WorldWideScience

Sample records for dose volume histogram

  1. Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH)

    International Nuclear Information System (INIS)

    Cheng, C.-W.; Das, Indra J.

    1999-01-01

    Objective: The dose-volume histogram (DVH) has been accepted as a tool for treatment-plan evaluation. However, DVH lacks spatial information. A new concept, the z-dependent dose-volume histogram (zDVH), is presented as a supplement to the DVH in three-dimensional (3D) treatment planning to provide the spatial variation, as well as the size and magnitude of the different dose regions within a region of interest. Materials and Methods: Three-dimensional dose calculations were carried out with various plans for three disease sites: lung, breast, and prostate. DVHs were calculated for the entire volume. A zDVH is defined as a differential dose-volume histogram with respect to a computed tomographic (CT) slice position. In this study, zDVHs were calculated for each CT slice in the treatment field. DVHs and zDVHs were compared. Results: In the irradiation of lung, DVH calculation indicated that the treatment plan satisfied the dose-volume constraint placed on the lung and zDVH of the lung revealed that a sizable fraction of the lung centered about the central axis (CAX) received a significant dose, a situation that warranted a modification of the treatment plan due to the removal of one lung. In the irradiation of breast with tangential fields, the DVH showed that about 7% of the breast volume received at least 110% of the prescribed dose (PD) and about 11% of the breast received less than 98% PD. However, the zDVHs of the breast volume in each of seven planes showed the existence of high-dose regions of 34% and 15%, respectively, of the volume in the two caudal-most planes and cold spots of about 40% in the two cephalic planes. In the treatment planning of prostate, DVHs showed that about 15% of the bladder and 40% of the rectum received 102% PD, whereas about 30% of the bladder and 50% of the rectum received the full dose. Taking into account the hollow structure of both the bladder and the rectum, the dose-surface histograms (DSH) showed larger hot-spot volume, about

  2. Comments on 'Reconsidering the definition of a dose-volume histogram'-dose-mass histogram (DMH) versus dose-volume histogram (DVH) for predicting radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Mavroidis, Panayiotis; Plataniotis, Georgios A; Gorka, Magdalena Adamus; Lind, Bengt K

    2006-01-01

    In a recently published paper (Nioutsikou et al 2005 Phys. Med. Biol. 50 L17) the authors showed that the use of the dose-mass histogram (DMH) concept is a more accurate descriptor of the dose delivered to lung than the traditionally used dose-volume histogram (DVH) concept. Furthermore, they state that if a functional imaging modality could also be registered to the anatomical imaging modality providing a functional weighting across the organ (functional mass) then the more general and realistic concept of the dose-functioning mass histogram (D[F]MH) could be an even more appropriate descriptor. The comments of the present letter to the editor are in line with the basic arguments of that work since their general conclusions appear to be supported by the comparison of the DMH and DVH concepts using radiobiological measures. In this study, it is examined whether the dose-mass histogram (DMH) concept deviated significantly from the widely used dose-volume histogram (DVH) concept regarding the expected lung complications and if there are clinical indications supporting these results. The problem was investigated theoretically by applying two hypothetical dose distributions (Gaussian and semi-Gaussian shaped) on two lungs of uniform and varying densities. The influence of the deviation between DVHs and DMHs on the treatment outcome was estimated by using the relative seriality and LKB models using the Gagliardi et al (2000 Int. J. Radiat. Oncol. Biol. Phys. 46 373) and Seppenwoolde et al (2003 Int. J. Radiat. Oncol. Biol. Phys. 55 724) parameter sets for radiation pneumonitis, respectively. Furthermore, the biological equivalent of their difference was estimated by the biologically effective uniform dose (D-bar) and equivalent uniform dose (EUD) concepts, respectively. It is shown that the relation between the DVHs and DMHs varies depending on the underlying cell density distribution and the applied dose distribution. However, the range of their deviation in terms of

  3. Retrospective Reconstructions of Active Bone Marrow Dose-Volume Histograms

    International Nuclear Information System (INIS)

    Veres, Cristina; Allodji, Rodrigue S.; Llanas, Damien; Vu Bezin, Jérémi; Chavaudra, Jean; Mège, Jean Pierre; Lefkopoulos, Dimitri; Quiniou, Eric; Deutsh, Eric; Vathaire, Florent de; Diallo, Ibrahima

    2014-01-01

    Purpose: To present a method for calculating dose-volume histograms (DVH's) to the active bone marrow (ABM) of patients who had undergone radiation therapy (RT) and subsequently developed leukemia. Methods and Materials: The study focuses on 15 patients treated between 1961 and 1996. Whole-body RT planning computed tomographic (CT) data were not available. We therefore generated representative whole-body CTs similar to patient anatomy. In addition, we developed a method enabling us to obtain information on the density distribution of ABM all over the skeleton. Dose could then be calculated in a series of points distributed all over the skeleton in such a way that their local density reflected age-specific data for ABM distribution. Dose to particular regions and dose-volume histograms of the entire ABM were estimated for all patients. Results: Depending on patient age, the total number of dose calculation points generated ranged from 1,190,970 to 4,108,524. The average dose to ABM ranged from 0.3 to 16.4 Gy. Dose-volume histograms analysis showed that the median doses (D 50% ) ranged from 0.06 to 12.8 Gy. We also evaluated the inhomogeneity of individual patient ABM dose distribution according to clinical situation. It was evident that the coefficient of variation of the dose for the whole ABM ranged from 1.0 to 5.7, which means that the standard deviation could be more than 5 times higher than the mean. Conclusions: For patients with available long-term follow-up data, our method provides reconstruction of dose-volume data comparable to detailed dose calculations, which have become standard in modern CT-based 3-dimensional RT planning. Our strategy of using dose-volume histograms offers new perspectives to retrospective epidemiological studies

  4. Decomposition analysis of differential dose volume histograms

    International Nuclear Information System (INIS)

    Heuvel, Frank van den

    2006-01-01

    Dose volume histograms are a common tool to assess the value of a treatment plan for various forms of radiation therapy treatment. The purpose of this work is to introduce, validate, and apply a set of tools to analyze differential dose volume histograms by decomposing them into physically and clinically meaningful normal distributions. A weighted sum of the decomposed normal distributions (e.g., weighted dose) is proposed as a new measure of target dose, rather than the more unstable point dose. The method and its theory are presented and validated using simulated distributions. Additional validation is performed by analyzing simple four field box techniques encompassing a predefined target, using different treatment energies inside a water phantom. Furthermore, two clinical situations are analyzed using this methodology to illustrate practical usefulness. A comparison of a treatment plan for a breast patient using a tangential field setup with wedges is compared to a comparable geometry using dose compensators. Finally, a normal tissue complication probability (NTCP) calculation is refined using this decomposition. The NTCP calculation is performed on a liver as organ at risk in a treatment of a mesothelioma patient with involvement of the right lung. The comparison of the wedged breast treatment versus the compensator technique yields comparable classical dose parameters (e.g., conformity index ≅1 and equal dose at the ICRU dose point). The methodology proposed here shows a 4% difference in weighted dose outlining the difference in treatment using a single parameter instead of at least two in a classical analysis (e.g., mean dose, and maximal dose, or total dose variance). NTCP-calculations for the mesothelioma case are generated automatically and show a 3% decrease with respect to the classical calculation. The decrease is slightly dependant on the fractionation and on the α/β-value utilized. In conclusion, this method is able to distinguish clinically

  5. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    Science.gov (United States)

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  6. Dose-volume histograms for optimization of treatment plans illustrated by the example of oesophagus carcinoma

    International Nuclear Information System (INIS)

    Roth, J.; Huenig, R.; Huegli, C.

    1995-01-01

    Using the example of oesophagus carcinoma, dose-volume histograms for diverse treatment techniques are calculated and judged by means of multiplanar isodose representations. The selected treatment plans are ranked with the aid of the dose-volume histograms. We distinguish the tissue inside and outside of the target volume. The description of the spatial dose distribution in dependence of the different volumes and the respective fractions of the tumor dose therein with the help of dose-volume histograms brings about a correlation between the physical parameters and the biological effects. In addition one has to bear in mind the consequences of measures that influence the reaction and the side-effects of radiotherapy (e.g. chemotherapy), i.e. the recuperation of the tissues that were irradiated intentionally or inevitably. Taking all that into account it is evident that the dose-volume histograms are a powerful tool for assessing the quality of treatment plans. (orig./MG) [de

  7. Tools for the analysis of dose optimization: I. Effect-volume histogram

    International Nuclear Information System (INIS)

    Alber, M.; Nuesslin, F.

    2002-01-01

    With the advent of dose optimization algorithms, predominantly for intensity-modulated radiotherapy (IMRT), computer software has progressed beyond the point of being merely a tool at the hands of an expert and has become an active, independent mediator of the dosimetric conflicts between treatment goals and risks. To understand and control the internal decision finding as well as to provide means to influence it, a tool for the analysis of the dose distribution is presented which reveals the decision-making process performed by the algorithm. The internal trade-offs between partial volumes receiving high or low doses are driven by functions which attribute a weight to each volume element. The statistics of the distribution of these weights is cast into an effect-volume histogram (EVH) in analogy to dose-volume histograms. The analysis of the EVH reveals which traits of the optimum dose distribution result from the defined objectives, and which are a random consequence of under- or misspecification of treatment goals. The EVH can further assist in the process of finding suitable objectives and balancing conflicting objectives. If biologically inspired objectives are used, the EVH shows the distribution of local dose effect relative to the prescribed level. (author)

  8. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    Science.gov (United States)

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  9. Calculation of complication probability of pion treatment at PSI using dose-volume histograms

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Akanuma, Atsuo; Aoki, Yukimasa

    1991-01-01

    In the conformation technique a target volume is irradiated uniformly as in conventional radiations, whereas surrounding tissue and organs are nonuniformly irradiated. Clinical data on radiation injuries that accumulate with conventional radiation are not applicable without appropriate compensation. Recently a putative solution of this problem was proposed by Lyman using dose-volume histograms. This histogram reduction method reduces a given dose-volume histogram of an organ to a single step which corresponds to the equivalent complication probability by interpolation. As a result it converts nonuniform radiation into a unique dose to the whole organ which has the equivalent likelihood of radiation injury. This method is based on low LET radiation with conventional fractionation schedules. When it is applied to high LET radiation such as negative pion treatment, a high LET dose should be converted to an equivalent photon dose using an appropriate value of RBE. In the present study the histogram reduction method was applied to actual patients treated by the negative pion conformation technique at the Paul Scherrer Institute. Out of evaluable 90 cases of pelvic tumors, 16 developed grade III-IV bladder injury, and 7 developed grade III-IV rectal injury. The 90 cases were divided into roughly equal groups according to the equivalent doses to the entire bladder and rectum. Complication rates and equivalent doses to the full organs in these groups could be represented by a sigmoid dose-effect relation. When RBE from a pion dose to a photon dose is assumed to be 2.1 for bladder injury, the rates of bladder complications fit best to the theoretical complication curve. When the RBE value was 2.3, the rates of rectal injury fit the theoretical curve best. These values are close to the conversion factor of 2.0 that is used in clinical practice at PSI. This agreement suggests the clinical feasibility of the histogram reduction method in conformation radiotherapy. (author)

  10. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Eldib, A; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Lin, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); Li, J [Cyber Medical Inc, Xian, Shaanxi (China); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal)

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number was used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.

  11. Evaluation of dose-volume histograms after prostate seed implantation. 4-year experience

    International Nuclear Information System (INIS)

    Hoinkis, C.; Lehmann, D.; Winkler, C.; Herrmann, T.; Hakenberg, O.W.; Wirth, M.P.

    2004-01-01

    Background and purpose: permanent interstitial brachytherapy by seed implantation is a treatment alternative for low-volume low-risk prostate cancer and a complex interdisciplinary treatment with a learning curve. Dose-volume histograms are used to assess postimplant quality. The authors evaluated their learning curve based on dose-volume histograms and analyzed factors influencing implantation quality. Patients and methods: since 1999, 38 patients with a minimum follow-up of 6 months were treated at the authors' institution with seed implantation using palladium-103 or iodine-125, initially using the preplan method and later real-time planning. Postimplant CT was performed after 4 weeks. The dose-volume indices D90, V100, V150, the D max of pre- and postplans, and the size and position of the volume receiving the prescribed dose (high-dose volume) of the postplans were evaluated. In six patients, postplan imaging both by CT and MRI was used and prostate volumes were compared with preimplant transrectal ultrasound volumes. The first five patients were treated under external supervision. Results: patients were divided into three consecutive groups for analysis of the learning curve (group 1: n = 5 patients treated under external supervision; group 2: n = 13 patients; group 3: n = 20 patients). D90 post for the three groups were 79.3%, 74.2%, and 99.9%, the V100 post were 78.6%, 73.5%, and 88.2%, respectively. The relationship between high-dose volume and prostate volume showed a similar increase as the D90, while the relationship between high-dose volume lying outside the prostate and prostate volume remained constant. The ratio between prostate volumes from transrectal ultrasound and CT imaging decreased with increasing D90 post , while the preplanning D90 and V100 remained constant. The different isotopes used, the method of planning, and the implanted activity per prostate volume did not influence results. Conclusion: a learning curve characterized by an increase

  12. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Fay, Michael; Tan, Alex; Fisher, Richard; Mac Manus, Michael; Wirth, Andrew; Ball, David

    2005-01-01

    Purpose: To determine the relationship between various parameters derived from lung dose-volume histogram analysis and the risk of symptomatic radiation pneumonitis (RP) in patients undergoing radical radiotherapy for primary lung cancer. Methods and Materials: The records of 156 patients with lung cancer who had been treated with radical radiotherapy (≥45 Gy) and for whom dose-volume histogram data were available were reviewed. The incidence of symptomatic RP was correlated with a variety of parameters derived from the dose-volume histogram data, including the volume of lung receiving 10 Gy (V 10 ) through 50 Gy (V 50 ) and the mean lung dose (MLD). Results: The rate of RP at 6 months was 15% (95% confidence interval 9-22%). On univariate analysis, only V 30 (p = 0.036) and MLD (p = 0.043) were statistically significantly related to RP. V 30 correlated highly positively with MLD (r = 0.96, p 30 and MLD can be used to predict the risk of RP in lung cancer patients undergoing radical radiotherapy

  13. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms

    International Nuclear Information System (INIS)

    Lyman, J.T.; Wolbarst, A.B.

    1987-01-01

    To predict the likelihood of success of a therapeutic strategy, one must be able to assess the effects of the treatment upon both diseased and healthy tissues. This paper proposes a method for determining the probability that a healthy organ that receives a non-uniform distribution of X-irradiation, heat, chemotherapy, or other agent will escape complications. Starting with any given dose distribution, a dose-cumulative-volume histogram for the organ is generated. This is then reduced by an interpolation scheme (involving the volume-weighting of complication probabilities) to a slightly different histogram that corresponds to the same overall likelihood of complications, but which contains one less step. The procedure is repeated, one step at a time, until there remains a final, single-step histogram, for which the complication probability can be determined. The formalism makes use of a complication response function C(D, V) which, for the given treatment schedule, represents the probability of complications arising when the fraction V of the organ receives dose D and the rest of the organ gets none. Although the data required to generate this function are sparse at present, it should be possible to obtain the necessary information from in vivo and clinical studies. Volume effects are taken explicitly into account in two ways: the precise shape of the patient's histogram is employed in the calculation, and the complication response function is a function of the volume

  14. Absolute and relative dose-surface and dose-volume histograms of the bladder: which one is the most representative for the actual treatment?

    International Nuclear Information System (INIS)

    Hoogeman, Mischa S; Peeters, Stephanie T H; Bois, Josien de; Lebesque, Joos V

    2005-01-01

    The purpose of this study was to quantify to what extent relative and absolute bladder dose-volume and dose-surface histograms of the planning CT scan were representative for the actual treatment. We used data of 17 patients, who each received 11 repeat CT scans and a planning CT scan. The repeat CT scans were matched on the planning CT scan by the bony anatomy. Clinical treatment plans were used to evaluate the impact of bladder filling changes on the four histogram types. The impact was quantified by calculating for this patient group the correlation coefficient between the planning histogram and the treatment histogram. We found that the absolute dose-surface histogram was the most representative one for the actual treatment

  15. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture

    International Nuclear Information System (INIS)

    Niemierko, Andrzej; Goitein, Michael

    1991-01-01

    The authors investigate a model of normal tissue complication probability for tissues that may be represented by a critical element architecture. They derive formulas for complication probability that apply to both a partial volume irradiation and to an arbitrary inhomogeneous dose distribution. The dose-volume isoeffect relationship which is a consequence of a critical element architecture is discussed and compared to the empirical power law relationship. A dose-volume histogram reduction scheme for a 'pure' critical element model is derived. In addition, a point-based algorithm which does not require precomputation of a dose-volume histogram is derived. The existing published dose-volume histogram reduction algorithms are analyzed. The authors show that the existing algorithms, developed empirically without an explicit biophysical model, have a close relationship to the critical element model at low levels of complication probability. However, it is also showed that they have aspects which are not compatible with a critical element model and the authors propose a modification to one of them to circumvent its restriction to low complication probabilities. (author). 26 refs.; 7 figs

  16. Conformal irradiation of the prostate: estimating long-term rectal bleeding risk using dose-volume histograms

    International Nuclear Information System (INIS)

    Hartford, Alan C.; Niemierko, Andrzej; Adams, Judith A.; Urie, Marcia M.; Shipley, William U.

    1996-01-01

    Purpose: Dose-volume histograms (DVHs) may be very useful tools for estimating probability of normal tissue complications (NTCP), but there is not yet an agreed upon method for their analysis. This study introduces a statistical method of aggregating and analyzing primary data from DVHs and associated outcomes. It explores the dose-volume relationship for NTCP of the rectum, using long-term data on rectal wall bleeding following prostatic irradiation. Methods and Materials: Previously published data were reviewed and updated on 41 patients with Stages T3 and T4 prostatic carcinoma treated with photons followed by perineal proton boost, including dose-volume histograms (DVHs) of each patient's anterior rectal wall and data on the occurrence of postirradiation rectal bleeding (minimum FU > 4 years). Logistic regression was used to test whether some individual combination of dose and volume irradiated might best separate the DVHs into categories of high or low risk for rectal bleeding. Further analysis explored whether a group of such dose-volume combinations might be superior in predicting complication risk. These results were compared with results of the 'critical volume model', a mathematical model based on assumptions of underlying radiobiological interactions. Results: Ten of the 128 tested dose-volume combinations proved to be 'statistically significant combinations' (SSCs) distinguishing between bleeders (14 out of 41) and nonbleeders (27 out of 41), ranging contiguously between 60 CGE (Cobalt Gray Equivalent) to 70% of the anterior rectal wall and 75 CGE to 30%. Calculated odds ratios for each SSC were not significantly different across the individual SSCs; however, analysis combining SSCs allowed segregation of DVHs into three risk groups: low, moderate, and high. Estimates of probabilities of normal tissue complications (NTCPs) based on these risk groups correlated strongly with observed data (p = 0.003) and with biomathematical model-generated NTCPs

  17. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    Science.gov (United States)

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  18. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  19. A theoretical approach to the problem of dose-volume constraint estimation and their impact on the dose-volume histogram selection

    International Nuclear Information System (INIS)

    Schinkel, Colleen; Stavrev, Pavel; Stavreva, Nadia; Fallone, B. Gino

    2006-01-01

    This paper outlines a theoretical approach to the problem of estimating and choosing dose-volume constraints. Following this approach, a method of choosing dose-volume constraints based on biological criteria is proposed. This method is called ''reverse normal tissue complication probability (NTCP) mapping into dose-volume space'' and may be used as a general guidance to the problem of dose-volume constraint estimation. Dose-volume histograms (DVHs) are randomly simulated, and those resulting in clinically acceptable levels of complication, such as NTCP of 5±0.5%, are selected and averaged producing a mean DVH that is proven to result in the same level of NTCP. The points from the averaged DVH are proposed to serve as physical dose-volume constraints. The population-based critical volume and Lyman NTCP models with parameter sets taken from literature sources were used for the NTCP estimation. The impact of the prescribed value of the maximum dose to the organ, D max , on the averaged DVH and the dose-volume constraint points is investigated. Constraint points for 16 organs are calculated. The impact of the number of constraints to be fulfilled based on the likelihood that a DVH satisfying them will result in an acceptable NTCP is also investigated. It is theoretically proven that the radiation treatment optimization based on physical objective functions can sufficiently well restrict the dose to the organs at risk, resulting in sufficiently low NTCP values through the employment of several appropriate dose-volume constraints. At the same time, the pure physical approach to optimization is self-restrictive due to the preassignment of acceptable NTCP levels thus excluding possible better solutions to the problem

  20. BED-Volume histograms calculation for routine clinical dosimetry in brachytherapy

    International Nuclear Information System (INIS)

    Galelli, M.; Feroldi, P.

    1995-01-01

    The consideration of volumes is essential in Brachytherapy clinical dosimetry (I.C.R.U). Indeed, several indices, all based on dose-volume histograms (DVHs), have been designed in order to evaluate: before the therapy the volumetric quality of different possible implant geometries; during the therapy the consistency of the real and the previsional implants. Radiobiological evaluations, considering the dose deposition temporal pattern of treatment, can be usefully added to dosimetric calculations, to compare different treatment schedules. The Linear-Quadratic model is the most used: radiobiological modelisation and Biologically Effective Dose (BED) is principal related dosimetric quantity. Therefore, the consideration of BED-volume histogram (BED-VHs) is a straightforward extension of DVHs. In practice, BED-VHs can help relative comparisons and optimisations in treatment planning when combined to dose-volume histograms. Since 1994 the dosimetric calculations for all the gynecological brachytherapy treatments are performed considering also DVHs and BED-VHs. In this presentation we show the methods of BEDVHs calculation, together with some typical results

  1. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)

    2015-11-15

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.

  2. SU-C-207A-07: Cumulative 18F-FDG Uptake Histogram Relative to Radiation Dose Volume Histogram of Lung After IMRT Or PSPT and Their Association with Radiation Pneumonitis

    International Nuclear Information System (INIS)

    Shusharina, N; Choi, N; Bortfeld, T; Liao, Z; Mohan, R

    2016-01-01

    Purpose: To determine whether the difference in cumulative 18F-FDG uptake histogram of lung treated with either IMRT or PSPT is associated with radiation pneumonitis (RP) in patients with inoperable stage II and III NSCLC. Methods: We analyzed 24 patients from a prospective randomized trial to compare IMRT (n=12) with vs. PSPT (n=12) for inoperable NSCLC. All patients underwent PET-CT imaging between 35 and 88 days post-therapy. Post-treatment PET-CT was aligned with planning 4D CT to establish a voxel-to-voxel correspondence between post-treatment PET and planning dose images. 18F-FDG uptake as a function of radiation dose to normal lung was obtained for each patient. Distribution of the standard uptake value (SUV) was analyzed using a volume histogram method. The image quantitative characteristics and DVH measures were correlated with clinical symptoms of pneumonitis. Results: Patients with RP were present in both groups: 5 in the IMRT and 6 in the PSPT. The analysis of cumulative SUV histograms showed significantly higher relative volumes of the normal lung having higher SUV uptake in the PSPT patients for both symptomatic and asymptomatic cases (VSUV=2: 10% for IMRT vs 16% for proton RT and VSUV=1: 10% for IMRT vs 23% for proton RT). In addition, the SUV histograms for symptomatic cases in PSPT patients exhibited a significantly longer tail at the highest SUV. The absolute volume of the lung receiving the dose >70 Gy was larger in the PSPT patients. Conclusion: 18F-FDG uptake – radiation dose response correlates with RP in both groups of patients by means of the linear regression slope. SUV is higher for the PSPT patients for both symptomatic and asymptomatic cases. Higher uptake after PSPT patients is explained by larger volumes of the lung receiving high radiation dose.

  3. Comparison of dose length, area, and volume histograms as quantifiers of urethral dose in prostate brachytherapy

    International Nuclear Information System (INIS)

    Butler, Wayne M.; Merrick, Gregory S.; Dorsey, Anthony T.; Hagedorn, Brenda M.

    2000-01-01

    Purpose: To determine the magnitude of the differences between urethral dose-volume, dose-area, and dose-length histograms (DVH, DAH, and DLH, respectively, or DgH generically). Methods and Materials: Six consecutive iodine-125 ( 125 I) patients and 6 consecutive palladium-103 ( 103 Pd) patients implanted via a modified uniform planning approach were evaluated with day 0 computed tomography (CT)-based dosimetry. The urethra was identified by the presence of a urinary catheter and was hand drawn on the CT images with a mean radius of 3.3 ± 0.7 mm. A 0.1-mm calculation matrix was employed for the urethral volume and surface analysis, and urethral dose points were placed at the centroid of the urethra on each 5-mm CT slice. Results: Although individual patient DLHs were step-like, due to the sparseness of the data points, the composite urethral DLH, DAH, and DVHs were qualitatively similar. The DAH curve delivered more radiation than the other two curves at all doses greater than 90% of the prescribed minimum peripheral dose (mPD) to the prostate. In addition, the DVH curve was consistently higher than the DLH curve at most points throughout that range. Differences between the DgH curves were analyzed by integrating the difference curves between 0 and 200% of the mPD. The area-length, area-volume, and volume-length difference curves integrated in the ratio of 3:2:1. The differences were most pronounced near the inflection point of the DgH curves with mean A 125 , V 125 , and L 125 values of 36.6%, 31.4%, and 23.0%, respectively, of the urethra. Quantifiers of urethral hot spots such as D 10 , defined as the minimal dose delivered to the hottest 10% of the urethra, followed the same ranking: area analysis indicated the highest dose and length analysis, the lowest dose. D 10 was 148% and 136% of mPD for area and length evaluations, respectively. Comparing the two isotopes in terms of the amount of urethra receiving a given dose, 103 Pd implants were significantly

  4. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  5. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  6. Volume dose of organs at risk in the irradiated volume

    International Nuclear Information System (INIS)

    Hishikawa, Yoshio; Tanaka, Shinichi; Miura, Takashi

    1984-01-01

    Absorbed dose of organs at risk in the 50% irradiated volume needs to be carefully monitored because there is high risk of radiation injury. This paper reports on the histogram of threedimensional volume dose of organs at risk, which is obtained by computer calculation of CT scans. In order to obtain this histogram, CT is first performed in the irradiation field. The dose in each pixel is then examined by the computer as to each slice. After the pixels of all slices in the organ at risk of the irradiated field are classified according to the doses, the number of pixels in the same dose class is counted. The result is expressed in a histogram. The histogram can show the differences of influence to organs at risk given by various radiation treatment techniques. Total volume dose of organs at risk after radiotherapy can also be obtained by integration of each dose of different treatment techniques. (author)

  7. BEDVH--A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants

    International Nuclear Information System (INIS)

    Gagne, Nolan L.; Leonard, Kara L.; Huber, Kathryn E.; Mignano, John E.; Duker, Jay S.; Laver, Nora V.; Rivard, Mark J.

    2012-01-01

    Purpose: A method is introduced to examine the influence of implant duration T, radionuclide, and radiobiological parameters on the biologically effective dose (BED) throughout the entire volume of regions of interest for episcleral brachytherapy using available radionuclides. This method is employed to evaluate a particular eye plaque brachytherapy implant in a radiobiological context. Methods: A reference eye geometry and 16 mm COMS eye plaque loaded with 103 Pd, 125 I, or 131 Cs sources were examined with dose distributions accounting for plaque heterogeneities. For a standardized 7 day implant, doses to 90% of the tumor volume ( TUMOR D 90 ) and 10% of the organ at risk volumes ( OAR D 10 ) were calculated. The BED equation from Dale and Jones and published α/β and μ parameters were incorporated with dose volume histograms (DVHs) for various T values such as T = 7 days (i.e., TUMOR 7 BED 10 and OAR 7 BED 10 ). By calculating BED throughout the volumes, biologically effective dose volume histograms (BEDVHs) were developed for tumor and OARs. Influence of T, radionuclide choice, and radiobiological parameters on TUMOR BEDVH and OAR BEDVH were examined. The nominal dose was scaled for shorter implants to achieve biological equivalence. Results: TUMOR D 90 values were 102, 112, and 110 Gy for 103 Pd, 125 I, and 131 Cs, respectively. Corresponding TUMOR 7 BED 10 values were 124, 140, and 138 Gy, respectively. As T decreased from 7 to 0.01 days, the isobiologically effective prescription dose decreased by a factor of three. As expected, TUMOR 7 BEDVH did not significantly change as a function of radionuclide half-life but varied by 10% due to radionuclide dose distribution. Variations in reported radiobiological parameters caused TUMOR 7 BED 10 to deviate by up to 46%. Over the range of OAR α/β values, OAR 7 BED 10 varied by up to 41%, 3.1%, and 1.4% for the lens, optic nerve, and lacrimal gland, respectively. Conclusions: BEDVH permits evaluation of the

  8. High-dose preoperative chemoradiotherapy in esophageal cancer patients does not increase postoperative pulmonary complications: Correlation with dose-volume histogram parameters

    International Nuclear Information System (INIS)

    Hurmuzlu, Meysan; Ovrebo, Kjell; Wentzel-Larsen, Tore; Muren, Ludvig Paul; Viste, Asgaut; Smaaland, Rune

    2010-01-01

    Purpose: To investigate the association of high-dose preoperative chemoradiotherapy (CRT) and dose-volume histogram (DVH) parameters of lungs with incidence of postoperative pulmonary complications and to identify predictive clinical factors of pulmonary complications. Methods: Data of 65 patients were collected retrospectively. Thirty-five patients underwent transthoracic esophagectomy (TTE) alone and 30 received cisplatin and 5-fluorouracil, concomitant with radiotherapy, median dose 66 Gy, and followed by TTE. From the DVH for each lung alone and for both lungs together as one organ we generated total lung volume, mean radiotherapy dose, relative and absolute volumes receiving more than a threshold dose, and relative and absolute volumes receiving less than a threshold dose. Postoperative pulmonary complications were defined as pneumonia or respiratory failure. Results: Sixty percent of the patients in the TTE alone group had postoperative pulmonary complications versus 63% in the CRT + TTE group. Postoperative mortality was 8.6% and 16.7% in the respective patient groups (p = NS). None of the DVH parameters was associated with postoperative pulmonary complications. Squamous cell carcinoma was an adverse factor related to increased postoperative pulmonary complications. Conclusion: High-dose preoperative CRT was not associated with increased postoperative pulmonary complications in this cohort of esophageal cancer patients.

  9. Limits of dose escalation in lung cancer: a dose-volume histogram analysis comparing coplanar and non-coplanar techniques

    Energy Technology Data Exchange (ETDEWEB)

    Derycke, S; Van Duyse, B; Schelfhout, J; De Neve, W

    1995-12-01

    To evaluate the feasibility of dose escalation in radiotherapy of inoperable lung cancer, a dose-volume histogram analysis was performed comparing standard coplanar (2D) with non-coplanar (3D) beam arrangements on a non-selected group of 20 patients planned by Sherouse`s GRATISTM 3D-planning system. Serial CT-scanning was performed and 2 Target Volumes (Tvs) were defined. Gross Tumor Volume (GTV) defined a high-dose Target Volume (TV-1). GTV plus location of node stations with > 10% probability of invasion (Minet et al.) defined an intermediate-dose Target Volume (TV-2). However, nodal regions which are incompatible with cure were excluded from TV-2. These are ATS-regions 1, 8, 9 and 14 all left and right as well as heterolateral regions. For 3D-planning, Beam`s Eye View selected (by an experienced planner) beam arrangements were optimised using Superdot, a method of target dose-gradient annihilation developed by Sherouse. A second 3D-planning was performed using 4 beam incidences with maximal angular separation. The linac`s isocenter for the optimal arrangement was located at the geometrical center of gravity of a tetraheder, the tetraheder`s comers being the consecutive positions of the virtual source. This ideal beam arrangement was approximated as close as possible, taking into account technical limitations (patient-couch-gantry collisions). Criteria for tolerance were met if no points inside the spinal cord exceeded 50 Gy and if at least 50% of the lung volume received less than 20Gy. If dose regions below 50 Gy were judged acceptable at TV-2, 2D- as well as 3D-plans allow safe escalation to 80 Gy at TV-1. When TV-2 needed to be encompassed by isodose surfaces exceeding 50Gy, 3D-plans were necessary to limit dose at the spinal cord below tolerance. For large TVs dose is limited by lung tolerance for 3D-plans. An analysis (including NTCP-TCP as cost functions) of rival 3D-plans is being performed.

  10. The incorporation of specific tissue/nuclide attenuation data into the Anderson method for producing brachytherapy volume-dose histograms

    International Nuclear Information System (INIS)

    Loft, S.M.; Dale, R.G.

    1990-01-01

    Anderson (1986) has proposed an analytical method for deriving volume-dose histograms relating to three-dimensional brachytherapy distributions. Because the mathematical transformation allows the otherwise dominant effects of the inverse-square fall-off about individual sources to be effectively suppressed, resulting histograms provide the potential for visually and numerically assessing overall quality of a brachytherapy treatment. In this paper the Anderson equations have been combined with the radial-dose polynomials of Dale, which are applicable to a number of tissue/nuclide combinations, and the predictions of the combined formalism used to further investigate the physical aspects of brachytherapy dosimetry. The problems associated with the dosimetry of low-energy γ-emitters such as 125 I are once again highlighted, as are potential advantages of using a radionuclide with an intermediate γ-ray energy. (author)

  11. Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Sempau, J.; Bielajew, A.F.

    2000-01-01

    The Monte Carlo calculation of dose for radiotherapy treatment planning purposes introduces unavoidable statistical noise into the prediction of dose in a given volume element (voxel). When the doses in these voxels are summed to produce dose volume histograms (DVHs), this noise translates into a broadening of differential DVHs and correspondingly flatter DVHs. A brute force approach would entail calculating dose for long periods of time - enough to ensure that the DVHs had converged. In this paper we introduce an approach for deconvolving the statistical noise from DVHs, thereby obtaining estimates for converged DVHs obtained about 100 times faster than the brute force approach described above. There are two important implications of this work: (a) decisions based upon DVHs may be made much more economically using the new approach and (b) inverse treatment planning or optimization methods may employ Monte Carlo dose calculations at all stages of the iterative procedure since the prohibitive cost of Monte Carlo calculations at the intermediate calculation steps can be practically eliminated. (author)

  12. Postimplantation Analysis Enables Improvement of Dose-Volume Histograms and Reduction of Toxicity for Permanent Seed Implantation

    International Nuclear Information System (INIS)

    Wust, Peter; Postrach, Johanna; Kahmann, Frank; Henkel, Thomas; Graf, Reinhold; Cho, Chie Hee; Budach, Volker; Boehmer, Dirk

    2008-01-01

    Purpose: To demonstrate how postimplantation analysis is useful for improving permanent seed implantation and reducing toxicity. Patients and Methods: We evaluated 197 questionnaires completed by patients after permanent seed implantation (monotherapy between 1999 and 2003). For 70% of these patients, a computed tomography was available to perform postimplantation analysis. The index doses and volumes of the dose-volume histograms (DVHs) were determined and categorized with respect to the date of implantation. Differences in symptom scores relative to pretherapeutic status were analyzed with regard to follow-up times and DVH descriptors. Acute and subacute toxicities in a control group of 117 patients from an earlier study (June 1999 to September 2001) by Wust et al. (2004) were compared with a matched subgroup from this study equaling 110 patients treated between October 2001 and August 2003. Results: Improved performance, identifying a characteristic time dependency of DVH parameters (after implantation) and toxicity scores, was demonstrated. Although coverage (volume covered by 100% of the prescription dose of the prostate) increased slightly, high-dose regions decreased with the growing experience of the users. Improvement in the DVH and a reduction of toxicities were found in the patient group implanted in the later period. A decline in symptoms with follow-up time counteracts this gain of experience and must be considered. Urinary and sexual discomfort was enhanced by dose heterogeneities (e.g., dose covering 10% of the prostate volume, volume covered by 200% of prescription dose). In contrast, rectal toxicities correlated with exposed rectal volumes, especially the rectal volume covered by 100% of the prescription dose. Conclusion: The typical side effects occurring after permanent seed implantation can be reduced by improving the dose distributions. An improvement in dose distributions and a reduction of toxicities were identified with elapsed time between

  13. Dose-volume histograms based on serial intravascular ultrasound: a calculation model for radioactive stents

    International Nuclear Information System (INIS)

    Kirisits, Christian; Wexberg, Paul; Gottsauner-Wolf, Michael; Pokrajac, Boris; Ortmann, Elisabeth; Aiginger, Hannes; Glogar, Dietmar; Poetter, Richard

    2001-01-01

    Background and purpose: Radioactive stents are under investigation for reduction of coronary restenosis. However, the actual dose delivered to specific parts of the coronary artery wall based on the individual vessel anatomy has not been determined so far. Dose-volume histograms (DVHs) permit an estimation of the actual dose absorbed by the target volume. We present a method to calculate DVHs based on intravascular ultrasound (IVUS) measurements to determine the dose distribution within the vessel wall. Materials and methods: Ten patients were studied by intravascular ultrasound after radioactive stenting (BX Stent, P-32, 15-mm length) to obtain tomographic cross-sections of the treated segments. We developed a computer algorithm using the actual dose distribution of the stent to calculate differential and cumulative DVHs. The minimal target dose, the mean target dose, the minimal doses delivered to 10 and 90% of the adventitia (DV10, DV90), and the percentage of volume receiving a reference dose at 0.5 mm from the stent surface cumulated over 28 days were derived from the DVH plots. Results were expressed as mean±SD. Results: The mean activity of the stents was 438±140 kBq at implantation. The mean reference dose was 111±35 Gy, whereas the calculated mean target dose within the adventitia along the stent was 68±20 Gy. On average, DV90 and DV10 were 33±9 Gy and 117±41 Gy, respectively. Expanding the target volume to include 2.5-mm-long segments at the proximal and distal ends of the stent, the calculated mean target dose decreased to 55±17 Gy, and DV 90 and DV 10 were 6.4±2.4 Gy and 107±36 Gy, respectively. Conclusions: The assessment of DVHs seems in principle to be a valuable tool for both prospective and retrospective analysis of dose-distribution of radioactive stents. It may provide the basis to adapt treatment planning in coronary brachytherapy to the common standards of radiotherapy

  14. Dose-volume histogram analysis of hepatic toxicity related to carbon ion radiation therapy of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yasuda, Shigeo; Kato, Hirotoshi; Tsujii, Hitohiko; Mizoe, Junetsu

    2005-01-01

    The purpose of this study is to analyze the correlation of hepatic toxicity with dose-volume factors of carbon ion radiotherapy in the liver. Forty-nine patients with hepatocellular carcinoma were treated with carbon ion radiotherapy delivered in 4 fractions over 4 to 7 days. Six patients received a total dose of 48 GyE and 43 received 52.8 GyE. The correlation of various blood biochemistry data with dose-volume histogram (DVH) data in non-cancerous liver were evaluated. The strongest significant correlation was seen between percent volume of non-cancerous liver with radiation dose more than 11 GyE (V 11 GyE ) and elevation of serum glutamic oxaloacetic transaminase (GOT) level as early adverse response after carbon ion beam radiation therapy (p=0.0003). In addition, significant correlation between DVH data and change of several other blood biochemistry data were also revealed in early phase. In late phase after carbon ion radiotherapy, the strongest significant correlation was seen between decrease of platelet count and V 26GyE (p=0.015). There was no significant correlation between other blood biochemistry data and DVH data in the late phase. It was suggested that dose-volume factors of carbon ion radiotherapy influenced only transient aggravation of liver function, which improved in the long term after irradiation. (author)

  15. Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder

    International Nuclear Information System (INIS)

    Pinkawa, Michael; Asadpour, Branka; Gagel, Bernd; Piroth, Marc D.; Holy, Richard; Eble, Michael J.

    2006-01-01

    Purpose: To evaluate prostate position variability and dose-volume histograms in prostate radiotherapy with full bladder (FB) and empty bladder (EB). Methods and Materials: Thirty patients underwent planning computed tomography scans in a supine position with FB and EB before and after 4 and 8 weeks of radiation therapy. The scans were matched by alignment of pelvic bones. Displacements of the prostate/seminal vesicle organ borders and center of mass were determined. Treatment plans (FB vs. EB) were compared. Results: Compared with the primary scan, FB volume varied more than EB volume (standard deviation, 106 cm 3 vs. 47 cm 3 ), but the prostate/seminal vesicle center of mass position variability was the same (>3 mm deviation in right-left, anterior-posterior, and superior-inferior directions in 0, 41%, and 33%, respectively, with FB vs. 0, 44%, and 33% with EB). The bladder volume treated with 90% of the prescription dose was significantly larger with EB (39% ± 14% vs. 22% ± 10%; p < 0.01). Bowel loops received ≥90% of prescription dose in 37% (3% with FB; p < 0.01). Conclusion: Despite the larger variability of bladder filling, prostate position stability was the same with FB compared with EB. An increased amount of bladder volume in the high-dose region and a higher dose to bowel loops result from treatment plans with EB

  16. Dose Volume Histogram analysis for rectum and urethral reaction of prostate cancer

    International Nuclear Information System (INIS)

    Yanagi, Takeshi; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2005-01-01

    The aim of this study is to evaluate the clinically relevant parameters for rectum and urethral reaction using DVH (dose volume histogram) in carbon ion radiotherapy of prostate cancer. In this year, we studied the urinary reaction mainly. 35 patients with prostate cancer were treated with carbon ion beams between June 1995 and December 1997. The applied dose was escalated from 54.0 GyE to 72.0 GyE in fixed 20 fractions. Clinical urinary reaction and rectum reaction were reviewed using Radiation Therapy Oncology Group (RTOG) scoring system for acute reactions, RTOG/European Organization for Research and Treatment of Cancer (EORTC) scoring system for late reactions. Taking the ROI (region of interest) for DVH of urethra, we used surrogate one that was derived from the observation of MR images. 35 patients were analyzed for acute urinary reaction and 34 for late urinary reaction in the study of this year. DVH analysis suggested difference among the grades for acute and late reactions. These analysis appears to be a useful tool for predicting the urinary reactions. (author)

  17. Principal Component Analysis-Based Pattern Analysis of Dose-Volume Histograms and Influence on Rectal Toxicity

    International Nuclear Information System (INIS)

    Soehn, Matthias; Alber, Markus; Yan Di

    2007-01-01

    Purpose: The variability of dose-volume histogram (DVH) shapes in a patient population can be quantified using principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated the correlation of the PCA parameters with late bleeding. Methods and Materials: PCA was applied to the rectal wall DVHs of 262 patients, who had been treated with a four-field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as 'eigenmodes,' which were ordered by their importance to represent data set variability. Each DVH is uniquely characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses. Results: Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs, which describe ∼94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total irradiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with intermediate doses (∼40-45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. According to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs with more than one large PC. Conclusions: PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treatment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal tissue complication probability modeling approaches

  18. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Nisha [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Cordeiro, Peter G. [Department of Plastic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Keam, Jennifer [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ballangrud, Ase [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi Weiji; Zhang Zhigang [Department of Biostatistics and Epidemiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); McCormick, Beryl; Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ho, Alice Y., E-mail: HoA1234@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-10-01

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary

  19. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Battista, Jerry; Van Dyk, Jake

    2000-01-01

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  20. Parotid gland tumors: A comparison of postoperative radiotherapy techniques using three dimensional (3D) dose distributions and dose-volume histograms (DVHs)

    International Nuclear Information System (INIS)

    Yaparpalvi, Ravindra; Fontenla, Doracy P.; Tyerech, Sangeeta K.; Boselli, Lucia R.; Beitler, Jonathan J.

    1998-01-01

    Purpose: To compare different treatment techniques for unilateral treatment of parotid gland tumors. Methods and Materials: The CT-scans of a representative parotid patient were used. The field size was 9 x 11 cm, the separation was 15.5 cm, and the prescription depth was 4.5 cm. Using 3D dose distributions, tissue inhomogeneity corrections, scatter integration (for photons) and pencil beam (for electrons) algorithms and dose-volume histogram (DVH), nine treatment techniques were compared. [1] unilateral 6 MV photons [2] unilateral 12 MeV electrons [3] unilateral 16 MeV electrons [4] an ipsilateral wedge pair technique using 6 MV photons [5] a 3-field AP (wedged), PA (wedged) and lateral portal technique using 6 MV photons [6] a mixed beam technique using 6 MV photons and 12 MeV electrons (1:4 weighting) [7] a mixed beam technique using 6 MV photons and 16 MeV electrons (1:4 weighting) [8] a mixed beam technique using 18 MV photons and 20 MeV electrons (2:3 weighting) [9] a mixed beam technique using 18 MV photons and 20 MeV electrons (1:1 weighting). Results: Using dose-volume histograms to evaluate the dose to the contralateral parotid gland, the percentage of contralateral parotid volume receiving ≥ 30% of the prescribed dose was 100% for techniques [1], [8] and [9], and < 5% for techniques [2] through [7]. Evaluating the 'hottest' 5 cc of the ipsilateral mandible and temporal lobes, the hot spots were: 152% and 150% for technique [2], 132% and 130% for technique [6]. Comparing the exit doses, techniques [1], [8] and [9] contributed to ≥ 50% of the prescribed dose to the contralateral mandible and the temporal lobes. Only techniques [2] and [6] kept the highest point doses to both the brain stem and the spinal cord below 50% of the prescribed dose. Conclusion: The single photon lateral field [1] and the mixed electron-photon beams [8] and [9] are not recommended treatment techniques for unilateral parotid irradiation because of high doses delivered to the

  1. Sensitivity of volumetric modulated arc therapy patient specific QA results to multileaf collimator errors and correlation to dose volume histogram based metrics.

    LENUS (Irish Health Repository)

    Coleman, Linda

    2013-11-01

    This study investigates the impact of systematic multileaf collimator (MLC) positional errors on gamma analysis results used for quality assurance (QA) of Rapidarc treatments. In addition, this study evaluates the relationship of these gamma analysis results and clinical dose volume histogram metrics (DVH) for Rapidarc treatment plans.

  2. Hippocampal dose volume histogram predicts Hopkins Verbal Learning Test scores after brain irradiation

    Directory of Open Access Journals (Sweden)

    Catherine Okoukoni, PhD

    2017-10-01

    Full Text Available Purpose: Radiation-induced cognitive decline is relatively common after treatment for primary and metastatic brain tumors; however, identifying dosimetric parameters that are predictive of radiation-induced cognitive decline is difficult due to the heterogeneity of patient characteristics. The memory function is especially susceptible to radiation effects after treatment. The objective of this study is to correlate volumetric radiation doses received by critical neuroanatomic structures to post–radiation therapy (RT memory impairment. Methods and materials: Between 2008 and 2011, 53 patients with primary brain malignancies were treated with conventionally fractionated RT in prospectively accrued clinical trials performed at our institution. Dose-volume histogram analysis was performed for the hippocampus, parahippocampus, amygdala, and fusiform gyrus. Hopkins Verbal Learning Test-Revised scores were obtained at least 6 months after RT. Impairment was defined as an immediate recall score ≤15. For each anatomic region, serial regression was performed to correlate volume receiving a given dose (VD(Gy with memory impairment. Results: Hippocampal V53.4Gy to V60.9Gy significantly predicted post-RT memory impairment (P < .05. Within this range, the hippocampal V55Gy was the most significant predictor (P = .004. Hippocampal V55Gy of 0%, 25%, and 50% was associated with tumor-induced impairment rates of 14.9% (95% confidence interval [CI], 7.2%-28.7%, 45.9% (95% CI, 24.7%-68.6%, and 80.6% (95% CI, 39.2%-96.4%, respectively. Conclusions: The hippocampal V55Gy is a significant predictor for impairment, and a limiting dose below 55 Gy may minimize radiation-induced cognitive impairment.

  3. A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Alfonso, J. C. L.; Herrero, M. A.; Núñez, L.

    2015-01-01

    The choice of any radiotherapy treatment plan is usually made after the evaluation of a few preliminary isodose distributions obtained from different beam configurations. Despite considerable advances in planning techniques, such final decision remains a challenging task that would greatly benefit from efficient and reliable assessment tools. For any dosimetric plan considered, data on dose-volume histograms supplied by treatment planning systems are used to provide estimates on planning target coverage as well as on sparing of organs at risk and the remaining healthy tissue. These partial metrics are then combined into a dose distribution index (DDI), which provides a unified, easy-to-read score for each competing radiotherapy plan. To assess the performance of the proposed scoring system, DDI figures for fifty brain cancer patients were retrospectively evaluated. Patients were divided in three groups depending on tumor location and malignancy. For each patient, three tentative plans were designed and recorded during planning, one of which was eventually selected for treatment. We thus were able to compare the plans with better DDI scores and those actually delivered. When planning target coverage and organs at risk sparing are considered as equally important, the tentative plan with the highest DDI score is shown to coincide with that actually delivered in 32 of the 50 patients considered. In 15 (respectively 3) of the remaining 18 cases, the plan with highest DDI value still coincides with that actually selected, provided that organs at risk sparing is given higher priority (respectively, lower priority) than target coverage. DDI provides a straightforward and non-subjective tool for dosimetric comparison of tentative radiotherapy plans. In particular, DDI readily quantifies differences among competing plans with similar-looking dose-volume histograms and can be easily implemented for any tumor type and localization, irrespective of the planning system and

  4. Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms

    International Nuclear Information System (INIS)

    Perks, Julian R.; Jalali, Rakesh; Cosgrove, Vivian P.; Adams, Elizabeth J.; Shepherd, Stephen F.; Warrington, Alan P.; Brada, Michael

    1999-01-01

    Purpose: To investigate the optimal treatment plan for stereo tactically-guided conformal radiotherapy (SCRT) of sellar and parasellar lesions, with respect to sparing normal brain tissue, in the context of routine treatment delivery, based on dose volume histogram analysis. Methods and Materials: Computed tomography (CT) data sets for 8 patients with sellar- and parasellar-based tumors (6 pituitary adenomas and 2 meningiomas) have been used in this study. Treatment plans were prepared for 3-coplanar and 3-, 4-, 6-, and 30-noncoplanar-field arrangements to obtain 95% isodose coverage of the planning target volume (PTV) for each plan. Conformal shaping was achieved by customized blocks generated with the beams eye view (BEV) facility. Dose volume histograms (DVH) were calculated for the normal brain (excluding the PTV), and comparisons made for normal tissue sparing for all treatment plans at ≥80%, ≥60%, and ≥40% of the prescribed dose. Results: The mean volume of normal brain receiving ≥80% and ≥60% of the prescribed dose decreased by 22.3% (range 14.8-35.1%, standard deviation σ = 7.5%) and 47.6% (range 25.8-69.1%, σ 13.2%), respectively, with a 4-field noncoplanar technique when compared with a conventional 3-field coplanar technique. Adding 2 further fields, from 4-noncoplanar to 6-noncoplanar fields reduced the mean normal brain volume receiving ≥80% of the prescribed dose by a further 4.1% (range -6.5-11.8%, σ = 6.4%), and the volume receiving ≥60% by 3.3% (range -5.5-12.2%, σ = 5.4%), neither of which were statistically significant. Each case must be considered individually however, as a wide range is seen in the volume spared when increasing the number of fields from 4 to 6. Comparing the 4- and 6-field noncoplanar techniques to a 30-field conformal field approach (simulating a dynamic arc plan) revealed near-equivalent normal tissue sparing. Conclusion: Four to six widely spaced, fixed-conformal fields provide the optimum class solution

  5. IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram

    International Nuclear Information System (INIS)

    Grigorov, Grigor N.; Chow, James C.L.; Grigorov, Lenko; Jiang, Runqing; Barnett, Rob B.

    2006-01-01

    The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurance check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP ( R NTCP). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the R NTCP if 1 cm 3 of the volume of intersection of the PTV and rectum (R int ) is irradiated uniformly by a dose of 1 Gy. The function was 'geometrically' normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the R NTCP for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the R int , and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The R NTCPs of another group of patients were calculated by the new method and the resulting difference was <±5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose

  6. First impressions of 3D visual tools and dose volume histograms for plan evaluation

    International Nuclear Information System (INIS)

    Rattray, G.; Simitcioglu, A.; Parkinson, M.; Biggs, J.

    1999-01-01

    Converting from 2D to 3D treatment planning offers numerous challenges. The practices that have evolved in the 2D environment may not be applicable when translated into the 3D environment. One such practice is the methods used to evaluate a plan. In 2D planning a plane by plane comparison method is generally practiced. This type of evaluation method would not be appropriate for plans produced by a 3D planning system. To this end 3D dose displays and Dose Volume Histograms (DVHs) have been developed to facilitate the evaluation of such plans. A survey was conducted to determine the impressions of Radiation Therapists as they used these tools for the first time. The survey involved comparing a number of plans for a small group of patients and selecting the best plan for each patient. Three evaluation methods were assessed. These included the traditional plane by plane, 3D dose display, and DVHs. Those surveyed found the DVH to be the easiest of the three methods to use, with the 3D display being the next easiest. Copyright (1999) Blackwell Science Pty Ltd

  7. Outcomes of visual acuity in carbon ion radiotherapy: Analysis of dose-volume histograms and prognostic factors

    International Nuclear Information System (INIS)

    Hasegawa, Azusa; Mizoe, Jun-etsu; Mizota, Atsushi; Tsujii, Hirohiko

    2006-01-01

    Purpose: To analyze the tolerance dose for retention of visual acuity in patients with head-and-neck tumors treated with carbon ion radiotherapy. Methods and Materials: From June 1994 to March 2000, 163 patients with tumors in the head and neck or skull base region were treated with carbon ion radiotherapy. Analysis was performed on 54 optic nerves (ONs) corresponding to 30 patients whose ONs had been included in the irradiated volume. These patients showed no evidence of visual impairment due to other factors and had a follow-up period of >4 years. All patients had been informed of the possibility of visual impairment before treatment. We evaluated the dose-complication probability and the prognostic factors for the retention of visual acuity in carbon ion radiotherapy, using dose-volume histograms and multivariate analysis. Results: The median age of 30 patients (14 men, 16 women) was 57.2 years. Median prescribed total dose was 56.0 gray equivalents (GyE) at 3.0-4.0 GyE per fraction per day (range, 48-64 GyE; 16-18 fractions; 4-6 weeks). Of 54 ONs that were analyzed, 35 had been irradiated with max ]) resulting in no visual loss. Conversely, 11 of the 19 ONs (58%) irradiated with >57 GyE (D max ) suffered a decrease of visual acuity. In all of these cases, the ONs had been involved in the tumor before carbon ion radiotherapy. In the multivariate analysis, a dose of 20% of the volume of the ON (D 2 ) was significantly associated with visual loss. Conclusions: The occurrence of visual loss seems to be correlated with a delivery of >60 GyE to 20% of the volume of the ON

  8. Temporal Evolution and Dose-Volume Histogram Predictors of Visual Acuity After Proton Beam Radiation Therapy of Uveal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Polishchuk, Alexei L. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Mishra, Kavita K., E-mail: Kavita.Mishra@ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Weinberg, Vivian; Daftari, Inder K. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Nguyen, Jacqueline M.; Cole, Tia B. [Tumori Foundation, San Francisco, California (United States); Quivey, Jeanne M.; Phillips, Theodore L. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Char, Devron H. [Tumori Foundation, San Francisco, California (United States)

    2017-01-01

    Purpose: To perform an in-depth temporal analysis of visual acuity (VA) outcomes after proton beam radiation therapy (PBRT) in a large, uniformly treated cohort of uveal melanoma (UM) patients, to determine trends in VA evolution depending on pretreatment and temporally defined posttreatment VA measurements; and to investigate the relevance of specific patient, tumor and dose-volume parameters to posttreatment vision loss. Methods and Materials: Uveal melanoma patients receiving PBRT were identified from a prospectively maintained database. Included patients (n=645) received 56 GyE in 4 fractions, had pretreatment best corrected VA (BCVA) in the affected eye of count fingers (CF) or better, with posttreatment VA assessment at specified post-PBRT time point(s). Patients were grouped according to the pretreatment BCVA into favorable (≥20/40) or unfavorable (20/50-20/400) and poor (CF) strata. Temporal analysis of BCVA changes was described, and univariate and forward stepwise multivariate logistic regression analyses were performed to identify predictors for VA loss. Results: Median VA follow-up was 53 months (range, 3-213 months). At 60-month follow up, among evaluable treated eyes with favorable pretreatment BCVA, 45% retained BCVA ≥20/40, whereas among evaluable treated eyes with initially unfavorable/poor BCVA, 21% had vision ≥20/100. Among those with a favorable initial BCVA, attaining BCVA of ≥20/40 at any posttreatment time point was associated with subsequent maintenance of excellent BCVA. Multivariate analysis identified volume of the macula receiving 28GyE (P<.0001) and optic nerve (P=.0004) as independent dose-volume histogram predictors of 48-month post-PBRT vision loss among initially favorable treated eyes. Conclusions: Approximately half of PBRT-treated UM eyes with excellent pretreatment BCVA assessed at 5 years after treatment will retain excellent long-term vision. 28GyE macula and optic nerve dose-volume histogram parameters allow for

  9. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    International Nuclear Information System (INIS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-01-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained

  10. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    Science.gov (United States)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  11. Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer, using dose-volume histograms

    International Nuclear Information System (INIS)

    Boersma, Liesbeth J.; Brink, Mandy van den; Bruce, Allison M.; Shouman, Tarek; Gras, Luuk; Velde, Annet te; Lebesque, Joos V.

    1998-01-01

    Purpose: To investigate whether Dose-Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer. Methods and Materials: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (>6 months) GI and GU complications was classified using the RTOG/EORTC and the SOMA/LENT scoring system. In addition, GI complications were divided in nonsevere and severe (requiring one or more laser treatments or blood transfusions) rectal bleeding. The median follow-up time was 24 months. We investigated whether rectal and bladder wall volumes, irradiated to various dose levels, correlated with the observed actuarial incidences of GI and GU complications, using volume as a continuous variable. Subsequently, for each dose level in the DVH, the rectal wall volumes were dichotomized using different volumes as cutoff levels. The impact of the total radiation dose, and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: The actuarial incidence at 2 years for GI complications ≥Grade II was 14% (RTOG/EORTC) or 20% (SOMA/LENT); for GU complications ≥Grade III 8% (RTOG/EORTC) or 21% (SOMA/LENT). Neither for GI complications ≥Grade II (RTOG/EORTC or SOMA/LENT), nor for GU complications ≥Grade III (RTOG/EORTC or SOMA/LENT), was a significant correlation found between any of the DVH parameters and the actuarial incidence of complications. For severe rectal bleeding (actuarial incidence at 2 years 3%), four consecutive volume cutoff levels were found, which significantly discriminated between high and low risk. A trend was observed that a total radiation dose ≥ 74 Gy (or a maximum radiation dose in the rectal wall >75 Gy) resulted in a higher incidence of severe rectal bleeding (p

  12. Dose-Volume Histogram Parameters and Clinical Factors Associated With Pleural Effusion After Chemoradiotherapy in Esophageal Cancer Patients

    International Nuclear Information System (INIS)

    Shirai, Katsuyuki; Tamaki, Yoshio; Kitamoto, Yoshizumi; Murata, Kazutoshi; Satoh, Yumi; Higuchi, Keiko; Nonaka, Tetsuo; Ishikawa, Hitoshi; Katoh, Hiroyuki; Takahashi, Takeo; Nakano, Takashi

    2011-01-01

    Purpose: To investigate the dose-volume histogram parameters and clinical factors as predictors of pleural effusion in esophageal cancer patients treated with concurrent chemoradiotherapy (CRT). Methods and Materials: Forty-three esophageal cancer patients treated with definitive CRT from January 2001 to March 2007 were reviewed retrospectively on the basis of the following criteria: pathologically confirmed esophageal cancer, available computed tomography scan for treatment planning, 6-month follow-up after CRT, and radiation dose ≥50 Gy. Exclusion criteria were lung metastasis, malignant pleural effusion, and surgery. Mean heart dose, mean total lung dose, and percentages of heart or total lung volume receiving ≥10-60 Gy (Heart-V 10 to V 60 and Lung-V 10 to V 60 , respectively) were analyzed in relation to pleural effusion. Results: The median follow-up time was 26.9 months (range, 6.7-70.2) after CRT. Of the 43 patients, 15 (35%) developed pleural effusion. By univariate analysis, mean heart dose, Heart-V 10 to V 60 , and Lung-V 50 to V 60 were significantly associated with pleural effusion. Poor performance status, primary tumor of the distal esophagus, and age ≥65 years were significantly related with pleural effusion. Multivariate analysis identified Heart-V 50 as the strongest predictive factor for pleural effusion (p = 0.01). Patients with Heart-V 50 50 50 ≥40% had 6%, 44%, and 64% of pleural effusion, respectively (p 50 is a useful parameter for assessing the risk of pleural effusion and should be reduced to avoid pleural effusion.

  13. Impact of the radiotherapy technique on the correlation between dose–volume histograms of the bladder wall defined on MRI imaging and dose–volume/surface histograms in prostate cancer patients

    International Nuclear Information System (INIS)

    Maggio, Angelo; Carillo, Viviana; Perna, Lucia; Fiorino, Claudio; Cozzarini, Cesare; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro

    2013-01-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose–volume histograms (DVHs) of the bladder wall, dose–wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose–surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose–volume/surface histogram. Correlation was quantified for selected dose–volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80–0.94) compared to relative (R = 0.66–0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001). (note)

  14. Introducing the Jacobian-volume-histogram of deforming organs: application to parotid shrinkage evaluation

    International Nuclear Information System (INIS)

    Fiorino, Claudio; Maggiulli, Eleonora; Broggi, Sara; Cattaneo, Giovanni Mauro; Calandrino, Riccardo; Liberini, Simone; Faggiano, Elena; Rizzo, Giovanna; Dell'Oca, Italo; Di Muzio, Nadia

    2011-01-01

    The Jacobian of the deformation field of elastic registration between images taken during radiotherapy is a measure of inter-fraction local deformation. The histogram of the Jacobian values (Jac) within an organ was introduced (JVH-Jacobian-volume-histogram) and first applied in quantifying parotid shrinkage. MVCTs of 32 patients previously treated with helical tomotherapy for head-neck cancers were collected. Parotid deformation was evaluated through elastic registration between MVCTs taken at the first and last fractions. Jac was calculated for each voxel of all parotids, and integral JVHs were calculated for each parotid; the correlation between the JVH and the planning dose-volume histogram (DVH) was investigated. On average, 82% (±17%) of the voxels shrinks (Jac 50% (Jac < 0.5). The best correlation between the DVH and the JVH was found between V10 and V15, and Jac < 0.4-0.6 (p < 0.01). The best constraint predicting a higher number of largely compressing voxels (Jac0.5<7.5%, median value) was V15 ≥ 75% (OR: 7.6, p = 0.002). Jac and the JVH are promising tools for scoring/modelling toxicity and for evaluating organ/contour variations with potential applications in adaptive radiotherapy.

  15. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Physics, University of Western Australia, Perth, Western Australia (Australia); Foo, Kerwyn [Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria (Australia); Gulliford, Sarah L. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey (United Kingdom); Kennedy, Angel [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); Joseph, David J. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Denham, James W. [School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales (Australia)

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  16. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    International Nuclear Information System (INIS)

    Ebert, Martin A.; Foo, Kerwyn; Haworth, Annette; Gulliford, Sarah L.; Kennedy, Angel; Joseph, David J.; Denham, James W.

    2015-01-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  17. Improved dose–volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    International Nuclear Information System (INIS)

    Cheng Lishui; Hobbs, Robert F; Sgouros, George; Frey, Eric C; Segars, Paul W

    2013-01-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose–volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator–detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  18. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Kusumoto, Chiaki [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ohira, Shingo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Miyazaki, Masayoshi [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ueda, Yoshihiro [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita (Japan); Isono, Masaru [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Teshima, Teruki, E-mail: teshima-te@mc.pref.osaka.jp [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan)

    2016-07-01

    Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollment for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78 Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1 cm above the seminal vesicles to 1 cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4 mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V{sub 70} for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5 cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V{sub 70} varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed

  19. Gamma histograms for radiotherapy plan evaluation

    International Nuclear Information System (INIS)

    Spezi, Emiliano; Lewis, D. Geraint

    2006-01-01

    Background and purpose: The technique known as the 'γ evaluation method' incorporates pass-fail criteria for both distance-to-agreement and dose difference analysis of 3D dose distributions and provides a numerical index (γ) as a measure of the agreement between two datasets. As the γ evaluation index is being adopted in more centres as part of treatment plan verification procedures for 2D and 3D dose maps, the development of methods capable of encapsulating the information provided by this technique is recommended. Patients and methods: In this work the concept of γ index was extended to create gamma histograms (GH) in order to provide a measure of the agreement between two datasets in two or three dimensions. Gamma area histogram (GAH) and gamma volume histogram (GVH) graphs were produced using one or more 2D γ maps generated for each slice of the irradiated volume. GHs were calculated for IMRT plans, evaluating the 3D dose distribution from a commercial treatment planning system (TPS) compared to a Monte Carlo (MC) calculation used as reference dataset. Results: The extent of local anatomical inhomogenities in the plans under consideration was strongly correlated with the level of difference between reference and evaluated calculations. GHs provided an immediate visual representation of the proportion of the treated volume that fulfilled the γ criterion and offered a concise method for comparative numerical evaluation of dose distributions. Conclusions: We have introduced the concept of GHs and investigated its applications to the evaluation and verification of IMRT plans. The gamma histogram concept set out in this paper can provide a valuable technique for quantitative comparison of dose distributions and could be applied as a tool for the quality assurance of treatment planning systems

  20. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Oetzel, Dieter; Schraube, Peter; Hensley, Frank; Sroka-Perez, Gabriele; Menke, Markus; Flentje, Michael

    1995-01-01

    Purpose: Investigations to study correlations between the estimations of biophysical models in three dimensional (3D) treatment planning and clinical observations are scarce. The development of clinically symptomatic pneumonitis in the radiotherapy of thoracic malignomas was chosen to test the predictive power of Lyman's normal tissue complication probability (NTCP) model for the assessment of side effects for nonuniform irradiation. Methods and Materials: In a retrospective analysis individual computed-tomography-based 3D dose distributions of a random sample of (46(20)) patients with lung/esophageal cancer were reconstructed. All patients received tumor doses between 50 and 60 Gy in a conventional treatment schedule. Biological isoeffective dose-volume histograms (DVHs) were used for the calculation of complication probabilities after applying Lyman's and Kutcher's DVH-reduction algorithm. Lung dose statistics were performed for single lung (involved ipsilateral and contralateral) and for the lung as a paired organ. Results: In the lung cancer group, about 20% of the patients (9 out of 46) developed pneumonitis 3-12 (median 7.5) weeks after completion of radiotherapy. For the majority of these lung cancer patients, the involved ipsilateral lung received a much higher dose than the contralateral lung, and the pneumonitis patients had on average a higher lung exposure with a doubling of the predicted complication risk (38% vs. 20%). The lower lung exposure for the esophagus patients resulted in a mean lung dose of 13.2 Gy (lung cancer: 20.5 Gy) averaged over all patients in correlation with an almost zero complication risk and only one observed case of pneumonitis (1 out of 20). To compare the pneumonitis risk estimations with observed complication rates, the patients were ranked into bins of mean ipsilateral lung dose. Particularly, in the bins with the highest patient numbers, a good correlation was achieved. Agreement was not reached for the lung functioning as

  1. Analysis of dose volume histogram parameters to estimate late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Boersma, L.J.; Brink, M. van den; Bruce, A.; Gras, L.; Velde, A. te; Lebesque, J.V.

    1997-01-01

    Purpose: To investigate whether Dose Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer, and to examine the effect of using different morbidity scoring systems on the results of these analyses. Materials and Methods: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (> 6 months) GI and GU complications was scored based on questionnaires and classified using the RTOG/EORTC and the SOMA/LENT scoring system. Moreover, patients were classified as being a rectal bleeder or no rectal bleeder and a distinction was made between non-severe and severe (requiring one or more laser treatments) rectal bleeding. The median follow-up time was 22 months. It was investigated whether the relative and absolute rectal wall volumes, irradiated to various dose levels (≥ 60 Gy, ≥ 65 Gy, ≥ 70 Gy and ≥ 75 Gy) were correlated with the observed actuarial incidences of GI complications. First, the analysis was performed using volume as a continuous variable. Subsequently, for each dose level in the DVH the rectal wall volumes were dichotomized using different volumes as cut-off levels. Twenty cut-off levels were tested on their ability to discriminate between high and low risk for developing GI complications (Fig.). The relationship between bladder wall volumes irradiated to various dose levels and observed actuarial GU complications was investigated using the absolute bladder wall volumes, measured as a continuous variable. For both GI and GU complications, the role of the prescribed radiation dose and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: None of the DVH parameters of the rectal wall was significantly correlated with the actuarial incidences of

  2. An alternative to γ histograms for ROI-based quantitative dose comparisons

    International Nuclear Information System (INIS)

    Dvorak, P

    2009-01-01

    An alternative to gamma (γ) histograms for ROI-based quantitative comparisons of dose distributions using the γ concept is proposed. The method provides minimum values of dose difference and distance-to-agreement such that a pre-set fraction of the region of interest passes the γ test. Compared to standard γ histograms, the method provides more information in terms of pass rate per γ calculation. This is achieved at negligible additional calculation cost and without loss of accuracy. The presented method is proposed as a useful and complementary alternative to standard γ histograms, increasing both the quantity and quality of information for use in acceptance or rejection decisions. (note)

  3. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  4. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    International Nuclear Information System (INIS)

    Okamoto, Masahiko; Ishikawa, Hitoshi; Ebara, Takeshi; Kato, Hiroyuki; Tamaki, Tomoaki; Akimoto, Tetsuo; Ito, Kazuto; Miyakubo, Mai; Yamamoto, Takumi; Suzuki, Kazuhiro; Takahashi, Takeo; Nakano, Takashi

    2012-01-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose–volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy × five times in 3 days or 7 Gy × three, 10.5 Gy × two, or 9 Gy × two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2 or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED 3 at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED 3–5% and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED 3–5% was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.

  5. Parotid gland tumors: a comparison of postoperative radiotherapy techniques using three dimensional (3-D) dose distributions and dose-volume histograms (DVH)

    International Nuclear Information System (INIS)

    Yaparpalvi, R.; Tyerech, S.K.; Boselli, L.R.; Fontenla, D.P.; Beitler, J.J.; Vikram, B.

    1996-01-01

    Purpose/Objective: To compare different treatment techniques for unilateral treatment of parotid gland tumors. Materials and Methods: Twenty patients previously treated postoperatively for parotid gland tumors were retrospectively reviewed. Average field size was 9 x 11 cm, average separation was 15.5 cm, and the average prescription depth was 4.5 cm. Using 3-D dose distributions, tissue inhomogeneity corrections, scatter integration (for photons) and pencil beam (for electrons) algorithms and DVH, nine treatment techniques were compared using a representative patient. The treatment techniques investigated were: [1] unilateral 6 MV photons. [2] unilateral 12 MeV electrons. [3] unilateral 16 MeV electrons. [4] a ipsilateral wedge pair technique using 6 MV photons and a 45-degree wedge. [5] a 3-field AP (wedged), PA (wedged) and lateral portal technique using 6 MV photons. [6] a mixed beam technique using 6 MV photons and 12 MeV electrons (1:4 weighting). [7] a mixed beam technique using 6 MV photons and 16 MeV electrons (1:4 weighting). [8] a mixed beam technique using 18 MV photons and 20 MeV electrons (2:3 weighting). [9] a mixed beam technique using 18 MV photons and 20 MeV electrons (1:1 weighting). Results: Using dose-volume histograms to evaluate the dose to the contralateral parotid gland, the percentage of contralateral parotid volume receiving ≥30% of the prescribed dose was 100% for techniques [1], [8] and [9], and <5% for techniques [2] through [7]. Evaluating the 'hottest' 5 cc of the ipsilateral mandible and temporal lobes, the hot spots were: 152% and 150% for technique [2], 132% and 130% for technique [6]. Comparing the exit doses, techniques [1] and [8] contributed to ≥50% of the prescribed dose to the contralateral mandible and the temporal lobes. Only techniques [2] and [6] kept the highest point doses to both the brain stem and the spinal cord below 50% of the prescribed dose. Conclusion: The single photon lateral field [1] and the mixed

  6. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Huang, Eugene H.; Pollack, Alan; Levy, Larry; Starkschall, George; Lei Dong; Rosen, Isaac; Kuban, Deborah A.

    2002-01-01

    Purpose: To identify dosimetric, anatomic, and clinical factors that correlate with late rectal toxicity after three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Methods and Materials: We retrospectively analyzed the dose-volume histograms and clinical records of 163 Stage T1b-T3c prostate cancer patients treated between 1992 and 1999 with 3D-CRT, to a total isocenter dose of 74-78 Gy at The University of Texas M. D. Anderson Cancer Center. The median follow-up was 62 months (range 24-102). All late rectal complications were scored using modified Radiation Therapy Oncology Group and Late Effects Normal Tissue Task Force criteria. The 6-year toxicity rate was assessed using Kaplan-Meier analysis and the log-rank test. A univariate proportional hazards regression model was used to test the correlation between Grade 2 or higher toxicity and the dosimetric, anatomic, and clinical factors. In a multivariate regression model, clinical factors were added to the dosimetric and anatomic variables to determine whether they significantly altered the risk of developing late toxicity. Results: At 6 years, the rate of developing Grade 2 or higher late rectal toxicity was 25%. A significant volume effect was observed at rectal doses of 60, 70, 75.6, and 78 Gy, and the risk of developing rectal complications increased exponentially as greater volumes were irradiated. Although the percentage of rectal volume treated correlated significantly with the incidence of rectal complications at all dose levels (p 3 of the rectum. Of the clinical variables tested, only a history of hemorrhoids correlated with rectal toxicity (p=0.003). Multivariate analysis showed that the addition of hemorrhoids increased the risk of toxicity for each dosimetric variable found to be significant on univariate analysis (p<0.05 for all comparisons). Conclusion: Dose-volume histogram analyses clearly indicated a volume effect on the probability of developing late rectal complications

  7. Association of anorectal dose-volume histograms and impaired fecal continence after 3D conformal radiotherapy for carcinoma of the prostate

    International Nuclear Information System (INIS)

    Vordermark, Dirk; Schwab, Michael; Ness-Dourdoumas, Rhea; Sailer, Marco; Flentje, Michael; Koelbl, Oliver

    2003-01-01

    Purpose: The late toxicity of fecal incontinence after pelvic radiotherapy is now frequently recognized but the etiology poorly understood. We therefore investigated associations between dose-volume histogram (DVH) parameters of the rectum and the anal canal with fecal continence as measured by an established 10-item questionnaire. Methods and materials: Forty-four patients treated for carcinoma of the prostate with 58-72 Gy of 3D conformal radiotherapy between 1995 and 1999 who completed the questionnaire formed the study population. Total continence scores of treated patients obtained 1.5 years (median) after radiotherapy were compared to a control group of 30 patients before radiotherapy. Median, mean, minimum and maximum doses as well as the volume (% and ml) treated to 40, 50, 60 and 70 Gy were determined separately for anal canal and rectum. DVH parameters were correlated with total continence score (Spearman rank test) and patients grouped according to observed continence were compared regarding DVH values (Mann-Whitney U-test). Results: Median fecal continence scores were significantly worse in the irradiated than in the control group (31 vs. 35 of a maximum 36 points). In treated patients, 59%/27%/14% were classified as fully continent, slightly incontinent and severely incontinent. Continence was similar in the 58-to-62-Gy, 66-Gy and 68-to-72-Gy dose groups. No DVH parameter was significantly correlated with total continence score, but severely incontinent patients had a significantly higher minimum dose to the anal canal than fully continent/slightly incontinent, accompanied by portals extending significantly further inferiorly with respect to the ischial tuberosities. Conclusions: Excluding the inferior part of the anal canal from the treated volume in 3D conformal therapy for carcinoma of the prostate appears to be a promising strategy to prevent radiation-induced fecal incontinence

  8. Comparisons of dose-volume histograms for proton-beam versus 3-D conformal X-ray therapy in patients with stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Wang, Changlu; Nakayama, Hidetsugu; Sugahara, Shinji; Sakae, Takeji; Tokuuye, Koichi

    2009-01-01

    Dose-volume histograms (DVHs) were reviewed to determine if there is an advantage of the two modalities when treating patients with non-small cell lung cancer (NSCLC). 24 stage I NSCLC patients who underwent proton-beam therapy (PBT) from June 2003 to May 2007 were included in this study. Based on the same clinical target volumes (CTVs), treatment planning was made to cover CTV within 90% isodose lines. Each patient was evaluated by two sets of DVHs, one for PBT and the other for three-dimensional conformal X-ray therapy (3D-CRT). For all patients, the 95% isodose line covered 86.4% of the CTV for PBT, and 43.2% for 3D-CRT. PBT was associated with significantly lower mean doses to the ipsilateral lung, total lung, heart, esophagus, and spinal cord than 3D-CRT. PBT offered reduced radiation doses to the lung when evaluated in terms of percentage lung volumes receiving ≥ 5 Gy (V 5 ), ≥ 10 Gy (V 10 ), and ≥ 20 Gy (V 20 ) when compared to 3D-CRT. PBT is advantageous over 3D-CRT in reducing doses to the lung, heart, esophagus, and spinal cord in treating stage I NSCLC. (orig.)

  9. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: Clinical experience and dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Weitmann, Hajo Dirk; Poetter, Richard; Waldhaeusl, Claudia; Nechvile, Elisabeth; Kirisits, Christian; Knocke, Tomas Hendrik

    2005-01-01

    Purpose: The aim of this study was to evaluate dose distribution within uterus (clinical target volume [CTV]) and tumor (gross tumor volume [GTV]) and the resulting clinical outcome based on systematic three-dimensional treatment planning with dose-volume adaptation. Dose-volume assessment and adaptation in organs at risk and its impact on side effects were investigated in parallel. Methods and Materials: Sixteen patients with either locally confined endometrial carcinoma (n = 15) or adenocarcinoma of uterus and ovaries after bilateral salpingo-oophorectomy (n = 1) were included. Heyman packing was performed with mean 11 Norman-Simon applicators (3-18). Three-dimensional treatment planning based on computed tomography (n = 29) or magnetic resonance imaging (n = 18) was done in all patients with contouring of CTV, GTV, and organs at risk. Dose-volume adaptation was achieved by dwell location and time variation (intensity modulation). Twelve patients treated with curative intent received five to seven fractions of high-dose-rate brachytherapy (7 Gy per fraction) corresponding to a total dose of 60 Gy (2 Gy per fraction and α/β of 10 Gy) to the CTV. Four patients had additional external beam radiotherapy (range, 10-40 Gy). One patient had salvage brachytherapy and 3 patients were treated with palliative intent. A dose-volume histogram analysis was performed in all patients. On average, 68% of the CTV and 92% of the GTV were encompassed by the 60 Gy reference volume. Median minimum dose to 90% of CTV and GTV (D90) was 35.3 Gy and 74 Gy, respectively. Results: All patients treated with curative intent had complete remission (12/12). After a median follow-up of 47 months, 5 patients are alive without tumor. Seven patients died without tumor from intercurrent disease after median 22 months. The patient with salvage treatment had a second local recurrence after 27 months and died of endometrial carcinoma after 57 months. In patients treated with palliative intent

  10. Use of fractional dose–volume histograms to model risk of acute rectal toxicity among patients treated on RTOG 94-06

    International Nuclear Information System (INIS)

    Tucker, Susan L.; Michalski, Jeff M.; Bosch, Walter R.; Mohan, Radhe; Dong, Lei; Winter, Kathryn; Purdy, James A.; Cox, James D.

    2012-01-01

    Background and purpose: For toxicities occurring during the course of radiotherapy, it is conceptually inaccurate to perform normal-tissue complication probability analyses using the complete dose–volume histogram. The goal of this study was to analyze acute rectal toxicity using a novel approach in which the fit of the Lyman–Kutcher–Burman (LKB) model is based on the fractional rectal dose–volume histogram (DVH). Materials and methods: Grade ⩾2 acute rectal toxicity was analyzed in 509 patients treated on Radiation Therapy Oncology Group (RTOG) protocol 94-06. These patients had no field reductions or treatment-plan revisions during therapy, allowing the fractional rectal DVH to be estimated from the complete rectal DVH based on the total number of dose fractions delivered. Results: The majority of patients experiencing Grade ⩾2 acute rectal toxicity did so before completion of radiotherapy (70/80 = 88%). Acute rectal toxicity depends on fractional mean rectal dose, with no significant improvement in the LKB model fit when the volume parameter differs from n = 1. The incidence of toxicity was significantly lower for patients who received hormone therapy (P = 0.024). Conclusions: Variations in fractional mean dose explain the differences in incidence of acute rectal toxicity, with no detectable effect seen here for differences in numbers of dose fractions delivered.

  11. The equivalent Histograms in clinical practice

    International Nuclear Information System (INIS)

    Pizarro Trigo, F.; Teijeira Garcia, M.; Zaballos Carrera, S.

    2013-01-01

    Is frequently abused of The tolerances established for organ at risk [1] in diagrams of standard fractionation (2Gy/session, 5 sessions per week) when applied to Dose-Volume histograms non-standard schema. The purpose of this work is to establish when this abuse may be more important and realize a transformation of fractionation non-standard of histograms dosis-volumen. Is exposed a case that can be useful to make clinical decisions. (Author)

  12. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Sakurai, Yoshinori; Nagata, Kenji; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira; Kato, Ituro; Fuwa, Nobukazu; Hiratsuka, Junichi; Imahori, Yoshio

    2006-01-01

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT

  13. Dose-Volume Histogram Analysis of the Safety of Proton Beam Therapy for Unresectable Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Kohno, Ryosuke; Nakachi, Kohei; Nishio, Teiji; Mitsunaga, Shuichi; Ikeda, Masafumi; Konishi, Masaru; Takahashi, Shinichiro; Gotohda, Naoto; Arahira, Satoko; Zenda, Sadamoto; Ogino, Takashi; Kinoshita, Taira

    2011-01-01

    Purpose: To evaluate the safety and efficacy of radiotherapy using proton beam (PRT) for unresectable hepatocellular carcinoma. Methods and Materials: Sixty consecutive patients who underwent PRT between May 1999 and July 2007 were analyzed. There were 42 males and 18 females, with a median age of 70 years (48-92 years). All but 1 patient had a single lesion with a median diameter of 45 mm (20-100 mm). Total PRT dose/fractionation was 76-cobalt Gray equivalent (CGE)/20 fractions in 46 patients, 65 CGE/26 fractions in 11 patients, and 60 CGE/10 fractions in 3 patients. The risk of developing proton-induced hepatic insufficiency (PHI) was estimated using dose-volume histograms and an indocyanine-green retention rate at 15 minutes (ICG R15). Results: None of the 20 patients with ICG R15 of less than 20% developed PHI, whereas 6 of 8 patients with ICG R15 values of 50% or higher developed PHI. Among 32 patients whose ICG R15 ranged from 20% to 49.9%, PHI was observed only in patients who had received 30 CGE (V30) to more than 25% of the noncancerous parts of the liver (n = 5) Local progression-free and overall survival rates at 3 years were 90% (95% confidence interval [CI], 80-99%) and 56% (95% CI, 43-69%), respectively. A gastrointestinal toxicity of Grade ≥2 was observed in 3 patients. Conclusions: ICG R15 and V30 are recommended as useful predictors for the risk of developing PHI, which should be incorporated into multidisciplinary treatment plans for patients with this disease.

  14. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kanemoto, Ayae

    2013-01-01

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p ≥ 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy 3 (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy 3 ] and the AUCs of V30 to V120 (EQD2; 18-72 Gy 3 ) and D max to D 1 0 cm 3 were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D max to D 1 0 cm 3 were also significant and clinically useful for estimating the risk of rib fracture after hypofractionated PBT

  15. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Ayae [Proton Medical Research Center and Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan)], e-mail: ayaek@pmrc.tsukuba.ac.jp [and others

    2013-04-15

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p {>=} 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy{sub 3} (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy{sub 3}] and the AUCs of V30 to V120 (EQD2; 18-72 Gy{sub 3}) and D{sub max} to D{sub 1}0{sub cm}{sup 3} were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D{sub max} to D{sub 1}0{sub cm}{sup 3} were also significant and clinically useful for estimating

  16. Reliability of dose volume constraint inference from clinical data

    DEFF Research Database (Denmark)

    Lutz, C M; Møller, D S; Hoffmann, L

    2017-01-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background...... was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap...

  17. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    Science.gov (United States)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  18. Converging Stereotactic Radiotherapy Using Kilovoltage X-Rays: Experimental Irradiation of Normal Rabbit Lung and Dose-Volume Analysis With Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M.; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N.; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-01-01

    Purpose: To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. Methods and Materials: A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. Results: A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. Conclusions: A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  19. The analysis of correlation between changes of myocardial enzymes level in serum before and after radiation and dose-volume histogram parameters of the heart

    International Nuclear Information System (INIS)

    Ding Xiuping; Li Hongjun; Li Baosheng; Wang Dongqing

    2012-01-01

    Objective: To analyze the correlation between the changes of myocardial enzyme level in serum before and after radiotherapy and dose - volume histogram (DVH) parameters of the heart. Methods: A total of 102 patients with 68 cases of lung cancer and 34 cases of esophageal cancer were recruited. All patients received three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), with the radiation beams passing through the heart. Aspartate aminotransferase (AST), creatine kinase (CK), creatine kinase isozyme (CK-MB), lactate dehydrogenase (LDH), α-hydroxybutyrate dehydrogenase (α-HBDH) were determined in the serum before and after radiotherapy. All the enzyme levels before and after radiotherapy were compared through paired t-test. Independent sample t-test was conducted between sub-groups. And the dose-volume histogram (DVH) parameters of the heart were calculated (the volume percentage of heart receiving dose equal to or exceeding x Gy (V x ). The correlation between myocardial enzyme level and DVH parameters was analyzed through Pearson method. Results: Serum AST, CK-MB, LDH, α-HBDH levels increased significantly after radiotherapy (19.42: 27.89, 14.72:19.57, 178.80 : 217.57, 140.32 : 176.25, t =-3.39 - -6.92, all P=0.000). In Group IMRT, significant correlations between the increase of myocardial enzyme concentration and DVH parameters of the heart are found, AST with V 20 , V 25 , V 30 of heart ( r=0.302 - 0.431, P =0.039 - 0.003), CK with V 30 of heart (r=0.345, P=0.013), and CK-MB, LDH, α-HBDH with V 25 , V 30 (r=0.465 -0.376, P=0.001-0.005). In Group CRT, there are significant correlations between changes of CK-MB, LDH level and V 30 of heart (r =0.330, 0.274, P=0.014, 0.033), α-HBDH and V 25 , V 30 , and V 35 of heart (r=0.270-0.331, P=0.046-0.014). When the irradiation dose was more than 50 Gy, significant correlations were found between the concentration changes of AST, LDH, α-HBDH and V 25 , V 30 of heart (r=0

  20. High-dose (70-78 GY) conformal radiotherapy for prostate cancer; the relation between observed late bladder and rectum complications and parameters derived from the dose volume histograms

    International Nuclear Information System (INIS)

    Lebesque, J.V.; Bruce, A.; Boersma, L.J.; Velde, A. te

    1996-01-01

    Purpose: To determine the incidence of late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer, and to investigate the relation between these observed incidences and parameters derived from the Dose Volume Histograms (DVHs) of rectum and bladder wall. Patients and Methods: Hundred and thirty patients with T 2-4 G 1-3 N 0 M 0 prostate cancer were treated with conformal radiotherapy with the simultaneous boost technique in a dose-escalating protocol; 78 patients received a total dose of 70 Gy, 11 patients 74 - 76 Gy and 41 patients 78 Gy, each with a dose of 2 Gy per fraction. DVHs of the rectal wall were used to calculate NTCPs according to the model of Kutcher et al. with the estimated parameter values (n = 0.12, m = 0.15, TD 50 = 80 Gy) according to Burman et al. The median follow-up was 17 months (range 6 - 72 months). The crude and actuarial incidence of late (> 6 months) GI and GU complications were determined using the RTOG/EORTC morbidity scoring system (Grade I to IV). Results: Neither for late GI nor for GU complaints, a grade IV complication was observed. GU complaints occurred in 90 patients (69%): 54 patients (42%) only experienced grade I toxicity, 26 patients (20%) had grade II toxicity, and 10 patients (8%) had grade III complications, of which 8 patients (6%) developed a urethral (7 pts) or ureteric stenosis (1 pt). The actuarial incidence of grade III GU complications was 10% at 2 years. Since bladder wall DVHs are unreliable and most grade III complications were not related to the bladder, the grade II and/or III complications were analyzed in terms of the total prescribed dose only, but no correlation could be demonstrated. GI complications occurred in 71 patients (55%): 59 patients (45%) developed a grade I complication, 11 a grade II complication and only 1 patient required laser treatment twice and blood transfusion because of rectal bleeding (grade III). The actuarial incidence of GI

  1. Does prostate brachytherapy treat the seminal vesicles? A dose-volume histogram analysis of seminal vesicles in patients undergoing combined PD-103 prostate implantation and external beam irradiation

    International Nuclear Information System (INIS)

    Stock, Richard G.; Lo, Yeh-Chi; Gaildon, Mohamoud; Stone, Nelson N.

    1999-01-01

    Purpose: Combined brachytherapy of the prostate and external beam irradiation (EBRT) of the prostate and seminal vesicles (SV) is becoming a popular treatment for high-risk prostate cancer. Dose-volume histogram (DVH) analysis of the SV in patients undergoing this treatment was performed to determine the dose distribution to the SV and the adequacy of this treatment in patients with potential SV involvement. Methods and Materials: Twenty-five consecutive patients were treated with a Pd-103 implant of the prostate alone and 45 Gy of EBRT to the prostate and SV. Attempts were not made to implant the SV but seeds were routinely placed at the junction of the prostate and SV. All patients underwent CT-based post implant dosimetric analysis 1 month after implantation. As part of this analysis, DVH were generated for the prostate and total SV volume (SVT). In addition, the SV was divided into 6-mm-thick volumes identified as SV1, SV2, SV3, SV4, and SV5 starting from the junction of the prostate and SV and extending distally. DVH were also generated for these structures. Delivered dose was defined as the D90 (dose delivered to 90% of the organ on DVH). Results: The median volumes in cc of the prostate, SVT, SV1, SV2, SV3, SV4, and SV5 were 34.33, 9.75, 2.7, 3.48, 2.92, 3.18, and 1.96 respectively. The SVT contained from 0-9 seeds (median 2). There was little dose delivered to the SVT and SV volumes from the implanted prostate. The median D90 values for the prostate, SVT, SV1, SV2, SV3, SV4, and SV5 were 8615 cGy, 675 cGy, 3100 cGy, 1329 cGy, 553 cGy, 246 cGy, and 67 cGy, respectively. The dose delivered to the prostate covered small percentages of SV. The percents of SV volumes covered by the prostate D90 were 11, 35, 3.3, 0, 0, and 0 for SVT, SV1, SV2, SV3, SV4, and SV5, respectively. Conclusions: DVH analysis of the SV reveals that dose generated from an implanted prostate contributes little to the SV. Those patients at high risk for SV involvement may be under treated

  2. Volume arc therapy of gynaecological tumours: target volume coverage improvement without dose increase for critical organs; Arctherapie volumique des tumeurs gynecologiques: amelioration de la couverture du volume cible sans augmentation de la dose aux organes critiques

    Energy Technology Data Exchange (ETDEWEB)

    Ducteil, A.; Kerr, C.; Idri, K.; Fenoglietto, P.; Vieillot, S.; Ailleres, N.; Dubois, J.B.; Azria, D. [CRLC Val-d' Aurelle, Montpellier (France)

    2011-10-15

    The authors report the assessment of the application of conventional intensity-modulated conformational radiotherapy (IMRT) and volume arc-therapy (RapidArc) for the treatment of cervical cancers, with respect to conventional radiotherapy. Dosimetric plans associated with each of these techniques have been compared. Dose-volume histograms of these three plans have also been compared for the previsional target volume (PTV), organs at risk, and sane tissue. IMCT techniques are equivalent in terms of sparing of organs at risk, and improve target volume coverage with respect to conventional radiotherapy. Arc-therapy reduces significantly treatment duration. Short communication

  3. Assessment of histological differentiation in gastric cancers using whole-volume histogram analysis of apparent diffusion coefficient maps.

    Science.gov (United States)

    Zhang, Yujuan; Chen, Jun; Liu, Song; Shi, Hua; Guan, Wenxian; Ji, Changfeng; Guo, Tingting; Zheng, Huanhuan; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng; Liu, Tian

    2017-02-01

    To investigate the efficacy of histogram analysis of the entire tumor volume in apparent diffusion coefficient (ADC) maps for differentiating between histological grades in gastric cancer. Seventy-eight patients with gastric cancer were enrolled in a retrospective 3.0T magnetic resonance imaging (MRI) study. ADC maps were obtained at two different b values (0 and 1000 sec/mm 2 ) for each patient. Tumors were delineated on each slice of the ADC maps, and a histogram for the entire tumor volume was subsequently generated. A series of histogram parameters (eg, skew and kurtosis) were calculated and correlated with the histological grade of the surgical specimen. The diagnostic performance of each parameter for distinguishing poorly from moderately well-differentiated gastric cancers was assessed by using the area under the receiver operating characteristic curve (AUC). There were significant differences in the 5 th , 10 th , 25 th , and 50 th percentiles, skew, and kurtosis between poorly and well-differentiated gastric cancers (P histogram parameters, including the 10 th percentile, skew, kurtosis, and max frequency; the correlation coefficients were 0.273, -0.361, -0.339, and -0.370, respectively. Among all the histogram parameters, the max frequency had the largest AUC value, which was 0.675. Histogram analysis of the ADC maps on the basis of the entire tumor volume can be useful in differentiating between histological grades for gastric cancer. 4 J. Magn. Reson. Imaging 2017;45:440-449. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Dose-Volume Histogram Predictors of Chronic Gastrointestinal Complications After Radical Hysterectomy and Postoperative Concurrent Nedaplatin-Based Chemoradiation Therapy for Early-Stage Cervical Cancer

    International Nuclear Information System (INIS)

    Isohashi, Fumiaki; Yoshioka, Yasuo; Mabuchi, Seiji; Konishi, Koji; Koizumi, Masahiko; Takahashi, Yutaka; Ogata, Toshiyuki; Maruoka, Shintaroh; Kimura, Tadashi; Ogawa, Kazuhiko

    2013-01-01

    Purpose: The purpose of this study was to evaluate dose-volume histogram (DVH) predictors for the development of chronic gastrointestinal (GI) complications in cervical cancer patients who underwent radical hysterectomy and postoperative concurrent nedaplatin-based chemoradiation therapy. Methods and Materials: This study analyzed 97 patients who underwent postoperative concurrent chemoradiation therapy. The organs at risk that were contoured were the small bowel loops, large bowel loop, and peritoneal cavity. DVH parameters subjected to analysis included the volumes of these organs receiving more than 15, 30, 40, and 45 Gy (V15-V45) and their mean dose. Associations between DVH parameters or clinical factors and the incidence of grade 2 or higher chronic GI complications were evaluated. Results: Of the clinical factors, smoking and low body mass index (BMI) (<22) were significantly associated with grade 2 or higher chronic GI complications. Also, patients with chronic GI complications had significantly greater V15-V45 volumes and higher mean dose of the small bowel loops compared with those without GI complications. In contrast, no parameters for the large bowel loop or peritoneal cavity were significantly associated with GI complications. Results of the receiver operating characteristics (ROC) curve analysis led to the conclusion that V15-V45 of the small bowel loops has high accuracy for prediction of GI complications. Among these parameters, V40 gave the highest area under the ROC curve. Finally, multivariate analysis was performed with V40 of the small bowel loops and 2 other clinical parameters that were judged to be potential risk factors for chronic GI complications: BMI and smoking. Of these 3 parameters, V40 of the small bowel loops and smoking emerged as independent predictors of chronic GI complications. Conclusions: DVH parameters of the small bowel loops may serve as predictors of grade 2 or higher chronic GI complications after postoperative

  5. Incidence of radiation pneumonitis after thoracic irradiation: Dose-volume correlates

    International Nuclear Information System (INIS)

    Schallenkamp, John M.; Miller, Robert C.; Brinkmann, Debra H.; Foote, Tyler; Garces, Yolanda I.

    2007-01-01

    Purpose: To define clinical and dosimetric parameters correlated with the risk of clinically relevant radiation pneumonitis (RP) after thoracic radiotherapy. Methods and Materials: Records of consecutive patients treated with definitive thoracic radiotherapy were retrospectively reviewed for the incidence of RP of Grade 2 or greater by the Common Toxicity Criteria. Dose-volume histograms using total lung volume (TL) and TL minus gross tumor volume (TL-G) were created with and without heterogeneity corrections. Mean lung dose (MLD), effective lung volume (V eff ), and percentage of TL or TL-G receiving greater than or equal to 10, 13, 15, 20, and 30 Gy (V10-V30, respectively) were analyzed by logistic regression. Receiver operating characteristic (ROC) curves were generated to estimate RP predictive values. Results: Twelve cases of RP were identified in 92 eligible patients. Mean lung dose, V10, V13, V15, V20, and V eff were significantly correlated to RP. Combinations of MLD, V eff , V20, and V30 lost significance using TL-G and heterogeneity corrections. Receiver operating characteristic analysis determined V10 and V13 as the best predictors of RP risk, with a decrease in predictive value above those volumes. Conclusions: Intrathoracic radiotherapy should be planned with caution when using radiotherapy techniques delivering doses of 10 to 15 Gy to large lung volumes

  6. SU-E-T-525: Dose Volume Histograms (DVH) Analysis and Comparison with ICRU Point Doses in MRI Guided HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; McClinton, C; Kumar, P; Mitchell, M [University of Kansas Medical Center, Kansas City, KS (United States)

    2014-06-01

    Purpose: Brachytherapy plays a crucial role in management of cervix cancer. MRI compatible applicators have made it possible to accurately delineate gross-target-volume(GTV) and organs-at-risk(OAR) volumes, as well as directly plan, optimize and adapt dose-distribution for each insertion. We sought to compare DVH of tumor-coverage and OARs to traditional Point-A, ICRU-38 bladder and rectum point-doses for four different planning-techniques. Methods: MRI based 3D-planning was performed on Nucletron-Oncentra-TPS for 3 selected patients with varying tumor-sizes and anatomy. GTV,high-risk-clinical-target-volume(HR-CTV), intermediate-risk-clinical-target-volume(IR-CTV) and OARs: rectum, bladder, sigmoid-colon, vaginal-mucosa were delineated. Three conventionally used techniques: mg-Radium-equivalent(RaEq),equal-dwell-weights(EDW), Medical-College-of-Wisconsin proposed points-optimization (MCWO) and a manual-graphical-optimization(MGO) volume-coverage based technique were applied for each patient. Prescription was 6Gy delivered to point-A in Conventional techniques (RaEq, EDW, MCWO). For MGO, goal was to achieve 90%-coverage (D90) to HR-CTV with prescription-dose. ICRU point doses for rectum and bladder, point-A doses, DVH-doses for HR-CTV-D90,0.1cc-volume(D0.1),1ccvolume( D1),2cc-volume(D2) were collected for all plans and analyzed . Results: Mean D90 for HR-CTV normalized to MGO were 0.89,0.84,0.9,1.0 for EDW, RaEq, MCWO, MGO respectively. Mean point-A doses were 21.7% higher for MGO. Conventional techniques with Point-A prescriptions under covered HR-CTV-D90 by average of 12% as compared to MGO. Rectum, bladder and sigmoid doses were highest in MGO-plans for ICRU points as well as D0.1,D1 and D2 doses. Among conventional-techniques, rectum and bladder ICRU and DVH doses(0.1,1,2cc) were not significantly different (within 7%).Rectum D0.1 provided good estimation of ICRU-rectum-point doses (within 3.9%),rectum D0.1 were higher from 0.8 to 3.9% while bladder D0

  7. SU-F-T-359: Incorporating Dose Volume Histogram Prediction Into Auto-Planning for Volumetric-Modulated Arc Therapy in Rectal Cancer

    International Nuclear Information System (INIS)

    Li, K; Chen, X; Wang, J; Lu, S; Chen, Y; Hu, W

    2016-01-01

    Purpose: To incorporate dose volume histogram (DVH) prediction into Auto-Planning for volumetric-modulated arc therapy (VMAT) treatment planning and investigate the benefit of this new technique for rectal cancer. Methods: Ninety clinically accepted VMAT plans for patients with rectal cancer were selected and trained in the RapidPlan for DVH prediction. Both internal and external validations were performed before implementing the prediction model. A new VMAT planning method (hybrid-VMAT) was created with combining the DVH prediction and Auto-Planning. For each new patient, the DVH will be predicted and individual DVH constrains will be obtained and were exported as the original optimization parameters to the Auto-Planning (Pinnacle3 treatment planning system, v9.10) for planning. A total of 20 rectal cancer patients previously treated with manual VMAT (manual-VMAT) plans were replanned using this new method. Dosimetric comparisons were performed between manual VMAT and new method plans. Results: Hybrid-VMAT shows similar PTV coverage to manual-VMAT in D2%, D98% and HI (p>0.05) and superior coverage in CI (p=0.000). For the bladder, the means of V40 and mean dose are 36.0% and 35.6Gy for hybrid-VMAT and 42% and 38.0Gy for the manual-VMAT. For the left (right) femur, the means of V30 and mean dose are 10.6% (11.6%) and 17.9Gy (19.2Gy) for the hybrid-VMAT and 25.6% (24.1%) and 27.3Gy (26.2Gy) for the manual-VMAT. The hybrid-VMAT has significantly improved the organs at risk sparing. Conclusion: The integration of DVH prediction and Auto-Planning significantly improve the VMAT plan quality in the rectal cancer radiotherapy. Our results show the benefit of the new method and will be further investigated in other tumor sites.

  8. SU-F-T-359: Incorporating Dose Volume Histogram Prediction Into Auto-Planning for Volumetric-Modulated Arc Therapy in Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, K; Chen, X; Wang, J; Lu, S; Chen, Y; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: To incorporate dose volume histogram (DVH) prediction into Auto-Planning for volumetric-modulated arc therapy (VMAT) treatment planning and investigate the benefit of this new technique for rectal cancer. Methods: Ninety clinically accepted VMAT plans for patients with rectal cancer were selected and trained in the RapidPlan for DVH prediction. Both internal and external validations were performed before implementing the prediction model. A new VMAT planning method (hybrid-VMAT) was created with combining the DVH prediction and Auto-Planning. For each new patient, the DVH will be predicted and individual DVH constrains will be obtained and were exported as the original optimization parameters to the Auto-Planning (Pinnacle3 treatment planning system, v9.10) for planning. A total of 20 rectal cancer patients previously treated with manual VMAT (manual-VMAT) plans were replanned using this new method. Dosimetric comparisons were performed between manual VMAT and new method plans. Results: Hybrid-VMAT shows similar PTV coverage to manual-VMAT in D2%, D98% and HI (p>0.05) and superior coverage in CI (p=0.000). For the bladder, the means of V40 and mean dose are 36.0% and 35.6Gy for hybrid-VMAT and 42% and 38.0Gy for the manual-VMAT. For the left (right) femur, the means of V30 and mean dose are 10.6% (11.6%) and 17.9Gy (19.2Gy) for the hybrid-VMAT and 25.6% (24.1%) and 27.3Gy (26.2Gy) for the manual-VMAT. The hybrid-VMAT has significantly improved the organs at risk sparing. Conclusion: The integration of DVH prediction and Auto-Planning significantly improve the VMAT plan quality in the rectal cancer radiotherapy. Our results show the benefit of the new method and will be further investigated in other tumor sites.

  9. The equivalent Histograms in clinical practice; Los histogramas equivalentes en la practica clinica

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro Trigo, F.; Teijeira Garcia, M.; Zaballos Carrera, S.

    2013-07-01

    Is frequently abused of The tolerances established for organ at risk [1] in diagrams of standard fractionation (2Gy/session, 5 sessions per week) when applied to Dose-Volume histograms non-standard schema. The purpose of this work is to establish when this abuse may be more important and realize a transformation of fractionation non-standard of histograms dosis-volumen. Is exposed a case that can be useful to make clinical decisions. (Author)

  10. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Martinez, Alvaro; Kestin, Larry L.; Yan Di; Grills, Inga; Brabbins, Donald S.; Lockman, David M.; Liang Jian; Gustafson, Gary S.; Chen, Peter Y.; Vicini, Frank A.; Wong, John W.

    2005-01-01

    Purpose We analyzed our experience treating localized prostate cancer with image-guided off-line correction with adaptive high-dose radiotherapy (ART) in our Phase II dose escalation study to identify factors predictive of chronic rectal toxicity. Materials and Methods From 1999-2002, 331 patients with clinical stage T1-T3N0M0 prostate cancer were prospectively treated in our Phase II 3D conformal dose escalation ART study to a median dose of 75.6 Gy (range, 63.0-79.2 Gy), minimum dose to confidence limited-planning target volume (cl-PTV) in 1.8 Gy fractions (median isocenter dose = 79.7 Gy). Seventy-four patients (22%) also received neoadjuvant/adjuvant androgen deprivation therapy. A patient-specific cl-PTV was constructed using 5 computed tomography scans and 4 sets of electronic portal images by applying an adaptive process to assure target accuracy and minimize PTV margin. For each case, the rectum (rectal solid) was contoured from the sacroiliac joints or rectosigmoid junction (whichever was higher) to the anal verge or ischial tuberosities (whichever was lower), with a median volume of 81.2 cc. The rectal wall was defined using the rectal solid with an individualized 3-mm wall thickness (median volume = 29.8 cc). Rectal wall dose-volume histogram was used to determine the prescribed dose. Toxicity was quantified using the National Cancer Institute Common Toxicity Criteria 2.0. Multiple dose-volume endpoints were evaluated for their association with chronic rectal toxicity. Results Median follow-up was 1.6 years. Thirty-four patients (crude rate 10.3%) experienced Grade 2 chronic rectal toxicity at a median interval of 1.1 years. Nine patients (crude rate = 2.7%) experienced Grade ≥3 chronic rectal toxicity (1 was Grade 4) at a median interval of 1.2 years. The 3-year rates of Grade ≥2 and Grade ≥3 chronic rectal toxicity were 20% and 4%, respectively. Acute toxicity predicted for chronic: Acute Grade 2-3 rectal toxicity (p 40% respectively. The volume

  11. ICRU reference dose in an era of intensity-modulated radiation therapy clinical trials: Correlation with planning target volume mean dose and suitability for intensity-modulated radiation therapy dose prescription

    International Nuclear Information System (INIS)

    Yaparpalvi, Ravindra; Hong, Linda; Mah, Dennis; Shen Jin; Mutyala, Subhakar; Spierer, Marnee; Garg, Madhur; Guha, Chandan; Kalnicki, Shalom

    2008-01-01

    Background and Purpose: IMRT clinical trials lack dose prescription and specification standards similar to ICRU standards for two- and three-dimensional external beam planning. In this study, we analyzed dose distributions for patients whose treatment plans incorporated IMRT, and compared the dose determined at the ICRU reference point to the PTV doses determined from dose-volume histograms. Additionally, we evaluated if ICRU reference type single-point dose prescriptions are suitable for IMRT dose prescriptions. Materials and methods: For this study, IMRT plans of 117 patients treated at our institution were randomly selected and analyzed. The treatment plans were clinically applied to the following disease sites: abdominal (11), anal (10), brain (11), gynecological (15), head and neck (25), lung (15), male pelvis (10) and prostate (20). The ICRU reference point was located in each treatment plan following ICRU Report 50 guidelines. The reference point was placed in the central part of the PTV and at or near the isocenter. In each case, the dose was calculated and recorded to this point. For each patient - volume and dose (PTV, PTV mean, median and modal) information was extracted from the planned dose-volume histogram. Results: The ICRU reference dose vs PTV mean dose relationship in IMRT exhibited a weak positive association (Pearson correlation coefficient 0.63). In approximately 65% of the cases studied, dose at the ICRU reference point was greater than the corresponding PTV mean dose. The dose difference between ICRU reference and PTV mean doses was ≤2% in approximately 79% of the cases studied (average 1.21% (±1.55), range -4% to +4%). Paired t-test analyses showed that the ICRU reference doses and PTV median doses were statistically similar (p = 0.42). The magnitude of PTV did not influence the difference between ICRU reference and PTV mean doses. Conclusions: The general relationship between ICRU reference and PTV mean doses in IMRT is similar to that

  12. Use of benchmark dose-volume histograms for selection of the optimal technique between three-dimensional conformal radiation therapy and intensity-modulated radiation therapy in prostate cancer

    International Nuclear Information System (INIS)

    Luo Chunhui; Yang, Claus Chunli; Narayan, Samir; Stern, Robin L.; Perks, Julian; Goldberg, Zelanna; Ryu, Janice; Purdy, James A.; Vijayakumar, Srinivasan

    2006-01-01

    Purpose: The aim of this study was to develop and validate our own benchmark dose-volume histograms (DVHs) of bladder and rectum for both conventional three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), and to evaluate quantitatively the benefits of using IMRT vs. 3D-CRT in treating localized prostate cancer. Methods and Materials: During the implementation of IMRT for prostate cancer, our policy was to plan each patient with both 3D-CRT and IMRT. This study included 31 patients with T1b to T2c localized prostate cancer, for whom we completed double-planning using both 3D-CRT and IMRT techniques. The target volumes included prostate, either with or without proximal seminal vesicles. Bladder and rectum DVH data were summarized to obtain an average DVH for each technique and then compared using two-tailed paired t test analysis. Results: For 3D-CRT our bladder doses were as follows: mean 28.8 Gy, v60 16.4%, v70 10.9%; rectal doses were: mean 39.3 Gy, v60 21.8%, v70 13.6%. IMRT plans resulted in similar mean dose values: bladder 26.4 Gy, rectum 34.9 Gy, but lower values of v70 for the bladder (7.8%) and rectum (9.3%). These benchmark DVHs have resulted in a critical evaluation of our 3D-CRT techniques over time. Conclusion: Our institution has developed benchmark DVHs for bladder and rectum based on our clinical experience with 3D-CRT and IMRT. We use these standards as well as differences in individual cases to make decisions on whether patients may benefit from IMRT treatment rather than 3D-CRT

  13. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    Science.gov (United States)

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  14. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    Science.gov (United States)

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  15. The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Spencer, David P.; Sherouse, George W.; Bentel, Gunilla; Clough, Robert; Vann, Karen; Jaszczak, Ronald; Coleman, R. Edward; Prosnitz, Leonard R.

    1995-01-01

    Purpose: During thoracic irradiation (XRT), treatment fields are usually designed to minimize the volume of nontumor-containing lung included. Generally, functional heterogeneities within the lung are not considered. The three dimensional (3D) functional information provided by single photon emission computed tomography (SPECT) lung perfusion scans might be useful in designing beams that minimize incidental irradiation of functioning lung tissue. We herein review the pretreatment SPECT scans in 86 patients (56 with lung cancer) to determine which are likely to benefit from this technology. Methods and Materials: Prior to thoracic XRT, SPECT lung perfusion scans were obtained following the intravenous injection of ∼4 mCi of 99m Tc-labeled macro-aggregated albumin. The presence of areas of decreased perfusion, their location relative to the tumor, and the potential clinical usefulness of their recognition, were scored. Patients were grouped and compared (two-tailed chi-square) based on clinical factors. Conventional dose-volume histograms (DVHs) and functional DVHs (DV F Hs) are calculated based on the dose distribution throughout the computed tomography (CT)-defined lung and SPECT-defined perfused lung, respectively. Results: Among 56 lung cancer patients, decreases in perfusion were observed at the tumor, adjacent to the tumor, and separate from the tumor in 94%, 74%, and 42% of patients, respectively. Perfusion defects adjacent to the tumor were often large with centrally placed tumors. Hypoperfusion in regions separate from the tumor were statistically most common in patients with relatively poor pulmonary function and chronic obstructive pulmonary disease (COPD). Considering all SPECT defects adjacent to and separate from the tumor, corresponding CT abnormalities were seen in only ∼50% and 20% of patients, respectively, and were generally not as impressive. Following XRT, hypoperfusion at and separate from the tumor persisted, while defects adjacent to the

  16. Late Toxicity After Intensity-Modulated Radiation Therapy for Localized Prostate Cancer: An Exploration of Dose-Volume Histogram Parameters to Limit Genitourinary and Gastrointestinal Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, Aaron W.; Fricano, Janine; Correa, David; Pelizzari, Charles A. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States); Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States)

    2012-01-01

    Purpose: To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose-volume histogram (DVH) guidelines to limit late treatment-related toxicity. Methods and Materials: In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V{sub 70}), 65 Gy (V{sub 65}), and 40 Gy (V{sub 40}). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. Results: With a median follow-up of 41 months, the 4-year freedom from maximal Grade 2+ late toxicity was 81% and 91% for GU and GI systems, respectively, and by last follow-up, the rates of Grade 2+ GU and GI toxicity were 9% and 5%, respectively. On multivariate analysis, whole-pelvic IMRT was associated with Grade 2+ GU toxicity and age was associated with Grade 2+ GI toxicity. Freedom from Grade 2+ GI toxicity at 4 years was 100% for men with rectal V{sub 70} {<=}10%, V{sub 65} {<=}20%, and V{sub 40} {<=}40%; 92% for men with rectal V{sub 70} {<=}20%, V{sub 65} {<=}40%, and V{sub 40} {<=}80%; and 85% for men exceeding these criteria (p = 0.13). These criteria were more highly associated with GI toxicity in men aged {>=}70 years (p = 0.07). No bladder dose-volume relationships were associated with the risk of GU toxicity. Conclusions: IMRT is associated with low rates of severe GU or GI toxicity after treatment for prostate cancer. Rectal dose constraints

  17. Correlation between surrogates of bladder dosimetry and dose–volume histograms of the bladder wall defined on MRI in prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Carillo, Viviana; Cozzarini, Cesare; Chietera, Andreina; Perna, Lucia; Gianolini, Stefano; Maggio, Angelo; Botti, Andrea; Rancati, Tiziana; Valdagni, Riccardo; Fiorino, Claudio

    2012-01-01

    The correlation between bladder dose–wall-histogram (DWH) and dose–volume-histogram (DVH), dose–surface-histogram (DSH), and DVH-5/10 was investigated in a group of 28 patients; bladder walls were drawn on T2-MRI. DVH showed the poorest correlation with DWH; DSH or DVH-5/10 should be preferred in planning; absolute DVH may be used for radical patients, although less robust.

  18. The dose-volume constraint satisfaction problem for inverse treatment planning with field segments

    International Nuclear Information System (INIS)

    Michalski, Darek; Xiao, Ying; Censor, Yair; Galvin, James M

    2004-01-01

    The prescribed goals of radiation treatment planning are often expressed in terms of dose-volume constraints. We present a novel formulation of a dose-volume constraint satisfaction search for the discretized radiation therapy model. This approach does not rely on any explicit cost function. Inverse treatment planning uses the aperture-based approach with predefined, according to geometric rules, segmental fields. The solver utilizes the simultaneous version of the cyclic subgradient projection algorithm. This is a deterministic iterative method designed for solving the convex feasibility problems. A prescription is expressed with the set of inequalities imposed on the dose at the voxel resolution. Additional constraint functions control the compliance with selected points of the expected cumulative dose-volume histograms. The performance of this method is tested on prostate and head-and-neck cases. The relationships with other models and algorithms of similar conceptual origin are discussed. The demonstrated advantages of the method are: the equivalence of the algorithmic and prescription parameters, the intuitive setup of free parameters, and the improved speed of the method as compared to similar iterative as well as other techniques. The technique reported here will deliver approximate solutions for inconsistent prescriptions

  19. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models

    International Nuclear Information System (INIS)

    Soehn, Matthias; Yan Di; Liang Jian; Meldolesi, Elisa; Vargas, Carlos; Alber, Markus

    2007-01-01

    Purpose: Accurate modeling of rectal complications based on dose-volume histogram (DVH) data are necessary to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose (EUD)-based and dose-volume-based normal tissue complication probability (NTCP) models to rectal wall DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for Grade ≥ 2 rectal bleeding. Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized EUD (3) serial reconstruction unit (RU) model (4) Poisson-EUD model, and (5) mean dose- and (6) cutoff dose-logistic regression model. The parameters and their confidence intervals were determined using maximum likelihood estimation. Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quantitatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving > 73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than the EUD-based models. Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two parameters. Dose-volume-based cutoff-dose models performed worse

  20. An improved distance-to-dose correlation for predicting bladder and rectum dose-volumes in knowledge-based VMAT planning for prostate cancer

    Science.gov (United States)

    Wall, Phillip D. H.; Carver, Robert L.; Fontenot, Jonas D.

    2018-01-01

    The overlap volume histogram (OVH) is an anatomical metric commonly used to quantify the geometric relationship between an organ at risk (OAR) and target volume when predicting expected dose-volumes in knowledge-based planning (KBP). This work investigated the influence of additional variables contributing to variations in the assumed linear DVH-OVH correlation for the bladder and rectum in VMAT plans of prostate patients, with the goal of increasing prediction accuracy and achievability of knowledge-based planning methods. VMAT plans were retrospectively generated for 124 prostate patients using multi-criteria optimization. DVHs quantified patient dosimetric data while OVHs quantified patient anatomical information. The DVH-OVH correlations were calculated for fractional bladder and rectum volumes of 30, 50, 65, and 80%. Correlations between potential influencing factors and dose were quantified using the Pearson product-moment correlation coefficient (R). Factors analyzed included the derivative of the OVH, prescribed dose, PTV volume, bladder volume, rectum volume, and in-field OAR volume. Out of the selected factors, only the in-field bladder volume (mean R  =  0.86) showed a strong correlation with bladder doses. Similarly, only the in-field rectal volume (mean R  =  0.76) showed a strong correlation with rectal doses. Therefore, an OVH formalism accounting for in-field OAR volumes was developed to determine the extent to which it improved the DVH-OVH correlation. Including the in-field factor improved the DVH-OVH correlation, with the mean R values over the fractional volumes studied improving from  -0.79 to  -0.85 and  -0.82 to  -0.86 for the bladder and rectum, respectively. A re-planning study was performed on 31 randomly selected database patients to verify the increased accuracy of KBP dose predictions by accounting for bladder and rectum volume within treatment fields. The in-field OVH led to significantly more precise

  1. A model to incorporate organ deformation in the evaluation of dose/volume relationship

    International Nuclear Information System (INIS)

    Yan, D.; Jaffray, D.; Wong, J.; Brabbins, D.; Martinez, A. A.

    1997-01-01

    Purpose: Measurements of internal organ motion have demonstrated that daily organ deformation exists during the course of radiation treatment. However, a model to evaluate the resultant dose delivered to a daily deformed organ remains a difficult challenge. Current methods which model such organ deformation as rigid body motion in the dose calculation for treatment planning evaluation are incorrect and misleading. In this study, a new model for treatment planning evaluation is introduced which incorporates patient specific information of daily organ deformation and setup variation. The model was also used to retrospectively analyze the actual treatment data measured using daily CT scans for 5 patients with prostate treatment. Methods and Materials: The model assumes that for each patient, the organ of interest can be measured during the first few treatment days. First, the volume of each organ is delineated from each of the daily measurements and cumulated in a 3D bit-map. A tissue occupancy distribution is then constructed with the 50% isodensity representing the mean, or effective, organ volume. During the course of treatment, each voxel in the effective organ volume is assumed to move inside a local 3D neighborhood with a specific distribution function. The neighborhood and the distribution function are deduced from the positions and shapes of the organ in the first few measurements using the biomechanics model of viscoelastic body. For each voxel, the local distribution function is then convolved with the spatial dose distribution. The latter includes also the variation in dose due to daily setup error. As a result, the cumulative dose to the voxel incorporates the effects of daily setup variation and organ deformation. A ''variation adjusted'' dose volume histogram, aDVH, for the effective organ volume can then be constructed for the purpose of treatment evaluation and optimization. Up to 20 daily CT scans and daily portal images for 5 patients with prostate

  2. Visualizing Contour Trees within Histograms

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Many of the topological features of the isosurfaces of a scalar volume field can be compactly represented by its contour tree. Unfortunately, the contour trees of most real-world volume data sets are too complex to be visualized by dot-and-line diagrams. Therefore, we propose a new visualization...... that is suitable for large contour trees and efficiently conveys the topological structure of the most important isosurface components. This visualization is integrated into a histogram of the volume data; thus, it offers strictly more information than a traditional histogram. We present algorithms...... to automatically compute the graph layout and to calculate appropriate approximations of the contour tree and the surface area of the relevant isosurface components. The benefits of this new visualization are demonstrated with the help of several publicly available volume data sets....

  3. The study of dose variation and change of heart volume using 4D-CT in left breast radiation therapy

    International Nuclear Information System (INIS)

    Park, Seon Mi; Cheon, Geum Seong; Heo, Gyeong Hun; Shin, Sung Pil; Kim, Kwang Seok; Kim, Chang Uk; Kim, Hoi Nam

    2013-01-01

    We investigate the results of changed heart volume and heart dose in the left breast cancer patients while considering the movements of respiration. During the months of March and May in 2012, we designated the 10 patients who had tangential irradiation with left breast cancer in the department of radiation Oncology. With acquired images of free breathing pattern through 3D and 4D CT, we had planed enough treatment filed for covered up the whole left breast. It compares the results of the exposed dose and the volume of heart by DVH (Dose Volume histogram). Although total dose was 50.4 Gy (1.8 Gy/28 fraction), reirradiated 9 Gy (1.8 Gy/5 Fraction) with PTV (Planning Target Volume) if necessary. It compares the results of heart volume and heart dose with the free breathing in 3D CT and 4D CT. It represents the maximum difference volume of heart is 40.5%. In addition, it indicated the difference volume of maximum and minimum, average are 8.8% and 27.9%, 37.4% in total absorbed dose of heart. In case of tangential irradiation (opposite beam) in left breast cancer patients, it is necessary to consider the changed heart volume by the respiration of patient and the heartbeat of patient

  4. Calculation of rectal dose surface histograms in the presence of time varying deformations

    International Nuclear Information System (INIS)

    Roeske, John C.; Spelbring, Danny R.; Vijayakumar, S.; Forman, Jeffrey D.; Chen, George T.Y.

    1996-01-01

    Purpose: Dose volume (DVH) and dose surface histograms (DSH) of the bladder and rectum are usually calculated from a single treatment planning scan. These DVHs and DSHs will eventually be correlated with complications to determine parameters for normal tissue complication probabilities (NTCP). However, from day to day, the size and shape of the rectum and bladder may vary. The purpose of this study is to compare a more accurate estimate of the time integrated DVHs and DSHs of the rectum (in the presence of daily variations in rectal shape) to initial DVHs/DSHs. Methods: 10 patients were scanned once per week during the course of fractionated radiotherapy, typically accumulating a total of six scans. The rectum and bladder were contoured on each of the studies. The model used to assess effects of rectal contour deformation is as follows: the contour on a given axial slice (see figure) is boxed within a rectangle. A line drawn parallel to the AP axis through the rectangle equally partitions the box. Starting at the intersection of the vertical line and the rectal contour, points on the contour are marked off representing the same rectal dose point, even in the presence of distortion. Corresponding numbered points are used to sample the dose matrix and create a composite DSH. The model assumes uniform stretching of the rectal contour for any given axial cut, and no twist of the structure or vertical displacement. A similar model is developed for the bladder with spherical symmetry. Results: Normalized DSHs (nDSH) for each CT scan were calculated as well as the time averaged nDSH over all scans. These were compared with the nDSH from the initial planning scan. Individual nDSHs differed by 8% surface area irradiated at the 80% dose level, to as much as 20% surface area in the 70-100% dose range. DSH variations are due to position and shape changes in the rectum during different CT scans. The spatial distribution of dose is highly variable, and depends on the field

  5. TU-H-CAMPUS-JeP3-02: Automated Dose Accumulation and Dose Accuracy Assessment for Online Or Offline Adaptive Replanning

    International Nuclear Information System (INIS)

    Chen, G; Ahunbay, E; Li, X

    2016-01-01

    Purpose: With introduction of high-quality treatment imaging during radiation therapy (RT) delivery, e.g., MR-Linac, adaptive replanning of either online or offline becomes appealing. Dose accumulation of delivered fractions, a prerequisite for the adaptive replanning, can be cumbersome and inaccurate. The purpose of this work is to develop an automated process to accumulate daily doses and to assess the dose accumulation accuracy voxel-by-voxel for adaptive replanning. Methods: The process includes the following main steps: 1) reconstructing daily dose for each delivered fraction with a treatment planning system (Monaco, Elekta) based on the daily images using machine delivery log file and considering patient repositioning if applicable, 2) overlaying the daily dose to the planning image based on deformable image registering (DIR) (ADMIRE, Elekta), 3) assessing voxel dose deformation accuracy based on deformation field using predetermined criteria, and 4) outputting accumulated dose and dose-accuracy volume histograms and parameters. Daily CTs acquired using a CT-on-rails during routine CT-guided RT for sample patients with head and neck and prostate cancers were used to test the process. Results: Daily and accumulated doses (dose-volume histograms, etc) along with their accuracies (dose-accuracy volume histogram) can be robustly generated using the proposed process. The test data for a head and neck cancer case shows that the gross tumor volume decreased by 20% towards the end of treatment course, and the parotid gland mean dose increased by 10%. Such information would trigger adaptive replanning for the subsequent fractions. The voxel-based accuracy in the accumulated dose showed that errors in accumulated dose near rigid structures were small. Conclusion: A procedure as well as necessary tools to automatically accumulate daily dose and assess dose accumulation accuracy is developed and is useful for adaptive replanning. Partially supported by Elekta, Inc.

  6. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Ungun, B [Stanford University, Stanford, CA (United States); Stanford University School of Medicine, Stanford, CA (United States); Fu, A; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Boyd, S [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  7. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    International Nuclear Information System (INIS)

    Ungun, B; Fu, A; Xing, L; Boyd, S

    2016-01-01

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  8. Proposed Rectal Dose Constraints for Patients Undergoing Definitive Whole Pelvic Radiotherapy for Clinically Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Chan, Linda W.; Xia Ping; Gottschalk, Alexander R.; Akazawa, Michelle; Scala, Matthew; Pickett, Barby M.S.; Hsu, I-C.; Speight, Joycelyn; Roach, Mack

    2008-01-01

    Purpose: Although several institutions have reported rectal dose constraints according to threshold toxicity, the plethora of trials has resulted in multiple, confusing dose-volume histogram recommendations. A set of standardized, literature-based constraints for patients undergoing whole pelvic radiotherapy (RT) for prostate cancer would help guide the practice of prostate RT. The purpose of this study was to develop these constraints, demonstrate that they are achievable, and assess the corresponding rectal toxicity. Methods and Materials: An extensive literature search identified eight key studies relating dose-volume histogram data to rectal toxicity. A correction factor was developed to address differences in the anatomic definition of the rectum across studies. The dose-volume histogram constraints recommended by each study were combined to generate the constraints. The data from all patients treated with definitive intensity-modulated RT were then compared against these constraints. Acute rectal toxicity was assessed. Results: A continuous, proposed rectal dose-constraint curve was generated. Intensity-modulated RT not only met this constraint curve, but also was able to achieve at least 30-40% lower dose to the rectum. The preliminary clinical results were also positive: 50% of patients reported no acute bowel toxicity, 33% reported Grade 1 toxicity, and 17% reported Grade 2 toxicity. No patients reported Grade 3-4 acute rectal toxicity. Conclusions: In this study, we developed a set of proposed rectal dose constraints. This allowed for volumetric assessment of the dose-volume relationship compared with single dose-volume histogram points. Additional research will be performed to validate this threshold as a class solution for rectal dose constraints

  9. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation.

    Science.gov (United States)

    Ma, Ting Martin; Grimm, Jimm; McIntyre, Riley; Anderson-Keightly, Heather; Kleinberg, Lawrence R; Hales, Russell K; Moore, Joseph; Vannorsdall, Tracy; Redmond, Kristin J

    2017-11-01

    To prospectively evaluate hippocampal radiation dose volume effects and memory decline following cranial irradiation. Effects of hippocampal radiation over a wide range of doses were investigated by combining data from three prospective studies. In one, adults with small cell lung cancer received hippocampal-avoidance prophylactic cranial irradiation. In the other two, adults with glioblastoma multiforme received neural progenitor cell sparing radiation or no sparing with extra dose delivered to subventricular zone. Memory was measured by the Hopkins Verbal Learning Test-Revised Delayed Recall (HVLT-R DR) at 6 months after radiation. Dose-volume histograms were generated and dose-response data were fitted to a nonlinear model. Of 60 patients enrolled, 30 were analyzable based on HVLT-R DR testing completion status, baseline HVLT-R DR and intracranial metastasis/recurrence or prior hippocampal resection status. We observed a dose-response of radiation to the hippocampus with regard to decline in HVLT-R DR. D50% of the bilateral hippocampi of 22.1 Gy is associated with 20% risk of decline. This prospective study demonstrates an association between hippocampal dose volume effects and memory decline measured by HVLT-R DR over a wide dose range. These data support a potential benefit of hippocampal sparing and encourage continued trial enrollment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Improved robotic stereotactic body radiation therapy plan quality and planning efficacy for organ-confined prostate cancer utilizing overlap-volume histogram-driven planning methodology

    International Nuclear Information System (INIS)

    Wu, Binbin; Pang, Dalong; Lei, Siyuan; Gatti, John; Tong, Michael; McNutt, Todd; Kole, Thomas; Dritschilo, Anatoly; Collins, Sean

    2014-01-01

    Background and purpose: This study is to determine if the overlap-volume histogram (OVH)-driven planning methodology can be adapted to robotic SBRT (CyberKnife Robotic Radiosurgery System) to further minimize the bladder and rectal doses achieved in plans manually-created by clinical planners. Methods and materials: A database containing clinically-delivered, robotic SBRT plans (7.25 Gy/fraction in 36.25 Gy) of 425 patients with localized prostate cancer was used as a cohort to establish an organ’s distance-to-dose model. The OVH-driven planning methodology was refined by adding the PTV volume factor to counter the target’s dose fall-off effect and incorporated into Multiplan to automate SBRT planning. For validation, automated plans (APs) for 12 new patients were generated, and their achieved dose/volume values were compared to the corresponding manually-created, clinically-delivered plans (CPs). A two-sided, Wilcoxon rank-sum test was used for statistical comparison with a significance level of p < 0.05. Results: PTV’s V(36.25 Gy) was comparable: 95.6% in CPs comparing to 95.1% in APs (p = 0.2). On average, the refined approach lowered V(18.12 Gy) to the bladder and rectum by 8.2% (p < 0.05) and 6.4% (p = 0.14). A physician confirmed APs were clinically acceptable. Conclusions: The improvements in APs could further reduce toxicities observed in SBRT for organ-confined prostate cancer

  11. Application of a Novel Dose-Uncertainty Model for Dose-Uncertainty Analysis in Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong

    2010-01-01

    Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.

  12. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C [University of Kansas Medical Center, Kansas City, KS (United States)

    2016-06-15

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  13. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    International Nuclear Information System (INIS)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C

    2016-01-01

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  14. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Dale, Einar; Skjoensberg, Ane; Olsen, Dag Rune

    2001-01-01

    Purpose: To evaluate variation of dose to organs at risk for patients receiving fractionated high dose rate gynaecological brachytherapy by using CT-based 3D treatment planning and dose-volume histograms (DVH). Materials and methods: Fourteen patients with cancer of the uterine cervix underwent three to six CT examinations (mean 4.9) during their course of high-dose-rate brachytherapy using radiographically compatible applicators. The rectal and bladder walls were delineated and DVHs were calculated. Results: Inter fraction variation of the bladder volume (CV mean =44.1%) was significantly larger than the inter fraction variation of the mean dose (CV mean =19.9%, P=0.005) and the maximum dose (CV mean =17.5%, P=0.003) of the bladder wall. The same trend was seen for rectum, although the figures were not significantly different. Performing CT examinations at four of seven brachytherapy fractions reduced the uncertainty to 4 and 7% for the bladder and rectal doses, respectively. A linear regression analysis showed a significant, negative relationship between time after treatment start and the whole bladder volume (P=0.018), whereas no correlation was found for the rectum. For both rectum and bladder a linear regression analysis revealed a significant, negative relationship between the whole volume and median dose (P<0.05). Conclusion: Preferably a CT examination should be provided at every fraction. However, this is logistically unfeasible in most institutions. To obtain reliable DVHs the patients will in the future undergo 3-4 CT examinations during the course of brachytherapy at our institution. Since this study showed an association between large bladder volumes and dose reductions, the patients will be treated with a standardized bladder volume

  15. SU-F-T-378: Evaluation of Dose-Volume Variability and Parameters Between Prostate IMRT and VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J [Princess Margaret Cancer Centre, Toronto, ON (Canada); Jiang, R [Grand River Regional Cancer Centre, Kitchener, ON (Canada); Kiciak, A [University of Waterloo, Waterloo, ON (Canada)

    2016-06-15

    Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT and VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.

  16. SU-F-T-454: Dose-Mass-Histogram Sensitivity to Anatomical Changes During Radiotherapy for HNSCC

    Energy Technology Data Exchange (ETDEWEB)

    De Ornelas-Couto, M; Bossart, E; Elsayyad, N; Samuels, M; Takita, C; Mihaylov, I [University of Miami, Miami, FL (United States)

    2016-06-15

    Purpose: To determine the sensitivity of dose-mass-histogram (DMH) due to anatomical changes of head-and-neck squamous cell carcinoma (HNSCC) radiotherapy (RT). Methods: Eight patients undergoing RT treatment for HNSCC were scanned during the third and sixth week of RT. These second (CT2) and third (CT3) CTs were co-registered to the planning CT (CT1). Contours were propagated via deformable registration from CT1 and doses were re-calculated. DMHs were extracted for each CT set. DMH sensitivity was assessed by dose-mass indices (DMIs), which represent the dose delivered to a certain mass of and anatomical structure. DMIs included: dose to 98%, 95% and 2% of the target masses (PTV1, PTV2, and PTV3) and organs-at-risk (OARs): cord DMI2%, brainstem DMI2%, left- and right-parotid DMI2% and DMI50%, and mandible DMI2%. A two-tailed paired t-test was used to compare changes to DMIs in CT2 and CT3 with respect to CT1 (CT2/CT1 and CT3/CT1). Results: Changes to DMHs were found for all OARs and PTVs, but they were significant only for the PTVs. Maximum dose to PTVs increased significantly for CT2/CT1 in all three PTVs, but CT3/CT1 changes were only significantly different for PTV1 and PTV2. Dose coverage to the three PTVs was also significantly different, DMI98% was lower for both CT2/CT1 and CT3/CT1. DMI95% was significantly lower for PTV1 for CT2/CT1, PTV2 for CT2/CT1 and CT3/CT1, and PTV3 for CT3/CT1. Conclusion: Changes in anatomy significantly change dose-mass coverage for the planning targets, making it necessary to re-plan in order to maintain the therapeutic goals. Maximum dose to the PTVs increase significantly as RT progresses, which may not be problematic as long as the high dose remains in the gross tumor volume. Doses to OARs were minimally affected and the differences were not significant.

  17. Reproducibility of brain ADC histograms

    International Nuclear Information System (INIS)

    Steens, S.C.A.; Buchem, M.A. van; Admiraal-Behloul, F.; Schaap, J.A.; Hoogenraad, F.G.C.; Wheeler-Kingshott, C.A.M.; Tofts, P.S.; Cessie, S. le

    2004-01-01

    The aim of this study was to assess the effect of differences in acquisition technique on whole-brain apparent diffusion coefficient (ADC) histogram parameters, as well as to assess scan-rescan reproducibility. Diffusion-weighted imaging (DWI) was performed in 7 healthy subjects with b-values 0-800, 0-1000, and 0-1500 s/mm 2 and fluid-attenuated inversion recovery (FLAIR) DWI with b-values 0-1000 s/mm 2 . All sequences were repeated with and without repositioning. The peak location, peak height, and mean ADC of the ADC histograms and mean ADC of a region of interest (ROI) in the white matter were compared using paired-sample t tests. Scan-rescan reproducibility was assessed using paired-sample t tests, and repeatability coefficients were reported. With increasing maximum b-values, ADC histograms shifted to lower values, with an increase in peak height (p<0.01). With FLAIR DWI, the ADC histogram shifted to lower values with a significantly higher, narrower peak (p<0.01), although the ROI mean ADC showed no significant differences. For scan-rescan reproducibility, no significant differences were observed. Different DWI pulse sequences give rise to different ADC histograms. With a given pulse sequence, however, ADC histogram analysis is a robust and reproducible technique. Using FLAIR DWI, the partial-voluming effect of cerebrospinal fluid, and thus its confounding effect on histogram analyses, can be reduced

  18. Aerial radiometric and magnetic reconnaissance survey of the Delta Quadrangle, Utah. Volume 2. Maps, profiles, and histograms. Final report

    International Nuclear Information System (INIS)

    1978-11-01

    Results of the interpretation of the gamma-ray spectrometric data in the form of a preferred anomaly map, along with significance-factor profile maps, stacked profiles, and histograms are presented in Volume 2

  19. Quantitative dose-volume response analysis of changes in parotid gland function after radiotherapy in the head-and-neck region

    International Nuclear Information System (INIS)

    Roesink, Judith M.; Moerland, Marinus A.; Battermann, Jan J.; Hordijk, Gerrit Jan; Terhaard, Chris H.J.

    2001-01-01

    Purpose: To study the radiation tolerance of the parotid glands as a function of dose and volume irradiated. Methods and Materials: One hundred eight patients treated with primary or postoperative radiotherapy for various malignancies in the head-and-neck region were prospectively evaluated. Stimulated parotid flow rate was measured before radiotherapy and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from CT-based treatment planning. The normal tissue complication probability model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow rate 50 (the dose to the whole organ leading to a complication probability of 50%) was found to be 31, 35, and 39 Gy at 6 weeks, 6 months, and 1 year postradiotherapy, respectively. The volume dependency parameter n was around 1, which means that the mean parotid dose correlates best with the observed complications. There was no steep dose-response curve (m=0.45 at 1 year postradiotherapy). Conclusions: This study on dose/volume/parotid gland function relationships revealed a linear correlation between postradiotherapy flow ratio and parotid gland dose and a strong volume dependency. No threshold dose was found. Recovery of parotid gland function was shown at 6 months and 1 year after radiotherapy. In radiation planning, attempts should be made to achieve a mean parotid gland dose at least below 39 Gy (leading to a complication probability of 50%)

  20. Dose-volume analysis for quality assurance of interstitial brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Kestin, Larry L.; Edmundson, Gregory K.; Jaffray, David A.; Wong, John W.; Kini, Vijay R.; Chen, Peter Y.; Martinez, Alvaro A.

    1999-01-01

    Purpose/Objective: The use of brachytherapy in the management of breast cancer has increased significantly over the past several years. Unfortunately, few techniques have been developed to compare dosimetric quality and target volume coverage concurrently. We present a new method of implant evaluation that incorporates computed tomography-based three-dimensional (3D) dose-volume analysis with traditional measures of brachytherapy quality. Analyses performed in this fashion will be needed to ultimately assist in determining the efficacy of breast implants. Methods and Materials: Since March of 1993, brachytherapy has been used as the sole radiation modality after lumpectomy in selected protocol patients with early-stage breast cancer treated with breast-conserving therapy. Eight patients treated with high-dose-rate (HDR) brachytherapy who had surgical clips outlining the lumpectomy cavity and underwent computed tomography (CT) scanning after implant placement were selected for this study. For each patient, the postimplant CT dataset was transferred to a 3D treatment planning system. The lumpectomy cavity, target volume (lumpectomy cavity plus a 1-cm margin), and entire breast were outlined on each axial slice. Once all volumes were entered, the programmed HDR brachytherapy source positions and dwell times were imported into the 3D planning system. Using the tools provided by the 3D planning system, the implant dataset was then registered to the visible implant template in the CT dataset. The distribution of the implant dose was analyzed with respect to defined volumes via dose-volume histograms (DVH). Isodose surfaces, the dose homogeneity index, and dosimetric coverage of the defined volumes were calculated and contrasted. All patients received 32 Gy to the entire implanted volume in 8 fractions of 4 Gy over 4 days. Results: Three-plane implants were used for 7 patients and a two-plane implant for 1 patient. The median number of needles per implant was 16.5 (range

  1. Changes in Treatment Volume of Hormonally Treated and Untreated Cancerous Prostate and its Impact on Rectal Dose

    International Nuclear Information System (INIS)

    Lilleby, Wolfgang; Dale, Einar; Olsen, Dag R.; Gude, Unn; Fossaa, Sophie D.

    2003-01-01

    Late chronic side effects of the rectum constitute one of the principal limiting factors for curative radiation therapy in patients with prostate cancer. The purpose of the study was to determine the impact of immediate androgen deprivation (IAD) prior to conformal radiotherapy on rectal volume exposed to high doses, as compared with a deferred treatment strategy (DAD). Twenty-five patients (13 in the IAD group and 12 in the DAD group) with bulky tumours of the prostate, T3pN1-2M0 from the prospective EORTC trial 30846 were analysed. Three-dimensional conformal radiation treatment plans (3D CRT) using a 4-field box technique were generated based on the digitized computed tomographic or magnetic resonance findings acquired during the first 9 months after inclusion in the EORTC trial. Dose-volume histograms (DVHs) were calculated for the prostate and rectum. In the DAD group, there was no obvious alteration in the mean size of the prostate or other evaluated structures. In the IAD patients, a statistically significant reduction of approximately 40% of the gross tumour volume (GTV) was reached after a 6 months' course of hormonal treatment (p<0.001). High-dose rectal volume was correlated with the volume changes of the GTV (p<0.001). Mean rectal volume receiving 95% or more of the target dose was significantly reduced by 20%. Our study confirms the effect of downsizing of locally advanced prostate tumours following AD treatment and demonstrates the interdependence of the high-dose rectal volume with the volume changes of the GTV. However, the mean beneficial sparing of rectal volume was outweighed in some patients by considerable inter-patient variations

  2. Dysphagia after definitive radiotherapy for head and neck cancer. Correlation of dose-volume parameters of the pharyngeal constrictor muscles

    Energy Technology Data Exchange (ETDEWEB)

    Deantonio, L.; Masini, L. [University Hospital ' Maggiore della Carita' , Novara (Italy). Radiotherapy; Brambilla, M. [University Hospital ' Maggiore della Carita' , Novara (Italy). Medical Physics; Pia, F. [University Hospital ' Maggiore della Carita' , Novara (Italy). Otolaryngology; University of ' Piemonte Orientale' , Novara (Italy). Dept. of Medical Sciences; Krengli, M. [University Hospital ' Maggiore della Carita' , Novara (Italy). Radiotherapy; University of ' Piemonte Orientale' , Novara (Italy). Dept. of Translational Medicine and BRMA

    2013-03-15

    Background: Dysphagia is a complication of head and neck cancer patients undergoing radiotherapy (RT). We analysed frequency and severity of swallowing dysfunction and correlated these findings with dose-volume histograms (DVHs) of the pharyngeal constrictor muscles. Methods: A total of 50 patients treated by radical RT were enrolled. DVHs of constrictor muscles were correlated with acute and late dysphagia and with the items of three quality of life questionnaires. Results: Mean dose to superior and middle constrictor muscles (SCM, MCM), partial volume of SCM and MCM receiving a dose {>=} 50 Gy dose to the whole constrictor muscles {>=} 60 Gy and tumour location were associated to late dysphagia at univariate analysis. Mean dose to the MCM was the only statistically significant predictor of late dysphagia at the multivariable analysis. Conclusion: The study shows a significant relationship between long-term dysphagia and mean doses to SCM, MCM, whole constrictor muscles, and oropharyngeal tumour. This finding suggests a potential advantage in reducing the RT dose to swallowing structures to avoid severe dysphagia. (orig.)

  3. Dysphagia after definitive radiotherapy for head and neck cancer. Correlation of dose-volume parameters of the pharyngeal constrictor muscles

    International Nuclear Information System (INIS)

    Deantonio, L.; Masini, L.; Brambilla, M.; Pia, F.; University of 'Piemonte Orientale', Novara; Krengli, M.; University of 'Piemonte Orientale', Novara

    2013-01-01

    Background: Dysphagia is a complication of head and neck cancer patients undergoing radiotherapy (RT). We analysed frequency and severity of swallowing dysfunction and correlated these findings with dose-volume histograms (DVHs) of the pharyngeal constrictor muscles. Methods: A total of 50 patients treated by radical RT were enrolled. DVHs of constrictor muscles were correlated with acute and late dysphagia and with the items of three quality of life questionnaires. Results: Mean dose to superior and middle constrictor muscles (SCM, MCM), partial volume of SCM and MCM receiving a dose ≥ 50 Gy dose to the whole constrictor muscles ≥ 60 Gy and tumour location were associated to late dysphagia at univariate analysis. Mean dose to the MCM was the only statistically significant predictor of late dysphagia at the multivariable analysis. Conclusion: The study shows a significant relationship between long-term dysphagia and mean doses to SCM, MCM, whole constrictor muscles, and oropharyngeal tumour. This finding suggests a potential advantage in reducing the RT dose to swallowing structures to avoid severe dysphagia. (orig.)

  4. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

    Science.gov (United States)

    Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu

    2018-03-01

    To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Real-time beam monitoring for error detection in IMRT plans and impact on dose-volume histograms. A multi-center study

    Energy Technology Data Exchange (ETDEWEB)

    Marrazzo, Livia; Arilli, Chiara; Casati, Marta [Careggi University Hospital, Medical Physic Unit, Florence (Italy); Pasler, Marlies [Lake Constance Radiation Oncology Center, Singen-Friedrichshafen (Germany); Kusters, Martijn; Canters, Richard [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Fedeli, Luca; Calusi, Silvia [University of Florence, Department of Experimental and Clinical Biomedical Sciences ' ' Mario Serio' ' , Florence (Italy); Talamonti, Cinzia; Pallotta, Stefania [Careggi University Hospital, Medical Physic Unit, Florence (Italy); University of Florence, Department of Experimental and Clinical Biomedical Sciences ' ' Mario Serio' ' , Florence (Italy); Simontacchi, Gabriele [Careggi University Hospital, Radiation Oncology Unit, Florence (Italy); Livi, Lorenzo [University of Florence, Department of Experimental and Clinical Biomedical Sciences ' ' Mario Serio' ' , Florence (Italy); Careggi University Hospital, Radiation Oncology Unit, Florence (Italy)

    2018-03-15

    This study aimed to test the sensitivity of a transmission detector for online dose monitoring of intensity-modulated radiation therapy (IMRT) for detecting small delivery errors. Furthermore, the correlation of changes in detector output induced by small delivery errors with other metrics commonly employed to quantify the deviations between calculated and delivered dose distributions was investigated. Transmission detector measurements were performed at three institutions. Seven types of errors were induced in nine clinical step-and-shoot (S and S) IMRT plans by modifying the number of monitor units (MU) and introducing small deviations in leaf positions. Signal reproducibility was investigated for short- and long-term stability. Calculated dose distributions were compared in terms of γ passing rates and dose-volume histogram (DVH) metrics (e.g., D{sub mean}, D{sub x%}, V{sub x%}). The correlation between detector signal variations, γ passing rates, and DVH parameters was investigated. Both short- and long-term reproducibility was within 1%. Dose variations down to 1 MU (∇signal 1.1 ± 0.4%) as well as changes in field size and positions down to 1 mm (∇signal 2.6 ± 1.0%) were detected, thus indicating high error-detection sensitivity. A moderate correlation of detector signal was observed with γ passing rates (R{sup 2} = 0.57-0.70), while a good correlation was observed with DVH metrics (R{sup 2} = 0.75-0.98). The detector is capable of detecting small delivery errors in MU and leaf positions, and is thus a highly sensitive dose monitoring device for S and S IMRT for clinical practice. The results of this study indicate a good correlation of detector signal with DVH metrics; therefore, clinical action levels can be defined based on the presented data. (orig.) [German] In dieser Arbeit wurde die Sensitivitaet bezueglich der Fehlererkennung eines Transmissionsdetektors fuer die Online-Dosisueberwachung von intensitaetsmodulierter Strahlentherapie (IMRT

  6. Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors

    International Nuclear Information System (INIS)

    Martel, Mary Kaye; Sandler, Howard M.; Cornblath, Wayne T.; Marsh, Lon H.; Hazuka, Mark B.; Roa, Wilson H.; Fraass, Benedict A.; Lichter, Allen S.

    1997-01-01

    Purpose: The purpose of the present work was to relate dose and volume information to complication data for visual pathway structures in patients with advanced paranasal sinus tumors. Methods and Materials: Three-dimensional (3D) dose distributions for chiasm, optic nerve, and retina were calculated and analyzed for 20 patients with advanced paranasal sinus malignant tumors. 3D treatment planning with beam's eye view capability was used to design beam and block arrangements, striving to spare the contralateral orbit (to lessen the chance of unilateral blindness) and frequently the ipsilateral orbit (to help prevent bilateral blindness). Point doses, dose-volume histogram analysis, and normal tissue complication probability (NTCP) calculations were performed. Published tolerance doses that indicate significant risk of complications were used as guidelines for analysis of the 3D dose distributions. Results: Point doses, percent volume exceeding a specified published tolerance dose, and NTCP calculations are given in detail for patients with complications versus patients without complications. Two optic nerves receiving maximum doses below the published tolerance dose sustained damage (mild vision loss). Three patients (of 13) without optic nerve sparing and/or chiasm sparing had moderate or severe vision loss. Complication data, including individual patient analysis to estimate overall risk for loss of vision, are given. Conclusion: 3D treatment planning techniques were used successfully to provide bilateral sparing of the globe for most patients. It was more difficult to spare the optic nerves, especially on the ipsilateral side, when prescription dose exceeded the normal tissue tolerance doses. NTCP calculations may be useful in assessing complication risk better than point dose tolerance criteria for the chiasm, optic nerve, and retina. It is important to assess the overall risk of blindness for the patient in addition to the risk for individual visual pathway

  7. Biological-effective versus conventional dose volume histograms correlated with late genitourinary and gastrointestinal toxicity after external beam radiotherapy for prostate cancer: a matched pair analysis

    Directory of Open Access Journals (Sweden)

    Roeske John C

    2003-05-01

    Full Text Available Abstract Background To determine whether the dose-volume histograms (DVH's for the rectum and bladder constructed using biological-effective dose (BED-DVH's better correlate with late gastrointestinal (GI and genitourinary (GU toxicity after treatment with external beam radiotherapy for prostate cancer than conventional DVH's (C-DVH's. Methods The charts of 190 patients treated with external beam radiotherapy with a minimum follow-up of 2 years were reviewed. Six patients (3.2% were found to have RTOG grade 3 GI toxicity, and similarly 6 patients (3.2% were found to have RTOG grade 3 GU toxicity. Average late C-DVH's and BED-DVH's of the bladder and rectum were computed for these patients as well as for matched-pair control patients. For each matched pair the following measures of normalized difference in the DVH's were computed: (a δAUC = (Area Under Curve [AUC] in grade 3 patient – AUC in grade 0 patient/(AUC in grade 0 patient and (b δV60 = (Percent volume receiving = 60 Gy [V60] in grade 3 patient – V60 in grade 0 patient/(V60 in grade 0 patient. Results As expected, the grade 3 curve is to the right of and above the grade 0 curve for all four sets of average DVH's – suggesting that both the C-DVH and the BED-DVH can be used for predicting late toxicity. δAUC was higher for the BED-DVH's than for the C-DVH's – 0.27 vs 0.23 (p = 0.036 for the rectum and 0.24 vs 0.20 (p = 0.065 for the bladder. δV60 was also higher for the BED-DVH's than for the C-DVH's – 2.73 vs 1.49 for the rectum (p = 0.021 and 1.64 vs 0.71 (p = 0.021 for the bladder. Conclusions When considering well-established dosimetric endpoints used in evaluating treatment plans, BED-DVH's for the rectum and bladder correlate better with late toxicity than C-DVH's and should be considered when attempting to minimize late GI and GU toxicity after external beam radiotherapy for prostate cancer.

  8. Relationships Between Rectal Wall Dose-Volume Constraints and Radiobiologic Indices of Toxicity for Patients With Prostate Cancer

    International Nuclear Information System (INIS)

    Marzi, Simona; Arcangeli, Giorgio; Saracino, Bianca; Petrongari, Maria G.; Bruzzaniti, Vicente; Iaccarino, Giuseppe; Landoni, Valeria; Soriani, Antonella; Benassi, Marcello

    2007-01-01

    Purpose: The purpose of this article was to investigate how exceeding specified rectal wall dose-volume constraints impacts on the risk of late rectal bleeding by using radiobiologic calculations. Methods and Materials: Dose-volume histograms (DVH) of the rectal wall of 250 patients with prostate cancer were analyzed. All patients were treated by three-dimensional conformal radiation therapy, receiving mean target doses of 80 Gy. To study the main features of the patient population, the average and the standard deviation of the distribution of DVHs were generated. The mean dose , generalized equivalent uniform dose formulation (gEUD), modified equivalent uniform dose formulation (mEUD) 0 , and normal tissue complication probability (NTCP) distributions were also produced. The DVHs set was then binned into eight classes on the basis of the exceeding or the fulfilling of three dose-volume constraints: V 40 = 60%, V 50 = 50%, and V 70 = 25%. Comparisons were made between them by , gEUD, mEUD 0 , and NTCP. Results: The radiobiologic calculations suggest that late rectal toxicity is mostly influenced by V 70 . The gEUD and mEUD 0 are risk factors of toxicity always concordant with NTCP, inside each DVH class. The mean dose, although a reliable index, may be misleading in critical situations. Conclusions: Both in three-dimensional conformal radiation therapy and particularly in intensity-modulated radiation therapy, it should be known what the relative importance of each specified dose-volume constraint is for each organ at risk. This requires a greater awareness of radiobiologic properties of tissues and radiobiologic indices may help to gradually become aware of this issue

  9. Efficient visibility-driven medical image visualisation via adaptive binned visibility histogram.

    Science.gov (United States)

    Jung, Younhyun; Kim, Jinman; Kumar, Ashnil; Feng, David Dagan; Fulham, Michael

    2016-07-01

    'Visibility' is a fundamental optical property that represents the observable, by users, proportion of the voxels in a volume during interactive volume rendering. The manipulation of this 'visibility' improves the volume rendering processes; for instance by ensuring the visibility of regions of interest (ROIs) or by guiding the identification of an optimal rendering view-point. The construction of visibility histograms (VHs), which represent the distribution of all the visibility of all voxels in the rendered volume, enables users to explore the volume with real-time feedback about occlusion patterns among spatially related structures during volume rendering manipulations. Volume rendered medical images have been a primary beneficiary of VH given the need to ensure that specific ROIs are visible relative to the surrounding structures, e.g. the visualisation of tumours that may otherwise be occluded by neighbouring structures. VH construction and its subsequent manipulations, however, are computationally expensive due to the histogram binning of the visibilities. This limits the real-time application of VH to medical images that have large intensity ranges and volume dimensions and require a large number of histogram bins. In this study, we introduce an efficient adaptive binned visibility histogram (AB-VH) in which a smaller number of histogram bins are used to represent the visibility distribution of the full VH. We adaptively bin medical images by using a cluster analysis algorithm that groups the voxels according to their intensity similarities into a smaller subset of bins while preserving the distribution of the intensity range of the original images. We increase efficiency by exploiting the parallel computation and multiple render targets (MRT) extension of the modern graphical processing units (GPUs) and this enables efficient computation of the histogram. We show the application of our method to single-modality computed tomography (CT), magnetic resonance

  10. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y; Yu, J; Xiao, Y [Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2015-06-15

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.

  11. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    International Nuclear Information System (INIS)

    Gong, Y; Yu, J; Xiao, Y

    2015-01-01

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant

  12. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    Science.gov (United States)

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  13. SU-F-R-50: Radiation-Induced Changes in CT Number Histogram During Chemoradiation Therapy for Pancreatic Cancer

    International Nuclear Information System (INIS)

    Chen, X; Schott, D; Song, Y; Li, D; Hall, W; Erickson, B; Li, X

    2016-01-01

    Purpose: In an effort of early assessment of treatment response, we investigate radiation induced changes in CT number histogram of GTV during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. All patients were treated with a radiation dose of 50.4 in 28 fractions. On each daily CT set, the contours of the pancreatic head and the spinal cord were delineated. The Hounsfiled Units (HU) histogram in these contourswere extracted and processed using MATLAB. Eight parameters of the histogram including the mean HU over all the voxels, peak position, volume, standard deviation (SD), skewness, kurtosis, energy, and entropy were calculated for each fraction. The significances were inspected using paired two-tailed t-test and the correlations were analyzed using Spearman rank correlation tests. Results: In general, HU histogram in pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the first to the last fraction in mean HU in pancreatic head ranged from −13.4 to 3.7 HU with an average of −4.4 HU, which was significant (P<0.001). Among other quantities, the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less sharp) during the CRT delivery. The changes of mean HU, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response status is associated with the changes of SD (ΔSD), i.e., ΔSD= 1.85 (average of 7 patients) for good reponse, −0.08 (average of 6 patients) for moderate and poor response. Conclusion: Significant changes in HU histogram and the histogram-based metrics (e.g., meam HU, skewness, and kurtosis) in tumor were observed during the course of chemoradiation therapy for pancreas cancer. These changes may be potentially used for early assessment of treatment response.

  14. SU-F-R-50: Radiation-Induced Changes in CT Number Histogram During Chemoradiation Therapy for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Schott, D; Song, Y; Li, D; Hall, W; Erickson, B; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: In an effort of early assessment of treatment response, we investigate radiation induced changes in CT number histogram of GTV during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. All patients were treated with a radiation dose of 50.4 in 28 fractions. On each daily CT set, the contours of the pancreatic head and the spinal cord were delineated. The Hounsfiled Units (HU) histogram in these contourswere extracted and processed using MATLAB. Eight parameters of the histogram including the mean HU over all the voxels, peak position, volume, standard deviation (SD), skewness, kurtosis, energy, and entropy were calculated for each fraction. The significances were inspected using paired two-tailed t-test and the correlations were analyzed using Spearman rank correlation tests. Results: In general, HU histogram in pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the first to the last fraction in mean HU in pancreatic head ranged from −13.4 to 3.7 HU with an average of −4.4 HU, which was significant (P<0.001). Among other quantities, the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less sharp) during the CRT delivery. The changes of mean HU, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response status is associated with the changes of SD (ΔSD), i.e., ΔSD= 1.85 (average of 7 patients) for good reponse, −0.08 (average of 6 patients) for moderate and poor response. Conclusion: Significant changes in HU histogram and the histogram-based metrics (e.g., meam HU, skewness, and kurtosis) in tumor were observed during the course of chemoradiation therapy for pancreas cancer. These changes may be potentially used for early assessment of treatment response.

  15. Associations between volume changes and spatial dose metrics for the urinary bladder during local versus pelvic irradiation for prostate cancer.

    Science.gov (United States)

    Casares-Magaz, Oscar; Moiseenko, Vitali; Hopper, Austin; Pettersson, Niclas Johan; Thor, Maria; Knopp, Rick; Deasy, Joseph O; Muren, Ludvig Paul; Einck, John

    2017-06-01

    Inter-fractional variation in urinary bladder volumes during the course of radiotherapy (RT) for prostate cancer causes deviations between planned and delivered doses. This study compared planned versus daily cone-beam CT (CBCT)-based spatial bladder dose distributions, for prostate cancer patients receiving local prostate treatment (local treatment) versus prostate including pelvic lymph node irradiation (pelvic treatment). Twenty-seven patients (N = 15 local treatment; N = 12 pelvic treatment) were treated using daily image-guided RT (1.8 Gy@43-45 fx), adhering to a full bladder/empty rectum protocol. For each patient, 9-10 CBCTs were registered to the planning CT, using the clinically applied translations. The urinary bladder was manually segmented on each CBCT, 3 mm inner shells were generated, and semi and quadrant sectors were created using axial/coronal cuts. Planned and delivered DVH metrics were compared across patients and between the two groups of treatment (t-test, p bladder volume variations and the dose-volume histograms (DVH) of the bladder and its sectors were evaluated (Spearman's rank correlation coefficient, r s ). Bladder volumes varied considerably during RT (coefficient of variation: 16-58%). The population-averaged planned and delivered DVH metrics were not significantly different at any dose level. Larger treatment bladder volumes resulted in increased absolute volume of the posterior/inferior bladder sector receiving intermediate-high doses, in both groups. The superior bladder sector received less dose with larger bladder volumes for local treatments (r s  ± SD: -0.47 ± 0.32), but larger doses for pelvic treatments (r s  ± SD: 0.74 ± 0.24). Substantial bladder volume changes during the treatment course occurred even though patients were treated under a full bladder/daily image-guided protocol. Larger bladder volumes resulted in less bladder wall spared at the posterior-inferior sector, regardless the

  16. CT-guided intracavitary radiotherapy for cervical cancer: Comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose-volume parameters

    International Nuclear Information System (INIS)

    Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Jung Keun; Kim, Joo-Young; Park, Sung Yong; Park, Sang-Yoon; Kim, Dae Yong; Chie, Eui Kyu; Pyo, Hong Ryull; Cho, Kwan Ho

    2006-01-01

    Purpose: To perform an intracavitary radiotherapy (ICR) plan comparison between the conventional point A plan (conventional plan) and computed tomography (CT)-guided clinical target volume-based plan (CTV plan) by analysis of the quantitative dose-volume parameters and irradiated volumes of organs at risk in patients with cervical cancer. Methods and Materials: Thirty plans for 192 Ir high-dose-rate ICR after 30-40-Gy external beam radiotherapy were investigated. CT images were acquired at the first ICR session with artifact-free applicators in place. The gross tumor volume, clinical target volume (CTV), point A, and International Commission on Radiation Units and Measurements Report 38 rectal and bladder points were defined on reconstructed CT images. A fractional 100% dose was prescribed to point A in the conventional plan and to the outermost point to cover all CTVs in the CTV plan. The reference volume receiving 100% of the prescribed dose (V ref ), and the dose-volume parameters of the coverage index, conformal index, and external volume index were calculated from the dose-volume histogram. The bladder, rectal point doses, and percentage of volumes receiving 50%, 80%, and 100% of the prescribed dose were also analyzed. Results: Conventional plans were performed, and patients were categorized on the basis of whether the 100% isodose line of point A prescription dose fully encompassed the CTV (Group 1, n = 20) or not (Group 2, n = 10). The mean gross tumor volume (11.6 cm 3 ) and CTV (24.9 cm 3 ) of Group 1 were smaller than the corresponding values (23.7 and 44.7 cm 3 , respectively) for Group 2 (p = 0.003). The mean V ref for all patients was 129.6 cm 3 for the conventional plan and 97.0 cm 3 for the CTV plan (p = 0.003). The mean V ref in Group 1 decreased markedly with the CTV plan (p < 0.001). For the conventional and CTV plans in all patients, the mean coverage index, conformal index, and external volume index were 0.98 and 1.0, 0.23 and 0.34, and 3.86 and

  17. Diffusion profiling of tumor volumes using a histogram approach can predict proliferation and further microarchitectural features in medulloblastoma.

    Science.gov (United States)

    Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey

    2018-05-31

    Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.

  18. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Sneed, Penny K.; Lamborn, Kathleen R.; Larson, David A.; Prados, Michael D.; Malec, Mary K.; McDermott, Michael W.; Weaver, Keith A.; Phillips, Theodore L.; Wara, William M.; Gutin, Philip H.

    1996-01-01

    Purpose: To evaluate brachytherapy dose-response relationships in adults with glioblastoma undergoing temporary 125 I implant boost after external beam radiotherapy. Methods and Materials: Since June 1987, orthogonal radiographs using a fiducial marker box have been used to verify brain implant source positions and generate dose-volume histograms at the University of California, San Francisco. For adults who underwent brachytherapy boost for glioblastoma from June 1987 through December 1992, tumor volumes were reoutlined to ensure consistency and dose-volume histograms were recalculated. Univariate and multivariate analyses of various patient and treatment parameters were performed evaluating for influence of dose on freedom from local failure (FFLF) and actuarial survival. Results: Of 102 implant boosts, 5 were excluded because computer plans were unavailable. For the remaining 97 patients, analyses with adjustment for known prognostic factors (age, KPS, extent of initial surgical resection) and prognostic factors identified on univariate testing (adjuvant chemotherapy) showed that higher minimum brachytherapy tumor dose was strongly associated with improved FFLF (p = 0.001). A quadratic relationship was found between total biological effective dose and survival, with a trend toward optimal survival probability at 47 Gy minimum brachytherapy tumor dose (corresponding to about 65 Gy to 95% of the tumor volume); survival decreased with lower or higher doses. Two patients expired and one requires hospice care because of brain necrosis after brachytherapy doses > 63 Gy to 95% of the tumor volume with 60 Gy to > 18 cm 3 of normal brain. Conclusion: Although higher minimum brachytherapy tumor dose was strongly associated with better local control, a brachytherapy boost dose > 50-60 Gy may result in life-threatening necrosis. We recommend careful conformation of the prescription isodose line to the contrast enhancing tumor volume, delivery of a minimum brachytherapy

  19. The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer

    International Nuclear Information System (INIS)

    Baglan, Kathy L.; Frazier, Robert C.; Yan Di; Huang, Raywin R.; Martinez, Alvaro A.; Robertson, John M.

    2002-01-01

    Purpose: A direct relationship between the volume of small bowel irradiated and the degree of acute small bowel toxicity experienced during concurrent 5-fluorouracil (5-FU)-based chemoradiotherapy for rectal carcinoma is well recognized but poorly quantified. This study uses three-dimensional treatment-planning tools to more precisely quantify this dose-volume relationship. Methods and Materials: Forty patients receiving concurrent 5-FU-based chemotherapy and pelvic irradiation for rectal carcinoma had treatment-planning CT scans with small bowel contrast. A median isocentric dose of 50.4 Gy was delivered using a posterior-anterior and opposed lateral field arrangement. Bowel exclusion techniques were routinely used, including prone treatment position on a vacuum bag cradle to allow anterior displacement of the abdominal contents and bladder distension. Individual loops of small bowel were contoured on each slice of the planning CT scan, and a small bowel dose-volume histogram was generated for the initial pelvis field receiving 45 Gy. The volume of small bowel receiving each dose between 5 and 40 Gy was recorded at 5-Gy intervals. Results: Ten patients (25%) experienced Common Toxicity Criteria Grade 3+ acute small bowel toxicity. A highly statistically significant association between the development of Grade 3+ acute small bowel toxicity and the volume of small bowel irradiated was found at each dose level. Specific dose-volume threshold levels were found, below which no Grade 3+ toxicity occurred and above which 50-60% of patients developed Grade 3+ toxicity. The volume of small bowel receiving at least 15 Gy (V 15 ) was strongly associated with the degree of toxicity. Univariate analysis of patient and treatment-related factors revealed no other significant predictors of severe toxicity. Conclusions: A strong dose-volume relationship exists for the development of Grade 3+ acute small bowel toxicity in patients receiving concurrent 5-FU-based chemoradiotherapy

  20. Multicriteria optimization of the spatial dose distribution

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-01-01

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution

  1. Two non-parametric methods for derivation of constraints from radiotherapy dose–histogram data

    International Nuclear Information System (INIS)

    Ebert, M A; Kennedy, A; Joseph, D J; Gulliford, S L; Buettner, F; Foo, K; Haworth, A; Denham, J W

    2014-01-01

    Dose constraints based on histograms provide a convenient and widely-used method for informing and guiding radiotherapy treatment planning. Methods of derivation of such constraints are often poorly described. Two non-parametric methods for derivation of constraints are described and investigated in the context of determination of dose-specific cut-points—values of the free parameter (e.g., percentage volume of the irradiated organ) which best reflect resulting changes in complication incidence. A method based on receiver operating characteristic (ROC) analysis and one based on a maximally-selected standardized rank sum are described and compared using rectal toxicity data from a prostate radiotherapy trial. Multiple test corrections are applied using a free step-down resampling algorithm, which accounts for the large number of tests undertaken to search for optimal cut-points and the inherent correlation between dose–histogram points. Both methods provide consistent significant cut-point values, with the rank sum method displaying some sensitivity to the underlying data. The ROC method is simple to implement and can utilize a complication atlas, though an advantage of the rank sum method is the ability to incorporate all complication grades without the need for grade dichotomization. (note)

  2. A Dose-Volume Analysis of Magnetic Resonance Imaging-Aided High-Dose-Rate Image-Based Interstitial Brachytherapy for Uterine Cervical Cancer

    International Nuclear Information System (INIS)

    Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki

    2010-01-01

    Purpose: To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Methods and Materials: Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD 2 ). Results: The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D 2cc of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Conclusions: Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results.

  3. A dose-volume analysis of magnetic resonance imaging-aided high-dose-rate image-based interstitial brachytherapy for uterine cervical cancer.

    Science.gov (United States)

    Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki

    2010-07-01

    To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD(2)). The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D(2cc) of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results. (c) 2010 Elsevier Inc. All rights reserved.

  4. In vivo assessment of the tolerance dose of small liver volumes after single-fraction HDR irradiation

    International Nuclear Information System (INIS)

    Ricke, Jens; Seidensticker, Max; Luedemann, Lutz; Pech, Maciej; Wieners, Gero; Hengst, Susanne; Mohnike, Konrad; Cho, Chie Hee; Lopez Haenninen, Enrique; Al-Abadi, Hussain; Felix, Roland; Wust, Peter

    2005-01-01

    Purpose: To prospectively assess a dose-response relationship for small volumes of liver parenchyma after single-fraction irradiation. Methods and Materials: Twenty-five liver metastases were treated by computed tomography (CT)-guided interstitial brachytherapy. Magnetic resonance imaging was performed 1 day before and 3 days and 6, 12, and 24 weeks after therapy. MR sequences included T1-w gradient echo (GRE) enhanced by hepatocyte-targeted gadobenate dimeglumine. All MRI data sets were merged with 3D dosimetry data and evaluated by two radiologists. The reviewers indicated the border of hyperintensity on T2-w images (edema) or hypointensity on T1-w images (loss of hepatocyte function). Based on the total 3D data, a dose-volume histogram was calculated. We estimated the threshold dose for either edema or function loss as the D 90 , i.e., the dose achieved in at least 90% of the pseudolesion volume. Results: Between 3 days and 6 weeks, the extension of the edema increased significantly from the 12.9 Gy isosurface to 9.9 Gy (standard deviation [SD], 3.3 and 2.6). No significant change was detected between 6 and 12 weeks. After 24 weeks, the edematous tissue had shrunk significantly to 14.7 Gy (SD, 4.2). Three days postbrachytherapy, the D 90 for hepatocyte function loss reached the 14.9 Gy isosurface (SD, 3.9). At 6 weeks, the respective zone had increased significantly to 9.9 Gy (SD, 2.3). After 12 and 24 weeks, the dysfunction volume had decreased significantly to the 11.9 Gy and 15.2 Gy isosurface, respectively (SD, 3 and 4.1). Conclusions: The 95% interval from 7.6 to 12.2 Gy found as the minimal hepatocyte tolerance after 6 weeks accounts for the radiobiologic variations found in CT-guided brachytherapy, including heterogeneous dose rates by variable catheter arrays

  5. Should the bladder be full or empty during gynecologic brachytherapy applications? A bladder dose volume histogram analysis and implications for treatment

    International Nuclear Information System (INIS)

    Dusenbery, Kathryn E.; Lewandowski, Loretta A.; Higgins, Patrick D.

    1996-01-01

    Purpose: Chronic radiation cystitis is an uncommon but debilitating late complication of definitive external beam (EB) and brachytherapy (BT) for cervix cancer. During BT an indwelling catheter is usually placed in the bladder, collapsing it closer to the BT sources. We have devised a method to deliver BT with a full bladder. The difference in bladder dose in the full and empty state were analyzed during definitive EBT and BT for cervix cancer. Methods: The technique of Lyman and Wolbarst (1) were used to evaluate the bladder complication probability for a representative cervix cancer patient undergoing EBT and BT. DVHs were generated from CT scans obtained with a full and empty bladder. Three possible dose prescriptions were analyzed. Results: The DVH for the full and empty situations are shown. With the bladder full, the volume of bladder predicted to receive ≥ 80 Gy was approximately 10% for all dose schemes evaluated, whereas with the bladder empty, up to 50% of the bladder volume received ≥ 80 Gy. Conclusions: A distended bladder improves the DVH. A technique for performing full bladder LDR brachytherapy will be discussed

  6. Prescribing and evaluating target dose in dose-painting treatment plans

    DEFF Research Database (Denmark)

    Håkansson, Katrin; Specht, Lena; Aznar, Marianne C

    2014-01-01

    BACKGROUND: Assessment of target dose conformity in multi-dose-level treatment plans is challenging due to inevitable over/underdosage at the border zone between dose levels. Here, we evaluate different target dose prescription planning aims and approaches to evaluate the relative merit of such p......-painting and multi-dose-level plans. The tool can be useful for quality assurance of multi-center trials, and for visualizing the development of treatment planning in routine clinical practice....... of such plans. A quality volume histogram (QVH) tool for history-based evaluation is proposed. MATERIAL AND METHODS: Twenty head and neck cancer dose-painting plans with five prescription levels were evaluated, as well as clinically delivered simultaneous integrated boost (SIB) plans from 2010 and 2012. The QVH...

  7. Influence of Routine MV CBCT Usage on Dose Distribution in Pelvic Radiotherapy

    International Nuclear Information System (INIS)

    Faj, D.; Kasabasic, M.; Ivkovic, A.; Tomas, I.; Jurkovic, S.

    2013-01-01

    The pelvic radiotherapy is a standard treatment for patients with cervical, uterine and rectal carcinomas. During radiation treatment open tabletop device or bellyboard is used to reduce the side effects of healthy surrounding tissue. Patients are continually adjusting to the bellyboard during the treatment which causes geometrical and dosage uncertainties and influences the results of the treatment. Therefore, to reduce these uncertainties, megavoltage cone-beam computed tomography (MV CBCT) system is used. The objective of this research was to evaluate the image acquisition dose delivered to patients from MV CBCT. MV CBCT imaging was simulated on 15 patients using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The influence of the routine MV CBCT usage on treatment plan was investigated by analyzing the changes in dose volume histograms, mean values and maximum doses in the planning volumes. Simulations have shown that daily usage of MV CBCT causes differences in the dose volume histograms. Moreover, for every patient mean value exceeded prescribed tolerance (±1% of the prescribed dose) and maximum value exceeded recommended maximum of 107% of the prescribed dose. The results have shown that MV CBCT dose to the patient should be a part of the RT plan.(author)

  8. Radiation-Induced Rib Fractures After Hypofractionated Stereotactic Body Radiation Therapy: Risk Factors and Dose-Volume Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Kaori [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Shioyama, Yoshiyuki, E-mail: shioyama@radiol.med.kyushu-u.ac.jp [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Nonoshita, Takeshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Yoshitake, Tadamasa [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Ohnishi, Kayoko [Department of Radiology, National Center for Global Health and Medicine, Tokyo (Japan); Terashima, Kotaro; Matsumoto, Keiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Hirata, Hideki [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2012-11-01

    Purpose: The purpose of this study was to clarify the incidence, the clinical risk factors, and the dose-volume relationship of radiation-induced rib fracture (RIRF) after hypofractionated stereotactic body radiation therapy (SBRT). Methods and Materials: One hundred sixteen patients treated with SBRT for primary or metastatic lung cancer at our institution, with at least 6 months of follow-up and no previous overlapping radiation exposure, were included in this study. To determine the clinical risk factors associated with RIRF, correlations between the incidence of RIRF and the variables, including age, sex, diagnosis, gross tumor volume diameter, rib-tumor distance, and use of steroid administration, were analyzed. Dose-volume histogram analysis was also conducted. Regarding the maximum dose, V10, V20, V30, and V40 of the rib, and the incidences of RIRF were compared between the two groups divided by the cutoff value determined by the receiver operating characteristic curves. Results: One hundred sixteen patients and 374 ribs met the inclusion criteria. Among the 116 patients, 28 patients (46 ribs) experienced RIRF. The estimated incidence of rib fracture was 37.7% at 3 years. Limited distance from the rib to the tumor (<2.0 cm) was the only significant risk factor for RIRF (p = 0.0001). Among the dosimetric parameters used for receiver operating characteristic analysis, the maximum dose showed the highest area under the curve. The 3-year estimated risk of RIRF and the determined cutoff value were 45.8% vs. 1.4% (maximum dose, {>=}42.4 Gy or less), 51.6% vs. 2.0% (V40, {>=}0.29 cm{sup 3} or less), 45.8% vs. 2.2% (V30, {>=}1.35 cm{sup 3} or less), 42.0% vs. 8.5% (V20, {>=}3.62 cm{sup 3} or less), or 25.9% vs. 10.5% (V10, {>=}5.03 cm{sup 3} or less). Conclusions: The incidence of RIRF after hypofractionated SBRT is relatively high. The maximum dose and high-dose volume are strongly correlated with RIRF.

  9. Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: From atlas to dose–volume histograms

    International Nuclear Information System (INIS)

    Conson, Manuel; Cella, Laura; Pacelli, Roberto; Comerci, Marco; Liuzzi, Raffaele; Salvatore, Marco; Quarantelli, Mario

    2014-01-01

    Purpose: To implement and evaluate a magnetic resonance imaging atlas-based automated segmentation (MRI-ABAS) procedure for cortical and sub-cortical grey matter areas definition, suitable for dose-distribution analyses in brain tumor patients undergoing radiotherapy (RT). Patients and methods: 3T-MRI scans performed before RT in ten brain tumor patients were used. The MRI-ABAS procedure consists of grey matter classification and atlas-based regions of interest definition. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was applied to structures manually delineated by four experts to generate the standard reference. Performance was assessed comparing multiple geometrical metrics (including Dice Similarity Coefficient – DSC). Dosimetric parameters from dose–volume-histograms were also generated and compared. Results: Compared with manual delineation, MRI-ABAS showed excellent reproducibility [median DSC ABAS = 1 (95% CI, 0.97–1.0) vs. DSC MANUAL = 0.90 (0.73–0.98)], acceptable accuracy [DSC ABAS = 0.81 (0.68–0.94) vs. DSC MANUAL = 0.90 (0.76–0.98)], and an overall 90% reduction in delineation time. Dosimetric parameters obtained using MRI-ABAS were comparable with those obtained by manual contouring. Conclusions: The speed, reproducibility, and robustness of the process make MRI-ABAS a valuable tool for investigating radiation dose–volume effects in non-target brain structures providing additional standardized data without additional time-consuming procedures

  10. SU-F-T-348: The Impact of Model Library Population On RapidPlan Based Dose-Volume Histograms (DVHs) Prediction for Rectal Cancer Patients Treated with Volumetric-Modulated Radiotherapy (VMAT)

    International Nuclear Information System (INIS)

    Li, K; Zhou, L; Chen, Z; Peng, J; Hu, W

    2016-01-01

    Purpose: RapidPlan uses a library consisting of expert plans from different patients to create a model that can predict achievable dose-volume histograms (DVHs) for new patients. The goal of this study is to investigate the impacts of model library population (plan numbers) on the DVH prediction for rectal cancer patients treated with volumetric-modulated radiotherapy (VMAT) Methods: Ninety clinically accepted rectal cancer patients’ VMAT plans were selected to establish 3 models, named as Model30, Model60 and Model90, with 30,60, and 90 plans in the model training. All plans had sufficient target coverage and bladder and femora sparings. Additional 10 patients were enrolled to test the DVH prediction differences with these 3 models. The predicted DVHs from these 3 models were compared and analyzed. Results: Predicted V40 (Vx, percent of volume that received x Gy for the organs at risk) and Dmean (mean dose, cGy) of the bladder were 39.84±13.38 and 2029.4±141.6 for the Model30,37.52±16.00 and 2012.5±152.2 for the Model60, and 36.33±18.35 and 2066.5±174.3 for the Model90. Predicted V30 and Dmean of the left femur were 23.33±9.96 and 1443.3±114.5 for the Model30, 21.83±5.75 and 1436.6±61.9 for the Model60, and 20.31±4.6 and 1415.0±52.4 for the Model90.There were no significant differences among the 3 models for the bladder and left femur predictions. Predicted V40 and Dmean of the right femur were 19.86±10.00 and 1403.6±115.6 (Model30),18.97±6.19 and 1401.9±68.78 (Model60), and 21.08±7.82 and 1424.0±85.3 (Model90). Although a slight lower DVH prediction of the right femur was found on the Model60, the mean differences for V30 and mean dose were less than 2% and 1%, respectively. Conclusion: There were no significant differences among Model30, Model60 and Model90 for predicting DVHs on rectal patients treated with VMAT. The impact of plan numbers for model library might be limited for cancers with similar target shape.

  11. SU-F-T-348: The Impact of Model Library Population On RapidPlan Based Dose-Volume Histograms (DVHs) Prediction for Rectal Cancer Patients Treated with Volumetric-Modulated Radiotherapy (VMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Li, K; Zhou, L; Chen, Z; Peng, J; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: RapidPlan uses a library consisting of expert plans from different patients to create a model that can predict achievable dose-volume histograms (DVHs) for new patients. The goal of this study is to investigate the impacts of model library population (plan numbers) on the DVH prediction for rectal cancer patients treated with volumetric-modulated radiotherapy (VMAT) Methods: Ninety clinically accepted rectal cancer patients’ VMAT plans were selected to establish 3 models, named as Model30, Model60 and Model90, with 30,60, and 90 plans in the model training. All plans had sufficient target coverage and bladder and femora sparings. Additional 10 patients were enrolled to test the DVH prediction differences with these 3 models. The predicted DVHs from these 3 models were compared and analyzed. Results: Predicted V40 (Vx, percent of volume that received x Gy for the organs at risk) and Dmean (mean dose, cGy) of the bladder were 39.84±13.38 and 2029.4±141.6 for the Model30,37.52±16.00 and 2012.5±152.2 for the Model60, and 36.33±18.35 and 2066.5±174.3 for the Model90. Predicted V30 and Dmean of the left femur were 23.33±9.96 and 1443.3±114.5 for the Model30, 21.83±5.75 and 1436.6±61.9 for the Model60, and 20.31±4.6 and 1415.0±52.4 for the Model90.There were no significant differences among the 3 models for the bladder and left femur predictions. Predicted V40 and Dmean of the right femur were 19.86±10.00 and 1403.6±115.6 (Model30),18.97±6.19 and 1401.9±68.78 (Model60), and 21.08±7.82 and 1424.0±85.3 (Model90). Although a slight lower DVH prediction of the right femur was found on the Model60, the mean differences for V30 and mean dose were less than 2% and 1%, respectively. Conclusion: There were no significant differences among Model30, Model60 and Model90 for predicting DVHs on rectal patients treated with VMAT. The impact of plan numbers for model library might be limited for cancers with similar target shape.

  12. Dose gradient curve: A new tool for evaluating dose gradient.

    Science.gov (United States)

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  13. Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test

    International Nuclear Information System (INIS)

    Reid, Ivan D; Lopes, Raul H C; Hobson, Peter R

    2012-01-01

    When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.

  14. The application of the distance histogram in microdosimetry for evaluating heterogeneity

    International Nuclear Information System (INIS)

    Dieren, E.B. van; Lingen, A. van; Roos, J.C.; Teule, G.J.J.

    1992-01-01

    Heterogeneity of radionuclide distributions at a microscopic level is relevant for the dosimetry of short path-length emissions. The present study explores the methodological aspects and the limitations of source target histograms by using computer simulations of radionuclide distributions. Sources were formed by labeled cells, containing 50 decay sites each. Cell nuclei were considered as targets. Within a matrix of 2,500 cells, the authors investigated uniform distributions (MIRD assumption), various cluster sizes, the single labeled cell, and a random distribution. Furthermore, four different intracellular source localizations were studied in a matrix of one cell. The distance histograms for both matrices were combined. For both 125 I and 131 I , absorbed doses in the targets were calculated from multiplication of the distance histograms by the point source absorbed radiation dose distribution. The presented results indicate that the use of distance histograms might be a mathematically convenient approach to microdosimetrical studies. They provide a means to study combinations of source distributions at various levels of magnification for several radionuclides within a reasonable calculation time

  15. In vivo portal dosimetry for head-and-neck VMAT and lung IMRT: Linking γ-analysis with differences in dose–volume histograms of the PTV

    International Nuclear Information System (INIS)

    Rozendaal, Roel Arthur; Mijnheer, Ben J.; Herk, Marcel van; Mans, Anton

    2014-01-01

    Purpose: To relate the results of γ-analysis and dose–volume histogram (DVH) analysis of the PTV for detecting dose deviations with in vivo dosimetry for two treatment sites. Methods and materials: In vivo 3D dose distributions were reconstructed for 722 fractions of 200 head-and-neck (H and N) VMAT treatments and 183 fractions of 61 lung IMRT plans. The reconstructed and planned dose distributions in the PTV were compared using (a) the γ-distribution and (b) the differences in D2, D50 and D98 between the two dose distributions. Using pre-defined tolerance levels, all fractions were classified as deviating or not deviating by both methods. The mutual agreement, the sensitivity and the specificity of the two methods were compared. Results: For lung IMRT, the classification of the fractions was nearly identical for γ- and DVH-analyses of the PTV (94% agreement) and the sensitivity and specificity were comparable for both methods. Less agreement (80%) was found for H and N VMAT, while γ-analysis was both less sensitive and less specific. Conclusions: DVH- and γ-analyses perform nearly equal in finding dose deviations in the PTV for lung IMRT treatments; for H and N VMAT treatments, DVH-analysis is preferable. As a result of this study, a smooth transition to using DVH-analysis clinically for detecting in vivo dose deviations in the PTV is within reach

  16. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  17. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: Dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy.

    Science.gov (United States)

    2016-02-01

    We sought to identify swallowing muscle dose-response thresholds associated with chronic radiation-associated dysphagia (RAD) after IMRT for oropharyngeal cancer. T1-4 N0-3 M0 oropharyngeal cancer patients who received definitive IMRT and systemic therapy were examined. Chronic RAD was coded as any of the following ⩾12months post-IMRT: videofluoroscopy/endoscopy detected aspiration or stricture, gastrostomy tube and/or aspiration pneumonia. DICOM-RT plan data were autosegmented using a custom region-of-interest (ROI) library and included inferior, middle and superior constrictors (IPC, MPC, and SPC), medial and lateral pterygoids (MPM, LPM), anterior and posterior digastrics (ADM, PDM), intrinsic tongue muscles (ITM), mylo/geniohyoid complex (MHM), genioglossus (GGM), masseter (MM), buccinator (BM), palatoglossus (PGM), and cricopharyngeus (CPM), with ROI dose-volume histograms (DVHs) calculated. Recursive partitioning analysis (RPA) was used to identify dose-volume effects associated with chronic-RAD, for use in a multivariate (MV) model. Of 300 patients, 34 (11%) had chronic-RAD. RPA showed DVH-derived MHM V69 (i.e. the volume receiving⩾69Gy), GGM V35, ADM V60, MPC V49, and SPC V70 were associated with chronic-RAD. A model including age in addition to MHM V69 as continuous variables was optimal among tested MV models (AUC 0.835). In addition to SPCs, dose to MHM should be monitored and constrained, especially in older patients (>62-years), when feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy

    Science.gov (United States)

    2016-01-01

    Purpose/Objective(s) We sought to identify swallowing muscle dose-response thresholds associated with chronic radiation-associated dysphagia (RAD) after IMRT for oropharyngeal cancer. Materials/Methods T1-4 N0-3 M0 oropharyngeal cancer patients who received definitive IMRT and systemic therapy were examined. Chronic RAD was coded as any of the following ≥ 12 months post-IMRT: videofluoroscopy/endoscopy detected aspiration or stricture, gastrostomy tube and/or aspiration pneumonia. DICOM-RT plan data were autosegmented using a custom region-of-interest (ROI) library and included inferior, middle and superior constrictors (IPC, MPC, and SPC), medial and lateral pterygoids (MPM, LPM), anterior and posterior digastrics (ADM, PDM), intrinsic tongue muscles (ITM), mylo/geniohyoid complex (MHM), genioglossus (GGM), ), masseter (MM), Buccinator (BM), palatoglossus (PGM), and cricopharyngeus (CPM), with ROI dose-volume histograms (DVHs) calculated. Recursive partitioning analysis (RPA) was used to identify dose-volume effects associated with chronic-RAD, for use in a multivariate (MV) model. Results Of 300 patients, 34 (11%) had chronic-RAD. RPA showed DVH-derived MHM V69 (i.e. the volume receiving ≥69Gy), GGM V35, ADM V60, MPC V49, and SPC V70 were associated with chronic-RAD. A model including age in addition to MHM V69 as continuous variables was optimal among tested MV models (AUC 0.835). Conclusion In addition to SPCs, dose to MHM should be monitored and constrained, especially in older patients (>62-years), when feasible. PMID:26897515

  19. Fast in vivo volume dose reconstruction via reference dose perturbation

    International Nuclear Information System (INIS)

    Lu, Weiguo; Chen, Mingli; Mo, Xiaohu; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel

    2014-01-01

    Purpose: Accurate on-line reconstruction of in-vivo volume dose that accounts for both machine and patient discrepancy is not clinically available. We present a simple reference-dose-perturbation algorithm that reconstructs in-vivo volume dose fast and accurately. Methods: We modelled the volume dose as a function of the fluence map and density image. Machine (output variation, jaw/leaf position errors, etc.) and patient (setup error, weight loss, etc.) discrepancies between the plan and delivery were modelled as perturbation of the fluence map and density image, respectively. Delivered dose is modelled as perturbation of the reference dose due to change of the fluence map and density image. We used both simulated and clinical data to validate the algorithm. The planned dose was used as the reference. The reconstruction was perturbed from the reference and accounted for output-variations and the registered daily image. The reconstruction was compared with the ground truth via isodose lines and the Gamma Index. Results: For various plans and geometries, the volume doses were reconstructed in few seconds. The reconstruction generally matched well with the ground truth. For the 3%/3mm criteria, the Gamma pass rates were 98% for simulations and 95% for clinical data. The differences mainly appeared on the surface of the phantom/patient. Conclusions: A novel reference-dose-perturbation dose reconstruction model is presented. The model accounts for machine and patient discrepancy from planning. The algorithm is simple, fast, yet accurate, which makes online in-vivo 3D dose reconstruction clinically feasible.

  20. Finding dose-volume constraints to reduce late rectal toxicity following 3D-conformal radiotherapy (3D-CRT) of prostate cancer

    International Nuclear Information System (INIS)

    Greco, Carlo; Mazzetta, Chiara; Cattani, Federica; Tosi, Giampiero; Castiglioni, Simona; Fodor, Andrei; Orecchia, Roberto

    2003-01-01

    Background and purpose: The rectum is known to display a dose-volume effect following high-dose 3D-conformal radiotherapy (3D-CRT). The aim of the study is to search for significant dose-volume combinations with the specific treatment technique and patient set-up currently used in our institution. Patients and methods: We retrospectively analyzed the dose-volume histograms (DVH) of 135 patients with stage T1b-T3b prostate cancer treated consecutively with 3D-CRT between 1996 and 2000 to a total dose of 76 Gy. The median follow-up was 28 months (range 12-62). All late rectal complications were scored using RTOG criteria. Time to late toxicity was assessed using the Kaplan-Meyer method. The association between variables at baseline and ≥2 rectal toxicity was tested using χ 2 test or Fisher's exact test. A multivariate analysis using logistic regression was performed. Results: Late rectal toxicity grade ≥2 was observed in 24 of the 135 patients (17.8%). A 'grey area' of increased risk has been identified. Average DVHs of the bleeding and non-bleeding patients were generated. The area under the percent volume DVH for the rectum of the bleeding patients was significantly higher than that of patients without late rectal toxicity. On multivariate analysis the correlation between the high risk DVHs and late rectal bleeding was confirmed. Conclusions: The present analysis confirms the role of the rectal DVH as a tool to discriminate patients undergoing high-dose 3D-CRT into a low and a high risk of developing late rectal bleeding. Based on our own results and taking into account the data published in the literature, we have been able to establish new dose-volume constraints for treatment planning: if possible, the percentage of rectal volume exposed to 40, 50, 60, 72 and 76 Gy should be limited to 60, 50, 25, 15 and 5%, respectively

  1. Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes

    Directory of Open Access Journals (Sweden)

    Pech Maciej

    2011-04-01

    Full Text Available Abstract Backround Hepatic radiation toxicity restricts irradiation of liver malignancies. Better knowledge of hepatic tolerance dose is favourable to gain higher safety and to optimize radiation regimes in radiotherapy of the liver. In this study we sought to determine the hepatic tolerance dose to small volume single fraction high dose rate irradiation. Materials and methods 23 liver metastases were treated by CT-guided interstitial brachytherapy. MRI was performed 3 days, 6, 12 and 24 weeks after therapy. MR-sequences were conducted with T1-w GRE enhanced by hepatocyte-targeted Gd-EOB-DTPA. All MRI data sets were merged with 3D-dosimetry data. The reviewer indicated the border of hypointensity on T1-w images (loss of hepatocyte function or hyperintensity on T2-w images (edema. Based on the volume data, a dose-volume-histogram was calculated. We estimated the threshold dose for edema or function loss as the D90, i.e. the dose achieved in at least 90% of the pseudolesion volume. Results At six weeks post brachytherapy, the hepatocyte function loss reached its maximum extending to the former 9.4Gy isosurface in median (i.e., ≥9.4Gy dose exposure led to hepatocyte dysfunction. After 12 and 24 weeks, the dysfunctional volume had decreased significantly to a median of 11.4Gy and 14Gy isosurface, respectively, as a result of repair mechanisms. Development of edema was maximal at six weeks post brachytherapy (9.2Gy isosurface in median, and regeneration led to a decrease of the isosurface to a median of 11.3Gy between 6 and 12 weeks. The dose exposure leading to hepatocyte dysfunction was not significantly different from the dose provoking edema. Conclusion Hepatic injury peaked 6 weeks after small volume irradiation. Ongoing repair was observed up to 6 months. Individual dose sensitivity may differ as demonstrated by a relatively high standard deviation of threshold values in our own as well as all other published data.

  2. Dose-volume considerations in stereotaxic brain radiation therapy

    International Nuclear Information System (INIS)

    Houdek, P.V.; Schwade, J.G.; Pisciotta, V.J.; Medina, A.J.; Lewin, A.A.; Abitbol, A.A.; Serago, C.F.

    1988-01-01

    Although brain radiation therapy experience suggests that a gain in the therapeutic ratio may be achieved by optimizing the dose-volume relationship, no practical system for quantitative assessment of dose-volume data has been developed. This presentation describes the rationale for using the integral dose function for this purpose and demonstrates that with the use of a conventional treatment planning computer and a series of computed tomographic scans, first-order optimization of the dose-volume function can be accomplished in two steps: first, high-dose volume is minimized by selecting an appropriate treatment technique and tumor margin, and then dosage is maximized by calculating the brain tolerance dose as a function of the irradiated volume

  3. The Dose-Volume Relationship of Small Bowel Irradiation and Acute Grade 3 Diarrhea During Chemoradiotherapy for Rectal Cancer

    International Nuclear Information System (INIS)

    Robertson, John M.; Lockman, David; Yan Di; Wallace, Michelle

    2008-01-01

    Purpose: Previous work has found a highly significant relationship between the irradiated small-bowel volume and development of Grade 3 small-bowel toxicity in patients with rectal cancer. This study tested the previously defined parameters in a much larger group of patients. Methods and Materials: A total of 96 consecutive patients receiving pelvic radiation therapy for rectal cancer had treatment planning computed tomographic scans with small-bowel contrast that allowed the small bowel to be outlined with calculation of a small-bowel dose-volume histogram for the initial intended pelvic treatment to 45 Gy. Patients with at least one parameter above the previously determined dose-volume parameters were considered high risk, whereas those with all parameters below these levels were low risk. The grade of diarrhea and presence of liquid stool was determined prospectively. Results: There was a highly significant association with small-bowel dose-volume and Grade 3 diarrhea (p ≤ 0.008). The high-risk and low-risk parameters were predictive with Grade 3 diarrhea in 16 of 51 high-risk patients and in 4 of 45 low-risk patients (p = 0.01). Patients who had undergone irradiation preoperatively had a lower incidence of Grade 3 diarrhea than those treated postoperatively (18% vs. 28%; p = 0.31); however, the predictive ability of the high-risk/low-risk parameters was better for preoperatively (p = 0.03) than for postoperatively treated patients (p = 0.15). Revised risk parameters were derived that improved the overall predictive ability (p = 0.004). Conclusions: The highly significant dose-volume relationship and validity of the high-risk and low-risk parameters were confirmed in a large group of patients. The risk parameters provided better modeling for the preoperative patients than for the postoperative patients

  4. Reliability of dose volume constraint inference from clinical data

    Science.gov (United States)

    Lutz, C. M.; Møller, D. S.; Hoffmann, L.; Knap, M. M.; Alber, M.

    2017-04-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an ‘ideal’ cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a ‘non-ideal’ cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >85 % were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  5. Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland); Nesteruk, Marta [Faculty of Physics, University of Warsaw, Warsaw (Poland); Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich (Switzerland); Brzozowska, Beata [Faculty of Physics, University of Warsaw, Warsaw (Poland); Kukołowicz, Paweł F. [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland)

    2017-04-01

    The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared for 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.

  6. Influence of the choice of parameters of the TAC in the calculation of volumes for different planners

    International Nuclear Information System (INIS)

    Sanchez Mazon, J.; Raba Diez, J. L.; Vazquez Rodriguez, J. A.; Pacheco Baldor, M. T.; Mendiguren Santiago, M. A.

    2011-01-01

    In the Protocol for the control treatment planning systems with ionizing radiation of the proposed SEFM tests to verify proper operation of the calculation in the evaluation of DVH (Dose Volume Histogram). The calculation of the volume that makes a planner may have important implications because it can trigger an overestimation of the dose or otherwise. We present a comparison of the calculation of volumes estimated with 4 different planners.

  7. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  8. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer

    International Nuclear Information System (INIS)

    Muijs, Christina T.; Schreurs, Liesbeth M.; Busz, Dianne M.; Beukema, Jannet C.; Borden, Arnout J. van der; Pruim, Jan; Van der Jagt, Eric J.; Plukker, John Th.; Langendijk, Johannes A.

    2009-01-01

    Background and purpose: To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. Materials and methods: For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. Results: The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p < 0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. Conclusions: This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  9. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael; Ruehl, Ricarda; Peters, Nils; Wieners, Gero; Steinberg, Johannes; Lopez-Haenninen, Enrique; Felix, Roland; Wust, Peter; Ricke, Jens

    2006-01-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical data derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D 1ml ) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D 1ml of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D 1ml of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data

  10. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  11. Independent procedure of checking dose calculations using an independent calculus algorithm

    International Nuclear Information System (INIS)

    Perez Rozos, A.; Jerez Sainz, I.; Carrasco Rodriguez, J. L.

    2006-01-01

    In radiotherapy it is recommended the use of an independent procedure of checking dose calculations, in order to verify the main treatment planning system and double check every patient dosimetry. In this work we present and automatic spreadsheet that import data from planning system using IMPAC/RTP format and verify monitor unit calculation using an independent calculus algorithm. Additionally, it perform a personalized analysis of dose volume histograms and several radiobiological parameters like TCP and NTCP. Finally, the application automatically generate a clinical dosimetry report for every patient, including treatment fields, fractionation, independent check results, dose volume analysis, and first day forms. (Author)

  12. Histogram analysis of diffusion measures in clinically isolated syndromes and relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Yu Chunshui; Lin Fuchun; Liu Yaou; Duan Yunyun; Lei Hao; Li Kuncheng

    2008-01-01

    Objective: The purposes of our study were to employ diffusion tensor imaging (DTI)-based histogram analysis to determine the presence of occult damage in clinically isolated syndrome (CIS), to compare its severity with relapsing-remitting multiple sclerosis (RRMS), and to determine correlations between DTI histogram measures and clinical and MRI indices in these two diseases. Materials and methods: DTI scans were performed in 19 CIS and 19 RRMS patients and 19 matched healthy volunteers. Histogram analyses of mean diffusivity and fractional anisotropy were performed in normal-appearing brain tissue (NABT), normal-appearing white matter (NAWM) and gray matter (NAGM). Correlations were analyzed between these measures and expanded disability status scale (EDSS) scores, T 2 WI lesion volumes (LV) and normalized brain tissue volumes (NBTV) in CIS and RRMS patients. Results: Significant differences were found among CIS, RRMS and control groups in the NBTV and most of the DTI histogram measures of the NABT, NAWM and NAGM. In CIS patients, some DTI histogram measures showed significant correlations with LV and NBTV, but none of them with EDSS. In RRMS patients, however, some DTI histogram measures were significantly correlated with LV, NBTV and EDSS. Conclusion: Occult damage occurs in both NAGM and NAWM in CIS, but the severity is milder than that in RRMS. In CIS and RRMS, the occult damage might be related to both T2 lesion load and brain tissue atrophy. Some DTI histogram measures might be useful for assessing the disease progression in RRMS patients

  13. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.

    Science.gov (United States)

    Song, Yong Sub; Choi, Seung Hong; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm(2)). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10(-6) mm(2)/sec for observer 1 and 907 × 10(-6) mm(2)/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter

  14. Dosimetric impact of prostate volume change between CT-based HDR brachytherapy fractions

    International Nuclear Information System (INIS)

    Kim, Yongbok; Hsu, I-C.; Lessard, Etienne; Vujic, Jasmina; Pouliot, Jean

    2004-01-01

    Purpose: The objective is to evaluate the prostate volume change and its dosimetric consequences after the insertion of catheters for high-dose-rate brachytherapy. Methods and Materials: For 13 consecutive patients, a spiral CT scan was acquired before each of the 2 fractions, separated on average by 20 hours. The coordinates of the catheters were obtained on 3 axial CT slices corresponding to apex, mid portion, and base portion of the prostate. A mathematical expansion model was used to evaluate the change of prostate volumes between the 2 fractions. It is based on the difference in the cube of the average distance between the centroid and catheter positions. The variation of implant dose-volume histograms between fractions was computed for plans produced by either inverse planning based on simulated annealing or geometric optimization. Results: The average magnitude of either increase or reduction in prostate volume was 7.8% (range, 2-17%). This volume change corresponds to an average prostate radius change of only 2.5% (range, 0.7-5.4%). For 5 patients, the prostate volume increased on average by 9% (range, 2-17%), whereas a reduction was observed for 8 patients by an average of 7% (range, 2-13%). More variation was observed at the prostate base than at mid or apex gland. The comparison of implant dose-volume histograms showed a small reduction of V100 receiving the prescription dose, with an average of 3.5% (range, 0.5-12%) and 2.2% (range, 1-6%) for inverse planning based on our simulated annealing and geometric optimization plans, respectively. Conclusion: Small volume change was observed between treatment fractions. This translates into small changes in dose delivered to the prostate volume

  15. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms

    International Nuclear Information System (INIS)

    Bull, Jonathan G.; Clark, Christopher A.; Saunders, Dawn E.

    2012-01-01

    To determine if histograms of apparent diffusion coefficients (ADC) can be used to differentiate paediatric brain tumours. Imaging of histologically confirmed tumours with pre-operative ADC maps were reviewed (54 cases, 32 male, mean age 6.1 years; range 0.1-15.8 years) comprising 6 groups. Whole tumour ADC histograms were calculated; normalised for volume. Stepwise logistic regression analysis was used to differentiate tumour types using histogram metrics, initially for all groups and then for specific subsets. All 6 groups (5 dysembryoplastic neuroectodermal tumours, 22 primitive neuroectodermal tumours (PNET), 5 ependymomas, 7 choroid plexus papillomas, 4 atypical teratoid rhabdoid tumours (ATRT) and 9 juvenile pilocytic astrocytomas (JPA)) were compared. 74% (40/54) were correctly classified using logistic regression of ADC histogram parameters. In the analysis of posterior fossa tumours, 80% of ependymomas, 100% of astrocytomas and 94% of PNET-medulloblastoma were classified correctly. All PNETs were discriminated from ATRTs (22 PNET and 4 supratentorial ATRTs) (100%). ADC histograms are useful in differentiating paediatric brain tumours, in particular, the common posterior fossa tumours of childhood. PNETs were differentiated from supratentorial ATRTs, in all cases, which has important implications in terms of clinical management. (orig.)

  16. Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Antonella; Iadanza, Antonella; Falini, Andrea [San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Neuroradiology Unit and CERMAC, Milano (Italy); Donativi, Marina [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); Ruda, Roberta; Bertero, Luca; Soffietti, Riccardo [University of Torino, Department of Neuro-oncology, Turin (Italy); De Nunzio, Giorgio [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); INFN (National Institute of Nuclear Physics), Lecce (Italy); Riva, Marco; Bello, Lorenzo [Universita degli Studi di Milano, Milan, and Humanitas Research Hospital, Department of Medical Biotechnology and Translational Medicine, Rozzano, MI (Italy); Rucco, Matteo [University of Camerino, School of Science and Technology, Computer Science Division, Camerino, MC (Italy)

    2016-05-15

    To explore the role of diffusion tensor imaging (DTI)-based histogram analysis and functional diffusion maps (fDMs) in evaluating structural changes of low-grade gliomas (LGGs) receiving temozolomide (TMZ) chemotherapy. Twenty-one LGG patients underwent 3T-MR examinations before and after three and six cycles of dose-dense TMZ, including 3D-fluid-attenuated inversion recovery (FLAIR) sequences and DTI (b = 1000 s/mm{sup 2}, 32 directions). Mean diffusivity (MD), fractional anisotropy (FA), and tensor-decomposition DTI maps (p and q) were obtained. Histogram and fDM analyses were performed on co-registered baseline and post-chemotherapy maps. DTI changes were compared with modifications of tumour area and volume [according to Response Assessment in Neuro-Oncology (RANO) criteria], and seizure response. After three cycles of TMZ, 20/21 patients were stable according to RANO criteria, but DTI changes were observed in all patients (Wilcoxon test, P ≤ 0.03). After six cycles, DTI changes were more pronounced (P ≤ 0.005). Seventy-five percent of patients had early seizure response with significant improvement of DTI values, maintaining stability on FLAIR. Early changes of the 25th percentiles of p and MD predicted final volume change (R{sup 2} = 0.614 and 0.561, P < 0.0005, respectively). TMZ-related changes were located mainly at tumour borders on p and MD fDMs. DTI-based histogram and fDM analyses are useful techniques to evaluate the early effects of TMZ chemotherapy in LGG patients. (orig.)

  17. Three-dimensional volumetric gray-scale uterine cervix histogram prediction of days to delivery in full term pregnancy.

    Science.gov (United States)

    Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong

    2013-09-01

    Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.

  18. Adaptive radiotherapy in muscle invasive urinary bladder cancer - An effective method to reduce the irradiated bowel volume

    International Nuclear Information System (INIS)

    Tuomikoski, Laura; Collan, Juhani; Keyrilaeinen, Jani; Visapaeae, Harri; Saarilahti, Kauko; Tenhunen, Mikko

    2011-01-01

    Background and purpose: To evaluate the benefits of adaptive radiotherapy for bladder cancer in decreasing irradiation of small bowel. Material and methods: Five patients with muscle invasive bladder cancer received adaptive radiotherapy to a total dose of 55.8-65 Gy with daily cone-beam computed tomography scanning. The whole bladder was treated to 45-50.4 Gy, followed by a partial bladder boost. The plan of the day was chosen from 3 to 4 pre-planned treatment plans according to the visible extent of bladder wall in cone-beam computed tomography images. Dose volume histograms for intestinal cavity volumes were constructed and compared with corresponding histograms calculated for conventional non-adaptive radiotherapy with single treatment plan of 2 cm CTV-PTV margins. CTV dose coverage in adaptive treatment technique was compared with CTV dose coverage in conventional radiotherapy. Results: The average volume of intestinal cavity receiving ≥45 Gy was reduced from 335 ± 106 cm 3 to 180 ± 113 cm 3 (1SD). The maximum volume of intestinal cavity spared at 45 Gy on a single patient was 240 cm 3 , while the minimum volume was 65 cm 3 . The corresponding reduction in average intestinal cavity volume receiving ≥45 Gy calculated for the whole bladder treatment only was 66 ± 36 cm 3 . CTV dose coverage was improved on two out of five patients and decreased on three patients. Conclusions: Adaptive radiotherapy considerably reduces dose to the small bowel, while maintaining the dose coverage of CTV at similar level when compared to the conventional treatment technique.

  19. Monte Carlo dose distributions for radiosurgery

    International Nuclear Information System (INIS)

    Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.

    2001-01-01

    The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)

  20. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, Jorge [EC Engineering Consultants, LLC 130, Forest Hill Drive, Los Gatos, CA (United States); Deasy, Joseph O [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (United States); Bortfeld, Thomas R [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 30 Fruit Street, Boston, MA (United States); Solberg, Timothy D [Department of Radiation Oncology, University of California, Los Angeles, CA (United States); Promberger, Claus [BrainLAB AG, Ammerthalstrasse 8, 85551 Heimstetten (Germany)

    2003-01-21

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  1. Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps

    International Nuclear Information System (INIS)

    Jakab, Andras; Berenyi, Ervin; Molnar, Peter; Emri, Miklos

    2011-01-01

    Current endeavors in neuro-oncology include morphological validation of imaging methods by histology, including molecular and immunohistochemical techniques. Diffusion tensor imaging (DTI) is an up-to-date methodology of intracranial diagnostics that has gained importance in studies of neoplasia. Our aim was to assess the feasibility of discriminant analysis applied to histograms of preoperative diffusion tensor imaging-derived images for the prediction of glioma grade validated by histomorphology. Tumors of 40 consecutive patients included 13 grade II astrocytomas, seven oligoastrocytomas, six grade II oligodendrogliomas, three grade III oligoastrocytomas, and 11 glioblastoma multiformes. Preoperative DTI data comprised: unweighted (B 0 ) images, fractional anisotropy, longitudinal and radial diffusivity maps, directionally averaged diffusion-weighted imaging, and trace images. Sampling consisted of generating histograms for gross tumor volumes; 25 histogram bins per scalar map were calculated. The histogram bins that allowed the most precise determination of low-grade (LG) or high-grade (HG) classification were selected by multivariate discriminant analysis. Accuracy of the model was defined by the success rate of the leave-one-out cross-validation. Statistical descriptors of voxel value distribution did not differ between LG and HG tumors and did not allow classification. The histogram model had 88.5% specificity and 85.7% sensitivity in the separation of LG and HG gliomas; specificity was improved when cases with oligodendroglial components were omitted. Constructing histograms of preoperative radiological images over the tumor volume allows representation of the grade and enables discrimination of LG and HG gliomas which has been confirmed by histopathology. (orig.)

  2. Complexity of possibly gapped histogram and analysis of histogram

    Science.gov (United States)

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  3. Complexity of possibly gapped histogram and analysis of histogram.

    Science.gov (United States)

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  4. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    Science.gov (United States)

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Experimental validation of heterogeneity-corrected dose-volume prescription on respiratory-averaged CT images in stereotactic body radiotherapy for moving tumors

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Miyabe, Yuki; Matsuo, Yukinori; Kamomae, Takeshi; Nakata, Manabu; Yano, Shinsuke; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-01-01

    The purpose of this study was to experimentally assess the validity of heterogeneity-corrected dose-volume prescription on respiratory-averaged computed tomography (RACT) images in stereotactic body radiotherapy (SBRT) for moving tumors. Four-dimensional computed tomography (CT) data were acquired while a dynamic anthropomorphic thorax phantom with a solitary target moved. Motion pattern was based on cos (t) with a constant respiration period of 4.0 sec along the longitudinal axis of the CT couch. The extent of motion (A 1 ) was set in the range of 0.0–12.0 mm at 3.0-mm intervals. Treatment planning with the heterogeneity-corrected dose-volume prescription was designed on RACT images. A new commercially available Monte Carlo algorithm of well-commissioned 6-MV photon beam was used for dose calculation. Dosimetric effects of intrafractional tumor motion were then investigated experimentally under the same conditions as 4D CT simulation using the dynamic anthropomorphic thorax phantom, films, and an ionization chamber. The passing rate of γ index was 98.18%, with the criteria of 3 mm/3%. The dose error between the planned and the measured isocenter dose in moving condition was within ± 0.7%. From the dose area histograms on the film, the mean ± standard deviation of the dose covering 100% of the cross section of the target was 102.32 ± 1.20% (range, 100.59–103.49%). By contrast, the irradiated areas receiving more than 95% dose for A 1 = 12 mm were 1.46 and 1.33 times larger than those for A 1 = 0 mm in the coronal and sagittal planes, respectively. This phantom study demonstrated that the cross section of the target received 100% dose under moving conditions in both the coronal and sagittal planes, suggesting that the heterogeneity-corrected dose-volume prescription on RACT images is acceptable in SBRT for moving tumors.

  6. Multiple local minima in IMRT optimization based on dose-volume criteria

    International Nuclear Information System (INIS)

    Wu Qiuwen; Mohan, Radhe

    2002-01-01

    Multiple local minima traps are known to exist in dose-volume and dose-response objective functions. Nevertheless, their presence and consequences are not considered impediments in finding satisfactory solutions in routine optimization of IMRT plans using gradient methods. However, there is often a concern that a significantly superior solution may exist unbeknownst to the planner and that the optimization process may not be able to reach it. We have investigated the soundness of the assumption that the presence of multiple minima traps can be ignored. To find local minima, we start the optimization process a large number of times with random initial intensities. We investigated whether the occurrence of local minima depends upon the choice of the objective function parameters and the number of variables and whether their existence is an impediment in finding a satisfactory solution. To learn about the behavior of multiple minima, we first used a symmetric cubic phantom containing a cubic target and an organ-at-risk surrounding it to optimize the beam weights of two pairs of parallel-opposed beams using a gradient technique. The phantom studies also served to test our software. Objective function parameters were chosen to ensure that multiple minima would exist. Data for 500 plans, optimized with random initial beam weights, were analyzed. The search process did succeed in finding the local minima and showed that the number of minima depends on the parameters of the objective functions. It was also found that the consequences of local minima depended on the number of beams. We further searched for the multiple minima in intensity-modulated treatment plans for a head-and-neck case and a lung case. In addition to the treatment plan scores and the dose-volume histograms, we examined the dose distributions and intensity patterns. We did not find any evidence that multiple local minima affect the outcome of optimization using gradient techniques in any clinically

  7. Intensity modulated radiation therapy (IMRT: differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma

    Directory of Open Access Journals (Sweden)

    Delclos Marc E

    2011-06-01

    Full Text Available Abstract Background A strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity, principally diarrhea. There is considerable interest in the application of highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT, to reduce dose to adjacent organs-at-risk in the treatment of carcinoma of the rectum. Therefore, we performed a comprehensive dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT in standard, preoperative treatment for rectal cancer. Methods Using RTOG consensus anorectal contouring guidelines, treatment volumes were generated for ten patients treated preoperatively at our institution for rectal carcinoma, with IMRT plans compared to plans derived from classic anatomic landmarks, as well as 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N = 1 or node-positive (N = 9, and were planned to a total dose of 45-Gy. Pairwise comparisons were made between IMRT and 3DCRT plans with respect to dose-volume histogram parameters. Results IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel (small bowel mean dose: 18.6-Gy IMRT versus 25.2-Gy 3DCRT; p = 0.005, bladder (V40Gy: 56.8% IMRT versus 75.4% 3DCRT; p = 0.005, pelvic bones (V40Gy: 47.0% IMRT versus 56.9% 3DCRT; p = 0.005, and femoral heads (V40Gy: 3.4% IMRT versus 9.1% 3DCRT; p = 0.005, with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity (small bowel V15Gy: 138-cc IMRT versus 157-cc 3DCRT; p = 0.005. We found that the IMRT treatment volumes were typically larger than that

  8. Reduction of rectal doses by removal of gas in the rectum during vaginal cuff brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sabater, S.; Sevillano, M.M.; Andres, I.; Berenguer, R. [Complejo Hospitalario Univ. de Albacete (CHUA) (Spain). Dept. of Radiation Oncology; Machin-Hamalainen, S. [C.S. General Ricardos, Madrid (Spain); Mueller, K.; Arenas, M. [Hospital Univ. Sant Joan, Reus (Spain). Dept. of Radiation Oncology

    2013-11-15

    Objective: The goal of this work was to evaluate whether the volume reduction related to removal of gas in the rectum could be translated in lower doses to organs at risk (OAR) during vaginal cuff brachytherapy (VBT). Material and methods: Fourteen pairs of brachytherapy planning CT scans derived from 11 patients were re-segmented and re-planned using the same parameters. The only difference between pairs of CTs was the presence or lack of gas in the rectum. The first CT showed the basal status and the second was carried out after gas removal with a tube. A set of values derived from bladder and rectum dose-volume histograms (DVH) and dose-surface histograms (DSH) were extracted. Moreover the cylinder position related to the patient craniocaudal axis was recorded. Results: Rectum volume decreased significantly from 77.8 {+-} 45 to 55.43 {+-} 17.6 ml (p = 0.0052) after gas removal. Such volume diminution represented a significant reduction on all rectal DVH parameters analyzed except D{sub 25%} and D{sub 50%}. DSH parameter results were similar to previous ones. A nonsignificant increase of the bladder volume was observed and was associated with an increase of the DVH metrics analyzed. Conclusion: Removal of gas pockets is a simple and inexpensive maneuver that decreases rectal dose parameters on VBT, which can be translated as a better therapeutic ratio. It also suggests that other actions directed to empty the rectum could have a similar effect. (orig.)

  9. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1997-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume -- Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) -- Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  10. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1996-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume --Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) --Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  11. The histogramming tool hparse

    International Nuclear Information System (INIS)

    Nikulin, V.; Shabratova, G.

    2005-01-01

    A general-purpose package aimed to simplify the histogramming in the data analysis is described. The proposed dedicated language for writing the histogramming scripts provides an effective and flexible tool for definition of a complicated histogram set. The script is more transparent and much easier to maintain than corresponding C++ code. In the TTree analysis it could be a good complement to the TTreeViewer class: the TTreeViewer is used for choice of the required histogram/cut set, while the hparse enables one to generate a code for systematic analysis

  12. The Online Histogram Presenter for the ATLAS experiment: A modular system for histogram visualization

    International Nuclear Information System (INIS)

    Dotti, Andrea; Adragna, Paolo; Vitillo, Roberto A

    2010-01-01

    The Online Histogram Presenter (OHP) is the ATLAS tool to display histograms produced by the online monitoring system. In spite of the name, the Online Histogram Presenter is much more than just a histogram display. To cope with the large amount of data, the application has been designed to minimise the network traffic; sophisticated caching, hashing and filtering algorithms reduce memory and CPU usage. The system uses Qt and ROOT for histogram visualisation and manipulation. In addition, histogram visualisation can be extensively customised through configuration files. Finally, its very modular architecture features a lightweight plug-in system, allowing extensions to accommodate specific user needs. After an architectural overview of the application, the paper is going to present in detail the solutions adopted to increase the performance and a description of the plug-in system.

  13. The Online Histogram Presenter for the ATLAS experiment: A modular system for histogram visualization

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, Andrea [CERN, CH-1211 Genve 23 Switzerland (Switzerland); Adragna, Paolo [Physics Department, Queen Mary, University of London Mile End Road London E1 4RP UK (United Kingdom); Vitillo, Roberto A, E-mail: andrea.dotti@cern.c [INFN Sezione di Pisa, Ed. C Largo Bruno Pontecorvo 3, 56127 Pisa (Italy)

    2010-04-01

    The Online Histogram Presenter (OHP) is the ATLAS tool to display histograms produced by the online monitoring system. In spite of the name, the Online Histogram Presenter is much more than just a histogram display. To cope with the large amount of data, the application has been designed to minimise the network traffic; sophisticated caching, hashing and filtering algorithms reduce memory and CPU usage. The system uses Qt and ROOT for histogram visualisation and manipulation. In addition, histogram visualisation can be extensively customised through configuration files. Finally, its very modular architecture features a lightweight plug-in system, allowing extensions to accommodate specific user needs. After an architectural overview of the application, the paper is going to present in detail the solutions adopted to increase the performance and a description of the plug-in system.

  14. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  15. Consideration of the volume dependence of tolerance doses

    International Nuclear Information System (INIS)

    Gremmel, H.; Wendhausen, H.

    1977-01-01

    A general formula for consideration of the dependence of tolerance doses upon volume is obtained by mathematical evaluation of known skin tolerance doses. The validity for different organs is verified using available data of literature. It is recommended to introduce the volume dependence into the Ellis-formula for tolerance doses. (orig.) [de

  16. The Amazing Histogram.

    Science.gov (United States)

    Vandermeulen, H.; DeWreede, R. E.

    1983-01-01

    Presents a histogram drawing program which sorts real numbers in up to 30 categories. Entered data are sorted and saved in a text file which is then used to generate the histogram. Complete Applesoft program listings are included. (JN)

  17. Differentiating between Glioblastoma and Primary CNS Lymphoma Using Combined Whole-tumor Histogram Analysis of the Normalized Cerebral Blood Volume and the Apparent Diffusion Coefficient.

    Science.gov (United States)

    Bao, Shixing; Watanabe, Yoshiyuki; Takahashi, Hiroto; Tanaka, Hisashi; Arisawa, Atsuko; Matsuo, Chisato; Wu, Rongli; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-05-31

    This study aimed to determine whether whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) and apparent diffusion coefficient (ADC) for contrast-enhancing lesions can be used to differentiate between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL). From 20 patients, 9 with PCNSL and 11 with GBM without any hemorrhagic lesions, underwent MRI, including diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging before surgery. Histogram analysis of nCBV and ADC from whole-tumor voxels in contrast-enhancing lesions was performed. An unpaired t-test was used to compare the mean values for each type of tumor. A multivariate logistic regression model (LRM) was performed to classify GBM and PCNSL using the best parameters of ADC and nCBV. All nCBV histogram parameters of GBMs were larger than those of PCNSLs, but only average nCBV was statistically significant after Bonferroni correction. Meanwhile, ADC histogram parameters were also larger in GBM compared to those in PCNSL, but these differences were not statistically significant. According to receiver operating characteristic curve analysis, the nCBV average and ADC 25th percentile demonstrated the largest area under the curve with values of 0.869 and 0.838, respectively. The LRM combining these two parameters differentiated between GBM and PCNSL with a higher area under the curve value (Logit (P) = -21.12 + 10.00 × ADC 25th percentile (10 -3 mm 2 /s) + 5.420 × nCBV mean, P histogram analysis of nCBV and ADC combined can be a valuable objective diagnostic method for differentiating between GBM and PCNSL.

  18. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki; Abe, Takanori; Kubota, Yoshiki; Sakai, Makoto; Noda, Shin-ei; Ohno, Tatsuya; Nakano, Takashi

    2016-12-01

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated. Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded

  19. Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors.

    Science.gov (United States)

    Cui, Yanfen; Yang, Xiaotang; Du, Xiaosong; Zhuo, Zhizheng; Xin, Lei; Cheng, Xintao

    2018-04-01

    To investigate potential relationships between diffusion kurtosis imaging (DKI)-derived parameters using whole-tumour volume histogram analysis and clinicopathological prognostic factors in patients with rectal adenocarcinoma. 79 consecutive patients who underwent MRI examination with rectal adenocarcinoma were retrospectively evaluated. Parameters D, K and conventional ADC were measured using whole-tumour volume histogram analysis. Student's t-test or Mann-Whitney U-test, receiver operating characteristic curves and Spearman's correlation were used for statistical analysis. Almost all the percentile metrics of K were correlated positively with nodal involvement, higher histological grades, the presence of lymphangiovascular invasion (LVI) and circumferential margin (CRM) (phistogram analysis, especially K parameters, were associated with important prognostic factors of rectal cancer. • K correlated positively with some important prognostic factors of rectal cancer. • K mean showed higher AUC and specificity for differentiation of nodal involvement. • DKI metrics with whole-tumour volume histogram analysis depicted tumour heterogeneity.

  20. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A [The Christie Hospital NHS Foundation Trust, Manchester, Greater Manchester (United Kingdom)

    2014-06-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature.

  1. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    International Nuclear Information System (INIS)

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A

    2014-01-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature

  2. Considerations on the calculation of volumes in two planning systems; Consideraciones sobre el calculo de volumenes en dos sistemas de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Tenedor Alonso, S.; Rincon Perez, M.; Penedo Cobos, J. M.; Garcia Castejon, M. A.

    2011-07-01

    The discrepancies in the calculation of the same volume between different planning systems impact on dose-volume histograms and therefore clinical assessment of dosimetry for patients. The transfer, by a local network, tomographic study (CT) and contours of critical organs of patients, between our two planning systems allows us to evaluate the calculation of identical volumes.

  3. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    Science.gov (United States)

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed

  4. COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION

    OpenAIRE

    Kanika Kapoor and Shaveta Arora

    2015-01-01

    Histogram equalization is a nonlinear technique for adjusting the contrast of an image using its histogram. It increases the brightness of a gray scale image which is different from the mean brightness of the original image. There are various types of Histogram equalization techniques like Histogram Equalization, Contrast Limited Adaptive Histogram Equalization, Brightness Preserving Bi Histogram Equalization, Dualistic Sub Image Histogram Equalization, Minimum Mean Brightness Error Bi Histog...

  5. Intensity-modulated radiation therapy versus three-dimensional conformal radiation therapy with concurrent nedaplatin-based chemotherapy after radical hysterectomy for uterine cervical cancer: comparison of outcomes, complications, and dose-volume histogram parameters

    International Nuclear Information System (INIS)

    Isohashi, Fumiaki; Mabuchi, Seiji; Yoshioka, Yasuo; Seo, Yuji; Suzuki, Osamu; Tamari, Keisuke; Yamashita, Michiko; Unno, Hikari; Kinose, Yasuto; Kozasa, Katsumi; Sumida, Iori; Otani, Yuki; Kimura, Tadashi; Ogawa, Kazuhiko

    2015-01-01

    The purpose of this study is to report our clinical outcomes using intensity-modulated radiation therapy (IMRT) for adjuvant treatment of cervical cancer, compared with three-dimensional conformal radiation therapy (3DCRT), in terms of tumor control, complications and dose-volume histogram (DVH) parameters. Between March 2008 and February 2014, 62 patients were treated with concurrent nedaplatin-based chemotherapy and whole-pelvic external beam radiation therapy (RT). Of these patients, 32 (52 %) received 3DCRT and 30 (48 %) received IMRT. The median follow-up periods were 40 months (range 2–74 months). The 3-year overall survival rate (OS), locoregional control rate (LRC) and progression-free survival rate (PFS) were 92, 95 and 92 % in the IMRT group, and 85, 82 and 70 % in the 3DCRT group, respectively. A comparison of OS, LRC and PFS showed no significant differences between IMRT and 3DCRT. The 3-year cumulative incidences of grade 2 or higher chronic gastrointestinal (GI) complications were significantly lower with IMRT compared to 3DCRT (3 % vs. 45 %, p < .02) and in patients with V40 of the small bowel loops of ≤340 mL compared to those with >340 mL (3 % vs. 45 %, p < .001). Patients treated with IMRT had a higher incidence of grade 3 acute hematologic complications (p < .05). V40 and V45 of the small bowel loops or bowel bag were predictive for development of both acute and chronic GI complications. Our results suggest that IMRT for adjuvant treatment of cervical cancer is useful for decreasing GI complications without worsening outcomes

  6. Impact of systematic errors on DVH parameters of different OAR and target volumes in Intracavitary Brachytherapy (ICBT)

    International Nuclear Information System (INIS)

    Mourya, Ankur; Singh, Gaganpreet; Kumar, Vivek; Oinam, Arun S.

    2016-01-01

    Aim of this study is to analyze the impact of systematic errors on DVH parameters of different OAR and Target volumes in intracavitary brachytherapy (ICBT). To quantify the changes in dose-volume histogram parameters due to systematic errors in applicator reconstruction of brachytherapy planning, known errors in catheter reconstructions have to be introduced in applicator coordinate system

  7. Cardiac Dose From Tangential Breast Cancer Radiotherapy in the Year 2006

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Povall, Julie M.; McGale, Paul; Nisbet, Andrew; Dodwell, David; Smith, Jonathan T.; Darby, Sarah C.

    2008-01-01

    Purpose: To quantify the radiation doses received by the heart and coronary arteries from contemporary tangential breast or chest wall radiotherapy. Methods and Materials: Fifty consecutive patients with left-sided breast cancer and 5 consecutive patients with right-sided breast cancer treated at a large United Kingdom radiotherapy center during the year 2006 were selected. All patients were irradiated with 6- or 8-MV tangential beams to the breast or chest wall. For each dose plan, dose-volume histograms for the heart and left anterior descending (LAD) coronary artery were calculated. For 5 of the left-sided and all 5 right-sided patients, dose-volume histograms for the right and circumflex coronary arteries were also calculated. Detailed spatial assessment of dose to the LAD coronary artery was performed for 3 left-sided patients. Results: For the 50 patients given left-sided irradiation, the average mean (SD) dose was 2.3 (0.7) Gy to the heart and 7.6 (4.5) Gy to the LAD coronary artery, with the distal LAD receiving the highest doses. The right and circumflex coronary arteries received approximately 2 Gy mean dose. Part of the heart received >20 Gy in 22 left-sided patients (44%). For the 5 patients given right-sided irradiation, average mean doses to all cardiac structures were in the range 1.2 to 2 Gy. Conclusions: Heart dose from left-tangential radiotherapy has decreased considerably over the past 40 years, but part of the heart still receives >20 Gy for approximately half of left-sided patients. Cardiac dose for right-sided patients was generally from scattered irradiation alone

  8. Radiation tolerance of the cervical spinal cord: incidence and dose-volume relationship of symptomatic and asymptomatic late effects following high dose irradiation of paraspinal tumors

    International Nuclear Information System (INIS)

    Liu, Mitchell C.C.; Munzenrider, John E.; Finkelstein, Dianne; Liebsch, Norbert; Adams, Judy; Hug, Eugen B.

    1997-01-01

    Purpose: Low grade chordomas and chondrosarcomas require high radiation doses for effective, lasting tumor control. Fractionated, 3-D planned, conformal proton radiation therapy has been used for lesions along the base of skull and spine to deliver high target doses, while respecting constraints of critical, normal tissues. In this study, we sought to determine the incidence of myelopathy after high dose radiotherapy to the cervical spine and investigated the influence of various treatment parameters, including dose-volume relationship. Methods and Materials: Between December 1980 and March 1996, 78 patients were treated at the Massachusetts General Hospital and Harvard Cyclotron Laboratory for primary or recurrent chordomas and chondrosarcomas of the cervical spine using combined proton and photon radiation therapy. In general, the tumor dose given was between 64.5 to 79.2 CGE (Cobalt Gray Equivalent). The guidelines for maximum permissible doses to spinal cord were: ≤ 64 CGE to the spinal cord surface and ≤ 53 CGE to the spinal cord center. Dose volume histograms of the spinal cord were analyzed to investigate a possible dose and volume relationship. Results: With a mean follow-up period of 46.6 months (range: 3 - 157 months), 4 of 78 patients (5.1%) developed high-grade (RTOG Grade 3 and 4) late toxicity: 3 patients (3.8%) experienced sensory deficits without motor deficits, none had any limitations of daily activities. One patient (1.2%) developed motor deficit with loss of motor function of one upper extremity. The only patient, who developed permanent motor damage had received additional prior radiation treatment and therefore received a cumulative spinal cord dose higher than the treatment guidelines. No patient treated within the guidelines experienced any motor impairment. Six patients (7.7%) experienced transient Lhermitt's syndrome and 1 patient (1.2%) developed asymptomatic radiographic MR findings only. Time to onset of symptoms of radiographic

  9. Automatic analysis of flow cytometric DNA histograms from irradiated mouse male germ cells

    International Nuclear Information System (INIS)

    Lampariello, F.; Mauro, F.; Uccelli, R.; Spano, M.

    1989-01-01

    An automatic procedure for recovering the DNA content distribution of mouse irradiated testis cells from flow cytometric histograms is presented. First, a suitable mathematical model is developed, to represent the pattern of DNA content and fluorescence distribution in the sample. Then a parameter estimation procedure, based on the maximum likelihood approach, is constructed by means of an optimization technique. This procedure has been applied to a set of DNA histograms relative to different doses of 0.4-MeV neutrons and to different time intervals after irradiation. In each case, a good agreement between the measured histograms and the corresponding fits has been obtained. The results indicate that the proposed method for the quantitative analysis of germ cell DNA histograms can be usefully applied to the study of the cytotoxic and mutagenic action of agents of toxicological interest such as ionizing radiations.18 references

  10. Genitourinary Toxicity After High-Dose-Rate (HDR) Brachytherapy Combined With Hypofractionated External Beam Radiotherapy for Localized Prostate Cancer: An Analysis to Determine the Correlation Between Dose-Volume Histogram Parameters in HDR Brachytherapy and Severity of Toxicity

    International Nuclear Information System (INIS)

    Ishiyama, Hiromichi; Kitano, Masashi; Satoh, Takefumi; Kotani, Shouko; Uemae, Mineko; Matsumoto, Kazumasa; Okusa, Hiroshi; Tabata, Ken-ichi; Baba, Shiro; Hayakawa, Kazushige

    2009-01-01

    Purpose: To evaluate the severity of genitourinary (GU) toxicity in high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiotherapy (EBRT) for prostate cancer and to explore factors that might affect the severity of GU toxicity. Methods and Materials: A total of 100 Japanese men with prostate cancer underwent 192 Ir HDR brachytherapy combined with hypofractionated EBRT. Mean (SD) dose to 90% of the planning target volume was 6.3 (0.7) Gy per fraction of HDR. After 5 fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administrated. The urethral volume receiving 1-15 Gy per fraction in HDR brachytherapy (V1-V15) and the dose to at least 5-100% of urethral volume in HDR brachytherapy (D5-D100) were compared between patients with Grade 3 toxicity and those with Grade 0-2 toxicity. Prostate volume, patient age, and International Prostate Symptom Score were also compared between the two groups. Results: Of the 100 patients, 6 displayed Grade 3 acute GU toxicity, and 12 displayed Grade 3 late GU toxicity. Regarding acute GU toxicity, values of V1, V2, V3, and V4 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Regarding late GU toxicity, values of D70, D80, V12, and V13 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Conclusions: The severity of GU toxicity in HDR brachytherapy combined with hypofractionated EBRT for prostate cancer was relatively high. The volume of prostatic urethra was associated with grade of acute GU toxicity, and urethral dose was associated with grade of late GU toxicity.

  11. Analysis of influence factors on the volume of pelvic bowel irradiated for rectal cancer

    International Nuclear Information System (INIS)

    He Yuxiang; Cai Yong; Zhu Xianggao; Han Shukui; Xu Bo

    2007-01-01

    Objective: To evaluate influence of prone/ supine position, gender, operation, bladder distension on bowel irradiated for patients with rectal cancer during pelvic radiotherapy. Methods: 36 patients with rectal cancer were investigated. Treatment plans were created with three dimensional treatment planning system. The dose and volume of bowel irradiated were analyzed according to dose-volume histograms (DVH) for every patient. The prescribed dose was 50 Gy. Results: The extent of bladder distension significantly influenced the mean doses and the V 45 high dose volumes of bowel irradiated. The treatment position and gender significantly influenced the V 15 low dose volume of bowel irradiated, the operation significantly influenced the mean doses of bowel. Either prone and supine position, or preoperative and postoperative, the doses of bowel irradiated for good bladder distension were lower and the volumes were smaller than that for bad bladder distension. The V 45 high dose volume of bowel irradiated for bad and good bladder distension at prone position were 15.3% and 7.4% (P=0.023), respectively, and at postoperative 14.1% and 7.2% (P=0.014), respectively. Conclusions: The doses and volumes of pelvic bowel irradiated were significantly influenced by the extent of bladder distension, and partly influenced by the prone/supine position, gender and operation. (authors)

  12. Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.

    Science.gov (United States)

    Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G

    2018-05-01

    To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, phistogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Measuring the apparent diffusion coefficient in primary rectal tumors: is there a benefit in performing histogram analyses?

    Science.gov (United States)

    van Heeswijk, Miriam M; Lambregts, Doenja M J; Maas, Monique; Lahaye, Max J; Ayas, Z; Slenter, Jos M G M; Beets, Geerard L; Bakers, Frans C H; Beets-Tan, Regina G H

    2017-06-01

    The apparent diffusion coefficient (ADC) is a potential prognostic imaging marker in rectal cancer. Typically, mean ADC values are used, derived from precise manual whole-volume tumor delineations by experts. The aim was first to explore whether non-precise circular delineation combined with histogram analysis can be a less cumbersome alternative to acquire similar ADC measurements and second to explore whether histogram analyses provide additional prognostic information. Thirty-seven patients who underwent a primary staging MRI including diffusion-weighted imaging (DWI; b0, 25, 50, 100, 500, 1000; 1.5 T) were included. Volumes-of-interest (VOIs) were drawn on b1000-DWI: (a) precise delineation, manually tracing tumor boundaries (2 expert readers), and (b) non-precise delineation, drawing circular VOIs with a wide margin around the tumor (2 non-experts). Mean ADC and histogram metrics (mean, min, max, median, SD, skewness, kurtosis, 5th-95th percentiles) were derived from the VOIs and delineation time was recorded. Measurements were compared between the two methods and correlated with prognostic outcome parameters. Median delineation time reduced from 47-165 s (precise) to 21-43 s (non-precise). The 45th percentile of the non-precise delineation showed the best correlation with the mean ADC from the precise delineation as the reference standard (ICC 0.71-0.75). None of the mean ADC or histogram parameters showed significant prognostic value; only the total tumor volume (VOI) was significantly larger in patients with positive clinical N stage and mesorectal fascia involvement. When performing non-precise tumor delineation, histogram analysis (in specific 45th ADC percentile) may be used as an alternative to obtain similar ADC values as with precise whole tumor delineation. Histogram analyses are not beneficial to obtain additional prognostic information.

  14. Assessment of Intrafraction Breathing Motion on Left Anterior Descending Artery Dose During Left-Sided Breast Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherif, Omar, E-mail: Omar.ElSherif@lhsc.on.ca [Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); Department of Physics, London Regional Cancer Program, London, Ontario (Canada); Yu, Edward [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Xhaferllari, Ilma [Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); Department of Physics, London Regional Cancer Program, London, Ontario (Canada); Gaede, Stewart [Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); Department of Physics, London Regional Cancer Program, London, Ontario (Canada); Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada)

    2016-07-01

    Purpose: To use 4-dimensional computed tomography (4D-CT) imaging to predict the level of uncertainty in cardiac dose estimates of the left anterior descending artery that arises due to breathing motion during radiation therapy for left-sided breast cancer. Methods and Materials: The fast helical CT (FH-CT) and 4D-CT of 30 left-sided breast cancer patients were retrospectively analyzed. Treatment plans were created on the FH-CT. The original treatment plan was then superimposed onto all 10 phases of the 4D-CT to quantify the dosimetric impact of respiratory motion through 4D dose accumulation (4D-dose). Dose-volume histograms for the heart, left ventricle (LV), and left anterior descending (LAD) artery obtained from the FH-CT were compared with those obtained from the 4D-dose. Results: The 95% confidence interval of 4D-dose and FH-CT differences in mean dose estimates for the heart, LV, and LAD were ±0.5 Gy, ±1.0 Gy, and ±8.7 Gy, respectively. Conclusion: Fast helical CT is a good approximation for doses to the heart and LV; however, dose estimates for the LAD are susceptible to uncertainties that arise due to intrafraction breathing motion that cannot be ascertained without the additional information obtained from 4D-CT and dose accumulation. For future clinical studies, we suggest the use of 4D-CT–derived dose-volume histograms for estimating the dose to the LAD.

  15. Clinical implementation of dose-volume histogram predictions for organs-at-risk in IMRT planning

    International Nuclear Information System (INIS)

    Moore, K L; Appenzoller, L M; Tan, J; Michalski, J M; Thorstad, W L; Mutic, S

    2014-01-01

    True quality control (QC) of the planning process requires quantitative assessments of treatment plan quality itself, and QC in IMRT has been stymied by intra-patient anatomical variability and inherently complex three-dimensional dose distributions. In this work we describe the development of an automated system to reduce clinical IMRT planning variability and improve plan quality using mathematical models that predict achievable OAR DVHs based on individual patient anatomy. These models rely on the correlation of expected dose to the minimum distance from a voxel to the PTV surface, whereby a three-parameter probability distribution function (PDF) was used to model iso-distance OAR subvolume dose distributions. DVH models were obtained by fitting the evolution of the PDF with distance. Initial validation on clinical cohorts of 40 prostate and 24 head-and-neck plans demonstrated highly accurate model-based predictions for achievable DVHs in rectum, bladder, and parotid glands. By quantifying the integrated difference between candidate DVHs and predicted DVHs, the models correctly identified plans with under-spared OARs, validated by replanning all cases and correlating any realized improvements against the predicted gains. Clinical implementation of these predictive models was demonstrated in the PINNACLE treatment planning system by use of existing margin expansion utilities and the scripting functionality inherent to the system. To maintain independence from specific planning software, a system was developed in MATLAB to directly process DICOM-RT data. Both model training and patient-specific analyses were demonstrated with significant computational accelerations from parallelization.

  16. Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Sun, Baozhou; Yang, Deshan; Esthappan, Jackie

    2015-01-01

    -field intensity-modulated radiation therapy (IMRT) and image-guided BT in locally advanced cervical cancer. METHODS AND MATERIALS: Thirty-three patients treated with split-field-IMRT to 45.0-51.2 Gy in 1.6-1.8 Gy per fraction to the elective pelvic lymph nodes and to 20 Gy to the central pelvis region were...... included in this study. Patients received six weekly fractions of high-dose rate BT to 6.5-7.3 Gy per fraction. A dose tracker software was developed to compute the equivalent dose in 2-Gy fractions (EQD2) to gross tumor volume (GTV), organs-at-risk and point A. Total dose-volume histogram parameters were...

  17. A study of different dose calculation methods and the impact on the dose evaluation protocol in lung stereotactic radiation therapy

    International Nuclear Information System (INIS)

    Takada, Takahiro; Furuya, Tomohisa; Ozawa, Shuichi; Ito, Kana; Kurokawa, Chie; Karasawa, Kumiko; Miura, Kohei

    2008-01-01

    AAA (analytical anisotropic algorithm) dose calculation, which shows a better performance for heterogeneity correction, was tested for lung stereotactic radiation therapy (SBRT) in comparison to conventional PBC (pencil beam convolution method) to evaluate its impact on tumor dose parameters. Eleven lung SBRT patients who were treated with photon 4 MV beams in our department between April 2003 and February 2007 were reviewed. Clinical target volume (CTV) was delineated including the spicula region on planning CT images. Planning target volume (PTV) was defined by adding the internal target volume (ITV) and set-up margin (SM) of 5 mm from CTV, and then an multileaf collimator (MLC) penumbra margin of another 5 mm was also added. Six-port non-coplanar beams were employed, and a total prescribed dose of 48 Gy was defined at the isocenter point with four fractions. The entire treatment for an individual patient was completed within 8 days. Under the same prescribed dose, calculated dose distribution, dose volume histogram (DVH), and tumor dose parameters were compared between two dose calculation methods. In addition, the fractionated prescription dose was repeatedly scaled until the monitor units (MUs) calculated by AAA reached a level of MUs nearly identical to those achieved by PBC. AAA resulted in significantly less D95 (irradiation dose that included 95% volume of PTV) and minimal dose in PTV compared to PBC. After rescaling of each MU for each beam in the AAA plan, there was no revision of the isocenter of the prescribed dose required. However, when the PTV volume was less than 20 cc, a 4% lower prescription resulted in nearly identical MUs between AAA and PBC. The prescribed dose in AAA should be the same as that in PBC, if the dose is administered at the isocenter point. However, planners should compare DVHs and dose distributions between AAA and PBC for a small lung tumor with a PTV volume less than approximately 20 cc. (author)

  18. Dose distribution in the thyroid gland following radiation therapy of breast cancer--a retrospective study.

    Science.gov (United States)

    Johansen, S; Reinertsen, K V; Knutstad, K; Olsen, D R; Fosså, S D

    2011-06-09

    To relate the development of post-treatment hypothyroidism with the dose distribution within the thyroid gland in breast cancer (BC) patients treated with loco-regional radiotherapy (RT). In two groups of BC patients postoperatively irradiated by computer tomography (CT)-based RT, the individual dose distributions in the thyroid gland were compared with each other; Cases developed post-treatment hypothyroidism after multimodal treatment including 4-field RT technique. Matched patients in Controls remained free for hypothyroidism. Based on each patient's dose volume histogram (DVH) the volume percentages of the thyroid absorbing respectively 20, 30, 40 and 50 Gy were then estimated (V20, V30, V40 and V50) together with the individual mean thyroid dose over the whole gland (MeanTotGy). The mean and median thyroid dose for the included patients was about 30 Gy, subsequently the total volume of the thyroid gland (VolTotGy) and the absolute volumes (cm3) receiving respectively thyroid gland receivingthyroid glands after loco-radiotherapy of BC, the risk of post-treatment hypothyroidism depends on the volume of the thyroid gland.

  19. Dose-volume histogram comparison between static 5-field IMRT with 18-MV X-rays and helical tomotherapy with 6-MV X-rays.

    Science.gov (United States)

    Hayashi, Akihiro; Shibamoto, Yuta; Hattori, Yukiko; Tamura, Takeshi; Iwabuchi, Michio; Otsuka, Shinya; Sugie, Chikao; Yanagi, Takeshi

    2015-03-01

    We treated prostate cancer patients with static 5-field intensity-modulated radiation therapy (IMRT) using linac 18-MV X-rays or tomotherapy with 6-MV X-rays. As X-ray energies differ, we hypothesized that 18-MV photon IMRT may be better for large patients and tomotherapy may be more suitable for small patients. Thus, we compared dose-volume parameters for the planning target volume (PTV) and organs at risk (OARs) in 59 patients with T1-3 N0M0 prostate cancer who had been treated using 5-field IMRT. For these same patients, tomotherapy plans were also prepared for comparison. In addition, plans of 18 patients who were actually treated with tomotherapy were analyzed. The evaluated parameters were homogeneity indicies and a conformity index for the PTVs, and D2 (dose received by 2% of the PTV in Gy), D98, Dmean and V10-70 Gy (%) for OARs. To evaluate differences by body size, patients with a known body mass index were grouped by that index ( 25 kg/m(2)). For the PTV, all parameters were higher in the tomotherapy plans compared with the 5-field IMRT plans. For the rectum, V10 Gy and V60 Gy were higher, whereas V20 Gy and V30 Gy were lower in the tomotherapy plans. For the bladder, all parameters were higher in the tomotherapy plans. However, both plans were considered clinically acceptable. Similar trends were observed in 18 patients treated with tomotherapy. Obvious trends were not observed for body size. Tomotherapy provides equivalent dose distributions for PTVs and OARs compared with 18-MV 5-field IMRT. Tomotherapy could be used as a substitute for high-energy photon IMRT for prostate cancer regardless of body size. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Chi-square tests for comparing weighted histograms

    International Nuclear Information System (INIS)

    Gagunashvili, N.D.

    2010-01-01

    Weighted histograms in Monte Carlo simulations are often used for the estimation of probability density functions. They are obtained as a result of random experiments with random events that have weights. In this paper, the bin contents of a weighted histogram are considered as a sum of random variables with a random number of terms. Generalizations of the classical chi-square test for comparing weighted histograms are proposed. Numerical examples illustrate an application of the tests for the histograms with different statistics of events and different weighted functions. The proposed tests can be used for the comparison of experimental data histograms with simulated data histograms as well as for the two simulated data histograms.

  1. Histogram Profiling of Postcontrast T1-Weighted MRI Gives Valuable Insights into Tumor Biology and Enables Prediction of Growth Kinetics and Prognosis in Meningiomas.

    Science.gov (United States)

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-06-14

    Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Influence of dosing volume on the neurotoxicity of bifenthrin.

    Science.gov (United States)

    Wolansky, M J; McDaniel, K L; Moser, V C; Crofton, K M

    2007-01-01

    Pyrethroids are pesticides with high insecticidal activity and relatively low potency in mammals. The influence of dosing volume on the neurobehavioral syndrome following oral acute exposure to the Type-I pyrethroid insecticide bifenthrin in corn oil was evaluated in adult male Long Evans rats. We tested bifenthrin effects at 1 and 5 ml/kg, two commonly used dose volumes in toxicological studies. Two testing times (4 and 7 h) were used in motor activity and functional observational battery (FOB) assessments. Four to eight doses were examined at either dosing condition (up to 20 or 26 mg/kg, at 1 and 5 ml/kg, respectively). Acute oral bifenthrin exposure produced toxic signs typical of Type I pyrethroids, with dose-related increases in fine tremor, decreased motor activity and grip strength, and increased pawing, head shaking, click response, and body temperature. Bifenthrin effects on motor activity and pyrethroid-specific clinical signs were approximately 2-fold more potent at 1 ml/kg than 5 ml/kg. This difference was clearly evident at 4 h and slightly attenuated at 7 h post-dosing. Benchmark dose (BMD) modeling estimated similar 2-fold potency differences in motor activity and pyrethroid-specific FOB data. These findings demonstrate that dose volume, in studies using corn oil as the vehicle influences bifenthrin potency. Further, these data suggest that inconsistent estimates of pyrethroid potency between laboratories are at least partially due to differences in dosing volume.

  3. Volume correction factor in time dose relationships in brachytherapy

    International Nuclear Information System (INIS)

    Supe, S.J.; Sasane, J.B.

    1987-01-01

    Paterson's clinical data about the maximum tolerance doses for various volumes of interstitial implants with Ra-226 delivered in seven days was made use of in deriving volume correction factors for TDF and CRE concepts respectively for brachytherapy. The derived volume correction factors for TDF and for CRE differ fromthe one assumed for CRE by Kirk et al. and implied for TDF by Goitein. A normalising volume of 70 cc has been suggested for both CRE and TDF concepts for brachytherapy. A table showing the volume corrected TDF is presented for various volumes and dose rates for continuous irradiation. The use of this table is illustrated with examples. (orig.) [de

  4. Dynamic contrast-enhanced MR imaging of the rectum: Correlations between single-section and whole-tumor histogram analyses.

    Science.gov (United States)

    Choi, M H; Oh, S N; Park, G E; Yeo, D-M; Jung, S E

    2018-05-10

    To evaluate the interobserver and intermethod correlations of histogram metrics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters acquired by multiple readers using the single-section and whole-tumor volume methods. Four DCE parameters (K trans , K ep , V e , V p ) were evaluated in 45 patients (31 men and 14 women; mean age, 61±11 years [range, 29-83 years]) with locally advanced rectal cancer using pre-chemoradiotherapy (CRT) MRI. Ten histogram metrics were extracted using two methods of lesion selection performed by three radiologists: the whole-tumor volume method for the whole tumor on axial section-by-section images and the single-section method for the entire area of the tumor on one axial image. The interobserver and intermethod correlations were evaluated using the intraclass correlation coefficients (ICCs). The ICCs showed excellent interobserver and intermethod correlations in most of histogram metrics of the DCE parameters. The ICCs among the three readers were > 0.7 (Phistogram metrics, except for the minimum and maximum. The intermethod correlations for most of the histogram metrics were excellent for each radiologist, regardless of the differences in the radiologists' experience. The interobserver and intermethod correlations for most of the histogram metrics of the DCE parameters are excellent in rectal cancer. Therefore, the single-section method may be a potential alternative to the whole-tumor volume method using pre-CRT MRI, despite the fact that the high agreement between the two methods cannot be extrapolated to post-CRT MRI. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  5. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation

    International Nuclear Information System (INIS)

    Begnozzi, L.; Gentile, F.P.; Di Nallo, A.M.; Chiatti, L.; Zicari, C.; Consorti, R.; Benassi, M.

    1994-01-01

    Since volumetric dose distributions are available with 3-dimensional radiotherapy treatment planning they can be used in statistical evaluation of response to radiation. This report presents a method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. The mathematical expression for the calculation of normal tissue complication probability has been derived combining the Lyman model with the histogram reduction method of Kutcher et al. and using the normalized total dose (NTD) instead of the total dose. The fitting of published tolerance data, in case of homogeneous or partial brain irradiation, has been considered. For the same total or partial volume homogeneous irradiation of the brain, curves of normal tissue complication probability have been calculated with fraction size of 1.5 Gy and of 3 Gy instead of 2 Gy, to show the influence of fraction size. The influence of dose distribution inhomogeneity and α/β value has also been simulated: Considering α/β=1.6 Gy or α/β=4.1 Gy for kidney clinical nephritis, the calculated curves of normal tissue complication probability are shown. Combining NTD calculations and histogram reduction techniques, normal tissue complication probability can be estimated taking into account the most relevant contributing factors, including the volume effect. (orig.) [de

  6. Does IGRT ensure target dose coverage of head and neck IMRT patients?

    International Nuclear Information System (INIS)

    Graff, Pierre; Hu Weigang; Yom, Sue S.; Pouliot, Jean

    2012-01-01

    Purpose: To determine if image-guided radiotherapy (IGRT) ensures dose coverage to the target, and to assess the dosimetric impact of anatomic changes using megavoltage cone-beam CT (MVCBCT) for patient positioning during head and neck IMRT. Methods and materials: Forty-eight MVCBCT from 10 head and neck IMRT/IGRT patients were analyzed off-line. Target volumes and organs at risk (OARs) contours delineated on CT were transferred and adjusted on MVCBCT images. Each MVCBCT was processed to allow dose recalculation, resulting in 469 dose–volume histograms (DVHs). The concept of dosimetric latitude was introduced to provide a clinical perspective. Results: MVCBCT target DVHs showed a moderate level of difference in D95 (dose to ⩾95% of volume), generally less than a 5% difference from the planned dose. Delivered-dose increases to the spinal cord and brainstem showed no apparent time trend. The 4 mm margin around OARs was a useful precaution to prevent exceeding critical dose thresholds. The parotid glands showed progressive increases in mean dose related to shrinkage of the external contours. Conclusion: IGRT repositioning ensured target volume coverage, but significant dose variations were observed for OARs. The dosimetric impact of anatomic changes during radiotherapy was of lesser importance than the effects of IGRT repositioning.

  7. Analysis on Longitudinal Dose according to Change of Field Width

    International Nuclear Information System (INIS)

    Jung, Won Seok; Shin, Ryung Mi; Oh, Byung Cheon; Jo, Jun Young; Kim, Gi Chul; Choi, Tae Gu; Back, Jong Geal

    2011-01-01

    To analyze the accuracy of tumor volume dose following field width change, to check the difference of dose change by using self-made moving car, and to evaluate practical delivery tumor dose when tomotherapy in the treatment of organ influenced by breathing. By using self-made moving car, the difference of longitudinal movement (0.0 cm, 1.0 cm, 1.5 cm, 2.0 cm) was applied and compared calculated dose with measured dose according to change of field width (1.05 cm, 2.50 cm, 5.02 cm) and apprehended margin of error. Then done comparative analysis in degree of photosensitivity of DQA film measured by using Gafchromic EBT film. Dose profile and Gamma histogram were used to measure degree of photosensitivity of DQA film. When field width were 1.05 cm, 2.50 cm, 5.02 cm, margin of error of dose delivery coefficient was -2.00%, -0.39%, -2.55%. In dose profile of Gafchromic EBT film's analysis, the movement of moving car had greater motion toward longitudinal direction and as field width was narrower, big error increased considerably at high dose part compared to calculated dose. The more field width was narrowed, gamma index had a large considerable influence of moving at gamma histogram. We could check the difference of longitudinal dose of moving organ. In order to small field width and minimize organ moving due to breathing, it is thought to be needed to develop breathing control unit and fixation tool.

  8. Whole-lesion apparent diffusion coefficient histogram analysis: significance in T and N staging of gastric cancers.

    Science.gov (United States)

    Liu, Song; Zhang, Yujuan; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang

    2017-10-02

    Whole-lesion apparent diffusion coefficient (ADC) histogram analysis has been introduced and proved effective in assessment of multiple tumors. However, the application of whole-volume ADC histogram analysis in gastrointestinal tumors has just started and never been reported in T and N staging of gastric cancers. Eighty patients with pathologically confirmed gastric carcinomas underwent diffusion weighted (DW) magnetic resonance imaging before surgery prospectively. Whole-lesion ADC histogram analysis was performed by two radiologists independently. The differences of ADC histogram parameters among different T and N stages were compared with independent-samples Kruskal-Wallis test. Receiver operating characteristic (ROC) analysis was performed to evaluate the performance of ADC histogram parameters in differentiating particular T or N stages of gastric cancers. There were significant differences of all the ADC histogram parameters for gastric cancers at different T (except ADC min and ADC max ) and N (except ADC max ) stages. Most ADC histogram parameters differed significantly between T1 vs T3, T1 vs T4, T2 vs T4, N0 vs N1, N0 vs N3, and some parameters (ADC 5% , ADC 10% , ADC min ) differed significantly between N0 vs N2, N2 vs N3 (all P histogram parameters held great potential in differentiating different T and N stages of gastric cancers preoperatively.

  9. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    International Nuclear Information System (INIS)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O.

    2012-01-01

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  10. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O. [Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil); Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, B1002 WIMR, Madison, Wisconsin 53705-2275 (United States); Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil)

    2012-05-15

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  11. Skull base chordomas: analysis of dose-response characteristics

    International Nuclear Information System (INIS)

    Niemierko, Andrzej; Terahara, Atsuro; Goitein, Michael

    1997-01-01

    Objective: To extract dose-response characteristics from dose-volume histograms and corresponding actuarial survival statistics for 115 patients with skull base chordomas. Materials and Methods: We analyzed data for 115 patients with skull base chordoma treated with combined photon and proton conformal radiotherapy to doses in the range 66.6Gy - 79.2Gy. Data set for each patient included gender, histology, age, tumor volume, prescribed dose, overall treatment time, time to recurrence or time to last observation, target dose-volume histogram, and several dosimetric parameters (minimum/mean/median/maximum target dose, percent of the target volume receiving the prescribed dose, dose to 90% of the target volume, and the Equivalent Uniform Dose (EUD). Data were analyzed using the Kaplan-Meier survivor function estimate, the proportional hazards (Cox) model, and parametric modeling of the actuarial probability of recurrence. Parameters of dose-response characteristics were obtained using the maximum likelihood method. Results: Local failure developed in 42 (36%) of patients, with actuarial local control rates at 5 years of 59.2%. The proportional hazards model revealed significant dependence of gender on the probability of recurrence, with female patients having significantly poorer prognosis (hazard ratio of 2.3 with the p value of 0.008). The Wilcoxon and the log-rank tests of the corresponding Kaplan-Meier recurrence-free survival curves confirmed statistical significance of this effect. The Cox model with stratification by gender showed significance of tumor volume (p=0.01), the minimum target dose (p=0.02), and the EUD (p=0.02). Other parameters were not significant at the α level of significance of 0.05, including the prescribed dose (p=0.21). Parametric analysis using a combined model of tumor control probability (to account for non-uniformity of target dose distribution) and the Weibull failure time model (to account for censoring) allowed us to estimate

  12. The Histogram-Area Connection

    Science.gov (United States)

    Gratzer, William; Carpenter, James E.

    2008-01-01

    This article demonstrates an alternative approach to the construction of histograms--one based on the notion of using area to represent relative density in intervals of unequal length. The resulting histograms illustrate the connection between the area of the rectangles associated with particular outcomes and the relative frequency (probability)…

  13. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    Science.gov (United States)

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p FB and V-DIBH, respectively (p FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.

  14. Evaluation of Geometrically Optimized Single- and Double-plane Interstitial High Dose Rate Implants with Respect to Conformality and Homogeneity

    International Nuclear Information System (INIS)

    Major, Tibor; Polgar, Csaba; Fodor, Janos; Takacsi-nagy, Zoltan; Mangel, Laszlo; Nemeth, Gyoergy

    2003-01-01

    The use of a stepping source in high dose rate brachytherapy supported with dwell-time optimization makes it possible to deviate from the classical dosimetry systems. Dose distributions of single- and double-plane implants were analysed for conformality and homogeneity at idealized target volumes. The Paris system was used for catheter positioning and target volume determination. Geometric optimization and individual dose prescription were applied. Volumetric indices and dose parameters were calculated at optimal active length, which was found to be equal to target volume length. The mean conformality, homogeneity, external volume and overdose volume indices were 0.78, 0.67, 0.22 and 0.13, respectively. The average minimum target and reference doses were 69% and 86%, respectively. Comparisons between the volumetric indices of geometrical optimized and non-optimized implants were also performed, and a significant difference was found regarding any index. The geometrical optimization resulted in superior conformality and slightly inferior homogeneity. At geometrically optimized implants, the active length can be reduced compared to non-optimized implants. Volumetric parameters and dose-volume histogram-based individual dose prescription are recommended for quantitative assessment of interstitial implants

  15. A novel dose uncertainty model and its application for dose verification

    International Nuclear Information System (INIS)

    Jin Hosang; Chung Heetaek; Liu Chihray; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2005-01-01

    measurements were within the tolerance bound as expected by a statistical prediction of the model. Using the dose uncertainty distributions, an uncertainty length (uncertainty area and uncertainty volume for two-dimensional and three-dimensional, respectively) histogram (a plot of the dose uncertainty of 1σ received by a length of field) was made. The histogram provides additional information on superiority of a treatment plan in terms of uncertainty. In summary, the uncertainty model provides the dose comparison tool as well as the evaluation tool of a treatment planning system

  16. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    Science.gov (United States)

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  17. Histogram analysis of apparent diffusion coefficient for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy.

    Science.gov (United States)

    Meng, Jie; Zhu, Lijing; Zhu, Li; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng

    2017-11-01

    Background Apparent diffusion coefficient (ADC) histogram analysis has been widely used in determining tumor prognosis. Purpose To investigate the dynamic changes of ADC histogram parameters during concurrent chemo-radiotherapy (CCRT) in patients with advanced cervical cancers. Material and Methods This prospective study enrolled 32 patients with advanced cervical cancers undergoing CCRT who received diffusion-weighted (DW) magnetic resonance imaging (MRI) before CCRT, at the end of the second and fourth week during CCRT and one month after CCRT completion. The ADC histogram for the entire tumor volume was generated, and a series of histogram parameters was obtained. Dynamic changes of those parameters in cervical cancers were investigated as early biomarkers for treatment response. Results All histogram parameters except AUC low showed significant changes during CCRT (all P histogram parameters of cervical cancers changed significantly at the early stage of CCRT, indicating their potential in monitoring early tumor response to therapy.

  18. Prostate cancer: Doses and volumes of radiotherapy

    International Nuclear Information System (INIS)

    Hennequin, C.; Rivera, S.; Quero, L.; Latorzeff, I.

    2010-01-01

    Radiotherapy is nowadays a major therapeutic option in prostate cancer. Technological improvements allowed dose escalation without increasing late toxicity. Some randomized trials have shown that dose escalation decreases the biochemical failure rate, without any benefit in survival with the present follow-up. However, some studies indicate that the distant metastases rate is also decreased. Most of these studies have been done without hormonal treatment, and the role of dose escalation in case of long-term androgen deprivation is unknown. The target volume encompassed the whole gland: however, complete or partial focal treatment of the prostate can be done with sophisticated IMRT technique and must be evaluated. Proximal part of the seminal vesicles must be included in the target volumes. The role of nodal irradiation is another debate, but it could be logically proposed for the unfavourable group. (authors)

  19. Feasibility of optimizing the dose distribution in lung tumors using fluorine-18-fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

    International Nuclear Information System (INIS)

    Das, S.K.; Miften, M.M.; Zhou, S.; Bell, M.; Munley, M.T.; Whiddon, C.S.; Craciunescu, O.; Baydush, A.H.; Wong, T.; Rosenman, J.G.; Dewhirst, M.W.; Marks, L.B.

    2004-01-01

    The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits

  20. Dose comparison using deformed image registration method on breast cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Won; Kim, Jung Hoon [Dept. of Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of); Won, Young Jin [Dept. of Radiation Oncology, InJe University Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2017-03-15

    The purpose of this study is to reconstruct the treatment plan by applying CBCT and DIR to dose changes according to the change of the patient's motion and breast shape in the large breast cancer patients and to compare the doses using TWF, FIF and IMRT. CT and CBCT were performed with MIM6 to create DIRCT and each treatment plan was made. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) were determined and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram and the unique property of each organ. The value of HI of the PTV breast increased in all treatment planning methods using DIRCT, and CVI and CI were decreased in the treatment planning methods using DIRCT.

  1. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    Science.gov (United States)

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.

  2. Information granules in image histogram analysis.

    Science.gov (United States)

    Wieclawek, Wojciech

    2018-04-01

    A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer.

    Science.gov (United States)

    Sun, Baozhou; Yang, Deshan; Esthappan, Jackie; Garcia-Ramirez, Jose; Price, Samantha; Mutic, Sasa; Schwarz, Julie K; Grigsby, Perry W; Tanderup, Kari

    2015-01-01

    Dose accumulation of split-field external beam radiotherapy (EBRT) and brachytherapy (BT) is challenging because of significant EBRT and BT dose gradients in the central pelvic region. We developed a method to determine biologically effective dose parameters for combined split-field intensity-modulated radiation therapy (IMRT) and image-guided BT in locally advanced cervical cancer. Thirty-three patients treated with split-field-IMRT to 45.0-51.2 Gy in 1.6-1.8 Gy per fraction to the elective pelvic lymph nodes and to 20 Gy to the central pelvis region were included in this study. Patients received six weekly fractions of high-dose rate BT to 6.5-7.3 Gy per fraction. A dose tracker software was developed to compute the equivalent dose in 2-Gy fractions (EQD2) to gross tumor volume (GTV), organs-at-risk and point A. Total dose-volume histogram parameters were computed on the 3D combined EQD2 dose based on rigid image registration. The dose accumulation uncertainty introduced by organ deformations between IMRT and BT was evaluated. According to International Commission on Radiation Unit and Measurement and GEC European Society for Therapeutic Radiology and Oncology recommendations, D98, D90, D50, and D2cm3 EQD2 dose-volume histogram parameters were computed. GTV D98 was 84.0 ± 26.5 Gy and D2cc was 99.6 ± 13.9 Gy, 67.4 ± 12.2 Gy, 75.0 ± 10.1 Gy, for bladder, rectum, and sigmoid, respectively. The uncertainties induced by organ deformation were estimated to be -1 ± 4 Gy, -3 ± 5 Gy, 2 ± 3 Gy, and -3 ± 5 Gy for bladder, rectum, sigmoid, and GTV, respectively. It is feasible to perform 3D EQD2 dose accumulation to assess high and intermediate dose regions for combined split-field IMRT and BT. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. [Characteristics of high resolution diffusion weighted imaging apparent diffusion coefficient histogram and its correlations with cancer stages in patients with nasopharyngeal carcinoma].

    Science.gov (United States)

    Wang, G J; Wang, Y; Ye, Y; Chen, F; Lu, Y T; Li, S L

    2017-11-07

    Objective: To investigate the features of apparent diffusion coefficient (ADC) histogram parameters based on entire tumor volume data in high resolution diffusion weighted imaging of nasopharyngeal carcinoma (NPC) and to evaluate its correlations with cancer stages. Methods: This retrospective study included 154 cases of NPC patients[102 males and 52 females, mean age (48±11) years]who had received readout segmentation of long variable echo trains of MRI scan before radiation therapy. The area of tumor was delineated on each section of axial ADC maps to generate ADC histogram by using Image J. ADC histogram of entire tumor along with the histogram parameters-the tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness and kurtosis were obtained by merging all sections with SPSS 22.0 software. Intra-observer repeatability was assessed by using intra-class correlation coefficients (ICC). The patients were subdivided into two groups according to cancer volume: small cancer group (histogram parameters and cancer stages was evaluated with Spearman test. Results: The ICC of measuring ADC histogram parameters of tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness, kurtosis was 0.938, 0.861, 0.885, 0.838, 0.836, 0.358 and 0.456, respectively. The tumor voxels was positively correlated with T staging ( r =0.368, P histogram (ADC(mean), ADC(25%), ADC(50%)) increases with T staging in NPC smaller than 2 cm(3).

  5. Bi-Histogram Equalization with Brightnes Preservation Using Contras Enhancement

    OpenAIRE

    A. Anitha Rani; Gowthami Rajagopal; A. Jagadeswaran

    2014-01-01

    Contrast enhancement is an important factor in the image preprocesing step. One of the widely acepted contrast enhancement method is the histogram equalization. Although histogram equalization achieves comparatively beter performance on almost al types of image, global histogram equalization sometimes produces excesive visual deterioration. A new extension of bi- histogram equalization caled Bi-Histogram Equalization with Neighborhod Metric (BHENM). First, large histogram bins that cause w...

  6. Toward a definition of a threshold for harmless doses to the anal-sphincter region and the rectum

    International Nuclear Information System (INIS)

    Al-Abany, Massoud; Helgason, Asgeir R.; Agren Cronqvist, Anna-Karin; Lind, Bengt; Mavroidis, Panayiotis; Wersaell, Peter; Lind, Helena; Qvanta, Eva; Steineck, Gunnar

    2005-01-01

    Purpose: To investigate dysfunction caused by unwanted radiation to the anal-sphincter region and the rectum. Methods and materials: A questionnaire assessing bowel symptoms, sexual function, and urinary symptoms was sent to 72 patients with clinically localized prostatic adenocarcinoma treated by external beam radiation therapy at the Radiumhemmet, Karolinska Hospital, in Stockholm, Sweden, 2-4 years after treatment. The mean percentage dose-volume histograms for patients with and without the specific symptom were calculated. Results: Of the 65 patients providing information, 9 reported fecal leakage, 10 blood and mucus in stools, 10 defecation urgency, and 7 diarrhea or loose stools. None of the 19 and 13 patients who received, respectively, a dose of ≥35 Gy to ≤60% or ≥40 Gy to ≤40% of the anal-sphincter region volume reported fecal leakage (p < 0.05). In dose-volume histograms, a statistically significant correlation was found between radiation to the anal-sphincter region and the risk of fecal leakage in the interval 45-55 Gy. There was also a statistically significant correlation between radiation to the rectum and the risk of defecation urgency and diarrhea or loose stools in the interval 25-42 Gy. No relationship was found between anatomic rectal wall volume and the investigated late effects. Conclusions: Although the limited data in this study prevent the definition of a conclusive threshold regarding volume and dose to the anal-sphincter region and untoward morbidity, it seems that careful monitoring of unnecessary irradiation to this area should be done because it can potentially help reduce the risk of adverse effects, such as fecal leakage. Future studies should pay more attention to the anal-sphincter region and help to more rigorously define its radiotherapeutic tolerance

  7. Quick cytogenetic screening of breeding bulls using flow cytometric sperm DNA histogram analysis.

    Science.gov (United States)

    Nagy, Szabolcs; Polgár, Péter J; Andersson, Magnus; Kovács, András

    2016-09-01

    The aim of the present study was to test the FXCycle PI/RNase kit for routine DNA analyses in order to detect breeding bulls and/or insemination doses carrying cytogenetic aberrations. In a series of experiments we first established basic DNA histogram parameters of cytogenetically healthy breeding bulls by measuring the intraspecific genome size variation of three animals, then we compared the histogram profiles of bulls carrying cytogenetic defects to the baseline values. With the exception of one case the test was able to identify bulls with cytogenetic defects. Therefore, we conclude that the assay could be incorporated into the laboratory routine where flow cytometry is applied for semen quality control.

  8. Color Histogram Diffusion for Image Enhancement

    Science.gov (United States)

    Kim, Taemin

    2011-01-01

    Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.

  9. Theory and Application of DNA Histogram Analysis.

    Science.gov (United States)

    Bagwell, Charles Bruce

    The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…

  10. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  11. Assessment of Parotid Gland Dose Changes During Head and Neck Cancer Radiotherapy Using Daily Megavoltage Computed Tomography and Deformable Image Registration

    International Nuclear Information System (INIS)

    Lee, Choonik; Langen, Katja M.; Lu Weiguo; Haimerl, Jason; Schnarr, Eric; Ruchala, Kenneth J.; Olivera, Gustavo H.; Meeks, Sanford L.; Kupelian, Patrick A.; Shellenberger, Thomas D.; Manon, Rafael R.

    2008-01-01

    Purpose: To analyze changes in parotid gland dose resulting from anatomic changes throughout a course of radiotherapy in a cohort of head-and-neck cancer patients. Methods and Materials: The study population consisted of 10 head-and-neck cancer patients treated definitively with intensity-modulated radiotherapy on a helical tomotherapy unit. A total of 330 daily megavoltage computed tomography images were retrospectively processed through a deformable image registration algorithm to be registered to the planning kilovoltage computed tomography images. The process resulted in deformed parotid contours and voxel mappings for both daily and accumulated dose-volume histogram calculations. The daily and cumulative dose deviations from the original treatment plan were analyzed. Correlations between dosimetric variations and anatomic changes were investigated. Results: The daily parotid mean dose of the 10 patients differed from the plan dose by an average of 15%. At the end of the treatment, 3 of the 10 patients were estimated to have received a greater than 10% higher mean parotid dose than in the original plan (range, 13-42%), whereas the remaining 7 patients received doses that differed by less than 10% (range, -6-8%). The dose difference was correlated with a migration of the parotids toward the high-dose region. Conclusions: The use of deformable image registration techniques and daily megavoltage computed tomography imaging makes it possible to calculate daily and accumulated dose-volume histograms. Significant dose variations were observed as result of interfractional anatomic changes. These techniques enable the implementation of dose-adaptive radiotherapy

  12. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late

  13. Investigating Student Understanding of Histograms

    Science.gov (United States)

    Kaplan, Jennifer J.; Gabrosek, John G.; Curtiss, Phyllis; Malone, Chris

    2014-01-01

    Histograms are adept at revealing the distribution of data values, especially the shape of the distribution and any outlier values. They are included in introductory statistics texts, research methods texts, and in the popular press, yet students often have difficulty interpreting the information conveyed by a histogram. This research identifies…

  14. Stereotactic intracranial radiotherapy: Dose prescription

    International Nuclear Information System (INIS)

    Schlienger, M.; Lartigau, E.; Nataf, F.; Mornex, F.; Latorzeff, I.; Lisbona, A.; Mahe, M.

    2012-01-01

    The aim of this article was the study of the successive steps permitting the prescription of dose in stereotactic intracranial radiotherapy, which includes radiosurgery and fractionated stereotactic radiotherapy. The successive steps studied are: the choice of stereotactic intracranial radiotherapy among the therapeutic options, based on curative or palliative treatment intent, then the selection of lesions according to size/volume, pathological type and their number permitting the choice between radiosurgery or fractionated stereotactic radiotherapy, which have the same methodological basis. Clinical experience has determined the level of dose to treat the lesions and limit the irradiation of healthy adjacent tissues and organs at risk structures. The last step is the optimization of the different parameters to obtain a safe compromise between the lesion dose and healthy adjacent structures. Study of dose-volume histograms, coverage indices and 3D imaging permit the optimization of irradiation. For lesions close to or included in a critical area, the prescribed dose is planned using the inverse planing method. Implementation of the successively described steps is mandatory to insure the prescription of an optimized dose. The whole procedure is based on the delineation of the lesion and adjacent healthy tissues. There are sometimes difficulties to assess the delineation and the volume of the target, however improvement of local control rates and reduction of secondary effects are the proof that the totality of the successive procedures are progressively improved. In practice, stereotactic intracranial radiotherapy is a continually improved treatment method, which constantly benefits from improvements in the choice of indications, imaging, techniques of irradiation, planing/optimization methodology and irradiation technique and from data collected from prolonged follow-up. (authors)

  15. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma.

    Science.gov (United States)

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-19

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P histogram parameters increased (all P histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.

  16. linear-quadratic-linear model

    Directory of Open Access Journals (Sweden)

    Tanwiwat Jaikuna

    2017-02-01

    Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  17. Histogram deconvolution - An aid to automated classifiers

    Science.gov (United States)

    Lorre, J. J.

    1983-01-01

    It is shown that N-dimensional histograms are convolved by the addition of noise in the picture domain. Three methods are described which provide the ability to deconvolve such noise-affected histograms. The purpose of the deconvolution is to provide automated classifiers with a higher quality N-dimensional histogram from which to obtain classification statistics.

  18. Improvement of dose distribution of esophageal irradiation using the field-within-a-field technique

    International Nuclear Information System (INIS)

    Iwai, Tsugunori; Okabe, Keigo; Yamato, Hidetada; Murakami, Jyunji; Nakazawa, Yasuo; Kato, Mitsuyoshi

    2002-01-01

    The wide radiation field for mediastinal dose distribution should be inhomogeneous with the usual simple opposed beam irradiation. The purpose of this study was to improve the dose distribution of the mediastinum using a conventional planning system with a dose-volume histogram (DVH) and the field-in-field technique. Three-dimensional (3D) dose distribution is obtained in bilateral opposed-field irradiation. An overdose area obtained from the 3D dose distribution is defined and reprojected into the irradiation field. A new reduced field is created by removing the reprojected overdose area. A 3D dose distribution is again obtained and compared with the results from first one. Procedures were repeated until each of the target volumes was within ±5% of the prescribed dose and the irradiation volume within 107% or less of the prescribed dose. From the DVH analysis, our field-within-a-field technique resulted in a more uniform dose distribution within the conventional planning. The field-within-a-field technique involves many parameters, and an inverse planning algorithm is suitable for computation. However, with our method, the forward planning system is adequate for planning, at least in a relatively straightforward planning system such as bilateral opposed fields therapy. (author)

  19. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    International Nuclear Information System (INIS)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.

    2012-01-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18–25 Gy) (Group 1), and larger tumors (gross tumor volume ≥12 mL) received multifraction regimens with BED ≥100 Gy (total dose, 50–60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  20. Accurate estimation of dose distributions inside an eye irradiated with 106Ru plaques

    International Nuclear Information System (INIS)

    Brualla, L.; Sauerwein, W.; Sempau, J.; Zaragoza, F.J.; Wittig, A.

    2013-01-01

    Background: Irradiation of intraocular tumors requires dedicated techniques, such as brachytherapy with 106 Ru plaques. The currently available treatment planning system relies on the assumption that the eye is a homogeneous water sphere and on simplified radiation transport physics. However, accurate dose distributions and their assessment demand better models for both the eye and the physics. Methods: The Monte Carlo code PENELOPE, conveniently adapted to simulate the beta decay of 106 Ru over 106 Rh into 106 Pd, was used to simulate radiation transport based on a computerized tomography scan of a patient's eye. A detailed geometrical description of two plaques (models CCA and CCB) from the manufacturer BEBIG was embedded in the computerized tomography scan. Results: The simulations were firstly validated by comparison with experimental results in a water phantom. Dose maps were computed for three plaque locations on the eyeball. From these maps, isodose curves and cumulative dose-volume histograms in the eye and for the structures at risk were assessed. For example, it was observed that a 4-mm anterior displacement with respect to a posterior placement of a CCA plaque for treating a posterior tumor would reduce from 40 to 0% the volume of the optic disc receiving more than 80 Gy. Such a small difference in anatomical position leads to a change in the dose that is crucial for side effects, especially with respect to visual acuity. The radiation oncologist has to bring these large changes in absorbed dose in the structures at risk to the attention of the surgeon, especially when the plaque has to be positioned close to relevant tissues. Conclusion: The detailed geometry of an eye plaque in computerized and segmented tomography of a realistic patient phantom was simulated accurately. Dose-volume histograms for relevant anatomical structures of the eye and the orbit were obtained with unprecedented accuracy. This represents an important step toward an optimized

  1. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold

    International Nuclear Information System (INIS)

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-01-01

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a “sandwich” technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the “sandwich” technique to “classic” – interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue “hot spots” and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36–81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1–47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality

  2. Lung and heart dose volume analyses with CT simulator in radiation treatment of breast cancer

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, Elizabeth C.; Freedman, Gary; Fowble, Barbara

    1998-01-01

    actual CT data. The slopes of regression lines for the left and right lung are 0.6%/mm and 0.5%/mm, respectively which is statistically different with the p value of 0.01. A maximum heart PIV of >3.0% is observed in 80% of the patients. The heart PIV is inversely correlated with gantry angle and weakly correlated with CLD. Conclusions: The CT-simulator provides accurate volumetric information of the heart and lungs in the treatment fields. The lung PIV is directly correlated to the CLD (0.6%/mm and 0.5%/mm for the left and right lungs). Left and right lungs have different volumes and hence, different regression lines are recommended. An additional 12% lung volume could be irradiated in the supraclavicular field. Heart volume is not correlated with the CLD. The heart PIV is associated to the beam angle. Heart volume may not be accurately visualized in a tangential radiograph; however, this can be easily seen in a DRR with contour delineation and can be minimized with proper beam parameters iteratively with a virtual simulator. Lung and heart PIV along with dose volume histograms (DVH) are essential in reducing pulmonary and cardiac complications

  3. Dose sculpting with generalized equivalent uniform dose

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

    2005-01-01

    With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD 0 and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD 0 was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD 0 was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n could lead to

  4. Population dose commitments due to radioactive releases from nuclear power plant sites in 1981. Volume 3

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1985-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1981. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways from 48 sites ranged from a high of 20 person-rem to a low of 0.008 person-rem with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 160 person-rem for the 98 million people considered at risk

  5. Diffusion Profiling via a Histogram Approach Distinguishes Low-grade from High-grade Meningiomas, Can Reflect the Respective Proliferative Potential and Progesterone Receptor Status.

    Science.gov (United States)

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Garnov, Nikita; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Meyer, Hans Jonas; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-02-01

    Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC

  6. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer.

    Science.gov (United States)

    Schob, Stefan; Meyer, Hans Jonas; Dieckow, Julia; Pervinder, Bhogal; Pazaitis, Nikolaos; Höhn, Anne Kathrin; Garnov, Nikita; Horvath-Rizea, Diana; Hoffmann, Karl-Titus; Surov, Alexey

    2017-04-12

    Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm². Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted.

  7. Efficient contrast enhancement through log-power histogram modification

    NARCIS (Netherlands)

    Wu, T.; Toet, A.

    2014-01-01

    A simple power-logarithm histogram modification operator is proposed to enhance digital image contrast. First a logarithm operator reduces the effect of spikes and transforms the image histogram into a smoothed one that approximates a uniform histogram while retaining the relative size ordering of

  8. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology

    International Nuclear Information System (INIS)

    Poetter, Richard; Haie-Meder, Christine; Limbergen, Erik van; Barillot, Isabelle; Brabandere, Marisol De; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm 3 ; optional 5 and 10 cm 3 . Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm 3 . Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD 2 )-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Poetter R, Van Limbergen E et al

  9. Accurate estimation of dose distributions inside an eye irradiated with {sup 106}Ru plaques

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, L.; Sauerwein, W. [Universitaetsklinikum Essen (Germany). NCTeam, Strahlenklinik; Sempau, J.; Zaragoza, F.J. [Universitat Politecnica de Catalunya, Barcelona (Spain). Inst. de Tecniques Energetiques; Wittig, A. [Marburg Univ. (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2013-01-15

    Background: Irradiation of intraocular tumors requires dedicated techniques, such as brachytherapy with {sup 106}Ru plaques. The currently available treatment planning system relies on the assumption that the eye is a homogeneous water sphere and on simplified radiation transport physics. However, accurate dose distributions and their assessment demand better models for both the eye and the physics. Methods: The Monte Carlo code PENELOPE, conveniently adapted to simulate the beta decay of {sup 106}Ru over {sup 106}Rh into {sup 106}Pd, was used to simulate radiation transport based on a computerized tomography scan of a patient's eye. A detailed geometrical description of two plaques (models CCA and CCB) from the manufacturer BEBIG was embedded in the computerized tomography scan. Results: The simulations were firstly validated by comparison with experimental results in a water phantom. Dose maps were computed for three plaque locations on the eyeball. From these maps, isodose curves and cumulative dose-volume histograms in the eye and for the structures at risk were assessed. For example, it was observed that a 4-mm anterior displacement with respect to a posterior placement of a CCA plaque for treating a posterior tumor would reduce from 40 to 0% the volume of the optic disc receiving more than 80 Gy. Such a small difference in anatomical position leads to a change in the dose that is crucial for side effects, especially with respect to visual acuity. The radiation oncologist has to bring these large changes in absorbed dose in the structures at risk to the attention of the surgeon, especially when the plaque has to be positioned close to relevant tissues. Conclusion: The detailed geometry of an eye plaque in computerized and segmented tomography of a realistic patient phantom was simulated accurately. Dose-volume histograms for relevant anatomical structures of the eye and the orbit were obtained with unprecedented accuracy. This represents an important step

  10. Evaluating correlation between geometrical relationship and dose difference caused by respiratory motion using statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong Seok; Kim, Dong Su; Kim, Tae Ho; Kim, Kyeong Hyeon; Yoon, Do Kun; Suh, Tae Suk [The Catholic University of Korea, Seoul (Korea, Republic of); Kang, Seong Hee [Seoul National University Hospital, Seoul (Korea, Republic of); Cho, Min Seok [Asan Medical Center, Seoul (Korea, Republic of); Noh, Yu Yoon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-04-15

    Three-dimensional dose (3D dose) can consider coverage of moving target, however it is difficult to provide dosimetric effect which occurs by respiratory motions. Four-dimensional dose (4D dose) which uses deformable image registration (DIR) algorithm from four-dimensional computed tomography (4DCT) images can consider dosimetric effect by respiratory motions. The dose difference between 3D dose and 4D dose can be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value. No significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.

  11. SU-E-T-762: Toward Volume-Based Independent Dose Verification as Secondary Check

    International Nuclear Information System (INIS)

    Tachibana, H; Tachibana, R

    2015-01-01

    Purpose: Lung SBRT plan has been shifted to volume prescription technique. However, point dose agreement is still verified using independent dose verification at the secondary check. The volume dose verification is more affected by inhomogeneous correction rather than point dose verification currently used as the check. A feasibility study for volume dose verification was conducted in lung SBRT plan. Methods: Six SBRT plans were collected in our institute. Two dose distributions with / without inhomogeneous correction were generated using Adaptive Convolve (AC) in Pinnacle3. Simple MU Analysis (SMU, Triangle Product, Ishikawa, JP) was used as the independent dose verification software program, in which a modified Clarkson-based algorithm was implemented and radiological path length was computed using CT images independently to the treatment planning system. The agreement in point dose and mean dose between the AC with / without the correction and the SMU were assessed. Results: In the point dose evaluation for the center of the GTV, the difference shows the systematic shift (4.5% ± 1.9 %) in comparison of the AC with the inhomogeneous correction, on the other hands, there was good agreement of 0.2 ± 0.9% between the SMU and the AC without the correction. In the volume evaluation, there were significant differences in mean dose for not only PTV (14.2 ± 5.1 %) but also GTV (8.0 ± 5.1 %) compared to the AC with the correction. Without the correction, the SMU showed good agreement for GTV (1.5 ± 0.9%) as well as PTV (0.9% ± 1.0%). Conclusion: The volume evaluation for secondary check may be possible in homogenous region. However, the volume including the inhomogeneous media would make larger discrepancy. Dose calculation algorithm for independent verification needs to be modified to take into account the inhomogeneous correction

  12. Objective method to report planner-independent skin/rib maximal dose in balloon-based high dose rate (HDR) brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Kim, Yongbok; Trombetta, Mark G.

    2011-01-01

    Purpose: An objective method was proposed and compared with a manual selection method to determine planner-independent skin and rib maximal dose in balloon-based high dose rate (HDR) brachytherapy planning. Methods: The maximal dose to skin and rib was objectively extracted from a dose volume histogram (DVH) of skin and rib volumes. A virtual skin volume was produced by expanding the skin surface in three dimensions (3D) external to the breast with a certain thickness in the planning computed tomography (CT) images. Therefore, the maximal dose to this volume occurs on the skin surface the same with a conventional manual selection method. The rib was also delineated in the planning CT images and its maximal dose was extracted from its DVH. The absolute (Abdiff=|D max Man -D max DVH |) and relative (Rediff[%]=100x(|D max Man -D max DVH |)/D max DVH ) maximal skin and rib dose differences between the manual selection method (D max Man ) and the objective method (D max DVH ) were measured for 50 balloon-based HDR (25 MammoSite and 25 Contura) patients. Results: The average±standard deviation of maximal dose difference was 1.67%±1.69% of the prescribed dose (PD). No statistical difference was observed between MammoSite and Contura patients for both Abdiff and Rediff[%] values. However, a statistically significant difference (p value max >90%) compared with lower dose range (D max <90%): 2.16%±1.93% vs 1.19%±1.25% with p value of 0.0049. However, the Rediff[%] analysis eliminated the inverse square factor and there was no statistically significant difference (p value=0.8931) between high and low dose ranges. Conclusions: The objective method using volumetric information of skin and rib can determine the planner-independent maximal dose compared with the manual selection method. However, the difference was <2% of PD, on average, if appropriate attention is paid to selecting a manual dose point in 3D planning CT images.

  13. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  14. Using the computed tomography in comparison to the orthogonal radiography based treatment planning in high dose rate (HDR) brachytherapy in cervical uteri cancer patients; a single institution feasibility study.

    Science.gov (United States)

    Bahadur, Yasir A; El-Sayed, Mohamed E; El-Taher, Zeinab H; Zaza, Khaled O; Moftah, Belal A; Hassouna, Ashraf H; Ghassal, Noor M

    2008-03-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram lpar;DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy+/-1.2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy+/-1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the corresponding p

  15. Using the Computed Tomography in Comparison to the Orthogonal Radiography Based Treatment Planning in High dose Rate (HDR) Brachytherapy in Cervical Uteri Cancer Patients; A Single Institution Feasibility Study

    International Nuclear Information System (INIS)

    BAHADUR, Y.A.; EL-SAYED, M.E.; HASSOUNA, A.H.; EL-TAHER, Z.H.; GHASSAL, N.M.; ZAZA, Kh.O.M.D.; OFTAH, B.A.

    2008-01-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. Aim: To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). Methods: From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram (DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. Results: For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy±l .2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy±1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the

  16. Clinical Utility of Blood Cell Histogram Interpretation.

    Science.gov (United States)

    Thomas, E T Arun; Bhagya, S; Majeed, Abdul

    2017-09-01

    An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered.

  17. Late Toxicity After Intensity-Modulated Radiation Therapy for Localized Prostate Cancer: An Exploration of Dose–Volume Histogram Parameters to Limit Genitourinary and Gastrointestinal Toxicity

    International Nuclear Information System (INIS)

    Pederson, Aaron W.; Fricano, Janine; Correa, David; Pelizzari, Charles A.; Liauw, Stanley L.

    2012-01-01

    Purpose: To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose–volume histogram (DVH) guidelines to limit late treatment-related toxicity. Methods and Materials: In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V 70 ), 65 Gy (V 65 ), and 40 Gy (V 40 ). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. Results: With a median follow-up of 41 months, the 4-year freedom from maximal Grade 2+ late toxicity was 81% and 91% for GU and GI systems, respectively, and by last follow-up, the rates of Grade 2+ GU and GI toxicity were 9% and 5%, respectively. On multivariate analysis, whole-pelvic IMRT was associated with Grade 2+ GU toxicity and age was associated with Grade 2+ GI toxicity. Freedom from Grade 2+ GI toxicity at 4 years was 100% for men with rectal V 70 ≤10%, V 65 ≤20%, and V 40 ≤40%; 92% for men with rectal V 70 ≤20%, V 65 ≤40%, and V 40 ≤80%; and 85% for men exceeding these criteria (p = 0.13). These criteria were more highly associated with GI toxicity in men aged ≥70 years (p = 0.07). No bladder dose–volume relationships were associated with the risk of GU toxicity. Conclusions: IMRT is associated with low rates of severe GU or GI toxicity after treatment for prostate cancer. Rectal dose constraints may help limit late GI morbidity.

  18. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    Science.gov (United States)

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of 98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. WORKER, a program for histogram manipulation

    International Nuclear Information System (INIS)

    Bolger, J.E.; Ellinger, H.; Moore, C.F.

    1979-01-01

    A set of programs is provided which may link to any user-written program, permitting dynamic creation of histograms as well as display, manipulation and transfer of histogrammed data. With wide flexibility, constants within the user's code may be set or monitored at any time during execution. (Auth.)

  20. System for histogram entry, retrieval, and plotting

    International Nuclear Information System (INIS)

    Kellogg, M.; Gallup, J.M.; Shlaer, S.; Spencer, N.

    1977-10-01

    This manual describes the systems for producing histograms and dot plots that were designed for use in connection with the Q general-purpose data-acquisition system. These systems allow for the creation of histograms; the entry, retrieval, and plotting of data in the form of histograms; and the dynamic display of scatter plots as data are acquired. Although the systems are designed for use with Q, they can also be used as a part of other applications. 3 figures

  1. Dose to the Developing Dentition During Therapeutic Irradiation: Organ at Risk Determination and Clinical Implications

    International Nuclear Information System (INIS)

    Thompson, Reid F.; Schneider, Ralf A.; Albertini, Francesca; Lomax, Antony J.; Ares, Carmen; Goitein, Gudrun; Hug, Eugen B.

    2013-01-01

    Purpose: Irradiation of pediatric facial structures can cause severe impairment of permanent teeth later in life. We therefore focused on primary and permanent teeth as organs at risk, investigating the ability to identify individual teeth in children and infants and to correlate dose distributions with subsequent dental toxicity. Methods and Materials: We retrospectively reviewed 14 pediatric patients who received a maximum dose >20 Gy(relative biological effectiveness, RBE) to 1 or more primary or permanent teeth between 2003 and 2009. The patients (aged 1-16 years) received spot-scanning proton therapy with 46 to 66 Gy(RBE) in 23 to 33 daily fractions for a variety of tumors, including rhabdomyosarcoma (n=10), sarcoma (n=2), teratoma (n=1), and carcinoma (n=1). Individual teeth were contoured on axial slices from planning computed tomography (CT) scans. Dose-volume histogram data were retrospectively obtained from total calculated delivered treatments. Dental follow-up information was obtained from external care providers. Results: All primary teeth and permanent incisors, canines, premolars, and first and second molars were identifiable on CT scans in all patients as early as 1 year of age. Dose-volume histogram analysis showed wide dose variability, with a median 37 Gy(RBE) per tooth dose range across all individuals, and a median 50 Gy(RBE) intraindividual dose range across all teeth. Dental follow-up revealed absence of significant toxicity in 7 of 10 patients but severe localized toxicity in teeth receiving >20 Gy(RBE) among 3 patients who were all treated at <4 years of age. Conclusions: CT-based assessment of dose distribution to individual teeth is feasible, although delayed calcification may complicate tooth identification in the youngest patients. Patterns of dental dose exposure vary markedly within and among patients, corresponding to rapid dose falloff with protons. Severe localized dental toxicity was observed in a few patients receiving the

  2. A dual resolution measurement based Monte Carlo simulation technique for detailed dose analysis of small volume organs in the skull base region

    International Nuclear Information System (INIS)

    Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi

    2014-01-01

    canal. Dose volume histogram (DVH) analyses revealed much smoother DVH curves for the dual resolution sandwich phantom when compared to the SR phantom. In conclusion, MBMC simulations using a dual resolution sandwich phantom improved simulation spatial resolution for skull base IMRS therapy. More detailed dose analyses for small critical structures can be made available to help in clinical judgment. - Highlights: • The measurement-based Monte Carlo (MBMC) simulation can serve as a standard reference for dose verification in intensity-modulated radiosurgery. • This study is the first in literature to describe a dual resolution sandwich phantom for Monte Carlo simulation. • MBMC simulation using the sandwich phantom revealed more dose distribution details for small volume critical organs. • MBMC simulation using the sandwich phantom detected significant dose differences in small organs of the inner ear

  3. Uniform dose compensation using field within a field technique in T-shaped irradiation for esophageal cancer

    International Nuclear Information System (INIS)

    Murakami, Ryuji; Sugahara, Takeshi; Baba, Yuji; Yamashita, Yasuyuki

    2003-01-01

    We devised a uniform compensation method to improve dose distribution using the field within a field technique in T-shaped irradiation for esophageal cancer. Isodose curves and dose volume histograms (DVH) of the esophagus in the treatment volume were examined in ten patients treated for esophageal cancers. For the DVH analysis, the prescription dose was 40 Gy to the center of the treatment volume, and the volume ratio of the esophagus receiving within ±5% of the prescription dose (38-42 Gy) was regarded as an index of dose homogeneity (V±5%). The peak dose in the conventional antero-posterior opposed fields irradiation existed at the clavicular level, and the 90% isodose curve crossing the esophagus almost corresponded to the top level of the aortic arch. When 40 Gy is irradiated, the maximum dose of the esophagus and V±5% were 45.55±0.55 Gy and 59.7±13.2% respectively. The dose distribution of the esophagus became relatively homogeneous when a 10% dose was added using the field within a field technique to the area under the bottom level of the aortic arch, and the maximum dose and V±5% were 42.53±0.94 Gy and 91.7±7.1% respectively. A 10% and more overdose area existed at the clavicular level in the conventional antero-posterior opposed fields irradiation. A relatively homogeneous dose distribution could be obtained using the field within a field technique. (author)

  4. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Deuk Hee [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of); Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-09-15

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm{sup 3} which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

  5. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    International Nuclear Information System (INIS)

    Lee, Deuk Hee; Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik

    2016-01-01

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm 3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way

  6. Dose-volume correlation in radiation-related late small-bowel complication

    International Nuclear Information System (INIS)

    Letschert, J.G.J.; Lebesque, J.V.; Boer, R.W. de; hart, A.A.M.; Barteling, H.

    1990-01-01

    The effects of the volume of irradiated small bowel on late small-bowel tolerance was studied, taking into account the equivalent total dose ant type of pre-irradiation surgical procedure. A method was developed to estimate small-bowel volumes in the high-bowel volumes were measured for three-field and AP-PA pelvic treatments (165 cm 3 and 400 cm 3 , respectively), extended AP-PA treatment of para-aortic and iliac nodes (1000 cm 3 ). In a retrospective study of 111 patientst irradiated after surgery for rectal or recto-sigmoid cancer to a dose of 45-50 Gy in 5 weeks, extended AP-PA pelvic treatment (n = 27) resulted in a high incidence of severe small-bowel complications (37%), whereas for limited (three-field) pelvic treatment (n = 84) the complication rate was 6%. These complication data together with data from the literature on postoperative radiation-related small-bowel complications were analysed using the maximum likelihood method to fit the data to the logistic form of the dose-response relation, taking the volume effect into account by a power law. The analysis indicated that the incidence of radiation-related small-bowel compllications was higher after rectal surgery than after other types of surgery, which might be explained by the development of more adhesions. For both types of surgery a volume exponent of the power-law of 0.26 ± 0.05 was established. This means that if the small-bowel volume is increased by a factor of 2, the total dose has to be reduced by 17% for the same incidence of small-bowel complications. (author). 45 refs.; 6 figs.; 4 tabs

  7. CHILA A comprehensive histogramming language

    International Nuclear Information System (INIS)

    Milner, W.T.; Biggerstaff, J.A.

    1985-01-01

    A high level language, CHIL, has been developed for use in processing event-by-event experimental data at the Holifield Heavy Ion Research Facility (HHIRF) using PERKIN-ELMER 3230 computers. CHIL has been fully integrated into all software which supports on-line and off-line histogramming and off-line preprocessing. CHIL supports simple gates, free-form-gates (2-D regions of arbitrary shape), condition test and branch statements, bit-tests, loops, calls to up to three user supplied subroutines and histogram generating statements. Any combination of 1, 2, 3 or 4-D histograms (32 megachannels max) may be recorded at 16 or 32 bits/channel. User routines may intercept the data being processed and modify it as desired. The CPU-intensive part of the processing utilizes microcoded routines which enhance performance by about a factor of two

  8. CHIL - a comprehensive histogramming language

    International Nuclear Information System (INIS)

    Milner, W.T.; Biggerstaff, J.A.

    1984-01-01

    A high level language, CHIL, has been developed for use in processing event-by-event experimental data at the Holifield Heavy Ion Research Facility (HHIRF) using PERKIN-ELMER 3230 computers. CHIL has been fully integrated into all software which supports on-line and off-line histogramming and off-line preprocessing. CHIL supports simple gates, free-form-gates (2-D regions of arbitrary shape), condition test and branch statements, bit-tests, loops, calls to up to three user supplied subroutines and histogram generating statements. Any combination of 1, 2, 3 or 4-D histograms (32 megachannels max) may be recorded at 16 or 32 bits/channel. User routines may intercept the data being processed and modify it as desired. The CPU-intensive part of the processing utilizes microcoded routines which enhance performance by about a factor of two

  9. MRI-assisted versus conventional treatment planning in brachytherapy of cervical and endometrial carcinoma: The impact of individual anatomy on dose distribution in target volume and organs at risk

    International Nuclear Information System (INIS)

    Wulf, Joern; Sauer, Otto A.; Herbolsheimer, Michael; Oppitz, Ulrich; Flentje, Michael

    1996-01-01

    Objective: Dose prescription and definition of target volume in brachytherapy of cervical and endometrial cancer are calculated to standard points as Manchester point A or point My(ometrium) in most centers. Calculation of doses to organs at risk mainly relies on ICRU-report 38. But standard dose prescription neglects individual patient anatomy. While MRI and CT had widespread impact on individual planning in external beam radiotherapy, there is still a minor influence on brachytherapy. The impact of individual anatomy on dose distribution in target volume and organs at risk demonstrates the objective of individual brachytherapy planning. Materials and Methods: 8 patients with cervical and 4 patients with endometrial carcinoma underwent MRI of the pelvis with in-situ applicators (ring-tandem applicators for cervical carcinoma and modified Heyman-capsules for endometrial carcinoma). T1w slices were angulated coronal and sagittal to get rectangular reproductions to applicator axis. Orthogonal or isocentric X-ray films for conventional treatment planning were done. MRI-information on target and organs at risk was transformed into coordinates relative to applicator axis and dose calculation on the database of conventional treatment planning was performed by Nucletron Planning System PLATO. Isodoses were projected into MRI slices. Prescribed dose to patients with cervical cancer was 8.5 Gy to point A resp. 10 Gy to point My (2cm below fundal myometrium and 2cm lateral applicator axis) in endometrial cancer. Results: Dose prescription to Manchester point A or point My represented in only 50% of cases uterine serosa. Instead of 2cm lateral of applicator axis, uterine surface ranged from 1.0 cm to 3.9 cm at the level of point A (mean 2.25 cm coronal and 1.77 cm sagittal) and from 1.5 cm to 4.4 cm at the level of point My (mean 2.7 cm coronal and 2.1 cm sagittal). Uterine volume ranged from 69 cc to 277 cc, mean volume was 150cc. Dose-volume histograms of patients with

  10. Comparison of Utility of Histogram Apparent Diffusion Coefficient and R2* for Differentiation of Low-Grade From High-Grade Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Zhang, Yu-Dong; Wu, Chen-Jiang; Wang, Qing; Zhang, Jing; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin

    2015-08-01

    The purpose of this study was to compare histogram analysis of apparent diffusion coefficient (ADC) and R2* for differentiating low-grade from high-grade clear cell renal cell carcinoma (RCC). Forty-six patients with pathologically confirmed clear cell RCC underwent preoperative BOLD and DWI MRI of the kidneys. ADCs based on the entire tumor volume were calculated with b value combinations of 0 and 800 s/mm(2). ROI-based R2* was calculated with eight TE combinations of 6.7-22.8 milliseconds. Histogram analysis of tumor ADCs and R2* values was performed to obtain mean; median; width; and fifth, 10th, 90th, and 95th percentiles and histogram inhomogeneity, kurtosis, and skewness for all lesions. Thirty-three low-grade and 13 high-grade clear cell RCCs were found at pathologic examination. The TNM classification and tumor volume of clear cell RCC significantly correlated with histogram ADC and R2* (ρ = -0.317 to 0.506; p histogram ADC and R2* indexes, 10th percentile ADC had the highest accuracy (91.3%) in discriminating low- from high-grade clear cell RCC. R2* in discriminating hemorrhage was achieved with a threshold of 68.95 Hz. At this threshold, high-grade clear cell RCC had a significantly higher prevalence of intratumor hemorrhage (high-grade, 76.9%; low-grade, 45.4%; p Histogram analysis of ADC and R2* allows differentiation of low- from high-grade clear cell RCC with high accuracy.

  11. Comparison of doses according to change of bladder volume in treatment of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung Tae [Dept. of Radiologic Technology, Dongnam Health University, Suwon (Korea, Republic of); Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Seongnam (Korea, Republic of)

    2017-09-15

    In the case of radiation therapy for prostate cancer, a balloon infused with a certain amount of air through the anus is used to reduce rectal dose. Because of the reason, radiation therapy for prostate cancer has acquired CBCT for daily image induction. In order to maintain the anatomical structure most similar to the first CT taken before treatment, it is pretreated, but it can not be said to be perfectly consistent. In two actual treatment regimens, the volume of the bladder was measured as 45.82 cc and 63.43 cc, and the equivalent diameter was 4.4 cm and 4.9 cm. As a result of this study, the mean volume of the bladder was estimated to be 56.2 cc, 105.6 cc by 20 CBCT. The mean dose of CBCT was 1.74% and the mean Bladder mean dose was 96.67%. In case B, PTV mean dose was 4.31%, Bladder mean Dose was estimated to be 97.35%. The changes in the volume of the bladder resulted in changes in the dose of PTV and bladder. The correlation coefficient of bladder dose according to the change of bladder volume showed linearity of mean dose R2= -0.94. The correlation coefficient of the PTV dose according to the volume change of the bladder showed linearity of mean dose R2= 0.04. It was found that the dose change of PTV was larger than that of bladder according to the change of bladder volume.

  12. Independent procedure of checking dose calculations using an independent calculus algorithm; Verificacion independiente de los parametros de planificacion, histogramas dosis volumen, y parametros radiobioligocs mediante el uso de una hoja de calculo automatizada

    Energy Technology Data Exchange (ETDEWEB)

    Perez Rozos, A.; Jerez Sainz, I.; Carrasco Rodriguez, J. L.

    2006-07-01

    In radiotherapy it is recommended the use of an independent procedure of checking dose calculations, in order to verify the main treatment planning system and double check every patient dosimetry. In this work we present and automatic spreadsheet that import data from planning system using IMPAC/RTP format and verify monitor unit calculation using an independent calculus algorithm. Additionally, it perform a personalized analysis of dose volume histograms and several radiobiological parameters like TCP and NTCP. Finally, the application automatically generate a clinical dosimetry report for every patient, including treatment fields, fractionation, independent check results, dose volume analysis, and first day forms. (Author)

  13. Quantitative analysis of 3 dimensional volumetry and histogram of thyroid gland on neck computed tomography for patients with Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Nam, In Chul; Lee, Kwang Hwi; Ryu, Ji Hwa; Kim, Ok Hwa; Kim, Seung Ho; Baek, Hye Jin; Lee, Ye Daum; Kim, Tae Nyun; Kim, Mi Kyung; Kim, Seon Jeong; Kim, Sung Mok

    2015-01-01

    To analyze three-dimensional (3D) volume and histogram of thyroid gland on neck computed tomography (CT) for patients with Hashimoto's thyroiditis. A total of 121 subjects who underwent neck CT between March 2013 and February 2014 were included in this study. These subjects were divided into the following two groups: 1) control group (n = 76); 2) Hashimoto's thyroiditis group (n = 45). Non-enhanced and contrast-enhanced CT images were obtained. On contrast-enhanced images, the 3D volume of thyroid gland was semi-automatically calculated. On CT histogram, attenuation number, mean, median, standard deviation (SD), and coefficient of variation (CV) of thyroid gland were calculated. These values were compared between the two groups. Total 3D volume of thyroid gland was 14.9 ± 4.8 cm 3 in the control group, which was significantly (p = 0.002) lower than that (19.2 ± 8 cm 3 ) in the Hashimoto's thyroiditis group. On CT histogram, the mean, median, SD, and CV of thyroid gland on non-enhanced images were 95.8, 99.3, 21.7, and 0.226, respectively, in the control group and 72.2, 72.6, 19.6, and 0.28 in the Hashimoto's thyroiditis group (p < 0.05). Histogram parameters on contrast-enhanced images were not significantly (p > 0.05) different. Median at cut-off value of 83 revealed the largest Az value (Az: 0.905; 95% confidence interval: 0.837-0.951; sensitivity: 84.4%; specificity: 85.5%). The Hashimoto's thyroiditis group had larger volume but lower CT attenuation number with more prominent parenchymal heterogeneity of thyroid gland than the control group

  14. Quantitative analysis of 3 dimensional volumetry and histogram of thyroid gland on neck computed tomography for patients with Hashimoto's thyroiditis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, In Chul; Lee, Kwang Hwi; Ryu, Ji Hwa; Kim, Ok Hwa; Kim, Seung Ho; Baek, Hye Jin; Lee, Ye Daum; Kim, Tae Nyun; Kim, Mi Kyung [Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of); Kim, Seon Jeong [Dept. of Radiology, Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Kim, Sung Mok [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    To analyze three-dimensional (3D) volume and histogram of thyroid gland on neck computed tomography (CT) for patients with Hashimoto's thyroiditis. A total of 121 subjects who underwent neck CT between March 2013 and February 2014 were included in this study. These subjects were divided into the following two groups: 1) control group (n = 76); 2) Hashimoto's thyroiditis group (n = 45). Non-enhanced and contrast-enhanced CT images were obtained. On contrast-enhanced images, the 3D volume of thyroid gland was semi-automatically calculated. On CT histogram, attenuation number, mean, median, standard deviation (SD), and coefficient of variation (CV) of thyroid gland were calculated. These values were compared between the two groups. Total 3D volume of thyroid gland was 14.9 ± 4.8 cm{sup 3} in the control group, which was significantly (p = 0.002) lower than that (19.2 ± 8 cm{sup 3}) in the Hashimoto's thyroiditis group. On CT histogram, the mean, median, SD, and CV of thyroid gland on non-enhanced images were 95.8, 99.3, 21.7, and 0.226, respectively, in the control group and 72.2, 72.6, 19.6, and 0.28 in the Hashimoto's thyroiditis group (p < 0.05). Histogram parameters on contrast-enhanced images were not significantly (p > 0.05) different. Median at cut-off value of 83 revealed the largest Az value (Az: 0.905; 95% confidence interval: 0.837-0.951; sensitivity: 84.4%; specificity: 85.5%). The Hashimoto's thyroiditis group had larger volume but lower CT attenuation number with more prominent parenchymal heterogeneity of thyroid gland than the control group.

  15. A dose-volume comparison of prostate cancer (PC) radiotherapy (RT) techniques for penile-structures (PNS) - a neglected critical organ in PC RT

    International Nuclear Information System (INIS)

    Dabrowski, Jolanta; Myrianthopoulos, Leon; Nguyen, Ai; Chen, George; Vijayakumar, Srinivasan

    1996-01-01

    Purpose/Objective: Three-dimensional conformal RT(3DCRT) is revolutionizing the use of RT in PC. Rectum and bladder, and in some studies femoral heads are included as critical structures (CS) in comparing rival plans in 3DCRT. Although RT-induced impotence is a major complication of conventional RT, with 30-50% incidence, to date no study has included PNS as a CS. This study is an attempt to remedy this deficiency in the 3DCRT planning in PC. Materials and Methods: After immobilization with Aquaplast, computed-tomography (CT) scans were obtained in supine treatment position from top of lumbar-3 vertebra to lesser-trochanter of the femora with 5-8mm slice-thicknesses; IV contrast was used in all patients. Prostate, seminal vesicles (GTV), and CSs were outlined, including PNS. Corpora cavernosa and bulbous spongiosum together were identified as PNS. Appropriate margins for CTV and PTV were used; total margin to the block from GTV was 2cm. Tumor-minimum doses were prescribed to the 100% isodose line. Dose-volume histograms (DVHs) were obtained to compare three different techniques: 1. Conventional 4 field box technique (4FC) with equal weighting; 2. Six field (2 laterals and 4 obliques [45 degrees from midline] (6FO), with 50% dose delivery from the laterals; and 3. Four equally weighted, non-axial fields [2 laterals and 2 inferior anterior obliques at 45 degree couch and gantry rotations] (4FN). Results: A total of 12 patients are included in the study. The mean and range of percentage volume of PNS receiving more than 30, 60, and 90% of the prescribed dose are shown in the table below: Box plots, such as the example shown above, were used to compare techniques overall. The 6-field coplanar technique treated the least PNS volume beyond a given dose, followed by 4FC and 4FN techniques. The order of least to maximum percent of PNS treated in most individual patients also followed the same trend. In the majority, 6FO and 4FN delivered relatively comparable doses to

  16. Systematic review of dose-volume parameters in the prediction of esophagitis in thoracic radiotherapy

    International Nuclear Information System (INIS)

    Rose, Jim; Rodrigues, George; Yaremko, Brian; Lock, Michael; D'Souza, David

    2009-01-01

    Purpose: With dose escalation and increasing use of concurrent chemoradiotherapy, radiation esophagitis (RE) remains a common treatment-limiting acute side effect in the treatment of thoracic malignancies. The advent of 3DCT planning has enabled investigators to study esophageal dose-volume histogram (DVH) parameters as predictors of RE. The purpose of this study was to assess published dosimetric parameters and toxicity data systematically in order to define reproducible predictors of RE, both for potential clinical use, and to provide recommendations for future research in the field. Materials and methods: We performed a systematic literature review of published studies addressing RE in the treatment of lung cancer and thymoma. Our search strategy included a variety of electronic medical databases, textbooks and bibliographies. Both prospective and retrospective clinical studies were included. Information relating to the relationship among measured dosimetric parameters, patient demographics, tumor characteristics, chemotherapy and RE was extracted and analyzed. Results: Eighteen published studies were suitable for analysis. Eleven of these assessed acute RE, while the remainder assessed both acute and chronic RE together. Heterogeneity of esophageal contouring practices, individual differences in information reporting and variability of RE outcome definitions were assessed. Well-described clinical and logistic modeling directly related V 35Gy , V 60Gy and SA 55Gy to clinically significant RE. Conclusions: Several reproducible dosimetric parameters exist in the literature, and these may be potentially relevant in the prediction of RE in the radiotherapy of thoracic malignancies. Further clarification of the predictive relationship between such standardized dosimetric parameters and observed RE outcomes is essential to develop efficient radiation treatment planning in locally advanced NSCLC in the modern concurrent chemotherapy and image-guided IMRT era.

  17. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaodong; Wang Xiaochun; Kang Yixiu; Riley, Beverly C.; Bilton, Stephen C.; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.

    2006-01-01

    Purpose: To compare dose-volume histograms (DVH) in patients with non-small-cell lung cancer (NSCLC) treated by photon or proton radiotherapy. Methods and Materials: Dose-volume histograms were compared between photon, including three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and proton plans at doses of 66 Gy, 87.5 Gy in Stage I (n = 10) and 60-63 Gy, and 74 Gy in Stage III (n 15). Results: For Stage I, the mean total lung V5, V10, and V20 were 31.8%, 24.6%, and 15.8%, respectively, for photon 3D-CRT with 66 Gy, whereas they were 13.4%, 12.3%, and 10.9%, respectively, with proton with dose escalation to 87.5 cobalt Gray equivalents (CGE) (p = 0.002). For Stage III, the mean total lung V5, V10, and V20 were 54.1%, 46.9%, and 34.8%, respectively, for photon 3D-CRT with 63 Gy, whereas they were 39.7%, 36.6%, and 31.6%, respectively, for proton with dose escalation to 74 CGE (p = 0.002). In all cases, the doses to lung, spinal cord, heart, esophagus, and integral dose were lower with proton therapy even compared with IMRT. Conclusions: Proton treatment appears to reduce dose to normal tissues significantly, even with dose escalation, compared with standard-dose photon therapy, either 3D-CRT or IMRT

  18. Integral dose and evaluation of irradiated tissue volume

    International Nuclear Information System (INIS)

    Sivachenko, T.P.; Kalina, V.K.; Belous, A.K.; Gaevskij, V.I.

    1984-01-01

    Two parameters having potentialities of radiotherapy planning improvement are under consideration. One of these two parameters in an integral dose. An efficiency of application of special tables for integral dose estimation is noted. These tables were developed by the Kiev Physician Improvement Institute and the Cybernetics Institute of the Ukrainian SSR Academy of Science. The meaning of the term of ''irradiated tissue volume'' is specified, and the method of calculation of the irradiated tissue effective mass is considered. It is possible to evaluate with higher accuracy tolerance doses taking into account the irradiated mass

  19. Robotic stereotactic radioablation of breast tumors: Influence of beam size on the absorbed dose distributions

    International Nuclear Information System (INIS)

    Garnica-Garza, H.M.

    2016-01-01

    Robotic stereotactic radioablation (RSR) therapy for breast tumors has been shown to be an effective treatment strategy when applied concomitantly with chemotherapy, with the purpose of reducing the tumor volume thus making it more amenable for breast conserving surgery. In this paper we used Monte Carlo simulation within a realistic patient model to determine the influence that the variation in beam collimation radius has on the resultant absorbed dose distributions for this type of treatment. Separate optimized plans were obtained for treatments using 300 circular beams with radii of 0.5 cm, 0.75 cm, 1.0 cm and 1.5 cm. Cumulative dose volume histograms were obtained for the gross, clinical and planning target volumes as well as for eight organs and structures at risk. Target coverage improves as the collimator size is increased, at the expense of increasing the volume of healthy tissue receiving mid-level absorbed doses. Interestingly, it is found that the maximum dose imparted to the skin is highly dependent on collimator size, while the dosimetry of other structures, such as both the ipsilateral and contralateral lung tissue are basically unaffected by a change in beam size. - Highlights: • Stereotactic body radiation therapy of breast tumors is analyzed using Monte Carlo simulation. • The influence of beam collimation on the absorbed dose distributions is determined. • Large field sizes increase target dose uniformity and midlevel doses to healthy structures. • Skin dose is greatly affected by changes in beam collimation.

  20. The Research of Histogram Enhancement Technique Based on Matlab Software

    Directory of Open Access Journals (Sweden)

    Li Kai

    2014-08-01

    Full Text Available Histogram enhancement technique has been widely applied as a typical pattern in digital image processing. The paper is based on Matlab software, through the two ways of histogram equalization and histogram specification technologies to deal with the darker images, using two methods of partial equilibrium and mapping histogram to transform the original histograms, thereby enhanced the image information. The results show that these two kinds of techniques both can significantly improve the image quality and enhance the image feature.

  1. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  2. Design and implement of BESIII online histogramming software

    International Nuclear Information System (INIS)

    Li Fei; Wang Liang; Liu Yingjie; Chinese Academy of Sciences, Beijing; Zhu Kejun; Zhao Jingwei

    2007-01-01

    The online histogramming software is an important part of the BESIII DAQ (Data Acquisition) system. This article introduces the main requirements and design of the online histogramming software and presents how to produce, transmit and gather histograms in the distributed environment in the current software implement. The article also illustrate one smart, simple and easy to expand way of setup with xml configure database. (authors)

  3. Feasibility of dose planning using CBCT images combined with MSCT images for adaptive radiotherapy

    International Nuclear Information System (INIS)

    Usui, Keisuke; Kunieda, Etsuo; Ogawa, Koichi

    2013-01-01

    If a kilo-voltage cone-beam computed tomography (CBCT) system mounted on a linear accelerator becomes available for dose calculation, we can confirm the dose distribution of treatment in each day by referring it to the initially planned dose distribution. In this paper, we verified the validity of the calculation method using CBCT images combined with multi-slice CT images. To evaluate the accuracy of calculated dose distribution, γ analysis, distance-to-agreement analysis and dose-volume-histogram analysis were used as the conventional dose calculation methods using CBCT images. The results showed that the dose distribution calculated by our proposed method agreed with the initial treatment plan better compared with the other methods. In addition, our method was so stable that the calculated dose distribution was insensitive to variations in clinical conditions. We demonstrated the feasibility of our proposed method for adaptive radiotherapy. (author)

  4. Multispectral histogram normalization contrast enhancement

    Science.gov (United States)

    Soha, J. M.; Schwartz, A. A.

    1979-01-01

    A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.

  5. Lung and heart dose volume analyses with CT simulator in tangential field irradiation of breast cancer

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, Elizabeth C.; Fowble, Barbara

    1997-01-01

    breast are very different based on actual CT data. The slopes of regression lines for the left and right lung are 0.64%/mm and 0.54%/mm, respectively with a combined slope of 0.6%/mm. With the selection of proper beam parameters, the heart volume can be minimized. As expected, there is no correlation between heart PIV and the CLD. A maximum heart PIV of 5.6% is observed with one fourth of patients having a PIV of 0%. The heart PIV is inversely correlated with gantry angle as shown in Figure 2. Due to the radiation scatter in the body, the geometrical volume may be of limited importance and, hence, dose volume histogram (DVH) analyses were performed. A representative DVH of a patient whose lung and heart PIV were 14.4% and 4.0%, respectively is shown in Figure 3. Conclusions: The CT-simulator provides an accurate volumetric information of the heart and lungs in the treatment fields. The lung PIV is directly correlated to the CLD. Left and right lungs have different volumes and, hence, different regression lines are recommended. Heart volume is not correlated with the CLD. The heart PIV is associated to the beam angle. Heart volume may not be accurately visualized in a tangential radiograph; however, this can be easily seen in a DRR with contour delineation and can be minimized with proper beam parameters. Lung and heart PIV along with DVH are essential in reducing pulmonarv and cardiac complications

  6. Correlation of histogram analysis of apparent diffusion coefficient with uterine cervical pathologic finding.

    Science.gov (United States)

    Lin, Yuning; Li, Hui; Chen, Ziqian; Ni, Ping; Zhong, Qun; Huang, Huijuan; Sandrasegaran, Kumar

    2015-05-01

    The purpose of this study was to investigate the application of histogram analysis of apparent diffusion coefficient (ADC) in characterizing pathologic features of cervical cancer and benign cervical lesions. This prospective study was approved by the institutional review board, and written informed consent was obtained. Seventy-three patients with cervical cancer (33-69 years old; 35 patients with International Federation of Gynecology and Obstetrics stage IB cervical cancer) and 38 patients (38-61 years old) with normal cervix or cervical benign lesions (control group) were enrolled. All patients underwent 3-T diffusion-weighted imaging (DWI) with b values of 0 and 800 s/mm(2). ADC values of the entire tumor in the patient group and the whole cervix volume in the control group were assessed. Mean ADC, median ADC, 25th and 75th percentiles of ADC, skewness, and kurtosis were calculated. Histogram parameters were compared between different pathologic features, as well as between stage IB cervical cancer and control groups. Mean ADC, median ADC, and 25th percentile of ADC were significantly higher for adenocarcinoma (p = 0.021, 0.006, and 0.004, respectively), and skewness was significantly higher for squamous cell carcinoma (p = 0.011). Median ADC was statistically significantly higher for well or moderately differentiated tumors (p = 0.044), and skewness was statistically significantly higher for poorly differentiated tumors (p = 0.004). No statistically significant difference of ADC histogram was observed between lymphovascular space invasion subgroups. All histogram parameters differed significantly between stage IB cervical cancer and control groups (p histogram analysis may help to distinguish early-stage cervical cancer from normal cervix or cervical benign lesions and may be useful for evaluating the different pathologic features of cervical cancer.

  7. On the possibility of reducing doses received by patients during mammography screening

    International Nuclear Information System (INIS)

    Tolwinski, J.; Fabiszewska, E.; Gwiazdowska, B.; Bulski, W.

    2005-01-01

    The aim of the study was to collect and to evaluate a set of data of a large group of patients examined with different mammography units, and to compare the individual doses (Di) with the standard average glandular dose (standard AGD) established for a particular mammography unit. The comparison was intended to allow to formulate recommendations of procedures in order to limit the exposure of patients, procedures which are beyond the scope of routine testing of mammography facilities. The presented analysis bases on the results of the measurements of the standard AGD, taken from 82 protocols of quality control of mammography equipment; - 16 histograms of dose distribution for individual patients (Di) examined with 16 different mammography units; - 2 histograms for patients examined with one mammography unit by the radiographer before and after training; - histograms of individual doses (Di), corresponding high-voltage (kV) and tube-loading (mAs) values, for one mammography unit (Elscint-Glory 2001) which was equipped with an automatic optimisation of contrast (AOC) system. The measurements were carried out according to the procedures of the American College of Radiology (ACR). Basing upon the constructed histograms we performed a comparison of the standard AGD values with the individual doses (Di). The frequency distribution of the standard AGDs (Figure 1) shows a considerable dispersion of values, ranging between 0.5 and 2.5 mGy. The histograms of the individual glandular doses (Di) calculated for individual patients, examined with different units (Figure 2) suggest that the choice of high voltage made by the radiographers may be incorrect i.e. the high voltage was not increased sufficiently with the increase of breast thickness. The incorrect value of the high voltage (low value) may be also set up by the AOC system (Figure 4). Two histograms for patients examined with one mammography unit by the radiographer before and after training (Figure 3) indicate the

  8. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  9. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  10. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  11. Dose and volume specification for reporting interstitial therapy

    International Nuclear Information System (INIS)

    1997-01-01

    The ICRU has previously published reports dealing with Dose Specification for Reporting External Beam Therapy with Photons and Electrons (ICRU Report 29, ICRU, 1978), Dose Specification for Reporting External Beam Therapy (ICRU Report 50, ICRU, 1993) and Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology (ICRU Report 38, ICRU, 1985). The present report addresses the problem of absorbed dose specification for report interstitial therapy. Although specific to interstitial therapy, many of the concepts developed in this report are also applicable to certain other kinds of brachytherapy applications. In particular, special cases of intraluminal brachytherapy and plesio-brachytherapy via surface molds employing x or gamma emitters are addressed in this report

  12. Subtracting and Fitting Histograms using Profile Likelihood

    CERN Document Server

    D'Almeida, F M L

    2008-01-01

    It is known that many interesting signals expected at LHC are of unknown shape and strongly contaminated by background events. These signals will be dif cult to detect during the rst years of LHC operation due to the initial low luminosity. In this work, one presents a method of subtracting histograms based on the pro le likelihood function when the background is previously estimated by Monte Carlo events and one has low statistics. Estimators for the signal in each bin of the histogram difference are calculated so as limits for the signals with 68.3% of Con dence Level in a low statistics case when one has a exponential background and a Gaussian signal. The method can also be used to t histograms when the signal shape is known. Our results show a good performance and avoid the problem of negative values when subtracting histograms.

  13. DPAK and HPAK: a versatile display and histogramming package

    International Nuclear Information System (INIS)

    Logg, C.A.; Boyarski, A.M.; Cook, A.J.; Cottrell, R.L.A.; Sund, S.

    1979-07-01

    The features of a display and histogram package which requires a minimal number of subroutine calls in order to generate graphic output in many flavors on a variety of devices are described. Default options are preset to values that are generally most wanted, but the default values may be readily changed to the user's needs. The description falls naturally into two parts, namely, the set of routines (DPAK) for displaying data on some device, and the set of routines (HPAK) for generating histograms. HPAK provides a means of allocating memory for histograms, accumulating data into histograms, and subsequently displaying the hisotgrams via calls to the DPAK routines. Histograms and displays of either one or two independent variables can be made

  14. A Detailed Dosimetric Analysis of Spinal Cord Tolerance in High-Dose Spine Radiosurgery.

    Science.gov (United States)

    Katsoulakis, Evangelia; Jackson, Andrew; Cox, Brett; Lovelock, Michael; Yamada, Yoshiya

    2017-11-01

    Dose-volume tolerance of the spinal cord (SC) in spinal stereotactic radiosurgery (SRS) is difficult to define because radiation myelitis rates are low, and published reports document cases of myelopathy but do not account for the total number of patients treated at given dose-volume combinations who do not have myelitis. This study reports SC toxicity from single-fraction spinal SRS and presents a comprehensive atlas of the incidence of adverse events to examine dose-volume predictors. A prospective database of all patients undergoing single-fraction spinal SRS at our institution between 2004 and 2011 was reviewed. SC toxicity was defined by clinical myelitis with accompanying magnetic resonance imaging (MRI) signal changes that were not attributable to tumor progression. Dose-volume histogram (DVH) atlases were created for these endpoints. Rates of adverse events with 95% confidence limits and probabilities that rates of adverse events were 13.33 Gy, and minimum doses to the hottest 0.1, 0.2, 0.5, and 1 cc were >10.66, 10.9, and 8 Gy, respectively; however, both myelitis cases occurred below the 34th percentile for Dmax and there were 194 DVHs in total with Dmax >13.33 Gy. A median SC Dmax of 13.85 Gy is safe and supports that a Dmax limit of 14 Gy carries a low <1% rate of myelopathy. No dose-volume thresholds or relationships between SC dose and myelitis were apparent. This is the largest study examining dosimetric data and radiation-induced myelitis in de novo spine SRS. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Weekly Dose-Volume Parameters of Mucosa and Constrictor Muscles Predict the Use of Percutaneous Endoscopic Gastrostomy During Exclusive Intensity-Modulated Radiotherapy for Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Sanguineti, Giuseppe; Gunn, G. Brandon; Parker, Brent C.; Endres, Eugene J.; Zeng Jing; Fiorino, Claudio

    2011-01-01

    Purpose: To define predictors of percutaneous endoscopic gastrostomy (PEG) use during intensity-modulated radiotherapy (IMRT) for oropharyngeal cancer. Methods and Materials: Data for 59 consecutive patients treated with exclusive IMRT at a single institution were recovered. Of 59 patients, 25 were treated with hyperfractionation (78 Gy, 1.3 Gy per fraction, twice daily; 'HYPER'); and 34 of 59 were treated with a once-daily fractionation schedule (66 Gy, 2.2 Gy per fraction, or 70 Gy, 2 Gy per fraction; 'no-HYPER'). On the basis of symptoms during treatment, a PEG tube could have been placed as appropriate. A number of clinical/dosimetric factors, including the weekly dose-volume histogram of oral mucosa (OM DVHw) and weekly mean dose to constrictors and larynx, were considered. The OM DVHw of patients with and without PEG were compared to assess the most predictive dose-volume combinations. Results: Of 59 patients, 22 needed a PEG tube during treatment (for 15 of 22, ≥3 months). The best cutoff values for OM DVHw were V9.5 Gy/week 3 and V10 Gy/week 3 . At univariate analysis, fractionation, mean weekly dose to OM and superior and middle constrictors, and OM DVHw were strongly correlated with the risk of PEG use. In a stepwise multivariate logistic analysis, OM V9.5 Gy/week (≥64 vs. 3 ) was the most predictive parameter (odds ratio 30.8, 95% confidence interval 3.7-254.2, p = 0.0015), confirmed even in the no-HYPER subgroup (odds ratio 21, 95% CI 2.1 confidence interval 210.1, p = 0.01). Conclusions: The risk of PEG use is drastically reduced when OM V9.5-V10 Gy/week is 3 . These data warrant prospective validation.

  16. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    International Nuclear Information System (INIS)

    Massager, Nicolas; Lonneville, Sarah; Delbrouck, Carine; Benmebarek, Nadir; Desmedt, Françoise; Devriendt, Daniel

    2011-01-01

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose–volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  17. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion.

    Science.gov (United States)

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao

    2017-01-01

    Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.

  18. Steganalytic methods for the detection of histogram shifting data-hiding schemes

    OpenAIRE

    Lerch Hostalot, Daniel

    2011-01-01

    In this paper, some steganalytic techniques designed to detect the existence of hidden messages using histogram shifting methods are presented. Firstly, some techniques to identify specific methods of histogram shifting, based on visible marks on the histogram or abnormal statistical distributions are suggested. Then, we present a general technique capable of detecting all histogram shifting techniques analyzed. This technique is based on the effect of histogram shifting methods on the "volat...

  19. Dose, time and volume effects in interstitial radiation therapy

    International Nuclear Information System (INIS)

    Burgers, J.M.V.

    1982-01-01

    This study presents the main features and uncertainties of interstitial therapy and was undertaken to examine whether differences could be found in different clinical situations treated by interstitial implants with removable sources, that were not simply related to dose. In chapter 2, dating from 1978, continuous low dose rate irradiation is discussed from the radiobiological point of view together with some points related to variation in dose rate. A benefit of continuous low dose rate irradiation could be surmised in a few situations with special cell-kinetic properties. The problem of dose specification, the sharp dose gradient and other volume characteristics are discussed in chapter 3. Possible adjustments to variations in dose rate are discussed in chapter 4. The clinical material is reviewed in chapter 5, including aspects of dose specification, dose fall-off and variation in dose rate. The general discussion and conclusions are given in chapter 6. (Auth.)

  20. Comparison of dose distribution between 3DCRT and IMRT in middle thoracic and under thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Li Dingjie; Liu Hailong; Mao Ronghu; Liu Ru; Guo Xiaoqi; Lei Hongchang; Wang Jianhua

    2011-01-01

    Objective: To compare the dose distribution between three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) in treating esophageal carcinoma (middle thoracic section and under thoracic section) and to select reasonable treatment methods for esophagus cancer. Methods: Ten cases with cancer of the middle thoracic section and under thoracic section esophagus were chosen for a retrospective treatment-planning study. 3DCRT and IMRT plans were created for each patient: Some critical indicators were evolved in evaluating the treatment plans of IMRT (5B and 7B) and 3DCRT (3B), such as, PTV coverage and dose-volumes to irradiated normal structures. Evaluation indicators: prescription of 50 Gy. total lung volume (V5, V10, V20), mean lung dose (MLD), spinal cord (Dmax), heart (V40) and conformality index (CI). Each plan was evaluated with respect to dose distribution,dose-volume histograms (DVHs), and additional dosimetric endpoints described below. Results: There is no significance of CRT and IMRT technique in protection of total lung volume,mean lung dose, spinal cord (Dmax), target, CI and heart. Conclusion: As To radiotherapy of esophagus cancer of the middle thoracic section and under thoracic section, IMRT has no advantage compared with 3DCRT, the selection of plan should be adapted to the situations of every patient. (authors)

  1. Serial quantitative CT evaluation for patients with idiopathic pulmonary fibrosis (IPF) using Gaussian Histogram Normalized Correlation (GHNC)

    International Nuclear Information System (INIS)

    Iwasawa, Tae; Ogura, Takashi; Nishimura, Junichi; Asakura, Akira; Gotoh, Toshiyuki; Yazawa, Takuya; Inoue, Tomio

    2006-01-01

    We assessed serial changes in high-resolution CT findings quantitatively using originally developed software Gaussian Histogram Normalized Correlation (GHNC) in 15 patients with idiopathic pulmonary fibrosis (IPF). Mean follow-up period was 1.4 years. The volume of honeycombing increased with 0.8±0.9%TLC (predicted Total lung capacity) per year, the normal lung volume reduced by 4.1±7.3%TLC per year. GHNC is useful for the quantitative evaluation. (author)

  2. Mechanistic simulation of normal-tissue damage in radiotherapy-implications for dose-volume analyses

    International Nuclear Information System (INIS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-01-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V 20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  3. T3 glottic cancer: an analysis of dose time-volume factors

    International Nuclear Information System (INIS)

    Harwood, A.R.; Beale, F.A.; Cummings, B.J.; Hawkins, N.V.; Keane, T.J.; Rider, W.D.

    1980-01-01

    This report analyzes dose-time-volume factors in 112 patients with T3N0M0 glottic cancer who were treated with radical radiotherapy with surgery for salvage between 1963 and 1977. 55% of the patients are alive and well 5 years following treatment; 26% died of glottic cancer and 19% died of intercurrent disease. In the 1965 to 1969 time period, 31% died of tumor as compared to 16% in the 1975 to 1977 time period. Overall local control by radiotherapy was 51%; 2/3 of the failures were surgically salvaged. 44% were locally controlled by radiotherapy in the 1965 to 1969 time period and 57% in the 1975 to 1977 time period. Analysis of dose-time-volume factors reveals that the optimal dose is greater than 1700 ret and a minimal volume of 6 x 8 cm should be used. A dose-cure curve for T3 glottic cancer is constructed and compared with the dose complication curve for the larynx and the dose-cure curve for T1N0M0 glottic cancer. A comparison of cure rates between 112 patients treated with radical radiotherapy and surgery for salvage versus 28 patients treated with combined pre-operative irradiation and surgery reveals no difference in the proportion of patients who died of glottic cancer or in the number of patients alive at 5 years following treatment

  4. Airborne gamma-ray spectrometer and magnetometer survey: Cameron A, Arizona, detail area. Volume II A. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    Volume II A contains appendices for: stacked profiles; geologic histograms; geochemical histograms; speed and altitude histograms; geologic statistical tables; geochemical statistical tables; magnetic and ancillary profiles; and test line data

  5. Regionally adaptive histogram equalization of the chest

    International Nuclear Information System (INIS)

    Sherrier, R.H.; Johnson, G.A.

    1986-01-01

    Advances in digital chest radiography have resulted in the acquisition of high-quality digital images of the human chest. With these advances, there arises a genuine need for image processing algorithms, specific to chest images. The author has implemented the technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with a regionally adaptive histogram equalization method. Histograms are calculated locally and then modified according to both the mean pixel value of a given region and certain characteristics of the cumulative distribution function. The method allows certain regions of the chest radiograph to be enhanced differentially

  6. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Ivkovic, A.; Faj, D.; Rajevac, V.; Sobat, H.; Jurkovic, S.

    2011-01-01

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CI P TV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CI P TV fell under 97 %. Surprisingly, HI was not as sensitive as CI P TV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  7. Unstable Periodic Orbit Analysis of Histograms of Chaotic Time Series

    International Nuclear Information System (INIS)

    Zoldi, S.M.

    1998-01-01

    Using the Lorenz equations, we have investigated whether unstable periodic orbits (UPOs) associated with a strange attractor may predict the occurrence of the robust sharp peaks in histograms of some experimental chaotic time series. Histograms with sharp peaks occur for the Lorenz parameter value r=60.0 but not for r=28.0 , and the sharp peaks for r=60.0 do not correspond to a histogram derived from any single UPO. However, we show that histograms derived from the time series of a non-Axiom-A chaotic system can be accurately predicted by an escape-time weighting of UPO histograms. copyright 1998 The American Physical Society

  8. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis.

    Science.gov (United States)

    Ivkovic, M; Liu, B; Ahmed, F; Moore, D; Huang, C; Raj, A; Kovanlikaya, I; Heier, L; Relkin, N

    2013-01-01

    Accurate diagnosis of normal pressure hydrocephalus is challenging because the clinical symptoms and radiographic appearance of NPH often overlap those of other conditions, including age-related neurodegenerative disorders such as Alzheimer and Parkinson diseases. We hypothesized that radiologic differences between NPH and AD/PD can be characterized by a robust and objective MR imaging DTI technique that does not require intersubject image registration or operator-defined regions of interest, thus avoiding many pitfalls common in DTI methods. We collected 3T DTI data from 15 patients with probable NPH and 25 controls with AD, PD, or dementia with Lewy bodies. We developed a parametric model for the shape of intracranial mean diffusivity histograms that separates brain and ventricular components from a third component composed mostly of partial volume voxels. To accurately fit the shape of the third component, we constructed a parametric function named the generalized Voss-Dyke function. We then examined the use of the fitting parameters for the differential diagnosis of NPH from AD, PD, and DLB. Using parameters for the MD histogram shape, we distinguished clinically probable NPH from the 3 other disorders with 86% sensitivity and 96% specificity. The technique yielded 86% sensitivity and 88% specificity when differentiating NPH from AD only. An adequate parametric model for the shape of intracranial MD histograms can distinguish NPH from AD, PD, or DLB with high sensitivity and specificity.

  9. The impact of postimplant edema on the urethral dose in prostate brachytherapy

    International Nuclear Information System (INIS)

    Waterman, Frank M.; Dicker, Adam P.

    2000-01-01

    Purpose: The objective of this work is to determine the effect of timing of the postimplant CT scan on the assessment of the urethral dose. Methods and Materials: A preimplant CT scan and two postimplant CT scans were obtained on 50 patients who received I-125 prostate seed implants. The first postimplant CT scan was obtained on the day of the implant; the second usually 4 to 9 weeks later (mean: 46 no. +-no. 23 days; range: 27-135 days). The urethra was localized in each postimplant CT scan and a dose-volume histogram (DVH) of the urethral dose was compiled from each CT study. The relative decrease in the prostate volume between the first and second postimplant CT scans was determined by contouring the prostate in each CT scan. Results: The prostate volume decreased by 27 no. +-no. 9% (mean no. +-no. SD) between the first and second postimplant CT scans. As a result, the averaged urethral dose derived from the second CT scan was about 30% higher. In terms of dose, the D 10 , D 25 , D 50 , D 75 , and D 90 urethral doses derived from the second CT scan were 90 no. +-no. 56 Gy, 81 no. +-no. 49 Gy, 67 no. +-no. 42 Gy, 49 no. +-no. 44 Gy, and 40 no. +-no. 46 Gy higher, respectively. The increase in the urethral dose is correlated with the decrease in the prostate volume (R = 0.57, no. rhono. 10 dose derived from the CT scans obtained at 46 no. +-no. 23 days postimplant was 90 no. +-no. 56 Gy higher than that derived from the CT scans obtained on the day of the implant. Because of this large difference, the timing of the postimplant CT scan needs to be specified when specifying dose thresholds for urethral morbidity

  10. A novel correction factor based on extended volume to complement the conformity index.

    Science.gov (United States)

    Jin, F; Wang, Y; Wu, Y-Z

    2012-08-01

    We propose a modified conformity index (MCI), based on extended volume, that improves on existing indices by correcting for the insensitivity of previous conformity indices to reference dose shape to assess the quality of high-precision radiation therapy and present an evaluation of its application. In this paper, the MCI is similar to the conformity index suggested by Paddick (CI(Paddick)), but with a different correction factor. It is shown for three cases: with an extended target volume, with an extended reference dose volume and without an extended volume. Extended volume is generated by expanding the original volume by 0.1-1.1 cm isotropically. Focusing on the simulation model, measurements of MCI employ a sphere target and three types of reference doses: a sphere, an ellipsoid and a cube. We can constrain the potential advantage of the new index by comparing MCI with CI(Paddick). The measurements of MCI in head-neck cancers treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy provide a window on its clinical practice. The results of MCI for a simulation model and clinical practice are presented and the measurements are corrected for limited spatial resolution. The three types of MCI agree with each other, and comparisons between the MCI and CI(Paddick) are also provided. The results from our analysis show that the proposed MCI can provide more objective and accurate conformity measurement for high-precision radiation therapy. In combination with a dose-volume histogram, it will be a more useful conformity index.

  11. Dosimetric Evaluation of High-Dose-Rate Interstitial Brachytherapy Boost Treatments for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Froehlich, Georgina; Agoston, Peter; Loevey, Jozsef; Somogyi, Andras; Fodor, Janos; Polgar, Csaba; Major, Tibor

    2010-01-01

    Purpose: to quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Material and methods: treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D min ) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D r ) and urethra (D u ), dose to volume of 2 cm 3 of the rectum (D 2ccm ), and 0.1 cm 3 and 1% of the urethra (D 0.1ccm and D1) were determined. Nonparametric correlation analysis was performed between these parameters. Results: the median number of needles was 16, the mean prostate volume (V p ) was 27.1 cm 3 . The mean V90, V100, V150, and V200 were 90%, 97%, 39% and 13%, respectively. The mean D90 was 109%, and the D min was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D 2ccm = 49% for the rectum, D 0.1ccm = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D r , D 2ccm ) = 0.69, R(D u , D 0.1ccm ) = 0.64, R(D u , D1) = 0.23. Conclusion: US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric

  12. Dosimetric evaluation of high-dose-rate interstitial brachytherapy boost treatments for localized prostate cancer.

    Science.gov (United States)

    Fröhlich, Georgina; Agoston, Péter; Lövey, József; Somogyi, András; Fodor, János; Polgár, Csaba; Major, Tibor

    2010-07-01

    To quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D(min)) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D(r)) and urethra (D(u)), dose to volume of 2 cm(3) of the rectum (D(2ccm)), and 0.1 cm(3) and 1% of the urethra (D(0.1ccm) and D1) were determined. Nonparametric correlation analysis was performed between these parameters. The median number of needles was 16, the mean prostate volume (V(p)) was 27.1 cm(3). The mean V90, V100, V150, and V200 were 99%, 97%, 39%, and 13%, respectively. The mean D90 was 109%, and the D(min) was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D(2ccm) = 49% for the rectum, D(0.1ccm) = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D(r),D(2ccm)) = 0.69, R(D(u),D0.(1ccm)) = 0.64, R(D(u),D1) = 0.23. US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric parameter is recommended.

  13. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies

    International Nuclear Information System (INIS)

    Velden, Floris H.P. van; Cheebsumon, Patsuree; Yaqub, Maqsood; Hoekstra, Otto S.; Lammertsma, Adriaan A.; Boellaard, Ronald; Smit, Egbert F.

    2011-01-01

    Standardized uptake values (SUV) are commonly used for quantification of whole-body [ 18 F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies. Changes in SUV following therapy, however, only provide a proper measure of response in case of homogeneous FDG uptake in the tumour. The purpose of this study was therefore to implement and characterize a method that enables quantification of heterogeneity in tumour FDG uptake. Cumulative SUV-volume histograms (CSH), describing % of total tumour volume above % threshold of maximum SUV (SUV max ), were calculated. The area under a CSH curve (AUC) is a quantitative index of tumour uptake heterogeneity, with lower AUC corresponding to higher degrees of heterogeneity. Simulations of homogeneous and heterogeneous responses were performed to assess the value of AUC-CSH for measuring uptake and/or response heterogeneity. In addition, partial volume correction and image denoising was applied prior to calculating AUC-CSH. Finally, the method was applied to a number of human FDG scans. Partial volume correction and noise reduction improved CSH curves. Both simulations and clinical examples showed that AUC-CSH values corresponded with level of tumour heterogeneity and/or heterogeneity in response. In contrast, this correspondence was not seen with SUV max alone. The results indicate that the main advantage of AUC-CSH above other measures, such as 1/COV (coefficient of variation), is the possibility to measure or normalize AUC-CSH in different ways. AUC-CSH might be used as a quantitative index of heterogeneity in tracer uptake. In response monitoring studies it can be used to address heterogeneity in response. (orig.)

  14. Bladder accumulated dose in image-guided high-dose-rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity

    Science.gov (United States)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Gaudet, Marc; Aquino-Parsons, Christina; Spadinger, Ingrid

    2016-12-01

    The purpose of this study was to estimate locally accumulated dose to the bladder in multi-fraction high-dose-date (HDR) image-guided intracavitary brachytherapy (IG-ICBT) for cervical cancer, and study the locally-accumulated dose parameters as predictors of late urinary toxicity. A retrospective study of 60 cervical cancer patients who received five HDR IG-ICBT sessions was performed. The bladder outer and inner surfaces were segmented for all sessions and a bladder-wall contour point-set was created in MATLAB. The bladder-wall point-sets for each patient were registered using a deformable point-set registration toolbox called coherent point drift (CPD), and the fraction doses were accumulated. Various dosimetric and volumetric parameters were calculated using the registered doses, including r{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} (minimum dose to the most exposed n-cm3 volume of bladder wall), r V n Gy (wall volume receiving at least m Gy), and r\\text{EQD}{{2}n \\text{c{{\\text{m}}\\text{3}}}} (minimum equivalent biologically weighted dose to the most exposed n-cm3 of bladder wall), where n  =  1/2/5/10 and m  =  3/5/10. Minimum dose to contiguous 1 and 2 cm3 hot-spot volumes was also calculated. The unregistered dose volume histogram (DVH)-summed equivalent of r{{\\text{D}}n \\text{c{{\\text{m}}3}}} and r\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} parameters (i.e. s{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} and s\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} ) were determined for comparison. Late urinary toxicity was assessed using the LENT-SOMA scale, with toxicity Grade 0-1 categorized as Controls and Grade 2-4 as Cases. A two-sample t-test was used to identify the differences between the means of Control and Case groups for all parameters. A binomial logistic regression was also performed between the registered dose parameters and toxicity grouping. Seventeen patients were in the Case and 43 patients in the Control group. Contiguous

  15. Hand Vein Images Enhancement Based on Local Gray-level Information Histogram

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-06-01

    Full Text Available Based on the Histogram equalization theory, this paper presents a novel concept of histogram to realize the contrast enhancement of hand vein images, avoiding the lost of topological vein structure or importing the fake vein information. Firstly, we propose the concept of gray-level information histogram, the fundamental characteristic of which is that the amplitudes of the components can objectively reflect the contribution of the gray levels and information to the representation of image information. Then, we propose the histogram equalization method that is composed of an automatic histogram separation module and an intensity transformation module, and the histogram separation module is a combination of the proposed prompt multiple threshold procedure and an optimum peak signal-to-noise (PSNR calculation to separate the histogram into small-scale detail, the use of the intensity transformation module can enhance the vein images with vein topological structure and gray information preservation for each generated sub-histogram. Experimental results show that the proposed method can achieve extremely good contrast enhancement effect.

  16. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    International Nuclear Information System (INIS)

    Hurkmans, Coen W.; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Sangen, Maurice J. van der; Cassee, Jorien

    2006-01-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced

  17. Value-at-risk estimation with fuzzy histograms

    NARCIS (Netherlands)

    Almeida, R.J.; Kaymak, U.

    2008-01-01

    Value at risk (VaR) is a measure for senior management that summarises the financial risk a company faces into one single number. In this paper, we consider the use of fuzzy histograms for quantifying the value-at-risk of a portfolio. It is shown that the use of fuzzy histograms provides a good

  18. Airborne gamma-ray spectrometer and magnetometer survey: Monument Valley B, Utah, detail area. Volume II A. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    Volume II A contains appendices for: stacked profiles; geologic histograms; geochemical histograms; speed and altitude histograms; geologic statistical tables; geochemical statistical tables; magnetic and ancillary profiles; and test line data

  19. A model for dose estimation in therapy of liver with intraarterial microspheres

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.

    1996-01-01

    Therapy with intraarterial microspheres is a technique which involves incorporation of radioisotope-labelled microspheres into a capillary bed of tumour and normal tissue. Beta-emitters such as 90 Y and 166 Ho are used for this purpose. This technique provides tumour to normal tissue (TNT) dose ratios in the range of 2-10 and demonstrates significant clinical benefit, which could potentially be increased with more accurate dose predictions and delivery. However, dose calculations in this modality face the difficulties associated with nonuniform and inhomogeneous activity distribution. Most of the dose calculations used clinically do not account for the nonuniformity and assume uniform activity distribution. This paper is devoted to the development of a model which would allow more accurate prediction of dose distributions from microspheres. The model calculates dose assuming that microspheres are aggregated into randomly distributed clusters, and using precomputed dose kernels for the clusters. The dose kernel due to a microsphere cluster was found by numerical integration of a point source dose kernel over the volume of the cluster. It is shown that a random distribution of clusters produces an intercluster distance distribution which agrees well with the one measured by Pillai et al in liver. Dose volume histograms (DVHs) predicted by the model agree closely with the results of Roberson et al for normal tissue and tumour. Dose distributions for different concentrations and types of radioisotope, as well as for tumours of different radii, have been calculated to demonstrate the model's possible applications. (author)

  20. Bin Ratio-Based Histogram Distances and Their Application to Image Classification.

    Science.gov (United States)

    Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen

    2014-12-01

    Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification.

  1. Interpreting Histograms. As Easy as It Seems?

    Science.gov (United States)

    Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim

    2014-01-01

    Histograms are widely used, but recent studies have shown that they are not as easy to interpret as it might seem. In this article, we report on three studies on the interpretation of histograms in which we investigated, namely, (1) whether the misinterpretation by university students can be considered to be the result of heuristic reasoning, (2)…

  2. Dose and volume specification for reporting NCT. An ICRU-IAEA initiative

    International Nuclear Information System (INIS)

    Wambersie, A.; Gahbauer, R.A.; Whitmore, G.; Levin, C.V.

    2000-01-01

    The present recommendations result from of an ICRU-IAEA initiative for harmonization of reporting NCT (Neutron Capture Therapy). As stated by the ISNCT, harmonization of reporting is required to understand what has actually been done and interpret the clinical results on the basis of reliable information. Prescription of a treatment remains the responsibility of the radiation oncologist in charge of the patient. Complete oncological data should be reported, including Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) as well as Planning Target Volume (PTV), Treated Volume and Organs/Structures at Risk. A reference point for reporting dose should be selected in the central part of the PTV/CTV. At each point of interest, the four components contributing to the absorbed dose and the weighting factors applied to take account of the RBE (Relative Biological Effectiveness) differences should be specified. (author)

  3. Tolerance of the human spinal cord to single dose radiosurgery

    International Nuclear Information System (INIS)

    Ryu, S.; Zhu, G.; Yin, F.-F.; Ajlouni, M.; Kim, J.H.

    2003-01-01

    Tolerance of the spinal cord to the single dose of radiation is not well defined. Although there are cases of human spinal cord tolerance from re-irradiation to the same cord level, the information about the tolerance of human spinal cord to single large dose of radiosurgery is not available. We carried out spinal radiosurgery to treat spinal metastasis and studied the single dose tolerance of the human spinal cord in an ongoing dose escalation paradigm. A total of 39 patients with 48 lesions of spinal metastasis were treated with single dose radiosurgery at Henry Ford Hospital. The radiosurgery dose was escalated from 8 Gy to 16 Gy at 2 Gy increment. The radiation dose was prescribed to periphery of the spinal tumor. The radiation dose to the spinal cord was estimated by computerized dosimetry. The median follow-up time was 10 months (range 6-18 months) from the radiosurgery. The endpoint of the study was to demonstrate the efficacy of the spinal radiosurgery and to determine the tolerance of human spinal cord to single dose radiosurgery. The dose to the spinal cord was generally less than 50 % of the prescribed radiation dose. The volume of the spinal cord that received higher than this dose was less than 20 % of the anterior portion of the spinal cord. Maximum single dose of 8 Gy was delivered to the anterior 20 % of the spinal cord in this dose escalation study. The dose volume histogram will be presented. There was no acute or subacute radiation toxicity detected clinically and radiologically during the maximum follow-up of 20 months. Further dose escalation is in progress. The single tolerance dose of the human spinal cord appears to be at least 8 Gy when it was given to the 20 % of the cord volume, although the duration of follow up is not long enough to detect severe late cord toxicity. This study offers a valuable radiobiological basis of the normal spinal cord tolerance, and opens spinal radiosurgery as a safe treatment for spinal metastasis

  4. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma.

    Science.gov (United States)

    Umanodan, Tomokazu; Fukukura, Yoshihiko; Kumagae, Yuichi; Shindo, Toshikazu; Nakajo, Masatoyo; Takumi, Koji; Nakajo, Masanori; Hakamada, Hiroto; Umanodan, Aya; Yoshiura, Takashi

    2017-04-01

    To determine the diagnostic performance of apparent diffusion coefficient (ADC) histogram analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI) for differentiating adrenal adenoma from pheochromocytoma. We retrospectively evaluated 52 adrenal tumors (39 adenomas and 13 pheochromocytomas) in 47 patients (21 men, 26 women; mean age, 59.3 years; range, 16-86 years) who underwent DW 3.0T MRI. Histogram parameters of ADC (b-values of 0 and 200 [ADC 200 ], 0 and 400 [ADC 400 ], and 0 and 800 s/mm 2 [ADC 800 ])-mean, variance, coefficient of variation (CV), kurtosis, skewness, and entropy-were compared between adrenal adenomas and pheochromocytomas, using the Mann-Whitney U-test. Receiver operating characteristic (ROC) curves for the histogram parameters were generated to differentiate adrenal adenomas from pheochromocytomas. Sensitivity and specificity were calculated by using a threshold criterion that would maximize the average of sensitivity and specificity. Variance and CV of ADC 800 were significantly higher in pheochromocytomas than in adrenal adenomas (P histogram parameters for diagnosing adrenal adenomas (ADC 200 , 0.82; ADC 400 , 0.87; and ADC 800 , 0.92), with sensitivity of 84.6% and specificity of 84.6% (cutoff, ≤2.82) with ADC 200 ; sensitivity of 89.7% and specificity of 84.6% (cutoff, ≤2.77) with ADC 400 ; and sensitivity of 94.9% and specificity of 92.3% (cutoff, ≤2.67) with ADC 800 . ADC histogram analysis of DW MRI can help differentiate adrenal adenoma from pheochromocytoma. 3 J. Magn. Reson. Imaging 2017;45:1195-1203. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Normal tissue tolerance to external beam radiation therapy: Rectum; Dose de tolerance a l'irradiation des tissus sains: le rectum

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. [Departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France); Chapet, O. [Service d' oncologie-radiotherapie, centre hospitalier Lyon-Sud, 69 - Pierre-Benite (France)

    2010-07-15

    Radiation proctitis is among the most frequent radiation-induced toxicities. This is related to the high frequency of pelvic tumours and the key role of radiotherapy in the treatment of these tumours. Late rectal toxicity usually occurs within the first two years after the completion of a radiotherapy course. Rectal bleeding and a rectal syndrome are the main symptoms, and can be associated to fistulas or rectal ulcers. Clinical factors, such as diabetes mellitus, a severe acute radiation toxicity, small rectal volume or radiation hypersensitivity, are associated with late rectal toxicity. Dosimetric factors derived from the analysis of dose-volume histograms can also predict the occurrence of radiation proctitis, and help to adapt the prescribed dose and the ballistic of irradiation. (authors)

  6. From AAA to Acuros XB-clinical implications of selecting either Acuros XB dose-to-water or dose-to-medium.

    Science.gov (United States)

    Zifodya, Jackson M; Challens, Cameron H C; Hsieh, Wen-Long

    2016-06-01

    When implementing Acuros XB (AXB) as a substitute for anisotropic analytic algorithm (AAA) in the Eclipse Treatment Planning System, one is faced with a dilemma of reporting either dose to medium, AXB-Dm or dose to water, AXB-Dw. To assist with decision making on selecting either AXB-Dm or AXB-Dw for dose reporting, a retrospective study of treated patients for head & neck (H&N), prostate, breast and lung is presented. Ten patients, previously treated using AAA plans, were selected for each site and re-planned with AXB-Dm and AXB-Dw. Re-planning was done with fixed monitor units (MU) as well as non-fixed MUs. Dose volume histograms (DVH) of targets and organs at risk (OAR), were analyzed in conjunction with ICRU-83 recommended dose reporting metrics. Additionally, comparisons of plan homogeneity indices (HI) and MUs were done to further highlight the differences between the algorithms. Results showed that, on average AAA overestimated dose to the target volume and OARs by less than 2.0 %. Comparisons between AXB-Dw and AXB-Dm, for all sites, also showed overall dose differences to be small (135 % of prescription dose) for target volumes with high density materials. Homogeneity indices showed that AAA planning and optimization templates would need to be adjusted only for the H&N and Lung sites. MU comparison showed insignificant differences between AXB-Dw relative to AAA and between AXB-Dw relative to AXB-Dm. However AXB-Dm MUs relative to AAA, showed an average difference of about 1.3 % signifying an underdosage by AAA. In conclusion, when dose is reported as AXB-Dw, the effect that high density structures in the PTV has on the dose distribution should be carefully considered. As the results show overall small dose differences between the algorithms, when transitioning from AAA to AXB, no significant change to existing prescription protocols is expected. As most of the clinical experience is dose-to-water based and calibration protocols and clinical trials are

  7. Spline smoothing of histograms by linear programming

    Science.gov (United States)

    Bennett, J. O.

    1972-01-01

    An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.

  8. Live histograms in moving windows

    International Nuclear Information System (INIS)

    Zhil'tsov, V.E.

    1989-01-01

    Application of computer graphics for specific hardware testing is discussed. The hardware is position sensitive detector (multiwire proportional chamber) which is used in high energy physics experiments, and real-out electronics for it. Testing program is described (XPERT), which utilises multi-window user interface. Data are represented as histograms in windows. The windows on the screen may be moved, reordered, their sizes may be changed. Histograms may be put to any window, and hardcopy may be made. Some program internals are discussed. The computer environment is quite simple: MS-DOS IBM PC/XT, 256 KB RAM, CGA, 5.25'' FD, Epson MX. 4 refs.; 7 figs

  9. Investigations on the necessity of dose calculations for several planes of the target volume

    International Nuclear Information System (INIS)

    Richter, E.

    1987-01-01

    In radiotherapy planning, the shape of a target volume can at present be exactly delimited by means of computed tomography. A method often applied is to project the largest target volume scan on the plane of the central ray and to calculate the dose in this plane. This method does not allow to take into account any change of the target volume scan which will be mainly due to the body contours of the patient. The results of dose calculations made in several planes for pharyngeal and laryngeal tumors are presented. With this procedure, 33 out of 60 irradiation techniques for nine tumor sites meet the requirements with regard to the central ray plane. If several planes are regarded, this is only true for ten irradiation plans. If is therefore absolutely necessary to calculate the doses of several planes if the target volume has an irregular shape or if the body contours vary considerably. This is the only way to prevent a false treatment caused by possibly severe dose excesses or dose insufficiencies in radiotherapy. (orig.) [de

  10. Multiple histogram method and static Monte Carlo sampling

    NARCIS (Netherlands)

    Inda, M.A.; Frenkel, D.

    2004-01-01

    We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From

  11. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    Science.gov (United States)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  12. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  13. Face recognition algorithm using extended vector quantization histogram features.

    Science.gov (United States)

    Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu

    2018-01-01

    In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.

  14. Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

    Directory of Open Access Journals (Sweden)

    Abolfazl Lakdashti

    2008-06-01

    Full Text Available Introduction: Content Based Image Retrieval (CBIR is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retrieval is increasingly  becoming a necessity.  Materials and Methods: This paper presents a new content based radiographic image retrieval approach  based on histogram of pattern orientations, namely pattern orientation histogram (POH. POH represents  the  spatial  distribution  of  five  different  pattern  orientations:  vertical,  horizontal,  diagonal  down/left,  diagonal down/right and non-orientation. In this method, a given image is first divided into image-blocks  and  the  frequency  of  each  type  of  pattern  is  determined  in  each  image-block.  Then,  local  pattern  histograms for each of these image-blocks are computed.   Results: The method was compared to two well known texture-based image retrieval methods: Tamura  and  Edge  Histogram  Descriptors  (EHD  in  MPEG-7  standard.  Experimental  results  based  on  10000  IRMA  radiography  image  dataset,  demonstrate  that  POH  provides  better  precision  and  recall  rates  compared to Tamura and EHD. For some images, the recall and precision rates obtained by POH are,  respectively, 48% and 18% better than the best of the two above mentioned methods.    Discussion and Conclusion: Since we exploit the absolute location of the pattern in the image as well as  its global composition, the proposed matching method can retrieve semantically similar medical images.

  15. Principal component analysis of the CT density histogram to generate parametric response maps of COPD

    Science.gov (United States)

    Zha, N.; Capaldi, D. P. I.; Pike, D.; McCormack, D. G.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Pulmonary x-ray computed tomography (CT) may be used to characterize emphysema and airways disease in patients with chronic obstructive pulmonary disease (COPD). One analysis approach - parametric response mapping (PMR) utilizes registered inspiratory and expiratory CT image volumes and CT-density-histogram thresholds, but there is no consensus regarding the threshold values used, or their clinical meaning. Principal-component-analysis (PCA) of the CT density histogram can be exploited to quantify emphysema using data-driven CT-density-histogram thresholds. Thus, the objective of this proof-of-concept demonstration was to develop a PRM approach using PCA-derived thresholds in COPD patients and ex-smokers without airflow limitation. Methods: Fifteen COPD ex-smokers and 5 normal ex-smokers were evaluated. Thoracic CT images were also acquired at full inspiration and full expiration and these images were non-rigidly co-registered. PCA was performed for the CT density histograms, from which the components with the highest eigenvalues greater than one were summed. Since the values of the principal component curve correlate directly with the variability in the sample, the maximum and minimum points on the curve were used as threshold values for the PCA-adjusted PRM technique. Results: A significant correlation was determined between conventional and PCA-adjusted PRM with 3He MRI apparent diffusion coefficient (p<0.001), with CT RA950 (p<0.0001), as well as with 3He MRI ventilation defect percent, a measurement of both small airways disease (p=0.049 and p=0.06, respectively) and emphysema (p=0.02). Conclusions: PRM generated using PCA thresholds of the CT density histogram showed significant correlations with CT and 3He MRI measurements of emphysema, but not airways disease.

  16. Machine assisted histogram classification

    Science.gov (United States)

    Benyó, B.; Gaspar, C.; Somogyi, P.

    2010-04-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.

  17. Machine assisted histogram classification

    Energy Technology Data Exchange (ETDEWEB)

    Benyo, B; Somogyi, P [BME-IIT, H-1117 Budapest, Magyar tudosok koerutja 2. (Hungary); Gaspar, C, E-mail: Peter.Somogyi@cern.c [CERN-PH, CH-1211 Geneve 23 (Switzerland)

    2010-04-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.

  18. Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram

    Science.gov (United States)

    Batra, Marion; Nägele, Thomas

    2015-01-01

    Purpose. The distribution of apparent diffusion coefficient (ADC) values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects. PMID:26609526

  19. Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram

    Directory of Open Access Journals (Sweden)

    Uwe Klose

    2015-01-01

    Full Text Available Purpose. The distribution of apparent diffusion coefficient (ADC values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects.

  20. Analysis of the relationship between tumor dose inhomogeneity and local control in patients with skull base chordoma

    International Nuclear Information System (INIS)

    Terahara, Atsuro; Niemierko, Andrzej; Goitein, Michael; Finkelstein, Dianne; Hug, Eugen; Liebsch, Norbert; O'Farrell, Desmond; Lyons, Sue; Munzenrider, John

    1999-01-01

    Purpose: When irradiating a tumor that abuts or displaces any normal structures, the dose constraints to those structures (if lower than the prescribed dose) may cause dose inhomogeneity in the tumor volume at the tumor-critical structure interface. The low-dose region in the tumor volume may be one of the reasons for local failure. The aim of this study is to quantitate the effect of tumor dose inhomogeneity on local control and recurrence-free survival in patients with skull base chordoma. Methods and Materials: 132 patients with skull base chordoma were treated with combined photon and proton irradiation between 1978 and 1993. This study reviews 115 patients whose dose-volume data and follow-up data are available. The prescribed doses ranged from 66.6 Cobalt-Gray-Equivalent (CGE) to 79.2 CGE (median of 68.9 CGE). The dose to the optic structures (optic nerves and chiasma), the brain stem surface, and the brain stem center was limited to 60, 64, and 53 CGE, respectively. We used the dose-volume histogram data derived with the three-dimensional treatment planning system to evaluate several dose-volume parameters including the Equivalent Uniform Dose (EUD). We also analyzed several other patient and treatment factors in relation to local control and recurrence-free survival. Results: Local failure developed in 42 of 115 patients, with the actuarial local control rates at 5 and 10 years being 59% and 44%. Gender was a significant predictor for local control with the prognosis in males being significantly better than that in females (P 0.004, hazard ratio = 2.3). In a Cox univariate analysis, with stratification by gender, the significant predictors for local control (at the probability level of 0.05) were EUD, the target volume, the minimum dose, and the D 5cc dose. The prescribed dose, histology, age, the maximum dose, the mean dose, the median dose, the D 90% dose, and the overall treatment time were not significant factors. In a Cox multivariate analysis, the

  1. Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr [INSERM, U1099, 35000 Rennes (France); Laboratoire Traitement du Signal et de l' Image, Université de Rennes 1, 35000 Rennes (France); Le Maitre, Amandine; Nassef, Mohamed; Rigaud, Bastien [INSERM, U1099, 35000 Rennes (France); Laboratoire Traitement du Signal et de l' Image, Université de Rennes 1, 35000 Rennes (France); Castelli, Joël [INSERM, U1099, 35000 Rennes (France); Laboratoire Traitement du Signal et de l' Image, Université de Rennes 1, 35000 Rennes (France); Department of Radiotherapy, Centre Eugène Marquis, 35000 Rennes (France); Acosta, Oscar; Haigron, Pascal [INSERM, U1099, 35000 Rennes (France); Laboratoire Traitement du Signal et de l' Image, Université de Rennes 1, 35000 Rennes (France); Lafond, Caroline; Crevoisier, Renaud de [INSERM, U1099, 35000 Rennes (France); Laboratoire Traitement du Signal et de l' Image, Université de Rennes 1, 35000 Rennes (France); Department of Radiotherapy, Centre Eugène Marquis, 35000 Rennes (France)

    2017-03-15

    Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimated in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was

  2. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Floris H.P. van; Cheebsumon, Patsuree; Yaqub, Maqsood; Hoekstra, Otto S.; Lammertsma, Adriaan A.; Boellaard, Ronald [VU University Medical Center, Department of Nuclear Medicine and PET Research, PO Box 7057, Amsterdam (Netherlands); Smit, Egbert F. [VU University Medical Center, Department of Pulmonary Diseases, Amsterdam (Netherlands)

    2011-09-15

    Standardized uptake values (SUV) are commonly used for quantification of whole-body [{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies. Changes in SUV following therapy, however, only provide a proper measure of response in case of homogeneous FDG uptake in the tumour. The purpose of this study was therefore to implement and characterize a method that enables quantification of heterogeneity in tumour FDG uptake. Cumulative SUV-volume histograms (CSH), describing % of total tumour volume above % threshold of maximum SUV (SUV{sub max}), were calculated. The area under a CSH curve (AUC) is a quantitative index of tumour uptake heterogeneity, with lower AUC corresponding to higher degrees of heterogeneity. Simulations of homogeneous and heterogeneous responses were performed to assess the value of AUC-CSH for measuring uptake and/or response heterogeneity. In addition, partial volume correction and image denoising was applied prior to calculating AUC-CSH. Finally, the method was applied to a number of human FDG scans. Partial volume correction and noise reduction improved CSH curves. Both simulations and clinical examples showed that AUC-CSH values corresponded with level of tumour heterogeneity and/or heterogeneity in response. In contrast, this correspondence was not seen with SUV{sub max} alone. The results indicate that the main advantage of AUC-CSH above other measures, such as 1/COV (coefficient of variation), is the possibility to measure or normalize AUC-CSH in different ways. AUC-CSH might be used as a quantitative index of heterogeneity in tracer uptake. In response monitoring studies it can be used to address heterogeneity in response. (orig.)

  3. Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Geier, M.; Astner, S.T.; Duma, M.N.; Putzhammer, J.; Winkler, C.; Molls, M.; Geinitz, H. [Technische Univ. Muenchen (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie; Jacob, V. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde; Nieder, C. [Nordland Hospital, Bodoe (Norway). Dept. of Oncology and Palliative Care; Tromsoe Univ. (Norway). Inst. of Clinical Medicine

    2012-05-15

    The goal of this work was to assess the feasibility of moderately hypofractionated simultaneous integrated-boost intensity-modulated radiotherapy (SIB-IMRT) with helical tomotherapy in patients with localized prostate cancer regarding acute side effects and dose-volume histogram data (DVH data). Acute side effects and DVH data were evaluated of the first 40 intermediate risk prostate cancer patients treated with a definitive daily image-guided SIB-IMRT protocol via helical tomotherapy in our department. The planning target volume including the prostate and the base of the seminal vesicles with safety margins was treated with 70 Gy in 35 fractions. The boost volume containing the prostate and 3 mm safety margins (5 mm craniocaudal) was treated as SIB to a total dose of 76 Gy (2.17 Gy per fraction). Planning constraints for the anterior rectal wall were set in order not to exceed the dose of 76 Gy prescribed to the boost volume. Acute toxicity was evaluated prospectively using a modified CTCAE (Common Terminology Criteria for Adverse Events) score. SIB-IMRT allowed good rectal sparing, although the full boost dose was permitted to the anterior rectal wall. Median rectum dose was 38 Gy in all patients and the median volumes receiving at least 65 Gy (V65), 70 Gy (V70), and 75 Gy (V75) were 13.5%, 9%, and 3%, respectively. No grade 4 toxicity was observed. Acute grade 3 toxicity was observed in 20% of patients involving nocturia only. Grade 2 acute intestinal and urological side effects occurred in 25% and 57.5%, respectively. No correlation was found between acute toxicity and the DVH data. This institutional SIB-IMRT protocol using daily image guidance as a precondition for smaller safety margins allows dose escalation to the prostate without increasing acute toxicity. (orig.)

  4. Dose volume relationships for intraoperatively irradiated saphenous nerve

    International Nuclear Information System (INIS)

    Gillette, E.L.; Powers, B.E.; Gillette, S.M.; Thames, H.D.; Childs, G.; Vujaskovic, Z.; LaRue, S.M.

    1995-01-01

    Purpose/Objective: Intraoperative radiation therapy (IORT) is used to deliver high single doses of radiation to the tumor bed following surgical removal of various abdominal malignancies. The advantage of IORT is the ability to remove sensitive normal tissues from the treatment field and to limit the volume of normal tissue irradiated. The purpose of this study was to determine dose-volume relationships for retroperitoneal tissues. Materials and methods: 134 adult beagle dogs were irradiated to the surgically exposed paraaortic area. Normal tissues included in the treatment field were aorta, peripheral nerve, ureter, bone and muscle. Groups of 4 - 8 dogs were irradiated to doses ranging from 18 - 54 Gy for a 2x5 cm field, from 12 - 46 Gy for a 4x5 cm field, and 12 - 42 Gy to an 8x5 cm field. The radiations were done using 6 MeV electrons from a linear accelerator. Dogs were observed for three years after radiation. Electrophysiologic procedures were done prior to irradiation and annually following irradiation. The procedures included electromyography of the pelvic limb and paralumbar muscles supplied by the L1 to S1 spinal nerves to determine presence and degree of motor unit disease. Motor nerve conduction velocities of the proximal and distal sciatic nerves were determined. Sensory nerve conduction velocities of the saphenous nerve were also determined. Evoked lumbosacral and thoraco-lumbar spinal cord potentials were evaluated following stimulation of the left sciatic nerve. In addition to electrophysiologic studies, neurologic examinations were done prior to treatment and at six month intervals for the three year observation period. At the three year time period, dogs were euthanatized, sections of peripheral nerve taken, routinely processed, stained with Masson's trichrome and evaluated histomorphometrically using point count techniques. Results: Twenty-two dogs were euthanatized prior to the three year observation period due to peripheral nerve damage

  5. Dose distribution in the thyroid gland following radiation therapy of breast cancer-a retrospective study

    International Nuclear Information System (INIS)

    Johansen, S; Reinertsen, KV; Knutstad, K; Olsen, DR; Fosså, SD

    2011-01-01

    To relate the development of post-treatment hypothyroidism with the dose distribution within the thyroid gland in breast cancer (BC) patients treated with loco-regional radiotherapy (RT). In two groups of BC patients postoperatively irradiated by computer tomography (CT)-based RT, the individual dose distributions in the thyroid gland were compared with each other; Cases developed post-treatment hypothyroidism after multimodal treatment including 4-field RT technique. Matched patients in Controls remained free for hypothyroidism. Based on each patient's dose volume histogram (DVH) the volume percentages of the thyroid absorbing respectively 20, 30, 40 and 50 Gy were then estimated (V20, V30, V40 and V50) together with the individual mean thyroid dose over the whole gland (MeanTotGy). The mean and median thyroid dose for the included patients was about 30 Gy, subsequently the total volume of the thyroid gland (VolTotGy) and the absolute volumes (cm 3 ) receiving respectively < 30 Gy and ≥ 30 Gy were calculated (Vol < 30 and Vol ≥ 30) and analyzed. No statistically significant inter-group differences were found between V20, V30, V40 and V50Gy or the median of MeanTotGy. The median VolTotGy in Controls was 2.3 times above VolTotGy in Cases (ρ = 0.003), with large inter-individual variations in both groups. The volume of the thyroid gland receiving < 30 Gy in Controls was almost 2.5 times greater than the comparable figure in Cases. We concluded that in patients with small thyroid glands after loco-radiotherapy of BC, the risk of post-treatment hypothyroidism depends on the volume of the thyroid gland

  6. Histogram Estimators of Bivariate Densities

    National Research Council Canada - National Science Library

    Husemann, Joyce A

    1986-01-01

    One-dimensional fixed-interval histogram estimators of univariate probability density functions are less efficient than the analogous variable-interval estimators which are constructed from intervals...

  7. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    Science.gov (United States)

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  8. SU-F-T-113: Inherent Functional Dependence of Spinal Cord Doses of Variable Irradiated Volumes in Spine SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L; Braunstein, S; Chiu, J [University of California San Francisco, San Francisco, CA (United States); Sahgal, A [Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive an EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.

  9. ACTION RECOGNITION USING SALIENT NEIGHBORING HISTOGRAMS

    DEFF Research Database (Denmark)

    Ren, Huamin; Moeslund, Thomas B.

    2013-01-01

    Combining spatio-temporal interest points with Bag-of-Words models achieves state-of-the-art performance in action recognition. However, existing methods based on “bag-ofwords” models either are too local to capture the variance in space/time or fail to solve the ambiguity problem in spatial...... and temporal dimensions. Instead, we propose a salient vocabulary construction algorithm to select visual words from a global point of view, and form compact descriptors to represent discriminative histograms in the neighborhoods. Those salient neighboring histograms are then trained to model different actions...

  10. Volume and hormonal effects for acute side effects of rectum and bladder during conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Peeters, Stephanie T.H.; Hoogeman, Mischa S.; Heemsbergen, Wilma D.; Slot, Annerie; Tabak, Hans; Koper, Peter C.M.; Lebesque, Joos V.

    2005-01-01

    pretreatment symptoms and neoadjuvant HT, only the absolute dose-surface histogram parameters (absolute surface irradiated to ≥40, 45, and 65 Gy) were significantly associated with acute GU toxicity. Conclusion: A volume effect was found for acute GI toxicity for relative, as well as absolute, volumes. With regard to acute GU toxicity, an area effect was found, but only for absolute dose-surface histogram parameters. Neoadjuvant HT appeared to be an independent prognostic factor for acute toxicity, resulting in less acute GI toxicity, but more acute GU toxicity. The presence of pretreatment GU symptoms was the most important prognostic factor for GU symptoms during RT

  11. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Karsten [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: k.pfeiffer at dkfz.de; Bendl, Rolf [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: r.bendl at dkfz.de

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach. (author)

  12. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    Science.gov (United States)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-07-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  13. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    International Nuclear Information System (INIS)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-01-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  14. Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Rosu, Mihaela; Kessler, Marc L.; Fraass, Benedick A.; Haken, Randall K. ten; Kong, Feng-Ming; McShan, Daniel L.

    2006-01-01

    Purpose: To investigate methods of reporting and analyzing statistical uncertainties in doses to targets and normal tissues in Monte Carlo (MC)-based treatment planning. Methods and Materials: Methods for quantifying statistical uncertainties in dose, such as uncertainty specification to specific dose points, or to volume-based regions, were analyzed in MC-based treatment planning for 5 lung cancer patients. The effect of statistical uncertainties on target and normal tissue dose indices was evaluated. The concept of uncertainty volume histograms for targets and organs at risk was examined, along with its utility, in conjunction with dose volume histograms, in assessing the acceptability of the statistical precision in dose distributions. The uncertainty evaluation tools were extended to four-dimensional planning for application on multiple instances of the patient geometry. All calculations were performed using the Dose Planning Method MC code. Results: For targets, generalized equivalent uniform doses and mean target doses converged at 150 million simulated histories, corresponding to relative uncertainties of less than 2% in the mean target doses. For the normal lung tissue (a volume-effect organ), mean lung dose and normal tissue complication probability converged at 150 million histories despite the large range in the relative organ uncertainty volume histograms. For 'serial' normal tissues such as the spinal cord, large fluctuations exist in point dose relative uncertainties. Conclusions: The tools presented here provide useful means for evaluating statistical precision in MC-based dose distributions. Tradeoffs between uncertainties in doses to targets, volume-effect organs, and 'serial' normal tissues must be considered carefully in determining acceptable levels of statistical precision in MC-computed dose distributions

  15. Quadrant Dynamic with Automatic Plateau Limit Histogram Equalization for Image Enhancement

    Directory of Open Access Journals (Sweden)

    P. Jagatheeswari

    2014-01-01

    Full Text Available The fundamental and important preprocessing stage in image processing is the image contrast enhancement technique. Histogram equalization is an effective contrast enhancement technique. In this paper, a histogram equalization based technique called quadrant dynamic with automatic plateau limit histogram equalization (QDAPLHE is introduced. In this method, a hybrid of dynamic and clipped histogram equalization methods are used to increase the brightness preservation and to reduce the overenhancement. Initially, the proposed QDAPLHE algorithm passes the input image through a median filter to remove the noises present in the image. Then the histogram of the filtered image is divided into four subhistograms while maintaining second separated point as the mean brightness. Then the clipping process is implemented by calculating automatically the plateau limit as the clipped level. The clipped portion of the histogram is modified to reduce the loss of image intensity value. Finally the clipped portion is redistributed uniformly to the entire dynamic range and the conventional histogram equalization is executed in each subhistogram independently. Based on the qualitative and the quantitative analysis, the QDAPLHE method outperforms some existing methods in literature.

  16. Whole-lesion ADC histogram and texture analysis in predicting recurrence of cervical cancer treated with CCRT.

    Science.gov (United States)

    Meng, Jie; Zhu, Lijing; Zhu, Li; Xie, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; He, Jian; Ge, Yun; Zhou, Zhengyang; Yang, Xiaofeng

    2017-11-03

    To explore the value of whole-lesion apparent diffusion coefficient (ADC) histogram and texture analysis in predicting tumor recurrence of advanced cervical cancer treated with concurrent chemo-radiotherapy (CCRT). 36 women with pathologically confirmed advanced cervical squamous carcinomas were enrolled in this prospective study. 3.0 T pelvic MR examinations including diffusion weighted imaging (b = 0, 800 s/mm 2 ) were performed before CCRT (pre-CCRT) and at the end of 2nd week of CCRT (mid-CCRT). ADC histogram and texture features were derived from the whole volume of cervical cancers. With a mean follow-up of 25 months (range, 11 ∼ 43), 10/36 (27.8%) patients ended with recurrence. Pre-CCRT 75th, 90th, correlation, autocorrelation and mid-CCRT ADC mean , 10th, 25th, 50th, 75th, 90th, autocorrelation can effectively differentiate the recurrence from nonrecurrence group with area under the curve ranging from 0.742 to 0.850 (P values range, 0.001 ∼ 0.038). Pre- and mid-treatment whole-lesion ADC histogram and texture analysis hold great potential in predicting tumor recurrence of advanced cervical cancer treated with CCRT.

  17. An easy irradiation technique (partial half-beam) to reduce renal dose in radiotherapy of cervical cancer including paraaortic lymph nodes

    International Nuclear Information System (INIS)

    Vorwerk, H.; Wagner, D.; Christiansen, H.; Hess, C.F.; Hermann, R.M.

    2008-01-01

    Purpose: for radiation treatment of patients with cervical cancer and a high risk for paraaortic lymph node involvement, an easy three-dimensional (3-D) conformal irradiation technique (partial half-beam [PHB]) for protection of organs at risk, especially of renal tissue, was developed. Patients and methods: in five consecutive female patients a computed tomography scan was performed. Dose-volume histograms of the renal tissue and other organs at risk were analyzed for PHB, three other 3-D conformal techniques, and an intensity-modulated radiotherapy (IMRT) technique. Results: the PHB technique reduced the renal volume and volumes of other organs at risk exposed to radiation doses when comparing all patients to the other 3-D conformal techniques. With use of the IMRT technique more renal tissue volume received very low radiation doses (≤ 6.8 Gy) whereas the D 10 was lower than with the PHB technique. Conclusion: in female patients with cervical cancer and high risk for paraaortic lymph node involvement, the use of the PHB technique is recommended to reduce renal radiation exposure, if no IMRT technique should be applied. The PHB technique is very easily and fast applicable. (orig.)

  18. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  19. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  20. Dosimetric Evaluation of High-Dose-Rate Interstitial Brachytherapy Boost Treatments for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Georgina [Semmelweis Univ., Budapest (Hungary); Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Agoston, Peter; Loevey, Jozsef; Somogyi, Andras; Fodor, Janos; Polgar, Csaba; Major, Tibor [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary)

    2010-07-15

    Purpose: to quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Material and methods: treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D{sub min}) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D{sub r}) and urethra (D{sub u}), dose to volume of 2 cm{sup 3} of the rectum (D{sub 2ccm}), and 0.1 cm{sup 3} and 1% of the urethra (D{sub 0.1ccm} and D1) were determined. Nonparametric correlation analysis was performed between these parameters. Results: the median number of needles was 16, the mean prostate volume (V{sub p}) was 27.1 cm{sup 3}. The mean V90, V100, V150, and V200 were 90%, 97%, 39% and 13%, respectively. The mean D90 was 109%, and the D{sub min} was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D{sub 2ccm} = 49% for the rectum, D{sub 0.1ccm} = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D{sub r}, D{sub 2ccm}) = 0.69, R(D{sub u}, D{sub 0.1ccm}) = 0.64, R(D{sub u}, D1) = 0.23. Conclusion: US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume

  1. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?

    International Nuclear Information System (INIS)

    Hermanto, Ulrich; Frija, Erik K.; Lii, MingFwu J.; Chang, Eric L.; Mahajan, Anita; Woo, Shiao Y.

    2007-01-01

    Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p mean by 19.8% and D max by 10.7%), optic chiasm (D mean by 25.3% and D max by 22.6%), right optic nerve (D mean by 37.3% and D max by 28.5%), and left optic nerve (D mean by 40.6% and D max by 36.7%), p ≤ 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation

  2. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    Science.gov (United States)

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  3. A monitoring program of the histograms based on ROOT package

    International Nuclear Information System (INIS)

    Zhou Yongzhao; Liang Hao; Chen Yixin; Xue Jundong; Yang Tao; Gong Datao; Jin Ge; Yu Xiaoqi

    2002-01-01

    KHBOOK is a histogram monitor and browser based on ROOT package, which reads the histogram file in HBOOK format from Physmon, converts it into ROOT format, and browses the histograms in Repeat and Overlap modes to monitor and trace the quality of the data from DAQ. KHBOOK is a program of small memory, easy maintenance and fast running as well, using mono-behavior classes and a communication class of C ++

  4. Normal tissue complication probabilities correlated with late effects in the rectum after prostate conformal radiotherapy

    International Nuclear Information System (INIS)

    Dale, Einar; Olsen, Dag R.; Fossa, Sophie D.

    1999-01-01

    Purpose: Radiation therapy of deep-sited tumours will always result in normal tissue doses to some extent. The aim of this study was to calculate different risk estimates of late effects in the rectum for a group of cancer prostate patients treated with conformal radiation therapy (CRT) and correlate these estimates with the occurrences of late effects. Since the rectum is a hollow organ, several ways of generating dose-volume distributions over the organ are possible, and we wanted to investigate two of them. Methods and Materials: A mathematical model, known as the Lyman-Kutcher model, conventionally used to estimate normal tissue complication probabilities (NTCP) associated with radiation therapy, was applied to a material of 52 cancer prostate patients. The patients were treated with a four field box technique, with the rectum as organ at risk. Dose-volume histograms (DVH) were generated for the whole rectum (including the cavity) and of the rectum wall. One to two years after the treatment, the patients completed a questionnaire concerning bowel (rectum) related morbidity quantifying the extent of late effects. Results: A correlation analysis using Spearman's rank correlation coefficient, for NTCP values calculated from the DVHs and the patients' scores, gave correlation coefficients which were not statistically significant at the p max , of the whole rectum, correlated better to observed late toxicity than D max derived from histograms of the rectum wall. Correlation coefficients from 'high-dose' measures were larger than those calculated from the NTCP values. Accordingly, as the volume parameter of the Lyman-Kutcher model was reduced, raising the impact of small high-dose volumes on the NTCP values, the correlation between observed effects and NTCP values became significant at p < 0.01 level. Conclusions: 1) High-dose levels corresponding to small volume fractions of the cumulative dose-volume histograms were best correlated with the occurrences of late

  5. Incremental Prognostic Value of Apparent Diffusion Coefficient Histogram Analysis in Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Li, Xiaoxia; Yuan, Ying; Ren, Jiliang; Shi, Yiqian; Tao, Xiaofeng

    2018-03-26

    We aimed to investigate the incremental prognostic value of apparent diffusion coefficient (ADC) histogram analysis in patients with head and neck squamous cell carcinoma (HNSCC) and integrate it into a multivariate prognostic model. A retrospective review of magnetic resonance imaging findings was conducted in patients with pathologically confirmed HNSCC between June 2012 and December 2015. For each tumor, six histogram parameters were derived: the 10th, 50th, and 90th percentiles of ADC (ADC 10 , ADC 50 , and ADC 90 ); mean ADC values (ADC mean ); kurtosis; and skewness. The clinical variables included age, sex, smoking status, tumor volume, and tumor node metastasis stage. The association of these histogram and clinical variables with overall survival (OS) was determined. Further validation of the histogram parameters as independent biomarkers was performed using multivariate Cox proportional hazard models combined with clinical variables, which was compared to the clinical model. Models were assessed with C index and receiver operating characteristic curve analyses for the 12- and 36-month OS. Ninety-six patients were eligible for analysis. Median follow-up was 877 days (range, 54-1516 days). A total of 29 patients died during follow-up (30%). Patients with higher ADC values (ADC 10  > 0.958 × 10 -3 mm 2 /s, ADC 50  > 1.089 × 10 -3 mm 2 /s, ADC 90  > 1.152 × 10 -3 mm 2 /s, ADC mean  > 1.047 × 10 -3 mm 2 /s) and lower kurtosis (≤0.967) were significant predictors of poor OS (P histogram analysis has incremental prognostic value in patients with HNSCC and increases the performance of a multivariable prognostic model in addition to clinical variables. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Comparison of 3D anatomical dose verification and 2D phantom dose verification of IMRT/VMAT treatments for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lin, Hailei; Huang, Shaomin; Deng, Xiaowu; Zhu, Jinhan; Chen, Lixin

    2014-01-01

    The two-dimensional phantom dose verification (2D-PDV) using hybrid plan and planar dose measurement has been widely used for IMRT treatment QA. Due to the lack of information about the correlations between the verification results and the anatomical structure of patients, it is inadequate in clinical evaluation. A three-dimensional anatomical dose verification (3D-ADV) method was used in this study to evaluate the IMRT/VMAT treatment delivery for nasopharyngeal carcinoma and comparison with 2D-PDV was analyzed. Twenty nasopharyngeal carcinoma (NPC) patients treated with IMRT/VMAT were recruited in the study. A 2D ion-chamber array was used for the 2D-PDV in both single-gantry-angle composite (SGAC) and multi-gantry-angle composite (MGAC) verifications. Differences in the gamma pass rate between the 2 verification methods were assessed. Based on measurement of irradiation dose fluence, the 3D dose distribution was reconstructed for 3D-ADV in the above cases. The reconstructed dose homogeneity index (HI), conformity index (CI) of the planning target volume (PTV) were calculated. Gamma pass rate and deviations in the dose-volume histogram (DVH) of each PTV and organ at risk (OAR) were analyzed. In 2D-PDV, the gamma pass rate (3%, 3 mm) of SGAC (99.55% ± 0.83%) was significantly higher than that of MGAC (92.41% ± 7.19%). In 3D-ADV, the gamma pass rates (3%, 3 mm) were 99.75% ± 0.21% in global, 83.82% ± 16.98% to 93.71% ± 6.22% in the PTVs and 45.12% ± 32.78% to 98.08% ± 2.29% in the OARs. The maximum HI increment in PTVnx was 19.34%, while the maximum CI decrement in PTV1 and PTV2 were -32.45% and -6.93%, respectively. Deviations in dose volume of PTVs were all within ±5%. D2% of the brainstem, spinal cord, left/right optic nerves, and the mean doses to the left/right parotid glands maximally increased by 3.5%, 6.03%, 31.13%/26.90% and 4.78%/4.54%, respectively. The 2D-PDV and global gamma pass rate might be insufficient to provide an accurate assessment for

  7. Airborne gamma-ray spectrometer and magnetometer survey, Durango D, Colorado. Final report Volume II A. Detail area

    International Nuclear Information System (INIS)

    1983-01-01

    This volume contains geology of the Durango D detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data

  8. From AAA to Acuros XB-clinical implications of selecting either Acuros XB dose-to-water or dose-to-medium

    International Nuclear Information System (INIS)

    Zifoyda, Jackson M.; Challens, Cameron H.C.; Hsieh, Wen-Long

    2016-01-01

    When implementing Acuros XB (AXB) as a substitute for anisotropic analytic algorithm (AAA) in the Eclipse Treatment Planning System, one is faced with a dilemma of reporting either dose to medium, AXB-Dm or dose to water, AXB-Dw. To assist with decision making on selecting either AXB-Dm or AXB-Dw for dose reporting, a retrospective study of treated patients for head & neck (H&N), prostate, breast and lung is presented. Ten patients, previously treated using AAA plans, were selected for each site and re-planned with AXB-Dm and AXB-Dw. Re-planning was done with fixed monitor units (MU) as well as non-fixed MUs. Dose volume histograms (DVH) of targets and organs at risk (OAR), were analyzed in conjunction with ICRU-83 recommended dose reporting metrics. Additionally, comparisons of plan homogeneity indices (HI) and MUs were done to further highlight the differences between the algorithms. Results showed that, on average AAA overestimated dose to the target volume and OARs by less than 2.0 %. Comparisons between AXB-Dw and AXB-Dm, for all sites, also showed overall dose differences to be small (<1.5 %). However, in non-water biological media, dose differences between AXB-Dw and AXB-Dm, as large as 4.6 % were observed. AXB-Dw also tended to have unexpectedly high 3D maximum dose values (>135 % of prescription dose) for target volumes with high density materials. Homogeneity indices showed that AAA planning and optimization templates would need to be adjusted only for the H&N and Lung sites. MU comparison showed insignificant differences between AXB-Dw relative to AAA and between AXB-Dw relative to AXB-Dm. However AXB-Dm MUs relative to AAA, showed an average difference of about 1.3 % signifying an underdosage by AAA. In conclusion, when dose is reported as AXB-Dw, the effect that high density structures in the PTV has on the dose distribution should be carefully considered. As the results show overall small dose differences between the algorithms, when transitioning

  9. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1986-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10 -7 mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  10. Targeting the adventitia with intracoronary beta-radiation: comparison of two dose prescriptions and the role of centering coronary arteries

    International Nuclear Information System (INIS)

    Kaluza, Grzegorz L.; Jenkins, Todd P.; Mourtada, Firas A.; Ali, Nadir M.; Lee, David P.; Okura, Hiroyuki; Fitzgerald, Peter J.; Raizner, Albert E.

    2002-01-01

    Purpose: To compare by intravascular ultrasound (IVUS) the efficacy of delivering the prescribed dose to the adventitia between two commonly used dose prescriptions for intracoronary radiotherapy. Methods and Materials: In 59 human postangioplasty coronary vessels, one IVUS cross-section (1 mm thick) with the highest plaque burden was used for creating dose-volume histograms with different hypothetical positions of the source. Results: On average, prescription to 1 mm beyond lumen surface resulted in delivery of the prescribed dose (20 Gy ± 20%) to a higher fraction of adventitial volume than with the prescription to 2 mm from the source, with source placed in vessel center, lumen center, or in the IVUS catheter position. Source placement in the lumen center resulted in a low dose heterogeneity to the adventitia and the least dose heterogeneity to the intima. Conclusions: Prescription to 1 mm beyond lumen surface appeared more effective in delivering the prescribed dose to the adventitia than the American Association of Physicists in Medicine (AAPM) recommended prescription to 2 mm from the source center. Moreover, centering the source in the lumen provides the better balance of effective adventitial targeting and intimal dose homogeneity. Modification of the current AAPM recommendation for dose prescription for intracoronary radiotherapy should be considered

  11. Determining the efficiency of a commercial belly board device in reducing small bowel volume in rectal cancer patients

    International Nuclear Information System (INIS)

    Lukarski, Dusko; Petkovska, Sonja; Angelovska, Natalija; Grozdanovska, Biljana; Mitrevski, Nenad

    2010-01-01

    The purpose of this treatment planning study was to evaluate the efficiency of a commercial belly board device in reducing the irradiated volume of the small bowel. In this study 10 patients with rectal carcinoma receiving postoperative radiotherapy were included. For each of them we made two computer tomography series in prone position. In the first one the patients were lying on the flat table top, and in the second one they were lying on the belly board device which is under investigation. On both series we calculated and optimized plans according to the standing protocol of our department. From the dose-volume histograms of these plans we compared the volumes of the small bowel irradiated to three dose levels 15, 30 and 45 Gy. The results showed that the absolute irradiated volumes were significantly smaller in the plans with the belly board device. Based on these results we believe that the employment of this belly board device will reduce the acute and late small bowel toxicity. This should be verified with a clinical study.(Author)

  12. Determining the efficiency of a commercial belly board device in reducing small bowel volume in rectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Lukarski, Dusko; Petkovska, Sonja; Angelovska, Natalija; Grozdanovska, Biljana; Mitrevski, Nenad [University Clinic of Radiotherapy and Oncology, Skopje(Macedonia, The Former Yugoslav Republic of)

    2010-07-01

    The purpose of this treatment planning study was to evaluate the efficiency of a commercial belly board device in reducing the irradiated volume of the small bowel. In this study 10 patients with rectal carcinoma receiving postoperative radiotherapy were included. For each of them we made two computer tomography series in prone position. In the first one the patients were lying on the flat table top, and in the second one they were lying on the belly board device which is under investigation. On both series we calculated and optimized plans according to the standing protocol of our department. From the dose-volume histograms of these plans we compared the volumes of the small bowel irradiated to three dose levels 15, 30 and 45 Gy. The results showed that the absolute irradiated volumes were significantly smaller in the plans with the belly board device. Based on these results we believe that the employment of this belly board device will reduce the acute and late small bowel toxicity. This should be verified with a clinical study.(Author)

  13. Inter-patient image registration algorithms to disentangle regional dose bioeffects.

    Science.gov (United States)

    Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe

    2018-03-20

    Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.

  14. Intensity modulated radiotherapy for localized prostate cancer: rigid compliance to dose-volume constraints as a warranty of acceptable toxicity?

    International Nuclear Information System (INIS)

    Chen, Michael J; Nadalin, Wladmir; Weltman, Eduardo; Hanriot, Rodrigo M; Luz, Fábio P; Cecílio, Paulo J; Cruz, José C da; Moreira, Frederico R; Santos, Adriana S; Martins, Lidiane C

    2007-01-01

    To report the toxicity after intensity modulated radiotherapy (IMRT) for patients with localized prostate cancer, as a sole treatment or after radical prostatectomy. Between August 2001 and December 2003, 132 patients with prostate cancer were treated with IMRT and 125 were evaluable to acute and late toxicity analysis, after a minimum follow-up time of one year. Clinical and treatment data, including normal tissue dose-volume histogram (DVH) constraints, were reviewed. Gastro-intestinal (GI) and genito-urinary (GU) signs and symptoms were evaluated according to the Radiation Therapy Oncology Group (RTOG) toxicity scales. Median prescribed dose was 76 Gy. Median follow-up time was of 26.1 months. From the 125 patients, 73 (58.4%) presented acute Grade 1 or Grade 2 GI and 97 (77.2%) presented acute Grade 1 or Grade 2 GU toxicity. Grade 3 GI acute toxicity occurred in only 2 patients (1.6%) and Grade 3 GU acute toxicity in only 3 patients (2.4%). Regarding Grade 1 and 2 late toxicity, 26 patients (20.8%) and 21 patients (16.8%) presented GI and GU toxicity, respectively. Grade 2 GI late toxicity occurred in 6 patients (4.8%) and Grade 2 GU late toxicity in 4 patients (3.2%). None patient presented any Grade 3 or higher late toxicity. Non-conformity to DVH constraints occurred in only 11.2% of treatment plans. On univariate analysis, no significant risk factor was identified for Grade 2 GI late toxicity, but mean dose delivered to the PTV was associated to higher Grade 2 GU late toxicity (p = 0.042). IMRT is a well tolerable technique for routine treatment of localized prostate cancer, with short and medium-term acceptable toxicity profiles. According to the data presented here, rigid compliance to DHV constraints might prevent higher incidences of normal tissue complication

  15. Histogram analysis reveals a better delineation of tumor volume from background in 18F-FET PET compared to CBV maps in a hybrid PET–MR studie in gliomas

    International Nuclear Information System (INIS)

    Filss, Christian P.; Stoffels, Gabriele; Galldiks, Norbert; Sabel, Michael; Wittsack, Hans J.; Coenen, Heinz H.; Shah, Nadim J.; Herzog, Hans

    2014-01-01

    Anatomical imaging with magnetic resonance imaging (MRI) is currently the method of first choice for diagnostic investigation of glial tumors. However, different MR sequences may over- or underestimate tumor size and thus it may not be possible to delineate tumor from adjacent brain. In order to compensate this confinement additonal MR sequences like perfusion weighted MRI (PWI) with regional cerebral blood volume (rCBV) or positron emission tomography (PET) with aminoacids are used to gain further information. Recent studies suggest that both of theses image modalities provide similar diagnostic information. For comparison tumor to brain ratios (TBR) with mean and maximum values are frequently used but results from different studies can often not be checked against each other. Furthermore, especially the maximum TBR in rCBV is at risk to be falsified by artifacts (e.g. blood vessels). These confinements are reduced by the use of histograms since all information of the VOIs are equally displayed. In this study we measured and compared the intersection of tumor and reference tissue histograms in 18 F-FET PET and rCBV maps in glioma patients. Methods: Twenty-seven glioma patients with contrast enhancing lesion on T1-weighted MR images were investigated using static 18 F-FET PET and rCBV in MRI using a PET–MR hybrid scanner. In all patients diagnosis was confirmed histologically (7 grade II gliomas, 6 grade III gliomas and 14 grade IV gliomas). We generated a set of tumor and reference tissue Volumes-of-Interest (VOIs) based on T1 weighted images in MRI with the tumor VOI defined by contrast enhancement and transferred these VOIs to the corresponding 18 F-FET PET scans and rCBV maps. From these VOIs we generated tumor and reference tissue histograms with a unity of one for each curve integral and measured the proportion of the area under the tumor curve that falls into the reference curve for 18 F-FET PET and rCBV maps for each patient. Results: The mean proportion

  16. Brachial plexus dose tolerance in head and neck cancer patients treated with sequential intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Thomas, Tarita O; Refaat, Tamer; Choi, Mehee; Bacchus, Ian; Sachdev, Sean; Rademaker, Alfred W; Sathiaseelan, Vythialingam; Karagianis, Achilles; Mittal, Bharat B

    2015-01-01

    We aimed to study the radiation induced brachial plexopathy in patients with head and neck squamous cell carcinoma (HNSCC) treated with Sequential Intensity Modulated Radiation Therapy (S-IMRT). This IRB approved study included 68 patients with HNSCC treated consecutively. Detailed dose volume histogram data was generated for ipsilateral and contralateral brachial plexus (BP) volumes receiving a specified dose (Vds) i.e. V50-V75 and dose in Gray covering specified percent of BP volume (Dvs) i.e. D5-D30 and maximum point doses (Dmax). To assess BP injury all patients’ charts were reviewed in detail for sign and symptoms of BP damage. Post-hoc comparisons were done using Tukey-Kramer method to account for multiple significance testing. The mean and maximum doses to BP were significantly different (p < .05) based on tumor site, nodal status and tumor stage. The mean volume to the ipsilateral BP for V50, V60, V70, and V75 were 7.01 cc, 4.37 cc, 1.47 cc and 0.24 cc, respectively. The mean dose delivered to ≤5% of ipsilateral BP was 68.70 Gy (median 69.5Gy). None of the patients had acute or late brachial plexopathy or any other significant neurological complications, with a minimum follow up of two years (mean 54 months). In this study cohort, at a minimum of two-years follow up, the mean dose of 68.7Gy, a median dose to 69.5Gy to ≤5% of ipsilateral BP, and a median Dmax of 72.96Gy did not result in BP injury when patients were treated with S-IMRT technique. However, longer follow up is needed

  17. Comparison of rectal volume definition techniques and their influence on rectal toxicity in patients with prostate cancer treated with 3D conformal radiotherapy: a dose-volume analysis

    International Nuclear Information System (INIS)

    Onal, Cem; Topkan, Erkan; Efe, Esma; Yavuz, Melek; Sonmez, Serhat; Yavuz, Aydin

    2009-01-01

    To evaluate the impact of four different rectum contouring techniques and rectal toxicities in patients with treated with 3D conformal radiotherapy (3DCRT). Clinical and dosimetric data were evaluated for 94 patients who received a total dose 3DCRT of 70 Gy, and rectal doses were compared in four different rectal contouring techniques: the prostate-containing CT sections (method 1); 1 cm above and below the planning target volume (PTV) (method 2); 110 mm starting from the anal verge (method 3); and from the anal verge to the sigmoid flexure (method 4). The percentage of rectal volume receiving RT doses (30–70 Gy) and minimum, mean rectal doses were assessed. Median age was 69 years. Percentage of rectal volume receiving high doses (≥ 70 Gy) were higher with the techniques that contoured smaller rectal volumes. In methods 2 and 3, the percentage of rectal volume receiving ≥ 70 Gy was significantly higher in patients with than without rectal bleeding (method 2: 30.8% vs. 22.5%, respectively (p = 0.03); method 3: 26.9% vs. 18.1%, respectively (p = 0.006)). Mean rectal dose was significant predictor of rectal bleeding only in method 3 (48.8 Gy in patients with bleeding vs. 44.4 Gy in patients without bleeding; p = 0.02). Different techniques of rectal contouring significantly influence the calculation of radiation doses to the rectum and the prediction of rectal toxicity. Rectal volume receiving higher doses (≥ 70 Gy) and mean rectal doses may significantly predict rectal bleeding for techniques contouring larger rectal volumes, as was in method 3

  18. Airborne gamma-ray spectrometer and magnetometer survey, Durango A, Colorado. Final report Volume II A. Detail area

    International Nuclear Information System (INIS)

    1983-01-01

    This volume contains geology of the Durango A detail area, radioactive mineral occurences in Colorado, and geophysical data interpretation. Eight appendices provide the following: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data

  19. Infrared Contrast Enhancement Through Log-Power Histogram Modification

    NARCIS (Netherlands)

    Toet, A.; Wu, T.

    2015-01-01

    A simple power-logarithm histogram modification operator is proposed to enhance infrared (IR) image contrast. The algorithm combines a logarithm operator that smoothes the input image histogram while retaining the relative ordering of the original bins, with a power operator that restores the

  20. PENGARUH HISTOGRAM EQUALIZATION UNTUK PERBAIKAN KUALITAS CITRA DIGITAL

    Directory of Open Access Journals (Sweden)

    Sisilia Daeng Bakka Mau

    2016-04-01

    Full Text Available Penelitian ini membahas penggunaan metode histogram equalization yang akan digunakan untuk perbaikan kualitas citra. Perbaikan kualitas citra (image enhancement merupakan salah satu proses awal dalam peningkatan mutu citra. Peningkatan mutu citra diperlukan karena seringkali citra yang dijadikan objek pembahasan mempunyai kualitas yang buruk, misalnya citra mengalami derau, kabur, citra terlalu gelap atau terang, citra kurang tajam dan sebagainya. Perbaikan kualitas citra adalah proses memperjelas dan mempertajam ciri atau fitur tertentu dari citra agar citra lebih mudah dipersepsi maupun dianalisa secara lebih teliti. Hasil penelitian ini membuktikan bahwa penggunaan metode histogram equalization dapat digunakan untuk meningkatkan kontras citra dan dapat meningkatkan kualitas citra, sehingga informasi yang ada pada citra lebih jelas terlihat. Kata kunci: perbaikan kualitas citra, histogram equalization, citra digital

  1. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  2. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Anderson, Danielle; Fallone, B Gino; Warkentin, Brad; Siegbahn, E Albert; Serduc, Raphael

    2012-01-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm 2 microbeam array in each phantom, as well as a 16 × 16 mm 2 array in the 8 cm cat head, and a 32 × 32 mm 2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2–49 (mouse) and 2–46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2–87% and 33–96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this

  3. Methodological issues in radiation dose-volume outcome analyses: Summary of a joint AAPM/NIH workshop

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Niemierko, Andrzej; Herbert, Donald; Yan, Di; Jackson, Andrew; Ten Haken, Randall K.; Langer, Mark; Sapareto, Steve

    2002-01-01

    This report represents a summary of presentations at a joint workshop of the National Institutes of Health and the American Association of Physicists in Medicine (AAPM). Current methodological issues in dose-volume modeling are addressed here from several different perspectives. Areas of emphasis include (a) basic modeling issues including the equivalent uniform dose framework and the bootstrap method, (b) issues in the valid use of statistics, including the need for meta-analysis, (c) issues in dealing with organ deformation and its effects on treatment response, (d) evidence for volume effects for rectal complications, (e) the use of volume effect data in liver and lung as a basis for dose escalation studies, and (f) implications of uncertainties in volume effect knowledge on optimized treatment planning. Taken together, these approaches to studying volume effects describe many implications for the development and use of this information in radiation oncology practice. Areas of significant interest for further research include the meta-analysis of clinical data; interinstitutional pooled data analyses of volume effects; analyses of the uncertainties in outcome prediction models, minimal parameter number outcome models for ranking treatment plans (e.g., equivalent uniform dose); incorporation of the effect of motion in the outcome prediction; dose-escalation/isorisk protocols based on outcome models; the use of functional imaging to study radio-response; and the need for further small animal tumor control probability/normal tissue complication probability studies

  4. Comparison of Dose Distributions With TG-43 and Collapsed Cone Convolution Algorithms Applied to Accelerated Partial Breast Irradiation Patient Plans

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Sara L., E-mail: slloupot@mdanderson.org [The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shaitelman, Simona F.; Bloom, Elizabeth [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Salehpour, Mohammad; Gifford, Kent [Department of Radiation Physics, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-08-01

    Purpose: To compare the treatment plans for accelerated partial breast irradiation calculated by the new commercially available collapsed cone convolution (CCC) and current standard TG-43–based algorithms for 50 patients treated at our institution with either a Strut-Adjusted Volume Implant (SAVI) or Contura device. Methods and Materials: We recalculated target coverage, volume of highly dosed normal tissue, and dose to organs at risk (ribs, skin, and lung) with each algorithm. For 1 case an artificial air pocket was added to simulate 10% nonconformance. We performed a Wilcoxon signed rank test to determine the median differences in the clinical indices V90, V95, V100, V150, V200, and highest-dosed 0.1 cm{sup 3} and 1.0 cm{sup 3} of rib, skin, and lung between the two algorithms. Results: The CCC algorithm calculated lower values on average for all dose-volume histogram parameters. Across the entire patient cohort, the median difference in the clinical indices calculated by the 2 algorithms was <10% for dose to organs at risk, <5% for target volume coverage (V90, V95, and V100), and <4 cm{sup 3} for dose to normal breast tissue (V150 and V200). No discernable difference was seen in the nonconformance case. Conclusions: We found that on average over our patient population CCC calculated (<10%) lower doses than TG-43. These results should inform clinicians as they prepare for the transition to heterogeneous dose calculation algorithms and determine whether clinical tolerance limits warrant modification.

  5. LHCb: Machine assisted histogram classification

    CERN Multimedia

    Somogyi, P; Gaspar, C

    2009-01-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty components can be either done visually using instruments such as the LHCb Histogram Presenter, or by automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, a graph-theoretic based clustering tool, combined with machine learning algorithms is proposed and demonstrated by processing histograms representing 2D event hitmaps. The concept is proven by detecting ion feedback events in the LHCb RICH subdetector.

  6. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors.

    Science.gov (United States)

    Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-06-01

    Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.

  7. Small bowel toxicity after high dose spot scanning-based proton beam therapy for paraspinal/retroperitoneal neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.A.; Albertini, F.; Koch, T.; Ares, C.; Lomax, A.; Goitein, G. [Paul Scherrer Institute PSI, Villigen (Switzerland). Center for Proton Therapy; Vitolo, V. [Fondazione CNAO, Pavia (Italy); Hug, E.B. [Paul Scherrer Institute PSI, Villigen (Switzerland). Center for Proton Therapy; ProCure Proton Therapy Centers, New York, NY (United States)

    2013-12-15

    Purpose: Mesenchymal tumours require high-dose radiation therapy (RT). Small bowel (SB) dose constraints have historically limited dose delivery to paraspinal and retroperitoneal targets. This retrospective study correlated SB dose-volume histograms with side-effects after proton radiation therapy (PT). Patients and methods: Between 1997 and 2008, 31 patients (mean age 52.1 years) underwent spot scanning-based PT for paraspinal/retroperitoneal chordomas (81 %), sarcomas (16 %) and meningiom (3 %). Mean total prescribed dose was 72.3 Gy (relative biologic effectiveness, RBE) delivered in 1.8-2 Gy (RBE) fractions. Mean follow-up was 3.8 years. Based on the pretreatment planning CT, SB dose distributions were reanalysed. Results: Planning target volume (PTV) was defined as gross tumour volume (GTV) plus 5-7 mm margins. Mean PTV was 560.22 cm{sup 3}. A mean of 93.2 % of the PTV was covered by at least 90 % of the prescribed dose. SB volumes (cm{sup 3}) receiving doses of 5, 20, 30, 40, 50, 60, 70, 75 and 80 Gy (RBE) were calculated to give V5, V20, V30, V40, V50, V60, V70, V75 and V80 respectively. In 7/31 patients, PT was accomplished without any significant SB irradiation (V5 = 0). In 24/31 patients, mean maximum dose (Dmax) to SB was 64.1 Gy (RBE). Despite target doses of > 70 Gy (RBE), SB received > 50 and > 60 Gy (RBE) in only 61 and 54 % of patients, respectively. Mean SB volumes (cm{sup 3}) covered by different dose levels (Gy, RBE) were: V20 (n = 24): 45.1, V50 (n = 19): 17.7, V60 (n = 17): 7.6 and V70 (n = 12): 2.4. No acute toxicity {>=} grade 2 or late SB sequelae were observed. Conclusion: Small noncircumferential volumes of SB tolerated doses in excess of 60 Gy (RBE) without any clinically-significant late adverse effects. This small retrospective study has limited statistical power but encourages further efforts with higher patient numbers to define and establish high-dose threshold models for SB toxicity in modern radiation oncology. (orig.)

  8. Effect of rectal enemas on rectal dosimetric parameters during high-dose-rate vaginal cuff brachytherapy. A prospective trial

    International Nuclear Information System (INIS)

    Sabater, Sebastia; Andres, Ignacio; Sevillano, Marimar; Berenguer, Roberto; Aguayo, Manuel; Villas, Maria Victoria; Gascon, Marina; Arenas, Meritxell; Rovirosa, Angeles; Camacho-Lopez, Cristina

    2016-01-01

    To evaluate the effects of rectal enemas on rectal doses during postoperative high-dose-rate (HDR) vaginal cuff brachytherapy (VCB). This prospective trial included 59 patients. Two rectal cleansing enemas were self-administered before the second fraction, and fraction 1 was considered the basal status. Dose-volume histogram (DVH) values were generated for the rectum and correlated with rectal volume variation. Statistical analyses used paired and unpaired t-tests. Despite a significant 15 % reduction in mean rectal volume (44.07 vs. 52.15 cc, p = 0.0018), 35.6 % of patients had larger rectums after rectal enemas. No significant rectal enema-related DVH differences were observed compared to the basal data. Although not statistically significant, rectal cleansing-associated increases in mean rectal DVH values were observed: D 0.1 cc : 6.6 vs. 7.21 Gy; D 1 cc : 5.35 vs. 5.52 Gy; D 2 cc : 4.67 vs. 4.72 Gy, before and after rectal cleaning, respectively (where D x cc is the dose to the most exposed x cm 3 ). No differences were observed in DVH parameters according to rectal volume increase or decrease after the enema. Patients whose rectal volume increased also had significantly larger DVH parameters, except for D 5 % , D 25 % , and D 50 % . In contrast, in patients whose rectal volume decreased, significance was only seen for D 25 % and D 50 % (D x % dose covering x % of the volume). In the latter patients, nonsignificant reductions in D 2 cc , D 5 cc and V 5 Gy (volume receiving at least 5 Gy) were observed. The current rectal enemas protocol was ineffective in significantly modifying rectal DVH parameters for HDR-VCB. (orig.) [de

  9. Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment.

    Science.gov (United States)

    Reiner, Caecilia S; Gordic, Sonja; Puippe, Gilbert; Morsbach, Fabian; Wurnig, Moritz; Schaefer, Niklaus; Veit-Haibach, Patrick; Pfammatter, Thomas; Alkadhi, Hatem

    2016-03-01

    To evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE). Sixteen patients (15 male; mean age 65 years; age range 47-80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogram analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters' ability to discriminate responders from non-responders. According to mRECIST, 8 patients (50%) were responders and 8 (50%) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min(-1) 100 mL(-1)); p 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min(-1) 100 mL(-1), therapy response could be predicted with a sensitivity of 88% (7/8) and specificity of 75% (6/8). Voxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE.

  10. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe; Wu Lili; Lin Zhixiong

    2012-01-01

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volume histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.

  11. Improving dose homogeneity in head and neck radiotherapy with custom 3-D compensation

    International Nuclear Information System (INIS)

    Brock, Linda K.; Harari, Paul M.; Sharda, Navneet N.; Paliwal, Bhudatt R.; Kinsella, Timothy J.

    1996-01-01

    Purpose/Objective: Anatomic contour irregularities and tissue inhomogeneities can lead to significant radiation dose variation across complex treatment volumes. Such dose non-uniformity occurs routinely in radiation of the head and neck (H and N) despite beam shaping with blocks or beam modification with wedges. Small dose variations are amplified by the high total doses delivered (often >70 Gy) which can thereby influence late normal tissue complications as well as tumor control. We have therefore implemented the routine use of 3-D custom tissue compensators for our H and N cancer patients fabricated directly from CT scan contour data obtained in the treatment position. The capacity of such compensators to improve dose uniformity in patients with tumors of the H and N is herein reported. Materials and Methods: Between July 1992 and March 1995, 80 patients receiving H and N radiotherapy had 3-D custom compensators fabricated for their treatment course. Detailed dosimetric records have been reviewed for thirty cases to date (60 custom compensators). Dose uniformity across the treatment volume, peak dose delivery and maximum doses to selected, clinically relevant, anatomic subsites were analyzed and compared with uncompensated and wedged plans. Dose-volume histograms were generated and volumes receiving greater than 5% and 10% of the prescribed dose noted. Phantom dose measurements were performed for compensated fields using a water chamber and were compared to calculated doses in order to evaluate the accuracy of isodoses generated by the Theraplan treatment planning system. Accuracy of the fabrication and positioning of the custom compensators was verified by direct measurement. Results: Custom compensators resulted in an average reduction of dose variance across the treatment volume from 13.8% (7-20%) for the uncompensated plans to 4.5% (2-7%) with the compensators. Wedged plans were variable but on average an 8% (3-15%) dose variance was noted. Maximum doses

  12. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    International Nuclear Information System (INIS)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G.

    2002-01-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7±17.1 and 40.4±16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7±4.8 ccm for 3D-HOF and 10.7±12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma

  13. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    Energy Technology Data Exchange (ETDEWEB)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G. [National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)

    2002-04-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7{+-}17.1 and 40.4{+-}16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7{+-}4.8 ccm for 3D-HOF and 10.7{+-}12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma.

  14. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Georg, Dietmar, E-mail: Dietmar.Georg@akhwien.at [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hopfgartner, Johannes [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Gòra, Joanna [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kuess, Peter [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kragl, Gabriele [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Berger, Daniel [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hegazy, Neamat [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Goldner, Gregor; Georg, Petra [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria)

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  15. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Georg, Dietmar; Hopfgartner, Johannes; Gòra, Joanna; Kuess, Peter; Kragl, Gabriele; Berger, Daniel; Hegazy, Neamat; Goldner, Gregor; Georg, Petra

    2014-01-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ( 192 Ir) and LDR-BT ( 125 I) were D 90% ≥34 Gy in 8.5 Gy per fraction and D 90% ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D mean around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques were clearly superior in

  16. IMPLEMENTASI METODE HISTOGRAM EQUALIZATION UNTUK MENINGKATKAN KUALITAS CITRA DIGITAL

    Directory of Open Access Journals (Sweden)

    Isa Akhlis

    2012-02-01

    Full Text Available Radiografi dapat digunakan untuk membantu mendiagnosis penyakit dalam bidang medis. Umumnya citra radiograf masih tampak kabur sehingga memerlukan pengolahan untuk menghilangkan atau mengurangi kekaburan tersebut. Tujuan penelitian ini adalah mendesain perangkat lunak untuk meningkatkan kualitas citra digital foto Roentgen yaitu dengan meningkatkan kontras citra tersebut. Salah satu metode untuk meningkatkan kontras citra digital adalah dengan menggunakan metode histogram equalization. Metoda tersebut membuat tingkat keabuan citra tersebar merata pada semua tingkat keabuan. Hasil penelitian menunjukkan bahwa metoda histogram equalization dapat digunakan untuk meningkatkan kontras citra.  Hal ini dapat langsung dilihat pada layar monitor.   Kata kunci: citra radiograf,  histogram equalization

  17. SU-E-T-641: Development and Verification of Automatic Reading Dose of Interest From Eclipse's DVH

    International Nuclear Information System (INIS)

    Wu, Q

    2014-01-01

    Purpose: According to clinical and research requirement, we develop a function of automatic reading dose of interest from dose volume histogram(DVH), to replace the traditional method with a mouse one by one point, and it's also verified. Methods: The DVH automatic reading function will be developed in an in-house developed radiotherapy information management system(RTIMS), which is based on Apache+PHP+MySQL. A DVH ASCII file is exported from Varian Eclipse V8.6, which includes the following contents: 1. basic information of patient; 2. dose information of plan; 3. dose information of structures, including basic information and dose volume data of target volume and organ at risk. And the default exported dose volume data also includes relative doses by 1% step and corresponding absolute doses and cumulative relative volumes, and the volumes are 4 decimal fraction. Clinically, we often need read the doses of some integer percent volumes, such as D50 and D30. So it couldn't be directly obtained from the above data, but we can use linear interpolation bye the near volumes and doses: Dx=D2−(V2−Vx)*(D2−D1)/(V2−V1), and program a function to search, read and calculate the corresponding data. And the doses of all preseted volume of interest of all structures can be automatically read one by one patient, and saved as a CSV file. To verify it, we select 24 IMRT plans for prostate cancer, and doses of interest are PTV D98/D95/D5/D2, bladder D30/D50, and rectum D25/D50. Two groups of data, using the automatic reading method(ARM) and pointed dose method(PDM), are analyzed with SPSS 16. The absolute difference=D-ARM-D-PDM, relative difference=absolute difference*100%/prescription dose(7600cGy). Results: The differences are as following: PTV D98/D95/D5/D2: −0.04%/− 0.04%/0.13%/0.19%, bladder D30/D50: −0.02%/0.01%, and rectum D25/D50: 0.03%/0.01%. Conclusion: Using this function, the error is very small, and can be neglected. It could greatly improve the

  18. SU-E-T-641: Development and Verification of Automatic Reading Dose of Interest From Eclipse's DVH

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q [Department of Radiation Oncology, Beijing Hospital, Ministry of Health, Beijing (China)

    2014-06-15

    Purpose: According to clinical and research requirement, we develop a function of automatic reading dose of interest from dose volume histogram(DVH), to replace the traditional method with a mouse one by one point, and it's also verified. Methods: The DVH automatic reading function will be developed in an in-house developed radiotherapy information management system(RTIMS), which is based on Apache+PHP+MySQL. A DVH ASCII file is exported from Varian Eclipse V8.6, which includes the following contents: 1. basic information of patient; 2. dose information of plan; 3. dose information of structures, including basic information and dose volume data of target volume and organ at risk. And the default exported dose volume data also includes relative doses by 1% step and corresponding absolute doses and cumulative relative volumes, and the volumes are 4 decimal fraction. Clinically, we often need read the doses of some integer percent volumes, such as D50 and D30. So it couldn't be directly obtained from the above data, but we can use linear interpolation bye the near volumes and doses: Dx=D2−(V2−Vx)*(D2−D1)/(V2−V1), and program a function to search, read and calculate the corresponding data. And the doses of all preseted volume of interest of all structures can be automatically read one by one patient, and saved as a CSV file. To verify it, we select 24 IMRT plans for prostate cancer, and doses of interest are PTV D98/D95/D5/D2, bladder D30/D50, and rectum D25/D50. Two groups of data, using the automatic reading method(ARM) and pointed dose method(PDM), are analyzed with SPSS 16. The absolute difference=D-ARM-D-PDM, relative difference=absolute difference*100%/prescription dose(7600cGy). Results: The differences are as following: PTV D98/D95/D5/D2: −0.04%/− 0.04%/0.13%/0.19%, bladder D30/D50: −0.02%/0.01%, and rectum D25/D50: 0.03%/0.01%. Conclusion: Using this function, the error is very small, and can be neglected. It could greatly improve the

  19. Whole-lesion histogram analysis metrics of the apparent diffusion coefficient as a marker of breast lesions characterization at 1.5 T.

    Science.gov (United States)

    Bougias, H; Ghiatas, A; Priovolos, D; Veliou, K; Christou, A

    2017-05-01

    To retrospectively assess the role of whole-lesion apparent diffusion coefficient (ADC) in the characterization of breast tumors by comparing different histogram metrics. 49 patients with 53 breast lesions underwent magnetic resonance imaging (MRI). ADC histogram parameters, including the mean, mode, 10th/50th/90th percentile, skewness, kurtosis, and entropy ADCs, were derived for the whole-lesion volume in each patient. Mann-Whitney U-test, area under the receiver-operating characteristic curve (AUC) were used for statistical analysis. The mean, mode and 10th/50th/90th percentile ADC values were significantly lower in malignant lesions compared with benign ones (all P histogram analysis could be a helpful index in the characterization and differentiation between benign and malignant breast lesions with the 10th and 50th percentile ADC be the most accurate discriminators. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  20. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397)

    International Nuclear Information System (INIS)

    Buettner, Florian; Gulliford, Sarah L; Webb, Steve; Partridge, Mike; Sydes, Matthew R; Dearnaley, David P

    2009-01-01

    Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.

  1. HPLOT: the graphics interface package for the HBOOK histogramming package

    International Nuclear Information System (INIS)

    Watkins, H.

    1978-01-01

    The subroutine package HPLOT described in this report, enables the CERN histogramming package HBOOK to produce high-quality pictures by means of high-resolution devices such as plotters. HPLOT can be implemented on any scientific computing system with a Fortran IV compiler and can be interfaced with any graphics package; spectral routines in addition to the basic ones enable users to embellish their histograms. Examples are also given of the use of HPLOT as a graphics package for plotting simple pictures without histograms. (Auth.)

  2. A comparison of dose-volume constraints derived using peak and longitudinal definitions of late rectal toxicity

    International Nuclear Information System (INIS)

    Gulliford, Sarah L.; Partridge, Mike; Sydes, Matthew R.; Andreyev, Jervoise; Dearnaley, David P.

    2010-01-01

    Background and purpose: Accurate reporting of complications following radiotherapy is an important part of the feedback loop to improve radiotherapy techniques. The definition of toxicity is normally regarded as the maximum or peak (P) grade of toxicity reported over the follow-up period. An alternative definition (integrated longitudinal toxicity (ILT)) is proposed which takes into account both the severity and the duration of the complication. Methods and materials: In this work, both definitions of toxicity were used to derive dose-volume constraints for six specific endpoints of late rectal toxicity from a cohort of patients who received prostate radiotherapy in the MRC RT01 trial. The dose-volume constraints were derived using ROC analysis for 30, 40, 50, 60, 65 and 70 Gy. Results: Statistically significant dose-volume constraints were not derived for all dose levels tested for each endpoint and toxicity definition. However, where both definitions produced constraints, there was generally good agreement. Variation in the derived dose-volume constraints was observed to be larger between endpoints than between the two definitions of toxicity. For one endpoint (stool frequency (LENT/SOM)) statistically significant dose-volume constraints were only derived using ILT. Conclusions: The longitudinal definition of toxicity (ILT) produced results consistent with those derived using peak toxicity and in some cases provided additional information which was not seen by analysing peak toxicity alone.

  3. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK

    2006-08-01

    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  4. Calibration of 14C Histograms : A Comparison of Methods

    NARCIS (Netherlands)

    Stolk, Ad; Törnqvist, Torbjörn E.; Hekhuis, Kilian P.V.; Berendsen, Henk J.A.; Plicht, Johannes van der

    1994-01-01

    The interpretation of C-14 histograms is complicated by the non-linearity of the C-14 time scale in terms of Calendar years, which may result in clustering of C-14 ages in certain time intervals unrelated to the (geologic or archaeologic) phenomenon of interest. One can calibrate C-14 histograms for

  5. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    Energy Technology Data Exchange (ETDEWEB)

    Leicher, Brian, E-mail: bleicher@wpahs.org [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA (United States); Day, Ellen [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA (United States); Colonias, Athanasios; Gayou, Olivier [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA (United States); Drexel University College of Medicine, Allegheny Campus, Philadelphia, PA (United States)

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  6. Electron Irradiation of Conjunctival Lymphoma-Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany); Zaragoza, Francisco J.; Sempau, Josep [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Barcelona (Spain); Wittig, Andrea [Department of Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg (Germany); Sauerwein, Wolfgang [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany)

    2012-07-15

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  7. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    International Nuclear Information System (INIS)

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-01-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume

  8. Oriented Shape Index Histograms for Cell Classification

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Dahl, Anders Bjorholm; Larsen, Rasmus

    2015-01-01

    We propose a novel extension to the shape index histogram feature descriptor where the orientation of the second-order curvature is included in the histograms. The orientation of the shape index is reminiscent but not equal to gradient orientation which is widely used for feature description. We...... evaluate our new feature descriptor using a public dataset consisting of HEp-2 cell images from indirect immunoflourescence lighting. Our results show that we can improve classification performance significantly when including the shape index orientation. Notably, we show that shape index orientation...

  9. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  10. When treating prostate cancer with three-dimensional conformal radiation therapy the impact of bladder filling status on the volume and integral dose distribution of the target and critical organs should be kept in mind

    International Nuclear Information System (INIS)

    Liu Yueping; Liu Xinfan; Li Yexiong; Guang Ying

    2007-01-01

    bowel was reduced by 75% in the full bladder status, (257±223) cGy and (60±25) cGy(P=0.012), respectively. No dose change was found in the CTV, PTV, femoral heads and rectum(P=0.423,0.540,0.123,0.704). From empty to full, dose volume histogram(DVH) comparison showed 14% reduction in the percentage of bladder which received 50 cGy(P=0.001), without change in rectum and femoral heads (P=0.675,1.000). The maximal dose to the pelvic small bowel in the full bladder status was only 10% of the empty status(P=0.004). Conclusions: When treating prostate cancer with 3DCRT, the filling status of the bladder would result in the change of bladder volume. Distended bladder is able to reduce the irradiation dose to the bladder, pelvic small bowel, thus brings up a better protection to these organs. (authors)

  11. Dose-Volume Constraints to Reduce Rectal Side Effects From Prostate Radiotherapy: Evidence From MRC RT01 Trial ISRCTN 47772397

    International Nuclear Information System (INIS)

    Gulliford, Sarah L.; Foo, Kerwyn; Morgan, Rachel C.; Aird, Edwin G.; Bidmead, A. Margaret; Critchley, Helen; Evans, Philip M. D.Phil.; Gianolini, Stefano; Mayles, W. Philip; Moore, A. Rollo; Sanchez-Nieto, Beatriz; Partridge, Mike; Sydes, Matthew R. C.Stat; Webb, Steve; Dearnaley, David P.

    2010-01-01

    Purpose: Radical radiotherapy for prostate cancer is effective but dose limited because of the proximity of normal tissues. Comprehensive dose-volume analysis of the incidence of clinically relevant late rectal toxicities could indicate how the dose to the rectum should be constrained. Previous emphasis has been on constraining the mid-to-high dose range (≥50 Gy). Evidence is emerging that lower doses could also be important. Methods and Materials: Data from a large multicenter randomized trial were used to investigate the correlation between seven clinically relevant rectal toxicity endpoints (including patient- and clinician-reported outcomes) and an absolute 5% increase in the volume of rectum receiving the specified doses. The results were quantified using odds ratios. Rectal dose-volume constraints were applied retrospectively to investigate the association of constraints with the incidence of late rectal toxicity. Results: A statistically significant dose-volume response was observed for six of the seven endpoints for at least one of the dose levels tested in the range of 30-70 Gy. Statistically significant reductions in the incidence of these late rectal toxicities were observed for the group of patients whose treatment plans met specific proposed dose-volume constraints. The incidence of moderate/severe toxicity (any endpoint) decreased incrementally for patients whose treatment plans met increasing numbers of dose-volume constraints from the set of V30≤80%, V40≤65%, V50≤55%, V60≤40%, V65≤30%, V70≤15%, and V75≤3%. Conclusion: Considering the entire dose distribution to the rectum by applying dose-volume constraints such as those tested here in the present will reduce the incidence of late rectal toxicity.

  12. Consequences of Anatomic Changes and Respiratory Motion on Radiation Dose Distributions in Conformal Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Britton, Keith R.; Starkschall, George; Liu, Helen; Chang, Joe Y.; Bilton, Stephen; Ezhil, Muthuveni; John-Baptiste, Sandra C.; Kantor, Michael; Cox, James D.; Komaki, Ritsuko; Mohan, Radhe

    2009-01-01

    Purpose: To determine the effect of interfractional changes in anatomy on the target and normal tissue dose distributions during course of radiotherapy in non-small-cell lung cancer patients. Methods and Materials: Weekly respiration-correlated four-dimensional computed tomography scans were acquired for 10 patients. Original beam arrangements from conventional and inverse treatment plans were transferred into each of the weekly four-dimensional computed tomography data sets, and the dose distributions were recalculated. Dosimetric changes to the target volumes and relevant normal structures relative to the baseline treatment plans were analyzed by dose-volume histograms. Results: The overall difference in the mean ± standard deviation of the doses to 95% of the planning target volume and internal target volume between the initial and weekly treatment plans was -11.9% ± 12.1% and -2.5% ± 3.9%, respectively. The mean ± standard deviation change in the internal target volume receiving 95% of the prescribed dose was -2.3% ± 4.1%. The overall differences in the mean ± standard deviation between the initial and weekly treatment plans was 3.1% ± 6.8% for the total lung volume exceeding 20 Gy, 2.2% ± 4.8% for mean total lung dose, and 34.3% ± 43.0% for the spinal cord maximal dose. Conclusion: Serial four-dimensional computed tomography scans provided useful anatomic information and dosimetric changes during radiotherapy. Although the observed dosimetric variations were small, on average, the interfractional changes in tumor volume, mobility, and patient setup was sometimes associated with dramatic dosimetric consequences. Therefore, for locally advanced lung cancer patients, efforts to include image-guided treatment and to perform repeated imaging during the treatment course are recommended

  13. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  14. Improved LSB matching steganography with histogram characters reserved

    Science.gov (United States)

    Chen, Zhihong; Liu, Wenyao

    2008-03-01

    This letter bases on the researches of LSB (least significant bit, i.e. the last bit of a binary pixel value) matching steganographic method and the steganalytic method which aims at histograms of cover images, and proposes a modification to LSB matching. In the LSB matching, if the LSB of the next cover pixel matches the next bit of secret data, do nothing; otherwise, choose to add or subtract one from the cover pixel value at random. In our improved method, a steganographic information table is defined and records the changes which embedded secrete bits introduce in. Through the table, the next LSB which has the same pixel value will be judged to add or subtract one dynamically in order to ensure the histogram's change of cover image is minimized. Therefore, the modified method allows embedding the same payload as the LSB matching but with improved steganographic security and less vulnerability to attacks compared with LSB matching. The experimental results of the new method show that the histograms maintain their attributes, such as peak values and alternative trends, in an acceptable degree and have better performance than LSB matching in the respects of histogram distortion and resistance against existing steganalysis.

  15. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors.

    Science.gov (United States)

    Cho, Gene Young; Moy, Linda; Kim, Sungheon G; Baete, Steven H; Moccaldi, Melanie; Babb, James S; Sodickson, Daniel K; Sigmund, Eric E

    2016-08-01

    To examine heterogeneous breast cancer through intravoxel incoherent motion (IVIM) histogram analysis. This HIPAA-compliant, IRB-approved retrospective study included 62 patients (age 48.44 ± 11.14 years, 50 malignant lesions and 12 benign) who underwent contrast-enhanced 3 T breast MRI and diffusion-weighted imaging. Apparent diffusion coefficient (ADC) and IVIM biomarkers of tissue diffusivity (Dt), perfusion fraction (fp), and pseudo-diffusivity (Dp) were calculated using voxel-based analysis for the whole lesion volume. Histogram analysis was performed to quantify tumour heterogeneity. Comparisons were made using Mann-Whitney tests between benign/malignant status, histological subtype, and molecular prognostic factor status while Spearman's rank correlation was used to characterize the association between imaging biomarkers and prognostic factor expression. The average values of the ADC and IVIM biomarkers, Dt and fp, showed significant differences between benign and malignant lesions. Additional significant differences were found in the histogram parameters among tumour subtypes and molecular prognostic factor status. IVIM histogram metrics, particularly fp and Dp, showed significant correlation with hormonal factor expression. Advanced diffusion imaging biomarkers show relationships with molecular prognostic factors and breast cancer malignancy. This analysis reveals novel diagnostic metrics that may explain some of the observed variability in treatment response among breast cancer patients. • Novel IVIM biomarkers characterize heterogeneous breast cancer. • Histogram analysis enables quantification of tumour heterogeneity. • IVIM biomarkers show relationships with breast cancer malignancy and molecular prognostic factors.

  16. Histogram analysis of diffusion kurtosis imaging estimates for in vivo assessment of 2016 WHO glioma grades: A cross-sectional observational study.

    Science.gov (United States)

    Hempel, Johann-Martin; Schittenhelm, Jens; Brendle, Cornelia; Bender, Benjamin; Bier, Georg; Skardelly, Marco; Tabatabai, Ghazaleh; Castaneda Vega, Salvador; Ernemann, Ulrike; Klose, Uwe

    2017-10-01

    To assess the diagnostic performance of histogram analysis of diffusion kurtosis imaging (DKI) maps for in vivo assessment of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO) integrated glioma grades. Seventy-seven patients with histopathologically-confirmed glioma who provided written informed consent were retrospectively assessed between 01/2014 and 03/2017 from a prospective trial approved by the local institutional review board. Ten histogram parameters of mean kurtosis (MK) and mean diffusivity (MD) metrics from DKI were independently assessed by two blinded physicians from a volume of interest around the entire solid tumor. One-way ANOVA was used to compare MK and MD histogram parameter values between 2016 CNS WHO-based tumor grades. Receiver operating characteristic analysis was performed on MK and MD histogram parameters for significant results. The 25th, 50th, 75th, and 90th percentiles of MK and average MK showed significant differences between IDH1/2 wild-type gliomas, IDH1/2 mutated gliomas, and oligodendrogliomas with chromosome 1p/19q loss of heterozygosity and IDH1/2 mutation (pHistogram analysis of DKI can stratify gliomas according to the integrated approach of 2016 CNS WHO. The 50th (median), 75th , and the 90th percentiles showed the highest diagnostic performance. However, the average MK is also robust and feasible in routine clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparison of different contouring definitions of the rectum as organ at risk (OAR) and dose-volume parameters predicting rectal inflammation in radiotherapy of prostate cancer: which definition to use?

    Science.gov (United States)

    Nitsche, Mirko; Brannath, Werner; Brückner, Matthias; Wagner, Dirk; Kaltenborn, Alexander; Temme, Nils; Hermann, Robert M

    2017-02-01

    The objective of this retrospective planning study was to find a contouring definition for the rectum as an organ at risk (OAR) in curative three-dimensional external beam radiotherapy (EBRT) for prostate cancer (PCa) with a predictive correlation between the dose-volume histogram (DVH) and rectal toxicity. In a pre-study, the planning CT scans of 23 patients with PCa receiving definitive EBRT were analyzed. The rectum was contoured according to 13 different definitions, and the dose distribution was correlated with the respective rectal volumes by generating DVH curves. Three definitions were identified to represent the most distinct differences in the shapes of the DVH curves: one anatomical definition recommended by the Radiation Therapy Oncology Group (RTOG) and two functional definitions based on the target volume. In the main study, the correlation between different relative DVH parameters derived from these three contouring definitions and the occurrence of rectal toxicity during and after EBRT was studied in two consecutive collectives. The first cohort consisted of 97 patients receiving primary curative EBRT and the second cohort consisted of 66 patients treated for biochemical recurrence after prostatectomy. Rectal toxicity was investigated by clinical investigation and scored according to the Common Terminology Criteria for Adverse Events. Candidate parameters were the volume of the rectum, mean dose, maximal dose, volume receiving at least 60 Gy (V 60 ), area under the DVH curve up to 25 Gy and area under the DVH curve up to 75 Gy in dependence of each chosen rectum definition. Multivariable logistic regression considered other clinical factors such as pelvine lymphatics vs local target volume, diabetes, prior rectal surgery, anticoagulation or haemorrhoids too. In Cohort 1 (primary EBRT), the mean rectal volumes for definitions "RTOG", planning target volume "(PTV)-based" and "PTV-linked" were 100 cm 3 [standard deviation (SD) 43 cm 3 ], 60

  18. A Modified Image Comparison Algorithm Using Histogram Features

    OpenAIRE

    Al-Oraiqat, Anas M.; Kostyukova, Natalya S.

    2018-01-01

    This article discuss the problem of color image content comparison. Particularly, methods of image content comparison are analyzed, restrictions of color histogram are described and a modified method of images content comparison is proposed. This method uses the color histograms and considers color locations. Testing and analyzing of based and modified algorithms are performed. The modified method shows 97% average precision for a collection containing about 700 images without loss of the adv...

  19. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    Science.gov (United States)

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose

  20. Impact of electromechanical parameter variations in treatment volume doses and adjacent structures; Impacto da variacao dos parametros eletro-mecanicos nas doses do volume de tratamento e nas estruturas adjacentes

    Energy Technology Data Exchange (ETDEWEB)

    Morais, M.E.; Campos, A.M. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Programa de Qualidade em Radioterapia]. E-mails: memorais@yahoo.com.br; amcampos@inca.gov.br; Goncalves, J. F. [Instituto de Oncologia e Radioterapia GV, Governador Valadares, MG (Brazil)]. E-mail: joelfgoncalves@yahoo.com.br; Ferreira, M.L. [Centro Radioterapico Gavea, Rio de Janeiro, RJ (Brazil)]. E-mail: mluciaf@yahoo.com

    2003-07-01

    ICRU Report 62 recommends that radiotherapy treatment dose should be prescribed in such a way that the dose to the target volume varies no more than 10%. In order to keep this goal, a very important role is played by the quality assurance (QA) of the treatment unit associated to the high level work of the personnel involved in planning and patient treatment. This paper shows the influence of the main electrical and mechanical linear accelerator parameters: field size, source-skin distance, gantry angle and light x radiation field coincidence in tumor volume and adjacent organ doses. We simulated a cubic tumor and a cubic adjacent critical organ in a cubic phantom and used a 3D Prowess system for planning. The treatment has been simulated for a 6 MV linear accelerator. We simulated two treatment planning: one using all the parameters inside their tolerance limits and another doubling these limits. The final results have show that, if the irradiation machine operates out of the tolerance limits, the dose variation in the planning target volume (PTV) can goes till {+-} 5,8% and in the critical adjacent organ till {+-} 7,7%. Therefore we concluded that, according to the complexity of the treatment, it can be necessary to reduce the tolerance levels advised by the IAEA/TECDOC - 1151. (author)

  1. Radiation Dose-Volume Effects in the Brain

    International Nuclear Information System (INIS)

    Lawrence, Yaacov Richard; Li, X. Allen; El Naqa, Issam; Hahn, Carol A.; Marks, Lawrence B.; Merchant, Thomas E.; Dicker, Adam P.

    2010-01-01

    We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation necrosis appears a median of 1-2 years after RT; however, cognitive decline develops over many years. The incidence and severity is dose and volume dependent and can also be increased by chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of 80 Gy. For large fraction sizes (≥2.5 Gy), the incidence and severity of toxicity is unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between the target size and the risk of adverse events. Substantial variation among different centers' reported outcomes have prevented us from making toxicity-risk predictions. Cognitive dysfunction in children is largely seen for whole brain doses of ≥18 Gy. No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT.

  2. Histogram-based quantitative evaluation of endobronchial ultrasonography images of peripheral pulmonary lesion.

    Science.gov (United States)

    Morikawa, Kei; Kurimoto, Noriaki; Inoue, Takeo; Mineshita, Masamichi; Miyazawa, Teruomi

    2015-01-01

    Endobronchial ultrasonography using a guide sheath (EBUS-GS) is an increasingly common bronchoscopic technique, but currently, no methods have been established to quantitatively evaluate EBUS images of peripheral pulmonary lesions. The purpose of this study was to evaluate whether histogram data collected from EBUS-GS images can contribute to the diagnosis of lung cancer. Histogram-based analyses focusing on the brightness of EBUS images were retrospectively conducted: 60 patients (38 lung cancer; 22 inflammatory diseases), with clear EBUS images were included. For each patient, a 400-pixel region of interest was selected, typically located at a 3- to 5-mm radius from the probe, from recorded EBUS images during bronchoscopy. Histogram height, width, height/width ratio, standard deviation, kurtosis and skewness were investigated as diagnostic indicators. Median histogram height, width, height/width ratio and standard deviation were significantly different between lung cancer and benign lesions (all p histogram standard deviation. Histogram standard deviation appears to be the most useful characteristic for diagnosing lung cancer using EBUS images. © 2015 S. Karger AG, Basel.

  3. Evaluation of axillary dose coverage following whole breast radiotherapy: Variation with the breast volume and shape

    International Nuclear Information System (INIS)

    Aguiar, Artur; Gomes Pereira, Helena; Azevedo, Isabel; Gomes, Luciano

    2015-01-01

    Objective: To evaluate the axillary dose coverage in patients treated with tridimensional whole breast radiotherapy (3D-WBRT), according to the breast volume and shape in treatment position. Background: Several studies have demonstrated an insufficient dose contribution to the axillary levels, using 3D-WBRT, remaining unclear whether the breast volume and shape can influence it. Materials and methods: We retrospectively delineated the axillary levels on planning CT-images of 100 patients, treated with 3D-WBRT along 2012 in our institution. To estimate the shape we established an anatomic CT-based interval, defined as the Thoracic Extent (TE). The breast volume matched its CTV. Mean dose levels and V95 (volume receiving at least 95% of the prescribed dose) were evaluated. Results: Mean axillary level I (A1), II (A2) and III (A3) volume was 56.1 cc, 16.5 cc and 18.9 cc, respectively, and mean doses were 43.9 Gy, 38.6 Gy and 19.5 Gy. For breast volumes of <800 cc, 800–999 cc, 1000–1199 cc and >1200 cc, mean A1 V95 was 38%, 51%, 61.2% and 57.2% whereas median A2 V95 was 8.3%, 13.4%, 19.4% and 28% respectively. Regarding shape, where the breast relative position to the TE was categorized in intervals between 31% and 40%, 41% and 50%, 51% and 60%, and 61% and 70%, mean A1 V95 was 38.7%, 43.1%, 51.1% and 77.3% whereas mean A2 V95 was 6.1%, 11.2%, 17.1% and 37% respectively. Conclusions: We observed inadequate dose coverage to all axillary levels, even after applying a sub-analysis accounting for different breast volumes and shapes. Although higher doses were associated with the more voluminous and pendulous breasts, axillary coverage with 3D-WBRT seems to be inefficient, regardless of the breast morphology

  4. Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer

    International Nuclear Information System (INIS)

    Andersen, E S; Muren, L P; Thor, M; Petersen, J B; Tanderup, K; Sørensen, T S; Noe, K Ø; Høyer, M; Bentzen, L

    2012-01-01

    Variations in bladder position, shape and volume cause uncertainties in the doses delivered to this organ during a course of radiotherapy for pelvic tumors. The purpose of this study was to evaluate the potential of dose accumulation based on repeat imaging and deformable image registration (DIR) to improve the accuracy of bladder dose assessment. For each of nine prostate cancer patients, the initial treatment plan was re-calculated on eight to nine repeat computed tomography (CT) scans. The planned bladder dose–volume histogram (DVH) parameters were compared to corresponding parameters derived from DIR-based accumulations as well as DVH summation based on dose re-calculations. It was found that the deviations between the DIR-based accumulations and the planned treatment were substantial and ranged (−0.5–2.3) Gy and (−9.4–13.5) Gy for D 2% and D mean , respectively, whereas the deviations between DIR-based accumulations and DVH summation were small and well within 1 Gy. For the investigated treatment scenario, DIR-based bladder dose accumulation did not result in substantial improvement of dose estimation as compared to the straightforward DVH summation. Large variations were found in individual patients between the doses from the initial treatment plan and the accumulated bladder doses. Hence, the use of repeat imaging has a potential for improved accuracy in treatment dose reporting. (paper)

  5. Dose planning objectives in anal canal cancer IMRT: the TROG ANROTAT experience

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Elizabeth, E-mail: elizabeth@mebrown.net [Princess Alexandra Hospital, Brisbane, Queensland (Australia); Cray, Alison [Peter MacCallum Cancer Cancer Centre, Box Hill, Victoria (Australia); Haworth, Annette [Peter MacCallum Cancer Cancer Centre, Box Hill, Victoria (Australia); University of Melbourne, Melbourne, Victoria (Australia); Chander, Sarat [Peter MacCallum Cancer Cancer Centre, Box Hill, Victoria (Australia); Lin, Robert [Medica Oncology, Hurstville, New South Wales (Australia); Subramanian, Brindha; Ng, Michael [Radiation Oncology Victoria, Melbourne, Victoria (Australia); Princess Alexandra Hospital, Brisbane, Queensland (Australia)

    2015-06-15

    Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by two different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose–volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.

  6. Dose accumulation of multiple high dose rate prostate brachytherapy treatments in two commercially available image registration systems.

    Science.gov (United States)

    Poder, Joel; Yuen, Johnson; Howie, Andrew; Bece, Andrej; Bucci, Joseph

    2017-11-01

    The purpose of this study was to assess whether deformable image registration (DIR) is required for dose accumulation of multiple high dose rate prostate brachytherapy (HDRPBT) plans treated with the same catheter pattern on two different CT datasets. DIR was applied to 20 HDRPBT patients' planning CT images who received two treatment fractions on sequential days, on two different CT datasets, with the same implant. Quality of DIR in Velocity and MIM image registration systems was assessed by calculating the Dice Similarity Coefficient (DSC) and mean distance to agreement (MDA) for the prostate, urethra and rectum contours. Accumulated doses from each system were then calculated using the same DIR technique and dose volume histogram (DVH) parameters compared to manual addition with no DIR. The average DSC was found to be 0.83 (Velocity) and 0.84 (MIM), 0.80 (Velocity) and 0.80 (MIM), 0.80 (Velocity) and 0.81 (MIM), for the prostate, rectum and urethra contours, respectively. The average difference in calculated DVH parameters between the two systems using dose accumulation was less than 1%, and there was no statistically significant difference found between deformably accumulated doses in the two systems versus manual DVH addition with no DIR. Contour propagation using DIR in velocity and MIM was shown to be at least equivalent to inter-observer contouring variability on CT. The results also indicate that dose accumulation through manual addition of DVH parameters may be sufficient for HDRPBT treatments treated with the same catheter pattern on two different CT datasets. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Relationship between radiation dose and lung function in patients with lung cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Harsaker, V.; Dale, E.; Bruland, O.S.; Olsen, D.R.

    2003-01-01

    In patients with inoperable non-small cell lung cancer (NSCLC), radical radiotherapy is the treatment of choice. The dose is limited by consequential pneumonitis and lung fibrosis. Hence, a better understanding of the relationship between the dose-volume distributions and normal tissue side effects is needed. CT is a non-invasive method to monitor the development of fibrosis and pneumonitis, and spirometry is an established tool to measure lung function. NSCLC patients were included in a multicenter trial and treated with megavoltage conformal radiotherapy. In a subgroup comprising 16 patients, a total dose of 59-63 Gy with 1.8-1.9 Gy per fraction was given. Dose-volume histograms were calculated and corrected according to the linear-quadratic formula using alpha/beta=3 Gy. The patients underwent repetitive CT examinations (mean follow-up, 133 days) following radiotherapy, and pre and post treatment spirometry (mean follow-up, 240 days). A significant correlation was demonstrated between local lung dose and changes in CT numbers >30 days after treatment (p 40 Gy Gy there was a sudden increase in CT numbers at 70-90 days. Somewhat unexpectedly, the highest mean lung doses were found in patients with the least reductions in lung function (peak expiratory flow; p<0.001). The correlation between CT numbers, radiation dose and time after treatment show that CT may be used to monitor development of lung fibrosis/pneumonitis after radiotherapy for lung cancer. Paradoxically, the patients with the highest mean lung doses experienced the minimum deterioration of lung function. This may be explained by reduction in the volume of existing tumour masses obstructing the airways, leading to relief of symptoms. This finding stresses the role of radiotherapy for lung cancer, especially where the treatment aim is palliative

  8. Defect detection based on extreme edge of defective region histogram

    Directory of Open Access Journals (Sweden)

    Zouhir Wakaf

    2018-01-01

    Full Text Available Automatic thresholding has been used by many applications in image processing and pattern recognition systems. Specific attention was given during inspection for quality control purposes in various industries like steel processing and textile manufacturing. Automatic thresholding problem has been addressed well by the commonly used Otsu method, which provides suitable results for thresholding images based on a histogram of bimodal distribution. However, the Otsu method fails when the histogram is unimodal or close to unimodal. Defects have different shapes and sizes, ranging from very small to large. The gray-level distributions of the image histogram can vary between unimodal and multimodal. Furthermore, Otsu-revised methods, like the valley-emphasis method and the background histogram mode extents, which overcome the drawbacks of the Otsu method, require preprocessing steps and fail to use the general threshold for multimodal defects. This study proposes a new automatic thresholding algorithm based on the acquisition of the defective region histogram and the selection of its extreme edge as the threshold value to segment all defective objects in the foreground from the image background. To evaluate the proposed defect-detection method, common standard images for experimentation were used. Experimental results of the proposed method show that the proposed method outperforms the current methods in terms of defect detection.

  9. Histogram bin width selection for time-dependent Poisson processes

    International Nuclear Information System (INIS)

    Koyama, Shinsuke; Shinomoto, Shigeru

    2004-01-01

    In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method

  10. Histogram bin width selection for time-dependent Poisson processes

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shinsuke; Shinomoto, Shigeru [Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

    2004-07-23

    In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method.

  11. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Science.gov (United States)

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  12. Risk Factors for Neovascular Glaucoma After Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kavita K., E-mail: kmishra@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Daftari, Inder K.; Weinberg, Vivian [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Cole, Tia [The Tumori Foundation, San Francisco, California (United States); Quivey, Jeanne M.; Castro, Joseph R.; Phillips, Theodore L. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Char, Devron H. [The Tumori Foundation, San Francisco, California (United States)

    2013-10-01

    Purpose: To determine neovascular glaucoma (NVG) incidence and identify contributing tumor and dosing factors in uveal melanoma patients treated with proton beam radiation therapy (PBRT). Methods and Materials: A total of 704 PBRT patients treated by a single surgeon (DHC) for uveal melanoma (1996-2010) were reviewed for NVG in our prospectively maintained database. All patients received 56 GyE in 4 fractions. Median follow-up was 58.3 months. Analyses included the Kaplan-Meier method to estimate NVG distributions, univariate log–rank tests, and Cox's proportional hazards multivariate analysis using likelihood ratio tests to identify independent risk factors of NVG among patient, tumor, and dose–volume histogram parameters. Results: The 5-year PBRT NVG rate was 12.7% (95% confidence interval [CI] 10.2%-15.9%). The 5-year rate of enucleation due to NVG was 4.9% (95% CI 3.4%-7.2%). Univariately, the NVG rate increased significantly with larger tumor diameter (P<.0001), greater height (P<.0001), higher T stage (P<.0001), and closer proximity to the disc (P=.002). Dose–volume histogram analysis revealed that if >30% of the lens or ciliary body received ≥50% dose (≥28 GyE), there was a higher probability of NVG (P<.0001 for both). Furthermore, if 100% of the disc or macula received ≥28 GyE, the NVG rate was higher (P<.0001 and P=.03, respectively). If both anterior and posterior doses were above specified cut points, NVG risk was highest (P<.0001). Multivariate analysis confirmed significant independent risk factors to include tumor height (P<.0001), age (P<.0001), %disc treated to ≥50% Dose (<100% vs 100%) (P=.0007), larger tumor diameter (P=.01), %lens treated to ≥90% Dose (0 vs >0%-30% vs >30%) (P=.01), and optic nerve length treated to ≥90% Dose (≤1 mm vs >1 mm) (P=.02). Conclusions: Our current PBRT patients experience a low rate of NVG and resultant enucleation compared with historical data. The present analysis shows that tumor height

  13. Fuzzy Logic-Based Histogram Equalization for Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    V. Magudeeswaran

    2013-01-01

    Full Text Available Fuzzy logic-based histogram equalization (FHE is proposed for image contrast enhancement. The FHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two subhistograms based on the median value of the original image and then equalizes them independently to preserve image brightness. The qualitative and quantitative analyses of proposed FHE algorithm are evaluated using two well-known parameters like average information contents (AIC and natural image quality evaluator (NIQE index for various images. From the qualitative and quantitative measures, it is interesting to see that this proposed method provides optimum results by giving better contrast enhancement and preserving the local information of the original image. Experimental result shows that the proposed method can effectively and significantly eliminate washed-out appearance and adverse artifacts induced by several existing methods. The proposed method has been tested using several images and gives better visual quality as compared to the conventional methods.

  14. Volumes and doses for external radiotherapy - Definitions and recommendations; Volum og doser i ekstern straaleterapi - Definisjoner og anbefalinger

    Energy Technology Data Exchange (ETDEWEB)

    Levernes, Sverre (ed.)

    2012-07-01

    The report contains definitions of volume and dose parameters for external radiotherapy. In addition the report contains recommendations for use, documentation and minimum reporting for radiotherapy of the individual patient.(Author)

  15. Stochastic learning of multi-instance dictionary for earth mover’s distance-based histogram comparison

    KAUST Repository

    Fan, Jihong

    2016-09-17

    Dictionary plays an important role in multi-instance data representation. It maps bags of instances to histograms. Earth mover’s distance (EMD) is the most effective histogram distance metric for the application of multi-instance retrieval. However, up to now, there is no existing multi-instance dictionary learning methods designed for EMD-based histogram comparison. To fill this gap, we develop the first EMD-optimal dictionary learning method using stochastic optimization method. In the stochastic learning framework, we have one triplet of bags, including one basic bag, one positive bag, and one negative bag. These bags are mapped to histograms using a multi-instance dictionary. We argue that the EMD between the basic histogram and the positive histogram should be smaller than that between the basic histogram and the negative histogram. Base on this condition, we design a hinge loss. By minimizing this hinge loss and some regularization terms of the dictionary, we update the dictionary instances. The experiments over multi-instance retrieval applications shows its effectiveness when compared to other dictionary learning methods over the problems of medical image retrieval and natural language relation classification. © 2016 The Natural Computing Applications Forum

  16. A Treatment Planning Analysis of Inverse-Planned and Forward-Planned Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Poon, Ian M; Xia Ping; Weinberg, Vivien; Sultanem, Khalil; Akazawa, Clayton C.; Akazawa, Pamela C.; Verhey, Lynn; Quivey, Jeanne Marie; Lee, Nancy

    2007-01-01

    Purpose: To compare dose-volume histograms of target volumes and organs at risk in 57 patients with nasopharyngeal carcinoma (NPC) with inverse- (IP) or forward-planned (FP) intensity-modulated radiation treatment (IMRT). Methods and Materials: The DVHs of 57 patients with NPC with IMRT with or without chemotherapy were reviewed. Thirty-one patients underwent IP IMRT, and 26 patients underwent FP IMRT. Treatment goals were to prescribe a minimum dose of 66-70 Gy for gross tumor volume and 59.4 Gy for planning target volume to greater than 95% of the volume. Multiple selected end points were used to compare dose-volume histograms of the targets, including minimum, mean, and maximum doses; percentage of target volume receiving less than 90% (1-V90%), less than 95% (1-V95%), and greater than 105% (1-V105%). Dose-volume histograms of organs at risk were evaluated with characteristic end points. Results: Both planning methods provided excellent target coverage with no statistically significant differences found, although a trend was suggested in favor of improved target coverage with IP IMRT in patients with T3/T4 NPC (p = 0.10). Overall, IP IMRT statistically decreased the dose to the parotid gland, temporomandibular joint, brain stem, and spinal cord overall, whereas IP led to a dose decrease to the middle/inner ear in only the T1/T2 subgroup. Conclusions: Use of IP and FP IMRT can lead to good target coverage while maintaining critical structures within tolerance. The IP IMRT selectively spared these critical organs to a greater degree and should be considered the standard of treatment in patients with NPC, particularly those with T3/T4. The FP IMRT is an effective second option in centers with limited IP IMRT capacity. As a modification of conformal techniques, the human/departmental resources to incorporate FP-IMRT should be nominal

  17. Uncertainties in Assesment of the Vaginal Dose for Intracavitary Brachytherapy of Cervical Cancer using a Tandem-ring Applicator

    International Nuclear Information System (INIS)

    Berger, Daniel; Dimopoulos, Johannes; Georg, Petra; Georg, Dietmar; Poetter, Richard; Kirisits, Christian

    2007-01-01

    Purpose: The vagina has not been widely recognized as organ at risk in brachytherapy for cervical cancer. No widely accepted dose parameters are available. This study analyzes the uncertainties in dose reporting for the vaginal wall using tandem-ring applicators. Methods and Materials: Organ wall contours were delineated on axial magnetic resonance (MR) slices to perform dose-volume histogram (DVH) analysis. Different DVH parameters were used in a feasibility study based on 40 magnetic resonance imaging (MRI)-based treatment plans of different cervical cancer patients. Dose to the most irradiated, 0.1 cm 3 , 1 cm 3 , 2 cm 3 , and at defined points on the ring surface and at 5-mm tissue depth were reported. Treatment-planning systems allow different methods of dose point definition. Film dosimetry was used to verify the maximum dose at the surface of the ring applicator in an experimental setup. Results: Dose reporting for the vagina is extremely sensitive to geometrical uncertainties with variations of 25% for 1 mm shifts. Accurate delineation of the vaginal wall is limited by the finite pixel size of MRI and available treatment-planning systems. No significant correlation was found between dose-point and dose-volume parameters. The DVH parameters were often related to noncontiguous volumes and were not able to detect very different situations of spatial dose distributions inside the vaginal wall. Deviations between measured and calculated doses were up to 21%. Conclusions: Reporting either point dose values or DVH parameters for the vaginal wall is based on high inaccuracies because of contouring and geometric positioning. Therefore, the use of prospective dose constraints for individual treatment plans is not to be recommended at present. However, for large patient groups treated within one protocol correlation with vaginal morbidity can be evaluated

  18. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    International Nuclear Information System (INIS)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won

    2011-01-01

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  19. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won [Dept. of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of)

    2011-09-15

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  20. Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment

    International Nuclear Information System (INIS)

    Reiner, Caecilia S.; Gordic, Sonja; Puippe, Gilbert; Morsbach, Fabian; Wurnig, Moritz; Schaefer, Niklaus; Veit-Haibach, Patrick; Pfammatter, Thomas; Alkadhi, Hatem

    2016-01-01

    PurposeTo evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE).Materials and MethodsSixteen patients (15 male; mean age 65 years; age range 47–80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogram analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters’ ability to discriminate responders from non-responders.ResultsAccording to mRECIST, 8 patients (50 %) were responders and 8 (50 %) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min −1  100 mL −1 ); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min −1  100 mL −1 ; p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min −1  100 mL −1 , therapy response could be predicted with a sensitivity of 88 % (7/8) and specificity of 75 % (6/8).ConclusionVoxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE

  1. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  2. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT plans computed with a superposition/convolution dose algorithm

    International Nuclear Information System (INIS)

    Mihaylov, I. B.; Siebers, J. V.

    2008-01-01

    The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater

  3. Quantification of dose uncertainties for the bladder in prostate cancer radiotherapy based on dominant eigenmodes

    Science.gov (United States)

    Rios, Richard; Acosta, Oscar; Lafond, Caroline; Espinosa, Jairo; de Crevoisier, Renaud

    2017-11-01

    In radiotherapy for prostate cancer the dose at the treatment planning for the bladder may be a bad surrogate of the actual delivered dose as the bladder presents the largest inter-fraction shape variations during treatment. This paper presents PCA models as a virtual tool to estimate dosimetric uncertainties for the bladder produced by motion and deformation between fractions. Our goal is to propose a methodology to determine the minimum number of modes required to quantify dose uncertainties of the bladder for motion/deformation models based on PCA. We trained individual PCA models using the bladder contours available from three patients with a planning computed tomography (CT) and on-treatment cone-beam CTs (CBCTs). Based on the above models and via deformable image registration (DIR), we estimated two accumulated doses: firstly, an accumulated dose obtained by integrating the planning dose over the Gaussian probability distribution of the PCA model; and secondly, an accumulated dose obtained by simulating treatment courses via a Monte Carlo approach. We also computed a reference accumulated dose for each patient using his available images via DIR. Finally, we compared the planning dose with the three accumulated doses, and we calculated local dose variability and dose-volume histogram uncertainties.

  4. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  5. Evaluation of the dose distribution for prostate implants using various 125I and 103Pd sources

    International Nuclear Information System (INIS)

    Meigooni, Ali S.; Luerman, Christine M.; Sowards, Keith T.

    2009-01-01

    Recently, several different models of 125 I and 103 Pd brachytherapy sources have been introduced in order to meet the increasing demand for prostate seed implants. These sources have different internal structures; hence, their TG-43 dosimetric parameters are not the same. In this study, the effects of the dosimetric differences among the sources on their clinical applications were evaluated. The quantitative and qualitative evaluations were performed by comparisons of dose distributions and dose volume histograms of prostate implants calculated for various designs of 125 I and 103 Pd sources. These comparisons were made for an identical implant scheme with the same number of seeds for each source. The results were compared with the Amersham model 6711 seed for 125 I and the Theragenics model 200 seed for 103 Pd using the same implant scheme.

  6. DSP+FPGA-based real-time histogram equalization system of infrared image

    Science.gov (United States)

    Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan

    2001-10-01

    Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.

  7. Improved Steganographic Method Preserving Pixel-Value Differencing Histogram with Modulus Function

    Directory of Open Access Journals (Sweden)

    Heung-Kyu Lee

    2010-01-01

    Full Text Available We herein advance a secure steganographic algorithm that uses a turnover policy and a novel adjusting process. Although the method of Wang et al. uses Pixel-Value Differencing (PVD and their modulus function provides high capacity and good image quality, the embedding process causes a number of artifacts, such as abnormal increases and fluctuations in the PVD histogram, which may reveal the existence of the hidden message. In order to enhance the security of the algorithm, a turnover policy is used that prevents abnormal increases in the histogram values and a novel adjusting process is devised to remove the fluctuations at the border of the subrange in the PVD histogram. The proposed method therefore eliminates all the weaknesses of the PVD steganographic methods thus far proposed and guarantees secure communication. In the experiments described herein, the proposed algorithm is compared with other PVD steganographic algorithms by using well-known steganalysis techniques, such as RS-analysis, steganalysis for LSB matching, and histogram-based attacks. The results support our contention that the proposed method enhances security by keeping the PVD histogram similar to the cover, while also providing high embedding capacity and good imperceptibility to the naked eye.

  8. A three-dimensional computed tomography-assisted Monte Carlo evaluation of ovoid shielding on the dose to the bladder and rectum in intracavitary radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Gifford, Kent A.; Horton, John L.; Pelloski, Christopher E.; Jhingran, Anuja; Court, Laurence E.; Mourtada, Firas; Eifel, Patricia J.

    2005-01-01

    Purpose: To determine the effects of Fletcher Suit Delclos ovoid shielding on dose to the bladder and rectum during intracavitary radiotherapy for cervical cancer. Methods and Materials: The Monte Carlo method was used to calculate the dose in 12 patients receiving low-dose-rate intracavitary radiotherapy with both shielded and unshielded ovoids. Cumulative dose-difference surface histograms were computed for the bladder and rectum. Doses to the 2-cm 3 and 5-cm 3 volumes of highest dose were computed for the bladder and rectum with and without shielding. Results: Shielding affected dose to the 2-cm 3 and 5-cm 3 volumes of highest dose for the rectum (10.1% and 11.1% differences, respectively). Shielding did not have a major impact on the dose to the 2-cm 3 and 5-cm 3 volumes of highest dose for the bladder. The average dose reduction to 5% of the surface area of the bladder was 53 cGy. Reductions as large as 150 cGy were observed to 5% of the surface area of the bladder. The average dose reduction to 5% of the surface area of the rectum was 195 cGy. Reductions as large as 405 cGy were observed to 5% of the surface area of the rectum. Conclusions: Our data suggest that the ovoid shields can greatly reduce the radiation dose delivered to the rectum. We did not find the same degree of effect on the dose to the bladder. To calculate the dose accurately, however, the ovoid shields must be included in the dose model

  9. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver.

    Science.gov (United States)

    Wulf, Jörn; Hädinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-02-01

    Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5mm in axial and 5-10mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). A decrease of TC to or=95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm(3) are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins.

  10. Evaluation of a clinically intuitive quality assurance method

    International Nuclear Information System (INIS)

    Norris, H; Thomas, A; Oldham, M

    2013-01-01

    There is a pressing need for clinically intuitive quality assurance methods that report metrics of relevance to the likely impact on tumor control of normal tissue injury. This paper presents a preliminary investigation into the accuracy of a novel ''transform method'' which enables a clinically relevant analysis through dose-volume-histograms (DVHs) and dose overlays on the patient's CT data. The transform method was tested by inducing a series of known mechanical and delivery errors onto simulated 3D dosimetry measurements of six different head-and-neck IMRT treatment plans. Accuracy was then examined through the comparison of the transformed patient dose distributions and the known actual patient dose distributions through dose-volume histograms and normalized dose difference analysis. Through these metrics, the transform method was found to be highly accurate in predicting measured patient dose distributions for these types of errors.

  11. Esophageal Toxicity From High-Dose, Single-Fraction Paraspinal Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Cox, Brett W.; Jackson, Andrew; Hunt, Margie; Bilsky, Mark; Yamada, Yoshiya

    2012-01-01

    Purpose: To report the esophageal toxicity from single-fraction paraspinal stereotactic radiosurgery (SRS) and identify dosimetric and clinical risk factors for toxicity. Methods and Materials: A total of 204 spinal metastases abutting the esophagus (182 patients) were treated with high-dose single-fraction SRS during 2003-2010. Toxicity was scored using the National Cancer Institute Common Toxicity Criteria for Adverse Events, version 4.0. Dose-volume histograms were combined to generate a comprehensive atlas of complication incidence that identifies risk factors for toxicity. Correlation of dose-volume factors with esophageal toxicity was assessed using Fisher’s exact test and logistic regression. Clinical factors were correlated with toxicity. Results: The median dose to the planning treatment volume was 24 Gy. Median follow-up was 12 months (range, 3-81). There were 31 (15%) acute and 24 (12%) late esophageal toxicities. The rate of grade ≥3 acute or late toxicity was 6.8% (14 patients). Fisher’s exact test resulted in significant median splits for grade ≥3 toxicity at V12 = 3.78 cm 3 (relative risk [RR] 3.7, P=.05), V15 = 1.87 cm 3 (RR 13, P=.0013), V20 = 0.11 cm 3 (RR 6, P=0.01), and V22 = 0.0 cm 3 (RR 13, P=.0013). The median split for D2.5 cm 3 (14.02 Gy) was also a significant predictor of toxicity (RR 6; P=.01). A highly significant logistic regression model was generated on the basis of D2.5 cm 3 . One hundred percent (n = 7) of grade ≥4 toxicities were associated with radiation recall reactions after doxorubicin or gemcitabine chemotherapy or iatrogenic manipulation of the irradiated esophagus. Conclusions: High-dose, single-fraction paraspinal SRS has a low rate of grade ≥3 esophageal toxicity. Severe esophageal toxicity is minimized with careful attention to esophageal doses during treatment planning. Iatrogenic manipulation of the irradiated esophagus and systemic agents classically associated with radiation recall reactions are

  12. VHDL implementation on histogram with ADC CAMAC module

    International Nuclear Information System (INIS)

    Ruby Santhi, R.; Satyanarayana, V.V.V.; Ajith Kumar, B.P.

    2007-01-01

    Modern nuclear spectroscopy systems the data acquisition and analysis in experimental science have been undergoing major changes because of faster speed and higher resolution. The CAMAC module which is described here is FPGA based 8K x 24 bit Histogram Memory integrated with ADC on a single board has been designed and fabricated. This module accepts input from Spectroscopy Amplifier for Pulse Height Analysis and offers all features single spectra for a few selected parameters. These on line histograms are to monitor the progress of the experiments during on line experiments

  13. 3D Model Retrieval Based on Vector Quantisation Index Histograms

    International Nuclear Information System (INIS)

    Lu, Z M; Luo, H; Pan, J S

    2006-01-01

    This paper proposes a novel technique to retrieval 3D mesh models using vector quantisation index histograms. Firstly, points are sampled uniformly on mesh surface. Secondly, to a point five features representing global and local properties are extracted. Thus feature vectors of points are obtained. Third, we select several models from each class, and employ their feature vectors as a training set. After training using LBG algorithm, a public codebook is constructed. Next, codeword index histograms of the query model and those in database are computed. The last step is to compute the distance between histograms of the query and those of the models in database. Experimental results show the effectiveness of our method

  14. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions–comparison of glioblastomas and brain abscesses

    Science.gov (United States)

    Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-01-01

    Background Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. Methods 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. Results All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10−5 mm2 × s−1. Conclusions ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA. PMID:29719596

  15. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions-comparison of glioblastomas and brain abscesses.

    Science.gov (United States)

    Horvath-Rizea, Diana; Surov, Alexey; Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-04-06

    Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm 2 . Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10 -5 mm 2 × s -1 . ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

  16. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Sean R H; Gertner, Mark R; Bogaards, Arjen; Sherar, Michael D; Wilson, Brian C [Division of Biophysics and Bioimaging, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Weersink, Robert A; Giewercer, David [Laboratory for Applied Biophysics, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A [Joint Department of Medical Imaging, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Scherz, Avigdor [Department of Plant Science, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Elhilali, Mostafa [Department of Surgery, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6 (Canada); Chin, Joseph L [Department of Oncology, University of Western Ontario, 800 Commissioners Road East, PO Box 5010, London, Ontario N6A 5W9 (Canada); Trachtenberg, John [Department of Urology, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada)], E-mail: wilson@uhnres.utoronto.ca

    2009-04-21

    With the development of new photosensitizers that are activated by light at longer wavelengths, interstitial photodynamic therapy (PDT) is emerging as a feasible alternative for the treatment of larger volumes of tissue. Described here is the application of PDT treatment planning software developed by our group to ensure complete coverage of larger, geometrically complex target volumes such as the prostate. In a phase II clinical trial of TOOKAD vascular targeted photodynamic therapy (VTP) for prostate cancer in patients who failed prior radiotherapy, the software was used to generate patient-specific treatment prescriptions for the number of treatment fibres, their lengths, their positions and the energy each delivered. The core of the software is a finite element solution to the light diffusion equation. Validation against in vivo light measurements indicated that the software could predict the location of an iso-fluence contour to within approximately {+-}2 mm. The same software was used to reconstruct the treatments that were actually delivered, thereby providing an analysis of the threshold light dose required for TOOKAD-VTP of the post-irradiated prostate. The threshold light dose for VTP-induced prostate damage, as measured one week post-treatment using contrast-enhanced MRI, was found to be highly heterogeneous, both within and between patients. The minimum light dose received by 90% of the prostate, D{sub 90}, was determined from each patient's dose-volume histogram and compared to six-month sextant biopsy results. No patient with a D{sub 90} less than 23 J cm{sup -2} had complete biopsy response, while 8/13 (62%) of patients with a D{sub 90} greater than 23 J cm{sup -2} had negative biopsies at six months. The doses received by the urethra and the rectal wall were also investigated.

  17. A Novel Method for Predicting Late Genitourinary Toxicity After Prostate Radiation Therapy and the Need for Age-Based Risk-Adapted Dose Constraints

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Egleston, Brian; Alcantara, Pino; Li, Linna; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.

    2013-01-01

    Background: There are no well-established normal tissue sparing dose–volume histogram (DVH) criteria that limit the risk of urinary toxicity from prostate radiation therapy (RT). The aim of this study was to determine which criteria predict late toxicity among various DVH parameters when contouring the entire solid bladder and its contents versus the bladder wall. The area under the histogram curve (AUHC) was also analyzed. Methods and Materials: From 1993 to 2000, 503 men with prostate cancer received 3-dimensional conformal RT (median follow-up time, 71 months). The whole bladder and the bladder wall were contoured in all patients. The primary endpoint was grade ≥2 genitourinary (GU) toxicity occurring ≥3 months after completion of RT. Cox regressions of time to grade ≥2 toxicity were estimated separately for the entire bladder and bladder wall. Concordance probability estimates (CPE) assessed model discriminative ability. Before training the models, an external random test group of 100 men was set aside for testing. Separate analyses were performed based on the mean age (≤ 68 vs >68 years). Results: Age, pretreatment urinary symptoms, mean dose (entire bladder and bladder wall), and AUHC (entire bladder and bladder wall) were significant (P 68 years. Conclusion: The AUHC method based on bladder wall volumes was superior for predicting late GU toxicity. Age >68 years was associated with late grade ≥2 GU toxicity, which suggests that risk-adapted dose constraints based on age should be explored

  18. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    LENUS (Irish Health Repository)

    Bratland, Ase

    2011-04-08

    Abstract Background In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Findings Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. Conclusions When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile. Trial registration ClinicalTrials.gov: NCT00455351

  19. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    International Nuclear Information System (INIS)

    Bratland, Åse; Dueland, Svein; Hollywood, Donal; Flatmark, Kjersti; Ree, Anne H

    2011-01-01

    In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile.

  20. Efficient Human Action and Gait Analysis Using Multiresolution Motion Energy Histogram

    Directory of Open Access Journals (Sweden)

    Kuo-Chin Fan

    2010-01-01

    Full Text Available Average Motion Energy (AME image is a good way to describe human motions. However, it has to face the computation efficiency problem with the increasing number of database templates. In this paper, we propose a histogram-based approach to improve the computation efficiency. We convert the human action/gait recognition problem to a histogram matching problem. In order to speed up the recognition process, we adopt a multiresolution structure on the Motion Energy Histogram (MEH. To utilize the multiresolution structure more efficiently, we propose an automated uneven partitioning method which is achieved by utilizing the quadtree decomposition results of MEH. In that case, the computation time is only relevant to the number of partitioned histogram bins, which is much less than the AME method. Two applications, action recognition and gait classification, are conducted in the experiments to demonstrate the feasibility and validity of the proposed approach.

  1. Landmark Detection in Orbital Images Using Salience Histograms

    Science.gov (United States)

    Wagstaff, Kiri L.; Panetta, Julian; Schorghofer, Norbert; Greeley, Ronald; PendletonHoffer, Mary; bunte, Melissa

    2010-01-01

    NASA's planetary missions have collected, and continue to collect, massive volumes of orbital imagery. The volume is such that it is difficult to manually review all of the data and determine its significance. As a result, images are indexed and searchable by location and date but generally not by their content. A new automated method analyzes images and identifies "landmarks," or visually salient features such as gullies, craters, dust devil tracks, and the like. This technique uses a statistical measure of salience derived from information theory, so it is not associated with any specific landmark type. It identifies regions that are unusual or that stand out from their surroundings, so the resulting landmarks are context-sensitive areas that can be used to recognize the same area when it is encountered again. A machine learning classifier is used to identify the type of each discovered landmark. Using a specified window size, an intensity histogram is computed for each such window within the larger image (sliding the window across the image). Next, a salience map is computed that specifies, for each pixel, the salience of the window centered at that pixel. The salience map is thresholded to identify landmark contours (polygons) using the upper quartile of salience values. Descriptive attributes are extracted for each landmark polygon: size, perimeter, mean intensity, standard deviation of intensity, and shape features derived from an ellipse fit.

  2. Cross-interval histogram analysis of neuronal activity on multi-electrode arrays

    NARCIS (Netherlands)

    Castellone, P.; Rutten, Wim; Marani, Enrico

    2003-01-01

    Cross-neuron-interval histogram (CNIH) analysis has been performed in order to study correlated activity and connectivity between pairs of neurons in a spontaneously active developing cultured network of rat cortical cells. Thirty-eight histograms could be analyzed using two parameters, one for the

  3. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    Science.gov (United States)

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Dose painting based on tumor uptake of Cu-ATSM and FDG: a comparative study

    International Nuclear Information System (INIS)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael; Hollensen, Christian; Pommer, Tobias; Munck af Rosenschöld, Per; Kristensen, Annemarie Thuri; Kjær, Andreas; McEvoy, Fintan J; Engelholm, Svend Aage

    2014-01-01

    Hypoxia and increased glycolytic activity of tumors are associated with poor prognosis. The purpose of this study was to investigate differences in radiotherapy (RT) dose painting based on the uptake of 2-deoxy-2-[ 18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer, copper(II)diacetyl-bis(N 4 )-methylsemithiocarbazone (Cu-ATSM) using spontaneous clinical canine tumor models. Positron emission tomography/computed tomography scans of five spontaneous canine sarcomas and carcinomas were obtained; FDG on day 1 and 64 Cu-ATSM on day 2 and 3 (approx. 3 and 24 hours pi.). Sub-volumes for dose escalation were defined by a threshold-based method for both tracers and five dose escalation levels were formed in each sub-volume. Volumetric modulated arc therapy plans were optimized based on the dose escalation regions for each scan for a total of three dose plans for each dog. The prescription dose for the GTV was 45 Gy (100%) and it was linearly escalated to a maximum of 150%. The correlations between dose painting plans were analyzed with construction of dose distribution density maps and quality volume histograms (QVH). Correlation between high-dose regions was investigated with Dice correlation coefficients. Comparison of dose plans revealed varying degree of correlation between cases. Some cases displayed a separation of high-dose regions in the comparison of FDG vs. 64 Cu-ATSM dose plans at both time points. Among the Dice correlation coefficients, the high dose regions showed the lowest degree of agreement, indicating potential benefit of using multiple tracers for dose painting. QVH analysis revealed that FDG-based dose painting plans adequately covered approximately 50% of the hypoxic regions. Radiotherapy plans optimized with the current approach for cut-off values and dose region definitions based on FDG, 64 Cu-ATSM 3 h and 24 h uptake in canine tumors had different localization of the regional dose escalation levels. This indicates that 64 Cu-ATSM at two

  5. Blood volume measurement with indocyanine green pulse spectrophotometry: dose and site of dye administration

    NARCIS (Netherlands)

    Germans, Menno R.; de Witt Hamer, Philip C.; van Boven, Leonard J.; Zwinderman, Koos A. H.; Bouma, Gerrit J.

    2010-01-01

    (1) To determine the optimal administration site and dose of indocyanine green (ICG) for blood volume measurement using pulse spectrophotometry, (2) to assess the variation in repeated blood volume measurements for patients after subarachnoid hemorrhage and (3) to evaluate the safety and efficacy of

  6. Histogram Analysis of Diffusion Tensor Imaging Parameters in Pediatric Cerebellar Tumors.

    Science.gov (United States)

    Wagner, Matthias W; Narayan, Anand K; Bosemani, Thangamadhan; Huisman, Thierry A G M; Poretti, Andrea

    2016-05-01

    Apparent diffusion coefficient (ADC) values have been shown to assist in differentiating cerebellar pilocytic astrocytomas and medulloblastomas. Previous studies have applied only ADC measurements and calculated the mean/median values. Here we investigated the value of diffusion tensor imaging (DTI) histogram characteristics of the entire tumor for differentiation of cerebellar pilocytic astrocytomas and medulloblastomas. Presurgical DTI data were analyzed with a region of interest (ROI) approach to include the entire tumor. For each tumor, histogram-derived metrics including the 25th percentile, 75th percentile, and skewness were calculated for fractional anisotropy (FA) and mean (MD), axial (AD), and radial (RD) diffusivity. The histogram metrics were used as primary predictors of interest in a logistic regression model. Statistical significance levels were set at p histogram skewness showed statistically significant differences for MD between low- and high-grade tumors (P = .008). The 25th percentile for MD yields the best results for the presurgical differentiation between pediatric cerebellar pilocytic astrocytomas and medulloblastomas. The analysis of other DTI metrics does not provide additional diagnostic value. Our study confirms the diagnostic value of the quantitative histogram analysis of DTI data in pediatric neuro-oncology. Copyright © 2015 by the American Society of Neuroimaging.

  7. Improved Steganographic Method Preserving Pixel-Value Differencing Histogram with Modulus Function

    Directory of Open Access Journals (Sweden)

    Lee Hae-Yeoun

    2010-01-01

    Full Text Available Abstract We herein advance a secure steganographic algorithm that uses a turnover policy and a novel adjusting process. Although the method of Wang et al. uses Pixel-Value Differencing (PVD and their modulus function provides high capacity and good image quality, the embedding process causes a number of artifacts, such as abnormal increases and fluctuations in the PVD histogram, which may reveal the existence of the hidden message. In order to enhance the security of the algorithm, a turnover policy is used that prevents abnormal increases in the histogram values and a novel adjusting process is devised to remove the fluctuations at the border of the subrange in the PVD histogram. The proposed method therefore eliminates all the weaknesses of the PVD steganographic methods thus far proposed and guarantees secure communication. In the experiments described herein, the proposed algorithm is compared with other PVD steganographic algorithms by using well-known steganalysis techniques, such as RS-analysis, steganalysis for LSB matching, and histogram-based attacks. The results support our contention that the proposed method enhances security by keeping the PVD histogram similar to the cover, while also providing high embedding capacity and good imperceptibility to the naked eye.

  8. Adaptive histogram equalization and its variations

    NARCIS (Netherlands)

    Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, Trey; Haar Romenij, ter B.M.; Zimmerman, J.B.; Zuiderveld, K.J.

    1987-01-01

    Adaptive histogram equalization (ahe) is a contrast enhancement method designed to be broadly applicable and having demonstrated effectiveness. However, slow speed and the overenhancement of noise it produces in relatively homogeneous regions are two problems. We report algorithms designed to

  9. Volume dose ratios relevant for alanine dosimetry in small, 6 MV photon beams

    DEFF Research Database (Denmark)

    Cronholm, Rickard O.; Andersen, Claus Erik; Behrens, Claus F.

    2012-01-01

    therapy). To this end, we here present the results of a Monte Carlo simulation study with DOSRZnrc that investigated the influence of field and detector size for small 6 MV photon beams. The study focusses on doses averaged over the volume of the detector rather than point doses.The ratio of volume...... averaged doses to water (D¯W) and alanine (D¯det) was found to be approximately 1.025 for most situations studied, and a constant ratio is likely to be representative for many applications in radiation therapy. However, D¯W/D¯det was found to be as low as 0.9908 ± 0.0037 in situations where one might...... expect significant deviations from charged particle equilibrium (i.e. at shallow depths and when the field size was smaller than the range of the secondary electrons). These effects therefore need consideration when finite-size alanine dosimeters are used under such conditions....

  10. Internal Mammary Lymph Node Irradiation Contributes to Heart Dose in Breast Cancer

    International Nuclear Information System (INIS)

    Chargari, Cyrus; Castadot, Pierre; MacDermed, Dhara; Vandekerkhove, Christophe; Bourgois, Nicolas; Van Houtte, Paul; Magne, Nicolas

    2010-01-01

    We assessed the impact of internal mammary chain radiotherapy (IMC RT) to the radiation dose received by the heart in terms of heart dose-volume histogram (DVH). Thirty-six consecutive breast cancer patients presenting with indications for IMC RT were enrolled in a prospective study. The IMC was treated by a standard conformal RT technique (50 Gy). For each patient, a cardiac DVH was generated by taking into account the sole contribution of IMC RT. Cardiac HDV were compared according to breast cancer laterality and the type of previous surgical procedure, simple mastectomy or breast conservative therapy (BCT). The contribution of IMC RT to the heart dose was significantly greater for patients with left-sided versus right-sided tumors (13.8% and 12.8% for left-sided tumors versus 3.9% and 4.2% for right-sided tumors in the BCT group and the mastectomy group, respectively; p < 0.0001). There was no statistically significant difference in IMC contribution depending on the initial surgical procedure. IMC RT contributes to cardiac dose for both left-sided and right-sided breast cancers, although the relative contribution is greater in patients with left-sided tumors.

  11. A two isocenter IMRT technique with a controlled junction dose for long volume targets

    International Nuclear Information System (INIS)

    Zeng, G G; Heaton, R K; Catton, C N; Chung, P W; O'Sullivan, B; Lau, M; Parent, A; Jaffray, D A

    2007-01-01

    Most IMRT techniques have been designed to treat targets smaller than the field size of conventional linac accelerators. In order to overcome the field size restrictions in applying IMRT, we developed a two isocenter IMRT technique to treat long volume targets. The technique exploits an extended dose gradient throughout a junction region of 4-6 cm to minimize the impact of field match errors on a junction dose and manipulates the inverse planning and IMRT segments to fill in the dose gradient and achieve dose uniformity. Techniques for abutting both conventional fields with IMRT ('Static + IMRT') and IMRT fields ('IMRT + IMRT') using two separate isocenters have been developed. Five long volume sarcoma cases have been planned in Pinnacle (Philips, Madison, USA) using Elekta Synergy and Varian 2100EX linacs; two of the cases were clinically treated with this technique. Advantages were demonstrated with well-controlled junction target uniformity and tolerance to setup uncertainties. The junction target dose heterogeneity was controlled at a level of ±5%; for 3 mm setup errors at the field edges, the junction target dose changed less than 5% and the dose sparing to organs at risk (OARs) was maintained. Film measurements confirmed the treatment planning results

  12. Idaho National Engineering Laboratory historical dose evaluation: Volume 1

    International Nuclear Information System (INIS)

    Francis, S.J.

    1991-08-01

    The methodology and results are presented for an evaluation of potential radiation doses to a hypothetical individual who may have resided at an offsite location with the highest concentration of airborne radionuclides near the Idaho National Engineering Laboratory (INEL). Volume 1 contains a summary of methods and results. The years of INEL operations from 1952 to 1989 were evaluated. Radiation doses to an adult, child, and infant were estimated for both operational (annual) and episodic (short-term) airborne releases from INEL facilities. Atmospheric dispersion of operational releases was modeled using annual average meteorological conditions. Dispersion of episodic releases was generally modeled using actual hourly wind speed and direction data at the time of release. 50 refs., 23 figs., 10 tabs

  13. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance

    Science.gov (United States)

    2017-01-01

    This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image. PMID:29403529

  14. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance

    Directory of Open Access Journals (Sweden)

    Liyun Zhuang

    2017-01-01

    Full Text Available This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE, which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE. Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image.

  15. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance.

    Science.gov (United States)

    Zhuang, Liyun; Guan, Yepeng

    2017-01-01

    This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image.

  16. 3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study

    International Nuclear Information System (INIS)

    Saeedzadeh, E.; Sarkar, S.; Abbaspour Tehrani-Fard, A.; Ay, M. R.; Khosravi, H. R.; Loudos, G.

    2008-01-01

    Various methods, such as those developed by the Medical Internal Radiation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine or employing dose point kernels, have been applied to the radiation dosimetry of 131 I radionuclide therapy. However, studies have not shown a strong relationship between tumour absorbed dose and its overall therapeutic response, probably due in part to inaccuracies in activity and dose estimation. In the current study, the GATE Monte Carlo computer code was used to facilitate voxel-level radiation dosimetry for organ activities measured in an. 131 I-treated thyroid cancer patient. This approach allows incorporation of the size, shape and composition of organs (in the current study, in the Zubal anthropomorphic phantom) and intra-organ and intra-tumour inhomogeneities in the activity distributions. The total activities of the tumours and their heterogeneous distributions were measured from the SPECT images to calculate the dose maps. For investigating the effect of activity distribution on dose distribution, a hypothetical homogeneous distribution of the same total activity was considered in the tumours. It was observed that the tumour mean absorbed dose rates per unit cumulated activity were 0.65 E-5 and 0.61 E-5 mGY MBq -1 s -1 for the uniform and non-uniform distributions in the tumour, respectively, which do not differ considerably. However, the dose-volume histograms (DVH) show that the tumour non-uniform activity distribution decreases the absorbed dose to portions of the tumour volume. In such a case, it can be misleading to quote the mean or maximum absorbed dose, because overall response is likely limited by the tumour volume that receives low (i.e. non-cytocidal) doses. Three-dimensional radiation dosimetry, and calculation of tumour DVHs, may lead to the derivation of clinically reliable dose-response relationships and therefore may ultimately improve treatment planning as well as response assessment for radionuclide

  17. SU-E-T-86: Comparison of Two Commercially Available Programs for the Evaluation of Delivered Daily Dose Using Cone Beam CT (CBCT)

    International Nuclear Information System (INIS)

    Tuohy, R; Bosse, C; Mavroidis, P; Shi, Z; Crownover, R; Papanikolaou, N; Stathakis, S

    2014-01-01

    Purpose: In this study, two commercially available programs were compared for the evaluation of delivered daily dose using cone beam CT (CBCT). Methods: Thirty (n=30) patients previously treated in our clinic (10 prostate, 10 SBRT lung and 10 abdomen) were used in this study. The patients' plans were optimized and calculated using the Pinnacle treatment planning system. The daily CBCT scans were imported into Velocity and RayStation along with the corresponding planning CTs, structure sets and 3D dose distributions for each patient. The organs at risk (OAR) were contoured on each CBCT by the prescribing physician and were included in the evaluation of the daily delivered dose. Each CBCT was registered to the planning CT, once with rigid registration and then again, separately, with deformable registration. After registering each CBCT, the dose distribution from the planning CT was overlaid and the dose volume histograms (DVH) for the OAR and the planning target volumes (PTV) were calculated. Results: For prostate patients, we observed daily volume changes for the OARs. The DVH analysis for those patients showed variation in the sparing of the OARs while PTV coverage remained virtually unchanged using both Velocity and RayStation systems. Similar results were observed for abdominal patients. In contrast, for SBRT lung patients, the DVH for the OARs and target were comparable to those from the initial treatment plan. Differences in organ volume and organ doses were also observed when comparing the daily fractions using deformable and rigid registrations. Conclusion: By using daily CBCT dose reconstruction, we proved PTV coverage for prostate and abdominal targets is adequate. However, there is significant dosimetric change for the OARs. For lung SBRT patients, the delivered daily dose for both PTV and OAR is comparable to the planned dose with no significant differences

  18. Reliability Study Regarding the Use of Histogram Similarity Methods for Damage Detection

    Directory of Open Access Journals (Sweden)

    Nicoleta Gillich

    2013-01-01

    Full Text Available The paper analyses the reliability of three dissimilarity estimators to compare histograms, as support for a frequency-based damage detection method, able to identify structural changes in beam-like structures. First a brief presentation of the own developed damage detection method is made, with focus on damage localization. It consists actually in comparing a histogram derived from measurement results, with a large series of histograms, namely the damage location indexes for all locations along the beam, obtained by calculus. We tested some dissimilarity estimators like the Minkowski-form Distances, the Kullback-Leibler Divergence and the Histogram Intersection and found the Minkowski Distance as the method providing best results. It was tested for numerous locations, using real measurement results and with results artificially debased by noise, proving its reliability.

  19. Robust histogram-based image retrieval

    Czech Academy of Sciences Publication Activity Database

    Höschl, Cyril; Flusser, Jan

    2016-01-01

    Roč. 69, č. 1 (2016), s. 72-81 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Image retrieval * Noisy image * Histogram * Convolution * Moments * Invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2015/ZOI/hoschl-0452147.pdf

  20. Inseminating dose and water volume applied to the artificial fertilization of Steindachneridion parahybae (Steindachner, 1877 (Siluriformes: Pimelodidae: Brazilian endangered fish

    Directory of Open Access Journals (Sweden)

    Eduardo Antônio Sanches

    Full Text Available Abstract The Steindachneridion parahybae is an endangered catfish from Brazil and strategies applied for gametes optimization are necessary. The aim of this study was to assess inseminating doses and water volume upon the fertilization, hatching rates and percentage of normal larvae in S. parahybae . Was used a randomized design in factorial scheme (4×4 with four inseminating doses: 1.0×104, 1.0×105, 1.0×106, 1.0×107spermatozoa oocyte-1 and four volumes of water: 1, 35, 65 and 95mL of water g-1 of oocytes. The combination of doses and volumes were performed in triplicates (n=48. Each incubator (1.5L of useful volume with 1g of oocytes was considered as an experimental unit. Significant interaction between inseminating doses and volumes of water to the values of the fertilization rates and quadratic effect of doses and volume for the values of hatching rates were observed. The doses and volumes did not influence the percentage of normal larvae (87.70±5.06%. It is recommended the use of 5.5×106 spermatozoa oocyte-1 and 1mL of water g-1 of oocytes during in vitro fertilization procedure. These results allowed us to develop new biotechnological strategies applied to the conservation of S. parahybae .