authors conducted a national survey by stratified sampling of South Korean administrative districts and types of medical facilities. A total of 585 technologists were surveyed, and survey data were linked with dosimetry data from the National Dose Registry. A total of 73 % of radiologic technologists sampled were male, 62 % were younger than age 40 and 86.5 % began employment after 1990. The most frequent practices among radiologic technologists were diagnostic routine X-ray followed by computed tomography (CT) and portable X-ray. Male workers were more frequently involved in CT, portable X-ray and interventional radiology whereas female workers carried out most mammography procedures. The average annual effective dose was 2.3 mSv for male and 1.3 mSv for female workers. The dose was significantly higher for workers in the provinces and those who had recently started work. (authors)

  15. Dose fractionation in synchrotron radiation x-ray phase micro-tomography

    International Nuclear Information System (INIS)

    Frachon, Thibaut; Weber, Loriane; Hesse, Bernhard; Rit, Simon; Dong, Pei; Olivier, Cecile; Peyrin, Françoise; Langer, Max

    2015-01-01

    Phase sensitive x-ray imaging expands the applicability of standard attenuation based techniques by offering several orders of magnitude of increase in sensitivity. Due to the short wavelength, x-ray phase is not directly measurable, but has to be put in evidence by the use of phase contrast techniques. The phase can then be reconstructed from one or several phase contrast images. In this study, we consider synchrotron x-ray phase micro-computed tomography (μCT) based on free space propagation for heterogeneous and strongly absorbing objects. This technique generally relies on acquiring several scans of the sample at different detector distances. It is also generally believed that multi-distance phase μCT needs a higher dose input than single distance phase μCT. The purpose of this work is to study the impact of different means of dose fractionation on the reconstructed image quality. We define different acquistion schemes in multi-distance in-line phase μCT. Previously, the exposure time at each sample-to-detector distance was usually kept the same. Here, we let not only the number of distances vary but also the fraction of exposure time at each distance, the total exposure time being kept constant. Phase retrieval is performed with the mixed approach algorithm. The reconstructed μCT images are compared in terms of accuracy, precision and resolution. In addition, we also compare the result of dose fractionated multi distance phase μCT to single distance phase μCT using the same total radiation dose. In the multi-distance approach, we find that using different exposure times on each distance improves the image quality in the reconstructed image. Further, we show that, despite having the same total dose delivery, the multi distance imaging method gives better image quality than the single distance method, at the cost of an additional overhead from camera displacements and reference images. We show that by optimizing the acquistion parameters in terms of

  16. Implementation of a patient dose monitoring system in conventional digital X-ray imaging: initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Heilmaier, Christina; Zuber, Niklaus; Weishaupt, Dominik [Stadtspital Triemli Zurich, Department of Radiology and Nuclear Medicine, Zurich (Switzerland)

    2017-03-15

    The purpose was to report on the initial experience after implementation of a patient dose-monitoring system in conventional X-ray imaging. A dose-monitoring system collected dose data relating to different radiographs (one projection) and studies (two or more projections). Images were acquired on digital X-ray systems equipped with flat-panel detectors. During period 1, examinations were performed in a routine fashion in 12,614 patients. After period 1, technical modifications were performed and radiographers underwent training in radiation protection. During period 2, examinations were performed in 14,514 patients, and the radiographers were advised to read dose data after each radiograph/study. Dose data were compared by means of kerma area product (KAP, gray x centimetre squared) and entrance surface air kerma (ESAK, milligray). During period 1, 13,955 radiographs and 8,466 studies were performed, and in period 2 16,090 radiographs and 10,389 studies. In period 2, KAP values for radiographs were an average of 25 % lower and for studies 7 % lower, and ESAK values for radiographs were 24 % lower and for studies 5 % lower. The reduction in KAP was significant in 8/13 radiographs and in 6/14 studies, and the reduction in ESAK was significant in 6/13 radiographs and 5/14 studies. Implementation of a patient dose-monitoring system in conventional X-ray imaging allows easy data collection, supports dose reduction efforts, and may increase radiographers' dose awareness. (orig.)

  17. The quality of high-energy X-ray beams

    International Nuclear Information System (INIS)

    LaRiviere, P.D.

    1989-01-01

    Supplement 17 of the British Journal of Radiology is a survey of central-axis depth doses for radiotherapy machines, patterned largely on BJR Supplement 11 (1972). Inspection of high-energy X-ray depth doses for a 10 x 10 cm field at an SSD of 100 cm disclosed large differences between the two sets of data, especially for qualities above 8 MV, e.g. a depth dose of 80% at 10 cm is rated at about 19 MV according to BJR Supplement 11, and 23 MV according to BJR Supplement 17. It was found that Supplement 17 depth-dose data above 8 MV were erratic, but Supplement 11 data could be represented by an analytical expression, providing a unique means of assigning MV quality. It was also found that dose-weighted average energy of the filtered beam plotted smoothly against depth dose. For dosimetric purposes, it is suggested that this parameter be used as a true measure of beam quality, removing discrepancies introduced by the use of nominal MV for this purpose. (author)

  18. Skin dose from radiotherapy X-ray beams: the influence of energy

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; University of Wollongong, Wollongong, NSW; Mathur, J.N.

    1997-01-01

    Skin-sparing properties of megavoltage photon beams are compromised by electron contamination. Higher energy beams do not necessarily produce lower surface and basal cell layer doses due to this electron contamination. For a 5x5 cm field size the surface doses for 6 MVp and 18 M)p X-ray beams are 10% and 7% of their respective maxima. However, at a field size of 40 x 40cm the percentage surface dose is 42% for both 6 MVp and 18 MVp beams. The introduction of beam modifying devices such as block trays can further reduce the skin-sparing advantages of high energy photon beams. Using a 10 mm perspex block tray, the surface doses for 6 MVp and 18 MVp beams with a 5 x 5 cm field size are 10% and 8%, respectively. At 40 x 40cm, surface doses are 61% and 63% for 6 MVp and 18 MVp beams, respectively. This trend is followed at the basal cell layer depth. At a depth of 1 mm, 18 MVp beam doses are always at least 5% smaller than 6 MVp doses for the same depth at all field sizes when normalized to their respective Dmax values. Results have shown that higher energy photon beams produce a negligible reduction of the delivered dose to the basal cell layer (0.1 mm). Only a small increase in skin sparing is seen at the dermal layer (1 mm), which can be negated by the increased exit dose from an opposing field. (authors)

  19. Women and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Dunkley, P A; Stewart, J H

    1976-01-01

    When a woman comes to an X-Ray Department it is usually necessary to know the present stage of her menstrual cycle. X-Rays may have an adverse effect on the embryo, especially in early pregnancy. However, exposure to X-Rays at any stage may be associated with a slightly increased incidence of malignant disease in childhood. The International Commission on Radiological Protection recommends that in women of child-bearing age (in some cases as young as 11 years), non-urgent diagnostic radiography be confined to the preovulatory phase of the menstrual cycle: that is, 14 days following the first day of the last menstrual period.

  20. Does bridging the gap between knowledge and practice help? Example of patient dose reduction in radiology

    International Nuclear Information System (INIS)

    Rehani, M.M.; Kaul, Rashmi; Kumar, Pratik; Berry, M.

    1995-01-01

    The paper is aimed at bridging the gap between knowledge and practice and evaluating the impact of this activity on reduction of patient dose. While enormous data on radiation doses in diagnostic radiology exists, there is absolute lack of information at user's level. For example, the implications on patient dose from 1cm error in x-ray field size or error of 5 kVp or 5mAs is invariably not known. We estimated that 1 cm increase in field size results in irradiation of 600-900cc of extra volume of patient which may contain sensitive tissue, 5 kVp increase results in exposure of 35-65 mR, with more effect in case of lumbar spine and abdomen x-ray and lesser for chest and D-spine, 5 mAs error results in 4-25 mR. The impact of information supply to users was evaluated and it was found that information based approach results in dose reduction to patient and improved image quality. (author). 3 refs., 4 figs., 3 tabs

  1. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F., E-mail: falima@cnen.gov.br, E-mail: mendes_sb@hotmail.com [Centro Regional de Ciências Nucleares, (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Ana Maria M.A., E-mail: july_cgm@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, PE (Brazil). Centro Acadêmico de Vitória

    2017-07-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  2. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    International Nuclear Information System (INIS)

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F.; Melo, Ana Maria M.A.

    2017-01-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  3. Patient exposure in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study was to assess, in terms of effective dose, the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses delivered to patient

  4. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    Science.gov (United States)

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  5. Patient and population protection in X-ray examinations -a general roentgenological and health problem

    International Nuclear Information System (INIS)

    Khadzhidekov, G.; Dermendzhiev, Kh.

    1975-01-01

    Population exposure in excess of that due to natural radiation background is known to result primarily (to 70-90%) from medical X-rays given in mass screening. Protection of the population is a problem of great concern in present-day radiology and is approached by balancing benefits of diagnostic X-rays against risks presented by the probability of overexposing the patient. An evaluation on such a basis necessitates detailed and accurate information on patient radiation exposure and takes into account factors leading to a population hazard by making assessments in terms of so-called genetically significant doses. Gonad doses have to be carefully analysed, implying a need for studies of various types of X-ray procedures, precautionary measures taken, etc. An important issue in the choice and adoption of an appropriate method for large-scale gonad dose assessments in routine practice. To obtain an estimate of radiation hazard from medical roentgenology in terms of genetically significant doses and identify measures necessary to limit exposure risks, collaborative efforts are needed involving participation of roentgenologists and hygienists, and use of dosimetric, organizational-methodological, and statistical techniques. These efforts should lead to an abrupt reduction in radiation burden to the population from diagnostic X-rays. (author)

  6. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    Science.gov (United States)

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  7. The use of diagnostic x-ray among veterinarians. Results from a survey et guidance to regulations for veterinarian's use of diagnostic x-ray

    International Nuclear Information System (INIS)

    Solberg, M.

    2010-12-01

    The use of diagnostic X-ray equipment by veterinarians in Norway is regulated by the Radiation Protection Act (Stralevernloven) as well as the Regulation for Radiation Protection and Use of Radiation (Stralevernforskriften). A revised regulation was accepted by the Norwegian government 29/10/2010; revisions relevant to veterinarians will come to force 01/01/2011. Many X-ray machines are used in veterinary clinics in Norway, and the Norwegian Radiation Protection Authority (NRPA) has therefore undertaken a study to assess their use of X-ray equipment. The main objective has been to study occupational exposure to ionizing radiation. This report summarizes data collected during a web-based survey as well as data collected from 13 inspections at veterinary clinics, including in situ measurements of scattered radiation and measurements of compliance between light field and irradiation field at a selection of veterinary clinics. The report also includes guidance to regulations that are specific for the practice of radiology in veterinary medicine. The Norwegian organization for veterinarians (Den Norske Veterinarforening) is gratefully acknowledged for distributing the web-based survey among their members and thereby enabling a large number of responses to be collected. Of 441 completed surveys, 276 (63 %) confirmed that X-ray equipment was used in their clinic. The results from the survey and inspections generally show a good approach and satisfactory daily routines with regard to the use of X-ray machines, especially concerning occupational health aspects. However, nearly 50 % of the respondents were not familiar with the regulations. During the inspection round, certain regulatory requirements were found to be less than satisfactory in most clinics. Such requirements included reporting the use of X-ray machines to the NRPA and the proper use of radiation warning symbols in rooms where X-ray equipment was situated. About 50 % of the veterinary surgeons who used X -ray

  8. The impact of x-ray tube configuration on the eye lens and extremity doses received by cardiologists in electrophysiology room

    International Nuclear Information System (INIS)

    Domienik, J; Zmyślony, M; Bissinger, A

    2014-01-01

    The aim of the study was to analyse the influence of the x-ray tube configuration on the radiation doses to eye lens and extremities of cardiologists performing pacemaker implantation procedures in electrophysiology laboratory. The measurements were performed on one, widely used, portable C-arm system, first with x-ray tube mounted above the patient table and image intensifier below it and then on a reinstalled (but essentially the same) system with under-table x-ray tube configuration. Thermoluminescent dosimeters, placed in various positions near the eye lens, on the hands and ankle, were used during every procedure. The comparison of doses received by cardiologists after changing the x-ray tube configuration from over- to under-table shows statistically significant dose reduction (p < 0.009) for the eye lens closest to the x-ray tube, left finger, left wrist, while for the ankle a dose increase is observed. The corresponding over- to under-table x-ray tube median dose ratios are 4.1 for the right eye, 4.8 for the left finger, 3.0 for left wrist and, finally, 0.13 for the right ankle. Systems with under-table x-ray tube are preferable from a radiation protection point of view. The observed significant increase in doses to the legs should be partially compensated by the use of a protective lead curtain. (note)

  9. Survey of doses and frequency of X-ray examinations on children at the intensive care unit of a large reference pediatric hospital

    International Nuclear Information System (INIS)

    Pedrosa de Azevedo, Ana Cecilia; Osibote, Adelaja Otolorin; Bastos Boechat, Marcia Cristina

    2006-01-01

    Objective: This work aims to evaluate the entrance surface dose (ESD), the body organ dose (BOD) and the effective dose (E) resulting from pediatric radiological procedures with the use of portable X-ray equipments. Materials and methods: The software DoseCal was used to evaluate the doses imparted to patients. The children were classified according to their weight and age groups, and the study included three sectors of the intensive care unit of a large reference pediatric hospital in Rio de Janeiro. Results: A total of 518 radiographs have been performed (424 for chest and 94 for abdomen). The statistical data were compared with previously published results. The BOD is presented for the most exposed organs. Conclusion: The mean value of ESD and E varied widely among neonates. The highest number of radiographs per infant peaked 33 for chest examination in the age group 0-1 year

  10. Low dose Xray effects on catalase activity in animal tissue

    International Nuclear Information System (INIS)

    Focea, R; Nadejde, C; Creanga, D; Luchian, T

    2012-01-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, p<0.05) suggested the stimulation of the antioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  11. A simple calculation for the determination of organ or tissue dose from medical x-ray diagnosis for stomach and chest

    International Nuclear Information System (INIS)

    Nishizawa, Kanae

    1984-01-01

    A simple calculation method has been developed to determine the organ or tissue doses of patients for typical X-ray diagnoses. The absorbed doses related to radiation-induced stochastic effects were calculated based on the dosimetric parameters experimentally determined and technical parameters for X-ray diagnostic examinations. The present method is principally based on the TRA method for the beam therapy. The dosimetric parameters such as percentage depth-dose curves and isodose curves were measured with ionization chambers in the MixDP phantom. The distance from the incident surface of X-ray beams to the organ or tissue of interest was determined with a mathematical phantom, which was the modified version of the MIRD phantom for the average Japanese adult. The absorbed doses were determined with a simple table look-up method using a computer. The calculated doses were tabulated for various technical parameters of stomach and chest X-ray examinations. The present calculation was applied to the Rando woman phantom to compare with the phantom measurements. The calculated values agree with the experimental doses within 20% discrepancy. It was concluded that the present calculation method can determine organ or tissue doses very simply for various X-ray examinations and that it was valuable for the estimation of population doses and risks from X-ray diagnoses. (author)

  12. Establishing the standard X-ray beam qualities for calibration of dosimeters used in diagnostic radiology following IAEA-TRS457

    International Nuclear Information System (INIS)

    Duong Van Trieu; Ho Quang Tuan; Bui Duc Ky

    2014-01-01

    The determination of the patient dose needs to provide a reference dose for the patient that reference dose levels to assess the relative risk during X- ray diagnostic. This mission, We had established a number of standard beam qualities to perform calibrations of diagnostic dosimeters and methods of measuring patient dose in X-ray diagnostic. At radiation dosimetry room, we had establish RQR2, RQR3, RQR4, RQR5, RQR6 beam qualities based on IAEA-TRS457 documentation with homogeneity coefficient (h) for each beam quality in the range 0.7 - 0.8, and haft-value layers HVL1, HVL2 of experimental and IAEA is different about 10%. Established calibration method for diagnostic dosimeters as KAP meters, UNFORS dosimeters, and the TLD dosimeters, practical measurements of entrance surface air kerma on Shimadzu X-ray machines used phantom. (author)

  13. A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray.

    Science.gov (United States)

    Pan, Chien-Lin; Chen, Ming-Hong; Tung, Fu-I; Liu, Tse-Ying

    2017-01-01

    Many non-antibiotic strategies, such as photocatalysis and photodynamic therapy, have been proposed to inhibit and/or kill bacteria. However, these approaches still have drawbacks such as insufficient bacterial specificity and the limited penetration depth of ultraviolet and near-infrared light. To overcome these limitations, we developed a bacteria-specific anti-bacterial technique via using low-dose X-ray. Graphene oxide quantum dots (GQDs, a multifunctional vehicle) conjugated with vancomycin (Van, a bacteria-targeting ligand) were assembled with Protoporphyrin IX (PpIX, a photo/radiation sensitizer) to yield a novel Van-GQDs/PpIX complex that specifically attached to Escherichia coli and efficiently generated intracellular reactive oxygen species following X-ray activation. Delivery using GQDs increased the PpIX/Van ratio in the target bacterial cell, damaged bacterial cell wall, and enhanced X-ray-induced PpIX activation. Hence, this approach allowed for the use of a low-dose X-ray to efficiently activate the Van-GQDs/PpIX complex to exert its bactericidal effects on Escherichia coli without damaging normal cells. Furthermore, the E. coli did not develop resistance to the proposed approach for at least 7 rounds of repeated administration during one week. Thus, this proposed vehicle exhibiting bacteria-specific X-ray-triggered toxicity is a promising alternative to antibiotics for treating serious bacterial infections occurring in deep-seated tissues/organs (e.g., osteomyelitis and peritonitis). Administration of antibiotics is the most common treatment modality for bacterial infections. However, in some cases, patient attributes such as age, health, tolerance to antibiotics do not allow for the use of high-dose antibiotics. In addition, some bacteria develop resistance to antibiotics because of improper and long-term use of these agents. Therefore, non-antibiotic strategies to treat deeply situated bacterial infections, such as osteomyelitis, are urgently

  14. Evaluation of radiological protection and dose of skin entrance in paediatric dentistry examinations

    International Nuclear Information System (INIS)

    Khoury, Helen Jamil; Silveira, Marcia Maria Fonseca da; Couto, Geraldo Bosco Lindoso; Brasileiro, Izabela Vanderley

    2005-01-01

    In this work the radiological protection conditions and dose at the entrance of pediatric patients undergoing dental intraoral radiographs were evaluated. The study was conducted in two clinics of the dentistry course at the Federal University of Pernambuco, Recife, PB, Brazil, equipped with conventional X-ray apparatus, with 60 and 70 kV. 254 exams of 113 patients between the ages of 3 to 12 years were evaluated. The skin entrance dose was estimated using TLD-100 thermoluminescent dosemeters. During the examination were also recorded information regarding the time of exposure, radiographic technique used, use of thyroid protectors and lead apron, angle and distance of the cone Locator to the patient's skin. The results showed that the input skin doses ranged from 0.3 mGy to 10mGy. The lead apron was used in 71% of exams while the thyroid shield was only used in 58% of the exams. The exposure times ranged from 0,5s to 1,5s. From the results it can be concluded that the radiological procedures are not optimized and that in some cases the patient dose is high.

  15. Assessment of medical radiation exposure to patients and ambient doses in several diagnostic radiology departments

    Science.gov (United States)

    Sulieman, A.; Elhadi, T.; Babikir, E.; Alkhorayef, M.; Alnaaimi, M.; Alduaij, M.; Bradley, D. A.

    2017-11-01

    In many countries diagnostic medical exposures typically account for a very large fraction of the collective effective dose that can be assigned to anthropological sources and activities. This in part flags up the question of whether sufficient steps are being taken in regard to potential dose saving from such medical services. As a first step, one needs to survey doses to compare against those of best practice. The present study has sought evaluation of the radiation protection status and patient doses for certain key radiological procedures in four film-based radiology departments within Sudan. The radiation exposure survey, carried out using a survey meter and quality control test tools, involved a total of 299 patients their examinations being carried out at one or other of these four departments. The entrance surface air kerma (ESAK) was determined from exposure settings using DosCal software and an Unfors -Xi-meter. The mean ESAK for x-ray examination of the chest was 0.30±0.1 mGy, for the skull it was 0.96±0.7 mGy, for the abdomen 0.85±0.01 mGy, for spinal procedures 1.30±0.6 mGy and for procedures involving the limbs it was 0.43±0.3 mGy. Ambient dose-rates in the reception area, at the closed door of the x-ray room, recorded instantaneous values of up to 100 μSv/h. In regard to protection, the associated levels were found to be acceptable in three of the four departments, corrective action being required for one department, regular quality control also being recommended.

  16. Retrospective Dose Reconstruction for Medical Diagnostic X Ray Workers in China using Stable Chromosome Aberrations

    International Nuclear Information System (INIS)

    Wang, Q.; Liu, P.; Li, J.; Wang, Q.; Tang, S.; Sun, M.; Wang, L.; Aoyama, T.; Sugahara, T.

    1998-01-01

    The chromosome rearrangements in medical diagnostic X ray workers were analysed using the G-banding technique and evaluated collectively in accumulated doses. A total of 9102 metaphase spreads from 84 medical diagnostic X ray workers and 17 controls were scored. The results showed that: (1) the frequencies of translocation, stable chromosome aberration and total aberration in X ray workers were significantly higher than those of controls (P < 0.05 γ 0.005), unstable chromosome aberrations (including dicentric and acentric aberration) tended upwards; (2) the main aberration in stable aberrations was reciprocal translocation; (3) the stable aberration predominated strikingly in total aberrations. The medical diagnostic X ray workers were divided into three groups according to calendar year of entry. The data showed that the frequencies of translocation, stable aberration and total aberration increased with earlier year of entry, especially in two groups who started working before 1970. According to the equation recommended by Straume et al, linear coefficient (α) in the linear quadratic model provided by Fernandez's experiment, their collective accumulation doses calculated were 0.53, 0.26 and 0.06 Gy for calendar year of entry before 1960, 1960-1969, and after 1970, in X ray workers, respectively. (author)

  17. Genetic effects of low x-ray doses. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Abrahamson, S.; Meyer, H.U.

    1977-09-01

    A linear-quadratic model of dose-kinetics is proposed for x-ray induced recessive lethal mutations in oogonia of Drosophila. From this it should follow that at higher total doses fractionation treatments should give a lower yield of mutations than an equivalent acute exposure. A dose of 6000 R, given acutely and in 3 different fractionation regimes gave results in the expected direction for 2 x 3000 R, and a significant decrease for 3 x 2000 R and for 4 x 1500 R fractionations

  18. Scatter and transmission doses from several pediatric X-ray examinations in a nursery

    International Nuclear Information System (INIS)

    Burrage, John W.; Rampant, Peter L.; Beeson, Brendan P.

    2003-01-01

    While several studies have investigated the dose from scattered radiation from X-ray procedures in a pediatric nursery, they examined scatter from chest procedures only, or the types of examination were not specified. The aim of this study was to collect scatter and transmission data from several types of X-ray examinations. Using a ''newborn'' anthropomorphic phantom and an ion chamber, a series of scatter and transmission dose measurements were performed using typical exposure factors for chest, chest and abdomen, skull, skeletal long bone and spine procedures. The phantom was inside a crib for all exposures. The maximum scatter dose measured at 1 m from the field center was about 0.05 μGy per exposure for lateral skulls. Transmission doses for lateral exams were around 0.1 μGy per exposure at 1 m from the isocenter. The study demonstrated that scatter dose to other patients in a neonatal unit is not significant, assuming the distance between adjacent cribs is in the order of 1 m. Transmission doses are also low provided the beam is fully intercepted by the cassette. For an average workload the dose received by imaging technologists would be small. (orig.)

  19. Establishment of radiation doses for pediatric X-ray examinations in a large pediatric hospital in Turkey

    International Nuclear Information System (INIS)

    Olgar, T.; Sahmaran, T.

    2017-01-01

    Pediatric patients are more sensitive to ionizing radiation when compared with adults. The aim of this study was to evaluate the radiation doses for some common pediatric x-ray examinations performed with various digital radiography systems. Quality control tests of the digital radiography systems were carried out according to international published protocols before the pediatric dose measurements. Radiation dose measurement was performed by using the x-ray tube outputs and thermoluminescent dosimeter dose measurement methods. In the present study, radiation doses were assessed for 247 chest, 230 pelvis, 194 skull and 73 abdomen x-ray examinations and in total 744 pediatric patients doses were measured. Pediatric patients were classified into four age groups 0-1, 1-5, 5-10 and 10-15 years as given by European Commission guidance. Effective doses were determined for each examination using a PCXMC 2.0 Monte Carlo program. The mean measured entrance skin doses for the age interval 1-5 years and AP projection by using tube output measurement methods were 149 μGy for chest, 304 μGy for pelvis, 387 μGy for skull and 199 μGy for abdomen examinations. The radiation dose results obtained in this study were in the range of the published results in the literature. (authors)

  20. Dose absorbed in x-rays toraxicas executed in hospitals of the city of Sao Paulo Brazil

    International Nuclear Information System (INIS)

    Freitas, M.B.; Yoshimura, E.M.

    1998-01-01

    With the objective of evaluating the contribution of radiography exams in the dose received by the population of the city of Sao Paulo (Brazil), we made mensurations of the doses absorbed in toraxicas x-rays (projections PA and LAT) taken in several teams of rays X used in hospitals. The work is supplemented with demography data and the knowledge of the quantity of exams executed in each team

  1. Dose in conventional radiography

    International Nuclear Information System (INIS)

    Acuna D, E.; Padilla R, Z. P.; Escareno J, E.; Vega C, H. R.

    2011-10-01

    It has been pointed out that medical exposures are the most significant sources of exposure to ionizing radiation for the general population. Inside the medical exposures the most important is the X-ray use for diagnosis, which is by far the largest contribution to the average dose received by the population. From all studies performed in radiology the chest radiography is the most abundant. In an X-ray machine, voltage and current are combined to obtain a good image and a reduce dose, however due to the workload in a radiology service individual dose is not monitored. In order to evaluate the dose due to chest radiography in this work a plate phantom was built according to the ISO recommendations using methylmethacrylate walls and water. The phantom was used in the Imaging department of the Zacatecas General Hospital as a radiology patient asking for a chest study; using thermoluminescent dosimeters, TLD 100 the kerma at the surface entrance was determined. (Author)

  2. SU-C-204-06: Monte Carlo Dose Calculation for Kilovoltage X-Ray-Psoralen Activated Cancer Therapy (X-PACT): Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Mein, S [Duke University Medical Physics Graduate Program (United States); Gunasingha, R [Department of Radiation Safety, Duke University Medical Center (United States); Nolan, M [Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University (United States); Oldham, M; Adamson, J [Department of Radiation Oncology, Duke University Medical Center (United States)

    2016-06-15

    Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp with the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold

  3. Investigation of organ dose difference of age phantoms for medical X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun; Kim, Woo Ran; Lee, Jai Ki; Lee, Choon Sik

    2003-01-01

    Methodology for calculating the organ equivalent doses and the effective doses of pediatric and adult patients undergoing medical X-ray examinations were established. The MIRD-type mathematical phantoms of 4 age groups were constructed with addition of the esophagus to the same phantoms. Two typical examination procedures, chest PA and abdomen AP, were simulated for the pediatric patients as well as the adult as illustrative examples. The results confirmed that patients pick up approximate 0.03 mSv of effective dose from a single chest PA examination, and 0.4 to 1.7 mSv from an abdomen AP examination depending on the ages. For dose calculations where irradiation is made with a limited field, the details of the position, size and shape of the organs and the organ depth from the entrance surface considerably affect the resulting doses. Therefore, it is important to optimize radiation protection by control of X-ray properties and beam examination field. The calculation result, provided in this study, can be used to implement optimization for medical radiation protection

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... Image Gallery Radiological technologist preparing to take an arm x-ray on a ... Images related ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray table ... bone is forming), for comparison purposes. When the examination is complete, you may be asked to wait ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  7. Experiences with the inspection of x-ray diagnostic workplaces in the radio hygienic subcentre of Gyoer

    International Nuclear Information System (INIS)

    Giczi, F.; Halmai, O.; Farkas, I.; Ballay, L.; Pellet, S.

    1996-01-01

    The authors present present their experiences obtained in the course of the inspection of x-ray diagnostic departments. The protocol for radiation protection survey worked out by the Operational Radiological Department of the National research Institute for Radiobiology and Radio hygiene (NRIRR) has been used. The general radiation protection conditions of x-ray diagnostic workplaces in the region of Gyoer Radio hygienic Subcentre (GyRS) are evaluated. Highlights of typical non compliancies and evaluation of dose and dose rate values measured are summarised. With regard to general radiation protection conditions of x-ray diagnostic workplaces, the following conclusions can be drawn. The optimal performance of x-ray equipment and radiation safety cannot be achieved without regular inspection and quality control activity. Radio hygienic conditions are also highly affected by the professional and radiation protection education and skill of department staff, particularly radiation protection officers and radiologists, which have to improved by regular training. (author). 8 refs., 5 figs., 4 tabs

  8. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    Science.gov (United States)

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a

  9. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nimwegen, Frederika A. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Cutter, David J. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford (United Kingdom); Schaapveld, Michael [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Rutten, Annemarieke [Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kooijman, Karen [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Krol, Augustinus D.G. [Department of Radiation Oncology, Leiden University Medical Center, Leiden (Netherlands); Janus, Cécile P.M. [Department of Radiation Oncology, Erasmus MC Cancer Center, Rotterdam (Netherlands); Darby, Sarah C. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Leeuwen, Flora E. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Aleman, Berthe M.P., E-mail: b.aleman@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-05-01

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  10. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Herrera, J., E-mail: jimmy06@mit.edu; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-03-15

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K{sub α} and K{sub β} x-rays. The CR-39 detectors were then exposed to 1–5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.

  11. Radiation exposure of the UK population from medical and dental x-ray examinations

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.F.

    2002-03-01

    Knowledge of recent trends in the radiation doses from x-ray examinations and their distribution for the UK population provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimise the protection of the population in a cost-effective manner. In this report, the results of a recent survey of the frequency of medical and dental x-ray examinations in the UK and contemporary data on the radiation doses typically received by patients, are used to assess trends in the extent and the pattern of the population exposure. Individual patient doses, expressed in terms of the effective dose, range from a few microsieverts for simple radiographic examinations of the teeth, limbs or chest to tens of millisieverts for prolonged fluoroscopic procedures or some computed tomography (CT) examinations. A total of about 41.5 million medical and dental x-ray examinations are now conducted each year in the UK (0.70 examination per head of population) resulting in an annual per caput effective dose of 330 μSv. This is not significantly different from the previous rough estimate of 350 μSv for 1991. However, over the last ten years CT has more than doubled its contribution and is now responsible for 40% of the total dose to the population from medical x-rays. In contrast, the contribution from conventional radiographic and fluoroscopic examinations has nearly halved to about 44%. Interventional and angiographic procedures together contribute the remaining 16%. The annual per caput dose of 330 μSv is low in comparison with other countries having similarly developed systems of health care. This is due to both a lower frequency of x-ray examinations per head of population and generally lower doses in the UK than in other developed countries. However, the much increased contributions of CT, angiography and interventional procedures to the UK population dose indicate an urgent need to develop radiation protection and optimisation activities for

  12. Cytogenetics dosimetry: dose-response curve for low doses of X-ray; Dosimetria citogenetica: curva dosis-respuesta para bajas dosis de rayos-X

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Virginia E. Noval; Pineda Bolivar, William R.; Riano, Victor M. Pabon, E-mail: venovall.15@hotmail.com, E-mail: wrpineda@misena.edu.co, E-mail: vmpabonr@udistrital.edu.co [Universidad Distrital Francisco Jose de Caldas (UD), Bogota (Colombia). Grupo de Investigacion en Ciencia y Tecnologia Nuclear; Ureana, Cecilia Crane, E-mail: cecicrane@yahoo.com [Instituto Nacional de Salud (INS), Bogota (Colombia). Laboratorio de Genetica

    2013-07-01

    The purpose of this study was to conduct a preliminary study for the standardization in the future, the dose-response curve for low doses of X-rays, through the analysis of in vitro cultures of peripheral blood samples of 3 men and 3 women occupationally not exposed to artificial sources of ionizing radiation, age 18-40 years, where possible nonsmokers.

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is repeated. Two or three images (from different angles) will typically be taken. An x-ray may ... RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ...

  15. Assessment of the radiation risk from diagnostic radiology

    International Nuclear Information System (INIS)

    Streffer, C.; Mueller, W.U.

    1995-01-01

    In any assessment of radiation risks from diagnostic radiology the main concern is the possible induction of cancer. It now appears to be beyond all doubt that ionizing rays invite the development of cancer in humans. The radiation doses encountered in diagnostic radiology generally vary from 1 to 50 mSv. For this dose range, no measured values are available to ascertain cancer risks from ionizing rays. The effects of such doses must therefore be extrapolated from higher dose levels under consideration of given dose-effect relationships. All relevant figures for diagnostic X-ray measures are therefore mathematically determined approximate values. The stochastic radiation risk following non-homogeneous radiation exposure is assessed on the basis of the effective dose. This dose was originally introduced to ascertain the risk from radioactive substances incorporated at the working place. A secondary intention was to trigger further developmental processes in radiation protection. Due to the difficulties previously outlined and the uncertainties surrounding the determination and assessment of the effective dose from diagnostic X-ray procedures, this dose should merely be used for technological refinements and comaprisons of examination procedures. It appears unreasonable that the effective doses determined for the individual examinations are summed up to obtain a collective effective dose and to multiply this with a risk factor so as to give an approximation of the resulting deaths from cancer. A reasonable alternative is to inform patients subjected to X-ray examinations about the associated radiation dose and to estimate form this the magnitude of the probable radiation risk. (orig./MG) [de

  16. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: rinderknecht1@llnl.gov; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Filkins, T.; Steidle, Jessica A.; Traynor, N.; Freeman, C. [State University of New York at Geneseo, Geneseo, New York 14454 (United States); Steidle, Jeffrey A. [Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-12-15

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.

  17. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    International Nuclear Information System (INIS)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Filkins, T.; Steidle, Jessica A.; Traynor, N.; Freeman, C.; Steidle, Jeffrey A.

    2015-01-01

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant

  18. Management of patient dose in radiology in the UK

    International Nuclear Information System (INIS)

    Martin, C. J.

    2011-01-01

    Programmes to manage patient dose in radiology are becoming a higher priority as the number of imaging examinations and the proportion of higher dose computed tomography (CT) and complex interventional procedures all continue to rise. Such programmes have a number of components and their implementation in UK hospitals, which have been developing such programmes over two decades, is described. As part of any programme to manage patient doses, elements should be in place for both justification and optimisation. The system for justification needs to be robust in order to minimise the number of unnecessary procedures and requires the provision of training in radiation protection for medical and other staff to ensure that they understand the risks. Optimisation of X-ray techniques requires performance tests on equipment at installation and regularly thereafter, linked to surveys of patient doses. Confirming the performance of the available options on fluoroscopy and CT equipment is essential and the information obtained should be available to radiographers and radiologists, so they can make informed choices in developing imaging protocols. Patient doses should be compared with diagnostic reference levels set in terms of measured dose quantities to allow the identification of equipment that is giving higher doses. Taking the next step of analysing results to determine the reasons for high doses is crucial and requires a link with the equipment performance tests and an understanding of the underlying physics. Medical physics services play an important role at the hub of the dose management programme for carrying out tests, organising surveys, making recommendations on optimisation strategies and training other staff in radiation protection, performance testing and dose reduction. Programmes for management of patient doses in UK hospitals were first set up in the late 1980's by medical physicists and have been developed since that time to keep pace with the developments in

  19. High precision instrumentation for measuring the true exposure time in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Silva, Danubia B.; Santos, Marcus A.P.; Barros, Fabio R.; Santos, Luiz A.P.

    2013-01-01

    One of the most important physical quantities to be evaluated in diagnostic radiology is the radiation exposure time experimented by the patient during the X-ray examination. IAEA and WHO organizations have suggested that any country must create a quality surveillance program to verify if each type of ionizing radiation equipment used in the hospitals and medical clinics are in conformity with the accepted uncertainties following the international standards. The purpose of this work is to present a new high precision methodology for measuring true exposure time in diagnostic X-ray examinations: pulsed, continuous or digital one. An electronic system named CronoX, which will be soon registered at the Brazilian Patent Office (INPI), is the equipment that provides such a high precision measurement. The principle of measurement is based on the electrical signal captured by a sensor that enters in a regeneration amplifier to transform it in a digital signal, which is treated by a microprocessor (uP). The signal treatment results in a two measured times: 1) T rx , the true X-ray exposure time; 2) T nx , the time in which the X-ray machine is repeatedly cut off during the pulsed irradiation and there is no delivery dose to the patient. Conventional Polymat X-ray equipment and dental X-ray machines were used to generate X-ray photons and take the measurements with the electronic systems. The results show that such a high precision instrumentation displays the true exposure time in diagnostic X-ray examinations and indicates a new method to be purposed for the quality surveillance programs in radiology. (author)

  20. Dentistry 4. X-ray diagnostics

    International Nuclear Information System (INIS)

    2014-01-01

    DIN pocketbook 267/4 gives an overview of the normative requirements of the new X-Ray and Radiation Protection Ordinance, which has been in effect since 1 November 2011. This DIN pocketbook is intended for anyone charged with professional responsibility for the use of ionizing radiation in dentistry, operators and users of x-ray devices, radiation protection officers, accredited experts, manufacturers as well as for anyone with an interest in radiation protection or optimal radiological diagnostics. It contains standards relating to the following areas: acceptance and constancy testing; devices for evaluating findings (monitors, film viewing devices), films, printers; archiving, designating, labelling. Adherence to the standards makes it possible to avoid distractive artefacts in x-ray images and optimise the quality of x-ray diagnostics in dentistry.

  1. Radiological protection problems associated with parasitic X-ray emission from electronic products

    International Nuclear Information System (INIS)

    Amlinger, G.; Anger, K.; Billaudelle, H.; Ehlers, J.; Fendt, H.W.; Festag, J.G.; Haug, R.; Herrmann, K.H.; Klein, H.; Kossel, F.; Krebs, A.; Lauterbach, U.; Leibssle, H. Fa.; Lustig, H.; Maushart, R.; Milde, K.G.; Peter, F.; Ritter, J.; Riecke, W.D.; Rosenbaum, O.; Schiekel, M. Fa.; Schleich, F.; Schmidt, Th.; Speyer, K.; Teschke, L.; Tzschaschel, R.; Wagner, H.; Wehner, G.; Wendel, W.; Zehender, E.; Aiginoer, H.; Zakovsky, J.; Blom, G.; De backer, J.; Delhove, J.; Hublet, P.; Lejeune, P.; Misslin, A.; Nuyts, R.; Popovitch, I.; Hjardemaal, O.; Oehlenschlaeger, N.; Gonzalez Del Campo, R.; Becker, S.; Elder, R.L.; Matthews, J.D.; Sheldon, J.L.; Viitaniemi, T.J.; Aouizerate, H.; Aymeric, H.; Barthe, J.; Bermann, F.; Berthaud, Madeleine; Blanc, D.; Bory, P.; Bourrieau, J.; Bouville, A.; Bovagne, H.; Bresson, G.; Casanovas, J.; Cassanhiol, E.; Cassanhiol, E.; Chambragne, J.; Chanteur, J.; Choquet, R.; Cluchet, J.; Commanay, L.; Commanay, P.; Cros, J.L.; Dana, M.; Danna, J.; Decossas, J.L.; Delpla, M.; Destame, D.; Dieval, M.; Drouet, J.; Dubec, A.; Galy, J.; Garnier, A.; Gouerne, R.; Gras, M.; Grob, R.; Guelfucci, J.P.; Guevenoux, J.; Guichardiere, R.; Hamard, J.; Hardy, J.; Haym, J.P.; Hionette, J.; Jacob, G.; Lavie, J.M.; Levy, L.; Logre, P.; Manquene, J.; Martin, H.; Mathieu, J.; Odievre, Monique; Oustrin, J.; Palluel, P.; Patau, J.P.; Penotet, H.; Perrot, A.; Petel, M.; Peyrelavigne, A.; Peyrelavigne, Monique; Provincial, M.; Raedersdorff, J.; Renard, Cl.; Roche, L.; Roche, R.; Schaeffer, R.; Soubiran, J.; Soudain, G.; Stern, J.C.; Terrissol, M.; Tixier, M.; Vialettes, H.; Wauquier, J.M.; Casbolt, P.N.; Ciuciura, A.; Goodhew, E.G.; Jones, I.S.; O'riordan, M.C.; Speight, D.L.; Ward, P.R.; Williams, K.F.; Biro, T.; Vago, G.; Rosental, N.; Argiero, L.; Belli, M.; Boggio, M.; Carfi, N.; Garretti, S.; Loppa, A.; Parisi, A.; Susanna, A.; Ogawa, I.; Koren, K.; Aten, J.B.Th.; Barendsen, G.W.; Den Boer, A.M.; De Pijper, M.A.; Hekman, H.; Julius, H.W.; Strackee, L.; Van daatselaar, G.; Lorentzon, L.; Hadzi-Pealo, M.; Jeremio, M.; Stevanovio, Marija; Oosterkamp, W.J.; Shalmon, E.; Doyen, Diana; Goetschalkx, J.; Puel, R.

    1971-03-01

    During the past few decades there has been an increase in the production of many types of electronic devices such as rectifying tubes, thyratrons, klystrons, magnetrons, etc., containing elements capable of emitting undesirable X-radiation. These components are not only found in equipment used in industry and research laboratories, but also in devices of a more domestic nature, such as colour television sets, usually low in energy, this radiation may nevertheless constitute a health hazard for many users of such devices and may affect not only workers but even the population as a whole. The Commission of the European Communities (Euratom) felt it was desirable to review the state of the art with regard to problems of radiological protection arising in the manufacture, repair and use of such electronic equipment and to seek suitable technical and administrative solutions. In conjunction with the Centre Physique Atomique et Nucleaire of the Paul Sabatier University, the Commission held an International Symposium in Toulouse on 3-6 November 1970, which was attended by manufacturers of electronic equipment, officials of technical inspection bodies and representatives of public health and occupational safety authorities. The following items were discussed: classification and identification of sources of parasitic X-rays, methods of measuring soft X-rays, biological aspects of exposure to soft X-rays, performance standards and methods for testing and inspecting electronic equipment. The Symposium was followed attentively by 180 delegates from 21 countries and international organizations, and was concluded by a round table discussion at which the chairmen of the different sessions, assisted by experts, drew conclusions from their sessions and from the discussions, pointing up the problems which needed most urgently to be studied. This document contains the texts, in their original versions, of the papers presented at the meetings, together with the minutes of the

  2. Spectrum reconstruction with X rays and flat panel wedge PMMA by Monte Carlo codes and Penelope MCNPS; Reconstruccion del esptro de rayos X con flat panel y cuna de PMMa mediante los codigos de monte Carlo Penelope y MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Pozuelo, F.; Querol, A.; Juste, B.; Gallardo, S.; Rodenas, J.; Verdu, G.

    2012-07-01

    Obtaining the primary spectrum of X-rays to determine the quality of a photon beam produced by an X-ray tube, since the dosimetric characteristics of a radiation beam to have a direct relation to the primary X-ray spectrum. In this work are studied, the depth dose curves obtained in the energy range of diagnostic radiology, between 40 and 130 keV.

  3. Assessment of dose in thyroid and salivary glands in dental radiology using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Mantuano, Natalia de O.; Silva, Ademir X. da; Correa, Samanda C.A.

    2011-01-01

    Radiobiological and epidemiological studies have provided evidence of risk of salivary and thyroid glands tumors incidence associated with oral radiology. Based on these studies, the tissue weighting factors were reviewed by the International Commission on Radiological Protection (ICRP) in 2007. The main objective of the present work is to estimate the absorbed dose on thyroid and salivary glands (parotid, submandibular and sublingual), during a complete periapical examination. The complete periapical examination was simulated using a Spectro 70X Seletronic X-ray dental equipment on an Alderson Rando phantom with Harshaw LiF:Mg,Ti thermoluminescent dosemeters (TLD100). A PTW DIADOS dosimetric system was used for calibration. The TLD100 were inserted into the phantom slices corresponding to the organs of interest. During a complete periapical examination, the highest evaluated mean absorbed dose was 4.9 mGy in the right submandibular gland and the lowest one of 1.5 mGy in the left thyroid lobe. Entrance surface doses ranged from 2.1 to 2.6 mGy, measured, respectively, for the techniques of upper left molar and lower right molar. When compared with the diagnostic reference levels (DRL), the entrance surface doses values were lower than the DRLs recommended in Brazilian current legislation. However, the dosimetric results show the need of optimization for complete periapical examination to minimize patient exposure. Measurements were performed without the use of thyroid protectors. The use of this device is certainly an easy and simple method of dose reduction. (author)

  4. Assessment of dose in thyroid and salivary glands in dental radiology using thermoluminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano, Natalia de O.; Silva, Ademir X. da [Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa em Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Canevaro, Luca V.; Mauricio, Claudia Lucia P. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ) Rio de Janeiro, RJ (Brazil); Correa, Samanda C.A., E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Radiobiological and epidemiological studies have provided evidence of risk of salivary and thyroid glands tumors incidence associated with oral radiology. Based on these studies, the tissue weighting factors were reviewed by the International Commission on Radiological Protection (ICRP) in 2007. The main objective of the present work is to estimate the absorbed dose on thyroid and salivary glands (parotid, submandibular and sublingual), during a complete periapical examination. The complete periapical examination was simulated using a Spectro 70X Seletronic X-ray dental equipment on an Alderson Rando phantom with Harshaw LiF:Mg,Ti thermoluminescent dosemeters (TLD100). A PTW DIADOS dosimetric system was used for calibration. The TLD100 were inserted into the phantom slices corresponding to the organs of interest. During a complete periapical examination, the highest evaluated mean absorbed dose was 4.9 mGy in the right submandibular gland and the lowest one of 1.5 mGy in the left thyroid lobe. Entrance surface doses ranged from 2.1 to 2.6 mGy, measured, respectively, for the techniques of upper left molar and lower right molar. When compared with the diagnostic reference levels (DRL), the entrance surface doses values were lower than the DRLs recommended in Brazilian current legislation. However, the dosimetric results show the need of optimization for complete periapical examination to minimize patient exposure. Measurements were performed without the use of thyroid protectors. The use of this device is certainly an easy and simple method of dose reduction. (author)

  5. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    Science.gov (United States)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  6. Effective Energy Determination Of Radiodiagnostic X-Rays

    International Nuclear Information System (INIS)

    Sumarni; Mart, Terry

    2000-01-01

    X-rays have been used for diagnostic radiology to produce image on film that give anatomy information. Effective energy should be known to get benefit exposure. Half value layer (HVL) as shown as monoenergetic x-rays has similar spectra of energy x-rays. It has been done measurement with x-ray machine Tanka at P3KRBIN-Batan for 40 kVp to 119 kVp of potential found of Aluminium HVL are 0.115 cm to 0.385 cm and energy effective between 23.24 keV to 37.5 keV

  7. Childhood cancer after prenatal exposure to diagnostic X-ray examinations in Britain

    International Nuclear Information System (INIS)

    Mole, R.H.

    1990-01-01

    Detailed data were provided by the Oxford Survey of Childhood Cancer OSCC on deaths from childhood cancer in Britain after irradiation of the fetus during diagnostic radiology of the mother. In each age group at death, 0-5, 6-9 and 10-15 years, excess cancer deaths decreased suddenly for births in and after 1958. A major factor was concerted action initiated in 1956 to reduce radiation exposure of fetal gonads for fear of genetic hazards. Dose reduction was achieved during 1957 and early 1958 by reducing the rising rate of obstetric radiography and by virtually abandoning pelvimetry as that had been understood. In the 1970s the rate of X-raying increased again and so did cancer risk but not significantly. Direct evidence that diagnostic X-rays can cause childhood cancer is the similar excess rate per X-ray in twins and singleton births when X-raying rate is 5-6 times higher in twins. (author)

  8. Eye lens dose estimation during interventional radiology and its impact on the existing radiation protection and safety program: in the context with new International Commission on Radiological Protection guidelines

    International Nuclear Information System (INIS)

    Chaudhari, Suresh

    2014-01-01

    Interventional radiology procedures are used for diagnosing certain medical conditions. The radiologists and medical professionals are exposed to ionizing radiation from X-rays of the equipments and also from scattered radiation during these procedures. The radiation exposure to the eye is more important to be assessed while performing such procedures. ICRP has revised the annual dose limit to the lens of the eye from 150 mSv to 20 mSv. In view of this revision, a study was carried out to evaluate the dose to the lens of the eye during interventional radiology. The paper gives the details of calibration of TLDs using a head phantom, predict annual equivalent dose and also highlight the dependence of dose on the position of TLD on the head. It is observed the predicted annual equivalent doses to the lens of eye are in the range of 25 mGy to 37 mGy. The selection of dosimeter placement may also result in an uncertainty of -14% to 20%. (author)

  9. Course of radiological protection and safety in the medical diagnostic with X-rays; Curso de proteccion y seguridad radiologica en el diagnostico medico con rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, C.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The obtention of images of human body to the medical diagnostic is one of the more old and generalized applications for X-ray. Therefore the design and performance of equipment and installations as well as the operation procedures must be oriented toward safety with the purpose to guarantee this radiological practice will bring a net positive benefit to the society. Given that in Mexico only exists the standardization related to source and equipment generators of ionizing radiation in the industrial area and medical therapy, but not so to the medical diagnostic area it is the purpose of this work to present those standards related with this application branch. Also it is presented the preparation of a manual for the course named Formation of teachers in radiological protection and safety in the X-ray medical diagnostic in 1997 which was imparted at ININ. (Author)

  10. Dose classification scheme for digital imaging techniques in diagnostic radiology

    International Nuclear Information System (INIS)

    Hojreh, A.

    2002-04-01

    Purpose: image quality in diagnostic radiology is determined in crucial extent by the signal-noise-ratio, which is proportional to the applied x-ray dose. Onward technological developments in the diagnostic radiology are therefore frequently connected with a dose increase, which subjectively is hardly or even not perceptible. The aim of this work was to define reproducible standards for image quality as a function of dose and expected therapeutical consequence in case of computed tomography of the paranasal sinuses and the upper and lower jaw (dental CT), whereby practical-clinical purposes are considered. Materials and methods: the image quality of computed tomography of the paranasal sinuses and dental CT was determined by standard deviation of the CT-numbers (pixel noise) in a region of interest of the phantom of American Association of Physicists in Medicine (AAPM phantom) and additionally in the patients CT images. The diagnostic quality of the examination was classified on the basis of patients CT images in three dose levels (low dose, standard dose and high dose). Results: the pixel noise of CT of the paranasal sinuses with soft tissue reconstruction amounts to 19.3 Hounsfield units (HU) for low dose, 8.8 HU for standard dose, and below 8 HU for high dose. The pixel noise of the dental CT with bone (high resolution) reconstruction amounts to 344 HU for low dose, 221 HU for standard dose, and below 200 HU for high dose. Suitable indications for low dose CT are the scanning of body regions with high contrast differences, like the bony delimitations of air-filled spaces of the facial bones, and radiological follow-up examinations with dedicated questions such as axis determination in dental implantology, as well as the images of objects with small diameter such as in case of children. The standard dose CT can be recommended for all cases, in which precise staging of the illness plays an indispensable role for the diagnosis and therapy planning. With high dose

  11. Chromosome aberrations induced by low doses of X-rays in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Ziemba-Zoltowska, B.; Bocian, E.; Rosiek, O.; Sablinski, J.

    1980-01-01

    Curves derived from the dose-response data for the yield of aberrations in human lymphocytes can be represented by a quadratic equation at all but low dose ranges. A calibration curve has therefore been determined at a low dose range of X-radiation (11.5 to 57.5 rad). The frequencies of dicentrics plus centric rings, and of acentrics were better fitted by linear dose-response models than quadratic. The linearity of the relationship indicated that asymmetrical chromosome exchanges at low doses of radiation are produced predominantly by a single track mechanism. A dose-response curve for dicentrics plus centric rings (5 to 60 rad) has also been derived by pooling published data with the results of this study. This calibration curve is relevant to cytogenetic dosimetry in radiological protection. (UK)

  12. Patients exposure assessment for radiographic procedures in diagnostic radiology

    International Nuclear Information System (INIS)

    Arandjic, D.; Ciraj-Bjelac, O.; Stankovic, K.; Lazarevic, Dj.; Ciraj-Bjelac, O.)

    2007-01-01

    In this work the results of dose assessment for the most frequent radiographic procedures in diagnostic radiology are shown. Entrance surface doses were assessed for 7 radiographic procedures. Three hospitals, six x-ray units in total, were enrolled in investigation. Patient doses were estimated based on results of x-ray tube output measurements. Finally, doses were compared with Diagnostic reference level. Higher dose values were observed for chest examinations. In comparison with results from other countries, doses from this procedure in Serbia are significantly higher. Estimated doses for other procedures were well below Diagnostic reference levels [sr

  13. A survey of costs incurred in U.K. X-ray diffraction research laboratories as a consequence of proposed regulations for radiological safety

    International Nuclear Information System (INIS)

    Blow, D.M.

    1981-01-01

    A small survey of British X-ray diffraction laboratories was undertaken, with the aim of discovering the effects of the Health and Safety at Work Act (1974) and the draft regulations on radiological protection and ionising radiations (1978) on the practice of X-ray crystallography. The responses lead to the conclusion that the average cost incurred in bringing X-ray diffraction equipment to a safety standard compatible with the draft regulations (as judged by the respondents) will exceed Pound2,000 per X-ray generator. The safety costs will represent an overhead charge of at least 15-18% on the purchase of an X-ray generator, requiring additional capital outlay of over Pound5m to maintain the current level of X-ray diffraction activity in the U.K. There seems to be no evidence of a high accident rate with diffraction equipment, and the cost of the safety precautions bears no relation to the risks involved. (author)

  14. Very low dose and dose-rate X-ray induced adaptive response in human lymphocytes at various cell cycle stages against bleomycin induced chromatid aberrations

    International Nuclear Information System (INIS)

    Hossein Mozdarani; Moghadam, R.N.

    2007-01-01

    Complete text of publication follows. Objective: To study the adaptive response induced by very low doses of X-rays at very low dose rate in human lymphocytes at different cell cycle stages followed by a challenge dose of bleomycin sulphate at G2 phase. Materials and Methods: Human peripheral blood lymphocytes before (G0) and after PHA stimulation (G1 and G2) were exposed to 1 and 5 cGy X-rays generated by a fluoroscopy unit with a dose rate of 5.56 mGy/min and challenged with 5 μg/ml bleomycin sulphate (BLM) 48 hours after culture initiation. Mitotic cells were arrested at metaphase by addition of colcemid in cultures 1.5 h before harvesting. Harvesting and slide preparation was performed using standard method. 100 well spread metaphases were analyzed for the presence of chromatid type aberrations for each sample. Results: Results obtained indicate that there is a linear relationship between the dose of BLM and chromatid aberrations below 5 μg/ml (R=0.93, p<0.0001). The results also show that pretreatment of lymphocytes with low dose X-rays at G0, G1 and G2 phases of the cell cycle significantly reduced the sensitivity of lymphocytes to the clastogenic effects of BLM in G2. Much lower frequencies of chromatid aberrations were observed in X-ray irradiated lymphocytes following BLM treatment (p<0.05). The magnitudes of adaptation induced at different phases of the cell cycle were not significantly different. Furthermore, there was no a significant difference in the magnitude of adaptive response induced by either 1 or 5 cGy X-rays. Conclusion: These observations might indicate that resistance of pre-exposure of lymphocytes to very low doses of X-rays protects them from clastogenic effects of BLM. This effect might be due to initial DNA damage induced in these cells leading to provocation of an active DNA repair mechanism independent of cell cycle stage.

  15. Patients Radiation Load Caused by Digitalised X-Ray Equipment

    International Nuclear Information System (INIS)

    Nikodemova, D.; Prikazska, M.; Horvathova, M.

    2001-01-01

    Full text: The radiation load of population all over the world from medical examinations clearly demonstrate the importance of implementation of quality assurance and quality control programmes into the activities of radiological departments. The basic aim of quality assurance programme is to ensure that the radiation dose is kept as low as reasonably practicable consistent with adequate image quality. As many other fields, the rapid development of techniques brought change-over from the conventional analogue technique to the digital technique. In this connection conventional X-ray film is being abandoned and images are being viewed on either laser film or monitor. The main advantages of using digital equipment lay in improved image quality and diagnostic accuracy through digital image processing, reduction in patient exposure, cost reduction by reduction film usage, more efficient storage and retrieval of radiographic images through picture archiving. Several studies that have been conducted for comparison of various diagnostic examinations performed on digital and analogue X-ray equipment have shown that in barium meal examinations, there is potential for dose saving in the digital image intensifier technique. The aim of this study was to compare measured values of dose-area product for colon investigations using different X-ray equipment types, on digital and one analogue. Our material consisted of 60 randomly selected patients, 24 of them were examined with digital equipment and 36 patients with the analogue equipment. (author)

  16. Radiation doses of patients undergoing abdomen, pelvis and lumbar spine x-ray examinations in Nigeria

    International Nuclear Information System (INIS)

    Ogundare, F.O.; Uche, C.Z.; Balogun, F.A.

    2003-01-01

    Full text: Thermoluminescence dosemeters (TLD) have been used to measure the entrance surface doses (ESD) of patients undergoing diagnostic x-ray examinations in Pelvis, Abdomen and Lumbar Spine in Nigeria. A total of 4 randomly selected public hospitals and 240 patients were included in this investigation. Age of the patients used is from 45 years and above. Mean, median, first and third quartiles of ESDs are reported. The results showed that in most cases, for each of the examinations, the mean ESDs are higher than the published reference doses and their corresponding values from other countries. Nevertheless the ESD of each of the patients fall within the ranges of ESDs that have been reported from other countries as quoted by UNSCEAR. The distribution of the ESDs was also found to be negatively skewed. This suggests that radiographic departments need to review their radiographic practices in order to bring their doses to optimum levels. Effective doses were also calculated from the ESD values. The importance of good regulatory activities and trained personnel is stressed in this work It is therefore suggested that further dose reduction program, while still having in focus ways of optimizing the various radiological parameters in order for patient to receive least dose and the radiologist having an acceptable image, should include emphasis on good regulatory control and use of well-trained personnel. Apart from the fact that the data provided in this work will be useful for the formulation of national guidance levels, it also provides patient dosimetry information on healthcare level IV countries

  17. Guidance levels for diagnostic radiology in Romania

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.

    2002-01-01

    Over two decades surveys of radiological practice in Romania have demonstrated wide variations in patient dose levels between different hospitals. Local and national investigations revealed poor performances as well as of radiological equipment, darkroom procedure or technology of investigation. Hitherto, the annual collective effective dose to the population of Romania from diagnostic medical exposures attained a value of 13,820 manSv. Since the annual frequencies of radiological examinations remain unchanged over last ten years, this value is mostly attributed to the individual dose levels in different X-ray procedures. Notwithstanding the huge benefits to patients, the reduction of unnecessary exposures and individual doses are our principal concern and the establishment of national reference dose levels should solve this problem. British experience demonstrated that reference doses are a practical tool in this purpose and the adoption of national reference dose values indicated an overall improvement in patient exposure. Even the local of reference dose values proved a useful way to achieve patient dose reduction. In meantime the optimization of patient protection, each X-ray examination should be conducted with lowest necessary dose to achieve the clinical aim. This paper presents the first approach to establish local reference dose levels for some diagnostic examinations based on the measurements made in six (from the eighth of Eastern territory of Romania) districts, invited to cooperate in this end

  18. Effects of low-dose continuously fractionated X-ray irradiation on murine peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Xie Yi; Zhang Hong; Dang Bingrong; Hao Jifang; Guo Hongyun; Wang Xiaohu

    2007-01-01

    For estimating biological risks from low doses continual irradiation, we investigated the effects of exposure to continuously fractionated X-rays on murine immune system. The BALB/c mice were irradiated with 0.07Gy at the first day and 0.08 Gy/d in the following 12 days at a dose rate of 0.2 Gy/min. The peripheral blood lymphocyte cycle and death were determined by flow cytometry at the cumulative doses of 0, 0.07, 0.23, 0.39, 0.55, 0.71, 0.87 and 1.03 Gy respectively. The results showed that the cycle of peripheral blood lymphocyte was arrested in G 0 /G 1 at cumulative doses of 0.07, 0.23, 0.71 and 0.87 Gy, and in G 2 /M at cumulative doses of 0.39 and 1.03 Gy; the percentage of death of peripheral blood lymphocyte was ascended with dose increasing, and reached the death peak at cumulative doses of 0.71 Gy. The results suggested that low doses continual X-rays total-body irradiated could result in changes of cellular cycle and death, and some damages to immunocytes, which accorded to linear square model. (authors)

  19. Studies on the gonad dose in x-ray examination for the two day human dock at Nissei Hospital

    International Nuclear Information System (INIS)

    Murakami, Shozo; Muraoka, Tsutomu; Ishigaki, Naoya; Ono, Toshio; Nakai, Toshio

    1979-01-01

    The gonad dose in x-ray examination should be reduced to the minimum extent. The purpose of this study is to estimate the gonad dose in x-ray examination for the two day-human dock at Nissei Hospital. The gonad dose to 40 males and 60 females was measured on cholecystography and gastrointestinal radiography. Dose measurement was performed using a thermoluminescence dosimeter. The results were as follows: Mean gonad dose is 6.9 mR to male and 44.2 mR to female, so that gonad dose to female is 6.4 times greater than that to male. (author)

  20. Rapid detection of chromosome rearrangement in medical diagnostic X-ray workers by using fluorescence in situ hybridization and study on dose estimation

    International Nuclear Information System (INIS)

    Wang Zhiquan; Sun Yuanming; Li Jin

    1998-01-01

    Objective: Biological doses were estimated for medical diagnostic X-ray workers. Methods: Chromosome rearrangements in X-ray workers were analysed by fluorescence in situ hybridization (FISH) with composite whole chromosome paintings number 4 and number 7. Results: The frequency of translocation in medical diagnostic X-ray workers was much higher than that in control group (P<0.01). The biological doses to individual X-ray workers were calculated by their translocation frequency. The translocation frequencies of both FISH and G-banding were in good agreement. Conclusion: The biological doses to X-ray workers are estimated by FISH first when their dosimetry records are not documented

  1. Extremity doses of medical staff involved in interventional radiology and cardiology: Correlations and annual doses (hands and legs)

    International Nuclear Information System (INIS)

    Krim, S.; Brodecki, M.; Carinou, E.; Donadille, L.; Jankowski, J.; Koukorava, C.; Dominiek, J.; Nikodemova, D.; Ruiz-Lopez, N.; Sans-Merce, M.; Struelens, L.; Vanhavere, F.

    2011-01-01

    An intensive measurement campaign was launched in different hospitals in Europe within work package 1 of the ORAMED project (Optimization of RAdiation protection for MEDical staff). Its main objective was to obtain a set of standardized data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimize staff protection. The monitored procedures were divided in three main categories: cardiac, general angiography and endoscopic retrograde cholangio-pancreatography(ERCP) procedures. Using a common measurement protocol, information such as the protective equipment used (lead table curtain, transparent lead glass ceiling screen, patient shielding, whole body shielding or special cabin etc.) as well as Kerma Area Product (KAP) values and access of the catheter were recorded. This study was performed with a final database of more than 1300 procedures performed in 34 European hospitals. Its objectives were firstly to determine if the measured extremity doses could be correlated to the KAP values; secondly to check if the doses to the eyes could be linked to the doses to the hands (finger or wrist positions) and finally if the doses to the fingers could be estimated based on the doses to the wrists. General correlations were very difficult to find and their strength was mostly influenced by three main parameters: the X-ray tube configuration, the room collective radioprotective equipment and the access of the catheter. The KAP value can provide a simple mean to estimate the extremity doses of the operator given that it is assessed correctly for the operator when he is actually using the X-ray tube. Moreover, this study showed that the doses to the left finger are strongly correlated to the doses to the left wrist when no ceiling shield is used. It is also possible to estimate the doses to the eyes given the doses to the left finger or left wrist but the X-ray tube configuration and the access have to be considered. The annual

  2. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    Science.gov (United States)

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  3. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels

    International Nuclear Information System (INIS)

    Bessa, Ana Carolina Moreira de

    2007-01-01

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were inter compared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: 67 Ga, 201 Tl and 99m Tc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  4. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels

    International Nuclear Information System (INIS)

    Bessa, Ana Carolina Moreira de

    2006-01-01

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were intercompared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: 67 Ga, 201 Tl and 99m Tc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  5. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  6. Evaluation of the entrance skin dose due to paediatric chest X-rays examinations carried out at a great hospital in Rio de Janeiro city

    International Nuclear Information System (INIS)

    Mohamadain, K.E.M.; Azevedo, A.C.P.; Rosa, L.A.R. da; Mota, H.C.; Goncalves, O.D.; Guebel, M.R.N.

    2001-01-01

    A dosimetric survey in paediatric radiology is currently being carried out at the paediatric unit of a great hospital in Rio de Janeiro city, aiming the assessment of patient doses and image quality. The aim of this work was to estimate the entrance skin dose for frontal and lateral chest X-rays exposure to paediatric patients. Three examination techniques were investigated, namely PA, AP and lateral positions. For entrance skin dose evaluation, two different TL dosimeters were used, namely LiF:Mg,Ti and CaSO4:Dy. The age intervals considered were 0-1 year, 1-5 years, 5-10 years and 10-15 years. The results obtained with both dosimeters are similar and the entrance skin dose values evaluated for the different age intervals considered are compared with previous values found in Brazil and also in Europe. (author)

  7. Estimation of dose to the unborn child at diagnostic X-ray examinations based on data registered in RIS/PACS

    International Nuclear Information System (INIS)

    Helmrot, Ebba; Pettersson, Haakan; Sandborg, Michael; Alten, Jonas Nilsson

    2007-01-01

    The aim of this work was to determine mean absorbed doses to the unborn child in common conventional X-ray and computed tomography (CT) examinations and to find an approach for estimating foetal dose based on data registered in the Radiological Information System/Picture Archive and Communication System (RIS/PACS). The kerma-area product (KAP) and CT dose index (CTDI vol ) in common examinations were registered using a human-shaped female dosimetry phantom. Foetal doses, D f , were measured using thermoluminescent dosimeters placed inside the phantom and compared with calculated values. Measured foetal doses were given in relation to the KAP and the CTDI vol values, respectively. Conversion factor D f /KAP varies between 0.01 and 3.8 mGy/Gycm 2 , depending on primary beam position, foetus age and beam quality (tube voltage and filtration). Conversion factors D f /CTDI vol are in the range 0.02 - 1.2 mGy/mGy, in which the foetus is outside or within the primary beam. We conclude that dose conversion factors based on KAP or CTDI vol values automatically generated by the RIS/PACS system can be used for rapid estimations of foetal dose for common examination techniques. (orig.)

  8. Transmission properties of barite mortar using X-ray spectra measured with Cd Te detector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J. C.; Mariano, L.; Costa, P. R. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R. 187, Cidade Universitaria, 05508-090 Sao Paulo (Brazil); Tomal, A., E-mail: josilene@usp.br [Universidade Federal de Goias, Instituto de Fisica, Campus Samambaia, 74001-970 Goiania (Brazil)

    2014-08-15

    Current methods for calculating X-ray shielding barriers do not take into account spectral distribution of the beam transmitted by the protective material. This consideration is important in dose estimations for radiation workers and general public in diagnostic radiology facilities. The aim of the present study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. These curves were described in units of ambient dose equivalent (H (10)), since it is the radiation quantity adopted by IAEA for dose assessment in medical environment. Attenuation curves were determined using the optimized model for shielding evaluation presented by Costa and Caldas (2002). Workload distribution presented by Simpkin (1996), measured primary spectra and mass attenuation coefficients of barite mortar were used as input data in this model. X-ray beams in diagnostic energy range were generated by an industrial X-ray tube with 3 mm of aluminum additional filtration. Primary experimental spectra were measured by a Cd Te detector and corrected by the response function of detector by means of a stripping procedure. Air kerma measurements were performed using an ionization chamber for normalization purpose of the spectra. The corrected spectra presented good agreement with spectra generated by a semi-empirical model. The variation of the ambient dose equivalent as a function of barite mortar thickness was calculated. Using these data, it was estimated the optimized thickness of protective barrier needed for shielding a particular area in an X-ray imaging facility. The results obtained for primary protective barriers exhibit qualitative agreement with those presented in literature. (Author)

  9. X-ray diagnosis of erosive gastritis

    International Nuclear Information System (INIS)

    Taskov, A.; Krastin, A.

    1993-01-01

    A series of 602 patients are studied according to a standard protocol including double contrast examination, taking films with dosed compression and complete filling (accordingly 3+3+1 radiographs). A barium suspension at concentration 200.0 BaSO 4 in 100 ml water is used as a positive contrast medium, and effervescent powder or pills - as a negative contrast. Erosive gastritis is diagnosed in 48 patients (7.9%) of which 38 present complete erosions (79.2%), 6 (12.6%) - incomplete, and 4 (8.3%) - mixed erosions. In 35 cases (72.9%) erosions are differentiated in double-contrast films, while in 21 (43.8%) - in those with compression. The advantage of the double contrast technique consists in visualization of erosions of the body of the stomach and discovering of incomplete erosions. In 483 patients a comparative assessment is done of the X-ray and endoscopic findings. There are recorded 5 false-positive and 25 false-negative radiological results. The sensitivity of the X-ray study in terms of erosive gastritis amounts to 59.7%. 15 refs., 4 figs. (orig.)

  10. Low Dose X-Ray Sources and High Quantum Efficiency Sensors: The Next Challenge in Dental Digital Imaging?

    Directory of Open Access Journals (Sweden)

    Arnav R. Mistry

    2014-01-01

    Full Text Available Objective(s. The major challenge encountered to decrease the milliamperes (mA level in X-ray imaging systems is the quantum noise phenomena. This investigation evaluated dose exposure and image resolution of a low dose X-ray imaging (LDXI prototype comprising a low mA X-ray source and a novel microlens-based sensor relative to current imaging technologies. Study Design. A LDXI in static (group 1 and dynamic (group 2 modes was compared to medical fluoroscopy (group 3, digital intraoral radiography (group 4, and CBCT scan (group 5 using a dental phantom. Results. The Mann-Whitney test showed no statistical significance (α=0.01 in dose exposure between groups 1 and 3 and 1 and 4 and timing exposure (seconds between groups 1 and 5 and 2 and 3. Image resolution test showed group 1 > group 4 > group 2 > group 3 > group 5. Conclusions. The LDXI proved the concept for obtaining a high definition image resolution for static and dynamic radiography at lower or similar dose exposure and smaller pixel size, respectively, when compared to current imaging technologies. Lower mA at the X-ray source and high QE at the detector level principles with microlens could be applied to current imaging technologies to considerably reduce dose exposure without compromising image resolution in the near future.

  11. Dose distribution in head and neck during dental x-ray procedures

    International Nuclear Information System (INIS)

    Mason, E.W.; Goepp, R.A.

    1978-01-01

    Previous studies, notably by Franklin (Angle Ortho., 43:53-64, 1973), have shown significant exposures during cephalometric dental procedures and ways in which these exposures can be reduced. Skin dose over thyroid tissue has been measured by Alcox (J. Am. Dent. Assoc., 88:568-579, 1974), and others. This study is an expansion of thyroid dose measurements by Block, Goepp, and Mason (Angle Ortho., 47:17-24, 1977). The internal dose distribution in the head and neck area due to cephalometric and panoramic dental x-ray procedures is shown along with the dependence of orbit and thyroid dose on patient positioning. Higher doses can be delivered to deep tissue by panoramic machines since tissue at the axis of rotation is exposed during the entire procedure. (author)

  12. Early national and international recommendations for X-ray and radiation protection

    International Nuclear Information System (INIS)

    Tesinska, E.

    2008-01-01

    The first three decades of pioneering work in the field of X-ray and natural radioactivity research and use took its toll all over the world because of lack of knowledge and caution. Coordinated, international cooperation in the field of X-ray and radium protection and standardization of measures was established after the World War I. The First and the Second International Congress of Radiology held in London in 1925 and in Stockholm in 1928 respectively, played a crucial role in it. Based on these congresses' initiatives and resolutions, the International X-ray Unit Committee and the International X-ray and Radium Protection Committee were established in 1828. The early recommendations on the international X-ray unit and on X-ray and radium protection, as passed by the Second International Congress of Radiology in Stockholm in 1928, are presented and compared with two related national initiatives, namely with the Memorandum No. 1 (July 1921) of the British X-ray and Radium Protection Committee, and with a draft of a legal measure regarding the X-ray and radium treatment regulation in Czechoslovakia, which was put together by the Czechoslovak Society of Radiology and the Vereinigung der deutschen Roentgenologen und Radiologen in der Tschechoslowakischen Republik in 1927 at a request of the Chamber of Doctor of Medicine for Bohemia and Moravia and in response to the international initiatives in that field. (author)

  13. Characterization of X-ray fields at the center for devices and radiological health

    Energy Technology Data Exchange (ETDEWEB)

    Cerra, F. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    This talk summarizes the process undertaken by the Center for Devices and Radiological Health (CDRH) for establishing reference x-ray fields in its accredited calibration laboratory. The main considerations and their effects on the calibration parameters are discussed. The characterization of fields may be broken down into two parts: (1) the initial setup of the calibration beam spectra and (2) the ongoing measurements and controls which ensure consistency of the reference fields. The methods employed by CDRH for both these stages and underlying considerations are presented. Uncertainties associated with the various parameters are discussed. Finally, the laboratory`s performance, as evidenced by ongoing measurement quality assurance results, is reported.

  14. Comparison of pulsed fluoroscopy by direct control using a grid-controlled x-ray tube with pulsed fluoroscopy by primary control

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Ito, Daisuke; Sato, Kunihiko; Shimura, Hirotaka; Sasaki, Masatoshi

    2001-01-01

    Interventional radiology (IVR) procedures may involve high radiation doses that are potentially harmful to the patient. In IVR procedures, pulsed fluoroscopy can greatly decrease the radiation that the physician and patient receive. There are two types of pulsed fluoroscopy: direct control and primary (indirect) control. The purpose of this study was to compare pulsed fluoroscopy by direct control, using a grid-controlled x-ray tube, with pulsed fluoroscopy using primary control. For both types of pulsed fluoroscopy, we measured the waveforms (x-ray tube voltage, x-ray tube current, and x-ray output) and the relative radiation dose. In addition, we compared the decrease in radiation during pulsed fluoroscopy using a care filter. The studies were performed using a Siemens Bicor Plus x-ray System (direct control) and a Siemens Multistar Plus x-ray System (primary control). Using primary pulse control, a 50% decrease in the x-ray output waveform took approximately 0.5-1.0 msec, or longer with a lower x-ray tube current. Using direct pulse control, a 50% decrease in the x-ray output waveform took approximately 0.1 msec, and was independent of x-ray tube current. The rate of radiation reduction with primary pulse control using the care filter with a lower x-ray tube current had a slope exceeding 10%. Pulsed fluoroscopy by direct control using a grid-controlled x-ray tube permits an optimal radiation dose. To decrease the radiation in primary pulse control, a care filter must be used, particularly with a lower x-ray tube current. (author)

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  18. Comparative survey of site and personnel monitoring characteristics for operation of various types of diagnostic-X ray equipment

    International Nuclear Information System (INIS)

    Lyarskij, P.P.; Zol'nikova, N.I.

    1977-01-01

    Diagnostic X-ray machines in present use at medical facilities differ in design and operating parameters, this diversity producing, in turn, a variety of local radiological situations and levels of personnel exposure. Based on radiological safety characterization of working conditions, the authors present a breakdown of contemporary diagnostic X-ray equipment types, based on detailed examination of each group in terms of their associated site monitoring and dosimetry patterns. The paper reports data on personnel exposure levels not only as a function of equipment design and operating characteristics but also according to types of occupational activities for particular medical personnel groups (radiologists, surgeons, anesthesiologists, etc.). Included are health physics data for domestic and foreign X-ray equipment, levels of local and absorbed doses for radiologists, cardiovascular surgeons, neurosurgeons, urologists, traumatologists, anesthesiologists, etc. Measures are recommended for optimizing their activities from the standpoint of radiation safety. (author)

  19. Radiation dose to infants, children and adults in X-ray diagnostic radiology-in the case of plain radiography

    International Nuclear Information System (INIS)

    Aoyama, Takahiko; Koyama, Shuji; Yamauchi-Kawaura, Chiyo; Sugimoto, Naruto; Fujii, Keisuke; Kawasaki, Toshio

    2012-01-01

    The objective of this study was to evaluate radiation doses to infant, child and adult patients undergoing various types of plain radiography and to compare the doses among them. The doses were measured using newborn, 6-year-child and adult anthropomorphic phantoms, in which photodiode dosimeters were implanted at various tissue and organ positions. Measured doses were used to evaluate organ and effective doses. Organ doses obtained in various types of radiography were lower than 0.7 mGy for adults, 0.3 mGy for children and 0.2 mGy for infants, excepting lens dose of approximately 1 mGy in adult head radiography, where the doses for children and infants lowered to 1/2-1/3 of the doses for adults. Effective doses in various types of head radiography for adults, children and infants were in identical levels in a range of 5-30 μSv. In chest, abdomen and hip-joint radiography, effective doses of 0.02-0.11 mSv for children and 0.02-0.08 mSv for infants were identical to or in a fraction of the doses for adults of 0.06-0.15 mSv. In adult head and spinal radiography, effective doses by International Commission of Radiological Protection (ICRP) Publication 60 lowered respectively to 1/6-1/9 and 1/3-1/9 of the doses listed in United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000. (author)

  20. SSD effects on high energy x-ray surface and build up dose

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: Dose in the build up region for high energy x-rays produced by a medical linear accelerator is affected by the x-ray source to patient surface distance (SSD). The use of isocentric treatments whereby the tumour is positions 100cm from the source means that depending of the depth of the tumour and the size of the patient, the SSD can vary from distances of 80cm to 100cm. To achieve larger field sizes, the SSD can also be extended out to 120cm at times. Results have shown that open fields are not significantly affected by SSD changes with deviations in percentage dose being less than 4% of maximum dose for SSD's from 80cm to 120cm SSD. With the introduction of beam modifying devices such as Perspex blocking trays, the effects are significant with a deviation of up to 22% measured at 6MV energy with a 6mm Perspex tray for SSD's from 80cm to 120cm. These variations are largest at the skin surface and reduce with depth. The use of a multi leaf collimator for blocking removes extra skin dose caused by the Perspex block trays with decreasing SSD. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  1. Response of human and rabbit lymphocytes to low doses of X-rays

    International Nuclear Information System (INIS)

    Fabry, L.

    1982-01-01

    The response of human and rabbit lymphocytes to low doses of X-rays was studied by the yields of dicentrics in first division metaphases. For both species, the dose-response curve was best fitted to the linear-quadratic model with a linear component predominating up to 67 and 42 rad respectively for man and rabbit. A calibration curve (5-400 rad) was obtained by combining the present results on man with previous data at higher doses. On the other hand, it appears that, at low doses, the radiosentivity of human lymphocytes is significantly higher than that of rabbit lymphocytes [fr

  2. A biosafety evaluation of synchrotron radiation X-ray to skin and bone marrow: single dose irradiation study of rats and macaques.

    Science.gov (United States)

    Lu, Yifan; Tang, Guanghui; Lin, Hui; Lin, Xiaojie; Jiang, Lu; Yang, Guo-Yuan; Wang, Yongting

    2017-06-01

    Very limited experimental data is available regarding the safe dosages related to synchrotron radiation (SR) procedures. We used young rats and macaques to address bone marrow and skin tolerance to various doses of synchrotron radiation. Rats were subjected to 0, 0.5, 2.5, 5, 25 or 100 Gy local SR X-ray irradiation at left hind limb. Rat blood samples were analyzed at 2-90 days after irradiation. The SR X-ray irradiated skin and tibia were sectioned for morphological examination. For non-human primate study, three male macaques were subjected to 0.5 or 2.5 Gy SR X-ray on crus. Skin responses of macaques were observed. All rats that received SR X-ray irradiation doses greater than 2.5 Gy experienced hair loss and bone-growth inhibition, which were accompanied by decreased number of follicles, thickened epidermal layer, and decreased density of bone marrow cells (p X-ray but showed significant hair loss when the dose was raised above 2.5 Gy. The safety threshold doses of SR X-ray for rat skin, bone marrow and macaque skin are between 0.5 and 2.5 Gy. Our study provided essential information regarding the biosafety of SR X-ray irradiation.

  3. Differences of X-ray exposure between X-ray diagnostics with a conventional X-ray screen-system and with an image-intensifier-television-unit

    International Nuclear Information System (INIS)

    Loehr, H.; Vogel, H.; Reinhart, J.; Jantzen, R.

    1977-01-01

    During X-ray diagnostics of patients in the II. Medizinische Poliklinik the X-ray exposure was determined. It corresponded to the data described in literature. Two groups were compared: 518 patients examined with a conventional X-ray screen-system and 642 patients examined with an image-intensifier-television-system. The results demonstrated that with exception of thoracical X-ray examination the replacing of the old system by the television system brought a remarkable increase of the X-ray exposure. The doses depended of the patients constitution to a high degree. (orig.) [de

  4. Calculated and measured dose distribution in electron and X-ray irradiated water phantom

    CERN Document Server

    Ziaie, F; Bulka, S; Afarideh, H; Hadji-Saeid, S M

    2002-01-01

    The Bremsstrahlung yields produced by incident electrons on a tantalum converter have been calculated by using a Monte-Carlo computer code. The tantalum thickness as an X-ray converter was optimized for 2, 2.5, 5, 7.5, and 10 MeV electron beams. The dose distribution in scanning and conveyor direction for both 2 MeV electron and X-ray converted from 2 MeV electron beam have been calculated and compared with experimental results. The economical aspects of low energy electron conversion were discussed as well.

  5. Biological effects of radiation and dosimetry in X-ray diagnostics of children

    International Nuclear Information System (INIS)

    Milkovic, Durdica; Beck, Natko; Kovac, Kornelija; Garaj-Vrhovac, Vera; Gajski, Goran

    2008-01-01

    The chest radiograms represent the basic radiological examinations of thorax. The basis for radiation protection especially in pediatrics is the exact determination of doses. The risk estimation of genome damages can be received in human peripheral blood lymphocytes using alkaline version of Comet Assay. The aim of this work was assessment and quantification of the level of DNA damage in peripheral blood lymphocytes of children during airways X-ray examinations of chest and to compare data to the dose of exposure. Doses were determined using thermoluminescence (TL) dosimetry and radiophotoluminescent (RPL) glass dosimetry system. Twenty children with pulmonary diseases, ages between 5 and 14 years were assessed. Dose measurements were conducted for poster-anterior (PA) projection on the forehead, thyroid gland, gonads, chest and back. We used a 150 kV Shimadzu CH-200 M X-ray unit. Peripheral blood samples were taken from children after and prior to X-ray exposure and were examined with the alkaline Comet Assay. Comet Assay is one of the standard techniques for assessing genome damage with variety applications in genotoxicity testing as well as fundamental research in DNA damage and repair. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of group after irradiation was 14.04 ± 1.74 as opposed to mean value of group before irradiation that was 13.15 ± 1.33. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). In addition, correlation was found between doses in primary beam (measured on the back) and the ratio of tail length (DNA damage) before and after irradiation. Doses measured with TL and RPL dosimeters showed satisfactory agreement and both dosimetry methods are suitable for dosimetric measurements in X-ray diagnostics. (author)

  6. Dosimetry in diagnosis examinations in radiology

    International Nuclear Information System (INIS)

    Lisbona, Albert; Aubert, Bernard; Laffont, Sophie; Beaumont, Stephane; Catala, Alexandre; Cohard, Cecile; Cordoliani, Yves-Sebastien; Giraud, Jean-Yves; Lescrainier, Jacques; Noel, Alain; Verdun, Francis R.

    2003-01-01

    This document aims at helping the professionals involved in radiology when assessing the delivered doses to patients during conventional radiology examinations, in mammography and scanography. The first part recalls all the dosimetric data susceptible to characterize the X ray beam, the patient exposure and the radiological risk. The second part addresses the different types of sensors which can be used to obtain the different measurable dosimetric values. The third part presents the calculation, analytical and numerical methods. The fourth part proposes a set of sheets of data to be acquired on an installation to perform a measurement and/or a dose calculation

  7. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    Science.gov (United States)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  8. Dosimetric behavior of thermoluminescent dosimeters at low doses in diagnostic radiology; Comportamiento dosimetrico de dosimetros termoluminiscentes a bajas dosis en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Del Sol F, S.; Garcia S, R.; Guzman M, J.; Sanchez G, D.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Ramirez R, G. [Hospital Juarez de Mexico, Av. IPN 5160, Col. Magdalena de las Salinas, 07760 Mexico D. F. (Mexico); Gaona, E., E-mail: susi2489@hotmail.com [Universidad Autonoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1100, Col. Villa Quietud, 04960 Mexico D. F. (Mexico)

    2015-10-15

    Thermoluminescent (Tl) characteristics of TLD-100, LiF:Mg,Cu,P, and CaSO{sub 4}: Dy the under homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescent dosimetry is presented. The irradiations were performed utilizing an X-ray beam generated by a Radiology Mexican Company: MRH-II E GMX 325-AF SBV-1 model, with Rotating Anode X-Ray Tube installed in the Hospital Juarez Norte de Mexico in Mexico City. Different thermoluminescent characteristics of dosimetric material were studied, such as, batch homogeneity, Tl glow curve, Tl response as a function of X-ray dose, reproducibility and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and positioned in a generic Phantom was used. Dose verification and comparison with the measurements made with that obtained by TLD-100 were analyzed. Preliminary results indicate the dosimetric peak appears at 243, 236 and 277 ± 5 degrees C respectively, these peaks are in agreement with that reported in the literature. Tl glow curve as a function of X-ray dose showed a linearity in the range from 1.76 mGy up to 14.70 mGy for all materials. Fading for a period of one month at room temperature showed low fading LiF:Mg,Cu,P, medium and high for TLD-100 and CaSO{sub 4}: Dy. The results suggest that the three materials are suitable for measurements at low doses in radiodiagnostic, however, for its dosimetric characteristics are most effective for individual applications: personal dosimetry and monitors limb (LiF:Mg,Cu,P), clinical dosimetry and environmental (TLD-100 and CaSO{sub 4}: Dy). (Author)

  9. X-ray diagnostic installation with an image intensifier TV chain and a dose rate control device

    Energy Technology Data Exchange (ETDEWEB)

    Duemmling, K; Schott, O

    1977-04-28

    The person performing the examination can key up the dose rate briefly via the X-ray tube current, e.g., if the movement of a contrast medium is to be observed on the video screen and only certain phases in this movement, which are of diagnostic significance, are to be viewed more closely. The upward change necessary to reduce quantum noise by a certain factor is made by means of a switch. This at the same time results in a reduction of brightness (over-exposure) of the X-ray image on the video screen by actuating an aperture system between the image intensifier, and the TV camera. To prevent the X-ray tube from being overloaded during key-up of the dose rate, a time limit switch is installed in the control system.

  10. Radiological protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, B

    1974-01-01

    Information that would allow an assessment of the standard of radiological protection in dentistry in the United Kingdom is sparse. The National Radiological Protection Board (previously the Radiological Protection Service) has provided a monitoring and advisory service to dentists for many years but very limited use has been made of this service. In a recent survey, 114 dentists were visited in representative practices in South East England and it was established that only 6.5% of dentists in general practice do not use radiography as an adjunct to their practice (Smith, 1969). In the 88 x-ray sets which were examined, 24% had less than the recommended thickness of aluminium filtration, while 25% had a fixed field size which was larger than necessary for dental radiography; in addition, 27% of the timers were found to have an error of greater than 20% in repetition of the pre-set exposure time. The exposure rate at the cone tip of a dental x-ray unit is generally in the range 1 to 4 R/s. A fault in the timer unit coupled with a failure on the part of the dentist to notice that x-rays are being generated (normally indicated by a red warning light) would rapidly lead to excessive exposure of the patient. Furthermore, a dentist continually holding films in the mouth of his patient would certainly incur a dose well in excess of the permissible hand dose, assuming anaverage work load for the x-ray equipment. Three case histories are given to illustrate the type of hazard that might arise from faulty equipment or bad operating technique.

  11. Epidemiological evidence for the risk of cancer from diagnostic X-rays

    International Nuclear Information System (INIS)

    Berrington, A.

    2001-01-01

    The magnitude of the risk of cancer following exposure to a single moderate or high dose of ionising radiation has been studied extensively and is quite well understood. The size of the risk of cancer from diagnostic X-rays, which are low dose, fractionated exposures and constitute the largest man-made source of radiation exposure, is much more uncertain. The aim of this thesis is to evaluate the risk of cancer to radiologists and to the population from exposure to diagnostic X-rays using various epidemiological methods. The effect of fractionated radiation exposure was investigated in a cohort of 2698 British radiologists who first registered with a radiological society after 1921. There was no evidence of an overall excess risk of cancer mortality. However, there was evidence of an increasing trend in cancer mortality with time since registration with the society (p=0.0002), such that those who had first registered more than 40 years previously had a 41% (95% Cl: 3% to 90%) excess risk compared to cancer mortality rates for all medical practitioners. Indirect estimates of the risk of cancer from diagnostic X-rays to the population were calculated with lifetable methods. Using data on the current annual frequency of diagnostic X-ray exposures to the population, estimated organ doses from these X-rays and models for the risk of cancer from the Japanese atomic bomb survivors, it was estimated that 1.5% of the lifetime risk of cancer in the U.K. population could be attributable to diagnostic X-ray exposures. In fourteen other developed countries estimates ranged from 1.6% in Finland to 8.6% in Japan. Several published case-control studies of leukaemia, brain and parotid gland tumours and thyroid cancer demonstrated significant excess risks with self-reported exposures to diagnostic X-rays. Analysis of original data from a case-control study of thyroid cancer in Kuwait also found a significant trend in risk with estimated thyroid dose from self-reported upper-body X-rays

  12. Patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2000-01-01

    Full text: X-ray examinations remain an essential and widely used diagnostic tool in medicine and hence the most significant source of exposure to man-made radiation for populations. Patterns of practice in diagnostic radiology continue to evolve, with overall growth in the numbers of procedures worldwide and, particularly in developed countries, increasing importance for complex procedures such as computed tomography (CT) and interventional techniques. In order to maximise the benefits from x-rays relative to the associated radiation risks, there is a need to ensure the prior justification of all examinations and the optimisation of patient protection such that doses are as low as reasonably practicable to meet specific clinical requirements. Accordingly, patient dosimetry is a fundamental requirement in diagnostic radiology. Detailed measurements for the assessment of risks or comparison of different types of procedure require the estimation of organ and effective doses. Such comprehensive dosimetry necessarily involves the simulation of clinical practice using anthropomorphic phantoms, with either measurements in a physical phantom or calculations utilising a mathematical phantom. Simpler measurements for the routine monitoring of dose in x-ray departments can be based on practical quantities such as entrance surface dose, dose-area product and, for CT, weighted CT dose index and dose-length product. Widescale surveys reveal significant variations between departments in the typical doses for a given type of procedure and potential scope for dose reductions. In order to promote improvements in practice, the results of periodic dose surveys in departments should be compared with appropriate standards, such as diagnostic reference levels for adult and paediatric patients, that are set nationally or locally for the purposes of promoting critical review of the equipment and techniques in use. Patient dosimetry should form an essential element of routine quality

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... lowest radiation dose possible while producing the best images for ... organizations continually review and update the technique standards used ...

  15. Surface dose of X rays to patients during extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Jiang Qingqi; Weng Zhigeng; Feng Ming; Wang Guomin.

    1990-01-01

    During extracorporeal shock wave lithotripsy (ESWL), the fluoroscopy must be made to show the location and size of the stone thus the patient has to be exposed to X rays. The surface dose to patients during ESWL was measured in an investigation on 134 cases of renal lithiasis admitted in a certain hospital of Shanghai. The results show that the average skin dose equivalent for these patients was 162 mSv and the magnitude of doses was depended upon some factors such as the size and location of the stone

  16. Development of an X-ray installation for the study of secondary electrons: preliminary measurements and calculations

    International Nuclear Information System (INIS)

    Baguena, A.; Shaw, M.; Williart, A.; Baguena, A.; Garcia, G.

    2006-01-01

    We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)

  17. Development of an X-ray installation for the study of secondary electrons: preliminary measurements and calculations

    Energy Technology Data Exchange (ETDEWEB)

    Baguena, A.; Shaw, M.; Williart, A. [Universidad Nacional de Educacion a Distancia, Dpto. Fisica de los Materiales, Madrid (Spain); Baguena, A. [Consejo de Seguridad Nuclear, Madrid (Spain); Garcia, G. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2006-07-01

    We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)

  18. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  19. Effect of low dose X-ray irradiation on apoptosis in spermatogenic cells of mouse testes

    International Nuclear Information System (INIS)

    Liu Guangwei; Liu Shuchun; Lu Zhe; Gong Shouliang

    2003-01-01

    To study the effects of low dose radiation (LDR) with different doses of X-rays on the apoptosis in spermatogenic cells of male Kunming mouse testes. The time-effect and dose-effect of apoptosis in the different stages of spermatogenic cell cycles of mouse testis after LDR with different doses of X-rays were studied with light microscope using the methods of TdT-mediated dUTP nick end labeling (TUNEL) and HE staining. The apoptosis of spermatogenic cells induced by LDR had a remarkable regularity in cell types. When the dose was 0.025 Gy, spermatogonium apoptosis was taken as main. With the dose increase of irradiation (0.025-0.2 Gy), spermatocytes also showed an apoptotic change, but the apoptotic rate of spermatogonia was significantly higher than that of spermatocytes. Moreover, the apoptosis of spermatids and spermatozoa scarcely occurred after irradiation with low dose. The apoptosis of spermatogenic cells induced by LDR has a regular change, which provides a further experimental evidence for the mechanism study of hormesis by LDR

  20. Studies of the dose distribution for patients undergoing various examinations in x-ray diagnosis and methods optimization

    International Nuclear Information System (INIS)

    Schandorf, Cyril

    2002-01-01

    The analysis of the status of x-ray diagnosis in Ghana revealed that Ghana is in the health care Category III, since there are about 4,2000 people to each physicians-ray departments have no quality management and quality control system in place for monitoring the quality of diagnostic images. Education and training in radiation protection and cost-effective use of x-rays are needed as part of the educational programme for radiologists, radiographers, x-ray technical officers and darkroom attendants. The dose and dose distribution for adult patients undergoing chest PA, lumber spine AP, pelvis/abdomen AP, and Skull AP examinations were determined using thermoluminescence dosemeters and compared with Commission of the European Communities guideline values. Analysis of the data show that 86%, 58% and 50% of the radiographic room delivered doses to patients compared the CEC value for Chest PA, lumber spine AP, pelvis/Abdomen AP and Skull AP respectively. Radiographic departments therefore should review their radiographic procedures to bring their does to optimum levels. Three methods were investigated for use as dose reduction optimization options. With the establishment of administrative procedures for the control of indiscriminate requests and referral criteria for x-ray examinations, patient dose can be averted. It is estimated about 10man.Sv can be averted annually. Authorized exposures can be minimized by standardizing the parameters which have significant influence on patient dose, taking into account screen-film system and film processing. By optimization the techniques factors, entrance surface dose and effective dose can be reduced. For chest PA examination the reduction factors are 4 and 3 respectively. Corresponding values for lumber spine AP, pelvis/abdomen AP and skull AP are 2 and 1.8, 1.4 and 1.4, 2.0 and 1.8 respectively. Three local materials, Ghanaian Anum Serpentine (SGA), Ghanaian Peki-Dzake Serpentine (SGP) and Ghanaian Golokwati Serpentine (SGG

  1. Results of the study of entrance surface dose from conventional examinations in diagnostic radiology

    International Nuclear Information System (INIS)

    Martinez, A.; Jova, L.; Carrazana, J.; Diaz, E.; Mora, R. de la; Guevara, C.; Fleitas, I.

    2001-01-01

    The wide diffusion of X-ray diagnostic together with the quick development and expansion that has come with experiencing the technology in this practice, has motivated the emission of recommendations in the Basic Safety Standards of the IAEA for the establishment of guidance levels for different radiological examinations in each country that allow the optimization of the medical exposure. Considering the above-mentioned and the existence in Cuba in a great number of conventional X-ray equipment, with an average of over 10 years of use which influences directly on the patient dose, in 1999, an investigation began in the country on the patient exposure in this practice. This work shows the first results of measurements carried out in 9 major hospitals of several provinces of the country. The doses were evaluated in the examinations of lumbar spine AP, lumbar spine LAT, thorax PA, skull AP and skull LAT. The determination of the doses in these examinations was carried out by 'in-vivo' measurements on the patients, placing in the center of the irradiation field TLD of LiF. The distributions obtained in the studies are compared with the guidance levels that is shown in the Basic Safety Standards of the IAEA. (author)

  2. Performing Chest X-Rays at Inspiration in Uncooperative Children: The Effect of Exercises with a Training Program for Radiology Technicians

    International Nuclear Information System (INIS)

    Langen, H.J.; Sengenberger, C.; Bielmeier, J.; Jocher, R.; Kohlhauser-Vollmuth, Ch.; Eschmann, M.

    2014-01-01

    It is difficult to acquire a chest X-ray of a crying infant at maximum inspiration. A computer program was developed for technician training. Method. Video clips of 3 babies were used and the moment of deepest inspiration was determined in the single-frame view. 12 technicians simulated chest radiographs at normal video speed by pushing a button. The computer program stopped the video and calculated the period of time to the optimal instant for a chest X-ray. Demonstration software can be tested at website online. Every technician simulated 10 chest X-rays for each of the 3 video clips. The technicians then spent 40 minutes practicing performing chest X-rays at optimal inspiration. The test was repeated after 5, 20, and 40 minutes of practice. Results. 6 participants showed a significant improvement after exercises (collective 1). Deviation from the optimal instant for taking an X-ray at inspiration decreased from 0.39 to 0.22 s after 40 min of practice. 6 technicians showed no significant improvement (collective 2). Deviation decreased from a low starting value of 0.25 s to 0.21 s. Conclusion. The tested computer program improves the ability of radiology technicians to take a chest X-ray at optimal inspiration in a crying child

  3. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    Science.gov (United States)

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  4. Dose measurements in dental radiology using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Chiara, Ana Claudia M. de; Costa, Alessandro M.; Pardini, Luiz Carlos

    2009-01-01

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm 2 , 101.5 +- 9.5 mGy.cm 2 and 116.8 +- 10.4 mGy.cm 2 . The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  5. Printable organometallic perovskite enables large-area, low-dose X-ray imaging

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-01

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  6. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-04

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  7. Bureau of radiological health compliance testing procedures for cabinet S-ray systems

    International Nuclear Information System (INIS)

    Miller, E.A.; Sprau, D.

    1976-01-01

    A manual has been developed by the Bureau of Radiological Health of the Food and Drug Administration to establish procedures for the routine field testing of cabinet x-ray systems to determine compliance with the Federal Performance Standard for Cabinet X-Ray Systems, 21 CFR 1020.40. The manual provides specific instructions for testing each model of cabinet x-ray system. Results from the inspection are recorded on a data from which is designed to permit automatic data processing

  8. Silver nanoparticles in X-ray biomedical applications

    International Nuclear Information System (INIS)

    Mattea, Facundo; Vedelago, José; Malano, Francisco; Gomez, Cesar; Strumia, Miriam C.

    2017-01-01

    The fluorescence of silver nanoparticles or ions can be used for detection and dose enhancement purposes in X-ray irradiation applications. This study is focused on the full integration of the chemical synthesis of silver nanoparticles suitable for dosimetric and radiological purposes with characteristics that can be exploited in radiotherapy and radiodiagnostic. A narrow size distribution and a compatible stabilizing agent is often desired in order to obtain homogeneous behaviors in nanoparticle suspension. With the method proposed in this study, nanoparticles ranging from 5 to 20 nm were obtained. The fluorescence of aqueous suspensions of silver nanoparticles has been measured experimentally and simulated with the Monte Carlo PENELOPE code for different silver concentrations and geometrical configurations. Finally, the feasibility of using these nanoparticles for the elaboration of Fricke gel dosimeters has been tested obtaining a dose enhancement when compared with the same material irradiated below the silver K-edge. - Highlights: • A method to compare NP's fluorescence in simulations and experiments was developed. • Silver nanoparticles suitable for typical dosimetry systems were synthesized. • Concentration and depth of a Ag doped volume was measured with X-ray fluorescence. • A feasibility test of Ag NPs in Fricke gel dosimetry was performed. • Good agreement between Monte Carlo simulations and experiments was obtained.

  9. Overutilization of x-rays

    International Nuclear Information System (INIS)

    Abrams, H.L.

    1979-01-01

    In this article on the overutilization of x-rays the author defines the term overutilization as excessive irradiation per unit of diagnostic information, therapeutic impact, or health outcome. Three main factors are described which lead to overutilization of x-rays: excessive radiation per film; excessive films per examination; and excessive examinations per patient. Topics discussed which influence the excessive examinations per patient are: the physician's lack of knowledge; undue dependence; lack of screening by radiologists; the physician's need for action and certainty; patient demand; reimbursement policies; institutional requirements; preventive medicine; defensive medicine; and the practice of radiology by nonradiologists

  10. Radiation risk to the patient: a case study involving multiple diagnostic X ray exposures given over a period of 25 years

    International Nuclear Information System (INIS)

    Rainbow, A.J.; McMaster Univ., Hamilton, ON; Roginski, P.; McGeen, W.

    1992-01-01

    The cumulative somatic dose index (SDI) for a number of diagnostic X ray examinations was made for a 60 year old male. The history of diagnostic X ray exposure for this patient from 1957 to 1983 showed 29 diagnostic X ray examinations including more than 100 films and 15 minutes of fluoroscopy. The total cumulative SDI to this patient was 214 mGy (about 21 rad). More than half this dose, 142 mGy, was contributed from upper GI and barium enema examinations which used fluoroscopy, with 88 mGy from the fluoroscopy alone. Using the recently revised risk coefficient for fatal cancer following whole-body irradiation of adult workers recommended by the International Commission on Radiological Protection in 1990, the authors estimate a 0.9% cancer morality risk to this patient resulting from the 29 diagnostic X ray examinations. (author)

  11. X-ray diagnostics - benefits and risks

    International Nuclear Information System (INIS)

    Bartholomaeus, Melanie

    2016-01-01

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  12. Advance of the National Program of Radiological Protection and Safety for medical diagnostic with X-rays; Avance del Programa Nacional de Proteccion y Seguridad Radiologica para diagnostico medico con rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Verdejo S, M. [Direccion de Riesgos Radiologicos, Direccion General de Salud Ambiental (Mexico)

    1999-07-01

    The National Program of Radiological Protection and Safety for medical diagnostic with X-ray (Programa Nacional de Proteccion y Seguridad Radiologica para diagnostico medico con rayos X) was initiated in the General Direction of Environmental Health (Direccion General de Salud Ambiental) in 1995. Task coordinated with different dependences of the Public Sector in collaboration between the Secretary of Health (Secretaria de Salud), the National Commission of Nuclear Safety and Safeguards (Comision Nacional de Seguridad Nuclear y Salvaguardias) and, the National Institute of Nuclear Research (Instituto Nacional de Investigaciones Nucleares). The surveillance to the fulfilment of the standardization in matter of Radiological Protection and Safety in the medical diagnostic with X-rays has been obtained for an important advance in the Public sector and it has been arousing interest in the Private sector. (Author)

  13. Experimental validation of a kilovoltage x-ray source model for computing imaging dose

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Yannick, E-mail: yannick.poirier@cancercare.mb.ca [CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Manitoba R3E 0V9 (Canada); Kouznetsov, Alexei; Koger, Brandon [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Tambasco, Mauro, E-mail: mtambasco@mail.sdsu.edu [Department of Physics, San Diego State University, San Diego, California 92182-1233 and Department of Physics and Astronomy and Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2014-04-15

    Purpose: To introduce and validate a kilovoltage (kV) x-ray source model and characterization method to compute absorbed dose accrued from kV x-rays. Methods: The authors propose a simplified virtual point source model and characterization method for a kV x-ray source. The source is modeled by: (1) characterizing the spatial spectral and fluence distributions of the photons at a plane at the isocenter, and (2) creating a virtual point source from which photons are generated to yield the derived spatial spectral and fluence distribution at isocenter of an imaging system. The spatial photon distribution is determined by in-air relative dose measurements along the transverse (x) and radial (y) directions. The spectrum is characterized using transverse axis half-value layer measurements and the nominal peak potential (kVp). This source modeling approach is used to characterize a Varian{sup ®} on-board-imager (OBI{sup ®}) for four default cone-beam CT beam qualities: beams using a half bowtie filter (HBT) with 110 and 125 kVp, and a full bowtie filter (FBT) with 100 and 125 kVp. The source model and characterization method was validated by comparing dose computed by the authors’ inhouse software (kVDoseCalc) to relative dose measurements in a homogeneous and a heterogeneous block phantom comprised of tissue, bone, and lung-equivalent materials. Results: The characterized beam qualities and spatial photon distributions are comparable to reported values in the literature. Agreement between computed and measured percent depth-dose curves is ⩽2% in the homogeneous block phantom and ⩽2.5% in the heterogeneous block phantom. Transverse axis profiles taken at depths of 2 and 6 cm in the homogeneous block phantom show an agreement within 4%. All transverse axis dose profiles in water, in bone, and lung-equivalent materials for beams using a HBT, have an agreement within 5%. Measured profiles of FBT beams in bone and lung-equivalent materials were higher than their

  14. The elimination of low-dose hypersensitivity in Chinese hamster V79-379A cells by pretreatment with X rays or hydrogen peroxide

    International Nuclear Information System (INIS)

    Marples, B.; Joiner, M.C.

    1995-01-01

    To explain increased radioresistance over the X-ray dose range ∼ 0.5-1 Gy an inducible radioprotective mechanism triggered by DNA damage was proposed; hypersensitivity to doses much-lt Gy reflected the response prior to the activation of this system. To test this hypothesis, cells were pre-exposed to DNA-damaging agents in an attempt to induce the process prematurely. An increase in survival was evident at X-ray doses below 0.3 Gy after a priming treatment of X rays (0.05, 0.2, 1 Gy) given 6 h earlier. The protective effect was found to be transitory, requiring time for development and diminishing after two to three cell cycle times. Cycloheximide administered in the interval between the priming and challenge doses of X rays abolished the protection conferred by pretreatment, indicating the involvement of de novo protein synthesis. Oxidative damage by nontoxic doses of hydrogen peroxide (10 -4 M, but not 10 -6 M) also produced a protective effect against subsequent X irradiation. These experiments indicate survival in the hyper-radiosensitive region (much-lt 0.5 Gy) can be modified by pretreatment with agents known to affect DNA repair. In addition, the development of increased radioresistance after single doses of X rays was inhibited by cycloheximide treatment. These studies provide evidence to support the explanations proposed previously for the phenomena of increased radioresistance and hyper-radiosensitivity observed at very low X-ray doses. 57 refs., 6 figs., 3 tabs

  15. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended to...

  16. Estimation of population dose and risk to holding assistants from veterinary X-ray examination in Japan

    International Nuclear Information System (INIS)

    Hashizume, Tadashi; Suganuma, Tunenori; Shida, Takuo

    1989-01-01

    For the estimation of the population doses and risks of stochastic effects to assistants who hold animals during veterinary X-ray examination, a random survey of hospitals and clinics was carried out concerning age distribution of such assistants by groups of facilities. The average organ and tissue dose per examination was evaluated from the experimental data using mean technical factors such as X-ray tube voltage, tube current and field size based on the results of a nationwide survey. The population doses to the assistants were calculated to be about 14 nSv per person per year for the genetically significant dose, 3.5 nSv per person per year for per caput mean marrow dose, 3.3 nSv for the leukemia significant dose and 4.5 nSv for the malignant significant dose, respectively. The total risk of stochastic effects to the Japanese population from holding assistants was estimated using population data and it was estimated to be less than one person per year, but the cancer risks to a number of the assistants were estimated to be more than 4 x 10 -5 . (author)

  17. Simulation study on the behavior of X-rays and gamma rays in an inhomogeneous medium using the Monte Carlo technique

    International Nuclear Information System (INIS)

    Murase, Kenya; Kataoka, Masaaki; Kawamura, Masashi; Tamada, Shuji; Hamamoto, Ken

    1989-01-01

    A computer program based on the Monte Carlo technique was developed for the analysis of the behavior of X-rays and gamma rays in an inhomogeneous medium. The statistical weight of a photon was introduced and the survival biasing method was used for reducing the statistical error. This computer program has the mass energy absorption and attenuation coefficients for 69 tissues and organs as a database file, and can be applied to various cases of inhomogeneity. The simulation and experimental results of the central axis percent-depth dose in an inhomogeneous phantom were in good agreement. This computer program will be useful for analysis on the behavior of X-rays and gamma rays in an inhomogeneous medium consisting of various tissues and organs, not only in radiotherapy treatment planning but also in diagnostic radiology and in the field treating radiation protection. (author)

  18. Evaluation of radiation protection in x rays room design in diagnostic radiography department in Omdurman locality

    International Nuclear Information System (INIS)

    Adam, Ahmed yusif Abdelrahman

    2013-03-01

    The purpose of this study is conducted in order to evaluate the application of radiation protection in x-ray rooms design in diagnosis radiology department, evaluate personal monitoring devices, to assess primary scatter and leakage radiation dose, to assess monitoring devices if available, in period from March 2013 to August 2013. The design data included room size, control room size, manufacture of equipment, room surrounding areas, workload of all equipment rooms, type of x-ray equipment, radiation worker's in all hospital, number of patient in each shift, structural material and shielding, K vp and m As used in x-ray room department during examination testing. The results of this study show that there is x-ray room design, the design of x-ray equipment is accepted according to the radiation safety institute team of quality control. Also the study shows that the radiation protection devices are available and in a good condition and enough in number. The study shows that there are not personal monitoring devices and services. the radiological technologist are well trained. Also the study investigation the radiation protection in x-ray room in diagnostic department in Omdurman locality. Finally the study shows that there is compact able to ICRP recommended and National quality control in Sudan Atomic Energy Council exception, Alwedad, Abusied and Blue Nile there are have not control room concludes that there is only in relationship hospital have a window without shield.(Author)

  19. Protocol and results of the estimates of equivalent dose in utero at 500 scans radiology; Protocolo y resultados de las estimaciones de dosis equivalente en utero en 500 exploraciones de radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Gago Gomez, P.; Hurtado Sanchez, A.; Gomez Cores, S.; Sierra Diaz, F.; Gonzalez Ruiz, C.; Gomez Calvar, R.; Herranz Crespo, R.

    2011-07-01

    According to Royal Decree 1976/1999, laying down the criteria of quality in diagnostic radiology, it is mandatory in utero dose estimation in the case of pregnant patients subjected to X-ray diagnostic examinations.

  20. Applying the PCXMC software for dose assessment in patients submitted to abdomen and pelvis X-ray examinations

    International Nuclear Information System (INIS)

    Oliveira, V.L.S.; Silva, T.A. da

    2009-01-01

    The PCXMC R computational methodology was applied as a evaluation tool of the organ doses in patients submitted to different X-ray conventional diagnoses examinations. Simulations were made based in x-ray parameters and exposure geometry of three patient of same age group in an Emergency Hospital of the metropolitan area of Belo Horizonte city. Contributions to the effective dose from critical organs were evaluated and analyzed in terms of patient height and weight for the examinations of abdomen and pelvis. (author)