WorldWideScience

Sample records for dose total body

  1. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  2. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  3. Dose compensation of the total body irradiation therapy

    International Nuclear Information System (INIS)

    Lin, J.-P.; Chu, T.-C.; Liu, M.-T.

    2001-01-01

    The aim of the study is to improve dose uniformity in the body by the compensator-rice and to decrease the dose to the lung by the partial lung block. Rando phantom supine was set up to treat bilateral fields with a 15 MV linear accelerator at 415 cm treatment distance. The experimental procedure included three parts. The first part was the bilateral irradiation without rice compensator, and the second part was with rice compensator. In the third part, rice compensator and partial lung block were both used. The results of thermoluminescent dosimeters measurements indicated that without rice compensator the dose was non-uniform. Contrarily, the average dose homogeneity with rice compensator was measured within ±5%, except for the thorax region. Partial lung block can reduce the dose which the lung received. This is a simple method to improve the dose homogeneity and to reduce the lung dose received. The compensator-rice is cheap, and acrylic boxes are easy to obtain. Therefore, this technique is suitable for more studies

  4. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  5. Whole-body dose meters. Measurements of total activity

    International Nuclear Information System (INIS)

    Koeppe, P.; Klinikum Steglitz, Berlin

    1990-01-01

    By means of measurements using a whole-body dose meter, the course of the incorporation of radionuclides was established between April 1986 and May 1989 for unchanged conditions of alimentation, activity-conscious alimentation, and uniquely increased incorporation. Monitoring covered persons from the most different spheres of life. The incorporation is compared with the one resulting from nuclear weapons explosions in the atmosphere. (DG) [de

  6. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.

    1993-01-01

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  7. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  8. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.

  9. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  10. Estimation of the dose distribution within, and total dose to, the body of an acutely overexposed person

    International Nuclear Information System (INIS)

    Beer, G.P. de; Feather, J.I.; Oude, A. de; Language, A.E.

    1981-01-01

    In a case of accidental overexposure of a person, it is important to obtain a reliable value of the whole body dose as well as of the dose distribution within the body. Any follow-up treatment based only on the clinical effects as and when they appear, may result in insufficient or even erroneous therapy. In this respect knowledge of total dose and its distribution within the body may be a valuable aid in deciding on the follow-up treatment, taking into account the latent nature of the clinical effects. The calculated whole body dose and its distribution within the body of a person overexposed to a 192 Ir radiography source, are compared to experimentally determined values. In both cases the calculated values prove to be of sufficient accuracy to serve as an aid in decisions on the follow-up treatment. (author)

  11. SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, T [State University of New York at Buffalo, Buffalo, NY (United States); Wang, I; Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2015-06-15

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator

  12. Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation

    International Nuclear Information System (INIS)

    Choi, Jong Hwan; Kim, Jong Sik; Choi, Ji Min; Shin, Eun Hyuk; Song, Ki Won; Park, Young Hwan

    2007-01-01

    Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = 40 x 40 cm 2 . The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is 14.58-14.92 cGy. Therefore, The surface dose was measured 99.4-101% with got near most to the prescription dose. In clinical case, distance between beam spoiler and patient affect surface dose. If once 50-60 cm of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  13. Relative effect of radiation dose rate on hemopoietic and nonhemopoietic lethality of total-body irradiation

    International Nuclear Information System (INIS)

    Peters, L.J.; McNeill, J.; Karolis, C.; Thames, H.D. Jr.; Travis, E.L.

    1986-01-01

    Experiments were undertaken to determine the influence of dose rate on the toxicity of total-body irrdiation (TBI) with and without syngeneic bone-marrow rescue in mice. The results showed a much greater dose-rate dependence for death from nonhemopoietic toxicity than from bone-marrow ablation, with the ratio of LD 50 's increasing from 1.73 at 25 cGy/min to 2.80 at 1 cGy/min. At the higher dose rates, dose-limiting nonhemopoietic toxicity resulted from late organ injury, affecting the lungs, kidneys, and liver. At 1 cGy/min the major dose-limiting nonhemopoietic toxicity was acute gastrointestinal injury. The implications of these results in the context of TBI in preparation for bone-marrow transplantation are discussed. 15 refs., 4 figs

  14. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  15. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  16. In pediatric leukemia, dose evaluation according to the type of compensators in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dongnam Inst. of Radiological and Medical science, Busan (Korea, Republic of); Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Science, Catholic University of Busan, Busan (Korea, Republic of)

    2015-04-15

    Total body irradiation (TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.

  17. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    Science.gov (United States)

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  18. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  19. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy

    International Nuclear Information System (INIS)

    McAfee, Steven L.; Powell, Simon N.; Colby, Christine; Spitzer, Thomas R.

    2002-01-01

    Purpose: To evaluate the feasibility of dose escalation of total body irradiation (TBI) above the previously reported maximally tolerated dose, we have undertaken a Phase I-II trial of dose-escalated TBI with autologous peripheral blood stem cell transplantation (PBSCT) for chemotherapy-refractory lymphoma. Methods and Materials: Nine lymphoma patients with primary refractory disease (PRD) or in resistant relapse (RR) received dose-escalated TBI and PBSCT. The three dose levels of fractionated TBI (200 cGy twice daily) were 1,600 cGy, 1,800 cGy, and 2,000 cGy. Lung blocks were used to reduce the TBI transmission dose by 50%, and the chest wall dose was supplemented to the prescribed dose using electrons. Shielding of the kidneys was performed to keep the maximal renal dose at 1,600 cGy. Three patients, two with non-Hodgkin's lymphoma (NHL) in RR and one with PRD Hodgkin's disease, received 1,600 cGy + PBSCT, three patients (two NHL in RR, one PRD) received 1,800 cGy + PBSCT, and three patients with NHL (two in RR, one PRD) received 2,000 cGy + PBSCT. Results: Toxicities associated with this high-dose TBI regimen included reversible hepatic veno-occlusive disease in 1 patient, Grade 2 mucositis requiring narcotic analgesics in 8 patients, and neurologic toxicities consisting of a symmetrical sensory neuropathy (n=4) and Lhermitte's syndrome (n=1). Interstitial pneumonitis developed in 1 patient who received 1,800 cGy after receiving recombinant α-interferon (with exacerbation after rechallenge with interferon). Six (66%) patients achieved a response. Four (44%) patients achieved complete responses, three of which were of a duration greater than 1 year, and 2 (22%) patients achieved a partial response. One patient remains disease-free more than 5 years posttransplant. Corticosteroid-induced gastritis and postoperative infection resulted in the death of 1 patient in complete response, 429 days posttransplant. Conclusion: TBI in a dose range 1,600-2,000 cGy as

  20. Statistical analysis of dose heterogeneity in circulating blood: Implications for sequential methods of total body irradiation

    International Nuclear Information System (INIS)

    Molloy, Janelle A.

    2010-01-01

    Purpose: Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these ''sequential'' techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Methods: Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. Results: The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than ±10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times

  1. Statistical analysis of dose heterogeneity in circulating blood: implications for sequential methods of total body irradiation.

    Science.gov (United States)

    Molloy, Janelle A

    2010-11-01

    Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these "sequential" techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than +/- 10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times. However, the EUD was

  2. The biological effects of high dose total body irradiation in beagle dogs

    International Nuclear Information System (INIS)

    Luo Qingliang; Liu Xiaolan; Hao Jing; Xiong Guolin; Dong Bo; Zhao Zhenhu; Xia Zhengbiao; Qiu Liling; Mao Bingzhi

    2002-01-01

    Objective: To evaluate the biological effects of Beagle dogs irradiated by γ-rays at different doses. Methods: All Beagle dogs were divided into six groups and were subjected respectively to total-body irradiation (TBI) with a single dose of 6.5, 5.5, 5.0, 4.5, 3, 5 and 2.5 Gy γ-rays delivered by 60 Co sources at 7.224 x 10 -2 C/kg per minute. The general condition, blood cell counts and bone marrow cell CFC assays were observed. Results: Vomiting occurred at 0.5 to 2 hours after TBI in all groups. In 6.5 Gy group 3/5 dogs had blood-watery stool and 1/5 in 5.5 Gy group had watery stool. Diarrhea occurred in all other animals. Only one dog in 2.5 Gy group survived, all of others died. in order of decreasing irradiation dosage, the average survival time was 5.0, 8.0, 9.3, 9.5, 10.5 and 14.1 days, respectively. Conclusions: According to the clinical symptoms, leukocyte count and survival time of the dogs, the irradiation dose which will induce very severe hematopoietic radiation syndrome in Beagle dogs is 4.5 to 5.0 Gy

  3. The effect of low-dose total body irradiation on tumor control

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko; Miyamoto, Miyako; Watabe, Nobuyuki.

    1987-01-01

    Total body irradiation (TBI) is considered to bring about an immunosuppressive effect on an organism, on the basis of data obtained from sublethal doses of TBI. However, there are no data on how low-dose TBI affects an organism. Over the last five years, we have been studying the effects of low-dose TBI on normal or tumor-bearing mice and the immunological background of these effects. In experimental studies, an increase in the TD50 value (the number of cells required for a tumor incidence of 50 %) in mice exposed to 10 rad was recognized and showed a remarkable increase at 6 hours to 15 hours after irradiation. TBI of 10 rad also showed an enhancement effect on tumor cell killing when given 12 hours before local tumor irradiation. In order to clarify the mechanism of this kind of effect, some immunological studies were performed using several immunological procedures, and the results suggested that 10 rad of TBI caused increasing tumor immunity in irradiated mice. Clinical trials in some patients with advanced tumors are now being undertaken on the basis of these experimental data, and the effect of TBI on tumor control appears promising, although it is too early to draw conclusions. (author)

  4. Biologically effective dose in total-body irradiation and hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Kal, H.B.; Kempen-Harteveld, M.L. van; Heijenbrok-Kal, M.H.; Struikmans, H.

    2006-01-01

    Background and Purpose: Total-body irradiation (TBI) is an important part of the conditioning regimen for hematopoietic stem cell transplantation (HSCT) in patients with hematologic malignancies. The results after treatment with various TBI regimes were compared, and dose-effect relationships for the endpoints relapse incidence, disease-free survival, treatment-related mortality, and overall survival were derived. The aim was to define requirements for an optimal treatment schedule with respect to leukemic cell kill and late normal-tissue morbidity. Material and Methods: A literature search was performed. Three randomized studies, four studies comparing results of two or three TBI regimens, and nine reports with results of one specific TBI regimen were identified. Biologically effective doses (BEDs) were calculated. The results of the randomized studies and the studies comparing results of two or three TBI regimens were pooled, and the pooled relative risk (RR) was calculated for the treatments with high BED values versus treatments with a low BED. BED-effect relationships were obtained. Results: RRs for the high BED treatments were significantly lower for relapse incidence, not significantly different for disease-free survival and treatment-related mortality, and significantly higher for overall survival. BED-effect relationships indicate a decrease in relapse incidence and treatment-related mortality and an increase in disease-free and overall survival with higher BED values. Conclusion: 'More dose is better', provided that a TBI setting is used limiting the BEDs of lungs, kidneys, and eye lenses. (orig.)

  5. Anti-tumor effect of total body irradiation of low doses on WHT/Ht mice

    International Nuclear Information System (INIS)

    Miyamoto, Miyako; Sakamoto, Kiyohiko

    1987-01-01

    The effect of low dose (0.05 - 1.0 Gy) of total body irradiation (TBI) on non-tumor bearing and tumor bearing mice were investigated. Mice received TBI of 0.1 Gy during 6 - 12 hours before tumor cell inoculation demonstrated to need larger number of tumor cells (approximately 2.5 times) for 50 per cent tumor incidence, compared to recipient mice not to receive TBI. On the other hand, in tumor bearing mice given 0.1 Gy of TBI only tumor cell killing effect was not detected, however enhancement of tumor cell killing effect and prolonged growth delay were observed when tumor bearing mice were treated with 0.1 Gy of TBI in combined with local irradiation on tumors, especially cell killing effect was remarkable in dose range over 6 Gy of local exposure. The mechanism of the effect of 0.1 Gy TBI is considered to be host mediated reactions from the other our experimental results. (author)

  6. Fractionated total body irradiation and autologous bone marrow transplantation in dogs: Hemopoietic recovery after various marrow cell doses

    International Nuclear Information System (INIS)

    Bodenburger, U.; Kolb, H.J.; Thierfelder, S.; Netzel, B.; Schaeffer, E.; Kolb, H.

    1980-01-01

    Hemopoietic recovery was studied in dogs given 2400 R fractionated total body irradiation within one week and graded doses of cryopreserved autologous bone marrow. Complete hemopoietic recovery including histology was observed after this dose and sufficient doses of marrow cells. Doses of more than 5.5 x 10 7 mononuclear marrow cells/kg body weight were sufficient for complete recovery in all dogs, 1.5 to 5.5 x 10 7 cells/kg were effective in some of the dogs and less than 1.5 x 10 7 cells/kg were insufficient for complete recovery. Similarly, more than 30000 CFUsub(c)/kg body weight were required for hemopoietic recovery. The optimal marrow cell dose which has been defined as the minimal dose required for the earliest possible recovery of leukocyte and platelet counts was 7-8 x 10 7 mononuclear marrow cells/kg body weight. It has been concluded that fractionated total body irradiation with 2400 R dose not require greater doses of marrow cells for hemopoietic reconstitution than lower single doses and that the hemopoietic microenvironment is not persistently disturbed after this dose. (author)

  7. The carcinogenic risk of high dose total body irradiation in non-human primates

    International Nuclear Information System (INIS)

    Broerse, J.J.; Bartstra, R.W.; Bekkum, D.W. van; Hage, M.H. van der; Zurcher, C.; Zwieten, M.J. van; Hollander, C.F.

    2000-01-01

    High dose total body irradiation (TBI) in combination with chemotherapy, followed by rescue with bone marrow transplantation (BMT), is increasingly used for the treatment of haematological malignancies. With the increasing success of this treatment and its current introduction for treating refractory autoimmune diseases the risk of radiation carcinogenesis is of growing concern. Studies on turnout induction in non-human primates are of relevance in this context since the response of this species to radiation does not differ much from that in man. Since the early sixties, studies have been performed on acute effects in Rhesus monkeys and the protective action of bone marrow transplantation after irradiation with X-rays (average total body dose 6.8 Gy) and fission neutrons (average dose 3.4 Gy). Of those monkeys, which were irradiated and reconstituted with autologous bone marrow, 20 animals in the X-irradiated group and nine animals in the neutron group survived more than 3 years. A group of 21 non-irradiated Rhesus monkeys of a comparable age distribution served as controls. All animals were regularly screened for the occurrence of neoplasms. Complete necropsies were performed after natural death or euthanasia. At post-irradiation intervals of 4-21 years an appreciable number of tumours was observed. In the neutron irradiated group eight out of nine animals died with one or more malignant tumours. In the X-irradiated group this fraction was 10 out of 20. The tumours in the control group, in seven out of the 21 animals, appeared at much older a-e compared with those in the irradiated cohorts. The histogenesis of the tumours was diverse with a preponderance of renal carcinoma, sarcomas among which osteosarcormas, and malignant glomus tumours in the irradiated groups. When corrected for competing risks, the carcinogenic risk of TBI in the Rhesus monkeys is similar to that derived from the studies of the Japanese atomic bomb survivors. The increase of the risk by a

  8. Influence of radioprotectors on total body weight evolution and on oxygen consumption in lethal dose irradiated animals. (Preliminary study)

    International Nuclear Information System (INIS)

    Fatome, M.; Martine, G.; Bargy, E.; Andrieu, L.

    Comparison of total body weight evolution and oxygen consumption in lethal dose irradiated animals, protected by various well known radioprotective substances, isolated or in mixture, with evolution and consumption of non protected animals irradiated at the same dose and with these of check animals [fr

  9. In vivo dosimetry with semiconducting diodes for dose verification in total-body irradiation. A 10-year experience

    International Nuclear Information System (INIS)

    Ramm, U.; Licher, J.; Moog, J.; Scherf, C.; Kara, E.; Boettcher, H.D.; Roedel, C.; Mose, S.

    2008-01-01

    Background and purpose: for total-body irradiation (TBI) using the translation method, dose distribution cannot be computed with computer-assisted three-dimensional planning systems. Therefore, dose distribution has to be primarily estimated based on CT scans (beam-zone method) which is followed by in vivo measurements to ascertain a homogeneous dose delivery. The aim of this study was to clinically establish semiconductor probes as a simple and fast method to obtain an online verification of the dose at relevant points. Patients and methods: in 110 consecutively irradiated TBI patients (12.6 Gy, 2 x 1.8 Gy/day), six semiconductor probes were attached to the body surface at dose-relevant points (eye/head, neck, lung, navel). The mid-body point of the abdomen was defined as dose reference point. The speed of translation was optimized to definitively reach the prescribed dose in this point. Based on the entrance and exit doses, the mid-body doses at the other points were computed. The dose homogeneity in the entire target volume was determined comparing all measured data with the dose at the reference point. Results: after calibration of the semiconductor probes under treatment conditions the dose in selected points and the dose homogeneity in the target volume could be quantitatively specified. In the TBI patients, conformity of calculated and measured doses in the given points was achieved with small deviations of adequate accuracy. The data of 80% of the patients are within an uncertainty of ± 5%. Conclusion: during TBI using the translation method, dose distribution and dose homogeneity can be easily controlled in selected points by means of semiconductor probes. Semiconductor probes are recommended for further use in the physical evaluation of TBI. (orig.)

  10. Total body irradiation

    International Nuclear Information System (INIS)

    Novack, D.H.; Kiley, J.P.

    1987-01-01

    The multitude of papers and conferences in recent years on the use of very large megavoltage radiation fields indicates an increased interest in total body, hemibody, and total nodal radiotherapy for various clinical situations. These include high dose total body irradiation (TBI) to destroy the bone marrow and leukemic cells and provide immunosuppression prior to a bone marrow transplant, high dose total lymphoid irradiation (TLI) prior to bone marrow transplantation in severe aplastic anemia, low dose TBI in the treatment of lymphocytic leukemias or lymphomas, and hemibody irradiation (HBI) in the treatment of advanced multiple myeloma. Although accurate provision of a specific dose and the desired degree of dose homogeneity are two of the physicist's major considerations for all radiotherapy techniques, these tasks are even more demanding for large field radiotherapy. Because most large field radiotherapy is done at an extended distance for complex patient geometries, basic dosimetry data measured at the standard distance (isocenter) must be verified or supplemented. This paper discusses some of the special dosimetric problems of large field radiotherapy, with specific examples given of the dosimetry of the TBI program for bone marrow transplant at the authors' hospital

  11. Cumulative total effective whole-body radiation dose in critically ill patients.

    Science.gov (United States)

    Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J

    2013-11-01

    Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.

  12. The effects of dose rate in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Bodenberger, U.; Holler, E.; Thierfelder, S.; Eckstein, R.

    1986-01-01

    In summary the studies in dogs show that the dose rate or exposure time has a great impact on survival of acute radiation syndromes. In contrast the inactivation of colony forming hemopoietic precursors is less influenced by the dose rate. The potential of hemopoietic recovery is determined by the survival of hemopoietic precursor cells. Therefore in patients with a suspected whole body exposure of more than 1.50 Gy, bacterial and fungal decontamination and reverse isolation in a sterile environment has to be started immediately. Human patients treated with about 10 Gy of TBI frequently developed nausea, elevated temperatures and swelling of the parotic glands at the first and second day. The extent of these changes varies from patient to patient. The temperature is rarely elevated above 38.5 0 C. The swelling of parotics and the nausea subside within 48 hours. The presence of such systemic symptoms may suggest the exposure to a lethal dose of radiation. The disappearance of immature red cells, i.e. reticulocytes, and bandforms of granulocytes within the first 5 days supports this suggestion. HLA typing of the victim and his family should be performed as soon as possible after the accident. An HLA-identical sibling would be a suitable bone marrow donor. Unlike therapeutic TBI accidental exposures bring about uncertainties in the calculation of dose, dose distribution and dose rate. Early after irradiation biological changes are extremely variable. Both biological and physical data have to be considered, when microbiological decontamination, reverse isolation and transplantation of bone marrow are to be decided upon. Obviously these intensive therapeutic efforts are limited to a small number of victims. (orig.)

  13. Clinical responses after total body irradiation by over permissible dose of γ-rays in one time

    International Nuclear Information System (INIS)

    Jiang Benrong; Wang Guilin; Liu Huilan; Tang Xingsheng; Ai Huisheng

    1990-01-01

    The clinical responses of patients after total body over permissilbe dose γ-ray irradiation were observed and analysed. The results showed: when the dose was above 5 cGy, there was some immunological depression, but no significant change in hematopoietic functions. 5 cases showed some transient changes of ECG, perhaps due to vagotonia caused by psychological imbalance, One case vomitted 3-4 times after 28 cGy irradiation, this suggested that a few times of vomitting had no significance in the estimation of the irradiated dose and the whole clinical manifestations must be concretely analysed

  14. Central axis dose verification in patients treated with total body irradiation of photons using a Computed Radiography system

    International Nuclear Information System (INIS)

    Rubio Rivero, A.; Caballero Pinelo, R.; Gonzalez Perez, Y.

    2015-01-01

    To propose and evaluate a method for the central axis dose verification in patients treated with total body irradiation (TBI) of photons using images obtained through a Computed Radiography (CR) system. It was used the Computed Radiography (Fuji) portal imaging cassette readings and correlate with measured of absorbed dose in water using 10 x 10 irradiation fields with ionization chamber in the 60 Co equipment. The analytical and graphic expression is obtained through software 'Origin8', the TBI patient portal verification images were processed using software ImageJ, to obtain the patient dose. To validate the results, the absorbed dose in RW3 models was measured with ionization chamber with different thickness, simulating TBI real conditions. Finally it was performed a retrospective study over the last 4 years obtaining the patients absorbed dose based on the reading in the image and comparing with the planned dose. The analytical equation obtained permits estimate the absorbed dose using image pixel value and the dose measured with ionization chamber and correlated with patient clinical records. Those results are compared with reported evidence obtaining a difference less than 02%, the 3 methods were compared and the results are within 10%. (Author)

  15. Radiobiological basis of total body irradiation with different dose rate and fractionation: repair capacity of hemopoietic cells

    International Nuclear Information System (INIS)

    Song, C.W.; Kim, T.H.; Khan, F.M.; Kersey, J.H.; Levitt, S.H.

    1981-01-01

    Total body irradiation (TBI) followed by bone marrow transplantation is being used in the treatment of malignant or non-malignant hemopoietic disorders. It has been believed that the ability of hemopoietic cells to repair sublethal radiation damage is negligible. Therefore, several schools of investigators suggested that TBI in a single exposure at extremely low dose rate (5 rad/min) over several hours, or in several fractions in 2-3 days, should yield a higher therapeutic gain, as compared with a single exposure at a high dose rate (26 rad/min). We reviewed the existing data in the literature, in particular, the response of hemopoietic cells to fractionated doses of irradiation and found that the repair capacity of both malignant and non-malignant hemopoietic cells might be greater than has been thought. It is concluded that we should not underestimate the ability of hemopoietic cells to repair sublethal radiation damage in using TBI

  16. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation.

    Science.gov (United States)

    Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana

    2017-06-01

    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx 3 cr1 +/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Effect of radiation dose rate and cyclophosphamide on pulmonary toxicity after total body irradiation in a mouse model

    International Nuclear Information System (INIS)

    Safwat, Akmal; Nielsen, Ole S.; El-Badawy, Samy; Overgaard, Jens

    1996-01-01

    Purpose: Interstitial pneumonitis (IP) is still a major complication after total body irradiation (TBI) and bone marrow transplantation (BMT). It is difficult to determine the exact role of radiation in this multifactorial complication, especially because most of the experimental work on lung damage was done using localized lung irradiation and not TBI. We have thus tested the effect of radiation dose rate and combining cyclophosphamide (CTX) with single fraction TBI on lung damage in a mouse model for BMT. Methods and Materials: TBI was given as a single fraction at a high dose rate (HDR, 0.71 Gy/min) or a low dose rate (LDR, 0.08 Gy/min). CTX (250 mg/kg) was given 24 h before TBI. Bone marrow transplantation (BMT) was performed 4-6 h after the last treatment. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days (LD (50(28))-180 ). Results: The LD 50 for lung damage, ± standard error (SE), increased from 12.0 (± 0.2) Gy using single fraction HDR to 15.8 (± 0.6) Gy using LDR. Adding CTX shifted the dose-response curves towards lower doses. The LD 50 values for the combined treatment were 5.3 (± 0.2) and 3.5 (± 0.2) Gy for HDR and LDR, respectively. This indicates that the combined effect of CTX and LDR was more toxic than that of combined CTX and HDR. Lung damage evaluated by VR demonstrated two waves of VR increase. The first wave of VR increase occurred after 6 weeks using TBI only and after 3 weeks in the combined CTX-TBI treatment, irrespective of total dose or dose rate. The second wave of VR elevation resembled the IP that follows localized thoracic irradiation in its time of occurrence. Conclusions: Lung damage following TBI could be spared using LDR. However, CTX markedly enhances TBI-induced lung damage. The combination of CTX and LDR is more toxic to the lungs than combining CTX and HDR

  18. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    International Nuclear Information System (INIS)

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Schumacher, D.; Shulman, H.; Graham, T.; Thomas, E.D.

    1981-01-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs died from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors

  19. Hyperfractionated high-dose total body irradiation in bone marrow transplantation for Ph{sup 1}-positive acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akira; Ebihara, Yasuhiro; Mitsui, Tetsuo [Tokyo Univ. (Japan). Hospital of the Institute of Medical Science] [and others

    1998-12-01

    In two cases of Philadelphia-positive childhood acute lymphoblastic leukemia (Ph{sup 1} ALL), we performed allogeneic bone marrow transplantation (AlloBMT) with preconditioning regimen, including hyperfractionated high-dose total body irradiation (TBI) (13.5 Gy, in 9 fractions). Their disease statuses at BMT were hematological relapse in case 1 and molecular relapse in case 2. Bone marrow donors were unrelated in case 1, and HLA was a partially mismatched mother in case 2. Regimen-related toxicity was tolerable in both cases. Hematological recovery was rapid, and engraftment was obtained on day 14 in case 1 and on day 12 in case 2. BCR/ABL message in bone marrow disappeared on day 89 in case 1 and on day 19 in case 2 and throughout their subsequent clinical courses. Although short-term MTX and Cy-A continuous infusion were used for GVHD prophylaxis, grade IV GVHD was observed in case 1 and grade III in case 2. Both cases experienced hemorrhagic cystitis because of adenovirus type 11 infection. Although case 1 died of interstitial pneumonitis on day 442, case 2 has been free of disease through day 231. AlloBMT for Ph{sup 1} ALL with preconditioning regimen including hyperfractionated high-dose TBI is considered to be worth further investigation. (author)

  20. Pocket total dose meter

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.

    1984-10-01

    Laboratory measurements have demonstrated that it is possible to simultaneously measure absorbed dose and dose equivalent using a single tissue equivalent proportional counter. Small, pocket sized instruments are being developed to determine dose equivalent as the worker is exposed to mixed field radiation. This paper describes the electronic circuitry and computer algorithms used to determine dose equivalent in these devices

  1. Total body irradiation

    International Nuclear Information System (INIS)

    Barrett, A.

    1988-01-01

    This paper describes body irradiation (TBI) being used increasingly as consolidation treatment in the management of leukaemia, lymphoma and various childhood tumours with the aim of sterilizing any malignant cells or micrometastases. Systemic radiotherapy as an adjunct to chemotherapy offers several possible benefits. There are no sanctuary sites for TBI; some neoplastic cells are very radiosensitive, and resistance to radiation appears to develop less readily than to drugs. Cross-resistance between chemotherapy and radiotherapy does not seem to be common and although plateau effects may be seen with chemotherapy there is a linear dose-response curve for clonogenic cell kill with radiation

  2. Total dose meter development

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1986-09-01

    This report describes an alarming ''pocket'' monitor/dosimeter, based on a tissue-equivalent proportional counter, that measure both neutron and gamma dose and determines dose equivalent for the mixed radiation field. This report details the operation of the device and provides information on: the necessity for a device to measure dose equivalent in mixed radiation fields; the mathematical theory required to determine dose equivalent from tissue equivalent proportional; the detailed electronic circuits required; the algorithms required in the microprocessor used to calculate dose equivalent; the features of the instrument; program accomplishments and future plans

  3. Dose-effect relationship for cataract induction after single-dose total body irradiation and bone marrow transplantation for acute leukemia

    International Nuclear Information System (INIS)

    Kempen-Harteveld, M. Loes van; Belkacemi, Yazid; Kal, Henk B.; Labopin, Myriam; Frassoni, Francesco

    2002-01-01

    Purpose: To determine a dose-effect relationship for cataract induction, the tissue-specific parameter, α/β, and the rate of repair of sublethal damage, μ value, in the linear-quadratic formula have to be known. To obtain these parameters for the human eye lens, a large series of patients treated with different doses and dose rates is required. The data of patients with acute leukemia treated with single-dose total body irradiation (STBI) and bone marrow transplantation (BMT) collected by the European Group for Blood and Marrow Transplantation were analyzed. Methods and Materials: The data of 495 patients who underwent BMT for acute leukemia, who had STBI as part of their conditioning regimen, were analyzed using the linear-quadratic concept. The end point was the incidence of cataract formation after BMT. Of the analyzed patients, 175 were registered as having cataracts. Biologic effective doses (BEDs) for different sets of values for α/β and μ were calculated for each patient. With Cox regression analysis, using the overall chi-square test as the parameter evaluating the goodness of fit, α/β and μ values were found. Risk factors for cataract induction were the BED of the applied TBI regimen, allogeneic BMT, steroid therapy for >14 weeks, and heparin administration. To avoid the influence of steroid therapy and heparin on cataract induction, patients who received steroid or heparin treatment were excluded, leaving only the BED as a risk factor. Next, the most likely set of α/β and μ values was obtained. With this set, the cataract-free survival rates were calculated for specific BED intervals, according to the Kaplan-Meier method. From these calculations, cataract incidences were obtained as function of the BED at 120 months after STBI. Results: The use of BED instead of the TBI dose enabled the incidence of cataract formation to be predicted in a reasonably consistent way. With Cox regression analysis for all STBI data, a maximal chi-square value was

  4. Recovery Profiles of T-Cell Subsets Following Low-Dose Total Body Irradiation and Improvement With Cinnamon

    International Nuclear Information System (INIS)

    Zheng, Xiaodan; Guo, Yuqi; Wang, Lei; Zhang, Honghai; Wang, Shaobo; Wang, Li; An, Lei; Zhou, Xianbin; Li, Xia; Yao, Chengfang

    2015-01-01

    Purpose: Inefficient T-cell reconstitution from x-ray–induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. Methods and Materials: CD3"+, CD8"+, and CD4"+ T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3 signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. Results: Reconstitution of CD4"+ T cells was delayed more than that of CD8"+ T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. Conclusions: T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the proliferation of Th1 and

  5. Recovery Profiles of T-Cell Subsets Following Low-Dose Total Body Irradiation and Improvement With Cinnamon

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaodan [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Science, Jinan (China); Guo, Yuqi [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Wang, Lei [Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan (China); Zhang, Honghai [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Wang, Shaobo [Shandong University, Jinan (China); Wang, Li [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); An, Lei [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Science, Jinan (China); Zhou, Xianbin; Li, Xia [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China); Yao, Chengfang, E-mail: yaocf9941@163.com [Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan (China)

    2015-12-01

    Purpose: Inefficient T-cell reconstitution from x-ray–induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. Methods and Materials: CD3{sup +}, CD8{sup +}, and CD4{sup +} T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3 signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. Results: Reconstitution of CD4{sup +} T cells was delayed more than that of CD8{sup +} T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. Conclusions: T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the

  6. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    International Nuclear Information System (INIS)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L

    2015-01-01

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator

  7. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  8. Time- and radiation-dose dependent changes in the plasma proteome after total body irradiation of non-human primates: Implications for biomarker selection.

    Directory of Open Access Journals (Sweden)

    Stephanie D Byrum

    Full Text Available Acute radiation syndrome (ARS is a complex multi-organ disease resulting from total body exposure to high doses of radiation. Individuals can be exposed to total body irradiation (TBI in a number of ways, including terrorist radiological weapons or nuclear accidents. In order to determine whether an individual has been exposed to high doses of radiation and needs countermeasure treatment, robust biomarkers are needed to estimate radiation exposure from biospecimens such as blood or urine. In order to identity such candidate biomarkers of radiation exposure, high-resolution proteomics was used to analyze plasma from non-human primates following whole body irradiation (Co-60 at 6.7 Gy and 7.4 Gy with a twelve day observation period. A total of 663 proteins were evaluated from the plasma proteome analysis. A panel of plasma proteins with characteristic time- and dose-dependent changes was identified. In addition to the plasma proteomics study reported here, we recently identified candidate biomarkers using urine from these same non-human primates. From the proteomic analysis of both plasma and urine, we identified ten overlapping proteins that significantly differentiate both time and dose variables. These shared plasma and urine proteins represent optimal candidate biomarkers of radiation exposure.

  9. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, T [The State University of New York at Buffalo (United States); Wang, IZ [The State University of New York at Buffalo (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  10. A reviewed technique for total body electron therapy using a Varian Clinac 2100C/D high dose rate treatment beam facility

    International Nuclear Information System (INIS)

    Oliver, L.D.; Xuereb, E.M.A.; Last, V.; Hunt, P.B.; Wilfert, A.

    1996-01-01

    Our (Royal North Shore Hospital) most recent linear accelerator acquisition is a Varian Clinac 2100C/D which has a high dose rate (approximately 25Gy per minute at 1 metre) total body electron option. We investigated the physical characteristics of the electron beam to develop a suitable method of treatment for total body electron therapy. The useful electron beam width is defined as 80cm above and below the reference height. Measurements of the electron dose received from the two angled electron beams showed a critical dependence on the gantry angles. The treatment protocol uses ten different patient angles, fractionated into directly opposing fields and treated seuqentially each day. A full cycle of treatment is completed in five days. (author)

  11. TU-CD-304-04: Scanning Field Total Body Irradiation Using Dynamic Arc with Variable Dose Rate and Gantry Speed

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Xu, H; Mutaf, Y; Prado, K [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: Enable a scanning field total body irradiation (TBI) technique, using dynamic arcs, which is biologically equivalent to a moving couch TBI. Methods: Patient is treated slightly above the floor and the treatment field scans across the patient by a moving gantry. MLC positions change during gantry motion to keep same field opening at the level of the treatment plane (170 cm). This is done to mimic the same geometry as the moving couch TBI technique which has been used in our institution for over 10 years. The dose rate and the gantry speed are determined considering a constant speed of the moving field, variations in SSD and slanted depths resulting from oblique gantry angles. An Eclipse (Varian) planning system is commissioned to accommodate the extended SSD. The dosimetric foundations of the technique have been thoroughly investigated using phantom measurements. Results: Dose uniformity better than 2% across 180 cm length at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Treatment range can be extended by increasing gantry range. No device such as a gravity-oriented compensator is needed to achieve a uniform dose. It is feasible to modify the dose distribution by adjusting the dose rate at each gantry angle to compensate for body thickness differences. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 100 MU/min. Conclusion: This novel yet transportable moving field technique enables TBI treatment in a small treatment room with less program development preparation than other techniques. Treatment length can be extended per need, and. MLC-based thickness compensation and partial lung blocking are also possible.

  12. Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation

    International Nuclear Information System (INIS)

    Day, R.M.; Barshishat-Kupper, M.; Mog, S.R.; Mccart, E.A.; Prasanna, P.G.S.; Landauer, M.R.; Davis, T.A.

    2008-01-01

    The effects of genistein on 30-day survival and delayed lung injury were examined in C57BL/6J female mice. A single subcutaneous injection of vehicle (PEG-400) or genistein (200 mg/kg) was administered 24 h before total body irradiation (7.75 Gy 60 Co, 0.6 Gy/min). Experimental groups were: No treatment+Sham (NC), Vehicle+Sham (VC), Genistein+Sham (GC), Radiation only (NR), Vehicle+Radiation (VR), Genistein+Radiation (GR). Thirty-day survivals after 7.75 Gy were: NR 23%, VR 53%, and GR 92%, indicating significant protection from acute radiation injury by genistein. Genistein also mitigated radiation-induced weight loss on days 13-28 postirradiation. First generation lung fibroblasts were analyzed for micronuclei 24 h postirradiation. Fibroblasts from the lungs of GR-treated mice had significantly reduced micronuclei compared with NR mice. Collagen deposition was examined by histochemical staining. At 90 days postirradiation one half of the untreated and vehicle irradiated mice had focal distributions of small collagen-rich plaques in the lungs, whereas all of the genistein-treated animals had morphologically normal lungs. Radiation reduced the expression of COX-2, transforming growth factor-β receptor (TGFβR) I and II at 90 days after irradiation. Genistein prevented the reduction in TGFβRI. However, by 180 days postirradiation, these proteins normalized in all groups. These results demonstrate that genistein protects against acute radiation-induced mortality in female mice and that GR-treated mice have reduced lung damage compared to NR or VR. These data suggest that genistein is protective against a range of radiation injuries. (author)

  13. Genistein Protects Against Biomarkers of Delayed Lung Sequelae in Mice Surviving High-Dose Total Body Irradiation

    Science.gov (United States)

    DAY, Regina M.; BARSHISHAT-KUPPER, Michal; MOG, Steven R.; MCCART, Elizabeth A.; PRASANNA, P. G. S.; DAVIS, Thomas A.; LANDAUER, Michael R.

    2008-01-01

    The effects of genistein on 30-day survival and delayed lung injury were examined in C57BL/6J female mice. A single subcutaneous injection of vehicle (PEG-400) or genistein (200 mg/kg) was administered 24 h before total body irradiation (7.75 Gy 60Co, 0.6 Gy/min). Experimental groups were: No treatment + Sham (NC), Vehicle + Sham (VC), Genistein + Sham (GC), Radiation only (NR), Vehicle + Radiation (VR), Genistein + Radiation (GR). Thirty-day survivals after 7.75 Gy were: NR 23%, VR 53%, and GR 92%, indicating significant protection from acute radiation injury by genistein. Genistein also mitigated radiation-induced weight loss on days 13–28 postirradiation. First generation lung fibroblasts were analyzed for micronuclei 24 h postirradiation. Fibroblasts from the lungs of GR-treated mice had significantly reduced micronuclei compared with NR mice. Collagen deposition was examined by histochemical staining. At 90 days postirradiation one half of the untreated and vehicle irradiated mice had focal distributions of small collagen-rich plaques in the lungs, whereas all of the genistein-treated animals had morphologically normal lungs. Radiation reduced the expression of COX-2, transforming growth factor-β receptor (TGFβR) I and II at 90 days after irradiation. Genistein prevented the reduction in TGFβRI. However, by 180 days postirradiation, these proteins normalized in all groups. These results demonstrate that genistein protects against acute radiation-induced mortality in female mice and that GR-treated mice have reduced lung damage compared to NR or VR. These data suggest that genistein is protective against a range of radiation injuries. PMID:18434686

  14. Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies

    International Nuclear Information System (INIS)

    Girinsky, T.; Benhamou, E.; Bourhis, J.H.; Dhermain, F.; Guillot-Valls, D.; Ganansia, V.; Luboinski, M.; Perez, A.; Cosset, J.M.; Socie, G.; Baume, D.; Bouaouina, N.; Briot, E.; Baudre, A.; Bridier, A.; Pico, J.L.

    2001-01-01

    The efficiency of the two irradiation modes are similar, but the hyperfractionated irradiation seems superior in term of global and specific survival. The incidence rates of pneumopathies are not different between the two groups but the incidence rate of the liver vein-occlusive illness is superior in the group treated by non fractionated whole body irradiation. The cost of the hyperfractionated whole body irradiation is superior to this one of the non fractionated whole body irradiation around a thousand dollars. (N.C.)

  15. Results of Hematopoietic Stem Cell Transplantation After Treatment With Different High-Dose Total-Body Irradiation Regimens in Five Dutch Centers

    International Nuclear Information System (INIS)

    Loes van Kempen-Harteveld, M.; Brand, Ronald; Kal, Henk B.; Verdonck, Leo F.; Hofman, Pieter; Schattenberg, Anton V.; Maazen, Richard W. van der; Cornelissen, Jan J.; Eijkenboom, Wil M.H.; Lelie, Johannes P. van der; Oldenburger, Foppe; Barge, Renee M.; Biezen, Anja van; Vossen, Jaak M.J.J.; Noordijk, Evert M.; Struikmans, Henk

    2008-01-01

    Purpose: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. Methods and Materials: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia and non-Hodgkin's lymphoma. The TBI regimens were normalized by using the biological effective dose (BED) concept. The BED values were divided into three dose groups. Study end points were relapse incidence (RI), non-relapse mortality (NRM), relapse-free survival (RFS), and overall survival (OS). Multivariate analysis was performed, stratified by disease. Results: In the highest TBI dose group, RI was significantly lower and NRM was higher vs. the lower dose groups. However, a significant influence on RFS and OS was not found. Relapses in the eye region were found only after shielding to very low doses. Age was of significant influence on OS, RFS, and NRM in favor of younger patients. The NRM of patients older than 40 years significantly increased, and OS decreased. There was no influence of age on RI. Men had better OS and RFS and lower NRM. Type of transplantation significantly influenced RI and NRM for patients with acute leukemia and non-Hodgkin's lymphoma. There was no influence on RFS and OS. Conclusions: Both RI and NRM were significantly influenced by the size of the BED of single-dose or two-fraction TBI regimens; OS and RFS were not. Age was of highly significant influence on NRM, but there was no influence of age on RI. Hyperfractionated TBI with a high BED might be useful, assuming NRM can be reduced

  16. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    International Nuclear Information System (INIS)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A

    2016-01-01

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm"2 size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  17. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm{sup 2} size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  18. TU-F-CAMPUS-T-01: Dose and Energy Spectra From Neutron Induced Radioactivity in Medical Linear Accelerators Following High Energy Total Body Irradiation

    International Nuclear Information System (INIS)

    Keehan, S; Taylor, M; Franich, R; Smith, R; Dunn, L; Kron, T

    2015-01-01

    Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI) treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as 187 W, 56 Mn, 24 Na and 28 Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws

  19. The effect of total body irradiation dose and chronic graft-versus-host disease on leukaemic relapse after allogeneic bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Frassoni, F; Bacigalupo, A [Ospedale San Martino (Italy). Centro Trapianti Midollo Osseo; Scarpati, D [Univ. di Genova (Italy). Ist. di Radiologia; and others

    1989-10-01

    One-hundred and five patients undergoing allo-geneic bone marrow transplantation (BMT) for acute myeloid leukaemia (AML) (n=61) and chronic myeloid leukaemia (n=44) were analysed for risk factors associated with relapse. All patients received marrow from an HLA identical sibling after preparation with cyclophosphamide 120 mg/kg and total body irradiation (TBI) 330 cGy on each of the three days prior to transplantation. A multivariate Cox analysis indicated that a lower TBI dose (less than 990 cGy) was the most significant factor associated with relapse and the second most important factor associated with recurrence of leukaemia was the absence of chronic graft-versus-host-disease (cGvHD). Actuarial relapse incidence was 62%, 28% and 18% for patients with no, limited or extensive chronic GvHD respectively. However, chronic GvHD had no significant impact on survival. Combined stratification for TBI dose and cGvHD showed that the dose effect of TBI on relapse was evident both in patients with and without cGvHD. Chronic GvHD influenced the risk of relapse only in patients receiving less than 990 cGy. These results suggest that a higher dose of TBI, within this schedule, produced long-term disease-free survival in the majority of AMLs and CMLs. Minor radiobiological side effects were experienced, but a small reduction of the dose may significantly increase the risk of relapse. (author).

  20. The effect of total body irradiation dose and chronic graft-versus-host disease on leukaemic relapse after allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Frassoni, F.; Bacigalupo, A.; Scarpati, D.

    1989-01-01

    One-hundred and five patients undergoing allo-geneic bone marrow transplantation (BMT) for acute myeloid leukaemia (AML) (n=61) and chronic myeloid leukaemia (n=44) were analysed for risk factors associated with relapse. All patients received marrow from an HLA identical sibling after preparation with cyclophosphamide 120 mg/kg and total body irradiation (TBI) 330 cGy on each of the three days prior to transplantation. A multivariate Cox analysis indicated that a lower TBI dose (less than 990 cGy) was the most significant factor associated with relapse and the second most important factor associated with recurrence of leukaemia was the absence of chronic graft-versus-host-disease (cGvHD). Actuarial relapse incidence was 62%, 28% and 18% for patients with no, limited or extensive chronic GvHD respectively. However, chronic GvHD had no significant impact on survival. Combined stratification for TBI dose and cGvHD showed that the dose effect of TBI on relapse was evident both in patients with and without cGvHD. Chronic GvHD influenced the risk of relapse only in patients receiving less than 990 cGy. These results suggest that a higher dose of TBI, within this schedule, produced long-term disease-free survival in the majority of AMLs and CMLs. Minor radiobiological side effects were experienced, but a small reduction of the dose may significantly increase the risk of relapse. (author)

  1. The role of low-dose total body irradiation in treatment of non-Hodgkin's lymphoma: a new look at an old method

    International Nuclear Information System (INIS)

    Safwat, A.

    2000-01-01

    The use of low-dose total body irradiation (LTBI) in treatment of lymphomatous malignancies dates back to the 1920s. The usual practice was to give very low individual TBI fraction sizes (0. 1-0.25 Gy) several times a week to a total dose of 1.5-2 Gy. Despite this very low total dose, LTBI could induce long term remissions and was always as effective as the chemotherapy to which it was compared. In modem radiotherapy, LTBI is still a valid option in treatment of chronic lymphocytic leukaemia (CLL) and the advanced stages of indolent low-grade non-Hodgkin's lymphoma (NHL). Its use in the early stages of low-grade NHL is under investigation in a large multi-institutional trial. The efficacy of LTBI is believed to stem from three mechanisms, namely; immune-enhancement, induction of apoptosis, and the intrinsic hypersensitivity to low-radiation doses demonstrated in many cell lines and tumour systems. Thus, LTBI seems to provide 'alternative' mechanisms of action against cancer cells. This should encourage researchers to explore strategies that integrate LTBI in new and innovative experimental treatment protocols that explore the possible synergism between LTBI and chemotherapy, biological response modifiers and/or immunotherapy. The increased incidence of secondary leukaemia that occurs when LTBI is combined with alkylating agents and/or total lymphoid irradiation should be kept in mind when designing such protocols as it may limit the use of LTBI in highly curable diseases and young patients in whom long survival is expected. (author)

  2. A method for total body irradiation

    International Nuclear Information System (INIS)

    Yasukochi, Hiroshi; Higashi, Shizuka; Okuhata, Yoshitaka; Lee, Keiichi; Ishioka, Kuniaki; Murakami, Koji; Nagai, Jun; Kuniyasu, Yoshio

    1988-01-01

    In these two years, we have treated four infant patients of acute leukemia by Cobalt-60 total body irradiation and bone marrow transplantation. During total body irradiation, thermoluminescence dosimeters were attached to the skin of patients. For four patients, nine dosimetries were performed. Reliability of this method was examined by phantom experiment. Every irradiation for the patient per fraction was 2.4 Gy, that is, 60 cGy for each four positions, right decubitus A-P and PA directions and left decubitus A-P and PA directions under aseptic circumstances. Radiation dose was uniform by this technique for each patient, and average determined dose for surface of the patients was between 87 % and 106 % compared with the air dose of the center of aseptic space (wagon). As the result, we suggest that this method is suitable for the total body irradiation of acute leukemia of infant. (author)

  3. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  4. Total body water and total body potassium in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-08-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation.

  5. Total body water and total body potassium in anorexia nervosa

    International Nuclear Information System (INIS)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-01-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation

  6. Early changes in GABA and dlutamine levels and aminotransferase activity in rat brain after total-body γ-irradiation with absolutely lethal doses

    International Nuclear Information System (INIS)

    Rozanov, V.A.; Karpovich, G.A.

    1985-01-01

    The contents of gaama-aminobutyric acid (GABA) and glutamate (GL) as well as GABA-aspartate- and alanine aminotransferase activities were measured in rat cerebellum, cerebral cortex and truncus cerebri 1, 3, 6, 24 and 48 hr following total-body γ-irradiation ( 60 Co) with a dose of 30 Gy. All the indices under study changed in a similar way in the cortex and truncus cerebri while in the cerebellum, GABA level increased and GABA-α-ketoglutarate aminotransfearse activity decreased 60 min after irradiation. The levels of GABA and GL in the cortex and truncus cerebri decreased immediately and increased 24 hr after irradiation. Activity of aminotransferases changed in a phase manner: changes in aspartate- and alanine aminotransferase activity were more pronounced than those of GABA-α-ketoglutarate aminotransferase activity and correlated with the glutamate level changes

  7. Allogeneic marrow transplantation following cyclophosphamide and escalating doses of hyperfractionated total body irradiation in patients with advanced lymphoid malignancies: a phase I/II trial

    International Nuclear Information System (INIS)

    Demirer, Taner; Petersen, Finn B.; Appelbaum, Frederick R.; Barnett, Todd A.; Sanders, Jean; Deeg, H. Joachim; Storb, Rainer; Doney, Kristine; Bensinger, William I.; Shannon-Dorcy, Kathleen; Buckner, C. Dean

    1995-01-01

    Purpose: To define the maximum tolerated dose (MTD) of unshielded total body irradiation (TBI) delivered from dual 60 C sources at an exposure rate of 0.08 Gy/min and given in thrice daily fractions of 1.2 Gy in patients with advanced lymphoid malignancies. Methods and Materials: Forty-four patients with a median age of 28 (range 6-48) years were entered into a Phase I/II study. All patients received cyclophosphamide (CY), 120 mg/kg administered over 2 days before TBI. Marrow from human leukocyte antigen (HLA) identical siblings was infused following the last dose of TBI. An escalation-deescalation schema designed to not exceed an incidence of 25% of Grade 3-4 regimen-related toxicities (RRTs) was used. The first dose level tested was 13.2 Gy followed by 14.4 Gy. Results: None of the four patients at the dose level of 13.2 Gy developed Grade 3-4 RRT. Two of the first eight patients receiving 14.4 Gy developed Grade 3-4 RRT, establishing this as the MTD. An additional 32 patients were evaluated at the 14.4 Gy level to confirm these initial observations. Of 40 patients receiving 14.4 Gy, 13 (32.5%) developed Grade 3-4 RRTs; 46% in adults and 12% in children. The primary dose limiting toxicity was Grade 3-4 hepatic toxicity, which occurred in 12.5% of patients. Noninfectious Grade 3-4 interstitial pneumonia syndrome occurred in 5% of patients. The actuarial probabilities of event-free survival, relapse, and nonrelapse mortality at 2 years were 0.10, 0.81, and 0.47, respectively, for patients who received 14.4 Gy of TBI. Conclusions: The outcome for patients receiving 14.4 Gy of TBI was not different from previous studies of other CY and TBI regimens in patients with advanced lymphoid malignancies. These data showed that the incidence of Grade 3-4 RRTs in adults was greater than the 25% maximum set as the goal of this study, suggesting that 13.2 Gy is a more appropriate dose of TBI for adults, while 14.4 Gy is an appropriate dose for children

  8. Therapeutic use of fractionated total body and subtotal body irradiation

    International Nuclear Information System (INIS)

    Loeffler, R.K.

    1981-01-01

    Ninety-one patients were treated using fractionated subtotal body (STBI) or total body irradiation (TBI). These patients had generalized lymphomas, Hodgkin's disease, leukemias, myelomas, seminomas, or oat-cell carcinomas. Subtotal body irradiation is delivered to the entire body, except for the skull and extremities. It was expected that a significantly higher radiation dose could be administered with STBI than with TBI. A five- to ten-fold increase in tolerance for STBI was demonstrated. Many of these patients have had long-term emissions. There is little or no treatment-induced symptomatology, and no sanctuary sites

  9. Reduced-intensity conditioning regimen using low-dose total body irradiation before allogeneic transplant for hematologic malignancies: Experience from the European Group for Blood and Marrow Transplantation

    International Nuclear Information System (INIS)

    Belkacemi, Yazid; Labopin, Myriam; Hennequin, Christophe; Hoffstetter, Sylvette; Mungai, Raffaello; Wygoda, Marc; Lundell, Marie; Finke, Jurgen; Aktinson, Chris; Lorchel, Frederic; Durdux, Catherine; Basara, Nadezda

    2007-01-01

    Purpose: The high rate of toxicity is the limitation of myelobalative regimens before allogeneic transplantation. A reduced intensity regimen can allow engraftment of stem cells and subsequent transfer of immune cells for the induction of a graft-vs.-tumor reaction. Methods and Materials: The data from 130 patients (80 males and 50 females) treated between 1998 and 2003 for various hematologic malignancies were analyzed. The median patient age was 50 years (range, 3-72 years). Allogeneic transplantation using peripheral blood or bone marrow, or both, was performed in 104 (82%), 22 (17%), and 4 (3%) patients, respectively, from HLA identical sibling donors (n = 93, 72%), matched unrelated donors (n = 23, 18%), mismatched related donors (4%), or mismatched unrelated donors (6%). Total body irradiation (TBI) at a dose of 2 Gy delivered in one fraction was given to 101 patients (78%), and a total dose of 4-6 Gy was given in 29 (22%) patients. The median dose rate was 14.3 cGy/min (range, 6-16.4). Results: After a median follow-up period of 20 months (range, 1-62 months), engraftment was obtained in 122 patients (94%). Acute graft-vs.-host disease of Grade 2 or worse was observed in 37% of patients. Multivariate analysis showed three favorable independent factors for event-free survival: HLA identical sibling donor (p < 0.0001; relative risk [RR], 0.15), complete remission (p < 0.0001; RR, 3.08), and female donor to male patient (p = 0.006; RR 2.43). For relapse, the two favorable prognostic factors were complete remission (p < 0.0001, RR 0.11) and HLA identical sibling donor (p = 0.0007; RR 3.59). Conclusions: In this multicenter study, we confirmed high rates of engraftment and chimerism after the reduced intensity regimen. Our results are comparable to those previously reported. Radiation parameters seem to have no impact on outcome. However, the lack of a statistically significant difference in terms of dose rate may have been due, in part, to the small population

  10. Cataract incidence after total-body irradiation

    International Nuclear Information System (INIS)

    Zierhut, D.; Lohr, F.; Schraube, P.; Huber, P.; Haas, R.; Hunstein, W.; Wannenmacher, M.

    1997-01-01

    Purpose: Aim of this retrospective study was to evaluate cataract incidence in a homogeneous group of patients after total-body irradiation followed by autologous bone marrow transplantation or peripheral blood stem cell transplantation. Method and Materials: Between 11/1982 and 6/1994 in total 260 patients received in our hospital total-body irradiation for treatment of haematological malignancy. In 1996-96 patients out of these 260 patients were still alive. 85 from these still living patients (52 men, 33 women) answered evaluable on a questionnaire and could be examined ophthalmologically. Median age of these patients was 38,5 years (15 - 59 years) at time of total-body irradiation. Radiotherapy was applied as hyperfractionated total-body irradiation with a median dose of 14,4 Gy in 12 fractions over 4 days. Minimum time between fractions was 4 hours, photons with a energy of 23 MeV were used, and the dose rate was 7 - 18 cGy/min. Results: Median follow-up is now 5,8 years (1,7 - 13 years). Cataract occurred in (28(85)) patients after a median time of 47 months (1 - 104 months). In 6 out of these 28 patients who developed a cataract, surgery of the cataract was performed. Whole-brain irradiation prior to total-body irradiation was more often in the group of patients developing a cataract (14,3%) vs. 10,7% in the group of patients without cataract. Conclusion: Cataract is a common side effect of total-body irradiation. Cataract incidence found in our patients is comparable to results of other centres using a fractionated regimen for total-body irradiation. The hyperfractionated regimen used in our hospital does obviously not result in a even lower cataract incidence. In contrast to acute and late toxicity in other organ/organsystems, hyperfractionation of total-body irradiation does not further reduce toxicity for the eye-lens. Dose rate may have more influence on cataract incidence

  11. Implantation of total body irradiation in radiotherapy

    International Nuclear Information System (INIS)

    Habitzreuter, Angela Beatriz

    2010-01-01

    Before implementing a treatment technique, the characteristics of the beam under irradiation conditions must be well acknowledged and studied. Each one of the parameters used to calculate the dose has to be measured and validated before its utilization in clinical practice. This is particularly necessary when dealing with special techniques. In this work, all necessary parameters and measurements are described for the total body irradiation implementation in facilities designed for conventional treatments that make use of unconventional geometries to generate desired enlarged field sizes. Furthermore, this work presents commissioning data of this modality at Hospital das Clinicas of Sao Paulo using comparison of three detectors types for measurements of entrance dose during total body irradiation treatment. (author)

  12. Treatment of aggressive multiple myeloma by high-dose chemotherapy and total body irradiation followed by blood stem cells autologous graft

    International Nuclear Information System (INIS)

    Fermand, J.P.; Levy, Y.; Gerota, J.; Benbunan, M.; Cosset, J.M.; Castaigne, S.; Seligmann, M.; Brouet, J.C.

    1989-01-01

    Eight patients with stage III aggressive multiple myeloma, refractory to current chemotherapy in six cases, were treated by high-dose chemotherapy (nitrosourea, etoposide, and melphalan) (HDC) and total body irradiation (TBI), followed by autografting with blood stem cells. These cells were previously collected by leukapheresis performed during hematologic recovery following cytotoxic drug-induced bone marrow aplasia. Seven patients were alive 9 to 17 months after HDC-TBI and graft. One died at day 40 from cerebral bleeding. All living patients achieved a 90% or greater reduction in tumor mass. In two cases, a complete remission (CR) has persisted at a follow-up of 15 and 16 months. Three patients have been well and off therapy with stable minimal residual disease (RD) since 10, 11, and 17 months, respectively. A patient in apparent CR and another with RD have relapsed 9 to 12 months posttreatment. Autologous blood-derived hematopoietic stem cells induced successful and sustained engraftment in all living patients. These results, although still preliminary, indicate that HDC and TBI, followed by blood stem cells autograft, which has both practical and theoretical interest over allogeneic or autologous bone marrow transplantation, deserve consideration in selected patients with multiple myeloma

  13. Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Bourquin, Jean-Pierre [University Children' s Hospital Zurich (Switzerland). Dept. of Hemato-Oncology; Oertel, Susanne [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Heidelberg Univ. (Germany). Dept. of Radiation Oncology

    2010-11-15

    To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG {>=}3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated

  14. p-MOSFET total dose dosimeter

    Science.gov (United States)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  15. Total body irradiation for children with malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Sanuki, Eiichi; Maeno, Toshio; Kamata, Rikisaburo; Tanaka, Yoshiaki; Mugishima, Hideo [Nihon Univ., Tokyo (Japan). School of Medicine

    1995-12-01

    Total body irradiation combined with high dose chemotherapy has been performed just before bone marrow transplantation in 35 children with advanced malignancies, with the object of achieving successful transplantation and improving the prognosis. Simulation was performed as follows: back scatter, flatness, dose accumulation using randophantom and dose distribution using a thermo-luminescence dosimeter and linac-graphy. The standard error of dose distribution was within 10%. In neuroblastoma, of which there were 14 cases in stage IV and one case in stage III, the 5-year survival rate was 55%. In leukemia, of which all cases were in the high-risk group (7 cases of acute lymphoblastic leukemia and 2 of acute myeloblastic leukemia) the 5-year survival rate was 55%. The 5 cases having first remission survived disease-free while the 4 cases having non-first remission died. In malignant lymphoma (6 cases in stage IV and one case in stage III, with bulky mass) the 5-year survival rate was 67%. Four cases with other diagnoses (severe aplastic anemia, and others) all survived. As yet no side effects resulting from total body irradiation have been recognized in our cases, but a longer follow-up period is necessary to observe possible late side effects. (author).

  16. Fractionated or single-dose total body irradiation in 171 acute myeloblastic leukemias in first complete remission: is there a best choice?

    International Nuclear Information System (INIS)

    Resbeut, Michel; Cowen, Didier; Blaise, Didier; Gluckman, Eliane; Cosset, Jean-Marc; Rio, Bernard; Pene, Francoise; Milpied, Nicolas; Cuillere, Jean-Claude; Reiffers, Josy; Richaud, Pierre

    1995-01-01

    Purpose: To evaluate the importance of fractionating total body irradiation (TBI) in patients receiving an allogenic bone marrow transplant (BMT) for an acute myeloblastic leukemia (AML) in first complete remission (CR1). Methods and Materials: Between 1983 and 1990, 171 consecutive patients received either single dose TBI (STBI) (n = 65) or fractionated TBI (FTBI) (n = 106) after being conditioned with cyclophosphamide and before receiving a non-T-depleted Human Leucocyte Antigen (HLA)-identical marrow. Both groups were comparable except for date of BMT and diagnosis-to-BMT interval (D-BMT). Results: After 63 months median follow-up, transplant-related mortality (TRM), probability of relapse, and 5-year disease-free survival (DFS) were 0.38 and 0.27 (p = 0.04), 0.29 and 0.26 (p = 0.22), 0.43 and 0.56 (p = 0.06), respectively, for STBI and FTBI. The supposed influence of the schedule of TBI disappeared in the multivariate analysis: TRM was enhanced by severe acute graft vs. host disease (p = 0.0002), early years of transplant (before January 1, 1987) (p = 0.0003), and longer D-BMT intervals (p = 0.038). Relapse was linked to early years of transplant (p < 0.00001), and the absence of chronic GVHD (p = 0.007). Longer DFSs were observed for later years of transplant (after January 1, 1987 and later) (p = 0.001), milder acute GVHD (p = 0.005), and shorter D-BMT intervals (p = 0.045). Important improvements of the results were made during the 7-year observation period: TRM, probability of relapse, and DFS were, respectively, 0.36, 0.28, and 0.46 for patients transplanted before January 1, 1987 vs. 0.21, 0.15, and 0.67 after that date. Conclusion: Our data strongly suggest that allogenic BMT is the best postremission treatment for AML in CR1, and the results are better when BMT shortly follows the achievement of remission. The schedule of TBI was of little importance compared with the improvements made in the management of patients undergoing BMT during the 1980s, and

  17. Total body irradiation: current indications; L`irradiation corporelle totale: les indications actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Danhier, S.; Dubray, B.; Cosset, J.M. [Institut Curie, 75 - Paris (France)

    1998-05-01

    The choice of dose and fractionation for total body irradiation is made difficult by the large number of considerations to be taken into account. The outcome of bone marrow transplantation after total body irradiation can be understood in terms of tumor cell killing, engraftment, and normal tissue damage, each of these endpoints being influenced by irradiation-, disease-, transplant-, and patient- related factors. Interpretation of clinical data is further hampered by the overwhelming influence of logistic constraints, the small numbers of randomized studies, and the concomitant variations in total dose and fraction size or dose rate. So far, three cautious conclusions can be drawn in order to tentatively adapt the total body irradiation schedule to clinically-relevant situations. Firstly, the organs at risk for normal tissue damage (lung, liver, lens, kidney) are protected by delivering small doses per fraction at low dose rate. This suggests that, when toxicity is at stake (e.g. in children), fractionated irradiation should be preferred, provided that inter-fraction intervals are long enough. Secondly, fractionated irradiation should be avoided in case of T-cell depleted transplant, given the high risk of graft rejection in this setting. An alternative would be to increase total (or fractional) dose of fractionated total body irradiation, but this approach is likely to induce more normal tissue toxicity. Thirdly, clinical data have shown higher relapse rates in chronic myeloid leukemia after fractionated or low dose rate total body irradiation, suggesting that fractionated irradiation should not be recommended, unless total (or fractional) dose is increased. Total body irradiation-containing regimens, primarily cyclophosphamide / total body irradiation, are either equivalent to or better than the chemotherapy-only regimens, primarily busulfan / cyclophosphamide. Busulfan / cyclophosphamide certainly represents a reasonable alternative, especially in patients who

  18. Renal toxicity after total body irradiation

    International Nuclear Information System (INIS)

    Borg, Martin; Hughes, Timothy; Horvath, Noemi; Rice, Michael; Thomas, Anthony C.

    2002-01-01

    Purpose: To evaluate the incidence of renal dysfunction after total body irradiation (TBI). Methods and Materials: Between 1990 and 1997, 64 patients (median age 50 years) received TBI as part of the conditioning regimen before bone marrow transplantation (BMT). Five patients with abnormal renal function at the beginning of treatment or with incomplete data were excluded. All patients received a total of 12 Gy (6 fractions twice daily for 3 consecutive days) prescribed to the peak lung dose (corrected for lung transmission) at a dose rate of 7.5 cGy/min. Renal shielding was not used. Renal dysfunction was assessed on the basis of the serum creatinine levels measured at the start and end of TBI and at 6, 12, 18, and 24 months after completion of BMT. Cox proportional hazard analysis was used to evaluate the various factors known to affect renal function. Results: Only 4 patients had elevated serum creatinine levels at 12 months and subsequently only 2 of the 33 surviving patients had persistent elevated renal serum creatinine levels 24 months after BMT. A fifth patient developed proteinuria and mildly elevated serum creatinine levels at 2.5 years. In 2 patients, the elevation coincided with disease relapse and normalized once remission was achieved. In the third patient, the elevation in serum creatinine levels coincided with relapse of multiple myeloma and the presence of Bence-Jones proteinuria. The fourth patient was the only patient who developed chronic renal failure secondary to radiation nephritis at 2 years. The etiology of the fifth patient's rise in creatinine was unknown, but may have been secondary to radiation nephritis. On univariate analysis, but not on multivariate analysis, a significant correlation was found between TBI-related renal dysfunction and hypertension before and after BMT. Conclusion: A dose of 12 Gy at 2 Gy/fraction resulted in only 1 case of radiation nephritis in the 59 patients studied 24 months after the completion of TBI and BMT

  19. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54-56 Gy given in 9-7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size.

    Science.gov (United States)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-04-22

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.

  20. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54–56 Gy given in 9–7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-01-01

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003–2008, 41 patients with 42 lung tumors were treated with SBRT to 54–56 Gy in 9–7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16–48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10–55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures

  1. Biological basis of total body irradiation

    International Nuclear Information System (INIS)

    Dubray, B.; Helfre, S.; Dendale, R.; Cosset, J.M.; Giraud, P.

    1999-01-01

    A comprehensive understanding of the radiobiological bases of total body irradiation (TBI) is made difficult by the large number of normal and malignant tissues that must be taken into account. In addition, tissue responses to irradiation are also sensitive to associated treatments, type of graft and a number of patient characteristics. Experimental studies have yielded a large body of data, the clinical relevance of which still requires definite validation through randomized trials. Fractionated TBI schemes are able to reduce late normal tissue toxicity, but the ultimate consequences of the fractional dose reduction do not appear to be equivocal. Thus, leukemia and lymphoma cells are probably more radio-biologically heterogeneous than previously thought, with several cell lines displaying relatively high radioresistance and repair capability patterns. The most primitive host-type hematopoietic stem cells are likely to be at least partly protected by TBI fractionation and may hamper late engraftment. Similarly, but with possibly conflicting consequences on the probability of engraftment, the persistence of a functional marrow stroma may also be fractionation-sensitive, while higher rejection rates have been reported after T-depletion grafts and fractionated TBI. in clinical practice (as for performance of relevant clinical trials), the influence of these results are rather limited by the heavy logistic constraints created by a sophisticated and time-consuming procedure. Lastly, clinicians are now facing an increasing incidence of second cancers, at least partly induced by irradiation, which jeopardize the long-term prospects of otherwise cured patients. (authors)

  2. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  3. Tacrolimus and mycophenolate mofetil after nonmyeloablative matched-sibling donor allogeneic stem-cell transplantations conditioned with fludarabine and low-dose total body irradiation.

    Science.gov (United States)

    Nieto, Yago; Patton, Nigel; Hawkins, Timothy; Spearing, Ruth; Bearman, Scott I; Jones, Roy B; Shpall, Elizabeth J; Rabinovitch, Rachel; Zeng, Chan; Barón, Anna; McSweeney, Peter A

    2006-02-01

    We evaluated tacrolimus/mycophenolate mofetil (MMF) for graft-versus-host disease (GVHD) prophylaxis after a nonmyeloablative stem cell transplantation (NST) from a matched sibling donor (MSD). Thirty-two patients (median age, 57 years) with advanced hematologic malignancies, who were poor candidates for a conventional myeloablative transplantation, received fludarabine (30 mg/m(2), day -4 to day -2), total-body irradiation (TBI) (200 cGy, day 0), infusion of donor peripheral blood progenitor cells (day 0), oral tacrolimus 0.06 mg/kg twice daily (from day 3), and oral MMF at 15 mg/kg twice daily (days 0-+27). Tacrolimus was tapered from day +100 to day +180 in those patients with indolent malignancies (n = 25), and from day +35 to day +56 in those with aggressive tumors (n = 7). Regimen toxicities and myelosuppression were mild, allowing 75% of patients to have entirely outpatient transplantations. One patient (3%) experienced a nonfatal graft rejection. Rates of grades II-IV and III-IV acute GVHD were 15.6% and 3%, respectively. Acute GVHD was diagnosed at median day +78 (range, days +31-+84). Extensive chronic GVHD was observed in 10 of 24 evaluable patients (41.6%) at a median onset of day +198 (range, days +128-+277), either spontaneously (n = 5) or elicited after tumor progression (n = 5). Five patients experienced transplantation-related mortality (TRM) (15.6%) from either acute GVHD-related multiorgan failure (MOF) (n = 3) or infectious complications (n = 2). At median follow-up of 19 months (range, 2-41 months), the overall survival, progression-free survival, and disease-free survival rates are 62.5%, 50%, and 40%, respectively. In conclusion, the use of tacrolimus/MMF after MSD NST is associated with encouraging rates of GVHD control.

  4. Quality control of dosimetry in total body irradiation

    International Nuclear Information System (INIS)

    Kallinger, W.

    1986-11-01

    An on-line dose measurement system for the quality control of the treatment of leukemia by means of total body irradiation with Co-60 gamma radiation is introduced. An ionization chamber and 5 diodes arranged on the surface of the patient incorporated with a microprocessor provides useful information and data necessary for the treatment. Following the concerted treatment procedure employing this system, the treatment of leukemia by means of total body irradiation is expected to be improved

  5. Total body irradiation in bone marrow transplantation

    International Nuclear Information System (INIS)

    Gluckman, E.; Devergie, A.; Boiron, M.; Bernard, Jean; Dutreix, A.; Dutreix, J.

    1979-01-01

    Total body irradiation was used in 22 patients as part of their conditioning regimen for bone marrow transplantation. Nine patients with acute leukemia received 1000 cGy TBI in addition with chemotherapy. None of them survived and the main cause of death was interstitial pneumonitis (50%). 4 patients received 1000 cGy with a lung shielding of 500 cGy. Two patients with acute leukemia died of leukemia and sepsis, two patients had aplastic anemia, one is surviving, the other died of severe GVHD and infectious complications. Nine patients with severe aplastic anemia strongly immunized by previous blood transfusions received 800 cGy TBI with a lung shielding of 400 cGy. No rejection was observed and 7 patients (63%) are currently alive. One patient died of interstitial pneumonitis probably related to CMV infection, one of subacute necrotizing hepatitis, two of severe acute GVHD. It is concluded from this study that TBI remains the best immunosuppressive conditioning regimen even in strongly immunized patients. It may be a contributing factor of the incidence and severity of interstitial pneumonitis. A reduction of the dose of the lung to 400-500 cGy seems to decrease the severity of this complication

  6. Radiobiological speculations on therapeutic total body irradiation

    International Nuclear Information System (INIS)

    Vriesendorp, H.M.

    1990-01-01

    Unexpected total body irradiation (TBI) of human beings, involved in nuclear warfare or in accidents in nuclear reactors can be lethal. In the 1950s, bone marrow transplantation was discovered as a potentially life saving procedure after TBI in the dose range of 5.0 to 12.0 Gy. Since that time, deliberate or therapeutic TBI has been used to condition patients with a lethal bone marrow disorder for bone marrow replacement. The therapeutic ratio of TBI followed by bone marrow transplantation is small. Many potentially lethal complications can occur, such as acute TBI side effects, late TBI side effects or immunological complications of bone marrow transplantation such as graft versus host disease or graft rejection. The benefits of TBI and bone marrow transplantation are that they offer a chance for cure of previously lethal bone marrow disorders. The optimal parameters for TBI remain to be defined. The review discusses the current clinical and experimental animal data, as they relate to the future definition of less toxic TBI procedures with a better therapeutic ratio. Different TBI procedures are required for patients with malignant vs. non-malignant disorders or for patients with histoincompatible vs. histocompatible bone marrow donors.77 references

  7. Feasibility study of helical tomotherapy for total body or total marrow irradiation

    International Nuclear Information System (INIS)

    Hui, Susanta K.; Kapatoes, Jeff; Fowler, Jack; Henderson, Douglas; Olivera, Gustavo; Manon, Rafael R.; Gerbi, Bruce; Mackie, T. R.; Welsh, James S.

    2005-01-01

    Total body radiation (TBI) has been used for many years as a preconditioning agent before bone marrow transplantation. Many side effects still plague its use. We investigated the planning and delivery of total body irradiation (TBI) and selective total marrow irradiation (TMI) and a reduced radiation dose to sensitive structures using image-guided helical tomotherapy. To assess the feasibility of using helical tomotherapy (A) we studied variations in pitch, field width, and modulation factor on total body and total marrow helical tomotherapy treatments. We varied these parameters to provide a uniform dose along with a treatment times similar to conventional TBI (15-30 min). (B) We also investigated limited (head, chest, and pelvis) megavoltage CT (MVCT) scanning for the dimensional pretreatment setup verification rather than total body MVCT scanning to shorten the overall treatment time per treatment fraction. (C) We placed thermoluminescent detectors (TLDs) inside a Rando phantom to measure the dose at seven anatomical sites, including the lungs. A simulated TBI treatment showed homogeneous dose coverage (±10%) to the whole body. Doses to the sensitive organs were reduced by 35%-70% of the target dose. TLD measurements on Rando showed an accurate dose delivery (±7%) to the target and critical organs. In the TMI study, the dose was delivered conformally to the bone marrow only. The TBI and TMI treatment delivery time was reduced (by 50%) by increasing the field width from 2.5 to 5.0 cm in the inferior-superior direction. A limited MVCT reduced the target localization time 60% compared to whole body MVCT. MVCT image-guided helical tomotherapy offers a novel method to deliver a precise, homogeneous radiation dose to the whole body target while reducing the dose significantly to all critical organs. A judicious selection of pitch, modulation factor, and field size is required to produce a homogeneous dose distribution along with an acceptable treatment time. In

  8. Total Body Opacification 'Technique Neonatal Adrenal Haemorrhage

    African Journals Online (AJOL)

    1971-12-11

    Dec 11, 1971 ... A case is reported illustrating the possible usefulness of total body opacification in the diagnosis of neonatal adrenal haemorrhage. To derive maximum benefit from this principle, the routine use of an early film coupled with high dosage is urged whenever an intravenous pyelogram is performed for ...

  9. Peripheral blood corticotropin-releasing factor, adrenocorticotropic hormone and cytokine (Interleukin Beta, Interleukin 6, tumor necrosis factor alpha) levels after high- and low-dose total-body irradiation in humans

    International Nuclear Information System (INIS)

    Girinsky, T.A.; Pallardy, M.; Comoy, E.; Benassi, T.; Roger, R.; Ganem, G.; Socie, G.; Cossett, J.M.; Magdelenat, H.

    1994-01-01

    Total-body irradiation (TBI) induces an increase in levels of granulocytes and cortisol in blood. To explore the underlying mechanisms, we studied 26 patients who had TBI prior to bone marrow transplantation. Our findings suggest that only a high dose of TBI (10 Gy) was capable of activating the hypothalamopituitary area since corticotropin-releasing factor and blood adrenocorticotropic hormone levels increased at the end of the TBI. There was a concomitant increase in the levels of interleukin 6 and tumor necrosis factor in blood, suggesting that these cytokines might activate the hypothalamo-pituitary adrenal axis. Interleukin 1 was not detected. Since vascular injury is a common after radiation treatment, it is possible that interleukin 6 was secreted by endothelial cells. The exact mechanisms of the production of cyctokines induced by ionizing radiation remain to be determined. 25 refs., 1 fig

  10. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  11. Low-dose total body irradiation and G-CSF without hematopoietic stem cell support in the treatment of relapsed or refractory acute myelogenous leukemia (AML), or AML in second or subsequent remission

    International Nuclear Information System (INIS)

    Shulman, Lawrence N.; Tarbell, Nancy J.; Storen, Elizabeth; Marcus, Karen; Mauch, Peter M.

    1998-01-01

    Purpose: Patients with relapsed acute myelogenous leukemia (AML), who are not eligible for bone marrow transplantation, have a poor prognosis when treated with chemotherapy alone. Total body irradiation (TBI) is an effective modality against AML when used in doses of 1000-1400 cGy with hematopoietic stem cell support. We undertook a phase I study of TBI with granulocyte-colony-stimulating factor (G-CSF) support, without stem cell support in patients with AML either in relapse or second or subsequent remission. Methods and Materials: Patients with relapsed AML, or AML in second or subsequent remission were treated in a phase I study of TBI followed by G-CSF. The first dose level was 200 cGy. After the initial cohort of patients it was clear that patients with overt leukemia did not benefit from this treatment, and subsequent patients were required to be in remission at the time of TBI. Results: Eleven patients were treated, 4 in overt relapse, and 7 in remission. 200 cGy was used in all, and dose escalation was not possible due to prolonged thrombocytopenia in all patients but one. Neutrophil recovery was adequate in those patients who remained in remission after TBI. Patients with overt leukemia had transient reduction in blast counts, but rapid recurrence of their leukemia. Patients treated in remission had short remissions, with the exception of one patient who is in remission 32 months after treatment. Conclusion: There is some antileukemic effect of TBI even at 200 cGy, though this dose appears to be too low to help a significant number of patients. If TBI is to be escalated without stem cell support, then a thrombopoietic agent will need to be used

  12. Acute tolerance of hyperfractionated accelerated total body irradiation

    International Nuclear Information System (INIS)

    Latz, D.; Schraube, P.; Wannenmacher, M.

    1996-01-01

    Background: Acute side effects of total body irradiation lead to intense molestations of the patients. Therefore, it is desirable to take measures to reduce these side effects. In a retrospective study the frequency on acute side effects of a hyperfractionated accelerated total body irradiation was assessed and compared to frequencies of other exposure schedules published in the literature. Additionally the influence of ondansetron on the frequency of nausea and vormiting was investigated. Patients and Method: From 1989 to 1992, 76 patients (47 male, 29 female; median age 38 years) underwent total body irradiation before autologeous bone marrow transplantation. They received 3 daily doses of 1.20 Gy each every 4 h on 4 successive days to a total dose of 14,40 Gy. Thirty-nine patients received 3x8 mg (daily, intravenous or per os) ondansetron during the whole course of irradiation. Results: The most relevant side effects were nausea and vomiting. Patients, who did not receive ondansetron (n=37) showed a nausea and emesis rate of 73%. With ondansetron (n=39) nausea and emesis were reduced to 38%. Also the grade of severity of these side effects was reduced. Conclusions: Ondansetron proved to be an effective medicament for relieving nausea and vormiting during total body irradiation. The results obtained are in concordance with those published in the literature. (orig.) [de

  13. Use of total body electrical conductivity (TOBEC) to determine total body water

    International Nuclear Information System (INIS)

    Cochran, W.; Wong, W.; Sheng, H.P.; Klein, P.; Klish, W.

    1986-01-01

    Total body electrical conductivity (TOBEC) has been introduced as a safe and rapid method to estimate body composition in infants and adults. Recently, a second generation instrument that operates in a scanning mode has been developed. A study was undertaken to calibrate this new instrument and to assess the feasibility of its use in estimating total body water. Six healthy adults, 3 males and 3 females, ranging in age from 25 to 57 years, and in weight from 43.3 to 104.7 kg were analyzed. Simultaneously, determinations of total body water were made by standard dilutional techniques using H 2 18 O. A baseline plasma sample was obtained and 60 mg 18 O/kg was given orally as H 2 18 O. Five hr later, a postdose plasma sample was obtained. The 18 O/ 16 O ratio in the plasma samples was determined as CO 2 by gas-isotope-ratio mass spectrometry and used to calculate the H 2 18 O volume of distribution. The total body water values ranged from 26.35 to 58.02 and represented 51 to 58% of body weight. There was good linear correlation between the total body water measurement and its phase average (TOBEC number) with a linear correlation coefficient of 0.998. The standard error of the estimate was 0.98. In addition to estimating fat and fat-free mass, the TOBEC method also estimates total body water with excellent correlation to physical dilutions methods

  14. Treatment of neuroblastoma. Role of total Body Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dini, G; Perin, G P; Franzone, P; Corvo, R; Scarpati, D

    1986-01-01

    Advanced neuroblastoma, scarcely responsive to conventional therapies, can take advantage of high dose chemio-radiotherapic treatment followed by bone marrow transplant. Nineteen young patients underwent an ablative chemotherapy with high dose Vincristine and Melphalan plus Total Body Irradiation in Genoa, Italy; all of them underwent autologus bone marrow transplantation. Fourteen children were in complete remission (CR), 5 had residual disease. Thirteen are alive after a median of 7 months following transplant; 9 are in CR; 4 have disease; 1 died for toxicity; 5 for relapse. The results seem to suggest that ablative therapy should be given to patients in CR. Toxicity was not remarkable mainly as far as TBI is concerned.

  15. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  16. Measurement of total body radioactivity in man

    International Nuclear Information System (INIS)

    Naversten, Y.

    1982-01-01

    Techniques for the determination of whole-body radioactivity in man using uncollimated NaI(Tl) detectors have been studied. Geometrical effects and photon attenuation effects due to the different shapes of humans as well as due to varying in-vivo radioactivity distributions have been evaluated particularly for scanning-bed geometries and the chair geometry. Theoretically it is shown that the attenuation effects are generally dominating, for full-energy-peak pulse-range methods. For the application in radiation protection a cheap and simple chair-geometry unit has been constructed and used at various places distantly from the home-laboratory, for studies of body activity of Cs-137 in northern Sweden. High body activities were found particularly in reindeer-breeding Lapps. The elimination rate of Cs-137 in man was studied in the stationary whole-body counter in Lund as well as with the field-system. For the study of the performances at low and high photon energies clinical applications of methods for gastro-intestinal absorption of vitamin B12 (Co-57; 122 keV) and total body potassium determination (K-40; 1.46 MeV, K-42; 1.52 MeV) have been evaluated. Theoretical and experimental results as well as experiences of applications in radiation protection and medicine show that the scanning-bed geometry effectively evens out redistributional effects. For optimum results, however, scatter-energy pulse-ranges rather than full-energy-peak ranges should be used. (Auth.)

  17. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  18. Total body photography for skin cancer screening.

    Science.gov (United States)

    Dengel, Lynn T; Petroni, Gina R; Judge, Joshua; Chen, David; Acton, Scott T; Schroen, Anneke T; Slingluff, Craig L

    2015-11-01

    Total body photography may aid in melanoma screening but is not widely applied due to time and cost. We hypothesized that a near-simultaneous automated skin photo-acquisition system would be acceptable to patients and could rapidly obtain total body images that enable visualization of pigmented skin lesions. From February to May 2009, a study of 20 volunteers was performed at the University of Virginia to test a prototype 16-camera imaging booth built by the research team and to guide development of special purpose software. For each participant, images were obtained before and after marking 10 lesions (five "easy" and five "difficult"), and images were evaluated to estimate visualization rates. Imaging logistical challenges were scored by the operator, and participant opinion was assessed by questionnaire. Average time for image capture was three minutes (range 2-5). All 55 "easy" lesions were visualized (sensitivity 100%, 90% CI 95-100%), and 54/55 "difficult" lesions were visualized (sensitivity 98%, 90% CI 92-100%). Operators and patients graded the imaging process favorably, with challenges identified regarding lighting and positioning. Rapid-acquisition automated skin photography is feasible with a low-cost system, with excellent lesion visualization and participant acceptance. These data provide a basis for employing this method in clinical melanoma screening. © 2014 The International Society of Dermatology.

  19. Computer-based anthropometrical system for total body irradiation.

    Science.gov (United States)

    Sánchez-Nieto, B; Sánchez-Doblado, F; Terrón, J A; Arráns, R; Errazquin, L

    1997-05-01

    For total body irradiation (TBI) dose calculation requirements, anatomical information about the whole body is needed. Despite the fact that video image grabbing techniques are used by some treatment planning systems for standard radiotherapy, there are no such systems designed to generate anatomical parameters for TBI planning. The paper describes an anthropometrical computerised system based on video image grabbing which was purpose-built to provide anatomical data for a PC-based TBI planning system. Using software, the system controls the acquisition and digitalisation of the images (external images of the patient in treatment position) and the measurement procedure itself (on the external images or the digital CT information). An ASCII file, readable by the TBI planning system, is generated to store the required parameters of the dose calculation points, i.e. depth, backscatter tissue thickness, thickness of inhomogeneity, off-axis distance (OAD) and source to skin distance (SSD).

  20. Total-body sodium and sodium excess

    International Nuclear Information System (INIS)

    Aloia, J.F.; Cohn, S.H.; Abesamis, C.; Babu, T.; Zanzi, I.; Ellis, K.

    1980-01-01

    Total-body levels of sodium (TBNa), chlorine (TBCI), calcium (TBCa), and potassium (TBK) were measured by neutron activation and analysis of results by whole body counting in 66 postmenopausal women. The relationship between TBNa, and TBCl, TBK, and TBCa on the one hand, and height and weight on the other, were found to compare with those previously reported. The hypothesis that TBNa and TBCl are distributed normally could not be rejected. The sodium excess (Na/sub es/) is defined as the sodium that is present in excess of that associated with the extracellular fluid (chlorine) space; the Na/sub es/ approximates nonexchangeable bone sodium. In these 66 postmenopausal women, and in patients with different endocrinopathies previously described, the values on Na/sub es/ did not differ from the normal values except in the thyrotoxicosis patients, where they were decreased. A close relationship between Na/sub es/ and TBCa was maintained in the endocrinopathies studied. This relationship was found in conditions accompanied by either an increment or a loss of skeletal mass. It appears that the NA/sub es/ value is primarily dependent upon the calcium content of bone

  1. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  2. Phase-II trial of fractionated total body radiation in bone marrow transplantation for acute leukemia

    International Nuclear Information System (INIS)

    Gale, R.P.; Opelz, G.; Feig, S.

    1979-01-01

    The addition of low doses of fractionated total body irradiation and a radiosensitizing agent to more conventional doses of total body irradiation was well tolerated but did not improve the antileukemic effect. The DAFT regimen was not associated with a higher incidence of GVHD or interstitial pneumonitis. This observation has led us to consider escalation of the dose of FTBI in our next clinical trial

  3. Total body neutron activation analysis of calcium: calibration and normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, N S.J.; Eastell, R; Ferrington, C M; Simpson, J D; Strong, J A [Western General Hospital, Edinburgh (UK); Smith, M A; Tothill, P [Royal Infirmary, Edinburgh (UK)

    1982-05-01

    An irradiation system has been designed, using a neutron beam from a cyclotron, which optimises the uniformity of activation of calcium. Induced activity is measured in a scanning, shadow-shield whole-body counter. Calibration has been effected and reproducibility assessed with three different types of phantom. Corrections were derived for variations in body height, depth and fat thickness. The coefficient of variation for repeated measurements of an anthropomorphic phantom was 1.8% for an absorbed dose equivalent of 13 mSv (1.3 rem). Measurements of total body calcium in 40 normal adults were used to derive normalisation factors which predict the normal calcium in a subject of given size and age. The coefficient of variation of normalised calcium was 6.2% in men and 6.6% in women, with the demonstration of an annual loss of 1.5% after the menopause. The narrow range should make single measurements useful for diagnostic purposes.

  4. Risk management in radiotherapy: analysis for total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Banguero, Y., E-mail: ybanguero@cin.edu.uy [Universidad de la República, Montevideo (Uruguay); Píriz, G.; Guerrero, L.; Cardozo, L.; Quarneti, A. [Centro Hospital Pereira Rossell, Montevideo (Uruguay); Nader, A. [Autoridad Reguladora Nacional de Radioprotección, Montevideo (Uruguay)

    2017-07-01

    Introduction: Management of risk in any technique that is using radiation energy is very important to prevent incidents and accidents. Pretending evaluate the risk in the all process of Total Body Irradiation (TBI), this work present a risk matrix with different possible events than could occur. Methods: SEVRRA-R platform that run in windows is using to build a risk matrix separating the process of TBI in commissioning, prescription, planning and delivering dose. Any stage has a procedure with different errors associated. We build a matrix using all this information to evaluate the kind of risk we have in the technique. Results: It was obtained a template that describes in general the process of TBI with principles events, barriers and consequences. Conclusion: Analyzing the risk in any stage of the process in Total Body irradiation is a useful tool to understand the key points to work in safety for this technique. (author)

  5. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  6. Design and characteristics of a 4 MV total body irradiator

    International Nuclear Information System (INIS)

    Lutz, W.R.; Chin, L.M.

    1988-01-01

    A facility for total body X-ray irradiation (TBI) has been built using two 4 MV linear accelerators, one mounted under the ceiling, the other in a floor-pit. The distance between the two sources is 410 cm to produce a field size of 200 cm x 75 cm in the midplane. This field covers the patient, lying supine on a stretcher halfway between the sources. Components from commercially available accelerators were used. Special beam hardening and flattening filters were built to achieve acceptable dose profiles in the large field. The primary collimator was modified to produce a 235 cm x 92 cm field at 205 cm from the source, while movable focused collimators were designed to define fields up to 220 cm x 80 cm. Because of the wide beams, large rectangular parallel-plate ionization chambers were built to serve as beam monitors. The dose rate at 205 cm distance from the sources can be set between 5 and 80 cGy/min, each machine contributing half. The dosimetric characteristics are practically the same for both units. The per cent depth dose for the TBI beams is 76% at a source-surface distance of 195 cm. The half value layer decreases by 12% from the centre to near the edge of the beam. Owing to the large field size, the surface dose for the TBI beams is about 80% of the dose at 1 cm depth. The dose delivery has been verified to be within 2% of the calculated value at the reference point in a homogeneous water humanoid phantom. Measurements indicate that lung doses can be predicted by the ratio-of-TMR (tissue-to-maximum ratio) method with acceptable accuracy. Lead sheets are used as attenuators to prevent excessive lung doses. (author). 7 refs, 7 figs

  7. Total body irradiation and marrow transplantation for acute leukaemia. The Royal Marsden Hospital experience

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, A; Barrett, A J; Powles, R L [Institute of Cancer Research, Sutton (UK). Surrey Branch; Royal Marsden Hospital, London (UK))

    1979-06-01

    The experience with total body irradiation at the Royal Marsden Hospital is described for an elective program of transplantation in patients with acute myeloid leukaemia (AML) in first remission. Dose rate appears to be a critical factor in the reduction of radiation-associated damage and careful monitoring of the actual dose distribution and dose received is mandatory.

  8. Correct statistical evaluation for total dose in rural settlement

    International Nuclear Information System (INIS)

    Vlasova, N.G.; Skryabin, A.M.

    2001-01-01

    Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose

  9. Total body irradiation as a form of preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Inoue, Toshihiko

    1987-01-01

    The history of total body irradiation and bone marrow transplantation is surprisingly old. Following the success of Thomas et al. in the 1970s, bone marrow transplantation appeared to be the sole curative treatment modality for high-risk leukemia. A supralethal dose of total body irradiation was widely accepted as a form of preparation for bone marrow transplantation. In this paper, I described the present status of bone marrow transplantation for leukemia patients in Japan based on the IVth national survey. Since interstitial pneumonitis was one of the most life threatening complications after bone marrow transplantation, I mentioned the dose, dose-rate and fraction of total body irradiation in more detail. In addition, I dealt with some problems of the total body irradiation, such as dose prescription, compensating contour as well as inhomogeneity, and shielding for the highrisk organs. (author) 82 refs

  10. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  11. Estimation of Total Body Fat from Potassium-40 Content

    International Nuclear Information System (INIS)

    Taha Mohamed Taha Ahmed, T.M.T.

    2010-01-01

    This paper concerns on estimation of total body fat from potassium 40 content using total body counting technique. The work performed using fast scan whole body counter. Calibration of that system for K-40 was carried out under assumption that uniformity distribution of radioactivity of potassium was distributed in 10 polyethylene bottles phantom. Different body sizes were represented by 2, 4, 6, 8 and 10 polyethylene bottles; each bottle has a volume of 0.04 m3. The counting efficiency for each body size was determined. Lean body weight (LBW) was calculated for ten males and ten females using appropriate mathematical equation. Total Body Potassium, TBK for the same selected group was measured using whole body counter. A mathematical relationship between lean body weight and potassium content was deduced .Fat contents for some individuals were calculated and weight/height ratio was indicated for fatness.

  12. Dose estimation of interventional cardiologists in different body regions

    International Nuclear Information System (INIS)

    Borba, Iana Q. de; Luz, Renata M. da; Capaverde, Alexandre S.; Silva, Ana M. Marques da; Caramori, Paulo Ricardo Avancini

    2015-01-01

    Interventional radiology is one of the medical specialties that provides the highest doses to professionals, widely used in cardiology, being called interventional cardiology. In order to contribute to the optimization of occupational radiation protection in interventional cardiology procedures, the aim of this study is to evaluate the dose estimation received in different body regions by physicians in interventional cardiology procedures. Two physicians were followed, named as A and B, during one month period, performing a total of 127 procedures (70 for A and 57 for B) of interventional cardiology. During the procedures, dosimeters in different body regions beyond the full-body dosimeter were positioned. The results showed the highest values for the estimated dose received by workers were in the right wrist and left side face regions, for the physician A, and in the left knee and left side face, for the physician B. Results demonstrate the importance of using individual protection equipment by physicians in interventional cardiology, including lead glasses, besides monitoring dosimeters for other body regions, such as wrist, face and knee. (author)

  13. Dosimetry for total body irradiation of rhesus monkeys with 300 kV X- rays

    NARCIS (Netherlands)

    Zoetelief, J.; Wagemaker, G.; Broerse, J.J.

    1998-01-01

    Purpose: To obtain more accurate information on the dose distribution in rhesus monkeys for total body irradiation with orthovoltage X-rays. Materials and methods: Dose measurements were performed with an ionization chamber inside homogeneous cylindrical and rectangular phantoms of various

  14. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  15. Endocrine dysfunction after total body irradiation and bone marrow transplantation

    International Nuclear Information System (INIS)

    Feyer, P.; Titlbach, O.; Hoffmann, F.A.; Kubel, M.; Helbig, W.; Leipzig Univ.

    1989-01-01

    Data regarding changes of endocrine parameters after total body irradiation (TBI) and bone marrow transplantation (BMT) are described. Endocrine glands are usually resistant to irradiation under morphological aspects. But new methods of determination and sensitive tests were developed in the last few years. Now it is possible to detect already small functional changes. Endocrine studies in the course of the disease were followed serially in 16 patients with TBI and BMT. Pretransplant conditioning consisted of single-dose irradiation combined with a high-dose, short-term chemotherapy. Reactions of the endocrine system showed a defined temporary order. Changes of ACTH and cortisol were in the beginning. The pituitary-adrenal cortex system responds in a different way. The pituitary-thyroid system develops a short-term 'low-T 3 -syndrome' reflecting the extreme stress of the organism. At the same time we obtained an increase of thyroxine. Testosterone and luteotropic hormone, the sexual steroids showed levels representing a primary gonadal insufficiency. The studies in the posttransplant period yielded a return to the normal range at most of the hormonal levels with the exception of the sexual steroids. Sterility is one of the late effects of TBI. A tendency towards hypothyroidism could be noticed in some cases being only subclinical forms. Reasons and possible therapy are discussed. (author)

  16. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  17. Myeloproliferative disorders in patients with rheumatoid arthritis treated with total body irradiation

    International Nuclear Information System (INIS)

    Urowitz, M.B.; Rider, W.D.

    1985-01-01

    Four patients with refractory rheumatoid arthritis were treated with total body irradiation administered in two sittings, 300 to 400 rads to each half of the body. All four patients had taken antimetabolites prior to receiving total body irradiation, and two continued to use them after total body irradiation. Two patients had taken alkylating agents before, and one had used them after total body irradiation. All patients showed clinical improvement. However, in two patients myeloproliferative disorders developed: a myelodysplastic preleukemia at 40 months after total body irradiation in one and acute myelogenous leukemia at 25 months in the other. Total body irradiation differs from total nodal irradiation in the total dose of irradiation (300 to 400 rads versus 2,000 to 3,000), and in the duration of the therapy (two sittings versus treatment over several weeks to months). Furthermore, the patients in the total body irradiation study frequently used cytotoxic drugs before and/or after irradiation, whereas in one total nodal irradiation study, azathioprine (2 mg/kg per day or less) was permitted, but no other cytotoxic agents were allowed. Rheumatologists may therefore face a binding decision when deciding to treat a patient with rheumatoid arthritis with either a cytotoxic drug or irradiation

  18. Methods of assessing total doses integrated across pathways

    International Nuclear Information System (INIS)

    Grzechnik, M.; Camplin, W.; Clyne, F.; Allott, R.; Webbe-Wood, D.

    2006-01-01

    Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for each individual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in

  19. Total body irradiation for myasthenia gravis with thymoma: case report

    International Nuclear Information System (INIS)

    Kang, Ki Mun; Choi, Ihl Bohng; Kim, In Ah

    1999-01-01

    Myasthenia Gravis (MG) is relatively rare occuring as one of important autoimmune disease to affect neuromuscular junction. This study was clinically to evaluate total body irradiation (TBI) against two patients including 33-year and 39-year females for chronic MG with thymoma who hospitalized in the St. Mary's Hospital, Catholic University since 1994 as well as who showed no response by thymectomy, immunotherapy and hormonal therapy. TBI designed by the dose of 150-180 cGy consisting of 10 cGy per fraction, three times a week, for 5-6 weeks using linear accelerator of 6 MV. During the treatment of TBI, they did complain acute side effect such as vomiting and also appear improved physical condition from 4-6 weeks after TBI. Through the follow-up period of 18 or 42 months after TBI, they did not have any symptomatic recurrence. Consequently, the results suggest that TBI can be used as an alternative tool for the patients concurrently for MG with thymoma who had been refractory to various conventional therapies like thymectomy, immunotherapy and hormonal therapy

  20. Positioning variations of the lungs shields during total body irradiation

    International Nuclear Information System (INIS)

    Costa, A.; Marcie, S.; Boulabeiz, A.; Lagrange, J.L.

    1995-01-01

    During total body irradiation, the patient is entirely exposed to radiation and the dose to lungs have to be limited. Personalized shields are make and set between the source and the patient, in front of lungs. The patient and the shields set up are checked before the treatment session with radiographs. Verification films are performed during the treatment sessions with anterior and posterior beams. During the treatment session, the patient may move and his relative positioning can change. Also, for each daily session treatment, his positioning could be different. One way to determine position discrepancies of the shields lungs is to analyse verification films. A study has been achieved comparing positions of lungs and shields edges in digitised simulator and digitised verification images. Discrepancies on distance and angle between similar anatomical landmarks in both images are determined by applying a least squares minimisation approach. In this study, which concerns 29 patients, distance discrepancies are founded from 1,5 to 12,6 mm for the anterior beams and from 1,8 to 15,3 mm for the posterior beams. Angle discrepancies are founded from 0 to 2 degrees

  1. Total body irradiation for myasthenia gravis with thymoma: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ki Mun; Choi, Ihl Bohng; Kim, In Ah [College of Medicine, Catholic Univ., Seoul (Korea, Republic of)

    1999-06-01

    Myasthenia Gravis (MG) is relatively rare occuring as one of important autoimmune disease to affect neuromuscular junction. This study was clinically to evaluate total body irradiation (TBI) against two patients including 33-year and 39-year females for chronic MG with thymoma who hospitalized in the St. Mary's Hospital, Catholic University since 1994 as well as who showed no response by thymectomy, immunotherapy and hormonal therapy. TBI designed by the dose of 150-180 cGy consisting of 10 cGy per fraction, three times a week, for 5-6 weeks using linear accelerator of 6 MV. During the treatment of TBI, they did complain acute side effect such as vomiting and also appear improved physical condition from 4-6 weeks after TBI. Through the follow-up period of 18 or 42 months after TBI, they did not have any symptomatic recurrence. Consequently, the results suggest that TBI can be used as an alternative tool for the patients concurrently for MG with thymoma who had been refractory to various conventional therapies like thymectomy, immunotherapy and hormonal therapy.

  2. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  3. In vivo measurement of total body carbon using 238Pu/Be neutron sources

    International Nuclear Information System (INIS)

    Sutcliffe, J.F.; Mitra, S.; Hill, G.L.

    1990-01-01

    Total body carbon has been measured by in vivo neutron activation analysis (IVNAA) in 278 surgical gastroenterological patients and 29 normal volunteers. This is based on the inelastic scattering reaction { 12 C(n,n') 12 C*} for neutrons with energy above 4.8MeV, producing 4.43 MeV gamma rays. Since only part of the body is scanned, total body carbon is estimated as the ratio of the gamma ray emission from carbon to the emission from hydrogen, using hydrogen as the internal standard. The precision of the estimate is ±1.6kg for a whole body dose of 0.3mSv. There is a significant difference between the estimates of total body water from IVNAA measurements of carbon and nitrogen and measurements of body water in these subjects by tritium dilution (t=3.1, p < 0.005). (author)

  4. Dose characteristics of total-skin electron-beam irradiation with six-dual electron fields

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1998-01-01

    To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated. The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of Target-Skin Distance (TSD) and full collimator size (35x35 cm 2 on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cmx105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. The Full Width at Half Maximum(FWHM) of dose profile was 130 cm in large field of 105x105 cm 2 . The width of 100±10% of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose uniformity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80% depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within±10% difference excepts the protruding area of skin which needs a

  5. Total body and regional bone mineral content in hemodialysis patients

    International Nuclear Information System (INIS)

    Hagiwara, Satoshi; Aratani, Hideyui; Miki, Takami; Nishizawa, Yoshiki; Okamura, Terue; Koizumi, Yoshiko; Ochi, Hironobu; Morii, Hirotoshi

    1994-01-01

    Bone mineral content (BMC) in the total body and lumbar spine was evaluated in 126 hemodialysis patients (60 males, 66 females) by dual photon absorptiometry with the Norland DBD 2600. Measurements of: 1) total body BMC divided by lean body mass (BMC TB /LBM), 2) bone mineral density (BMD) of total body, 3) BMD of four regional sections (head, trunk, pelvis, and legs), and 4) BMD of lumbar spine, generally showed a significant decrease in the hemodialysis patients compared to the reference population. However, arm BMD did not show a significant difference between patients and control populations. The z-score of BMC TB /LBM declined significantly throughout the duration of hemodialysis, although that of the lumbar spine BMD did not. It should be noted that the degree of decrease in BMC was more prominent in the total body measurement than in the lumbar spine measurement. There was preferential osteopenia of the total body in the hemodialysis patients. Although the lumbar spine BMD showed a lower value than the control population, the lumbar spine is not the recommended region to monitor the BMD change in hemodialysis patients. (author)

  6. SU-E-T-540: Volumetric Modulated Total Body Irradiation Using a Rotational Lazy Susan-Like Immobilization System

    International Nuclear Information System (INIS)

    Gu, X; Hrycushko, B; Lee, H; Lamphier, R; Jiang, S; Abdulrahman, R; Timmerman, R

    2014-01-01

    Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The two scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs

  7. Fractionated homogenous total-body irradiation prior to bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Duehmke, E; Brix, F; Hebbinghaus, D; Jensen, M; Wendhausen, H; Schmitz, N

    1985-03-01

    At the University of Kiel, myeloid and acute lymphatic leukemia is treated since 1983 by total-body irradiation applied prior to bone marrow transplantation. Dose deviations in the midplane caused by the irregular surface and tissue inhomogeneities of the patient are reduced down to +-3.5% compared to the central ray, with the help of CT-based individual compensators. This method prevents above all an excessive dose to the lungs. The radiobiologic advantages of fractionated irradiation have been employed for all patients treated hitherto (n = 9). At present, a total body dose of 12 Gy in six fractions is applied within three days. There were no undesired acute radiogenic reactions except a mild acute mucositis found in all patients. Chronic side effects, especially in the lungs, were not demonstrated, too. However, the average follow-up time of 149 days has been rather short. One patient died from relapse of leukemia after a total dose of 10 Gy, another patient died because the transplanted bone marrow was rejected, and a third died from catheter sepsis. Six out of nine patients are in complete remission with a maximum index of Karnofsky. The limited experiences gained hitherto show that the homogeneous accelerated-fractionated total-body irradiation offers essential advantages compared to non-compensated single dose irradiation with respect to the prevention of undesired radiogenic effects in sound tissues and that its therapeutic efficacy is at least the same.

  8. Comparative evolution of coagulation disorders in baboons and Pigs after total body irradiation

    International Nuclear Information System (INIS)

    Destombe, C.; Lefleche, P.; Veyret, J.; Grasseau, A.; Agay, D.; Mestries, J.C.

    1994-01-01

    Acute total body irradiation in pigs, with a lethal dose of either gamma or mixed gamma-neutron radiation, induced similar plasmatic coagulation disorders as those observed in baboons. These data validated pathophysiological hypothesis which were developed during previous studies, but do not support the idea of a possible species specific radiosensitivity. (author)

  9. Whole-body irradiation technique: physical aspects; Tecnica de irradiacion corporal total: aspectos fisicos

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, D.; Bustos, S.; Zunino, S. [Instituto Privado de Radioterapia. Obispo Oro 425. Cordoba 5000 (Argentina)

    1998-12-31

    The objective of this work has been to implement a Total body irradiation technique that fulfill the following conditions: simplicity, repeatability, fast and comfortable positioning for the patient, homogeneity of the dose between 10-15 %, short times of treatments and In vivo dosimetric verifications. (Author)

  10. 'Mini' total body irradiation and allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Gocheva, L.; Sergieva, K.; Koleva, I.; Avramova, V.; Vassileva, V.; Georgieva, S.; Sultanov, B.

    2006-01-01

    Full text: The total body irradiation (TBI) combined with intensive chemotherapy plays an important role in the preparation of patients for bone marrow transplantation (BMT). The first autologous BMT in Bulgaria was performed in 1997 in the Specialized Pediatric Hospital for Active Treatment (SPHAT) of oncohematological diseases. The first TBI, followed by allogeneic BMT, was carried out in 2002 in the 'Queen Giovanna' University Hospital, after which its routine application as a basic form of large field radiotherapy and a main stage of the conditioning regimen for BMT was started. Fourteen allogeneic BMTs including TBI as a basic conditioning regimen have been performed till May 2006. The objective of the present report is to present the first clinical observations in the Bulgarian oncological practice on 'mini' TBI followed by allogeneic blood stem cell transplantation. During the period October 2005 - May 2006, 'mini' TBI followed by allogeneic BMT was carried out for two patients of the age 43 and 50 years. The diagnosis of both patients was acute non-lymphoblastic leukemia, in the remission stage, after one relapse, respectively. Intensive preceding chemotherapy was applied for both patients. A conditioning regimen was applied including the fludarabine purine analogue (3 x 30 mg/m 2 ) and 200 cGy TBI. It was followed by transplantation of allogeneic cell concentrate containing 2.5 x10 6 /kg CD34+ and 4.0 x10 6 /kg CD34+ blood stem cells of partially compatible family donors (a sister and a son), which were tolerable for the patients without complications. Cyclosporine and mycophelonate mofetile were applied as post-transplantation treatment. Active antibiotic, antiviral, symptomatic and substituting therapy, as well as GvHD prophylaxis was applied for both patients. Good clinical tolerance was recorded for the applied low dose conditioning regimen. The patients were discharged within 30 days in good general condition and stable draft action, with

  11. Total body irradiation with a reconditioned cobalt teletherapy unit.

    Science.gov (United States)

    Evans, Michael D C; Larouche, Renée-Xavière; Olivares, Marina; Léger, Pierre; Larkin, Joe; Freeman, Carolyn R; Podgorsak, Ervin B

    2006-01-01

    While the current trend in radiotherapy is to replace cobalt teletherapy units with more versatile and technologically advanced linear accelerators, there remain some useful applications for older cobalt units. The expansion of our radiotherapy department involved the decommissioning of an isocentric cobalt teletherapy unit and the replacement of a column-mounted 4-MV LINAC that has been used for total body irradiation (TBI). To continue offering TBI treatments, we converted the decommissioned cobalt unit into a dedicated fixed-field total body irradiator and installed it in an existing medium-energy LINAC bunker. This article describes the logistical and dosimetric aspects of bringing a reconditioned cobalt teletherapy unit into clinical service as a total body irradiator.

  12. An improved standard total dose test for CMOS space electronics

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Pease, R.L.

    1989-01-01

    The postirradiation response of hardened and commercial CMOS devices is investigated as a function of total dose, dose rate, and annealing time and temperature. Cobalt-60 irradiation at ≅ 200 rad(SiO 2 )/s followed by a 1-week 100 degrees C biased anneal and testing is shown to be an effective screen of hardened devices for space use. However, a similar screen and single-point test performed after Co-60 irradiation and elevated temperature anneal cannot be generally defined for commercial devices. In the absence of detailed knowledge about device and circuit radiation response, a two-point standard test is proposed to ensure space surviability of CMOS circuits: a Co-60 irradiation and test to screen against oxide-trapped charge related failures, and an additional rebound test to screen against interface-trap related failures. Testing implications for bipolar technologies are also discussed

  13. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  14. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, David J., E-mail: davideaton@nhs.net [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom); Warry, Alison J. [Department of Radiotherapy Physics, University College London Hospital, London (United Kingdom); Trimble, Rachel E.; Vilarino-Varela, Maria J.; Collis, Christopher H. [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom)

    2014-01-01

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013, with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources.

  15. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    International Nuclear Information System (INIS)

    Eaton, David J.; Warry, Alison J.; Trimble, Rachel E.; Vilarino-Varela, Maria J.; Collis, Christopher H.

    2014-01-01

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013, with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources

  16. Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)

    Science.gov (United States)

    Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.

    2017-02-01

    To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.

  17. Theoretical considerations for SRAM total-dose hardening

    International Nuclear Information System (INIS)

    Francis, P.; Flandre, D.; Colinge, J.P.

    1995-01-01

    The theoretical hardness against total dose of the six-transistor SRAM cell is investigated in detail. An explicit analytical expression of the maximum tolerable threshold voltage shift is derived for two cross-coupled inverters. A numerical method is used to explore the hardness of the read and write operations. Both N- and P-channel access transistors designs are considered and their respective advantages are compared. The study points out that the radiation hardness mainly relies on the technology. Results obtained with the very robust Gate-All-Around process are finally presented

  18. EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation)

    Science.gov (United States)

    Cherry, Simon R.; Badawi, Ramsey D.; Jones, Terry

    2016-04-01

    Positron emission tomography (PET) is the highest sensitivity technique for human whole-body imaging studies. However, current clinical PET scanners do not make full use of the available signal, as they only permit imaging of a 15-25 cm segment of the body at one time. Given the limited sensitive region, whole-body imaging with clinical PET scanners requires relatively long scan times and subjects the patient to higher than necessary radiation doses. The EXPLORER initiative aims to build a 2-meter axial length PET scanner to allow imaging the entire subject at once, capturing nearly the entire available PET signal. EXPLORER will acquire data with ~40-fold greater sensitivity leading to a six-fold increase in reconstructed signal-to-noise ratio for imaging the total body. Alternatively, total-body images with the EXPLORER scanner will be able to be acquired in ~30 seconds or with ~0.15 mSv injected dose, while maintaining current PET image quality. The superior sensitivity will open many new avenues for biomedical research. Specifically for cancer applications, high sensitivity PET will enable detection of smaller lesions. Additionally, greater sensitivity will allow imaging out to 10 half-lives of positron emitting radiotracers. This will enable 1) metabolic ultra-staging with FDG by extending the uptake and clearance time to 3-5 hours to significantly improve contrast and 2) improved kinetic imaging with short-lived radioisotopes such as C-11, crucial for drug development studies. Frequent imaging studies of the same subject to study disease progression or to track response to therapy will be possible with the low dose capabilities of the EXPLORER scanner. The low dose capabilities will also open up new imaging possibilities in pediatrics and adolescents to better study developmental disorders. This talk will review the basis for developing total-body PET, potential applications, and review progress to date in developing EXPLORER, the first total-body PET scanner.

  19. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents

    NARCIS (Netherlands)

    E. Chatelut (Etienne); M.L. White-Koning (M.); A.H.J. Mathijssen (Ron); F. Puisset (F.); S.D. Baker (Sharyn); A. Sparreboom (Alex)

    2012-01-01

    textabstractBackground: Dose banding is a recently suggested dosing method that uses predefined ranges (bands) of body surface area (BSA) to calculate each patients dose by using a single BSA-value per band. Thus, drugs with sufficient long-term stability can be prepared in advance. The main

  20. On the effect of small radiation doses: Desoxyribonucleic acid (DNA) synthesis and DNA repair of thymus, spleen, and bone marrow cells in the rat after fractionated total body X-ray irradiation. Zur Wirkung kleiner Strahlendosen: Desoxyribonukleinsaeure-(DNA-)Synthese und DNA-Reparatur von Thymus-, Milz- und Knochenmarkszellen der Ratte nach fraktionierter Ganzkoerperroentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Ehling, G. (Muenchen Univ. (Germany, F.R.). Inst. fuer Pharmakologie, Toxikologie und Pharmazie)

    1989-09-01

    After three to seven days following to fractionated total body X-ray irradiation (TBI) (four expositions with doses of 0.3 to 5.0 cGy per fraction at intervals of 24 hours), a maximum 50 percent stimulation of the semiconservative DNA synthesis (SDS) of spleen cells was measured in vitro. This was not dependent of the fact if an acute high-dose (400 and/or 800 cGy) unique irradiation was applied after the fractionated TBI at the moment of stimulation. A significant increase of {sup 3}H-thymidine incorporation into the DNA of bone marrow and thymus cells was only found when doses of 1.25 cGy per fraction had been used. After fractionated TBI with doses of {ge}5 cGy per fraction, an increase of DNA synthesis resistant to hydroxyurea ('unprogrammed' DNA synthesis, UDS) was demonstrated in spleen cells. The UV-simulated UDS decreased proportionately. The sedimentation of thymus, spleen, and bone marrow nucleoids in a neutral saccharose gradient gave no evidence of an increased DNA repair capacity after fractionated TBI. Whereas the SDS stimulation by fractionated TBI with small doses can be explained by a modified proliferation behavior of exposed cells, the UDS behavior of spleen cells after considerably higher radiation doses suggests regenerative processes correlated with an increased number of cells resistant to hydroxyurea and cells presenting an UV repair deficiency. These findings can be considered to be a further proof of the assumed immune-stimulating effect of small radiation doses. (orig.).

  1. Total effective dose equivalent associated with fixed uranium surface contamination

    International Nuclear Information System (INIS)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm 2 and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels

  2. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  3. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    Science.gov (United States)

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  4. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care.

    Science.gov (United States)

    Cherry, Simon R; Jones, Terry; Karp, Joel S; Qi, Jinyi; Moses, William W; Badawi, Ramsey D

    2018-01-01

    PET is widely considered the most sensitive technique available for noninvasively studying physiology, metabolism, and molecular pathways in the living human being. However, the utility of PET, being a photon-deficient modality, remains constrained by factors including low signal-to-noise ratio, long imaging times, and concerns about radiation dose. Two developments offer the potential to dramatically increase the effective sensitivity of PET. First by increasing the geometric coverage to encompass the entire body, sensitivity can be increased by a factor of about 40 for total-body imaging or a factor of about 4-5 for imaging a single organ such as the brain or heart. The world's first total-body PET/CT scanner is currently under construction to demonstrate how this step change in sensitivity affects the way PET is used both in clinical research and in patient care. Second, there is the future prospect of significant improvements in timing resolution that could lead to further effective sensitivity gains. When combined with total-body PET, this could produce overall sensitivity gains of more than 2 orders of magnitude compared with existing state-of-the-art systems. In this article, we discuss the benefits of increasing body coverage, describe our efforts to develop a first-generation total-body PET/CT scanner, discuss selected application areas for total-body PET, and project the impact of further improvements in time-of-flight PET. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    health. This view is supported with numerous evidences, and explained with beneficial effects from the increased activity of immune system activated with small radiation exposures. Finally, theory in between is that small doses are less than linearly proportionally harmful and that they are presenting a much smaller risks than according to the LNT. This view is derived from the use of different evidences. Difficulties to find one single theory about effects of small radiation doses are related to existence of huge variability and uncertainty in the evidence data. This is very hard experimental and theoretical problem. It will require lots of additional research to reduce these uncertainties and find final theory. This might be too late for the number of people affected in different ways with current single most conservative LNT approach. The problem with the conservative LNT regulatory approach is resulting in enormous additional costs of nuclear energy and medical applications. Which is reasonable and acceptable during the regular operation when source is high and concentrated. But, this becomes unreasonable huge economic burden after accidents and for cleanups with nuclear facilities. Similar problem arises with restriction of medical examinations and treatments based on over conservative risk estimate. Special circumstances are with evacuated people from contaminated areas where they are on the one side saved from small radiation exposures, and on the other side exposed to years of life away from their home and with numerous direct and indirect additional risks (i.e., stress, social problems, etc.). It seems reasonable that some alternative (total) risk management approach might be much more suitable for this situation. Evacuation of people from contaminated area with small doses sources should not be done when that induces larger risks from even what is expected from radiation based on LNT. Similar total risk management could be also applied for with medical

  6. Measurement of total body chlorine by prompt gamma in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Beddoe, A.H.; Streat, S.J.; Hill, G.L.

    1987-01-01

    A method of measuring total body chlorine (TBCl) by prompt gamma in vivo neutron activation analysis is described depending on the same NaI(Tl) spectra used for determinations of total body nitrogen. Ratios of chlorine to hydrogen are derived and TBCl determined using a model of body composition depending on measured body weight, total body water (by tritium dilution) and protein (6.25 x nitrogen) as well as estimated body minerals and glycogen. The precision of the method based on scanning an anthropomorphic phantom is approximately 9% (SD), for a patient dose equivalent of less than 0.30 mSv. Spectra collected from 67 normal volunteers (32 male, 35 female) yielded mean values of TBCl of 72 +- 19 (SD) g in males and 53.6 +- 15 g in females, in broad agreement with values reported by workers using delayed gamma methods. Results are presented for two human cadavers analysed by neutron activation and conventional chemical analysis; the ratios of TBCl (neutron activation) to TBCl (chemical) were 0.980 +- 0.028 (SEM) and 0.91 +- 0.09. It is suggested that an improvement in precision will be achieved by increasing the scanning time (thereby increasing the radiation dose equivalent) and by adding two more detectors. (author)

  7. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  8. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  9. The dosimetry of cobalt-60 γ-ray total body irradiation before bone marrow transplantation

    International Nuclear Information System (INIS)

    Dong Fan; Zhang Guiru

    1989-11-01

    The dosimetric considerations of using conventional cobalt-60 unit total body irradiation (TBI) are presented. By extending the source-to-midplane distance (SMD) to 346 cm, a 92 x 98 cm 2 rectangular field with diagonal dimension 134 cm was obtained. The results from the phantom measurements showed: (1) the effective field corresponding to an average-size patient is 25 x 25 cm 2 , and a method for estimating the effective field of human body is given; (2) the midplane doses are consistently higher than those of surfaces, but the dose ratio of midplane to surface decreases as the body thickness increases, and a significant negative correlation is existed between the dose ratio and thickness, thus a linear regression line is fitted; (3) the anterior-posterior (AP) or AP + bilateral irradiation will yield a more uniform dose distribution in the whole body than the bilateral irradiation; (4) the dose uniformity can apparently be improved by the tissue compensation, for which the technique is described

  10. Radiological protection in a patient during a total body irradiation procedure

    International Nuclear Information System (INIS)

    Hernandez O, J. O.; Hinojosa G, J.; Gomez M, E.; Balam de la Vega, J. A.; Deheza V, J. C.

    2010-09-01

    A technique used in the Service of Radiotherapy of the Cancer Center of the American British Cowdray Medical Center (ABC) for the bone marrow transplantation, is the total body irradiation. It is known that the dose calculation, for this irradiation type, is old, since the dosimetric calculation is carried out by hand and they exist infinity of techniques for the patients irradiation and different forms of protecting organs of risk, as well as a great uncertainty in the given dose. In the Cancer Center of the ABC Medical Center, was carried out an irradiation procedure to total body with the following methodology: Computerized tomography of the patient total body (two vacuum mattresses in the following positions: dorsal and lateral decubitus), where is combined the two treatment techniques anterior-posterior and bilateral, skin delineate and reference volumes, dose calculation with the planning system Xi O of CMS, dose determination using an ionization chamber and a lung phantom IMRT Thorax Phantom of the mark CIRS and dosimetry in vivo. In this work is presented the used treatment technique, the results, statistics and the actualization of the patient clinical state. (Author)

  11. Investigation into the relationship between body surface area and total body potassium using Monte Carlo and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.A. [Medical Physics and Imaging, Queen Elizabeth Hospital, Birmingham (United Kingdom)]. E-mail: jane.rogers@university-b.wmids.nhs.uk; Blake-James, M. [School of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom); Green, S.; Beddoe, A.H. [Medical Physics and Imaging, Queen Elizabeth Hospital, Birmingham (United Kingdom)

    2002-03-07

    The use of body surface area (BSA) as a means of indexing chemotherapy doses is widespread even though the value of this practice is uncertain. In principle, the body cell mass (BCM) more closely represents the body's metabolic size and this is investigated here as an alternative to BSA; since 98% of body potassium is intracellular the derivation of total body potassium (TBK) via the measurement of {sup 40}K in a whole body counter (WBC) will provide a useful normalizing index for metabolic size, potentially avoiding toxicity and underdosing. The Queen Elizabeth Hospital WBC has been used in this study, initially involving single geometrical phantoms and then combinations of these to simulate human body habitus. Monte Carlo N-particle (MCNP) codes were constructed to model the phantoms and simulate the measurements made in the WBC. Efficiency corrections were derived by comparing measurement and modelled data for each detector separately. A method of modelling a person in the WBC as a series of ellipsoids was developed. Twenty-four normal males and 24 females were measured for their {sup 40}K emissions. Individual MCNP codes were constructed for each volunteer and the results used in conjunction with the measurements to derive TBK, correcting for body habitus effects and detector efficiencies. An estimate of the component of error arising from sources other than counting statistics was included by analysing data from the measurement of phantoms. The total residual errors (expressed as coefficients of variation) for males and females were 10.1% and 8.5% respectively. The measurement components were determined to be 2.4% and 2.5%, implying that the biological components were 9.8% and 8.1% respectively. These results suggest that the use of BSA for indexing chemotherapy doses is likely to give rise to clinically significant under- or overdosing. (author)

  12. Dosimetry and verification of 60Co total body irradiation with human phantom and semiconductor diodes

    Directory of Open Access Journals (Sweden)

    Allahverdi Mahmoud

    2007-01-01

    Full Text Available Total Body Irradiation (TBI is a form of radiotherapy used for patients prior to bone marrow or stem cell transplant to destroy any undetectable cancer cells. The dosimetry characteristics of a 60 Co unit for TBI were studied and a simple method for the calculation of the prescribed dose for TBI is presented. Dose homogeneity was verified in a human phantom. Dose measurements were made in water phantom (30 x 30 x 30 cm 3 , using farmer ionization chamber (0.6 cc, TM30010, PTW and a parallel plate ionization chamber (TM23343, PTW. Point dose measurements for AP/PA irradiation were measured in a human phantom using silicon diodes (T60010L, PTW. The lung dose was measured with an ionization chamber (0.3 cc, TM31013. The validity of the proposed algorithm was checked at TBI distance using the human phantom. The accuracy of the proposed algorithm was within 3.5%. The dose delivered to the mid-lobe of the lung was 14.14 Gy and it has been reduced to 8.16 Gy by applying the proper shield. Dose homogeneity was within ±7% for all measured points. The results indicate that a good agreement between the total prescribed and calculated midplane doses can be achieved using this method. Therefore, it could be possible to use calculated data for TBI treatments.

  13. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  14. Integral bounds for N-body total cross sections

    International Nuclear Information System (INIS)

    Osborn, T.A.; Bolle, D.

    1979-01-01

    We study the behavior of the total cross sections in the three- and N-body scattering problem. Working within the framework of the time-dependent two-Hilbert space scattering theory, we give a simple derivation of integral bounds for the total cross section for all processes initiated by the collision of two clusters. By combining the optical theorem with a trace identity derived by Jauch, Sinha, and Misra, we find, roughly speaking, that if the local pairwise interaction falls off faster than r -3 , then sigma/sub tot/(E) must decrease faster than E/sup -1/2/ at high energy. This conclusion is unchanged if one introduces a class of well-behaved three-body interactions

  15. Atlas of total body radionuclide imaging. Volume I and II

    International Nuclear Information System (INIS)

    Fordham, E.W.; Ali, A.; Turner, D.A.; Charters, J.

    1982-01-01

    This two-volume work on total body imaging may well be regarded by future historians of nuclear medicine as representing the high points in the art of total body imaging in clinical nuclear medicine. With regard to information content and volume, it is the largest collection of well-interpreted, beautifully reproduced, total body images available to date. The primary goal of this atlas is to demonstrate patterns of abnormality in both typical and less typical variations. This goal is accomplished with many well-described examples of technical artifacts, of normal variants, of common and of rare diseases, and of pitfalls in interpretations. Volume I is entirely dedicated to skeletal imaging with Tc-99m labeled phosphates or phosphonates. The volume is divided into 22 chapters, which include chapters on methodology and instrumentation, chapters on the important bone diseases and other topics such as a treatise on false-negative and false-positive scans, and soft tissue and urinary tract abnormalities recognizable on bone scintigrams

  16. Total dose induced latch in short channel NMOS/SOI transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Quoizola, S.; Musseau, O.; Flament, O.; Leray, J.L.; Pelloie, J.L.; Raynaud, C.; Faynot, O.

    1998-01-01

    A latch effect induced by total dose irradiation is observed in short channel SOI transistors. This effect appears on NMOS transistors with either a fully or a partially depleted structure. It is characterized by a hysteresis behavior of the Id-Vg characteristics at high drain bias for a given critical dose. Above this dose, the authors still observe a limited leakage current at low drain bias (0.1 V), but a high conduction current at high drain bias (2 V) as the transistor should be in the off-state. The critical dose above which the latch appears strongly depends on gate length, transistor structure (fully or partially depleted), buried oxide thickness and supply voltage. Two-dimensional (2D) numerical simulations indicate that the parasitic condition is due to the latch of the back gate transistor triggered by charge trapping in the buried oxide. To avoid the latch induced by the floating body effect, different techniques can be used: doping engineering, body contacts, etc. The study of the main parameters influencing the latch (gate length, supply voltage) shows that the scaling of technologies does not necessarily imply an increased latch sensitivity. Some technological parameters like the buried oxide hardness and thickness can be used to avoid latch, even at high cumulated dose, on highly integrated SOI technologies

  17. From Talking Heads to Communicating Bodies: Cybersemiotics and Total Communication

    Directory of Open Access Journals (Sweden)

    Ole Nedergaard Thomsen

    2010-03-01

    Full Text Available Current linguistics is biased towards considering as object of scientific study only verbal language, i.e., ordinary language whose basic entities are words, sentences, and texts. By having this focus, the crucial non-verbal semiotic contributions from acts of bodily communication are left out of consideration. On the face of it, this is a strange situation, because, phenomenologically, when observing a communicating dyad, what appears to the senses is a multimodal semiotic display–the interactants produce acts of total communication, the linguistic part of which has in fact to be disentangled from the integral semiotic behavior. That a human being should in the first place be conceptualized as a ‘talking head’, rather than a ‘communicating body’, stems from at least four historically interrelated fountains: ancient Greek philosophy with its emphasis on logos as meaning both rational mind and verbal language/speech as well as with its rejection of rhetoric (including body language; Cartesian dualistic rationalism where the body was the animal, mechanistic part of a human being, unworthy for the Geisteswissenschaften; Saussure’s formal structuralism with its defocusing of the individual’s performance, parole, and its high focus on societal langue; and Chomskyan linguistics with its neglect of actual, also bodily, performance, and its total focus on an ideal mental grammatical computational competence. With the recent philosophy (‘in the flesh’ of the ‘embodied mind’, time has now come for integrating the (linguistic head with the (other part of the communicating body and seeing communication as total communication of the whole body. This means that the communicating mind is no longer restricted to its ‘rational’ aspects but has to be conceived full-scale as integrating also all kinds of ‘irrational’ factors, like emotions and motivations. Another, no less important, implication of the above is that an individual

  18. Total-dose hardness assurance for low earth orbit

    International Nuclear Information System (INIS)

    Maurer, R.H.; Suter, J.J.

    1987-01-01

    The Low Earth Orbit radiation environment has two significant characteristics that make laboratory simulation exposures difficult: (1) a low dose rate and (2) many cycles of low dose accumulation followed by dose-free annealing. Hardness assurance considerations for this environment are discussed and related to data from the testing of Advanced Low Power Schottky and High-speed CMOS devices

  19. Cobalt-60 total body irradiation dosimetry at 220 cm source-axis distance

    International Nuclear Information System (INIS)

    Glasgow, G.P.; Mill, W.B.

    1980-01-01

    Adults with acute leukemia are treated with cyclophosphamide and total body irradiation (TBI) followed by autologous marrow transplants. For TBI, patients seated in a stand angled 45 0 above the floor are treated for about 2 hours at 220 cm source-axis distance (SAD) with sequential right and left lateral 87 cm x 87 cm fields to a 900 rad mid-pelvic dose at about 8 rad/min using a 5000 Ci cobalt unit. Maximum (lateral) to minimum (mid-plane) dose ratios are: hips--1.15, shoulders--1.30, and head--1.05, which is shielded by a compensator filter. Organ doses are small intestine, liver and kidneys--1100 rad, lung--1100 to 1200 rad, and heart--1300 rad. Verification dosimetry reveals the prescribed dose is delivered to within +-5%. Details of the dosimetry of this treatment are presented

  20. THE URINE PROTEOME FOR RADIATION BIODOSIMETRY: EFFECT OF TOTAL BODY VERSUS LOCAL KIDNEY IRRADIATION

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. We used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10 Gy dose of X-rays. Both TBI and LKI altered the urinary protein profile within 24 hours with noticeable differences in Gene Ontology categories. Some proteins including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2 were detected only in the TBI group. Some other proteins including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Up/Uc ratio and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation. PMID:20065682

  1. The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation.

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2010-02-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. The authors used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10-Gy dose of x-rays. Both TBI and LKI altered the urinary protein profile within 24 h with noticeable differences in gene ontology categories. Some proteins, including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2, were detected only in the TBI group. Some other proteins, including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Urine protein (Up) and creatinine (Uc) (Up/Uc) ratios and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation.

  2. Effective dose estimation in whole-body multislice CT in paediatric trauma patients

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Robin D.; Saueressig, Ulrich; Kotter, Elmar; Langer, Mathias; Bley, Thorsten A. [University Hospital, Department of Radiology, Freiburg im Breisgau (Germany); Strohm, Peter C.; Zwingmann, Joern; Suedkamp, Norbert P. [University Hospital, Department of Orthopaedic and Trauma Surgery, Freiburg im Breisgau (Germany); Uhl, Markus [University Hospital, Department of Radiology, Section of Paediatric Radiology, Freiburg im Breisgau (Germany)

    2009-03-15

    The number of multislice CT (MSCT) scans performed in polytraumatized children has increased rapidly. There is growing concern regarding the radiation dose in MSCT and its long-term consequences, especially in children. To determine the effective dose to polytraumatized children who undergo whole-body MSCT. A total of 51 traumatized children aged 0-16 years underwent a polytrauma protocol CT scan between November 2004 and August 2006 at our institution. The effective dose was calculated retrospectively by a computer program (CT-Expo 1.5, Hannover, Germany). The mean effective dose was 20.8 mSv (range 8.6-48.9 mSv, SD{+-}7.9 mSv). There was no statistically significant difference in the effective dose between male and female patients. Whole-body MSCT is a superior diagnostic tool in polytraumatized children with 20.8 mSv per patient being a justified mean effective dose. In a potentially life-threatening situation whole-body MSCT provides the clinicians with relevant information to initiate life-saving therapy. Radiologists should use special paediatric protocols that include dose-saving mechanisms to keep the effective dose as low as possible. Further studies are needed to examine and advance dose-saving strategies in MSCT, especially in children. (orig.)

  3. Total body irradiation in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  4. Bioimpedance index for measurement of total body water in severely malnourished children

    DEFF Research Database (Denmark)

    Girma, Tsinuel; Kæstel, Pernille; Workeneh, Netsanet

    2016-01-01

    BACKGROUND & OBJECTIVES: Restoration of body composition indicates successful management of severe acute malnutrition (SAM). Bioimpedance (BI) index (height(2)/resistance) is used to predict total body water (TBW) but its performance in SAM, especially with oedema, requires further investigation....... SUBJECTS/METHODS: Children with SAM (mid-arm circumference ...Hzs. Pre- and post-deuterium dose saliva samples were analysed using isotope-ratio mass spectrometry. TBW was regressed on H(2)/Z. Xc and R were height (H)-indexed, and Xc/H plotted against R/H. RESULTS: Thirty five children (16 non-oedematous and 19 oedematous) with median (interquartile range) age of 42...

  5. Laboratory Bioaccumulation, Depuration And Total Dose Rate Of Waterborne Th-232 In Freshwater Fish Of Anabas Testudineus

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Norfaizal Mohamed; Nita Salina Abu Bakar

    2014-01-01

    Preliminary results on the study of bioaccumulation, depuration and total dose rate of Th-232 in the whole body of Anabas testudineus are presented. The objective of this study was to evaluate the effect of Th-232 concentration activity on the laboratory bioaccumulation, depuration and total dose rate in Anabas testudineus. Anabas testudineus adults were exposed to different waterborne Th-232 levels: 0 BqL -1 (control), 50 BqL -1 and 100 BqL -1 for 30 day (uptake phase), followed by exposure to radionuclide-free water for 30 days (loss phase). Radionuclide concentration ratios between the whole body levels and water levels, percentage of Th-232 remaining in fish were calculated and total dose rates using ERICA Assessment Tool were also estimated. The results showed the increase of waterborne Th-232 concentration corresponded to a progressive increase of Th accumulation and total dose rate (internal and external) in the whole body of Anabas testudineus. Considering the ERICA dose rate screening value of 10 μGyh -1 , the findings can be concluded the estimated of total dose rate (< 5 μGyh -1 ) in Anabas testudineus is in order of small magnitude. Nevertheless, these preliminary results showed that the Anabas testudineus has a potential to accumulate thorium. (author)

  6. Effect of aflatoxin ingestion on total body water (T OH3 - space), total body solids A KD on some physiological and reproductive characteristics of male albino rats

    International Nuclear Information System (INIS)

    Nowar, M.S.; Eldarawany, A.A.; Habeeb, A.A.

    1992-01-01

    This investigation aimed to study the effects of aflatoxins B 1 +G 1 mixture mainly on total body water (TBW) and on total body solids (TBS) of male albino rats. Some blood components and some reproductive characteristic were also taken into consideration. Two groups, each of 8 male rats were fed the same ration. Rats of one group had been individually ingested daily with a dose of 22 μg B 1 plus 22 μg G 1 for 15 successive weeks. The obtained results showed that aflatoxin administration caused: 1- A decrease in final body weight (FBW), TBW (P<0.01) and TBS (P<0.05). 2- A decrease in serum total proteins (P<0.01), albumin (P<0.05), globulin (P<0.05), glucose (P<0.05) and increase in serum cholesterol, GOT and GPT (P<0.05) activities. 3- A decrease in each of the number of effective matings of males and delivery percentages of females mated with treated males.1 tab

  7. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  8. Hepatic, renal, and total body galactose elimination in the pig

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik Sahl; Tygstrup, N

    1993-01-01

    Galactose elimination capacity is used as a quantitative measure of liver function on the assumption that galactose elimination outside the liver is negligible or easily corrected for. The relationship between hepatic and extrahepatic removal of galactose was studied in anesthetized pigs during...... reabsorption (Tm 178 +/- 3.0 mumol/min, Km 3.8 +/- 0.9 mmol/l, n = 20). Metabolic conversion of galactose in the kidney was not demonstrable. At all concentrations studied (0.4-5.8 mmol/l), total galactose elimination from the body exceeded the sum of hepatic and renal elimination by approximately 100 mumol....../min, independent of the concentration. At blood concentrations usually used for clinical estimation of the galactose elimination capacity (approximately 4 mmol/l), hepatic removal in the pig accounted for 55% and renal removal for 30% of total removal; 15% of removal occurred in other organs. We conclude...

  9. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  10. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co γ rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for γ-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD 50 is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD 50 can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate

  11. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co gamma rays in a specially constructed facility. The exposure rates were 5, 19, 17 or 35 R/day, and the exposures were terminated at 600, 1400, 2000 or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for gamma-ray exposures given at a number of exposure rates. They also allow comparison of the relativeimportance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 344 R (258 rads) delivered at 15 R/minute to approximately 4000 R (approximately 3000 rads) at 10 R/day. Over this entire range, the LD 50 is dependent upon haematopoietic damage. At 5 R/day and less, no definitive LD 50 can be determined; there is nearly normal continued haematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in the organ systems. Although the experiment is not complete, interim data allow serveral important conclusions. Terminated exposures, while not as effective as irradiation continued until death, can produce myelogenous leukaemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates appear more damaging than higher rates on the basis of the rate and degree of haematological recovery that occurs after termination of irradiation. Thus, the rate of haematologic depression, the nadir of the depression and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the first two are directly related to exposure rate. ( author)

  12. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  13. New Insights into Fully-Depleted SOI Transistor Response During Total Dose Irradiation

    International Nuclear Information System (INIS)

    Burns, J.A.; Dodd, P.E.; Keast, C.L.; Schwank, J.R.; Shaneyfelt, M.R.; Wyatt, P.W.

    1999-01-01

    Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. No evidence was found for total-dose induced snap back. These results have implications for hardness assurance testing

  14. Optimum combination of targeted 131I and total body irradiation for treatment of disseminated cancer

    International Nuclear Information System (INIS)

    Amin, Amin E.; Wheldon, Tom E.; O'Donoghue, Joseph A.; Gaze, Mark N.; Barrett, Ann

    1995-01-01

    Purpose: Radiobiological modeling was used to explore optimum combination strategies for treatment of disseminated malignancies of differing radiosensitivity and differing patterns of metastatic spread. The purpose of the study was to derive robust conclusions about the design of combination strategies that incorporate a targeting component. Preliminary clinical experience of a neuroblastoma treatment strategy, which is based upon general principles obtained from modelling, is briefly described. Methods and Materials: The radiobiological analysis was based on an extended (dose-rate dependent) formulation of the linear quadratic model. Radiation dose and dose rate for targeted irradiation of tumors of differing size was in part based on microdosimetric considerations. The analysis was applied to several tumor types with postulated differences in the pattern of metastatic spread, represented by the steepness of the slope of the relationship between numbers of tumors present and tumor diameter. The clinical pilot study entailed the treatment of five children with advanced neuroblastoma using a combination of 131 I metaiodobenzylguanidine (mIBG) and total body irradiation followed by bone marrow rescue. Results: The theoretical analysis shows that both intrinsic radiosensitivity and pattern of metastatic spread can influence the composition of the ideal optimum combination strategy. High intrinsic radiosensitivity generally favors a high proportion of targeting component in the combination treatment, while a strong tendency to micrometastatic spread favors a major contribution by total body irradiation. The neuroblastoma patients were treated using a combination regimen with an initially low targeting component (2 Gy whole body dose from targeting component plus 12 Gy from total body irradiation). The treatment was tolerable and resulted in remissions in excess of 9 months in each of these advanced neuroblastoma patients. Conclusions: Radiobiological analysis, which

  15. Assessment of population external irradiation doses with consideration of Rospotrebnadzor bodies equipment for monitoring of photon radiation dose

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available This paper provides review of equipment and methodology for measurement of photon radiation dose; analysis of possible reasons for considerable deviation between the Russian Federation population annual effective external irradiation doses and the relevant average global value. Data on Rospotrebnadzor bodies dosimetry equipment used for measurement of gamma radiation dose are collected and systematized. Over 60 kinds of dosimeters are used for monitoring of population external irradiation doses. Most of dosimeters used in the country have gas-discharge detectors (Geiger-Mueller counters, minor biochemical annunciators, etc. which have higher total values of own background level and of space radiation response than the modern dosimeters with scintillation detectors. This feature of dosimeters is apparently one of most plausible reasons of a bit overstating assessment of population external irradiation doses. The options for specification of population external irradiation doses assessment are: correction of gamma radiation dose measurement results with consideration of dosimeters own background level and space radiation response, introduction of more up-to-date dosimeters with scintillation detectors, etc. The most promising direction of research in verification of population external irradiation doses assessment is account of dosimetry equipment.

  16. Estimation of total body water by bioelectrical impedance analysis

    International Nuclear Information System (INIS)

    Kushner, R.F.; Schoeller, D.A.

    1986-01-01

    Total body water (TBW) measured by bioelectrical impedance analysis (BIA) was directly compared with deuterium-isotope dilution in a total of 58 subjects. First, sex-specific and group equations were developed by multiple regression analysis in (10 each) obese and nonobese men and women. Height/resistive impedance was the most significant variable used to predict deuterium-dilution space (D2O-TBW) and, combined with weight, yielded R = 0.99 and SE of estimate = 1.75 L. Equations predicted D2O-TBW equally well for obese and nonobese subjects. Second, the equations were prospectively tested in a heterogeneous group of 6 males and 12 females. Sex-specific equations predicted D2O-TBW with good correlation coefficients (0.96 and 0.93), total error (2.34 and 2.89 L), and a small difference between mean predicted and measured D2O-TBW (-1.4 +/- 2.05 and -0.48 +/- 2.83 L). BIA predicts D2O-TBW more accurately than weight, height, and/or age. A larger population is required to validate the applicability of our equations

  17. A new method of body habitus correction for total body potassium measurements

    International Nuclear Information System (INIS)

    O'Hehir, S; Green, S; Beddoe, A H

    2006-01-01

    This paper describes an accurate and time-efficient method for the determination of total body potassium via a combination of measurements in the Birmingham whole body counter and the use of the Monte Carlo n-particle (MCNP) simulation code. In developing this method, MCNP has also been used to derive values for some components of the total measurement uncertainty which are difficult to quantify experimentally. A method is proposed for MCNP-assessed body habitus corrections based on a simple generic anthropomorphic model, scaled for individual height and weight. The use of this model increases patient comfort by reducing the need for comprehensive anthropomorphic measurements. The analysis shows that the total uncertainty in potassium weight determination by this whole body counting methodology for water-filled phantoms with a known amount of potassium is 2.7% (SD). The uncertainty in the method of body habitus correction (applicable also to phantom-based methods) is 1.5% (SD). It is concluded that this new strategy provides a sufficiently accurate model for routine clinical use

  18. A new method of body habitus correction for total body potassium measurements

    Energy Technology Data Exchange (ETDEWEB)

    O' Hehir, S [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom); Green, S [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom); Beddoe, A H [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom)

    2006-09-07

    This paper describes an accurate and time-efficient method for the determination of total body potassium via a combination of measurements in the Birmingham whole body counter and the use of the Monte Carlo n-particle (MCNP) simulation code. In developing this method, MCNP has also been used to derive values for some components of the total measurement uncertainty which are difficult to quantify experimentally. A method is proposed for MCNP-assessed body habitus corrections based on a simple generic anthropomorphic model, scaled for individual height and weight. The use of this model increases patient comfort by reducing the need for comprehensive anthropomorphic measurements. The analysis shows that the total uncertainty in potassium weight determination by this whole body counting methodology for water-filled phantoms with a known amount of potassium is 2.7% (SD). The uncertainty in the method of body habitus correction (applicable also to phantom-based methods) is 1.5% (SD). It is concluded that this new strategy provides a sufficiently accurate model for routine clinical use.

  19. Changes in body chemical composition with age measured by total-body neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Vaswani, A.; Zanzi, I.; Aloia, J.F.; Roginsky, M.S.; Ellis, K.J.

    1976-01-01

    Total-body levels of calcium and phosphorus (reflecting skeletal mass) and total-body levels of potassium (reflecting muscle mass) were measured by neutron activation analysis in 39 men and 40 women ages 30 to 90 yr. In order to intercompare the total body calcium (TBCa) values in a heterogeneous population, such as this, it was necessary to normalize the data for skeletal size. The normalization consisted of dividing the absolute calcium level by the predicted calcium level for each individual matched to a set of critical parameters. The parameter used in the computation of normal values were age, sex, muscle mass, i.e., total body potassium (TBK) and height. For the calcium data of the women, it was necessary to add an age correction factor after the age of 55 yr. The calcium ratio (mean ratio of the predicted to measured TBCa) in men was 1.000 +- 7.8 percent and in women 0.996 +- 7.1 percent. The TBCa of normal males and females can thus be predicted to +-13 percent (at the 90 percent confidence level). An exception to this was found in males (70 to 90 yr) who exhibited a mean calcium ratio greater than 1.13

  20. Bromide space, total body water, and sick cell syndrome

    International Nuclear Information System (INIS)

    Schober, O.; Hundeshagen, H.; Lehr, L.

    1982-01-01

    Displacements of the bromide space (Br-82-C, as a marker for the extracellular fluid compartment) are caused by an enhanced anatomical space and/or increased permeability of cells to bromide. The ratio Br-82-C: total body water (TBW) was evaluated to be 0.83 +- 0.17 in critically ill patients (n = 38) compared with the normal value of 0.46 +- 0.04 (n = 10). Because of normal TBW in critically ill patients (TBW = 505 +- 68 ml/kg), an increased bromide penetration into cells seems to be responsible for the enlarged ratio Br-82-C: TBW. Taking into consideration measurements in patients with malabsorption (Br-82-C: TBW = 0.56 +- 0.13; n = 13) and carcinoma of the rectum and colon (Br-82-C: TBW = 0.66 +- 0.24; n = 18) we think that the bromide space is a good measurement of the effective extracellular water. (orig.)

  1. Serum immunoglobulin levels in humans exposed to therapeutic total-body gamma irradiation

    International Nuclear Information System (INIS)

    Chaskes, S.; Kingdon, G.C.; Balish, E.

    1975-01-01

    Reduced serum immunoglobulin (IgA, IgG, IgM) levels developed in the majority of 27 patients with hematologic disorders after treatment with 100 to 350 R total-body gamma-ray exposures at a dose rate of either 1.5 R/min to 1.5 R/hr. A reduction in IgA of 20 percent or more was found in 66 percent of the cases, while 56 percent showed an IgM decrease, and 49 percent an IgG decrease of 20 percent. The severity of immunoglobulin depression was influenced by the total radiation dose and the patient's primary disease. The occurrence of IgG and IgM depression was greater when the radiation was given at 1.5 R/hr than when the dose rate was 1.5 R/min. Substantial but incomplete recovery toward preirradiation immunoglobulin levels was found for most patients by 7 wk after total-body irradiation (TBI). (U.S.)

  2. Pilot production of the wedge filter for the TBI (total body irradiation)

    International Nuclear Information System (INIS)

    Ikezaki, Hiromi; Ikeda, Ikuo; Maruyama, Yasushi; Nako, Yasunobu; Tonari, Ayako; Kusuda, Junko; Takayama, Makoto

    2007-01-01

    Total body irradiation (TBI) is performed by various methods, such as a long SSD method and a translational couch method. For patient safety in carrying out TBI, the patient should be placed on the supine position and prone position near the floor. TBI is performed from 2 opposite ports (AP/PA) with a linear accelerator (10 MV X-ray). We experimented with a wedge filter for TBI created by us, which makes dose distribution to a floor uniform. The wedge filter, made of iron alloy, was attached to the linear accelerator. In designing the wedge filter, thickness of the lead-made wedge filter can be calculated numerically from the ratio of linear attenuation coefficient of iron alloy and lead. In measuring the dose profile for a phantom of 20 cm thick, dose homogeneity less than 10% was proved by the wedge filter for TBI. (author)

  3. The impact of prodromal symptoms on dose monitoring for whole body radiation exposure

    International Nuclear Information System (INIS)

    Hartmann, A.; Bojar, H.; Zamboglou, N.; Pape, H.; Schnabel, T.; Schmitt, G.

    1994-01-01

    The triage of victims after radiation injury is complicated by missing dose values and the fact that most tissues react after a latency period. We evaluated 63 patients undergoing total body irradiation as conditioning regime before bone marrow transplantation in order to find a relation between prodromal symptoms and dose. Emesis after radiation exposure hints to doses greater than 1.5 Gy. A rise of body temperature above 37 C up to five hours after exposure is related to doses exceeding 2.5 Gy, while an acute onset of diarrhoea is an indicator of a severe accident with more than 9 Gy. Besides blood counts and chromosome analyses a careful evaluation of prodromal symptoms can help to classify the severity of radiation accidents. (orig./MG) [de

  4. Biochemical and hematological indicators in model of total body irradiation

    International Nuclear Information System (INIS)

    Dubner, D; Gisone, P.; Perez, M.R.; Barboza, M.; Luchetta, P.; Longoni, H.; Sorrentino, M.; Robison, A.

    1998-01-01

    With the purpose of evaluating the applicability of several biological indicators in accidental overexposures a study was carried out in 20 patients undergoing therapeutical total body irradiation (TBI). The following parameters were evaluated: a) Oxidative stress indicators: erythrocyte superoxide dismutase (SOD) and catalase activity (CAT), lipo peroxyde levels (TBARS) and total plasma antioxidant activity (TAA). b) Haematological indicators: reticulocyte maturity index (RMI) and charges in lymphocyte subpopulations. Non significant changes in SOD and CAT activity were observed. Significant higher TBARS levels were found in patients with unfavorable post-BTM course without any significant correlation with TAA. RMI decreased early and dropped to zero in most of the patients and rose several days prior to reticulocyte, neutrophils and platelets counts. A significant decrease in absolute counts of all lymphocyte subpopulations was observed during TBI, particularly for B lymphocytes. A subpopulation of natural killer (NK) cells (CD16+/ CD 56 +) showed a relative higher radioresistance. Cytotoxic activity was significantly decreased after TBI. These data suggest that TBARS could provide an useful evolutive indicator in accidental over exposure d patients and RMI is an early indicator of bone marrow recovery after radioinduced aplasia. The implications of the different radiosensitivities within the NK subsets remains unanswered. (author) [es

  5. Hyperfractionated total body irradiation for T-depleted HLA identical bone marrow transplants

    International Nuclear Information System (INIS)

    Latini, P.; Checcaglini, F.; Maranzano, E.; Aristei, C.; Panizza, B.M.; Gobbi, G.; Raymondi, C.; Aversa, F.; Martelli, M.F.

    1988-01-01

    Twenty patients suffering from malignant hemopathies (mean age 31.7 years) were given hyperfractionated total body irradiation (TBI) as conditioning for T-depleted HLA identical allogeneic bone marrow transplantation. At an average of 12 months (range of 4.5-22 months) follow-up there were two cases of early death and two cases (11%) of rejection. There were no cases of acute or chronic graft versus host disease nor cases of interstitial pneumonitis. The average time for durable engraftment was 22 days. Disease-free survival at 12 months was 65%. To improve the results and further reduce the percent of rejection, the authors propose intensifying the immunosuppressive conditioning by increasing the cyclophosphamide dose and that of TBI so that a total dose of 1560 cGy is reached. 35 refs.; 1 figure

  6. Stress-reaction during hypokinesia and its effect on total resistance of the animal body

    International Nuclear Information System (INIS)

    Chernov, I.P.

    1980-01-01

    In the experiments on rats, shown has been that three-phase stress-reaction develops during the hypokinetic syndrome formation. This reaction is confirmed by specific changes of general state of the organism, body mass and by the activity of hypothalamic-hypophysial-adrenal system evaluated by oscillations of relative mass of pituitary body and adrenal glands and by karyometry of neuron of the hypothalamus arcuate nuclear and cells of zona fasciculata of adrenal glands. The hypokinetic stress affects the total resistance of the body, its sensitivity to gamma-irradiation in the dose of 800 rad. On the definite stage of development the hypokinetic stress forms the state of heightened ''cross'' stability

  7. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  8. Modeling of Body Weight Metrics for Effective and Cost-Efficient Conventional Factor VIII Dosing in Hemophilia A Prophylaxis

    Directory of Open Access Journals (Sweden)

    Alanna McEneny-King

    2017-10-01

    Full Text Available The total body weight-based dosing strategy currently used in the prophylactic treatment of hemophilia A may not be appropriate for all populations. The assumptions that guide weight-based dosing are not valid in overweight and obese populations, resulting in overdosing and ineffective resource utilization. We explored different weight metrics including lean body weight, ideal body weight, and adjusted body weight to determine an alternative dosing strategy that is both safe and resource-efficient in normal and overweight/obese adult patients. Using a validated population pharmacokinetic model, we simulated a variety of dosing regimens using different doses, weight metrics, and frequencies; we also investigated the implications of assuming various levels of endogenous factor production. Ideal body weight performed the best across all of the regimens explored, maintaining safety while moderating resource consumption for overweight and obese patients.

  9. Effects of Zinc Compound on Body Weight and Recovery of Bone Marrow in Mice Treated with Total Body Irradiation

    Directory of Open Access Journals (Sweden)

    Ming-Yii Huang

    2007-09-01

    Full Text Available This study aimed to investigate if zinc compound would have effects on body weight loss and bone marrow suppression induced by total body irradiation (TBI. ICR mice were divided randomly into two groups and treated with test or control compounds. The test compound contained zinc (amino acid chelated with bovine prostate extract, and the control was reverse osmosis pure water (RO water. One week after receiving the treatment, mice were unirradiated, or irradiated with 6 or 3 Gy by 6MV photon beams to the total body. Body weight changes were examined at regular intervals. Three and 5 weeks after the radiation, animals were sacrificed to examine the histologic changes in the bone marrow. Lower body weight in the period of 1-5 weeks after radiation and poor survival rate were found after the 6 Gy TBI, as compared with the 3 Gy groups. The median survival time after 6 Gy and 3 Gy TBI for mice given the test compound were 26 and 76 days, respectively, and the corresponding figures were 14 and 70 days, respectively, for mice given the control compound (p < 0.00001. With zinc supplement, the mean body weight in mice which received the same dose of radiation was 7-8 g heavier than in the water-supplement groups during the second and third weeks (p < 0.05. Hence, there was no statistically significant difference in survival rate between zinc and water supplement in mice given the same dose of irradiation. Histopathologically there was less recovery of bone marrow cells in the 6Gy groups compared with the 3Gy groups. In the 3 Gy water-supplement group, the nucleated cells and megakaryocytes were recovered in the fifth week when recovery was still not seen in the 6Gy group. With zinc supplement, these cells were recovered in the third week. In this study, we found that zinc is beneficial to body weight in mice treated with TBI. Histologic examination of bone marrow showed better recovery of bone marrow cells in groups of mice fed with zinc. This study

  10. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  11. Treatment verification and in vivo dosimetry for total body irradiation using thermoluminescent and semiconductor detectors

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The objective of this work is the characterization of thermoluminescent and semiconductor detectors and their applications in treatment verification and in vivo dosimetry for total body irradiation (TBI) technique. Dose measurements of TBI treatment simulation performed with thermoluminescent detectors inserted in the holes of a “Rando anthropomorphic phantom” showed agreement with the prescribed dose. For regions of the upper and lower chest where thermoluminescent detectors received higher doses it was recommended the use of compensating dose in clinic. The results of in vivo entrance dose measurements for three patients are presented. The maximum percentual deviation between the measurements and the prescribed dose was 3.6%, which is consistent with the action level recommended by the International Commission on Radiation Units and Measurements (ICRU), i.e., ±5%. The present work to test the applicability of a thermoluminescent dosimetric system and of a semiconductor dosimetric system for performing treatment verification and in vivo dose measurements in TBI techniques demonstrated the value of these methods and the applicability as a part of a quality assurance program in TBI treatments. - Highlights: • Characterization of a semiconductor dosimetric system. • Characterization of a thermoluminescent dosimetric system. • Application of the TLDs for treatment verification in total body irradiation treatments. • Application of semiconductor detectors for in vivo dosimetry in total body irradiation treatments. • Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  12. In vivo dosimetry for total body irradiation: five‐year results and technique comparison

    Science.gov (United States)

    Warry, Alison J.; Eaton, David J.; Collis, Christopher H.; Rosenberg, Ivan

    2014-01-01

    The aim of this work is to establish if the new CT‐based total body irradiation (TBI) planning techniques used at University College London Hospital (UCLH) and Royal Free Hospital (RFH) are comparable to the previous technique at the Middlesex Hospital (MXH) by analyzing predicted and measured diode results. TBI aims to deliver a homogeneous dose to the entire body, typically using extended SSD fields with beam modulation to limit doses to organs at risk. In vivo dosimetry is used to verify the accuracy of delivered doses. In 2005, when the Middlesex Hospital was decommissioned and merged with UCLH, both UCLH and the RFH introduced updated CT‐planned TBI techniques, based on the old MXH technique. More CT slices and in vivo measurement points were used by both; UCLH introduced a beam modulation technique using MLC segments, while RFH updated to a combination of lead compensators and bolus. Semiconductor diodes were used to measure entrance and exit doses in several anatomical locations along the entire body. Diode results from both centers for over five years of treatments were analyzed and compared to the previous MXH technique for accuracy and precision of delivered doses. The most stable location was the field center with standard deviations of 4.1% (MXH), 3.7% (UCLH), and 1.7% (RFH). The least stable position was the ankles. Mean variation with fraction number was within 1.5% for all three techniques. In vivo dosimetry can be used to verify complex modulated CT‐planned TBI, and demonstrate improvements and limitations in techniques. The results show that the new UCLH technique is no worse than the previous MXH one and comparable to the current RFH technique. PACS numbers: 87.55.Qr, 87.56.N‐ PMID:25207423

  13. Renal toxicity in children undergoing total body irradiation for bone marrow transplant

    International Nuclear Information System (INIS)

    Esiashvili, Natia; Chiang, K.-Y.; Hasselle, Michael D.; Bryant, Cynthia; Riffenburgh, Robert H.; Paulino, Arnold C.

    2009-01-01

    Purpose: Contribution of total body irradiation (TBI) to renal toxicity in children undergoing the bone marrow transplant (BMT) remains controversial. We report our institutional retrospective study that evaluates the frequency of acute and chronic renal dysfunction in children after using total body irradiation (TBI) conditioning regimens. Materials and methods: Between 1995 and 2003, 60 children with hematological malignancies underwent TBI as part of a conditioning regimen before allogeneic BMT. Patients received 4-14 Gy at 1.75-2 Gy/fraction in six-eight fractions. Lung shielding was used in all patients to limit lung dose to less than 10 Gy; renal shielding was not utilized. All patients had baseline renal function assessment and renal dysfunction post-BM was mainly evaluated on the basis of persistent serum creatinine elevation at acute (0-90 days) and chronic (>90 days) intervals after completion of BMT. Results: Acute renal dysfunction (ARD) was documented in 27 patients (45%); the majority had concurrent diagnosis of veno-occlusive disease (VOD) or graft-versus-host disease (GVHD) and other potential causes (sepsis, antibiotic). The risk for delayed renal dysfunction (DRD) at 1 year approached 25% for surviving patients. The ARD was strongly linked with the risk of the DRD. There was no statistically significant relationship between ARD, DRD and underlying diagnosis, GVHD, VOD or TBI doses with both univariate and multivariate analyses. The younger age (<5 years) had significantly increased risk for the development of ARD (p = 0.011). Conclusion: Our analysis validates high incidence of renal dysfunction in the pediatric BMT population. In contrast to other reports we did not find total body irradiation dose to be a risk factor for renal dysfunction. Future prospective studies are needed to assess risk factors and interventions for this serious toxicity in children following allogeneic BM

  14. In vivo prompt gamma activation analysis facility for total body nitrogen and cadmium

    International Nuclear Information System (INIS)

    Munive, Marco; Solis, Jose; Revilla, Angel

    2008-01-01

    Full text: Prompt Neutron Activation Analysis (PGNAA) is a technique that could have medical applications, like determination of body's contents of protein and heavy metals in vivo. The in vivo PGNAA facility, contains a neutron source (Cf-252) with safety device, a compartment for animal irradiation, and a gamma rays detecting system based on the NaI(Tl) detector with an analytical software. The prompt gamma rays were emitted after 10 -15 s of the interaction, so they don't produce radioactive waste, and have a characteristics energy for each element, i.e. a strong peak at 2.24 MeV is observed for H. The facility has been used with laboratory mice. Water-filled phantom placed in the neutron beam was used to system calibration. Three study groups of 5 mice each one were selected and were feed with a different diet and the total body nitrogen (TBN) of the mice was monitored with the facility. The diet produced a different TBN for each group. Some mice drunk diluted water with Cl 2 Cd, so the presence of Cd was detected in the mouse. The minimum Cd concentration that the system can detect was 20 ppm. The total dose (neutron and gamma dose was measured from TLDs and simulated by MNCP-4B in the sample compartment during the irradiation time (5 minutes) is less than 2.5 mSv. This total dose is low than the dose from other analytical radiological techniques (25 a 50 mSv). (author)

  15. Bone marrow transplantation in the patients with malignant tumor. Studies on supralethal total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuno, Ikuro; Saito, Yasuo

    1984-11-01

    Based on evidence gained from ten patients of allogeneic bone marrow transplantation (BMT) and eight patients of autologous BMT, recent knowledge on literatures of BMT and total body irradiation (TBI) is summarized. Interstitial pneumonia after BMT has a strong correlation with TBI. Low dose-rate and fractionation of TBI are seemed to reduce the lung injury, thereby reducing the incidence of nonleukemia deaths. BMT is applied to not only acute leukemia, malignant lymphoma and solid tumors but also to chronic leukemia. It is emphasized that several of the important prognostic factors are within the control of the transplantation team.

  16. Total lymphoid irradiation and total body irradiation for allogeneic bone marrow transplantation in aplastic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, Koichi; Hishikawa, Yoshio; Taniguchi, Midori; Kamikonya, Norihiko; Miura, Takashi; Kanamaru, Akihisa; Kakishita, Eizo; Kai, Shunro; Hara, Hiroshi (Hyogo Coll. of Medicine, Nishinomiya (Japan))

    Between April 1980 and June 1989, 15 patients with severe aplastic anemia (SAA) were treated at Hyogo College of Medicine with bone marrow transplantation (BMT) after preparation consisting of cyclophosphamide (CY) and total lymphoid irradiation (TLI) or total body irradiation (TBI) for the purpose of reducing the incidence of graft rejection. All patients had initial evidence of engraftment after the first transplantation except for one patient who died of heart failure due to CY on the third day after transplantation and could not be evaluated for engraftment. Rejection later occurred in four of these 14 patients, who then underwent successful regrafting. One of these four patients, who was conditioned with CY alone at the first grafting, underwent successful regrafting after a conditioning regimen of CY and TBI. In the other three patients, irradiation was performed twice as the conditioning regimen. Thus, 14 of 15 patients underwent successful BMT and are alive with restored hematopoietic function. From the above results, the combination of TLI or TBI and CY was considered to be very useful as a conditioning regimen for BMT in patients with SAA. (author).

  17. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  18. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    International Nuclear Information System (INIS)

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R 50% ); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D 2cm ) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ 2 test was used to examine the difference in parameters between groups. The PTV V 100% PD ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V 90% PD ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D 2cm , 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives

  19. Radiobiological considerations in the treatment of neuroblastoma by total body irradiation

    International Nuclear Information System (INIS)

    Wheldon, T.E.; O'Donoghue, J.; Gregor, A.; Livingstone, A.; Wilson, L.; West of Scotland Health Boards, Glasgow

    1986-01-01

    Neuroblastoma is a radiosensitive neoplasm for which total body irradiation (TBI) is presently under clinical consideration. Collated data on the radiobiology of human neuroblastoma cells in vitro indicates moderate cellular radiosensitivity and low capacity for accumulation of sublethal damage. Mathematical studies incorporating these parameters suggest that low dose fractionated TBI is unlikely to achieve significant levels of tumour cell kill. When high dose TBI is used in conjuction with bone marrow rescue a tumour 'log cell kill' of 4-5 should be achievable. This effect would be additional to that acheived by chemotherapy. Fractionated TBI with bone marrow rescue may be curative for some patients in clinical remission who are presently destined to relapse. (Auth.)

  20. Hematological toxicity in radioimmunotherapy is predicted both by the computed absorbed whole body dose (cGy) and by the administered dose (mCi)

    International Nuclear Information System (INIS)

    Marquez, Sheri D.; Knox, Susan J.; Trisler, Kirk D.; Goris, Michael L.

    1997-01-01

    -90 anti-CD20 antibody treated group, in which the estimated whole body dose varied (D(cGy)), the decrease in these values was predicted by the linear (zero intercept) equations: DWBC = 0.01158 D(cGy) + 0.05247 D(mCi), DPLAT = 0.1476 D(cGy) + 3.043 D(mCi), and DN=0.0047 D(cGy)+0.0507D(mCi). In the Iodine-131 anti-CD20 antibody treated group, where D(cGy) was constant and equal to 75 cGy, the variation in toxicity was predicted by the linear equation DPLAT = -241 + 5.53 D(mCi), with F=12.184 (p<0.01) and DWBC = -2.62 + 0.0757 D (mCi), with F=3.14 (NS). Conclusion: The results suggest that the total absorbed dose is not an absolute predictor of effect, but in this restricted data set a significant predominant effect of the administered dose on toxicity could not be demonstrated either. The data however do not invalidate the theoretical view that 1) with internal radionuclides a large fraction of the total absorbed dose is delivered at very low dose rates, which may be too low for any appreciable effect, and 2) if variation in the kinetics of the agents lead to an adaptation of the administered dose, the initial dose rate is affected. The therapeutic and toxic effects of RIT are probably a function of both the total dose and the dose rate. Further optimization of this therapy needs to take this into consideration

  1. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  2. Effect of fractionated versus unfractionated total body irradiation on the growth of the BN acute myelocytic leukemia

    International Nuclear Information System (INIS)

    Hagenbeek, A.; Martens, A.C.M.

    1981-01-01

    The efficacy of various total body irradiation (TBI) regimens prior to bone marrow transplantation was evaluated in a rat model for acute myelocytic leukemia (Dq = 85.1 cGy gamma ; N = 3.7). Using high dose rate gamma-irradiation (115 cGy/min), fractionated TBI with large total daily doses (400 to 600 cGy), either given as acute doses or as split doses at 8 hr intervals, was most effective. Split doses (2 fractions per day) offered no additional advantage. At the most, a 4 log leukemic cell kill was induced. No lethal toxicity was observed. Nine-hundred cGy flash TBI had a similar anti-tumor effect, but with this regimen almost half of the rats died from radiation-induced toxicity (lungs and gastro-intestinal tract). The results are explained in terms of differences between normal and leukemic cells as regards (a) repair of sublethal damage; and (b) repopulation. Low dose rate continuous gamma-irradiation (0.26 cGy/min) with total doses ranging from 900 to 2000 cGy was also quite effective. Maximally a 4 log cell kill was obtained. With 2000 cGy, 50% of the rats died from the gastro-intestinal tract-syndrome. In addition to the major role played by chemotherapy, TBI is mainly of importance in sterilizing the various sanctuaries in the body which contain leukemic cells anatomically resistant to most cytostatic agents

  3. Why do total-body decay curves of iodine-labeled proteins begin with a delay

    International Nuclear Information System (INIS)

    Regoeczi, E.

    1987-01-01

    The initial delay that occurs in total-body radiation curves reaching their single-exponential slopes was analyzed from 106 experiments involving several mammalian species (guinea pig, mouse, rabbit, and rat) and plasma proteins (alpha 1-acid glycoprotein, antithrombin III, fibrinogen, immunoglobulin G, and transferrin) in 14 different combinations. The time interval (Td) between injection and the intercept of the slope with the full-dose value was adopted as a measure of curve nonideality. The overall mean Td was 6.6 h, but individual values showed a significant correlation to protein half-lives, whereby proteins of unequal metabolic properties exhibited different mean Td values. Targeting protein to the liver abolished delay. Choice of the isotope ( 125 I or 131 I) and size of the labeled protein had no influence on the magnitude of delay. Whole-body radiation curves of animals that received [ 125 I]iodotyrosines, Na 131 I, or 131 I-polyvinylpyrrolidone exhibited no initial delays. These results do not support the earlier notion that delay is caused by a redistribution of the labeled protein in the body to radiometrically more favorable sites. However, they are compatible with the assumption that delayed passage of a protein dose through the extracellular matrix and/or retarded transfer of proteolytic products from extravascular catabolic sites to plasma may be responsible for the phenomenon

  4. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  5. Evaluation of body composition and nitrogen content of renal patients on chronic dialysis as determined by total body neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Brennan, B.L.; Yasumura, S.; Vartsky, D.; Vaswani, A.N.; Ellis, K.J.

    1983-01-01

    Total body protein (nitrogen), body cell mass (potassium), fat, and water were measured in 15 renal patients on maintenance hemodialysis (MHD). Total body nitrogen was measured by means of prompt γ neutron activation analysis; total body water was determined with tritium labeled water; total body potassium was measured by whole body counting. The extracellular water was determined by a technique utilizing the measurement of total body chloride and plasma chloride. When compared with corresponding values of a control group of the same age, sex, and height, the protein content, body cell mass, and total body fat of the MHD patients were within the normal range. The only significant change was an increase in the extracellular water/body cell mass ratio in the male MHD patients compared to the control. The lack of significant difference of the nitrogen values of the MHD patients compared to matched controls suggests that dialysis minimizes any residual effects of uremic toxicity or protein-calorie malnutrition. These findings further suggest that there is a need to reevaluate the traditional anthropometric and biochemical standards of nutritional status for MHD patients. It was concluded that it is particularly important to measure protein stores of MHD patients with low protein intake to ascertain nutritional status. Finally, in vivo measurement of total body nitrogen and potassium for determination of body composition provides a simple, direct, and accurate assessment of the nutritional status of MHD patients

  6. Physically-based biodosimetry using in vivo EPR of teeth in patients undergoing total body irradiation

    Science.gov (United States)

    Williams, Benjamin B.; Dong, Ruhong; Nicolalde, Roberto J.; Matthews, Thomas P.; Gladstone, David J.; Demidenko, Eugene; Zaki, Bassem I.; Salikhov, Ildar K.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    Purpose The ability to estimate individual exposures to radiation following a large attack or incident has been identified as a necessity for rational and effective emergency medical response. In vivo electron paramagnetic resonance (EPR) spectroscopy of tooth enamel has been developed to meet this need. Materials and methods A novel transportable EPR spectrometer, developed to facilitate tooth dosimetry in an emergency response setting, was used to measure upper incisors in a model system, in unirradiated subjects, and in patients who had received total body doses of 2 Gy. Results A linear dose response was observed in the model system. A statistically significant increase in the intensity of the radiation-induced EPR signal was observed in irradiated versus unirradiated subjects, with an estimated standard error of dose prediction of 0.9 + 0.3 Gy. Conclusions These results demonstrate the current ability of in vivo EPR tooth dosimetry to distinguish between subjects who have not been irradiated and those who have received exposures that place them at risk for acute radiation syndrome. Procedural and technical developments to further increase the precision of dose estimation and ensure reliable operation in the emergency setting are underway. With these developments EPR tooth dosimetry is likely to be a valuable resource for triage following potential radiation exposure of a large population. PMID:21696339

  7. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Li, Zhiguo [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Department of Immunology, Duke University Medical Center, Durham, North Carolina (United States); Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Chen, Benny J., E-mail: chen0032@mc.duke.edu [Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States)

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  8. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    International Nuclear Information System (INIS)

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2013-01-01

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells

  9. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Latini, Paolo; Aristei, Cynthia; Checcaglini, Franco; Maranzano, Ernesto; Panizza, B.M.; Perrucci, Elisabetta (University and Hospital, Policlinico, Perugia (Italy). Radiation Oncology Service); Aversa, Franco; Martelli, M.F. (University and Hospital, Policlinico, Perugia (Italy). Department of Haematology); Raymondi, Carlo (University and Hospital, Policlinico, Perugia (Italy). Radiation Physics Service)

    1991-10-01

    From July 1985 to December 1989, 72 evaluable patients aged 6-51 (median age 27) suffering from hematological malignancies received allo-geneic bone marrow transplant (BMT) depleted of T-lymphocytes to reduce risks of graft-versus-host-disease (GvHD); 57 were matched and 15 mis-matched. Three different conditioning regiments were used in an effort to enhance cytoreduction without increase extramedullary toxicity. Mis-matched patients were treated with more immunosuppressive regimens. Total body irradiation (TBI) was given in 3 doses/day, 5 h apart over 4 days for a total of 12 fractions. The dose to the lungs was 14.4, 15.6 and 9 Gy according to the conditioning regimen. The incidence of inter-stitial pneumonia (IP) was 12.3 percent in matched and 46.7 in mis-matched patients. The results seem to indicate that lung toxicity is correlated with the intensity of the conditioning regimen, the stage of disease and, in mismatched patients, with the degree of human leucocyte antigen (HLA) disparity and the poor post-BMT reconstitution, rather than the radiotherapy dose delivered to the lungs. On the contrary, the hyperfractionated scheme adopted, the absence of GvHD and, perhaps, the post-TBI administration of cyclophosphamide all seem to have contributed to the low incidence of IP in the matched patients. (author). 30 refs.; 5 figs.; 1 tab.

  10. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation

    International Nuclear Information System (INIS)

    Latini, Paolo; Aristei, Cynthia; Checcaglini, Franco; Maranzano, Ernesto; Panizza, B.M.; Perrucci, Elisabetta; Aversa, Franco; Martelli, M.F.; Raymondi, Carlo

    1991-01-01

    From July 1985 to December 1989, 72 evaluable patients aged 6-51 (median age 27) suffering from hematological malignancies received allo-geneic bone marrow transplant (BMT) depleted of T-lymphocytes to reduce risks of graft-versus-host-disease (GvHD); 57 were matched and 15 mis-matched. Three different conditioning regiments were used in an effort to enhance cytoreduction without increase extramedullary toxicity. Mis-matched patients were treated with more immunosuppressive regimens. Total body irradiation (TBI) was given in 3 doses/day, 5 h apart over 4 days for a total of 12 fractions. The dose to the lungs was 14.4, 15.6 and 9 Gy according to the conditioning regimen. The incidence of inter-stitial pneumonia (IP) was 12.3 percent in matched and 46.7 in mis-matched patients. The results seem to indicate that lung toxicity is correlated with the intensity of the conditioning regimen, the stage of disease and, in mismatched patients, with the degree of human leucocyte antigen (HLA) disparity and the poor post-BMT reconstitution, rather than the radiotherapy dose delivered to the lungs. On the contrary, the hyperfractionated scheme adopted, the absence of GvHD and, perhaps, the post-TBI administration of cyclophosphamide all seem to have contributed to the low incidence of IP in the matched patients. (author). 30 refs.; 5 figs.; 1 tab

  11. Total body irradiation in the bone marrow transplantation in leukemia:an experience

    International Nuclear Information System (INIS)

    Zapatero, A.; Martin de Vidales, C.; Pinar, B.; Marin, A.; Cerezo, L.; Dominguez, P.; Perez, A.

    1996-01-01

    The purpose of this report was to evaluate long-term survival and morbidity of fractioned total body irradiation (TBI) prior to allogeneicbone marrow transplantation (BMT) for leukemia. From June 1985 to May 1992, 94 patients with acute leukemia and chronic myelogenous leukemia (CML), were treated with high dose cyclophosphamide(CY) and fractionated TBI to a total dose of 12 Gy in six fractions prior to allogeneic BMT. The Kaplan-Meier 5-year overall survival and disease-free survival were 53% +-6 and 48%+- respectively for patients with standard risk disease (first remission of acute leukemia and first chronic phase of CML), and 24%+-7 and 21%+-6 for patients with more advanced disease (p=3D0.01). The incidence of interstitial pneumonitis (IP), venoocclusive disease of the liver (VOD) and grade=3D>II acute graft-versus-host disease (GVHD) were respectively 15%, 29% and 51%. Fractionated TBI combined with high dose CY before allogeneic BMT for leukemia is an effective treatment in prolonging relapse-free survival witha low incidence of lung toxicity. (Author) 13 refs

  12. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  13. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  14. Observations on total-body calcium in humans with bone disease

    International Nuclear Information System (INIS)

    Spinks, T.J.; Bewley, D.K.; Ranicar, A.S.O.; Joplin, G.F.; Evans, I.M.A.; Vlotides, J.; Paolillo, M.

    1979-01-01

    Total-body calcium was measured in-vivo by neutron activation in a number of patients suffering from metabolic abnormalities which affect the skeleton. In general, less than 2% of total calcium resides in tissue other than bone allowing calcium mass to be directly related to skeletal mass. The conditions studied were (i) Paget's disease, treated with synthetic human calcitonin, (ii) osteoporosis, treated variously with calcium and phosphate supplements and 1,25 hydroxycholecalciferol, and (iii) Cushing's disease treated by pituitary implant of 198 Au or 90 Y seeds. The neutron beam used in these studies was produced by bombarding a beryllium target with deuterons accelerated in a cyclotron. The mean neutron energy was 7.5 MeV and patients received a total dose of 1 rem in about 30 s, a bilateral irradiation being employed. Measurements were made at approximately yearly intervals, the maximum period of study being about four and a half years. The precision of the method was estimated to be +-3% (SE) and a correction was applied for changes in body weight. In most patients, total calcium remained stable. However, in the Paget's patients, there was an indication of a slow upward trend while the osteoporotics (both treated and untreated) showed on average no change. Most of the patients with Cushing's disease showed no recovery of skeletal mass. Absolute calibration indicated that mean total body calcium in the Paget's patients was close to a predicted normal while that for the osteoporotic and Cushing's patients was 20-25% below this. (author)

  15. Nation-wide anthropometric survey data in Japan to determine dimensions of total-body phantom for Reference Japanese Man

    International Nuclear Information System (INIS)

    Togo, Masami

    1990-01-01

    In order to estimate radiation dose in Japanese population accurately, a Reference Japanese Man, whose stature and body weight are 170cm and 60kg respectively, is indispensable. The MIRD 5 total-body phantom has only 8 dimensions, i.e. total head height, head length, head breadth, trunk length, trunk breadth, leg length, and breadth and depth of a leg model at its lower end. Based on Japanese anthropometric data, the dimensions were determined and its mathematical descriptions were given. In Japan, annual statistical data of stature, body weight, chest circumference and sitting height for all Japan by sex and age are published. But other nation-wide survey data necessary for determining dimensions of total-body phantom of Reference Japanese Man, are unavailable. Much more national anthropometric data of every kind necessary for defining phantoms must be compiled. (author)

  16. Total body irradiation with a compensator fabricated using a 3D optical scanner and a 3D printer.

    Science.gov (United States)

    Park, So-Yeon; Kim, Jung-In; Joo, Yoon Ha; Lee, Jung Chan; Park, Jong Min

    2017-05-07

    We propose bilateral total body irradiation (TBI) utilizing a 3D printer and a 3D optical scanner. We acquired surface information of an anthropomorphic phantom with the 3D scanner and fabricated the 3D compensator with the 3D printer, which could continuously compensate for the lateral missing tissue of an entire body from the beam's eye view. To test the system's performance, we measured doses with optically stimulated luminescent dosimeters (OSLDs) as well as EBT3 films with the anthropomorphic phantom during TBI without a compensator, conventional bilateral TBI, and TBI with the 3D compensator (3D TBI). The 3D TBI showed the most uniform dose delivery to the phantom. From the OSLD measurements of the 3D TBI, the deviations between the measured doses and the prescription dose ranged from  -6.7% to 2.4% inside the phantom and from  -2.3% to 0.6% on the phantom's surface. From the EBT3 film measurements, the prescription dose could be delivered to the entire body of the phantom within  ±10% accuracy, except for the chest region, where tissue heterogeneity is extreme. The 3D TBI doses were much more uniform than those of the other irradiation techniques, especially in the anterior-to-posterior direction. The 3D TBI was advantageous, owing to its uniform dose delivery as well as its efficient treatment procedure.

  17. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    International Nuclear Information System (INIS)

    Benton, E.R.; Deme, S.; Apathy, I.

    2006-01-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca 2 SO 4 :Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET ∞ H 2 O ≥ 10 keV/μm, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component ≥ 10 keV/μm measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/μm measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 μGy/day and dose equivalent rates ranging from 340 to 450 μSv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  18. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X., E-mail: lhong0812@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (United States); Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Kuo, Hsiang-Chi [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Mynampati, Dinesh [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Yaparpalvi, Ravindra [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Goddard, Lee [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States)

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  19. Hematological changes after single large dose half-body irradiation

    International Nuclear Information System (INIS)

    Herrmann, T.; Friedrich, S.; Jochem, I.; Eberhardt, H.J.; Koch, R.; Knorr, A.

    1981-01-01

    The determination of different peripheral blood parameters aimed at the study of side effects on the hematological cellular system following a 5 - 8 Gy single large dose half-body irradiation in 20 patients. Compared to the initial values the leukocytes between the 6. and 14., the thrombocytes between the 14. and 21. postirradiation day as well as the lymphocytes between 3 hours and 4 weeks postirradiation were significantly decreased without exhibiting complications such as hemorrhages or infections. The hemoglobin, hematocrit and reticulocyte values revealed but a slight decrease normalized within a 28 days postirradiation period. Transfusions were necessary when a tumor-caused anemia was present prior to irradiation. Changes in serum activity of aminotransferases and lactate dehydrogenase occured during the first hours after irradiation and were due to enzyme release from destroyed tumor cells

  20. Seasonal changes in total body water; body composition and water turnover in reindeer

    Directory of Open Access Journals (Sweden)

    Terje S. Larsen

    1985-05-01

    Full Text Available Total body water and water turnover were measured at different times throughout the year in 3 captive Norwegian reindeer, using a tritiated water dilution method (Holleman et al. 1982. Total body water (percent of body weight increased during late autumn and winter, from 59.1 ± 1.5 % in October to 72.5 ± 2.0 % in April. Using the equatation by Pace and Rathbun (1945 for predicting total body fat (% fat = 100 - % water/0.732, this increase in total body water indicates a concomitant reduction in body fat, from a maximum value of 18.9 ± 2.6 % (of body weight in October to a minimum of 0.9 ± 2.7 % in April. During summer, on the other hand, fat content increased at the expense of a reduced percentage of body water. Water turnover was low in winter (December - April, ranging between 30.8 ± 5.2and43.6 ± 13.5ml.d-'. kg-1, but increased nearly fourfold during summer (June-August with a maximum of 117.7 ± 5.9 ml.d-1. kg-1 in August. Positive correlations between water turnover and food intake and between water turnover and ambient temperature were found, the latter probably resulting from an incidental correlation between food intake and ambient temperature.Sesongmessige forandringer i totalt kroppsvann, kropps-sammensetning og vannomsetning hos reinsdyr.Abstract in Norwegian / Sammendrag: Totalt kroppsvann og vannomsetning av vann ble målt til forskjellige årstider i 3 norske reinsdyr ved hjelp av utvasking av tritiert vann (Holleman et al. 1982. Totalt kroppsvann (prosent av kroppsvekt økte utover høsten og vinteren, fra 59.1 ± 1.5 % i oktober til 72.5 ± 2.0 % i april. Ved hjelp av en ligning som er gitt av Pace og Rathbun (1945 for beregning av totalt kroppsfett (% fett = 100 - % vann/0.732, fant en at denne økningen i vanninnhold tilsvarte en samtidig reduksjon i fettinnhold, fra en maksimums-verdi på 18.9 ± 2.6 % av kroppsvekt i oktober til et minimum på 0.9 ± 2.7 % i april. Utover sommeren økte derimot innholdet av fett p

  1. Technical specification of the NRPB thermoluminescent dosemeter used for the measurement of body dose and skin dose

    CERN Document Server

    Shaw, K B

    1977-01-01

    This report specifies the NRPB thermoluminescent dosemeter used for the measurement of radiation dose in tissue at a depth of 700 mg cm sup - sup 2 (body dose) and at a depth of 5-10 mg cm sup - sup 2 (skin dose).

  2. Study on the immunological suppressive mechanisms of the cyclophosphamide-administration and total body irradiation

    International Nuclear Information System (INIS)

    Wakizaka, Yoshitaka; Uchino, Junichi; Yang, Zi-Bo.

    1994-01-01

    High dose-cyclophosphamide (CP) administration and total body irradiation (TBI) are often used for bone marrow transplantation in order to eradicate the residual tumor cells and to induce the immunological tolerance in the recipients. But CP is difficult to use as an immunosuppressant because this drug has indefinite effects on host's immune status depending on the dose, i.e. augment the humoral antibody production in small dosage and inhibit the rejective reaction in large dosage. Thus we study on the immunological mechanisms of this drug and the TBI used often with CP for bone marrow transplantation in leukemic patients. 150 mg/kg of CP was administered via tail vein, and 3 Gy (300 rads) of X-ray was irradiated. CP could suppress the host's cellular immunity within 5 days after administration but TBI could within 3 days. Reversely, CP augmented the cellular immunity since 5 days after treatment. CP damaged the IL-2 production irreversibely, but IL-3 production was inhibited by CP for only a few days and recovered rapidly. These characters were thought to be a big help for the implantation and development of the multipotent stem cells in the recipient's body after transplantation. (author)

  3. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  4. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Blagojevic, N; Allen, B J; Baur, L; Gaskin, K

    1988-12-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value.

  5. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    International Nuclear Information System (INIS)

    Blagojevic, N.; Allen, B.J.; Baur, L.; Gaskin, K.

    1988-01-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value

  6. Gastrointestinal decontamination of dogs treated with total body irradiation and bone marrow transplantation

    NARCIS (Netherlands)

    Vriesendorp, H.M.; Heidt, P.J.; Zurcher, C.

    1981-01-01

    Procedures for total and selective gastrointestinal decontamination of dogs are described. The selective procedure removed only Gram negative aerobic bacteria, yeast and fungi. Dogs receiving total decontamination were less susceptible to the GI syndrome following total body irradiation (TBI) than

  7. Poster - 42: TB - ARC: A Total Body photon ARC technique using a commercially available linac

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Michael D. C.; Ruo, Russell; Patrocinio, Horacio J.; Poon, Emily; Freeman, Carolyn; Hijal, Tarek; Parker, William [McGill University Health Centre (Canada)

    2016-08-15

    We have developed a total body photon irradiation technique using multiple overlapping open field arcs (TB-ARC). This simple technique uses predetermined arc-weights, with MUs calculated as a function of prescription depth only. Patients lie on a stretcher, in the prone/supine treatment position with AP/PA arcs. This treatment position has many advantages including ease of delivery (especially for tall, pediatric or compromised patients), dose uniformity, simplicity for organ shielding, and imaging capabilities. Using a Varian TrueBeam linac, 14 arcs using 40×40 cm{sup 2} 6 MV open photon beams, sweeping across 10 degrees each, complete a 140 degree arc. The nominal SSD at zero degrees is 200 cm. Arcs at the sweep limits (+/− 70 degrees) are differentially weighted and deliver a dose within 10% of the prescription on central axis, at a depth of 10 cm over a superior-inferior length of 275 cm. CT planning using Varian Eclipse enables dose evaluation. A custom made beam spoiler, consisting of a 2.5 m sheet of polycarbonate (6 mm thick) increases the surface dose from 45% to 90%. This beam spoiler also serves as a support in the event that differential attenuation is required for organs such as lung, heart, liver, kidneys. The geometry of the sweeping beam technique limits organ dose (using varying thicknesses of melting alloy) to about 20% and 40% of prescription at dmax and midplane respectively. Digital imaging with a portable DR cassette enables proper attenuator location prior to treatment.

  8. A simple calibration of a whole-body counter for the measurement of total body potassium in humans

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; El-Fiki, S.A.; El-Enany, N.; Youssef, S.K.; Aly, A.M.; Abbas, M.T.

    1992-01-01

    A simple calibration procedure for the Inshas whole body counter for evaluating total body potassium has been adopted. More than 120 Egyptian employees in the Nuclear Research Center (N.R.C.) were studied for their total body potassium (TBK). The potassium values were found to have an average of 2.85±0.57 g K kg -1 body weight for males and 2.62±0.52 g K kg -1 for females, which are higher than the recommended value given for reference man by ICRP. The TBK varied directly with body build index and is slightly sex dependent (Author)

  9. Clinical aspects of accidents resulting in acute total body irradiation

    International Nuclear Information System (INIS)

    Cronkite, E.P.

    1988-01-01

    That the management of whole body radiation injury involves: (1) watchful waiting, (2) observation of the hematologic parameters, (3) use of antibiotics, platelet red cell and possibly granulocyte transfusions, (4) administration of hemopoietic molecular regulators of granulopoiesis, and (5) bone marrow transplantation as the last line of defense. The clinical indication for the preceding will not be discussed, since this will be a subject of later speakers in this conference. Certainly, if a radiation casualty is fortunate enough to have an identical twin, a marrow transplant may be lifesaving and certainly can do no harm to the patient, and there is little risk to the donor

  10. Optimized total body irradiation for induction of renal allograft tolerance through mixed chimerism in cynomolgus monkeys

    International Nuclear Information System (INIS)

    Kimikawa, Masaaki; Kawai, Tatsuo; Ota, Kazuo

    1996-01-01

    We previously demonstrated that a nonmyeloablative preparative regimen can induce mixed chimerism and renal allograft tolerance between MHC-disparate non-human primates. The basic regimen includes anti-thymocyte globulin (ATG), total body irradiation (TBI, 300 cGy), thymic irradiation (TI, 700 cGy), splenectomy, donor bone marrow (DBM) infusion, and posttransplant cyclosporine therapy (CYA, discontinued after 4 weeks). To evaluate the importance and to minimize the toxicity of irradiation, kidney allografts were transplanted with various manipulations of the irradiation protocol. Monkeys treated with the basic protocol without TBI and TI did not develop chimerism or long-term allograft survival. In monkeys treated with the full protocol, all six monkeys treated with two fractionated dose of 150 cGy developed chimerism and five monkeys appeared tolerant. In contrast, only two of the four monkeys treated with fractionated doses of 125 cGy developed chimerism and only one monkey survived long term. The degree of lymphocyte depletion in all recipients was proportional to the TBI dose. The fractionated TBI regimen of 150 cGy appears to be the most consistently effective regimen for establishing donor bone marrow cell engraftment and allograft tolerance. (author)

  11. Optimized total body irradiation for induction of renal allograft tolerance through mixed chimerism in cynomolgus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Kimikawa, Masaaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    We previously demonstrated that a nonmyeloablative preparative regimen can induce mixed chimerism and renal allograft tolerance between MHC-disparate non-human primates. The basic regimen includes anti-thymocyte globulin (ATG), total body irradiation (TBI, 300 cGy), thymic irradiation (TI, 700 cGy), splenectomy, donor bone marrow (DBM) infusion, and posttransplant cyclosporine therapy (CYA, discontinued after 4 weeks). To evaluate the importance and to minimize the toxicity of irradiation, kidney allografts were transplanted with various manipulations of the irradiation protocol. Monkeys treated with the basic protocol without TBI and TI did not develop chimerism or long-term allograft survival. In monkeys treated with the full protocol, all six monkeys treated with two fractionated dose of 150 cGy developed chimerism and five monkeys appeared tolerant. In contrast, only two of the four monkeys treated with fractionated doses of 125 cGy developed chimerism and only one monkey survived long term. The degree of lymphocyte depletion in all recipients was proportional to the TBI dose. The fractionated TBI regimen of 150 cGy appears to be the most consistently effective regimen for establishing donor bone marrow cell engraftment and allograft tolerance. (author)

  12. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  13. Radiographic analysis of partial or total vertebral body resection

    International Nuclear Information System (INIS)

    Whitten, C.G.; Hammer, G.H.; El-Khoury, G.Y.; Hugus, J.; Weinstein, J.N.

    1991-01-01

    Partial and total vertebrectomies are used in the treatment of primary and metastatic neoplasms of the spine. Serial radiographic studies are crucial in the follow-up of patients with vertebrectomies. This paper presents 33 cases and illustrates radiographic examples of both successful and complicated vertebrectomies, including radiographic signs of local tumor recurrence, loosening, migration or fracture of the hardware or methylmethacrylate, bone graft failure, and progressive spinal instability

  14. [Total body composition in adult patients with growth hormone deficiency before and after its administration].

    Science.gov (United States)

    Weiss, V; Krsek, M; Marek, J; Stĕpán, J; Malík, J

    2003-08-01

    Effect of growth hormone (GH) on the growth and development of children is generally known. Effects of GH in adults are favorable, though. The aim of the work was to verify effects of GH administration on body composition in adult patients with GH deficit (GHD). The authors examined 15 adult patients with GHD originated in 13 of them in adulthood and in two of them in childhood. Their mean age was 43.9 +/- 11.3 years, the mean body mass was 80.0 +/- 15.2 kg. The GH deficit was verified by the stimulation insulin tolerance test. For the period of 12 months, they were subcutaneously administered recombinant human GH in a substitution dose of 0.5 to 1.5 IU/m2 body surface/day. A stable substitution of the hormone was applied for the period of at least six months in all these patients provided any deficit of other hormones had not been demonstrated. The examination by whole-body dosimeter Lunar DPX-L was made in the patients before the GH treatment began and after 12 months of therapy. It enabled to determine the amount of lean body mass (LBM) and fatty mass. After 12 months of GH treatment the mean level of insulin-like growth factor (IGF-I) was increased (P = 0.002). A statistically significant increase of total LBM (48.6 +/- 9.8 vs. 50.8 +/- 9.9 kg, P = 0.004) developed, the fatty mass did not change. Nine of these 15 patients were further followed and the administration of GH proceeded for six months. The densitometric examination was repeated, but no change of LBM was observed. The administration of GH was halted and after the period of 12 months the whole-body densitometric examination was done. The increase of LBM lasted. The amount of fat mass did not change, a decrease of fatty mass was observed after the GH administration ended. After 12 months of GH treatment there was also an increase of maximal output reached on bicycle ergometer (157.3 +/- 34.2 vs. 197.5 +/- 68.1 W, P = 0.006). A positive correlation between LBM and maximal output reached on bicycle

  15. Acute hematological tolerance to multiple fraction, whole body, low dose irradiation in an experimental murine system

    International Nuclear Information System (INIS)

    Melamed, J.S.; Chen, M.G.; Brown, J.W.; Katagiri, C.A.

    1980-01-01

    Using a dose fractionation scheme patterned after the current regimen for treatment of disseminated non-Hodgkin lymphoma, the authors studied the effects of irradation on progenitor and effector cells for hematopoiesis in five-month-old BC3F 1 mice. Fractions of 20 or 50 rad (0.2 or 0.5 Gy) total body irradation were given twice weekly to a final total dose of 200 or 500 rad (2 or 5 Gy), respectively. Weekly assays revealed a marked, sustained depression of stem cell activity, measured as numbers of spleen colony-forming units (CFU-S) and in vitro colony-forming cells (CFU-C), without corresponding depression of effector cells (red and white cells, and platelets). The lack of correlation between numbers of stem cells and peripheral elements is relevant to clinical assessment of marrow reserve

  16. Low-dose total skin electron beam therapy for cutaneous lymphoma : Minimal risk of acute toxicities.

    Science.gov (United States)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor

    2017-12-01

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T‑cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses.

  17. Determination of the total indicative dose in drinking and mineral waters

    International Nuclear Information System (INIS)

    Flesch, K.; Schulz, H.; Knappik, R.; Koehler, M.

    2006-01-01

    In Europe and Germany administrative regulations exist for the surveillance of the total indicative dose of water supplied for human consumption. This parameter, which cannot be analyzed directly, has to be calculated using nuclide specific activity concentration and age specific dose conversion factors and consumption rates. Available calculation methods differ regarding the used radionuclides, consumption rates and whether they use age specific dose conversion factors or not. In Germany administrative guidelines for the determination of the total indicative dose are still not available. As they have analyzed a large number of waters in the past, the authors derive a praxis orientated concept for the determination of the total indicative dose which respects radiological, analytical and hydrochemical aspects as well. Finally it is suggested to handle sparkling waters in the same manner as drinking waters. (orig.)

  18. Total body irradiation and autologus bone marrow transplantation in acute leukemias and non Hodgkin-lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Corvo, R; Franzone, P; Scarpati, D; Congiu, M; Carella, A

    1986-01-01

    From january 1984 to may 1986, 31 patients, 15 ANLL, 8 ALL (in remission status) and 8 NHL (6 in remission, 2 in relapse) have been treated with chemo-radiotherapy (cyclophosphamide 60 mg/kg x 2 days + total body irradiation (TBI): 10 Gy/3 fr./3 days with 4 Gy boost testicular dose in ALL) and autologous bone marrow transplantation (BMT). Seventeen patients are alive, 16 in remission: 9 (60%) ANLL, 2 (25%) ALL, 5 (62%) NHL (median 8+ months, follow up 1+ /29+); 2 patients presented interstitial pneumonitis (6.45%). In this series, very good results have been achieved in ANLL, where no relapse was noted, encouraging achievements in NHL, with 4/8 relapse. Advantages and disadvanteges of autologus relative to allogenic BMT, and of conditioning regimen with or without TBI are discussed.

  19. Treatment of chronic granulocytic leukemia by chemotherapy, total body irradiation and allogeneic bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Doney, K; Buckner, C D; Sale, G E; Ramberg, R; Boyd, C; Thomas, E D [Fred Hutchinson Cancer Research Institute; Washington Univ., Seattle (USA). School of Medicine)

    1978-01-01

    Fourteen patients with chronic granulocytic leukemia received bone marrow grafts from HLA identical siblings. Ten patients were in blast crisis prior to grafting, three were in an accelerated phase of their disease, and one was aplastic secondary to chemotherapy. Prior to transplant all patients were conditioned with chemotherapy including cyclophosphamide plus 1,000 rad of total body irradiation. Ten patients achieved engraftment while four died 1 to 26 days after marrow infusion without functioning grafts. Two patients reveived a second infusion of donor marrow because of delayed engraftment. Neither marrow cell dose nor presence of myelofibrosis correlated with succesful engraftment. Three out of ten engrafted patients developed graft-versus-host disease. Interstitial pneumonia occurred in seven patients. The immediate cause of death was bacterial septicemia in six patients. All evidence of leukemia disappeared in nine out of ten evaluable patients. The median survival was 43 days. One patient had a complete remission of 16 months duration.

  20. Treatment of chronic granulocytic leukemia by chemotherapy, total body irradiation and allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Doney, K.; Buckner, C.D.; Sale, G.E.; Ramberg, R.; Boyd, C.; Thomas, E.D.; Washington Univ., Seattle

    1978-01-01

    Fourteen patients with chronic granulocytic leukemia received bone marrow grafts from HLA identical siblings. Ten patients were in blast crisis prior to grafting, three were in an accelerated phase of their disease, and one was aplastic secondary to chemotherapy. Prior to transplant all patients were conditioned with chemotherapy including cyclophosphamide plus 1,000 rad of total body irradiation. Ten patients achieved engraftment while four died 1 to 26 days after marrow infusion without functioning grafts. Two patients reveived a second infusion of donor marrow because of delayed engraftment. Neither marrow cell dose nor presence of myelofibrosis correlated with succesful engraftment. Three out of ten engrafted patients developed graft-versus-host disease. Interstitial pneumonia occurred in seven patients. The immediate cause of death was bacterial septicemia in six patients. All evidence of leukemia disappeared in nine out of ten evaluable patients. The median survival was 43 days. One patient had a complete remission of 16 months duration. (Author)

  1. Low-dose computed tomography to detect body-packing in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, M.H., E-mail: martin.maurer@charite.de [Klinik fuer Strahlenheilkunde, Charite - Universitaetsmedizin, Berlin (Germany); Niehues, S.M.; Schnapauff, D.; Grieser, C.; Rothe, J.H. [Klinik fuer Strahlenheilkunde, Charite - Universitaetsmedizin, Berlin (Germany); Waldmueller, D. [Bildungs- und Wissenschaftszentrum der Bundesfinanzverwaltung, Berlin (Germany); Chopra, S.S. [Klinik fuer Allgemein-, Viszeral- und Transplantationschirurgie, Charite - Universitaetsmedizin, Berlin (Germany); Hamm, B.; Denecke, T. [Klinik fuer Strahlenheilkunde, Charite - Universitaetsmedizin, Berlin (Germany)

    2011-05-15

    Objective: To assess the possible extent of dose reduction for low-dose computed tomography (CT) in the detection of body-packing (ingested drug packets) as an alternative to plain radiographs in an animal model. Materials and methods: Twelve packets containing cocaine (purity >80%) were introduced into the intestine of an experimental animal (crossbred pig), which was then repeatedly examined by abdominal CT with stepwise dose reduction (tube voltage, 80 kV; tube current, 10-350 mA). Three blinded readers independently evaluated the CT datasets starting with the lowest tube current and noted the numbers of packets detected at the different tube currents used. In addition, 1 experienced reader determined the number of packets detectable on plain abdominal radiographs and ultrasound. Results: The threshold for correct identification of all 12 drug packets was 100 mA for reader 1 and 125 mA for readers 2 and 3. Above these thresholds all 3 readers consistently identified all 12 packets. The effective dose of a low-dose CT scan with 125 mA (including scout view) was 1.0 mSv, which was below that of 2 conventional abdominal radiographs (1.2 mSv). The reader interpreting the conventional radiographs identified a total of 9 drug packets and detected 8 packets by abdominal ultrasound. Conclusions: Extensive dose reduction makes low-dose CT a valuable alternative imaging modality for the examination of suspected body-packers and might replace conventional abdominal radiographs as the first-line imaging modality.

  2. Simulation of Shielding Effects on the Total Dose Observed in TDE of KISAT-1

    Directory of Open Access Journals (Sweden)

    Sung-Joon Kim

    2001-06-01

    Full Text Available The threshold voltage shift observed in TDE (Total Dose Experiment on board the KITSAT-1 is converted into dose (rad(SiO2 usinsg the result of laboratory calibration with Co-60 gamma ray source in KAERI (Korea Atomic Energy Research Institute. Simulation using the NASA radiation model of geomagnetosphere verifies that the dose difference between RADFET1 and RADFET3 observed on KITSAT-1 comes from the difference in shielding thickness at the position of these RADFETs.

  3. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    Science.gov (United States)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  4. Normal levels of total body sodium and chlorine by neutron activation analysis

    International Nuclear Information System (INIS)

    Kennedy, N.S.J.; Eastell, R.; Smith, M.A.; Tothill, P.

    1983-01-01

    In vivo neutron activation analysis was used to measure total body sodium and chlorine in 18 male and 18 female normal adults. Corrections for body size were developed. Normalisation factors were derived which enable the prediction of the normal levels of sodium and chlorine in a subject. The coefficient of variation of normalised sodium was 5.9% in men and 6.9% in women, and of normalised chlorine 9.3% in men and 5.5% in women. In the range examined (40-70 years) no significant age dependence was observed for either element. Total body sodium was correlated with total body chlorine and total body calcium. Sodium excess, defined as the amount of body sodium in excess of that associated with chlorine, also correlated well with total body calcium. In females there was a mean annual loss of sodium excess of 1.2% after the menopause, similar to the loss of calcium. (author)

  5. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  6. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  7. Data for absorbed dose calculations for external sources and for emitters within the body

    International Nuclear Information System (INIS)

    Hep, J.; Valenta, V.

    1976-01-01

    Tables give data for the calculation of absorbed doses from radioactivity sources accumulated in individual body organs. The tables are arranged in such manner that the gamma energy (J) absorbed in 1 kg of target organ (19 organs and total body) are given for 18 source organs (16 different organs, total doby and surrounding air) resulting from 1 decay event, this for more than 250 radioisotopes evenly distributed in the source organ (1 J/kg=100 rad). Also given are the energies of alpha and beta radiations related to one decay. In tables having the surrounding air as the source it is assumed that the intensity of the external source is 1 decay per 1 m 3 of surrounding air which is constant in the entire half-space. The tables are only elaborated for radioisotopes with a half-life of more than 1 min. (B.S.)

  8. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  9. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  10. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  11. Total dose effects on the matching properties of deep submicron MOS transistors

    International Nuclear Information System (INIS)

    Wang Yuxin; Hu Rongbin; Li Ruzhang; Chen Guangbing; Fu Dongbing; Lu Wu

    2014-01-01

    Based on 0.18 μm MOS transistors, for the first time, the total dose effects on the matching properties of deep submicron MOS transistors are studied. The experimental results show that the total dose radiation magnifies the mismatch among identically designed MOS transistors. In our experiments, as the radiation total dose rises to 200 krad, the threshold voltage and drain current mismatch percentages of NMOS transistors increase from 0.55% and 1.4% before radiation to 17.4% and 13.5% after radiation, respectively. PMOS transistors seem to be resistant to radiation damage. For all the range of radiation total dose, the threshold voltage and drain current mismatch percentages of PMOS transistors keep under 0.5% and 2.72%, respectively. (semiconductor devices)

  12. Low-dose-rate total lymphoid irradiation: a new method of rapid immunosuppression

    International Nuclear Information System (INIS)

    Blum, J.E.; de Silva, S.M.; Rachman, D.B.; Order, S.E.

    1988-01-01

    Total Lymphoid Irradiation (TLI) has been successful in inducing immunosuppression in experimental and clinical applications. However, both the experimental and clinical utility of TLI are hampered by the prolonged treatment courses required (23 days in rats and 30-60 days in humans). Low-dose-rate TLI has the potential of reducing overall treatment time while achieving comparable immunosuppression. This study examines the immunosuppressive activity and treatment toxicity of conventional-dose-rate (23 days) vs low-dose-rate (2-7 days) TLI. Seven groups of Lewis rats were given TLI with 60Co. One group was treated at conventional-dose-rates (80-110 cGy/min) and received 3400 cGy in 17 fractions over 23 days. Six groups were treated at low-dose-rate (7 cGy/min) and received total doses of 800, 1200, 1800, 2400, 3000, and 3400 cGy over 2-7 days. Rats treated at conventional-dose-rates over 23 days and at low-dose-rate over 2-7 days tolerated radiation with minimal toxicity. The level of immunosuppression was tested using allogeneic (Brown-Norway) skin graft survival. Control animals retained allogeneic skin grafts for a mean of 14 days (range 8-21 days). Conventional-dose-rate treated animals (3400 cGy in 23 days) kept their grafts 60 days (range 50-66 days) (p less than .001). Low-dose-rate treated rats (800 to 3400 cGy total dose over 2-7 days) also had prolongation of allogeneic graft survival times following TLI with a dose-response curve established. The graft survival time for the 3400 cGy low-dose-rate group (66 days, range 52-78 days) was not significantly different from the 3400 cGy conventional-dose-rate group (p less than 0.10). When the total dose given was equivalent, low-dose-rate TLI demonstrated an advantage of reduced overall treatment time compared to conventional-dose-rate TLI (7 days vs. 23 days) with no increase in toxicity

  13. Dose rate evaluation of body phantom behind ITER bio-shield wall using Monte Carlo method

    International Nuclear Information System (INIS)

    Beheshti, A.; Jabbari, I.; Karimian, A.; Abdi, M.

    2012-01-01

    One of the most critical risks to humans in reactors environment is radiation exposure. Around the tokamak hall personnel are exposed to a wide range of particles, including neutrons and photons. International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion research and engineering project, which is the most advanced experimental tokamak nuclear fusion reactor. Dose rates assessment and photon radiation due to the neutron activation of the solid structures in ITER is important from the radiological point of view. Therefore, the dosimetry considered in this case is based on the Deuterium-Tritium (DT) plasma burning with neutrons production rate at 14.1 MeV. The aim of this study is assessment the amount of radiation behind bio-shield wall that a human received during normal operation of ITER by considering neutron activation and delay gammas. To achieve the aim, the ITER system and its components were simulated by Monte Carlo method. Also to increase the accuracy and precision of the absorbed dose assessment a body phantom were considered in the simulation. The results of this research showed that total dose rates level near the outside of bio-shield wall of the tokamak hall is less than ten percent of the annual occupational dose limits during normal operation of ITER and It is possible to learn how long human beings can remain in that environment before the body absorbs dangerous levels of radiation. (authors)

  14. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  15. Osteochondroma after total body irradiation in bone marrow transplant recipients. Report of two cases

    International Nuclear Information System (INIS)

    Maeda, Go; Yokoyama, Ryohei; Ohtomo, Katsuyuki; Takayama, Jun; Beppu, Yasuo; Fukuma, Hisatoshi; Ohira, Mutsuro

    1996-01-01

    We present two cases of osteochondroma after total body irradiation in bone marrow recipients, the first in a 6-year-old boy with juvenile chronic myelogenous leukemia and the second in a 13-year-old boy with acute myelogenous leukemia. The patients developed multiple osteochondromas three years and seven years, respectively, after 12 Gy of total body irradiation. Neither had a family history of hereditary multiple osteochondromatosis. A review of the English literature revealed only one report describing five cases of osteochondroma after 12 Gy of total body irradiation in bone marrow transplant recipients. Osteochondroma should be considered as an additional adverse effect of total body irradiation. (author)

  16. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    International Nuclear Information System (INIS)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C.; Muenscher, A.; Blessmann, M.; Todorovic, M.; Tennstedt, P.

    2013-01-01

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  17. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    Energy Technology Data Exchange (ETDEWEB)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Radiation Oncology; Muenscher, A. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Otorhinolaryngology and Head and Neck Surgery; Blessmann, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Oral and Maxillofacial Surgery; Todorovic, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Medical Physics; Tennstedt, P. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Martini-Clinic, Prostate Cancer Center

    2013-03-15

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  18. Estimation of the total absorbed dose by quartz in retrospective conditions

    International Nuclear Information System (INIS)

    Correcher, V.; Delgado, A.

    2003-01-01

    The estimation of the total absorbed dose is of great interest in areas affected by a radiological accident when no conventional dosimetric systems are available. This paper reports about the usual methodology employed in dose reconstruction from the thermoluminescence (TL) properties of natural quartz, extracted from selected ceramic materials (12 bricks) picked up in the Chernobyl area. It has been possible to evaluate doses under 50mGy after more than 11 years later since the radiological accident happened. The main advance of this fact is the reduction of the commonly accepted limit dose estimation more than 20 times employing luminescence methods. (Author) 11 refs

  19. Simultaneous measurement of milk intake and total energy expenditure in mixed-fed infants: Methodological approach and prediction of total body water

    International Nuclear Information System (INIS)

    Wells, J.C.K.; Davies, P.S.W.; Coward, W.A.

    2000-01-01

    Evaluation of the energy metabolism that underlies the new WHO breast-fed growth reference requires simultaneous measurements of milk volume intake (MVI) and total energy expenditure (TEE) by stable isotope methodologies. In young infants, such data is collected without difficulty using the dose-to-the-infant method. In older infants, where breast-milk is supplemented with non-milk foods, MVI must be measured by dosing the mother instead of the infant. This procedure would interfere with a simple measurement of infant TEE using the standard dose-to-the-infant method. Theoretically, this difficulty can be resolved by dosing the mother with deuterium and the infant with 18-oxygen, and using curve-peeling methods to calculate the infant deuterium kinetics. We propose to ascertain whether such an approach is viable in practice, such that MVI, TEE and body composition could all be measured simultaneously in mixed-fed infants. Where MVI in older infants is measured on its own, there is a need to predict infant body water in order to estimate the deuterium dilution space. Using a database of 234 infants aged 1.5 to 12 months, we provide new predictive equations by which such values may be obtained. (author)

  20. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  1. Mathematical model of a phantom developed for use in calculations of radiation dose to the body and major internal organs of a Japanese adult

    International Nuclear Information System (INIS)

    Kerr, G.D.; Hwang, J.M.; Jones, R.M.

    1976-05-01

    A mathematical model of a phantom simulating the body and major internal organs of a Japanese adult has been developed for use in computer calculations of radiation dose. The total body height of the mathematical phantom is 162 cm, and the total body mass is 55 kg based on densities of 0.3, 1.4, and 1.0 g/cm 3 for the lung, skeleton, and bulk tissues of the body, respectively

  2. Single event effects and total ionizing dose effects of typical VDMOSFET devices

    International Nuclear Information System (INIS)

    Lou Jianshe; Cai Nan; Liu Jiaxin; Wu Qinzhi; Wang Jia

    2012-01-01

    In this work, single event effects and total ionizing dose effects of typical VDMOSFET irradiated by 60 Co γ-rays and 252 Cf source were studied. The single event burnout and single event gate rupture (SEB/SEGR) effects were investigated, and the relationship between drain-source breakdown voltage and ionizing dose was obtained. The results showed that the VDMOSFET devices were sensitive to SEB and SEGR, and measures to improve their resistance to SEB and SEGR should be considered seriously for their space applications. The drain-source breakdown voltage was sensitive to total ionizing dose effects as the threshold voltage. In assessing the devices' resistance to the total ionizing dose effects, both the threshold voltage and the drain-source breakdown voltage should be taken into account. (authors)

  3. Therapeutic effect of bone marrow transplantation plue previous blood transfusion on rats with total body irradiation

    International Nuclear Information System (INIS)

    Yan Yongtang; Ran Xinze; Wei Shuqing

    1988-01-01

    Therapeutic effect of bone marrow transplantation (BMT) and blood transfusion on different groups of rats subjected to various doses of total body irradiation (TBI) was studied. In the control group, 80 rats that received TBI of 8,9,10,11 and 12 Gy died between 3∼14 days. In the second group, 67 rats that received the same doses of irradiation were treated with BMT. Except that 8 rats died from lung hemorrhages at 4∼6 days after TBI. 85% of these animals (500/59) showed hemopoietic engraftment. The survival rates of 8, 9, 10, 11 and 12 Gy subgroups at 90 days after BMT were 90%, 56%, 56%, 25% and 0% respectively. In the third group, 82 rats receive TBI and blood transfusion prior to BMT. Except that 8 rats subjected to 11∼12 Gy irradiation died from lung hemorrhage at 4∼6 days after BMT, 97% of these animals (72/74) showed hemopoietic engraftment. The 90-day survival rates of 8, 9, 10, 11 and 12 Gy subgroups were 93%, 80%, 80%, 60% and 6% respectively. The 90-day survival rate of 50 rats subjected to 9∼11 Gy TBI and treated with blood transfusion and BMT, was 72%, while that 47 rats treated simply with BMT was only 42%. These results showed clearly that previous blood transfusion could increase the rate of hemopoietic engraftment, reduce the incidence if rejection, and raise the survival rate

  4. A comparative study of total body irradiation as a method of inducing granulocyte depletion in mice

    International Nuclear Information System (INIS)

    Bogman, M.J.J.T.; Cornelissen, I.M.H.A.; Berden, J.H.M.; Jong, J. de; Koene, R.A.P.

    1984-01-01

    Since conventional methods of inducing depletion of polymorphonuclear granulocytes (PMNs) in mice, such as treatment with cytostatic drugs and anti-PMN sera, proved to be insufficient to induce a stable PMN depletion for several days, and were accompanied by considerable toxic side effects, we induced neutrophil depletion in mice by total body irradiation (TBI) in a single dose of 6.0 Gy (600 rads.) at a dose rate of 0.20 Gy/min. This treatment reduced the number of PMNs in the peripheral circulation to values below 150/μl from day 3-10 after irradiation. The number of lymphocytes fell simultaneously. Platelet counts remained above 60% of normal values during the first 7 days after irradiation. Complement levels were not significantly affected by TBI. The results show that TBI of 6.0 Gy induces pronounced and stable PMN depletion in mice for at least 7 days. Furthermore, under an aseptic regimen the mice can be kept in good condition and losses are less than 5%. (Auth.)

  5. Immunoglobulin levels in dogs after total-body irradiation and bone marrow transplantation

    International Nuclear Information System (INIS)

    Vriesendorp, H.M.; Halliwell, R.E.; Johnson, P.M.; Fey, T.A.; McDonough, C.M.

    1985-01-01

    The influence of total-body irradiation (TBI) and autologous or allogeneic bone marrow transplantation on serum immunoglobulin subclasses was determined in a dog model. Only IgG1 levels decreased after low-dose (+/- 4.5 Gy) TBI, but levels of all immunoglobulin classes fell after high-dose TBI (8.5 GyX1 or 2X6.0 Gy). After autologous bone marrow transplantation IgM levels were the first and IgE levels were the last to return to normal. After successful allogeneic bone marrow transplantation prolonged low IgM and IgE levels were found but IgA levels increased rapidly to over 150% of pretreatment values. A comparison of dogs with or without clinical signs or graft-versus-host disease (GVHD), revealed no differences in IgM levels. Dogs with GVHD had higher IgA but lower IgE levels. Dogs that rejected their allogeneic bone marrow cells showed significant early rises in IgE and IgA levels in comparison with dogs with GVHD. These results differ from the observations made on Ig levels in human bone marrow transplant patients. No significant differences in phytohemagglutinin stimulation tests were found between dogs with or without GVHD or dogs receiving an autologous transplant for the first four months after TBI and transplantation. An early primary or secondary involvement of humoral immunity in GVHD and graft rejection in dogs is postulated

  6. Fiber-coupled Al_2O_3:C radioluminescence dosimetry for total body irradiations

    International Nuclear Information System (INIS)

    Buranurak, S.; Andersen, C.E.

    2016-01-01

    In vivo dosimetry can be important and relevant in radiotherapy, especially when commissioning new treatment techniques at hospitals. This study investigates the potential use of fiber-coupled radioluminescence (RL) dosimetry based on Al_2O_3:C or organic plastic scintillators for this purpose in the context of Total Body Irradiations (TBIs) where patients are treated with large fields of 6 or 18 MV photons at an extended source-to-surface distance (SSD). The study shows that Al_2O_3:C dosimetry using the saturated-RL protocol may be suitable for real-time in vivo dosimetry during TBI treatments from the perspective of the good agreement with alanine dosimetry and other critical phantom tests, including the ability to cope with the large stem signal experienced during TBI treatments at extended SSD. In contrast, the chromatic stem removal technique often used for organic plastic scintillators did not work well in large fields with the tested calibration procedure and instrumentation. An apparent dose-rate effect discussed in a previous study of the RL properties of Al_2O_3:C (Andersen et al., 2011) was found to have resulted from an overlooked dead time problem in the counting system, and this potential caveat can therefore be removed from the list of potential problems associated with fiber-coupled Al_2O_3:C dosimetry using the saturated-RL protocol. This further has implications for TBI dosimetry using the RL Al_2O_3:C system due to large dose-rate differences between calibrations at the iso-center and in vivo measurements at extended source-to-surface distances. - Highlights: • Fiber-coupled dosimetry can be used for measurements during total body irradiations. • An apparent dose-effect associated with radioluminescence from Al2O3:C was resolved. • The gated-counting stem removal procedure worked well for Al2O3:C in pulsed accelerator beams. • The chromatic stem removal procedure did not work well with the tested instrumentation and organic plastic

  7. A Triple Iron Triathlon Leads to a Decrease in Total Body Mass but Not to Dehydration

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn

    2010-01-01

    A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling…

  8. Hyperfractionated total body irradiation for bone marrow transplantation. Results in seventy leukemia patients with allogeneic transplants

    International Nuclear Information System (INIS)

    Shank, B.; Chu, F.C.H.; Dinsmore, R.

    1983-01-01

    From May, 1979 to March, 1981, 76 leukemia patients were prepared for bone marrow transplantation (BMT) with a new hyperfractionated total body irradiation (TBI) regimen (1320 cGy in 11 fractions, 3x/day), followed by cyclophosphamide, 60 mg/kg, for two days. Partial lung shielding was done on each treatment, with supplemental electron beam treatments of the chest wall to compensate, and of the testes, a sanctuary site. This regimen was initiated to potentially reduce fatal interstitial pneumonitis as well as decrease leukemic relapse. Overall actuarial survival at 1 year for acute non-lymphocytic leukemia (ANLL) patients is 63%, while relapse-free survival at 1 year is 53%. On the other hand, for acute lymphocytic leukemia (ALL) patients, there is no significant difference between relapse or remission patients with regard to overall survival or relapse-free survival, when relapse is defined as > 5% blasts in the marrow at the time of cytoreduction. Overall actuarial survival at 1 year for ALL is 61% and relapse-free survival is 45% at 1 year. Fatal interstitial pneumonitis has dropped to 18% compared with 50% in our previous single-dose TBI regimen (1000 cGy), in which the same doses of cyclophosphamide were given prior to TBI. In conclusion, not only has fatal interstitial pneumonitis been reduced by hyperfractionation and partial lung blocking, but there may be a survival advantage in ALL patients in relapse, who have a survival equal to that of remission patients. This may indicate a greater cell kill with the higher dose (1320 cGy) attained with this regimen, in these patients with a higher leukemic cell burden

  9. Galectin-3 levels relate in children to total body fat, abdominal fat, body fat distribution, and cardiac size.

    Science.gov (United States)

    Dencker, Magnus; Arvidsson, Daniel; Karlsson, Magnus K; Wollmer, Per; Andersen, Lars B; Thorsson, Ola

    2018-03-01

    Galectin-3 has recently been proposed as a novel biomarker for cardiovascular disease in adults. The purpose of this investigation was to assess relationships between galectin-3 levels and total body fat, abdominal fat, body fat distribution, aerobic fitness, blood pressure, left ventricular mass, left atrial size, and increase in body fat over a 2-year period in a population-based sample of children. Our study included 170 children aged 8-11 years. Total fat mass and abdominal fat were measured by dual-energy x-ray absorptiometry (DXA). Body fat distribution was expressed as abdominal fat/total fat mass. Maximal oxygen uptake was assessed by indirect calorimetry during a maximal exercise test and scaled to body mass. Systolic and diastolic blood pressure and pulse pressure were measured. Left atrial size, left ventricular mass, and relative wall thickness were measured by echocardiography. Frozen serum samples were analyzed for galectin-3 by the Proximity Extension Assay technique. A follow-up DXA scan was performed in 152 children 2 years after the baseline exam. Partial correlations, with adjustment for sex and age, between galectin-3 versus body fat measurements indicated weak to moderate relationships. Moreover, left atrial size, left ventricular mass, and relative wall thickness and pulse pressure were also correlated with galectin-3. Neither systolic blood pressure nor maximal oxygen uptake was correlated with galectin-3. There was also a correlation between galectin-3 and increase in total body fat over 2 years, while no such correlations were found for the other fat measurements. More body fat and abdominal fat, more abdominal body fat distribution, more left ventricular mass, and increased left atrial size were all associated with higher levels of galectin-3. Increase in total body fat over 2 years was also associated with higher levels of galectin-3. What is Known: • Galectin-3 has been linked to obesity and been proposed to be a novel biomarker

  10. Effect of ultra-low dose whole-body-irradiation on severe patients with myasthenia gravis

    International Nuclear Information System (INIS)

    Arimori, Shigeru; Koriyama, Kenji

    1982-01-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer. (Ueda, J.)

  11. Effect of ultra-low dose whole-body-irradiation on patients with severe myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Arimori, Shigeru; Koriyama, Kenji (Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine)

    1982-12-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer.

  12. Total body irradiation with an arc and a gravity-oriented compensator

    International Nuclear Information System (INIS)

    Chui, C.-S.; Fontenla, Doracy P.; Mullokandov, Edward; Kapulsky, Alex; Lo, Y.-C.; Lo, C.-J.

    1997-01-01

    Purpose: To deliver uniform dose distributions for total-body irradiation (TBI) with an arc field and a gravity-oriented compensator. This technique allows the patient to be treated lying on the floor in a small treatment room. Methods and Materials: Through the sweeping motion of the gantry, a continuous arc field can deliver a large field to a patient lying on the floor. The dose profile, however, would not be uniform if no compensator were used, due to the effects of inverse square variation of beam intensity with distance as well as the slanted depth in patient. To solve this problem, a gravity-oriented compensator made of cerrobend alloy was designed. This compensator has a cross-section of an inverted isosceles triangle, with the apex always pointing downward, due to gravity. By properly selecting the thickness of the compensator, the width of the base, and the distance between the pivots to the base, the difference in the path length through the compensator can be made just right to compensate the effects of inverse-square and slanted depth, thus producing a uniform dose profile. Results: Arc fields with a gravity-oriented compensator were used for 6, 10, 15, and 18 MV photon beams. The arc field can cover a patient with a height up to 180 cm. The field width was chosen from 32 to 40 cm at the machine isocenter. The optimal thickness of the compensator was found to be 2.5 cm, and its base was 25 cm wide. The distance from the pivot points to the flat surface of the compensator proximal to the beam ranges from 13 to 14 cm for different beam energies. The dose uniformity at a depth of 10 cm is within ±5% for all beam energies used in this study. Conclusion: Highly uniform dose profiles for TBI treatments can be delivered with an arc and a gravity-oriented compensator. The proposed technique is simple and versatile. A single compensator can be used for all energies, because the amount of compensation can be adjusted by changing the distance to the pivot and

  13. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs

    CERN Document Server

    Gerardin, S; Cornale, D; Ding, L; Mattiazzo, S; Paccagnella, A; Faccio, F; Michelis, S

    2015-01-01

    We studied device-to-device variations as a function of total dose in MOSFETs, using specially designed test structures and procedures aimed at maximizing matching between transistors. Degradation in nMOSFETs is less severe than in pMOSFETs and does not show any clear increase in sample-to-sample variability due to the exposure. At doses smaller than 1 Mrad( SiO2) variability in pMOSFETs is also practically unaffected, whereas at very high doses-in excess of tens of Mrad( SiO2)-variability in the on-current is enhanced in a way not correlated to pre-rad variability. The phenomenon is likely due to the impact of random dopant fluctuations on total ionizing dose effects.

  14. Severe Pulmonary Toxicity After Myeloablative Conditioning Using Total Body Irradiation: An Assessment of Risk Factors

    International Nuclear Information System (INIS)

    Kelsey, Chris R.; Horwitz, Mitchell E.; Chino, Junzo P.; Craciunescu, Oana; Steffey, Beverly; Folz, Rodney J.; Chao, Nelson J.; Rizzieri, David A.; Marks, Lawrence B.

    2011-01-01

    Purpose: To assess factors associated with severe pulmonary toxicity after myeloablative conditioning using total body irradiation (TBI) followed by allogeneic stem cell transplantation. Methods and Materials: A total of 101 adult patients who underwent TBI-based myeloablative conditioning for hematologic malignancies at Duke University between 1998 and 2008 were reviewed. TBI was combined with high-dose cyclophosphamide, melphalan, fludarabine, or etoposide, depending on the underlying disease. Acute pulmonary toxicity, occurring within 90 days of transplantation, was scored using Common Terminology Criteria for Adverse Events version 3.0. Actuarial overall survival and the cumulative incidence of acute pulmonary toxicity were calculated via the Kaplan-Meier method and compared using a log-rank test. A binary logistic regression analysis was performed to assess factors independently associated with acute severe pulmonary toxicity. Results: The 90-day actuarial risk of developing severe (Grade 3-5) pulmonary toxicity was 33%. Actuarial survival at 90 days was 49% in patients with severe pulmonary toxicity vs. 94% in patients without (p < 0.001). On multivariate analysis, the number of prior chemotherapy regimens was the only factor independently associated with development of severe pulmonary toxicity (odds ratio, 2.7 per regimen). Conclusions: Severe acute pulmonary toxicity is prevalent after TBI-based myeloablative conditioning regimens, occurring in approximately 33% of patients. The number of prior chemotherapy regimens appears to be an important risk factor.

  15. TH-EF-BRB-09: Total Body Irradiation with Uniform MU and Modulated Arc Segments, UMMS-TBI

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Chung, H; Mutaf, Y; Prado, K [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: To test a novel total body irradiation (TBI) system using conformal partial arc with patient lying on the stationary couch which is biologically equivalent to a moving couch TBI. This improves the scanning field TBI, which is previously presented. Methods: The Uniform MU Modulated arc Segments TBI or UMMS-TBI scans the treatment plane with a constant machine dose rate and a constant gantry rotation speed. A dynamic MLC pattern which moves while gantry rotates has been designed so that the treatment field moves same distance at the treatment plane per each gantry angle, while maintaining same treatment field size (34cm) at the plane. Dose across the plane varies due to the geometric differences including the distance from the source to a point of interest and the different attenuation from the slanted depth which changes the effective depth. Beam intensity is modulated to correct the dose variation across the plane by assigning the number of gantry angles inversely proportional to the uncorrected dose. Results: Measured dose and calculated dose matched within 1 % for central axis and 3% for off axis for various patient scenarios. Dose from different distance does not follow the inverse square relation as it is predicted from calculation. Dose uniformity better than 5% across 180 cm at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 200 MU/min. Conclusion: This novel technique, yet accurate but easy to implement enables TBI treatment in a small treatment room with less program development preparation than other techniques. The VMAT function of treatment delivery is not required to modulate beams. One delivery pattern can be used for different patients by changing the monitor units.

  16. The indication and the point at issue in total body irradiation (TBI)

    International Nuclear Information System (INIS)

    Kikuchi, Yuzo; Nishino, Shigeo.

    1992-01-01

    The role of radiation in the cause of interstitial pneumonitis (IP) was analysed here. Also optimal dose fractionation was discussed about total absorbed lung dose, dose rate and fractionation in spect of IP. After all optimal time schedule was recommended 3, 4 and 6 fraction of ≤ 4 Gy of fraction size using conventional and hyperfractionated irradiation. In the end the present condition and the point at issue in the irradiation of blood for prevention GVHD were discussed. (author)

  17. Safety aspects of preoperative high-dose glucocorticoid in primary total knee replacement

    DEFF Research Database (Denmark)

    Jørgensen, C C; Pitter, F T; Kehlet, H

    2017-01-01

    Background: Preoperative single high-dose glucocorticoid may have early outcome benefits in total hip arthroplasty (THA) and knee arthroplasty (TKA), but long-term safety aspects have not been evaluated. Methods: From October 2013, the departments reporting to the prospective Lundbeck Foundation....... Conclusions: In this detailed prospective cohort study, preoperative high-dose glucocorticoid administration was not associated with LOS >4 days, readmissions or infectious complications in TKA patients without contraindications....

  18. Low-dose intranasal versus oral midazolam for routine body MRI of claustrophobic patients

    Energy Technology Data Exchange (ETDEWEB)

    Tschirch, Frank T.C.; Goepfert, Kerstin; Brunner, Genevieve; Weishaupt, Dominik [University Hospital Zuerich, Institute of Diagnostic Radiology, Zuerich (Switzerland); Froehlich, Johannes M. [Klus-Apotheke, Zuerich (Switzerland)

    2007-06-15

    The purpose of this study was to assess prospectively the potential of low-dose intranasal midazolam compared to oral midazolam in claustrophobic patients undergoing routine body magnetic resonance imaging (MRI). Seventy-two adult claustrophobic patients referred for body MRI were randomly assigned to one of two treatment groups (TG1 and TG2). The 36 patients of TG1 received 7.5 mg midazolam orally 15 min before MRI, whereas the 36 patients of TG2 received one (or, if necessary, two) pumps of a midazolam nasal spray into each nostril immediately prior to MRI (in total, 1 or 2 mg). Patients' tolerance, anxiety and sedation were assessed using a questionnaire and a visual analogue scale immediately before and after MRI. Image quality was evaluated using a five-point-scale. In TG1, 18/36 MRI examinations (50%) had to be cancelled, the reduction of anxiety was insufficient in 12/18 remaining patients (67%). In TG2, 35/36 MRI examinations (97%) were completed successfully, without relevant adverse effects. MRI image quality was rated higher among patients of TG2 compared to TG1 (p<0.001). Low-dose intranasal midazolam is an effective and patient-friendly solution to overcome anxiety in claustrophobic patients in a broad spectrum of body MRI. Its anxiolytic effect is superior to that of the orally administrated form. (orig.)

  19. Total dose effects on ATLAS-SCT front-end electronics

    CERN Document Server

    Ullán, M; Dubbs, T; Grillo, A A; Spencer, E; Seiden, A; Spieler, H; Gilchriese, M G D; Lozano, M

    2002-01-01

    Low dose rate effects (LDRE) in bipolar technologies complicate the hardness assurance testing for high energy physics applications. The damage produced in the ICs in the real experiment can be underestimated if fast irradiations are carried out, while experiments done at the real dose rate are usually unpractical due to the still high total doses involved. In this work the sensitivity to LDRE of two bipolar technologies proposed for the ATLAS-SCT experiment at CERN is evaluated, finding one of them free of those effects. (12 refs).

  20. The relationship between doses to human body organs and exposure in a cloud of gamma emitting nuclides

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1976-10-01

    Monte Carlo computer techniques were recently developed in USA to derive the photon spectrum in a semi-infinite cloud of monoenergetic photon source of uniform concentration and the dose to human body organs was estimated computationally using further Monte Carlo techniques. These results are used here to derive the exposure to be expected from a cloud emitting monoenergetic photons at discrete energies between 0.01 and 4 MeV. The exposure contributions from scattered and unscattered photon fluxes are identified at each energy and the total exposure is related to doses in a range of human body organs. It is intended to use these values of rads per Roentgen to convert the exposures calculated by the reactor safety analysis code WEERIE and those derived from environmental measurements of known airborne discharges (e.g. 41 Ar, 85 Kr, 133 Xe) into doses to human body organs. (author)

  1. The total dose effects on the 1/f noise of deep submicron CMOS transistors

    International Nuclear Information System (INIS)

    Hu Rongbin; Wang Yuxin; Lu Wu

    2014-01-01

    Using 0.18 μm CMOS transistors, the total dose effects on the 1/f noise of deep-submicron CMOS transistors are studied for the first time in mainland China. From the experimental results and the theoretic analysis, we realize that total dose radiation causes a lot of trapped positive charges in STI (shallow trench isolation) SiO 2 layers, which induces a current leakage passage, increasing the 1/f noise power of CMOS transistors. In addition, we design some radiation-hardness structures on the CMOS transistors and the experimental results show that, until the total dose achieves 750 krad, the 1/f noise power of the radiation-hardness CMOS transistors remains unchanged, which proves our conclusion. (semiconductor devices)

  2. Organ doses as a function of body weight for environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    The organ doses for γ rays from typical environmental sources were determined with Monte Carlo calculations using anthropomorphic phantoms having different body sizes. It has been suggested that body weight is the predominant factor influencing organ doses for environmental γ rays, regardless of sex and age. A weight function expressing organ doses for environmental γ rays was introduced. This function fitted well with the organ doses calculated using the different phantoms. The function coefficients were determined mathematically with the least squares method. On the assumption that this function was applicable to organ doses for human bodies with diverse characteristics, the variances in organ doses due to race, sex, age and difference in body weight of adults were investigated. The variations of organ doses due to race and sex were not significant. Differences in body weight were found to alter organ doses by a maximum of 10% for γ rays over 100 keV, and 20% for low-energy γ rays. The doses for organs located deep inside a body, such as ovaries, differed between a newborn baby and an adult by a maximum factor of 2 to 3. For γ rays over 100 keV, the variation was within a factor of 2 for all organs. The organ doses for adolescents more than 12 years agreed within 15% with those of the average adult. (author)

  3. Monitoring dose-length product in computed tomography of the chest considering sex and body weight

    International Nuclear Information System (INIS)

    Inoue, Yusuke; Nagahara, Kazunori; Hayakawa, Naomichi; Hanawa, Hironori; Hata, Hirofumi

    2016-01-01

    Dose-length product (DLP) is widely used as an indicator of the radiation dose in computed tomography. The aim of this study was to investigate the significance of sex and body weight in DLP-based monitoring of the radiation dose. Eight hundred computed tomographies of the chest performed using four different scanners were analysed. The DLP was compared with body weight by linear regression in men and women separately. The DLP was positively correlated with body weight, and dependence on sex and weight differed among scanners. Standard DLP values adjusted for sex and weight facilitated inter-scanner comparison of the radiation dose and its dependence on sex and weight. Adjusting the DLP for sex and weight allowed one to identify examinations with possibly excessive doses independently of weight. Monitoring the DLP in relation to sex and body weight appears to aid detailed comparison of the radiation dose among imaging protocols and scanners and daily observations to find unexpected variance. (authors)

  4. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    International Nuclear Information System (INIS)

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-01-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions

  5. An experimental study on total dose effects in SRAM-based FPGAs

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    In order to study testing methods and find sensitive parameters in total dose effects on SRAM-based FPGA, XC2S100 chips were irradiated by 60 Co γ-rays and tested with two test circuit designs. By analyzing the experimental results, the test flow of configuration RAM and bock RAM was given, and the most sensitive parameter was obtained. The results will be a solid foundation for establishing test specification and evaluation methods of total dose effects on SRAM-based FPGAs. (authors)

  6. Estimating the whole-body exposure annual dose of radiation workers of petroleum nuclear well logging

    International Nuclear Information System (INIS)

    Tian Yizong; Gao Jianzheng; Liu Wenhong

    2006-01-01

    Objective: By imitating experiment of radioactive sources being installed, to estimate the annual whole-body exposure dose of radiation workers of petroleum nuclear determining wells; Methods: To compre the values of the theory, imitating experiment and γ individual dose monitor calculations. Results: The three values measured above tally with one anather. Conclusion: The annual whole-body exposure doses of radiation workers of petroleum nuclear determining wells are no more than 5 mSv. (authors)

  7. Single-dose radiation therapy for prevention of heterotopic ossification after total hip arthroplasty

    International Nuclear Information System (INIS)

    Healy, W.L.; Lo, T.C.; Covall, D.J.; Pfeifer, B.A.; Wasilewski, S.A.

    1990-01-01

    Single-dose radiation therapy was prospectively evaluated for its efficacy in prevention of heterotopic ossification in patients at high risk after total hip arthroplasty. Thirty-one patients (34 hips) were treated between 1981 and 1988. Risk factors for inclusion in the protocol included prior evidence of heterotopic ossification, ankylosing spondylitis, and diffuse idiopathic skeletal hyperostosis. Patients with hypertrophic osteoarthritis or traumatic arthritis with osteophytes were not included. Operations on 34 hips included 19 primary total and 11 revision total hip arthroplasties and 4 excisions of heterotopic ossification. All patients received radiotherapy to the hip after operation with a single dose of 700 centigray. Radiotherapy is recommended on the first postoperative day. After this single-dose radiation treatment, no patient had clinically significant heterotopic ossification. Recurrent disease developed in two hips (6%), as seen on radiography (grades 2 and 3). This series documents a 100% clinical success rate and a 94% radiographic success rate in preventing heterotopic ossification in patients at high risk after total hip arthroplasty. Single-dose radiotherapy is as effective as other radiation protocols in preventing heterotopic ossification after total hip arthroplasty. It is less expensive and easier to administer than multidose radiotherapy

  8. Repair capacity of mouse lung after total body irradiation alone or combined with cyclophosphamide

    International Nuclear Information System (INIS)

    Safwat, Akmal; Bentzen, Soeren M.; Nielsen, Ole S.; Mahmoud, Hossam K.; Overgaard, Jens

    1996-01-01

    Purpose. Cyclophosphamide (CTX) combined with fractionated total body irradiation (TBI) is frequently used in the conditioning of patients prior to bone marrow transplantation (BMT). This study was performed to investigate the effect of CTX on the repair capacity of lung tissue after TBI in a mouse model for BMT. Materials and methods. TBI was given as a single fraction, 3 fractions in 3 days (Fx 3) or 9 fractions in 3 days (Fx 9) either alone or 24 h after a single dose of CTX. The single fraction TBI was given at either high dose rate (HDR) of 0.71 Gy/min or low dose rate (LDR) of 0.08 Gy/min. All mice were transplanted 4-6 h after the last TBI fraction. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days. The repair capacity of lung tissue was estimated using the direct analysis method with the probability of reaching the end point described by a logistic formulation of the linear quadratic model. Results. The VR data confirmed the high repair capacity of lung tissue with an α/β ratio of 4.4 Gy though with a wide 95% confidence interval (CI = 0.03-10.5). Giving CTX before fractionated TBI marked reduced the doses needed to cause response in 50% of the animals. The sparing effect of using fractionated TBI was still evident in the combined CTX-TBI schedules. The estimated α/β ratio was 1.6 Gy (CI = 0.01-4.7) which is within the range of values reported after thoracic radiation only. On the other hand, the sparing effect seen in going from single fraction HDR to LDR was completely abolished when CTX was given 24 h before TBI. The same pattern was repeated when lethality between 28-180 days was used. Yet, the use of lethality to estimate lung damage in a TBI model, markedly underestimated the repair capacity. Conclusions. These results confirm the high repair capacity of lung tissue after TBI and emphasize the value of using a specific end point in testing lung damage after TBI. It also shows that there can be a negative

  9. Total-body irradiation and bone-marrow transplantation - first observations on clinical tolerance

    International Nuclear Information System (INIS)

    Gocheva, L.; Sergieva, K.; Koleva, I.; Mlachkova, D.; Michailov, G.; Avramova, B.

    2004-01-01

    About 50 000 bone-marrow transplantations (BMT) are performed annually at the present stage in numerous clinical centers all over the world. The Bulgarian experience in total-body irradiation (TBI) with following BMT is rather scarce. The routine TBI procedures in the oncological practice in the country date back just to 2001. The aim of the present publication is to describe the Bulgarian experience and the first impressions from the clinical tolerance of the total-body irradiation (TBI) with subsequent allogeneic peripheral stem cell transplantation (PSCT). Patient characteristics are presented in detail, including their distribution with respect to sex, age, primary diagnose, recurrence number till BMT, patient status during BMT performance (clinical hematological remission or relapse), as well as the basic parameters of the conditioning regime including TBI with subsequent allogeneic PSCT. The position of the patient and the applied radiotherapeutic equipment are described as well as the TBI schemes, respectively 5 fractions of 2 Gy per day for two patients and 3-day irradiation with 6 fractions (two fractions with a 6-hour interval between them) for the rest of the patients. The total dose (TD) of 10 Gy is realized for all patients. The clinical tolerance of 7 patients subjected to TBI and allogeneic PSCT is discussed. All patients were tolerable to the TBI treatment and had no serious problems. The radiotherapy was interrupted only in the case of the first two patients due to slight gastro-intestinal reactions. The first days of radiation were accompanied with a light degree of headache, nausea and vomiting, which were successfully overcome by granisetron. Diarrhea syndrome and mucositis to the II-III degree were developed subsequently without parotitis development. On the days 0 and +1 of the clinical protocol transplantation was realized of non- T-cell-depleted grafts (in 5 patients) and T-cell-depleted grafts (in 2 patients), which had no serious

  10. Inability of donor total body irradiation to prolong survival of vascularized bone allografts: Experimental study in the rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    At the present time, the toxic side effects of recipient immunosuppression cannot be justified for human non-vital organ transplantation. Total body irradiation has proven effective in ablating various bone-marrow-derived and endothelial immunocompetent cellular populations, which are responsible for immune rejection against donor tissues. Irradiation at a dose of 10 Gy was given to donor rats six days prior to heterotopic transplantation of vascularized bone allografts to host animals. Another group of recipient rats also received a short-term (sixth to fourteenth day after grafting), low dose of cyclosporine. Total body irradiation was able merely to delay rejection of grafts across a strong histocompatibility barrier for one to two weeks, when compared to nonirradiated allografts. The combination of donor irradiation plus cyclosporine did not delay the immune response, and the rejection score was similar to that observed for control allografts. Consequently, allograft viability was quickly impaired, leading to irreversible bone damage. This study suggest that 10 Gy of donor total body irradiation delivered six days prior to grafting cannot circumvent the immune rejection in a vascularized allograft of bone across a strong histocompatibility barrier

  11. Low-dose computed tomography for the detection of cocaine body packs. Clinical evaluation and legal issues

    International Nuclear Information System (INIS)

    Pache, G.; Bulla, S.; Baumann, T.; Langer, M.; Blanke, P.

    2012-01-01

    Purpose: To discuss the juridical basis for CT examinations of cocaine body packers and to evaluate the clinical implementation of a tube current reduction-based low-dose CT protocol. Materials and Methods: A literature search was performed to discuss the legal basis regarding the problem, the procedures, the potential harm and the proportionality. Retrospective evaluation of 8 patients who had undergone a low-dose CT scan (body mass index 2 30 mAs; > 25 kg/m 2 60 mAs) during the time period from February until October 2009 in order to exclude or to assess remaining cocaine body packs was approved by the institutional review board. The detectability and condition of the body packs were analyzed. Effective doses were calculated. Results: German jurisdiction does not distinguish between plain film X-ray and CT examinations. Both plain film X-ray and CT examination require a judicial warrant. However, examination results might still remain valid if a warrant was not requested. In 8 examinations (30 mAs n = 3, 60 mAs n = 5, mean BMI 25.9 ± 3.2.) a total of 34 body packs were correctly identified. The mean density of the body packs was 74.4 ± 31.9 HU (range 17 - 154 HU) with a cocaine content between 22.5 % and 72.8 %. The mean estimated radiation dose was 2.23 ± 0.72 mSv. Conclusion: Although medical legal aspects do not specify the diagnostic procedure to be performed, the high diagnostic accuracy and applied radiation dose reduction could establish low-dose CT as the method of choice for detecting cocaine body packs, thereby potentially avoiding future legal problems. (orig.)

  12. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  13. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.

    Science.gov (United States)

    Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P

    2016-08-01

    Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome.

  14. Thioacetamide-induced changes in the body weight, kidney weight and the total nucleic acids content of kidney of mouse

    International Nuclear Information System (INIS)

    Shakoori, Abdul Rauf; Ashraf, Fauzia.

    1976-01-01

    Effects of thioacetamide (TAA) on the body weight, kidney weight and the total nucleic acids content of kidney of mouse were studied. TAA 1% and 2% solutions were injected intraperitoneally, twice with an interval of 24 hours in two different batches of male mice. In this way one batch received a total dose of 100 mg TAA/Kg body wt. while the other got a total dose of 200 mg TAA/Kg. Both the body as well as kidney weights decrease after TAA treatment. A total dose of 200 mg/Kg is a stronger inhibitor of growth as compared with that of 100 mg/Kg. The nucleic acids content show an increase after the drug treatment. The ribonucleic acid content of kidney increased from an average value of 4.30+0.14 mg/g kidney to 4.60+-0.22 mg/g kidney after 1% TAA treatment. The increase in 2% TAA treated mice is slightly more prominent. The deoxyribonucleic acid (DNA) content of kidney are likewise affected. After an initial increase in 1% TAA-treated animals, the DNA content gradually fall down to normal control values. Administration of 2% TAA solution causes an average increase of 21% i.e. from 1.93+-0.19 mg/g kidney wt to 2.26+-0.23 mg/g kidney wt. The size of cell, nucleus and nucleolus also increased after drug treatment, which mainly occurred during the first 24 hours of the post-treatment period

  15. Total dose hardness of a commercial SiGe BiCMOS technology

    International Nuclear Information System (INIS)

    Van Vonno, N.; Lucas, R.; Thornberry, D.

    1999-01-01

    Over the past decade SiGe HBT technology has progress from the laboratory to actual commercial applications. When integrated into a BiMOS process, this technology has applications in low-cost space systems. In this paper, we report results of total dose testing of a SiGe/CMOS process accessible through a commercial foundry. (authors)

  16. Worst-Case Bias During Total Dose Irradiation of SOI Transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Colladant, T.; Paillet, P.; Leray, J.-L; Musseau, O.; Schwank, James R.; Shaneyfelt, Marty R.; Pelloie, J.L.; Du Port de Poncharra, J.

    2000-01-01

    The worst case bias during total dose irradiation of partially depleted SOI transistors (from SNL and from CEA/LETI) is correlated to the device architecture. Experiments and simulations are used to analyze SOI back transistor threshold voltage shift and charge trapping in the buried oxide

  17. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  18. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2016-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  19. Gigapixel photography for skin cancer surveillance: a novel alternative to total-body photography.

    Science.gov (United States)

    Mikailov, Anar; Blechman, Adam

    2013-11-01

    There is substantial evidence supporting the use of cutaneous imaging in combination with standard total-body skin examinations for early detection and treatment of melanoma. In the last 2 decades, total-body photography (TBP) has been widely used in combination with standard total-body skin examinations for active skin cancer surveillance with proven clinical utility; however, the groundbreaking image detail provided by gigapixel photography (GP) could improve dermatologists' ability to monitor suspicious lesions and therefore could serve a critical role in supplementing traditional total-body skin examinations for skin cancer surveillance. Although it has been successfully implemented in other fields, future studies are required to determine the effectiveness of GP in dermatology.

  20. The role of total body irradiation in preparation for bone marrow transplantation in acute leukaemia. A review

    International Nuclear Information System (INIS)

    Zwaan, F.E.

    1979-01-01

    From extrapolation obtained from animal studies and radiation accidents, it is assumed that for man the LD 50 (30) will be between 300-500 rads total body irradiation (TBI) and the LD 100 at least 600 rads TBI. A dose of 1000 rads TBI is generally used in man for conditioning for bone marrow transplantation. In acute leukemia, total body irradiation is usually associated with cytoreductive chemotherapy. In Seattle 110 patients underwent bone marrow transplantation for acute leukemia in relapse. 15 patients became long term survivors. The main cause of failure were GVH, interstitial pneumonitis and leukemic relapse. New attempts are being made to improve the results: (1) better cytoreductive therapy preceding transplantation, (2) bone marrow transplantation during remission of the disease, (3) prevention of interstitial pneumonitis by modifications of the TBI technique

  1. Efficacy of granisetron in the prevention of GIT problems in patients undergoing total body irradiation

    International Nuclear Information System (INIS)

    Feuvret, L.; Jammet, P.; Campana, F.; Cosset, J.M.; Fourquet, A.

    1994-01-01

    From december 1991 to september 1992, 20 patients due to receive total body irradiation (TBI) prior to allogeneic or autologous bone marrow transplantation were given granisetron (Kytril) in order to prevent intestinal (nausea and vomiting) early intolerance, TBI regimen was delivered on a fractional basis of six fractions, over 3 days. Twelve grays were delivered with a lung protection decreasing the pulmonary dose to 9 Gy Granisetron (3 mg) was administered by a 5-min intravenous infusion, 1 h before TBI. Up to two further infusions were given if nausea or vomiting occurred. The pretreatment perfusion was sufficient to prevent nausea and vomiting in 10/20 patients, one additional post-treatment perfusion was necessary in 7/20 patients, and two in 1/20 patients. In 2/20 cases, nausea and vomiting persisted in spite of three perfusions. Excellent or good efficacy was noted in 15/20 patients and a minor (or no) efficacy in five. Granisetron appears to be superior to the conventional anti emetic schemes to prevent nausea and vomiting in patients receiving TBI for bone marrow transplantation. 15 Refs

  2. Total body irradiation therapy for thymectomized myasthenic patients and immunological evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Nobukazu; Tanaka, Masayuki; Kurihara, Teruyuki (Miyazaki Medical College (Japan))

    1983-06-01

    Three patients with intractable myasthenia gravis (MG) were treated with total body irradiation (TBI). All the three patients had been unstable after extended thymectomy and poorly responding to prednisolone therapy. Radiation therapy consisted of 10 doses of 10 rads/day given over five weeks. After the radiation therapy the three patients improved clinically, and an objective parameter, area of M-waves also improved. No significant side effects were noted. TBI therapy can be considered as a safe method to induce selective reduction of circulating lymphocytes. This was indeed achieved, as evidenced by a drop of the lymphocyte counts to the levels of 20-40 % of the pretreatment level. The effects were persistent over twelve weeks. Early radiosensitivity of B lymphocytes were recognized. The levels of T..gamma.. cells were low before TBI therapy, increasing gradually during TBI therapy and returned to normal range after twelve weeks. Serum anti-AChR antibody titers decreased in all the cases, but it was impossible to determine whether the decrement was due to the therapy or natural course after thymectomy. Two of our three cases had a significant percentage decrement of the titers after TBI therapy. We suggest that TBI therapy is a safe method of immunosupperssive treatment for the myasthenic patients after thymectomy.

  3. Total body irradiation therapy for thymectomized myasthenic patients and immunological evaluations

    International Nuclear Information System (INIS)

    Yamanaka, Nobukazu; Tanaka, Masayuki; Kurihara, Teruyuki

    1983-01-01

    Three patients with intractable myasthenia gravis (MG) were treated with total body irradiation (TBI). All the three patients had been unstable after extended thymectomy and poorly responding to prednisolone therapy. Radiation therapy consisted of 10 doses of 10 rads/day given over five weeks. After the radiation therapy the three patients improved clinically, and an objective parameter, area of M-waves also improved. No significant side effects were noted. TBI therapy can be considered as a safe method to induce selective reduction of circulating lymphocytes. This was indeed achieved, as evidenced by a drop of the lymphocyte counts to the levels of 20-40 % of the pretreatment level. The effects were persistent over twelve weeks. Early radiosensitivity of B lymphocytes were recognized. The levels of Tγ cells were low before TBI therapy, increasing gradually during TBI therapy and returned to normal range after twelve weeks. Serum anti-AChR antibody titers decreased in all the cases, but it was impossible to determine whether the decrement was due to the therapy or natural course after thymectomy. Tow of our three cases had a significant percentage decrement of the titers after TBI therapy. We suggest that TBI therapy is a safe method of immunosupperssive treatment for the myasthenic patients after thymectomy. (author)

  4. Total Body Irradiation for Allogeneic Bone Marrow Transplantation in Chronic Myelogenous Leukemia

    International Nuclear Information System (INIS)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Ki Mun; Kim, In Ah; Shinn, Kyung Sub; Kim, Choon Choo; Kim, Dong Jip

    1994-01-01

    Between July 1987 and December 1992, we treated 22 patients with chromic myelogenous leukemia; 14 in the chronic phase and 8 with more advanced disease. All were received with allogeneic bone marrow transplantation from HLA-identical sibling donors after a total body irradiation (TBI) cyclophosphamide conditioning regimen. Patients were non-randomly assigned to either 1200 cGy/6 fractions/3 days (6 patients) or 1320 cGy/8 fractions/4 days (16 patients) by dose of TBI. Of the 22 patients, 8 were prepared with cyclophosphamide alone, 14 were conditioned with additional adriamycin or daunorubicin. To prevent graft versus host disease, cyclosporine was given either alone or in conjunction with methotrexate. The actuarial survival and leukemic-free survival at four years were 58.5% and 41.2%, respectively, and the relapse rate was 36% among 22 patients. There was a statistically significant difference in survival between the patients in chronic phase and more advanced phase (76% vs 33%, p=0.05). The relapse rate of patients receiving splenectomy was higher than that of patients receiving splenic irradiation (50% vs 0%, p=0.04). We conclude that the probability of cure is highest if transplantation is performed while the patient remains in the chronic phase

  5. Marrow transplantation for leukemia following fractionated total body irradiation. A comparative trial of methotrexate and cyclosporine

    International Nuclear Information System (INIS)

    Irle, C.; Deeg, H.J.; Buckner, C.D.; Swedish Hospital Medical Center, Seattle, WA; Veterans Administration Hospital, Seattle, WA; Washington Univ., Seattle

    1985-01-01

    Fifty-six patients, 30-47 yr of age, with leukemia in relapse received allogeneic marrow transplants from HLA-identical siblings. All patients were treated with cyclophosphamide (120 mg/kg) and 7 daily fractions of 2.25 Gy of total body irradiation (TBI) for seven consecutive days. Nine patients (16%) are currently alive, free of disease, 324-845 days from transplantation. Actuarial relapse and survival rates at 2 yr were 56% and 9.5% respectively. These data were not remarkably different from those in previous studies using 10 Gy of TBI administered as a single dose. Thirty patients were randomized to receive methotrexate (MTX) and 26 to receive cyclosporine (CSP) as postgrafting prophylaxis for acute graft-versus-host disease (GVHD). Probability of developing significant acute GVHD by day 100 post-transplant was 71% for patients in the MTX group and 45% for patients in the CSP group (p<0.05). Probability of relapse was 37% for patients in the MTX group and 70% for patients in the CSP group (p<0.05). Transplant-related deaths were more frequent in the MTX group and leukemic deaths more frequent in the CSP group although this may have been related to an uneven distribution of high-risk patients. Long term disease-free survival was comparable. (author)

  6. Total Body Irradiation for Allogeneic Bone Marrow Transplantation in Chronic Myelogenous Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Ki Mun; Kim, In Ah; Shinn, Kyung Sub; Kim, Choon Choo; Kim, Dong Jip [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1994-06-15

    Between July 1987 and December 1992, we treated 22 patients with chromic myelogenous leukemia; 14 in the chronic phase and 8 with more advanced disease. All were received with allogeneic bone marrow transplantation from HLA-identical sibling donors after a total body irradiation (TBI) cyclophosphamide conditioning regimen. Patients were non-randomly assigned to either 1200 cGy/6 fractions/3 days (6 patients) or 1320 cGy/8 fractions/4 days (16 patients) by dose of TBI. Of the 22 patients, 8 were prepared with cyclophosphamide alone, 14 were conditioned with additional adriamycin or daunorubicin. To prevent graft versus host disease, cyclosporine was given either alone or in conjunction with methotrexate. The actuarial survival and leukemic-free survival at four years were 58.5% and 41.2%, respectively, and the relapse rate was 36% among 22 patients. There was a statistically significant difference in survival between the patients in chronic phase and more advanced phase (76% vs 33%, p=0.05). The relapse rate of patients receiving splenectomy was higher than that of patients receiving splenic irradiation (50% vs 0%, p=0.04). We conclude that the probability of cure is highest if transplantation is performed while the patient remains in the chronic phase.

  7. Total body irradiation in bone marrow transplantation: the influence of fractionation and delay of marrow infusion

    International Nuclear Information System (INIS)

    Lichter, A.S.; Tracy, D.; Lam, W.C.; Order, S.E.

    1980-01-01

    Bone marrow transplantation (BMT) after total body irradiation (TBI) and cyclophosphamide is being employed increasingly in the therapy of end stage leukemia. Interstitial pneumonitis (IP) represents a major acute toxicity after allogeneic transplantation. A more rapid reconstitution of lymphoid organs and bone marrow post transplant may result in increased immune competence and hence fewer opportunistic pulmonary infections and IP. By delaying the infusion of marrow to 72 hr after TBI (1250 rad at 7.5 rad/min) instead of the customary 24 hr, we can demonstrate an increase in initial repopulation of thymus, spleen and bone marrow, with syngeneic transplants in Lewis rats. Interstitial pneumonitis may also be caused, in part, by the pulmonary toxicity of large single exposures of TBI. Clinical and laboratory data suggest that fractionated TBI may be less toxic to the lung. When fractionated TBI (625 rad x 2, 7.5 rad/min) is compared to single dose TBI (1250 rad, 7.5 rad/min), and increased initial repopulation of lymphoid organs is observed when fractionated therapy is employed. Delay in marrow infusion and fractionation of TBI exposure may have clinical advantages in patients who receive BMT

  8. Total and regional body-composition changes in early postmenopausal women

    DEFF Research Database (Denmark)

    Wang, Q; Hassager, C; Ravn, Pernille

    1994-01-01

    Total and regional body composition were measured in 373 early postmenopausal women aged 49-60 y by dual-energy x-ray absorptiometry to evaluate whether the changes in body composition in the early postmenopausal years are related to menopause itself or merely to age. Both fat mass and fat...

  9. Correlation of total body potassium and leukemic cell mass in patients with chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Chandra, P.; Sawitsky, A.; Chanana, A.D.; Chikkappa, G.; Cohn, S.H.; Rai, K.R.; Cronkity, E.P.

    1979-01-01

    Total body leukemic mass in patients with chronic lymphocytic leukemia (CLL) was measured by quantitation of total body potassium (TBK) with a whole-body counter. In addition, the predicted normal total body potassium (Kp) for each patient was calculated from an empirically derived relationship involving height, weight age, and sex. Both the absolute TBK and the relative excess of total body potassium (TBK/Kp) were related to the stage of disease. Patients in the early stages of CLL were found to have lower TBK and TBK/Kp than patients in the late stages of disease. Both of these parameters increased with the successively advanced stages of the disease. The clinically monitored reduction of leukemic cell mass following therapy was accompanied by reductions in TBK and TBK/Kp. Data presented support the notion that TBK/Kp is a useful indicator of the total body leukemic mass. Futhermore, the results of these studies quantitatively validate the proposed clinical staging system for CLL. Quantitation of TBK by a whole-body counter is an accurate and noninvasive procedure and does not require administration of isotopes

  10. Total body fat as a possible indicator of metabolic syndrome in adults

    Directory of Open Access Journals (Sweden)

    Edgar Navarro Lechuga

    2016-09-01

    Full Text Available Introduction: The metabolic syndrome is a set of factors related to insulin resistance, which increases the likelihood of coronary events. It is important timely onset identifying to reduce its prevalence. Objective: To explore the percentage of total body fat as indicator of metabolic syndrome in adults from Soledad, Colombia. Material and Methods: Cross-sectional study. n=99 adults (non-pregnant, nor subjects with psychomotor disturbances. Blood samples were taken: total cholesterol, HDL; triglycerides and glucose. Waist circumference, Body Mass Index and body fat by bioimpedance and skinfold thickness were measured. Diagnosis of metabolic syndrome was made according to NHLBI/AHA, ATP III and IDF criteria. Subjects with and without metabolic syndrome according to total body fat averages were compared. Results: The average percentage of body fat was higher (p0.05 in the classification according to ATP III in women, where the average fat percentage was 39.31 % in those with metabolic syndrome and 37.7% in those not suffering. Conclusions: Subjects with metabolic syndrome have higher mean total body fat, significantly, compared with those who did not, so it could be considered the values of total body fat obtained by bioimpedance as future indicators of metabolic syndrome, both as screening and control.

  11. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    DEFF Research Database (Denmark)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-01-01

    Xtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI...... and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean...... absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations...

  12. Incidence of interstitial pneumonia after hyperfractionated total body irradiation before autologous bone marrow/stem cell transplantation

    International Nuclear Information System (INIS)

    Lohr, F.; Schraube, P.; Wenz, F.; Flentje, M.; Kalle, K. von; Haas, R.; Hunstein, W.; Wannenmacher, M.

    1995-01-01

    Purpose/Objectives Interstitial pneumonia (IP) is a severe complication after allogenic bone marrow transplantation (BMT) with incidence rates between 10 % and 40 % in different series. It is a polyetiologic disease that occurs depending on age, graft vs. host disease (GvHD), CMV-status, total body irradiation (TBI) and immunosuppressive therapy after BMT. The effects of fractionation and dose rate are not entirely clear. This study evaluates the incidence of lethal IP after hyperfractionated TBI for autologous BMT or stem cell transplantation. Materials and Methods Between 1982 and 1992, 182 patients (60 % male, 40 % female) were treated with hyperfractionated total body irradiation (TBI) before autologous bone marrow transplantation. Main indications were leukemias and lymphomas (53 % AML, 21 % ALL, 22 % NHL, 4 % others) Median age was 30 ys (15 - 55 ys). A total dose of 14.4 Gy was applied using lung blocks (12 fractions of 1.2 Gy in 4 days, dose rate 7-18 cGy/min, lung dose 9 - 9.5 Gy). TBI was followed by cyclophosphamide (200 mg/kg). 72 % were treated with bone marrow transplantation, 28 % were treated with stem cell transplantation. Interstitial pneumonia was diagnosed clinically, radiologically and by autopsy. Results 4 patients died most likely of interstitial pneumonia. For another 12 patients interstitial pneumonia was not the most likely cause of death but could not be excluded. Thus, the incidence of lethal IP was at least 2.2 % but certainly below 8.8 %. Conclusion Lethal interstitial pneumonia is a rare complication after total body irradiation before autologous bone marrow transplantation in this large, homogeously treated series. In the autologous setting, total doses of 14.4 Gy can be applied with a low risk for developing interstitial pneumonia if hyperfractionation and lung blocks are used. This falls in line with data from series with identical twins or t-cell depleted marrow and smaller, less homogeneous autologous transplant studies. Thus

  13. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-08-01

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT’IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body

  14. Measurements of the total-body potassium contents. Application of reference value with the whole-body counter

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tetsuo [Chiba Univ. (Japan). Inst. for Training Radiological Technicians; Saegusa, Kenji; Arimizu, Noboru; Kuniyasu, Yoshio; Itoh, Hisao

    2001-08-01

    The total-body potassium contents were measured in 405 healthy volunteers and 186 patients with whole body counter in Chiba University Hospital. The total-body potassium contents was expressed by the reference value (R value). The R value was calculated as measured potassium contents (g) divided by the body surface area (m{sup 2}) and adjusted by age and sex of healthy persons. The R value was 100.65{+-}9.22% in 405 healthy volunteers. Those of each disease were as follows: liver cirrhosis; 94.24{+-}11.22%, chronic hepatitis; 95.74{+-}11.24%, hyperthyroidism; 99.37{+-}10.8%, periodic paralysis; 82.0{+-}9.01%, Barter's syndrome; 93.99{+-}9.86%, myasthenia gravis; 97.34{+-}6.42% and hypo-potassemia; 90.64{+-}11.76%, respectively. The R values of other diseases such as uterine cancer, breast cancer, anemia, hypertension were 97.78{+-}11.5%, 99.22{+-}8.88%, 96.64{+-}12.73%, 98.5{+-}9.63% respectively. Fourteen patients showed especially lower R values under 75%. These were 1 liver cirrhosis, 3 hypertension, 1 diabetes mellitus, 3 hypo-potassemia, 1 periodic paralysis, 2 Barter's syndrome, 2 chemical poisoning, and 1 breast cancer. Follow-up study was performed in some patients with the lower R values. The result of follow-up study showed that there was a relationship between improvement of symptoms and increase of total body potassium contents. (author)

  15. Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination

    International Nuclear Information System (INIS)

    Kryshev, A.I.; Sazykina, T.G.

    2012-01-01

    Comparative analysis of doses to the reference species of freshwater biota was performed for the following water bodies in Russia or former USSR: Chernobyl NPPs cooling pond, Lakes Uruskul and Berdenish located in the Eastern Urals Radioactive Trace, Techa River, Yenisei River. It was concluded that the doses to biota were considerably different in the acute and chronic periods of radioactive contamination. The most vulnerable part of all considered aquatic ecosystems was benthic trophic chain. A numerical scale on the “dose rate – effects” relationships for fish was formulated. Threshold dose rates above which radiation effects can be expected in fish were evaluated to be the following: 1 mGy d −1 for appearance of the first morbidity effects in fish; 5 mGy d −1 for the first negative effects on reproduction system; 10 mGy d −1 for the first effects on life shortening of fish. The results of dose assessment to biota were compared with the scale “dose rate – effects” and the literature data on the radiobiological effects observed in the considered water bodies. It was shown that in the most contaminated water bodies the dose rates were high enough to cause the radiobiological effects in fish. - Highlights: ► Comparative analysis of dose rates to biota in different water bodies was performed. ► A numerical scale on the dose rates – effects relationships for fish was formulated. ► Results of assessment of exposure to biota were compared with the dose rates – effects scale. ► In the most contaminated water bodies the doses were high enough to cause radiobiological effects in fish. ► Current dose rates to biota in all considered water bodies are below the safety level of 1 mGy/day.

  16. Uptake of carbon monoxide by C3H mice following X irradiation of lung only or total-body irradiation with 60Co

    International Nuclear Information System (INIS)

    Rappaport, D.S.; Niewoehner, D.E.; Kim, T.H.; Song, C.W.; Levitt, S.H.

    1983-01-01

    Carbon monoxide uptake (V/sub co/) and ventilation rate (VR) of C3H mice were determined at 14 weeks following either X irradiation of lungs only or total-body irradiation with 60 Co at different dose rates. Following localized X irradiation of lung at 97 /sub c/Gy/min there was a reduction in V/sub co/, which was inversely related to radiation dose, with a small reduction below control levels being detected at 7 Gy, the lowest dose tested. An increase in VR could be detected only at doses of 11 Gy, or more. Another group of animals received 11.5 Gy total-body irradiation at either 26.2 or 4.85 /sub c/Gy/min fllowed by transplantation with syngeneic bone marrow. Following total-body irradiation, V/sub co/ was significantly reduced by about 37% at the higher dose rate and 23% at the lower dose rate. In contrast, a trend toward elevated VR was detected only at the higher dose rate.The results indicate that V/sub co/ is a sensitive indicator of radiation-induced lung injury and that under the experimental conditions used V/sub co/ is a more sensitive indicator of radiation-induced lung injury in C3H mice than VR

  17. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiotherapy and Radiooncology, Muenster (Germany); Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette [University Hospital of Muenster, Department of Phoniatrics and Pediatric Audiology, Muenster (Germany)

    2017-11-15

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D{sub mean}), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D{sub mean} was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m{sup 2}, with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D{sub mean} exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [German] Analyse von Inzidenz und Schweregrad einer sensorineuralen Schwerhoerigkeit (''sensorineural hearing loss'', SNHL) infolge der Wirkung unterschiedlicher Bestrahlungstechniken, Fraktionierungen, mittlerer

  18. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  19. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  20. Measurement of total-body oxygen, nitrogen, and carbon in vivo by photon activation analysis

    International Nuclear Information System (INIS)

    Ulin, K.

    1984-01-01

    With the aim of assessing nutritional status, the feasibility of measuring the total body quantities of the major body elements, i.e. oxygen, nitrogen, and carbon, using the photon beam of a 45 MV betatron and a whole-body counter, has been evaluated in detail. Following photon activation a single energy γ-radiation (.511 MeV) is observed from all three elements to be measured. The half-lives of 15 O, 13 N, and 11 C, however, are sufficiently different (20.5 min, 10.0 min, and 20.4 min. respectively) to permit their measurement from an analysis of the measured decay curve. Following corrections for interfering reactions, a computer curve-fitting algorithm is used to resolve the data into 15 O, 13 N, and 11 C components. Measurements of O, N, and C have been made both in phantoms and in live and dead rats. A comparison of the body composition results from this technique with results from chemical analysis indicates that measured carbon can quite accurately predict total body fat. The comparison of the total body nitrogen measurement by photon activation with total body protein by chemical analysis was inconclusive and suggests that further work be done to verify the estimated accuracy of the nitrogen measurement

  1. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    International Nuclear Information System (INIS)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI vol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics

  2. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  3. The nucleic acids as early indicators of the recovery of patients subjected to total body irradiation for bone marrow transplant

    International Nuclear Information System (INIS)

    Morera Carrillo, L.M.; Garcia Lima, O.; Carnot, J.; Cardenas, J.

    2000-01-01

    The possibility to use the concentration of nucleic acids as an early indicator for the recovery of individuals exposed to high radiation was valued in 30 patients subjected to a dose of 10 Gy (cobalt 60) in two or three sessions of total body irradiation for bone marrow transplants. The determination of the concentration of the nucleic acids was carried out prior to the irradiation, and later in different periods until the patients discharge. The behaviour of indicate such as alpha amylase serics transaminases, glicemics, alkaline phosphatase and others was also studied

  4. Quantitation of the degree of osteoporosis by measure of total-body calcium employing neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Zanzi, I.; Vaswani, A.; Wallach, S.; Aloia, J.; Ellis, K.J.

    1975-01-01

    Two techniques for measuring the amount of Ca in the total skeleton were employed: total-body neutron activation analysis (TBNAA) and the determination of the mineral content of a bone of the appendicular skeleton (absorptiometric measurement of the radius, BMC). (U.S.)

  5. Low-dose total skin electron beam therapy for cutaneous lymphoma. Minimal risk of acute toxicities

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany)

    2017-12-15

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T-cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P < 0.001). A lower grade 3 AE rate was also observed in patients who had received the low-dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses. (orig.) [German] Eine niedrigdosierte Ganzhautelektronenbestrahlung (TSEBT) wird vermehrt zur effektiven palliativen Behandlung von Patienten mit primaer kutanen T-Zell-Lymphomen (pCTCL) eingesetzt. In dieser Studie vergleichen wir die Toxizitaetsprofile verschiedener Dosiskonzepte. Untersucht wurden 60 zwischen 2000 und 2016 am Universitaetsklinikum Muenster mittels TSEBT

  6. Whole body effective dose measurements in a fan beam bone mineral densitometer, Lunar expert

    Energy Technology Data Exchange (ETDEWEB)

    Sathiakumar, C.; Griffiths, M.; Cross, P.; Pocock, N.; Freund, J. [St Vincents Hospital, Sydney, NSW (Australia) Department of Nuclear Medicine; Kron, T.; Duggan, L. [Newcastle Mater Misericordiae Hospital, Newcastle, NSW (Australia). Department of Radiation Oncology; Holley, L. [University of Technology, Sydney, NSW (Australia). Department of Health Services

    1998-06-01

    Full text: The most recent generation of DXA machines employ a fan beam geometry and high resolution imaging detector, resulting in decreased scanning time and increased image resolution compared to previous rectilinear scanners, but with higher radiation burden to the patient because of an increasing number of bone mineral density scans, it was felt that independent evaluation of the radiation dose was necessary. The whole body effective dose for an AP lumbar spine scan and femur scan using the EXPERT bone densitometer was calculated for the fast and turbo scanning modes, using thermoluminescence dosimetry (TLD). A method was developed to determine the absorbed dose of the irradiated volume of an organ by summing the dose for each of the coronal areas, which results in a volume dose. The Whole Body Effective dose for AP lumbar spine fast scanning mode is 84.1 {mu}Sv and turbo scanning mode is 56.4 {mu}Sv. The Whole Body Effective dose for femur fast scanning mode is 6.6 {mu}Sv and turbo scanning mode is 4.2 {mu}Sv, with no ovary exposure. A theoretical method has been developed to calculate the organ dose from which whole body effective dose was calculated

  7. Clinical applicability of biologically effective dose calculation for spinal cord in fractionated spine stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jinho; Ahn, So Hyun; Lee, Seok Ho; Sung, Ki Hoon; Kil, Se Hee

    2015-01-01

    The aim of the study was to investigate whether biologically effective dose (BED) based on linear-quadratic model can be used to estimate spinal cord tolerance dose in spine stereotactic body radiation therapy (SBRT) delivered in 4 or more fractions. Sixty-three metastatic spinal lesions in 47 patients were retrospectively evaluated. The most frequently prescribed dose was 36 Gy in 4 fractions. In planning, we tried to limit the maximum dose to the spinal cord or cauda equina less than 50% of prescription or 45 Gy 2/2 . BED was calculated using maximum point dose of spinal cord. Maximum spinal cord dose per fraction ranged from 2.6 to 6.0 Gy (median 4.3 Gy). Except 4 patients with 52.7, 56.4, 62.4, and 67.9 Gy 2/2 , equivalent total dose in 2-Gy fraction of the patients was not more than 50 Gy 2/2 (12.1–67.9, median 32.0). The ratio of maximum spinal cord dose to prescription dose increased up to 82.2% of prescription dose as epidural spinal cord compression grade increased. No patient developed grade 2 or higher radiation-induced spinal cord toxicity during follow-up period of 0.5 to 53.9 months. In fractionated spine SBRT, BED can be used to estimate spinal cord tolerance dose, provided that the dose per fraction to the spinal cord is moderate, e.g. < 6.0 Gy. It appears that a maximum dose of up to 45–50 Gy 2/2 to the spinal cord is tolerable in 4 or more fractionation regimen

  8. The role of Tl-201 total body scintigraphy in follow up of thyroid carcinoma

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.; Delprat, C.C.; Marcuse, H.R.

    1985-01-01

    To evaluate the reliability of the procedure T1-201 total body scintigraphy was performed in 294 patients (449 studies) after total thyroidectomy for thyroid carcinoma. Results were correlated with I-131-scintigraphy and tumor-marker levels (Tgb or Calcitonin/CEA). T1-201 total body scintigraphy was negative in 196 patients with no evidence of disease. T1-201-scintigraphy correctly detected tumor localizations in 24 of 30 patients with I-131-positive metastases. In 28 patients T2-201 total body scintigraphy revealed metastases which did not concentrate I-131. Histology/cytology confirmed thyroid carcinoma metastases in 16 patients and other pathology in 5 cases. 9 of 18 patients with medullary thyroid carcinoma (I-131-negative) had elevated Calcitonin/CEA-levels. The T1-201 scintigram was positive in 8 of these patients. Comparison of T1-201, I-131 and tumor markers showed that only combined use of these parameters provide complete reliability. The authors conclude that T1-201 total body scintigraphy is useful in follow up of thyroid carcinoma, especially when a discrepancy of the other parameters exists and particularly in medullary carcinoma. In long term follow up of patients who are unsuspected of disease after successful therapy for thyroid carcinoma one can rely on T1-201 total body scintigraphy in combination with tumor marker assays

  9. Measurement with total scatter calibrate factor at different depths in the calculation of prescription dose

    International Nuclear Information System (INIS)

    Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu

    2004-01-01

    Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)

  10. Body packers on your examination table: How helpful are plain x-ray images? A definitive low-dose CT protocol as a diagnosis tool for body packers.

    Science.gov (United States)

    Schulz, B; Grossbach, A; Gruber-Rouh, T; Zangos, S; Vogl, Th J; Eichler, K

    2014-12-01

    To analyze the clinical value and radiation dose of plain x-rays and CT in examining patients suspected of ingesting drug-filled packets. Thirty-eight patients with suspected internal concealment of drug-filled packets who were examined with plain x-rays or CT or both were included in the study. CT studies were performed using low-dose and standard-dose techniques. All radiographic images were analysed by two radiologists regarding identification of the packets and estimating the effective radiation dose from standard- and low-dose CT versus conventional x-ray examinations. Descriptive calculations were made regarding the number and density of packs and radiation dosage. The diagnostic performance of both radiologists with standard- and low-dose CT was calculated by analysing differences in the mean number of packs found. Thirty-one patients were positively identified as body packers with an average of 13 packs (min: n = 1, max: n = 58, total: n = 390); seven patients were not concealing drug packets. X-ray images were taken of 24 patients prior to CT, thus allowing a direct comparison between the two methods. The correct diagnosis was made in 42%, in 33% the radiologists were uncertain, and in 25% of drug packets were either not or wrongly identified. X-ray imaging had a positive predictive value of 20% with a negative predictive value of 81%. A total of 55 CT examinations were performed on all patients with a mean effective dose of 2 mSv (low dose) versus 9.3 mSv (standard dose). The visibility of packets on low-dose CT images compared to high-dose CT was not reduced: the radiologists identified 385 and 381 of the packets, respectively, with no difference regarding the examination technique (p = 0.24 and p = 0.253, respectively). The radiodensity of all drug-filled packets at CT ranged from 26-292 HU (mean 181.2 HU). X-ray imaging of supposed body packers leads to a significant risk of diagnostic errors and additional need for CT. Instead, a single abdominal low-dose

  11. Allogeneic bone marrow transplantation in adults after fractionated body irradiation and high dose cyclophosphamide

    International Nuclear Information System (INIS)

    Brinch, L.; Evensen, S.A.; Albrechtsen, D.; Egeland, T.; Solheim, B.G.; Rollag, H.; Naalsund, A.; Jacobsen, A.B.

    1991-01-01

    The authors present short and long-term results of allogeneic bone marrow transplantation after hyper-fractionated total body irradiation and high dose cyclophosphamide in ten patients treated for leukaemia during th period 1985-89. Three patients died from complications connected to the transplantation, while seven are living free from leukaemia 18 to 59 months after transplantation. Two patients need treatment for chronic graft versus host disease. Allogeneic bone marrow transplantation is expensive and risky. Close cooperation between clinicians and laboratory specialists is essential. The treatment increases long term survival and probably cures certain patients with leukaemia. Some of the patients will need treatment for chronic graft versus host disease and other late sequelae. 19 refs., 2 tabs

  12. Comparison of organ doses in human phantoms: variations due to body size and posture

    International Nuclear Information System (INIS)

    Feng, Xu; Xiang-Hong, Jia; Xue-Jun, Yu; Zhan-Chun, Pan; Qian, Liu; Chun-Xin, Yang

    2017-01-01

    Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryo-section images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4x4x4 mm"3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. (authors)

  13. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    International Nuclear Information System (INIS)

    Fuenzalida, M.; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C.

    2011-01-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  14. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    Energy Technology Data Exchange (ETDEWEB)

    Fuenzalida, M. [Universidad de la Frontera, Temuco (Chile). Programa de Magister en Fisica Medica; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C., E-mail: fisicamedica@incancer.c [Instituto Nacional del Cancer, Santiago (Chile). Unidad de Fisica Medica

    2011-07-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  15. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-01-01

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed

  16. Revisiting Low-Dose Total Skin Electron Beam Therapy in Mycosis Fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cameron, E-mail: cameronh@stanford.edu [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Young, James; Navi, Daniel [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Riaz, Nadeem [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States); Lingala, Bharathi; Kim, Youn [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Hoppe, Richard [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States)

    2011-11-15

    Purpose: Total skin electron beam therapy (TSEBT) is a highly effective treatment for mycosis fungoides (MF). The standard course consists of 30 to 36 Gy delivered over an 8- to 10-week period. This regimen is time intensive and associated with significant treatment-related toxicities including erythema, desquamation, anhydrosis, alopecia, and xerosis. The aim of this study was to identify a lower dose alternative while retaining a favorable efficacy profile. Methods and Materials: One hundred two MF patients were identified who had been treated with an initial course of low-dose TSEBT (5-<30 Gy) between 1958 and 1995. Patients had a T stage classification of T2 (generalized patch/plaque, n = 51), T3 (tumor, n = 29), and T4 (erythrodermic, n = 22). Those with extracutaneous disease were excluded. Results: Overall response (OR) rates (>50% improvement) were 90% among patients with T2 to T4 disease receiving 5 to <10 Gy (n = 19). In comparison, OR rates between the 10 to <20 Gy and 20 to <30 Gy subgroups were 98% and 97%, respectively. There was no significant difference in median progression free survival (PFS) in T2 and T3 patients when stratified by dose group, and PFS in each was comparable to that of the standard dose. Conclusions: OR rates associated with low-dose TSEBT in the ranges of 10 to <20 Gy and 20 to <30 Gy are comparable to that of the standard dose ({>=} 30 Gy). Efficacy measures including OS, PFS, and RFS are also favorable. Given that the efficacy profile is similar between 10 and <20 Gy and 20 and <30 Gy, the utility of TSEBT within the lower dose range of 10 to <20 Gy merits further investigation, especially in the context of combined modality treatment.

  17. Interdependence between body surface area and ultraviolet B dose in vitamin D production

    DEFF Research Database (Denmark)

    Bogh, M K B; Schmedes, Anne; Philipsen, P A

    2011-01-01

    Ultraviolet (UV) B radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) [25(OH)D], but the relationship to body surface area and UVB dose needs investigation.......Ultraviolet (UV) B radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) [25(OH)D], but the relationship to body surface area and UVB dose needs investigation....

  18. External-beam boost prior to total-body irradiation in relapsed NHL transplant patients

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Jedidiah M; Neuberg, Donna; Freedman, Arnold S; Tarbell, Nancy J; Nadler, Lee M; Mauch, Peter

    1995-07-01

    PURPOSE: To determine the impact of an external beam boost (EBB) on the outcome, relapse pattern and normal tissue toxicities of patients undergoing total-body irradiation (TBI) prior to bone marrow transplantation (BMT) for relapsed NHL. MATERIALS AND METHODS: Between 1982 and 1994, 299 patients at our institution underwent BMT for relapsed NHL. Patients underwent induction chemotherapy (CT) followed by conditioning with cyclophosphamide and 12 Gy TBI delivered in 6 fractions over 3 days. A total of 77 patients had persistent gross disease, defined as 2 cm or greater, after induction CT and received an EBB prior to BMT (EBB cohort). The median EBB dose was 28.8 Gy (range, 5-63), the median field size was 13 cm{sup 2} (range, 5-29.4) and the median time from EBB to BMT was 3 weeks (range, 1-20). A total of 222 patients were free of measurable disease or had disease measuring <2cm after CT and did not receive EBB (no-EBB cohort). To assess normal tissue toxicity, patients' simulation films and/or treatment records were reviewed for all 77 patients treated with local EBB and estimates were made of the percentage lung, heart and kidney in the radiation field. RESULTS: A total of 79 of 222 patients (36%) in the no-EBB cohort have relapsed; 33 of 77 patients (43%) in the EBB cohort have relapsed (p=0.28, by Fisher exact test). Median time to relapse after BMT was 54 months for the no-EBB cohort and 38 months for the EBB cohort (p=0.26, by log-rank test). The 3-year actuarial freedom from relapse (deaths in remission censored) was 59% for the no-EBB cohort (90% CI: 52-66%) and 51% for the EBB cohort (90% CI: 40-62%). Data on site of relapse was available for 101 of the 112 relapses (75 no-EBB, 26 EBB). For the no-EBB cohort 33 of 75 relapses (44%) were in sites of prior nodal disease only. For the EBB cohort, 12 of 26 relapses (46%) were in sites of prior nodal disease only, of these, only 6 (23%) were within the EBB treatment field. A total of 26 patients had thoracic

  19. Test methods of total dose effects in very large scale integrated circuits

    International Nuclear Information System (INIS)

    He Chaohui; Geng Bin; He Baoping; Yao Yujuan; Li Yonghong; Peng Honglun; Lin Dongsheng; Zhou Hui; Chen Yusheng

    2004-01-01

    A kind of test method of total dose effects (TDE) is presented for very large scale integrated circuits (VLSI). The consumption current of devices is measured while function parameters of devices (or circuits) are measured. Then the relation between data errors and consumption current can be analyzed and mechanism of TDE in VLSI can be proposed. Experimental results of 60 Co γ TDEs are given for SRAMs, EEPROMs, FLASH ROMs and a kind of CPU

  20. Distribution of dose within the body from a photon emitter present in an organ

    International Nuclear Information System (INIS)

    Snyder, W.S.; Ford, M.R.; Warner, G.G.

    1977-01-01

    A dosimetric system was developed which provides estimates of mean radiation dose to organs from photon sources distributed uniformly in one or more organs. Although the sources of photons are assumed to be distributed uniformly, it is not true that dose from these photons is uniformly distributed. In particular, when a source of photons is located in a particular organ, nearby tissues will be irradiated at doses which decrease markedly with distance from the source. The mean dose may give a poor approximation to the actual dose if the tissues over which dose is averaged are extensive, for example, the remainder of the body. A set of enveloping organs was devised for liver, lungs, etc., which give mean dose at distances from zero to one centimeter from the source organ, from one to two centimeters, etc. These can be used to yield estimates of the extent of inhomogeneity of the dose distribution from a source of photons located in the source organ

  1. Total dose behavior of partially depleted SOI dynamic threshold voltage MOS (DTMOS) for very low supply voltage applications (0.6 - 1 V)

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Musseau, O.; Leray, J.L.; Faynot, O.; Raynaud, C.; Pelloie, J.L.

    1999-01-01

    In this paper, we presented two DTMOS architectures processed with a partially depleted SOI technology. The first architecture, DTMOS without limiting transistor, is dedicated to ultra-low voltage applications, at 0.6 V. For 1V applications, the second architecture, DTMOS with limiting transistor, needs an additional transistor to limit the body-source diode current. The total dose irradiation of both DTMOS architectures induces no change of the drain current, but an increase of the body-source diode current. Total dose induced trapped charge in the buried oxide increases the body potential of the DTMOS transistor. It induces an increase of the current flow at the back interface of the silicon film. Irradiation of complex circuits using DTMOS transistors would lead to a degradation of the stand-by consumption. (authors)

  2. Protective effect of Asparagus racemosus root extract against lethal total - body electron beam radiation induced damage in Swiss albino mice

    International Nuclear Information System (INIS)

    Sharmila, K.P.; Bhandary, B. Satheesh Kumar; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To investigate the protective effect of Asparagus Racemosus Root ethanolic extract (ARE) in Swiss albino mice against acute lethal total - body Electron beam irradiation. Swiss Albino mice were used for the assessment of radiation induced sickness and 30 day survival analysis. Survival studies were determined using the Kaplan-Meier survival curves. The maximum survival was observed in the experimental mice pretreated with 200 mg/kg.b.wt. of ARE which also reduced the radiation sickness characteristics. This dose was considered as an optimal dose for radioprotection. Treatment of mice with ARE before irradiation delayed the onset of mortality as compared with the untreated irradiated controls. Present findings demonstrate the potential of ARE in mitigating radiation-induced mortality, which may be attributed to its free radical scavenging and increased antioxidant potential

  3. Clinical Perspective of 3D Total Body Photography for Early Detection and Screening of Melanoma.

    Science.gov (United States)

    Rayner, Jenna E; Laino, Antonia M; Nufer, Kaitlin L; Adams, Laura; Raphael, Anthony P; Menzies, Scott W; Soyer, H Peter

    2018-01-01

    Melanoma incidence continues to increase across many populations globally and there is significant mortality associated with advanced disease. However, if detected early, patients have a very promising prognosis. The methods that have been utilized for early detection include clinician and patient skin examinations, dermoscopy (static and sequential imaging), and total body photography via 2D imaging. Total body photography has recently witnessed an evolution from 2D imaging with the ability to now create a 3D representation of the patient linked with dermoscopy images of individual lesions. 3D total body photography is a particularly beneficial screening tool for patients at high risk due to their personal or family history or those with multiple dysplastic naevi-the latter can make monitoring especially difficult without the assistance of technology. In this perspective, we discuss clinical examples utilizing 3D total body photography, associated advantages and limitations, and future directions of the technology. The optimal system for melanoma screening should improve diagnostic accuracy, be time and cost efficient, and accessible to patients across all demographic and socioeconomic groups. 3D total body photography has the potential to address these criteria and, most importantly, optimize crucial early detection.

  4. Estimation of whole body dose in an unusual event: spillage of radioactive material on the chair

    International Nuclear Information System (INIS)

    Adtani, M.M.; Biju, K.; Deshpande, M.D.; Shivde, R.K.; Kulkarni, V.V.

    2005-01-01

    The personnel monitoring in India is done using thermoluminescence dosimeters worn at chest level. In research institutions and in nuclear facilities where radiation sources are processed in dispersible forms, a remote possibility exists that radiation source entering in the area where installed monitor does not exist and the source may get spilled on chair and causing exposure to persons sitting on the chair. In such case TLD may not give the correct exposure as there is shielding of individuals body. An attempt is made to find out a factor for estimating the whole body dose by knowing the TLD badge dose or by measuring the gonad dose. Experiments are performed using TLDs and also measurement by teletector. Monte Carlo simulations are also done. It is observed that a factor of 8 to TLD Badge dose will give whole body dose if worker has received dose only on said chair or by applying a factor of 0.23 to dose measured at gonad level will give whole body dose. (author)

  5. Hippophae leaf extract (SBL-1) countered radiation induced dysbiosis in jejunum of total body 60Cobalt gamma - irradiated mice

    International Nuclear Information System (INIS)

    Beniwal, C.S.; Madhu Bala

    2014-01-01

    Single dose of SBL-1 administered at the rate 30 mg/kg body weight (b.w.) 30 min prior to whole body 60 Co-gamma-irradiation at lethal dose (10 Gy), rendered >90% survival in comparison to zero survival in the non-SBL-1 treated 60 Co-gamma-irradiated (10 Gy) mice population (J Herbs Spices Med Plants, 2009; 15(2): 203-215). Present study investigated the effect of SBL-1 on jejunal microbiota in lethally irradiated mice. Study was performed with inbred Swiss albino Strain 'A' male mice (age 9 weeks) weighing 28±2 g. The animals were maintained under controlled environment at 26±2℃; 12 h light/dark cycle and offered standard animal food (Golden feed, Delhi) as well as tap water ad libitum. Metagenomic DNA was extracted, purified and quantified from jejunum of the mice. Universal primers (27f and 1492r) were used to amplify the 16S rRNA DNA from the metagenomic DNA. Amplicons were sequenced, vector contamination and chimeras were removed. The sequences (GenBank Accession No: KF681283 to KF681351) were taxonomically classified by using Sequence Match program, Ribosomal Database Project as well as by nucleotide-BLAST (E-value: 10, database: 16S rRNA gene sequences, Bacteria and Archea). Phylogenetic Tree was prepared using MEGA 5.2 package, using maximum likelihood algorithm after sequence alignment by MUSCLE. Thermus aquaticus was used as out-group to construct rooted tree. Branch stability was assessed by bootstrap analysis. Untreated animals and the animals treated with SBL-1 had 100% Lactobacillus; 60 Co gamma-irradiated animals had 55% Cohaesibacter (Alphaproteobacteria); 27% Mycoplasma (Tenericutes) and only 18% Lactobacillus; animals treated with SBL-1 prior to irradiation had 89% Lactobacillus and 11% Clostridium. This study demonstrated that treatment with SBL-1 at radioprotective doses before total body irradiation with lethal dose (10 Gy) countered the jejunal dysbiosis. (author)

  6. Long-term results of total body irradiation in adults with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Marnitz, Simone; Zich, Alexander; Budach, Volker; Jahn, Ulrich; Neumann, Oliver; Martus, Peter; Arnold, Renate

    2014-01-01

    The aim of this chart review of adult patients treated for acute lymphoblastic leukemia (ALL) with total body irradiation (TBI) was to evaluate early and late toxicity and long-term outcome. A total of 110 adult patients (34 ± 12 years) with ALL underwent TBI (6 fractions of 2 Gy for a total of 12 Gy) as a part of the treatment regimen before transplantation. Treatment-related toxicity, mortality, and hematologic outcome are reported. Mean follow-up was 70 months. The 2- and 5-year leukemia-free survival rates were 78 and 72 %, respectively. In all, 29 % (32/110) patients suffered from medullary recurrence after a median time of 7 months. Gender was the only statistically significant prognostic factor in terms of overall survival in favor of female patients. Treatment-related mortality and overall survival after 2 and 5 years were 16 and 22 %, and 60 and 52.7 %, respectively. The most frequent late reaction wascGVHD of the skin (n = 33, 30 %). In addition, 15.5 % (17/110 patients) suffered pulmonary symptoms, and 6 patients developed lung fibrosis. Eyes were frequently affected by the radiation (31/110 = 28 %); 12 of 110 patients (11 %) presented with symptoms from osteoporosis, 5 of 110 patients (4.5 %) developed hypothyreosis and 2 patients diabetes mellitus. Of the male patients, 11 % reported erectile dysfunction or loss of libido, while 2 of 36 women reported menopausal syndrome at the mean time of 28 months after treatment with requirement for substitution. No women became pregnant after treatment. No acute or late cardiac toxicities were documented in our patients. No secondary malignancies were documented. Although hematologic outcome was in the upper range of that reported in the literature, treatment-related mortality (TRM) and medullary recurrences remain a challenge. Sophisticated radiation techniques allow for decreasing toxicity to certain organs and/or dose escalation to the bone marrow in highly selected patients in order to improve therapeutic

  7. The recovery of bone marrow derived GM-CFU in baboons unilaterally exposed to a total body LD50/30d mixed neutron-gamma irradiation

    International Nuclear Information System (INIS)

    Herodin, F.; Orfeuvre, H.; Janodet, D.; Mestries, J.C.; Fatome, M.

    1990-01-01

    The unilateral exposure of baboons to a total body LD 50/30d mixed neutron/gamma irradiation was characterized to be non uniform in dose distribution. The pattern of recovery of granulocyte-macrophage progenitors in bone marrow samples collected from entrance and exit sides respectively is consistent with this observed heterogeneity [fr

  8. Measurements of the total-body potassium contents. Application of reference value with the whole-body counter

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Saegusa, Kenji; Arimizu, Noboru; Kuniyasu, Yoshio; Itoh, Hisao

    2001-01-01

    The total-body potassium contents were measured in 405 healthy volunteers and 186 patients with whole body counter in Chiba University Hospital. The total-body potassium contents was expressed by the reference value (R value). The R value was calculated as measured potassium contents (g) divided by the body surface area (m 2 ) and adjusted by age and sex of healthy persons. The R value was 100.65±9.22% in 405 healthy volunteers. Those of each disease were as follows: liver cirrhosis; 94.24±11.22%, chronic hepatitis; 95.74±11.24%, hyperthyroidism; 99.37±10.8%, periodic paralysis; 82.0±9.01%, Barter's syndrome; 93.99±9.86%, myasthenia gravis; 97.34±6.42% and hypo-potassemia; 90.64±11.76%, respectively. The R values of other diseases such as uterine cancer, breast cancer, anemia, hypertension were 97.78±11.5%, 99.22±8.88%, 96.64±12.73%, 98.5±9.63% respectively. Fourteen patients showed especially lower R values under 75%. These were 1 liver cirrhosis, 3 hypertension, 1 diabetes mellitus, 3 hypo-potassemia, 1 periodic paralysis, 2 Barter's syndrome, 2 chemical poisoning, and 1 breast cancer. Follow-up study was performed in some patients with the lower R values. The result of follow-up study showed that there was a relationship between improvement of symptoms and increase of total body potassium contents. (author)

  9. Enhanced responses to tumor immunization following total body irradiation are time-dependent.

    Directory of Open Access Journals (Sweden)

    Adi Diab

    Full Text Available The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8(+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8(+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference

  10. SU-E-T-522: Investigation of Underdosage of Total Body Irradiation with Bilateral Irradiation Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Lin, T; Eldib, A; Hossain, M; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Patient in-vivo measurements report lower readings than those predicted from TMR-based treatment planning on TBI patient knees and ankles where rice was placed to fill the gap between patient’s legs. This study is to understand and correct the under dosage of Total Body Irradiation(TBI) with rice tissue equivalent bolus placement at TBI treatment patient setup. Methods: Bilateral TBI scheme was investigated with rice bags bolus placing between patient’s two legs acting as missing tissue. In-house TMR based treatment planning system was commissioned with measurements under TBI condition at 10MV, i.e. source-to-reference distance 383.4cm with 40×40cm field size with 1cm thickness Lucite. Predictions of patient specific dose points are reported at different sites with 200cGy prescription at patient umbilicus point. Solid water and rice bag phantoms are used at TBI conditions for the attenuation factor verification and CT scanned to verify the CT number and electron density. Results: We found that the rice bag bolus overall density is 11% lower than the water; however, the attenuation factor of rice bags could become 15% lower than that of water at TBI condition. This overestimate of rice bag electron density could cause the lack of lateral scatter and the lack of backscatter. This could Result in an overestimate of dose at in-vivo dosimeter measurement points with TMR-based treatment planning systems. Observations of patient specific optically stimulated luminescent dosimeters(OSLDs) were used to confirm this overestimation. Measurements of setups with increasing the rice bag filled patient leg separation were performed to demonstrate eliminating the overdose issue. Conclusion: Rice bolus has a lower electron density than water does(11%) but results in 15% lower in attenuation factor at TBI condition. This effect was observed in patient delivery with OSLD measurements and can be corrected by increasing the filling rice bolus thickness with 15% longer of

  11. SU-E-T-522: Investigation of Underdosage of Total Body Irradiation with Bilateral Irradiation Scheme

    International Nuclear Information System (INIS)

    Lin, T; Eldib, A; Hossain, M; Price, R; Ma, C

    2015-01-01

    Purpose: Patient in-vivo measurements report lower readings than those predicted from TMR-based treatment planning on TBI patient knees and ankles where rice was placed to fill the gap between patient’s legs. This study is to understand and correct the under dosage of Total Body Irradiation(TBI) with rice tissue equivalent bolus placement at TBI treatment patient setup. Methods: Bilateral TBI scheme was investigated with rice bags bolus placing between patient’s two legs acting as missing tissue. In-house TMR based treatment planning system was commissioned with measurements under TBI condition at 10MV, i.e. source-to-reference distance 383.4cm with 40×40cm field size with 1cm thickness Lucite. Predictions of patient specific dose points are reported at different sites with 200cGy prescription at patient umbilicus point. Solid water and rice bag phantoms are used at TBI conditions for the attenuation factor verification and CT scanned to verify the CT number and electron density. Results: We found that the rice bag bolus overall density is 11% lower than the water; however, the attenuation factor of rice bags could become 15% lower than that of water at TBI condition. This overestimate of rice bag electron density could cause the lack of lateral scatter and the lack of backscatter. This could Result in an overestimate of dose at in-vivo dosimeter measurement points with TMR-based treatment planning systems. Observations of patient specific optically stimulated luminescent dosimeters(OSLDs) were used to confirm this overestimation. Measurements of setups with increasing the rice bag filled patient leg separation were performed to demonstrate eliminating the overdose issue. Conclusion: Rice bolus has a lower electron density than water does(11%) but results in 15% lower in attenuation factor at TBI condition. This effect was observed in patient delivery with OSLD measurements and can be corrected by increasing the filling rice bolus thickness with 15% longer of

  12. High-dose, half-body irradiation and its effects

    International Nuclear Information System (INIS)

    Oelssner, W.; Standke, E.; Brock, A.; Dalicho, R.; Friedrich, A.; Kunze, M.L.; Melzer, R.; Sauer, H.

    1991-01-01

    The major early reactions observable were vegetative disturbances such as nausea, vertigo, repeated vomiting, rise in temperature and pulse rate, variations in blood pressure, and diarrhea in some cases. All these symptoms disappeared quite rapidly. Seven women developed parotitis, which disappeared after a certain time, and all patients suffered from complete epilation, which was followed by enhanced piliation. There were only light mucosal changes in all patients, but many changes in the blood count. Observation of cellular immunity revealed a temporary suppression, which faded out after 3 weeks. Further side effects could be detected in the biochemical regime. The main radiation effects on the lungs and the only virtual complication encountered were three cases of pneumonitis. Apart from these, lung density measurement by CT revealed a temporary increase in density. Effects of the half-body irradiation on the heart consisted for one part of direct effects detectable in the cells of the cardiac muscle in the myocardial capillaries, and for the other by adaptive responses to changes in the hemodynamics of the lesser circulatory system. There were no signs of renal lesions or formation of cataracts. A causality can be suspected between the radiotherapy and the occurrance of two secondary carcinoma, contralateral breast cancer in one patient, and stomach cancer in another. The efficiency of the half-body irradiation is shown by the delayed occurrence of metastases, and a prolongation of survival time of incurable patients. (orig./MG) With 20 figs., 9 tabs [de

  13. Assessment of body doses from photon exposures using human voxel models

    International Nuclear Information System (INIS)

    Zankl, M.; Fill, U.; Petoussi-Henss, N.; Regulla, D.

    2000-01-01

    For the scope of risk assessment in protection against ionising radiation (occupational, environmental and medical) it is necessary to determine the radiation dose to specific body organs and tissues. For this purpose, a series of models of the human body were designed in the past, together with computer codes simulating the radiation transport and energy deposition in the body. Most of the computational body models in use are so-called mathematical models; the most famous is the MIRD-5 phantom developed at Oak Ridge National Laboratory. In the 1980s, a new generation of human body models was introduced at GSF, constructed from whole body CT data. Due to being constructed from image data of real persons, these 'voxel models' offer an improved realism of external and internal shape of the body and its organs, compared to MIRD-type models. Comparison of dose calculations involving voxel models with respective dose calculations for MIRD-type models revealed that the deviation of the individual anatomy from that described in the MIRD-type models indeed introduces significant deviations of the calculated organ doses. Specific absorbed fractions of energy released in a source organ due to incorporated activity which are absorbed in target organs may differ by more than an order of magnitude between different body models; for external photon irradiation, the discrepancies are more moderate. (author)

  14. Kinetics of total body retention and clearance of xenon and krypton after inhalation

    International Nuclear Information System (INIS)

    Susskind, H.; Atkins, H.L.; Cohn, S.H.; Ellis, K.J.; Richards, P.

    1976-01-01

    The total body retention of Xe-127 and Kr-79 and their clearance rates following inhalation were measured in vivo. These data are useful for refined Xe-127 dosimetry calculations, to determine the potential radiation hazard of fission product Kr-85, and more generally to study the behavior of anesthetic gases. While data are available on the solubilities and partition coefficients of Xe and Kr in fat, blood, and other individual body constituents, few measurements of their retention and clearance from the entire body have been reported

  15. Spontaneous resolution of posterior ankle joint loose bodies after total ankle replacement: A case report.

    Science.gov (United States)

    Lee, Raymond P; Cheng, Sally H S

    2017-06-01

    Late stage ankle osteoarthritis often presents with debilitating pain. It is common to find osteophytes and loose body formation around the joint. Total ankle arthroplasty can preserve joint mobility and pain relieve for such patient. However, when trying to remove the osteophytes and loose bodies at the posterior ankle joint, there is risk of damaging posterior structures such as the neurovascular bundle during the procedure. We are presenting a case where the posterior loose bodies remained untouched during the operation, and patient showed spontaneous resolution of the lesions with time. Patient enjoyed good function outcome after the surgery. Copyright © 2016 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  16. Radiation nephritis following total-body irradiation and cyclophosphamide in preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Bergstein, J.; Andreoli, S.P.; Provisor, A.J.; Yum, M.

    1986-01-01

    Two children prepared for bone marrow transplantation with total-body irradiation and cyclophosphamide developed hypertension, microscopic hematuria, proteinuria, diminished renal function, and anemia six months after transplantation. Light microscopy of the kidneys revealed mesangial expansion, glomerular capillary wall thickening, and lumenal thrombosis. Electron microscopy demonstrated widening of the subendothelial space due to the deposition of amorphous fluffy material. In one patient, immunofluorescence microscopy revealed glomerular capillary wall deposition of fibrin and immunoglobulins. The clinical and histologic findings support the diagnosis of radiation nephritis. Patients prepared for bone marrow transplantation with total-body irradiation and cyclophosphamide should be followed closely after transplantation for the development of hypertension, proteinuria, and renal insufficiency

  17. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    International Nuclear Information System (INIS)

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-01-01

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO 3 was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl 2 Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm

  18. Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988 - 1993: II. In vivo planning and dosimetry

    Science.gov (United States)

    Planskoy, B.; Tapper, P. D.; Bedford, A. M.; Davis, F. M.

    1996-11-01

    Part II of this paper gives the results of applying the TBI methods described in part I, to in vivo patient planning and dosimetry. Patients are planned on nine CT based body slices, five of which pass through the lungs. Planned doses are verified with ten silicon diodes applied bi-laterally to five body sites, at each treatment. LiF TLDs are applied to seven other body sites at the first treatment only. For 84 patients and at least 1016 measurements per body site with the diodes, the mean measured total doses agreed with planned doses within at most 2% except at lung levels, where the mean measured dose was 3% too low. Standard deviations of the measurements about the mean were between 2.4 and 3.1%. For the LiF TLDs, the mean measured doses for all seven body sites were within of planned doses. A separate assessment of measured entrance and transmitted doses showed that the former agreed well with planned doses, but that the latter tended to be low, especially over the lungs, and that they had a wider dispersion. Possible reasons for this are discussed. These results show measurement uncertainties similar to those for non-TBI treatments of Nilsson et al, Leunens et al and Essers et al. An analysis of the treatment plans showed a mean dose inhomogeneity in the body (75 patients, nine slices) of (1 s.d.) and in the lungs (40 patients, five slices) of (1 s.d.). The conclusions are that, overall, the methods are reasonably satisfactory but that, with an extra effort, even closer agreement between measured and planned doses and a further limited reduction in the body dose inhomogeneity could be obtained. However, if it were thought desirable to make a substantial reduction in the dose inhomogeneity in the body and lungs, this could only be achieved with the available equipment by changing from lateral to anterior - posterior irradiation and any potential advantages of this change would have to be balanced against a likely deterioration in patient comfort and an

  19. The Sandia total-dose estimator: SANDOSE description and user guide

    International Nuclear Information System (INIS)

    Turner, C.D.

    1995-02-01

    The SANdia total-DOSe Estimator (SANDOSE) is used to estimate total radiation dose to a (BRL-CAT) solid model, SANDOSE uses the mass-sectoring technique to sample the model using ray-tracing techniques. The code is integrated directly into the BRL-CAD solid model editor and is operated using a simple graphical user interface. Several diagnostic tools are available to allow the user to analyze the results. Based on limited validation using several benchmark problems, results can be expected to fall between a 10% underestimate and a factor of 2 overestimate of the actual dose predicted by rigorous radiation transport techniques. However, other situations may be encountered where the results might fall outside of this range. The code is written in C and uses X-windows graphics. It presently runs on SUN SPARCstations, but in theory could be ported to any workstation with a C compiler and X-windows. SANDOSE is available via license by contacting either the Sandia National Laboratories Technology Transfer Center or the author

  20. Total Body Photography as an Aid to Skin Self-examination: A Patient's Perspective.

    Science.gov (United States)

    Secker, Lisanne J; Bergman, Wilma; Kukutsch, Nicole A

    2016-02-01

    Skin self-examination can help patients who are at high risk for developing melanoma to become more involved in their own surveillance and treatment. This study examined the use of total body photography as an aid to skin self-examination from the patients' perspective. A total of 179 individuals at high risk for developing melanoma who had undergone total body photography (60.5% response rate) completed a self-reported questionnaire assessing the frequency of skin self-examination, perceived usefulness of total body photography, and a variety of potential demographic, clinical and psychological factors. Only approximately half of the participants indicated skin self-examination as useful and 78.9% preferred clinical skin examination by a specialist. Finding total body photography useful was associated with having received instructions on how to perform skin self-examination, the use of a (hand)mirror, and confidence to detect changing moles. These findings allow us to develop strategies to further improve patients' self-screening behaviours.

  1. Application of Whole Body Counter to Neutron Dose Assessment in Criticality Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, O.; Tsujimura, N.; Takasaki, K.; Momose, T.; Maruo, Y. [Japan Nuclear Cycle Development Institute, Tokai (Japan)

    2001-09-15

    Neutron dose assessment in criticality accidents using Whole Body Counter (WBC) was proved to be an effective method as rapid neutron dose estimation at the JCO criticality accident in Tokai-mura. The 1.36MeV gamma-ray of {sup 24}Na in a body can be detected easily by a germanium detector. The Minimum Detectable Activity (MDA) of {sup 24}Na is approximately 50Bq for 10minute measurement by the germanium-type whole body counter at JNC Tokai Works. Neutron energy spectra at the typical shielding conditions in criticality accidents were calculated and the conversion factor, whole body activity-to-organ mass weighted neutron absorbed dose, corresponding to each condition were determined. The conversion factor for uncollied fission spectrum is 7.7 [(Bq{sup 24}Na/g{sup 23}Na)/mGy].

  2. Monte Carlo efficiency calibration of a neutron generator-based total-body irradiator

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2009-01-01

    Many body composition measurement systems are calibrated against a single-sized reference phantom. Prompt-gamma neutron activation (PGNA) provides the only direct measure of total body nitrogen (TBN), an index of the body's lean tissue mass. In PGNA systems, body size influences neutron flux attenuation, induced gamma signal distribution, and counting efficiency. Thus, calibration based on a single-sized phantom could result in inaccurate TBN values. We used Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) in order to map a system's response to the range of body weights (65-160 kg) and body fat distributions (25-60%) in obese humans. Calibration curves were constructed to derive body-size correction factors relative to a standard reference phantom, providing customized adjustments to account for differences in body habitus of obese adults. The use of MCNP-generated calibration curves should allow for a better estimate of the true changes in lean tissue mass that many occur during intervention programs focused only on weight loss. (author)

  3. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    International Nuclear Information System (INIS)

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-01-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water

  4. The optimal parameter for radiation dose in pediatric low dose abdominal CT: cross-sectional dimensions versus body weight

    International Nuclear Information System (INIS)

    Jung, Yoon Young; Goo, Hyun Woo

    2008-01-01

    To investigate the best parameter between cross-sectional dimensions and body weight in pediatric low dose abdominal CT. One hundred and thirty six children consecutively underwent weight-based abdominal CT. The subjects consisted of group 1 (79 children, weight range 10.0-19.9 kg) and group 2 (57 children, weight range 20.0-39.9 kg). Abdominal cross-sectional dimensions including circumference, area, anteroposterior diameters and transverse diameters were calculated. Image noise (standard deviation of CT density) was measured by placing a region of interest in the posterior segment of the right hepatic lobe on a CT image at the celiac axis. The measured image noise was correlated with the cross-sectional abdominal dimensions and body weight for subjects in each group. In group 1 subjects,area, circumference, transverse diameter, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order(γ = 0.63, 0.62, 0.61, 0.51, and 0.49; ρ < 0.0001). In group 2 subjects, transverse diameter, circumference, area, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order (γ = 0.83, 0.82, 0.78, 0.71, and 0.71; ρ < 0.0001). Cross-sectional dimensions such as area, circumference, and transverse diameter showed a higher positive correlation with image noise than body weight for pediatric low dose abdominal CT

  5. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  6. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    International Nuclear Information System (INIS)

    Martin, K.E.; Gauthier, M.K.; Coss, J.R.; Dantas, A.R.V.; Price, W.E.

    1986-05-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose

  7. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  8. Dose evaluation on the basis of {sup 24}Na activity in the human body for the criticality accident at JCO Tokai nuclear fuel processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Momose, T.; Tsujimura, N.; Tasaki, T.; Kanai, K.; Hayashi, N.; Shinohara, K. [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2000-07-01

    Sodium-24({sup 24}Na) generated in human body due to neutron activation was measured by whole body counter (WBC) in JNC Tokai works. Total 148 persons (JCO employees and contractor, public member, fire fighters, etc.) were measured and {sup 24}Na was detected in the 62 persons. Neutron energy spectrum around the facility was calculated using ANISN and MCNP code and estimated mean capture probability {xi} of neutron for human body at this accident was around 0.25-0.28 at any distance from the center of the precipitation tank. Effective dose equivalent for the 62 persons were estimated based on the calculated conversion factors from {sup 24}Na specific activity to neutron dose. Maximum {sup 24}Na activity was 7.7 kBq (83 Bq({sup 24}Na)/g({sup 23}Na)) in total body and the evaluated effective dose equivalent was 47 mSv. (author)

  9. Comparison of nodal staging with lean body mass based and with total body weight based in lung cancer

    International Nuclear Information System (INIS)

    Lee, H. Y.; Chung, J. K.; Kang, W. J.; So, Y.; Lee, D. S.; Lee, M. C.

    2004-01-01

    The standardized uptake (SUV) is semiquantitative evaluation parameter in positron emission tomography (PET). But there is no consensus about the application or process of SUV measurement. In this study, we used measured lean body mass (LBM) and total weight for application in SUV measurement. Also we compared the each nodal staging with SUV between measured LBM, and total weight, in non small cell lung cancer (NSCLC). Total 21 patients with lung cancer were enrolled (M:F=17:4, age 45[+-]8 years). PET-CT was done before operation with Gemini (Philips, Milpitas, U.S.). Each image was reconstructed twice with measured weight and lean body mass. Maximum SUVs of 103 dissected lymph nodes were measured and compared with histological result. For the deciding on the cut off value, receiver operating characteristic (ROC) analysis was done. 14 lymph nodes in the 103 dissected lymph nodes were metastatic lesions. From the ROC analysis, the cut off value of SUV was 1.7 with measured LBM and 2.3 with total weight. With measured LBM, Sensitivity and specificity were 92.5%. 78.2% and area under curve was 0.881. With total weight, sensitivity and specificity was 92.5% and 77%, Area under curve was 0.859. The normalization of SUV could be done with measured LBM. With the normalization of SUV with LBM, the nodal staging of NSCLC using SUV could be more accurate than using total weight in the reconstruction and measurement of SUV for lymph node lesions

  10. Individual fluorouracil dose adjustment in FOLFOX based on pharmacokinetic follow-up compared with conventional body-area-surface dosing: a phase II, proof-of-concept study.

    Science.gov (United States)

    Capitain, Olivier; Asevoaia, Andreaa; Boisdron-Celle, Michele; Poirier, Anne-Lise; Morel, Alain; Gamelin, Erick

    2012-12-01

    To compare the efficacy and safety of pharmacokinetically (PK) guided fluorouracil (5-FU) dose adjustment vs. standard body-surface-area (BSA) dosing in a FOLFOX (folinic acid, fluorouracil, oxaliplatin) regimen in metastatic colorectal cancer (mCRC). A total of 118 patients with mCRC were administered individually determined PK-adjusted 5-FU in first-line FOLFOX chemotherapy. The comparison arm consisted of 39 patients, and these patients were also treated with FOLFOX with 5-FU by BSA. For the PK-adjusted arm 5-FU was monitored during infusion, and the dose for the next cycle was based on a dose-adjustment chart to achieve a therapeutic area under curve range (5-FU(ODPM Protocol)). The objective response rate was 69.7% in the PK-adjusted arm, and median overall survival and median progression-free survival were 28 and 16 months, respectively. In the traditional patients who received BSA dosage, objective response rate was 46%, and overall survival and progression-free survival were 22 and 10 months, respectively. Grade 3/4 toxicity was 1.7% for diarrhea, 0.8% for mucositis, and 18% for neutropenia in the dose-monitored group; they were 12%, 15%, and 25%, respectively, in the BSA group. Efficacy and tolerability of PK-adjusted FOLFOX dosing was much higher than traditional BSA dosing in agreement with previous reports for 5-FU monotherapy PK-adjusted dosing. Analysis of these results suggests that PK-guided 5-FU therapy offers added value to combination therapy for mCRC. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Post-laryngectomy localization of I-131 at tracheostomy site on a total body scan

    International Nuclear Information System (INIS)

    Kirk, G.A.; Schulz, E.E.

    1984-01-01

    A post-thyroidectomy, post-I-131-therapy patient had a laryngectomy and neck dissection for recurrent papillary thyroid carcinoma. A subsequent I-131 total body scan revealed persistent anterior neck activity, which disappeared upon removal of the tracheostomy tube and dressings

  12. A Large Rice Body-Containing Cyst Mimicking Infection following Total Hip Arthroplasty: A Case Report

    Directory of Open Access Journals (Sweden)

    Wael Bayoud

    2017-01-01

    Full Text Available Introduction. Soft tissue mass following total hip arthroplasty raises several differential diagnoses not limited to infection, hematoma, wear debris, malignancy, and bursitis. Rice body formation in the hip region is an uncommon process denoting a chronic inflammation. We report here the second case of its kind in the medical literature of a wide symptomatic rice-like body cyst complicating a total hip arthroplasty. Case Presentation. This is the case of an 82-year-old white female, presenting with a warm, red, and inflated groin five years after revision of right total hip arthroplasty. Surgical intervention reveals a large well circumscribed cyst containing well-organized rice-like bodies. This eventuality was never reported in differential diagnosis of hip periprosthetic soft tissue masses before. Conclusion. This case report helps widening the array of the differential diagnosis in patients presenting with a slow growing soft tissue mass following total hip arthroplasty, making rice-like bodies cyst a valid one to consider.

  13. Total body topical 5-fluorouracil for extensive non-melanoma skin cancer

    NARCIS (Netherlands)

    van Ruth, Serge; Jansman, Frank G. A.; Sanders, Cornelis J.

    Background Topical 5-fluorouracil 5% cream is one of the treatment modalities for non-melanoma skin cancer (NMSC). There is a lack of suitable therapies to treat patients with extensive NMSC. In this paper we report two patients with extensive NMSC treated by total body application of topical

  14. The review of radiation effects of γ total dose in CMOS circuits

    International Nuclear Information System (INIS)

    Chen Panxun; Gao Wenming; Xie Zeyuan; Mi Bang

    1992-01-01

    Radiation performances of commercial and rad-hard CMOS circuits are reviewed. Threshold voltage, static power current, V in -V out characteristic and propagation delay time related with total dose are presented for CMOS circuits from several manufacturing processes. The performance of radiation-annealing of experimental circuits had been observed for two years. The comparison has been made between the CMOS circuits made in China and the commercial RCA products. 60 Co γ source can serve as γ simulator of the nuclear explosion

  15. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de

    2004-01-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO 4 :Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {(10 ? 10) cm 2 field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of ± 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  16. Biological dose estimation of partial body exposures in cervix cancer patients

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Nasazzi, Nora B.; Taja, Maria R.; Roth, B.; Sardi, M.; Menendez, P.

    2000-01-01

    At present, unstable chromosome aberrations analysis in peripheral blood lymphocytes is the most sensitive method to provide a biological estimation of the dose in accidental radiation over exposures. The assessment of the dose is particularly reliable in cases of acute, uniform, whole-body exposures or after irradiation of large parts of the body. However, the scenarios of most radiation accidents result in partial-body exposures or non-uniform dose distribution, leading to a differential exposure of lymphocytes in the body. Inhomogeneity produces a yield of dicentrics, which does not conform to a Poisson distribution, but is generally over dispersed. This arises because those lymphocytes in tissues outside the radiation field will not be damaged. Most of the lymphocytes (80 %) belong to the 'redistributional pool' (lymphatic tissues and other organs) and made recirculate into peripheral blood producing a mixed irradiated and unirradiated population of lymphocytes. So-called over dispersion, with a variance greater than the mean, can be taken as an indication of non-uniform exposure. The main factors operating in vivo partial-body irradiation may be the location and size of the irradiation field and, at high doses, various cellular reactions such as reduced blast transformation, mitotic delay or interphase death may contribute. For partial-body exposures, mathematical-statistical analysis of chromosome aberration data can be performed to derive a dose estimate for the irradiated fraction of the body, been more realistic than to quote a mean equivalent uniform whole body dose. The 'Contaminated Poisson' method of Dolphin or the Qdr method of Sasaki, both based on similar principles, can achieve this. Contaminated Poisson considers the over dispersed distribution of dicentrics among all the cells scored. The observed distribution is considered to be the sum of a Poisson distribution, which represents the irradiated fraction of the body, and the remaining unexposed

  17. Inhaled /sup 147/Pm and/or total-body gamma radiation: Early mortality and morbidity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Filipy, R.E.; Lauhala, K.E.; McGee, D.R.; Cannon, W.C.; Buschbom, R.L.; Decker, J.R.; Kuffel, E.G.; Park, J.F.; Ragan, H.A.; Yaniv, S.S.; Scott, B.R.

    1989-05-01

    Rats were given doses of /sup 60/Co gamma radiation and/or lung burdens of /sup 147/Pm (in fused aluminosilicate particles) within lethal ranges in an experiment to determine and compare morbidity and mortality responses for the radiation insults within 1 year after exposure. Radiation-induced morbidity was assessed by measuring changes in body weights, hematologic parameters, and pulmonary-function parameters. Acute mortality and morbidity from inhaled promethium were caused primarily by radiation pneumonitis and pulmonary fibrosis that occurred more than 53 days after exposure. Acute mortality and morbidity from total-body gamma irradiation occurred within 30 days of exposure and resulted from the bone-marrow radiation syndrome. Gamma radiation caused transient morbidity, reflected by immediately depressed blood cell levels and by reduced body weight gain in animals that survived the acute gamma radiation syndrome. Inhaled promethium caused a loss of body weight and diminished pulmonary function, but its only effect on blood cell levels was lymphocytopenia. Combined gamma irradiation and promethium lung burdens were synergistic, in that animals receiving both radiation insults had higher morbidity and mortality rates than would be predicted based on the effect of either kind of radiation alone. Promethium lung burdens enhanced the effect of gamma radiation in rats within the first 30 days of exposure, and gamma radiation enhanced the later effect of promethium lung burdens. 70 refs., 68 figs., 21 tabs.

  18. Comparison of 24 hr total body radio-iodine retention for hypothyroid vs. thyrogen (rhTSH) stimulated whole body surveillance scan

    International Nuclear Information System (INIS)

    Jana, S.; Young, I.; Bukberg, P.; Luo, J.Q.; Dakhel, M.; Heiba, S.; El-Zeftawy, H.; Abdel-Dayem, H.M.

    2002-01-01

    Objective: Recently rhTSH has been used for WBS to avoid hypothyroid symptoms from T4/T3 withdrawal. There is limited data available in the current literature comparing total body radio-iodine clearance between hypothyroid pts and pts receiving rhTSH. Significant differences in radio-iodine clearance may influence the dose of radio-iodine required for diagnostic scanning or treatment of pts on a rhTSH protocol. Methods: To retrospectively compare the 24 hr total body I-123 retention in thyroid cancer pts who were made hypothyroid in preparation for radio-iodine scanning with the I-123 retention in pts who received thyrogen (rhTSH) but were maintained on thyroid hormone replacement. Inclusion criteria were as follows: Histologically diagnosed well diff. thyroid Ca s/p surgery and I-131 Rx in the past who were clinically disease free at the time of scanning. No abn. visible I-123 uptake on WBS and 24 hr neck uptake ≤ 1%. Tg level ≤ 2ng off T4/T3 or ≤ 2ng increase from basal level after rhTSH. Anti-Tg Ab negative. Serum Creatine ≤ 1.4 mg/dl. Serum ALT < 35, AST < 35. Total 78 pts were divided into the following 3 groups (Gp): Gp-1 (29 pts) received 2 IM inj. Of 0.9 mg rhTSH 24 and 48 hrs prior to oral dose of 10 mCi I-123. Gp-2 (30 pts) followed hypothyroid protocol i.e., off T4 ≥ 4 wks or T3 ≥ 10 days in order to achieve TSH ≥ 30 MIU/L. The dose of I-123 was 5 mCi. Gp-3 (19 pts) similar to Gp-2 i.e., hypothyroid but scanned using 10 mCi of I-123. Imaging protocol: Pts were scanned 4 hrs and 24 hrs after I-123 administration in a dual head gamma camera for 30 mins. Total body and neck counting were obtained from the geometric mean of Ant and Post images with appropriate decay correction. 24 hr total body retention (TBR) of I-123 were calculated and expressed in %, considering 100% at 4 hrs. Results: Demographic Profile of 3 Patient Groups. AST/ALT was < 35 and 24 hrs neck uptake was ≤ 1.0% all pts. Comparison of 24 hr % TBR of I-123 in 3 Patient Groups

  19. Age, gender, and race/ethnic differences in total body and subregional bone density.

    Science.gov (United States)

    Looker, A C; Melton, L J; Harris, T; Borrud, L; Shepherd, J; McGowan, J

    2009-07-01

    Total body bone density of adults from National Health and Nutrition Examination Survey (NHANES) 1999-2004 differed as expected for some groups (men>women and blacks>whites) but not others (whites>Mexican Americans). Cross-sectional age patterns in bone mineral density (BMD) of older adults differed at skeletal sites that varied by degree of weight-bearing. Total body dual-energy X-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. The present study uses total body DXA data (Hologic QDR 4500A, Hologic, Bedford MA, USA) from the NHANES 1999-2004 to examine BMD of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults aged 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight-bearing. Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg, and arm. This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population.

  20. Using body mass index to predict optimal thyroid dosing after thyroidectomy.

    Science.gov (United States)

    Ojomo, Kristin A; Schneider, David F; Reiher, Alexandra E; Lai, Ngan; Schaefer, Sarah; Chen, Herbert; Sippel, Rebecca S

    2013-03-01

    Current postoperative thyroid replacement dosing is weight based, with adjustments made after thyroid-stimulating hormone values. This method can lead to considerable delays in achieving euthyroidism and often fails to accurately dose over- and underweight patients. Our aim was to develop an accurate dosing method that uses patient body mass index (BMI) data. A retrospective review of a prospectively collected thyroid database was performed. We selected adult patients undergoing thyroidectomy, with benign pathology, who achieved euthyroidism on thyroid hormone supplementation. Body mass index and euthyroid dose were plotted and regression was used to fit curves to the data. Statistical analysis was performed using STATA 10.1 software (Stata Corp). One hundred twenty-two patients met inclusion criteria. At initial follow-up, only 39 patients were euthyroid (32%). Fifty-three percent of patients with BMI >30 kg/m(2) were overdosed, and 46% of patients with BMI regression equation was derived for calculating initial levothyroxine dose (μg/kg/d = -0.018 × BMI + 2.13 [F statistic = 52.7, root mean square error of 0.24]). The current standard of weight-based thyroid replacement fails to appropriately dose underweight and overweight patients. Body mass index can be used to more accurately dose thyroid hormone using a simple formula. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  2. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars

    2015-01-01

    a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. RESULTS: The overall response rate was 95% with a complete cutaneous response......PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments...... or a very good partial response rate (response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. CONCLUSIONS...

  3. Dosimetric methods and results of measurement for total body electron irradiation

    International Nuclear Information System (INIS)

    Feng Ningyuan; Yu Geng; Yu Zihao

    1987-01-01

    A modified 'STANFORD TSEI TECHNIQUE' e.g. dual angled gantry, 6 turntable angles and 12 fields was developed on PHILIPS SL 75-20 linear accelerator to treat mycosis fungoides. A plastic scatter screen, 5 mm in thickness was used to reduce the primary electron energy to 4 MeV in order to control treatment depth (d 80 approx.= 1.2 cm) and skin dose up to 89%. The X-ray contamination was at an acceptable level of 2%. This measurement which involved multiple dosimetric methods, showed that the distance between the scattor screen and the patient, within 10-30 cm, had no influence on PDD and the dose distribution on the body surface was reasonably homogeneous, but strongly dependent on the anatomic positions. For those sites which were located in the electron beam shadows, boosting irradiation might be necessary. The preliminary clinical trials indicated that this technique is valid and feasible

  4. A first-principles approach to total-dose hardness assurance

    International Nuclear Information System (INIS)

    Fleetwood, D.M.

    1995-01-01

    A first-principles approach to radiation hardness assurance was described that provides the technical background to the present US and European total-dose radiation hardness assurance test methods for MOS technologies, TM 1019.4 and BS 22900. These test methods could not have been developed otherwise, as their existence depends not on a wealth of empirical comparisons of IC data from ground and space testing, but on a fundamental understanding of MOS defect growth and annealing processes. Rebound testing should become less of a problem for advanced MOS small-signal electronics technologies for systems with total dose requirements below 50--100 krad(SiO 2 ) because of trends toward much thinner gate oxides. For older technologies with thicker gate oxides and for power devices, rebound testing is unavoidable without detailed characterization studies to assess the impact of interface traps on devices response in space. The QML approach is promising for future hardened technologies. A sufficient understanding of process effects on radiation hardness has been developed that should be able to reduce testing costs in the future for hardened parts. Finally, it is hoped that the above discussions have demonstrated that the foundation for cost-effective hardness assurance tests is laid with studies of the basic mechanisms of radiation effects. Without a diligent assessment of new radiation effects mechanisms in future technologies, one cannot be assured that the present generation of radiation test standards will continue to apply

  5. A rapid infusion protocol is safe for total dose iron polymaltose: time for change.

    Science.gov (United States)

    Garg, M; Morrison, G; Friedman, A; Lau, A; Lau, D; Gibson, P R

    2011-07-01

    Intravenous correction of iron deficiency by total dose iron polymaltose is inexpensive and safe, but current protocols entail prolonged administration over more than 4 h. This results in reduced patient acceptance, and hospital resource strain. We aimed to assess prospectively the safety of a rapid intravenous protocol and compare this with historical controls. Consecutive patients in whom intravenous iron replacement was indicated were invited to have up to 1.5 g iron polymaltose by a 58-min infusion protocol after an initial 15-min test dose without pre-medication. Infusion-related adverse events (AE) and delayed AE over the ensuing 5 days were also prospectively documented and graded as mild, moderate or severe. One hundred patients, 63 female, mean age 54 (range 18-85) years were studied. Thirty-four infusion-related AE to iron polymaltose occurred in a total of 24 patients--25 mild, 8 moderate and 1 severe; higher than previously reported for a slow protocol iron infusion. Thirty-one delayed AE occurred in 26 patients--26 mild, 3 moderate and 2 severe; similar to previously reported. All but five patients reported they would prefer iron replacement through the rapid protocol again. The presence of inflammatory bowel disease (IBD) predicted infusion-related reactions (54% vs 14% without IBD, P cost, resource utilization and time benefits for the patient and hospital system. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  6. Influence of burn-in on total-ionizing-dose effect of SRAM device

    International Nuclear Information System (INIS)

    Liu Minbo; Yao Zhibin; Huang Shaoyan; He Baoping; Sheng Jiangkun

    2014-01-01

    The influence of Burn-in on the total-ionizing-dose (TID) effect of SRAM device was investigated. SRAM devices of three different feature sizes were selected and irradiated by "6"0Co source with or without pre-irradiation Burn-in. Some parameters for radiation effect of SRAM device such as upset data, were measured, and the influence on the TID effect of different feature size SRAM devices with or without pre-irradiation Burn-in was obtained. The influence of different temperature Burn-in on radiation resistant capability of SRAM device was studied for 0.25 μm SRAM device. The results show that the smaller the device feature size is, the better the radiation-resistant capability of SRAM device is and the weaker the influence of Burn-in is. And the higher Burn-in temperature is, the more serious the influence of Burn-in on the total-dose radiation effect is. (authors)

  7. Skeletal and total body volumes of human fetuses: assessment of reference data by spiral CT

    International Nuclear Information System (INIS)

    Braillon, Pierre M.; Buenerd, Annie; Bouvier, Raymonde; Lapillonne, Alexandre

    2002-01-01

    Objective: To define reference data for skeletal and total body volumes of normal human fetuses. Materials and methods: Spiral CT was used to assess the skeletal and total body volumes of 31 normal human stillborn infants with gestational age (GA) and body weight (BW) ranging from 14 to 41.5 weeks and 22 to 3,760 g, respectively. CT scans (slice thickness 2.7 mm, pitch 0.7) were performed within the first 24 h after delivery. Precise bone and soft-tissue windows were defined from analysis of the density along the diaphysis of the fetal long bones and from the measurement of a phantom that mimics soft tissues. Lengths and volumes were obtained from 3D reconstructions. The femur lengths measured from CT images (FLct) were compared with those provided by US studies (FLus). Results: Significant correlations (r>0.9) were found between BW, measured volumes of the entire skeleton or head, long-bone lengths, biparietal diameter and GA. Strong linear correlations (r>0.98) were observed between FLct and FLus. Conclusions: Skeletal and total body volume values obtained using spiral CT were significantly correlated with fetal biometric measurements. These data could complement those obtained in obstetric investigations with US. (orig.)

  8. Monitoring of high-radiation areas for the assessment of operational and body doses

    International Nuclear Information System (INIS)

    Chen, T.J.; Tung, C.J.; Yeh, W.W.; Liao, R.Y.

    2004-01-01

    protection quantities should be applied. For significant exposures that are deemed abnormal, according to the recommendations in ICRP Publication 28, actual doses in the body, from an assessment of the accident, should be used.' In order to assess radiation protection quantities and actual absorbed doses in the body stated above, information on the energy and irradiation geometry of the incident radiation is required. ICRP in its Publication 35 recommended that: 'In minor accidents, when the deep dose equivalent index is only slightly above the limit, the organ and tissue dose equivalents themselves may still comply with the annual limit for effective dose equivalent. Information on the energy spectrum and orientation of the incident radiation may then allow more realistic estimates of these dose equivalents to be made.' In this work, we surveyed high radiation areas in the nuclear power plants in Taiwan. We measured energy and angular distributions of photons in these areas by a portable Nal detector. We then analyzed the irradiation geometries using the ICRU classifications. Applying these results, the Taiwan Power Company should be able to evaluate actual body doses more accurately for workers exposed to high-levels of radiation

  9. Body packers on your examination table: How helpful are plain x-ray images? A definitive low-dose CT protocol as a diagnosis tool for body packers

    International Nuclear Information System (INIS)

    Schulz, B.; Grossbach, A.; Gruber-Rouh, T.; Zangos, S.; Vogl, Th. J.; Eichler, K.

    2014-01-01

    Aim: To analyze the clinical value and radiation dose of plain x-rays and CT in examining patients suspected of ingesting drug-filled packets. Materials and methods: Thirty-eight patients with suspected internal concealment of drug-filled packets who were examined with plain x-rays or CT or both were included in the study. CT studies were performed using low-dose and standard-dose techniques. All radiographic images were analysed by two radiologists regarding identification of the packets and estimating the effective radiation dose from standard- and low-dose CT versus conventional x-ray examinations. Descriptive calculations were made regarding the number and density of packs and radiation dosage. The diagnostic performance of both radiologists with standard- and low-dose CT was calculated by analysing differences in the mean number of packs found. Results: Thirty-one patients were positively identified as body packers with an average of 13 packs (min: n = 1, max: n = 58, total: n = 390); seven patients were not concealing drug packets. X-ray images were taken of 24 patients prior to CT, thus allowing a direct comparison between the two methods. The correct diagnosis was made in 42%, in 33% the radiologists were uncertain, and in 25% of drug packets were either not or wrongly identified. X-ray imaging had a positive predictive value of 20% with a negative predictive value of 81%. A total of 55 CT examinations were performed on all patients with a mean effective dose of 2 mSv (low dose) versus 9.3 mSv (standard dose). The visibility of packets on low-dose CT images compared to high-dose CT was not reduced: the radiologists identified 385 and 381 of the packets, respectively, with no difference regarding the examination technique (p = 0.24 and p = 0.253, respectively). The radiodensity of all drug-filled packets at CT ranged from 26–292 HU (mean 181.2 HU). Conclusion: X-ray imaging of supposed body packers leads to a significant risk of diagnostic

  10. Differential effect of L3T4+ cells on recovery from total-body irradiation

    International Nuclear Information System (INIS)

    Pantel, K.; Nakeff, A.

    1990-01-01

    We have examined the importance of L3T4+ (murine equivalent to CD4+) cells for hematopoietic regulation in vivo in unperturbed mice and mice recovering from total-body irradiation (TBI) using a cytotoxic monoclonal antibody (MoAb) raised with the GK 1.5 hybridoma. Ablating L3T4+ cells in normal (unperturbed) B6D2F1 mice substantially decreased the S-phase fraction (determined by in vivo hydroxyurea suicide) of erythroid progenitor cells (erythroid colony-forming units, CFU-E) as compared to the pretreatment level (10% +/- 14.1% [day 3 following depletion] vs 79.8% +/- 15.9%, respectively) with a corresponding decrease in the marrow content of CFU-E at this time to approximately 1% of the pretreatment value. Although the S-phase fraction of CFU-GM was decreased to 2.2% +/- 3.1% 3 days after L3T4+ cell ablation from the 21.3% +/- 8.3% pretreatment value, CFU-GM cellularity showed little change over the 3 days following anti-L3T4 treatment. Anti-L3T4 MoAb treatment had little or no effect on either the S-phase fraction or the marrow content of hematopoietic stem cells (spleen colony-forming units, CFU-S) committed to myeloerythroid differentiation. Ablating L3T4+ cells prior to a single dose of 2 Gy TBI resulted in significantly reduced marrow contents of CFU-S on day 3 and granulocyte-macrophage colony-forming units (CFU-GM) on day 6 following TBI, with little or no effect on the corresponding recovery of CFU-E. The present findings provide the first in vivo evidence that L3T4+ cells are involved in: (1) maintaining the proliferative activity of CFU-E and CFU-GM in unperturbed mice and (2) supporting the restoration of CFU-S and CFU-GM following TBI-induced myelosuppression

  11. Long-Term Effects of Stem Cells on Total-Body Irradiated Mice

    Science.gov (United States)

    Vyalkina, M. V.; Alchinova, I. B.; Yakovenko, E. N.; Medvedeva, Yu S.; Saburina, I. N.; Karganov, M. Yu

    2017-01-01

    C57Bl/6 mice were exposed to γ-radiation in a sublethal dose of 7.5 Gy. In 3 hours injection 106/mouse of bone marrow multipotent mesenchymal stromal cells stem cells intravenously to experimental group was done. Methods used: body weight measurement, open field behavior, subfraction composition of blood serum (laser correlation spectroscopy, LCS), histological examination of the spleen, liver, and pancreas, count of T and B cells, white blood formula. After 1.5 and 3 months the general trend towards intermediate position of the parameters observed in the experimental between those in intact and irradiated controls attests to partial protective/restorative effects of the injected cells.

  12. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination

    International Nuclear Information System (INIS)

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-01-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms. (authors)

  13. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera

    International Nuclear Information System (INIS)

    Cardarelli, J.A.; Slingerland, D.W.; Burrows, B.A.; Miller, A.

    1985-01-01

    Previously described techniques for the measurement of the absorption of [ 57 Co]vitamin B 12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room

  14. Total body calcium by neutron activation analysis. Reference data for children

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.

    2001-01-01

    There is a paucity of data on the chemical composition of the human body during growth. Total body calcium (TBCa) has been reported for only one male child, aged 41/2 yr. TBCa values for 25 children and 27 young women using in vivo neutron activation analysis have been obtained. TBCa results were lower than those reported for the one male cadaver, as well as the estimates derived for the 'Reference Man' model. It was concluded that the reference values for TBCa may need to be adjusted to appropriately describe skeletal mineralization of contemporary children. (author)

  15. The use of Total Body In Vivo Neutron Activation Analysis (TBIVNAA) in balance studies in rodents

    International Nuclear Information System (INIS)

    Smith, D.A.; Lindsay, R.L.; Anderson, J.

    1976-01-01

    In the investigation of animals subject to alteration in diet or other metabolic experiments, the measurements of change in body calcium, phosphorus, sodium and nitrogen are of considerable interest. However, conventional balance studies are tedious and subject to both random and cumulative error, necessitating as they do accurate estimates of dietary intake and faecal and urinary output. The object of the present study was to determine the usefulness of total body in vivo neutron activation analysis, used at the beginning and end of the experimental period, as an alternative to conventional balance techniques. (orig.) [de

  16. Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.

    Science.gov (United States)

    Duckic, Paulina; Hayes, Robert B

    2018-06-01

    Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.

  17. Dose Escalated Liver Stereotactic Body Radiation Therapy at the Mean Respiratory Position

    International Nuclear Information System (INIS)

    Velec, Michael; Moseley, Joanne L.; Dawson, Laura A.; Brock, Kristy K.

    2014-01-01

    Purpose: The dosimetric impact of dose probability based planning target volume (PTV) margins for liver cancer patients receiving stereotactic body radiation therapy (SBRT) was compared with standard PTV based on the internal target volume (ITV). Plan robustness was evaluated by accumulating the treatment dose to ensure delivery of the intended plan. Methods and Materials: Twenty patients planned on exhale CT for 27 to 50 Gy in 6 fractions using an ITV-based PTV and treated free-breathing were retrospectively evaluated. Isotoxic, dose escalated plans were created on midposition computed tomography (CT), representing the mean breathing position, using a dose probability PTV. The delivered doses were accumulated using biomechanical deformable registration of the daily cone beam CT based on liver targeting at the exhale or mean breathing position, for the exhale and midposition CT plans, respectively. Results: The dose probability PTVs were on average 38% smaller than the ITV-based PTV, enabling an average ± standard deviation increase in the planned dose to 95% of the PTV of 4.0 ± 2.8 Gy (9 ± 5%) on the midposition CT (P<.01). For both plans, the delivered minimum gross tumor volume (GTV) doses were greater than the planned nominal prescribed dose in all 20 patients and greater than the planned dose to 95% of the PTV in 18 (90%) patients. Nine patients (45%) had 1 or more GTVs with a delivered minimum dose more than 5 Gy higher with the midposition CT plan using dose probability PTV, compared with the delivered dose with the exhale CT plan using ITV-based PTV. Conclusions: For isotoxic liver SBRT planned and delivered at the mean respiratory, reduced dose probability PTV enables a mean escalation of 4 Gy (9%) in 6 fractions over ITV-based PTV. This may potentially improve local control without increasing the risk of tumor underdosing

  18. Evaluation of a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Imae, Toshikazu; Takenaka, Shigeharu; Saotome, Naoya

    2016-01-01

    The purpose of this study was to evaluate a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT). VMAT is capable of acquiring respiratory signals derived from projection images and machine parameters based on machine logs during VMAT delivery. Dose distributions were reconstructed from the respiratory signals and machine parameters in the condition where respiratory signals were without division, divided into 4 and 10 phases. The dose distribution of each respiratory phase was calculated on the planned four-dimensional CT (4DCT). Summation of the dose distributions was carried out using deformable image registration (DIR), and cumulative dose distributions were compared with those of the corresponding plans. Without division, dose differences between cumulative distribution and plan were not significant. In the condition Where respiratory signals were divided, dose differences were observed over dose in cranial region and under dose in caudal region of planning target volume (PTV). Differences between 4 and 10 phases were not significant. The present method Was feasible for evaluating cumulative dose distribution in VMAT-SBRT using 4DCT and DIR. (author)

  19. Mammography dose in relation to body mass index, race, and menopausal status

    Energy Technology Data Exchange (ETDEWEB)

    Schubauer-Berigan, M.K.; Frey, G.D.; Baron, L.; Hoel, D.G

    2002-07-01

    Mammography dose increases with compressed breast thickness (CBT), but few studies have examined other correlates of dose. The purpose of this study was to evaluate the relation between factors such as race, age, body mass index (BMI), CBT, and menopausal status and mammography screening dose, measured for 509 women in a US population. A multiple linear regression model was developed for dose, based on consideration of these factors as well as examination characteristics. BMI and number of films during examination were positively related to dose. After adjusting for these factors, high CBT also leads to higher dose. Whites receive lower doses than black women, but differences are slight after controlling for the effects of CBT and BMI, which were significantly higher among black women. Pre-menopausal women receive higher doses, after adjusting for all other factors, than post-menopausal women. Jointly, these factors account for approximately 75% to 80% of the variability in dose among this study population. Because rates of overweight are increasing in the US, average doses from mammography may be increasing as well. (author)

  20. Mammography dose in relation to body mass index, race, and menopausal status

    International Nuclear Information System (INIS)

    Schubauer-Berigan, M.K.; Frey, G.D.; Baron, L.; Hoel, D.G.

    2002-01-01

    Mammography dose increases with compressed breast thickness (CBT), but few studies have examined other correlates of dose. The purpose of this study was to evaluate the relation between factors such as race, age, body mass index (BMI), CBT, and menopausal status and mammography screening dose, measured for 509 women in a US population. A multiple linear regression model was developed for dose, based on consideration of these factors as well as examination characteristics. BMI and number of films during examination were positively related to dose. After adjusting for these factors, high CBT also leads to higher dose. Whites receive lower doses than black women, but differences are slight after controlling for the effects of CBT and BMI, which were significantly higher among black women. Pre-menopausal women receive higher doses, after adjusting for all other factors, than post-menopausal women. Jointly, these factors account for approximately 75% to 80% of the variability in dose among this study population. Because rates of overweight are increasing in the US, average doses from mammography may be increasing as well. (author)

  1. Increased mortality by septicemia, interstitial pneumonitis and pulmonary fibrosis among bone marrow transplant recipients receiving an increased mean dose rate of total irradiation

    International Nuclear Information System (INIS)

    Ringden, O.; Baaryd, I.; Johansson, B.

    1983-01-01

    Seven bone marrow transplant recipients with acute lymphoblastic leukemia receiving a mean dose rate of 0.07 Gy/min of total body irradiation towards the pelvic midpoint and the lungs had an increased (p<0.01) overall death rate of 86 per cent compared with 33 per cent among 27 patients with acute non-lymphoblastic leukemia or acute lymphoblastic leukemia treated with a mean dose rate of 0.04 Gy/min. Among the patients receiving the higher dose rate there was an increased mortality in causes related to radiation toxicity like early septicemia, interstitial pneumonitis and pulmonary fibrosis, compared with all patients receiving the lower dose rate (p<0.01) and also with 10 patients from this group with acute lymphoblastic leukemia (p<0.02). (Auth.)

  2. A pilot study to evaluate the cost-effectiveness of ondansetron and granisetron in fractionated total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, S.J.; Cassoni, A.M. [Middlesex Hospital, London (United Kingdom)

    1996-11-01

    The duration of the antiemetic effect of granisetron was examined in a pilot study of patients (n = 26) undergoing a standard emetogenic stimulus in the form of total body irradiation fractionated over 3-4 days, in a randomized comparison with twice-daily ondansetron. A single intravenous dose of granisetron at the onset of therapy was effective over the entire follow-up period in 50% (6/12) of patients, compared with 77% (10/13) prescribed twice-daily oral ondansetron for 3 or 4 days. The response rate within the first 24 hours from the start of irradiation was 67% (8/12) for granisetron and 77% (10/13) for ondansetron. Granisetron and ondansetron was therefore of similar efficacy within the first 24-hour period, but granisetron was less efficaceous more than 24 hours after the onset of therapy. Patients who required a second dose of granisetron did so at intervals of 12, 42, 47 and 48 hours following the first fraction of radiotherapy. The cost per patient in this study was 48 for granisetron and {sub 1}54 for ondanestron, but the dose scheduling we used cannot be recommended in view of the lower effectiveness of granisetron. (author).

  3. A pilot study to evaluate the cost-effectiveness of ondansetron and granisetron in fractionated total body irradiation

    International Nuclear Information System (INIS)

    Gibbs, S.J.; Cassoni, A.M.

    1996-01-01

    The duration of the antiemetic effect of granisetron was examined in a pilot study of patients (n = 26) undergoing a standard emetogenic stimulus in the form of total body irradiation fractionated over 3-4 days, in a randomized comparison with twice-daily ondansetron. A single intravenous dose of granisetron at the onset of therapy was effective over the entire follow-up period in 50% (6/12) of patients, compared with 77% (10/13) prescribed twice-daily oral ondansetron for 3 or 4 days. The response rate within the first 24 hours from the start of irradiation was 67% (8/12) for granisetron and 77% (10/13) for ondansetron. Granisetron and ondansetron was therefore of similar efficacy within the first 24-hour period, but granisetron was less efficaceous more than 24 hours after the onset of therapy. Patients who required a second dose of granisetron did so at intervals of 12, 42, 47 and 48 hours following the first fraction of radiotherapy. The cost per patient in this study was 48 for granisetron and 1 54 for ondanestron, but the dose scheduling we used cannot be recommended in view of the lower effectiveness of granisetron. (author)

  4. ZZ DOSDAT-2, Gamma and Electron Dose Conversion Factor Data Library for Body Organs

    International Nuclear Information System (INIS)

    1983-01-01

    1 - Description of problem or function: Format: DOSDAT-R; Nuclides: gamma-ray and electron dose rates for whole-body and for various body organs (24) for air and water immersion and from ground-surface sources (approximately 500 radioactive nuclides). Origin: DLC-80/DRALIST library of radioactive decay data. The data are used to estimate the gamma-ray and electron dose rates for whole-body and for various body organs (24) for air and water immersion and from ground-surface sources. The data are given for approximately 500 radioactive nuclides. 2 - Method of solution: The data were computed by the CCC-400 DOSAFACTER II code from the DLC-80/DRALIST library of radioactive decay data for approximately 500 nuclides

  5. Radiological protection in a patient during a total body irradiation procedure; Proteccion radiologica en un paciente durante un procedimiento de TBI (irradiacion de cuerpo entero)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez O, J. O.; Hinojosa G, J.; Gomez M, E.; Balam de la Vega, J. A. [The American British Cowdray Medical Center, I. A. P., Sur 128 No. 143, Col. Americas, 01120 Mexico D. F. (Mexico); Deheza V, J. C., E-mail: johernandezo@abchospital.co [IPN, Escuela Superior de Fisica y Matematicas, Av. Luis Enrique Erro s/n, Edificio No. 9, Unidad Profesional Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2010-09-15

    A technique used in the Service of Radiotherapy of the Cancer Center of the American British Cowdray Medical Center (ABC) for the bone marrow transplantation, is the total body irradiation. It is known that the dose calculation, for this irradiation type, is old, since the dosimetric calculation is carried out by hand and they exist infinity of techniques for the patients irradiation and different forms of protecting organs of risk, as well as a great uncertainty in the given dose. In the Cancer Center of the ABC Medical Center, was carried out an irradiation procedure to total body with the following methodology: Computerized tomography of the patient total body (two vacuum mattresses in the following positions: dorsal and lateral decubitus), where is combined the two treatment techniques anterior-posterior and bilateral, skin delineate and reference volumes, dose calculation with the planning system Xi O of CMS, dose determination using an ionization chamber and a lung phantom IMRT Thorax Phantom of the mark CIRS and dosimetry in vivo. In this work is presented the used treatment technique, the results, statistics and the actualization of the patient clinical state. (Author)

  6. Long-term renal toxicity in children following fractionated total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT)

    International Nuclear Information System (INIS)

    Gerstein, Johanna; Meyer, Andreas; Fruehauf, Joerg; Karstens, Johann H.; Bremer, Michael; Sykora, Karl-Walter

    2009-01-01

    Purpose: to retrospectively assess the incidence and time course of renal dysfunction in children (≤ 16 years) following total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT). Patients and methods: between 1986 and 2003, 92 children (median age, 11 years; range, 3-16 years) underwent TBI before allogeneic SCT. 43 of them had a minimum follow-up of 12 months (median, 51 months; range, 12-186 months) and were included into this analysis. Conditioning regimen included chemotherapy and fractionated TBI with 12 Gy (n = 26) or 11.1 Gy (n = 17). In one patient, renal dose was limited to 10 Gy by customized renal shielding due to known nephropathy prior to SCt. Renal dysfunction was defined as an increase of serum creatinine > 1.25 times the upper limit of age-dependent normal. Results: twelve children (28%) experienced an episode of renal dysfunction after a median of 2 months (range, 1-10 months) following SCT. In all but one patient renal dysfunction was transient and resolved after a median of 8 months (range, 3-16 months). One single patient developed persistent renal dysfunction with onset at 10 months after SCT. None of these patients required dialysis. The actuarial 3-year freedom from persistent renal toxicity for children surviving > 12 months after SCt was 97.3%. Conclusion: the incidence of persistent renal dysfunction after fractionated TBI with total doses ≤ 12 Gy was very low in this analysis. (orig.)

  7. Measurement of total body calcium in osteoporotic patients treated with salmon calcitonin

    International Nuclear Information System (INIS)

    Zanzi, I.; Thompson, K.; Cohn, S.H.

    1981-01-01

    In the past, the evaluation of therapies for osteoporosis has been limited by the lack of a suitable quantitative end point. The introduction of the technique of in vivo total body neutron activation analysis (TBNAA) has made possible the precise and accurate measurement of total body calcium (TBCa). Since almost 99 percent of TBCa is in the skeleton, TBNAA gives a direct measurement of skeletal mass. Thus, changes in skeletal mass serve as an objective criterion in the evaluation of the efficacy of the therapy in osteoporosis. Studies performed at Brookhaven National Laboratory and elsewhere have reported the use of calcitonin (CT) in the treatment of primary osteoporosis and related conditions in a limited number of patients. The physiological effects of CT as an inhibitor of bone resorption has been the rationale of its use. The results of a randomized, controlled, 2 year therapeutical trial of CT in a group of postmenopausal osteoporotic women are presented in this report

  8. Total-body photography in skin cancer screening: the clinical utility of standardized imaging.

    Science.gov (United States)

    Rosenberg, Alexandra; Meyerle, Jon H

    2017-05-01

    Early detection of skin cancer is essential to reducing morbidity and mortality from both melanoma and nonmelanoma skin cancers. Total-body skin examinations (TBSEs) may improve early detection of malignant melanomas (MMs) but are controversial due to the poor quality of data available to establish a mortality benefit from skin cancer screening. Total-body photography (TBP) promises to provide a way forward by lowering the costs of dermatologic screening while simultaneously leveraging technology to increase patient access to dermatologic care. Standardized TBP also offers the ability for dermatologists to work synergistically with modern computer technology involving algorithms capable of analyzing high-quality images to flag concerning lesions that may require closer evaluation. On a population level, inexpensive TBP has the potential to increase access to skin cancer screening and it has several specific applications in a military population. The utility of standardized TBP is reviewed in the context of skin cancer screening and teledermatology.

  9. Total Body Capacitance for Estimating Human Basal Metabolic Rate in an Egyptian Population

    Science.gov (United States)

    M. Abdel-Mageed, Samir; I. Mohamed, Ehab

    2016-01-01

    Determining basal metabolic rate (BMR) is important for estimating total energy needs in the human being yet, concerns have been raised regarding the suitability of sex-specific equations based on age and weight for its calculation on an individual or population basis. It has been shown that body cell mass (BCM) is the body compartment responsible for BMR. The objectives of this study were to investigate the relationship between total body capacitance (TBC), which is considered as an expression for BCM, and BMR and to develop a formula for calculating BMR in comparison with widely used equations. Fifty healthy nonsmoking male volunteers [mean age (± SD): 24.93 ± 4.15 year and body mass index (BMI): 25.63 ± 3.59 kg/m2] and an equal number of healthy nonsmoking females matched for age and BMI were recruited for the study. TBC and BMR were measured for all participants using octopolar bioelectric impedance analysis and indirect calorimetry techniques, respectively. A significant regressing equation based on the covariates: sex, weight, and TBC for estimating BMR was derived (R=0.96, SEE=48.59 kcal, and P<0.0001), which will be useful for nutritional and health status assessment for both individuals and populations. PMID:27127453

  10. Determination of gonad, eye and bone marrow doses with EMI-5005 head and whole body scans

    International Nuclear Information System (INIS)

    Nishizawa, Kanae; Iwata, Takeo; Furuya, Yoshiro; Maruyama, Takashi; Hashizume, Tadashi.

    1979-01-01

    Dose determinations of tissues and organs during head and whole body scanning with an EMI computed tomographic equipment have been carried out using a Rando woman phantom. The surface dose on the phantom was measured with a Sakura lith Contact film dosimeter system. The absorbed doses in the eyes, thyroids, ovaries and the bone marrow were measured with a thermoluminescent dosimeter. The resultant surface doses for head scanning were 2.8 rad (28 mGy) per scan at maximum and 0.26 rad (2.6 mGy) per scan at minimum, and the doses for whole body scanning were 2.7 rad (27 mGy) per scan at maximum and 0.1 rad (1.0 mGy) per scan at minimum. For the complete gynecological scanning consisting of 8 slices, the eye, thyroid, ovary and the bone marrow dose was 2.4 mrad (24 μGy), 3.5 mrad (35 μGy), 500 mrad (5 mGy) and 225 mrad (2.25 mGy), respectively. And, for a typical head scanning consisting of 5 slices, the eye, thyroid, ovary and the bone marrow dose was 1400 mrad (14 mGy), 46 mrad (460 μGy), 0.60 mrad (6 μGy) and 73 mrad (730 μGy), respectively. (author)

  11. Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    International Nuclear Information System (INIS)

    Ma, R.; Ellis, K.J.; Shypailo, R.J.; Pierson, R.N. Jr.

    1999-01-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%. (author)

  12. Effect of dietary protein quality on the resistance of rats to total body radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bounous, G.; Pageau, R.

    1983-02-01

    Young rats have been fed four defined-formula diets before and after ..gamma..-irradiation (700 rd (7.0 Gy), 75 rd/min (750 mGy), 80 cm from the source, total body). Animals eating a diet containing lactalbumin hydrolyzate (20 g/100 g diet) exhibited less anorexia and weight loss following ..gamma..-rays than a corresponding group eating casein hydrolyzate (20 g/100 g diet).

  13. Long-term results of total body irradiation in adults with acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Marnitz, Simone; Zich, Alexander; Budach, Volker; Jahn, Ulrich; Neumann, Oliver [Charite University Medicine, Department of Radiation Oncology, Berlin (Germany); Martus, Peter [University Tuebingen, Institute of Clinical Epidemiology and Applied Biostatistics, Tuebingen (Germany); Arnold, Renate [Charite University Medicine, Campus CVK, Department of Hematology and Oncology, Bone Marrow Transplant Unit, Berlin (Germany)

    2014-05-15

    The aim of this chart review of adult patients treated for acute lymphoblastic leukemia (ALL) with total body irradiation (TBI) was to evaluate early and late toxicity and long-term outcome. A total of 110 adult patients (34 ± 12 years) with ALL underwent TBI (6 fractions of 2 Gy for a total of 12 Gy) as a part of the treatment regimen before transplantation. Treatment-related toxicity, mortality, and hematologic outcome are reported. Mean follow-up was 70 months. The 2- and 5-year leukemia-free survival rates were 78 and 72 %, respectively. In all, 29 % (32/110) patients suffered from medullary recurrence after a median time of 7 months. Gender was the only statistically significant prognostic factor in terms of overall survival in favor of female patients. Treatment-related mortality and overall survival after 2 and 5 years were 16 and 22 %, and 60 and 52.7 %, respectively. The most frequent late reaction wascGVHD of the skin (n = 33, 30 %). In addition, 15.5 % (17/110 patients) suffered pulmonary symptoms, and 6 patients developed lung fibrosis. Eyes were frequently affected by the radiation (31/110 = 28 %); 12 of 110 patients (11 %) presented with symptoms from osteoporosis, 5 of 110 patients (4.5 %) developed hypothyreosis and 2 patients diabetes mellitus. Of the male patients, 11 % reported erectile dysfunction or loss of libido, while 2 of 36 women reported menopausal syndrome at the mean time of 28 months after treatment with requirement for substitution. No women became pregnant after treatment. No acute or late cardiac toxicities were documented in our patients. No secondary malignancies were documented. Although hematologic outcome was in the upper range of that reported in the literature, treatment-related mortality (TRM) and medullary recurrences remain a challenge. Sophisticated radiation techniques allow for decreasing toxicity to certain organs and/or dose escalation to the bone marrow in highly selected patients in order to improve therapeutic

  14. Northern Marshall Islands radiological survey: terrestrial food chain and total doses

    International Nuclear Information System (INIS)

    Robison, W.L.; Mount, M.E.; Phillips, W.A.; Conrado, C.A.; Stuart, M.L.; Stoker, C.E.

    1982-01-01

    A radiological survey was conducted from September through November of 1978 to assess the concentrations of persistent manmade radionuclides in the terrestrial and marine environments of 11 atolls and 2 islands in the Northern Marshall Islands. The survey consisted mainly of an aerial radiological reconnaissance to map the external gamma-ray exposure rates over the islands of each atoll. The logistical support for the entire survey was designed to accommodate this operation. As a secondary phase of the survey, shore parties collected appropriate terrestrial and marine samples to assess the radiological dose from pertinent food chains to those individuals residing on the atolls, who may in the future reside on some of the presently uninhabited atolls, or who collect food from these atolls. Over 5000 terrestrial and marine samples were collected for radionuclide analysis from 76 different islands. Soils, vegetation, indigenous animals, and cistern water and groundwater were collected from the islands. Reef and pelagic fish, clams, lagoon water, and sediments were obtained from the lagoons. The concentration data for 90 Sr, 137 Cs, 238 Pu, 239 240 Pu, and 241 Am in terrestrial food crops, fowl, and animals collected at the atolls or islands are summarized. An assessment of the total dose from the major exposure pathways including external gamma, terrestrial food chain including food products and drinking water, marine food chain, and inhalation is provided. Radiological doses at each atoll or island are calculated from the average radionuclide concentrations in the terrestrial foods, marine foods, etc. assuming the average daily intake for each food item

  15. Late effects on gonadal function of cyclophosphamide, total-body irradiation, and marrow transplantation

    International Nuclear Information System (INIS)

    Sanders, J.E.; Buckner, C.D.; Leonard, J.M.; Sullivan, K.M.; Witherspoon, R.P.; Deeg, H.J.; Storb, R.; Thomas, E.D.

    1983-01-01

    One hundred thirty-seven patients had gonadal function evaluated 1-11 years after marrow transplantation. All 15 women less than age 26 and three of nine older than age 26 who were treated with 200 mg/kg cyclophosphamide recovered normal gonadotropin levels and menstruation. Five have had five pregnancies resulting in three live births, one spontaneous abortion, and one elective abortion. Three of 38 women who were prepared with 120 mg/kg cyclophosphamide and 920-1200 rad total-body irradiation had normal gonadotropin levels and menstruation. Two had pregnancies resulting in one spontaneous and one elective abortion. Of 31 men prepared with 200 mg/kg cyclophosphamide, 30 had normal luteinizing hormone levels, 20 had normal follicle-stimulating hormone levels, and 10 of 15 had spermatogenesis. Four have fathered five normal children. Thirty-six of 41 men prepared with 120 mg/kg cyclophosphamide and 920-1750 rad total-body irradiation had normal luteinizing hormone levels, ten had normal follicle-stimulating hormone levels, and 2 of 32 studied had spermatogenesis. One has fathered two normal children. It was concluded that cyclophosphamide does not prevent return of normal gonadal function in younger women and in most men. Total-body irradiation prevents return of normal gonadal function in the majority of patients

  16. The Basel experience with total body irradiation for conditioning patients with acute leukemia for allogenic bone marrow transplantation

    International Nuclear Information System (INIS)

    Speck, B.; Cornu, P.; Nissen, C.; Gratwohl, A.; Sartorius, J.

    1979-01-01

    We are reporting our experience with 13 patients suffering from end stage acute leukemia that were prepared for allogeneic bone marrow transplantation by combined chemotherapy followed by high dose cyclophosphamide (Cy) and total body irradiation (TBI). Only one patient became a long term survivor. Of the evaluable 12 patients, 6 died of interstitial pneumonia, 4 of GvH and 1 of recurrent leukemia. We conclude that adding combined chemotherapy to the standard conditioning program with Cy and TBI probably increases the risk of developing fatal interstitial pneumonia without eliminating the risk of recurrent leukemia. We suggest that allogenic marrow grafts should be performed earlier in the course of refractory acute leukemias, because in patients with end stage disease its chances of being curative are small

  17. Late complications following total-body irradiation and bone marrow rescue in mice: predominance of glomerular nephropathy and hemolytic anemia

    International Nuclear Information System (INIS)

    Down, J.D.; Berman, A.J.; Mauch, P.; Warhol, M.

    1990-01-01

    Late mortality and pathology were assessed in various mouse strains following total-body irradiation (TBI) and bone marrow transplantation. Long-term survival data revealed both radiation dose- and strain-dependent onset of mortality between 1 and 2 years post-treatment. Renal damage appeared to have contributed to the late mortality in most treatment groups as shown by glomerular lesions, elevated blood urea nitrogen and an accompanying fall in hematocrit. Hemolysis was deduced to be the major cause of anemia, as concluded from results of 51 Cr-labeled erythrocyte survival. No decrease in erythropoiesis was evident as seen from spleen and bone marrow 59 Fe uptake. These findings are together consistent with the manifestation of a hemolytic uremic syndrome (HUS) with kidney glomeruli representing the principal sites of injury responsible for both renal dysfunction and microangiopathic hemolysis. (author)

  18. Late complications following total-body irradiation and bone marrow rescue in mice: predominance of glomerular nephropathy and hemolytic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Down, J.D.; Berman, A.J.; Mauch, P. (Harvard Medical School, Boston, MA (USA)); Warhol, M. (Pennsylvania Hospital, Philadelphia, PA (USA). Dept. of Pathology); Yeap, B. (Dana Farber Cancer Inst., Boston, MA (USA))

    1990-03-01

    Late mortality and pathology were assessed in various mouse strains following total-body irradiation (TBI) and bone marrow transplantation. Long-term survival data revealed both radiation dose- and strain-dependent onset of mortality between 1 and 2 years post-treatment. Renal damage appeared to have contributed to the late mortality in most treatment groups as shown by glomerular lesions, elevated blood urea nitrogen and an accompanying fall in hematocrit. Hemolysis was deduced to be the major cause of anemia, as concluded from results of {sup 51}Cr-labeled erythrocyte survival. No decrease in erythropoiesis was evident as seen from spleen and bone marrow {sup 59}Fe uptake. These findings are together consistent with the manifestation of a hemolytic uremic syndrome (HUS) with kidney glomeruli representing the principal sites of injury responsible for both renal dysfunction and microangiopathic hemolysis. (author).

  19. High Total Ionizing Dose and Temperature Effects on Micro- and Nano-electronic Devices

    International Nuclear Information System (INIS)

    Gaillardin, M.; Martinez, M.; Paillet, P.; Leray, J.L.; Marcandella, C.; Duhamel, O.; Raine, M.; Richard, N.; Girard, S.; Ouerdane, Y.; Boukenter, A.; Goiffon, V.; Magnan, P.; Andrieu, F.; Barraud, S.; Faynot, O.

    2013-06-01

    This paper investigates the vulnerability of several micro- and nano-electronic technologies to a mixed harsh environment including high total ionizing dose at MGy levels and high temperature. Such operating conditions have been revealed recently for several applications like new security systems in existing or future nuclear power plants, fusion experiments, or deep space missions. In this work, the competing effects already reported in literature of ionizing radiations and temperature are characterized in elementary devices made of MOS transistors from several technologies. First, devices are irradiated using a radiation laboratory X-ray source up to MGy dose levels at room temperature. Devices are grounded during irradiation to simulate a circuit which waits for a wake up signal, representing most of the lifetime of an integrated circuit operating in a harsh environment. Devices are then annealed at several temperatures to discuss the post-irradiation behavior and to determine whether an elevated temperature is an issue or not for circuit function in mixed harsh environments. (authors)

  20. Total dose radiation effects of pressure sensors fabricated on uni-bond-SOI materials

    International Nuclear Information System (INIS)

    Zhu Shiyang; Huang Yiping; Wang Jin; Li Anzhen; Shen Shaoqun; Bao Minhang

    2001-01-01

    Piezoresistive pressure sensors with a twin-island structure were successfully fabricated using high quality Uni-bond-SOI (On Insulator) materials. Since the piezoresistors were structured by the single crystalline silicon overlayer of the SOI wafer and were totally isolated by the buried SiO 2 , the sensors are radiation-hard. The sensitivity and the linearity of the pressure sensors keep their original values after being irradiated by 60 Co γ-rays up to 2.3 x 10 4 Gy(H 2 O). However, the offset voltage of the sensor has a slight drift, increasing with the radiation dose. The absolute value of the offset voltage deviation depends on the pressure sensor itself. For comparison, corresponding polysilicon pressure sensors were fabricated using the similar process and irradiated at the same condition

  1. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Sheng, Jiangkun; Xue, Yuan [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an, Shaanxi 710024 (China); Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Hunan (China)

    2016-03-15

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a {sup 60}Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.

  2. Total-ionizing-dose effects on isolation oxides in modern CMOS technologies

    International Nuclear Information System (INIS)

    Barnaby, Hugh J.; Mclain, Michael; Esqueda, Ivan Sanchez

    2007-01-01

    This paper presents experimental data on the total dose response of deep sub-micron bulk CMOS devices and integrated circuits. Ionizing radiation experiments on shallow trench isolation (STI) field oxide MOS capacitors (FOXCAP) indicate a characteristic build-up of radiation-induced defects in the dielectric. In this paper, capacitors fabricated with STI, thermal, SIMOX and bipolar base oxides of similar thickness are compared and show the STI oxide to be most susceptible to radiation effects. Experimental data on irradiated shift registers and n-channel MOSFETs are also presented. These data indicate that radiation damage to the STI can increase the off-state current of n-channel devices and the standby current of CMOS integrated circuits

  3. New insights into fully-depleted SOI transistor response during total-dose irradiation

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Dodd, P.E.; Burns, J.A.; Keast, C.L.; Wyatt, P.W.

    1999-01-01

    In this paper, we present irradiation results on 2-fully depleted processes (HYSOI6, RKSOI) that show SOI (silicon on insulator) device response can be more complicated than originally suggested by others. The major difference between the 2 process versions is that the RKSOI process incorporates special techniques to minimize pre-irradiation parasitic leakage current from trench sidewalls. Transistors were irradiated at room temperature using 10 keV X-ray source. Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. It appears that the worst-case bias for HYPOI6 process is the bias that causes the largest increase in sidewall leakage. The RKSOI process shows a different response during irradiation, the transition response appears to be dominated by charge trapping in the buried oxide. These results have implications for hardness assurance testing. (A.C.)

  4. Origins of Total-Dose Response Variability in Linear Bipolar Microcircuits

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.R.; Schrimpf, R.D.; Fleetwood, D.M.; Pease, R.L.; Shaneyfelt, Marty R.; Turflinger, T.; Krieg, J.F.; Maher, M.C.

    2000-01-01

    LM1ll voltage comparators exhibit a wide range of total-dose-induced degradation. Simulations show this variability may be a natural consequence of the low base doping of the substrate PNP (SPNP) input transistors. Low base doping increases the SPNP's collector to base breakdown voltage, current gain, and sensitivity to small fluctuations in the radiation-induced oxide defect densities. The build-up of oxide trapped charge (N ot ) and interface traps (N it ) is shown to be a function of pre-irradiation bakes. Experimental data indicate that, despite its structural similarities to the LM111, irradiated input transistors of the LM124 operational amplifier do not exhibit the same sensitivity to variations in pre-irradiation thermal cycles. Further disparities in LM111 and LM124 responses may result from a difference in the oxide defect build-up in the two part types. Variations in processing, packaging, and circuit effects are suggested as potential explanations

  5. CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation

    International Nuclear Information System (INIS)

    Lee, J.Y.; Shank, B.; Bonfiglio, P.; Reid, A.

    1984-01-01

    Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung

  6. Curvilinear bodies are associated with adverse effects on muscle function but not with hydroxychloroquine dosing.

    Science.gov (United States)

    Khoo, Thomas; Otto, Sophia; Smith, Caroline; Koszyca, Barbara; Lester, Sue; Blumbergs, Peter; Limaye, Vidya

    2017-03-01

    The clinical significance of curvilinear bodies (CB) seen in association with hydroxychloroquine (HCQ) therapy is uncertain. Patients with CB on muscle biopsy performed between 2006 and the present were identified, and their clinical features including body mass index and cumulative HCQ dose were recorded. A control group of 16 patients with idiopathic inflammatory myositis (IIM) on HCQ at time of biopsy but without evidence of CB was identified. Nineteen patients with CB were identified; details were available for 18. Among patients with CB, 7/18 also had IIM. Seven out of ten patients with CB who did not have IIM or MHCI/II expression had proximal weakness; 7/11 had raised serum creatinine kinase (CK) levels. There was no difference in body weight (p = 0.47), body mass index (p = 0.93), cumulative HCQ dose (p = 0.52) or cumulative dose adjusted for body weight (p = 0.39) or body mass index (p = 0.32) between patients with CB and controls. Patients with CB had lower median CK levels than controls (p = 0.034). Weakness was present in 12/17 patients and 12/16 controls (p = 1.0). Concurrent proton-pump inhibitors were co-prescribed in 12/18 (67 %) patients with CB and in 6/16 (38 %) controls (p = 0.17). Development of CB does not appear to be related to cumulative HCQ dose or body weight. Patients with CB frequently have muscle weakness in the absence of MHC1 expression suggesting a role for non-immune mechanisms of muscle injury. A high proportion of patients with CB are co-prescribed proton-pump inhibitors raising the possibility that co-prescription of both agents may disrupt lysosomal function and adversely affect muscle function.

  7. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    International Nuclear Information System (INIS)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu

    2001-01-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52±15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m 2 or higher were assigned to the high dose group and those given doses under 300 mg/m 2 to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3±218.2 mg/m 2 . In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m 2 appeared to be the borderline dose beyond which there were

  8. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  9. Caffeine protects mice against whole-body lethal dose of {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Hebbar, S.A.; Kale, S.P.; Kesavan, P.C. [Biosciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    1999-06-01

    Administration of caffeine (1,3,7-trimethylxanthine), a major component of coffee, to Swiss mice at doses of 80 or 100 mg/kg body weight 60 min prior to whole-body lethal dose of {gamma}-irradiation (7.5 Gy) resulted in the survival of 70 and 63% of animals, respectively, at the above doses in contrast to absolutely no survivors (LD-100/25 days) in the group exposed to radiation alone. Pre-treatment with a lower concentration of caffeine (50 mg/kg) did not confer any radioprotection. The protection exerted by caffeine (80 mg/kg), however, was reduced from 70 to 50% if administered 30 min prior to irradiation. The trend statistics reveal that a dose of 80 mg/kg administered 60 min before whole-body exposure to 7.5 Gy is optimal for maximal radioprotection. However, caffeine (80 mg/kg) administered within 3 min after irradiation offered no protection. While there is documentation in the literature that caffeine is an antioxidant and radioprotector against the toxic pathway of radiation damage in a wide range of cells and organisms, this is the first report demonstrating unequivocally its potent radioprotective action in terms of survival of lethally whole-body irradiated mice. (author)

  10. Age dependency in the absorption of radioactive Iodine (131I) in the thyroid and total body of newborn, pubertal and adult fischer 344 rats

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Endo, Satoru; Fujimoto, Nariaki; Kamiya, Kenji; Ohtaki, Megu; Hayakawa, Norihiko; Takada, Jun; Hoshi, Masaharu

    1998-01-01

    In this study, activities of 131 I in the thyroid, total body and blood were measured for rats of three different ages to estimate the movement of 131 I in the body, the absorbed doses were calculated in the thyroid and total body under the exposed condition of iodine deficiency and sufficiency, and the standard curves for the determination of absorbed doses in the thyroid and total body were obtained for rats of newborn, pubertal and adult. Authors used female rats of Fisher 344 strain in this experiment and set up twelve experimental group of different ages (1, 4 and 9 weeks old), and divided each age group into one standard diet (SD) group and three iodine deficient diet (IDD) groups. Rats were intravenously injected once with 131 I in 0.9% saline with the activity of 0.38, 1.03 and 9.42 kBq per g weight. In the thyroid and total body, the absorbed dose values increased in an injected activity-dependent manner, and those of 1-week-old rats were significantly higher than those of 4- and 9-weeks old rats. The absorbed dose values in IDD-treated groups were higher than those in the SD-treated groups. The speed of 131 I accumulation into the thyroid and that of 131 I excretion from the body was slow in 1-week-old groups. The data also showed that most of injected 131 I distributed in the thyroid and blood in 4- and 9-week-old groups but not in the 1-week-old group, indicating that 131 I is pooled in certain tissues or organs except the thyroid in rats of the 1-week-old group at which the development of the thyroid has not been completed. Standard curves were obtained for the estimation of absorbed doses in the thyroid and total body on the bases of injected activity of 131 I for each age group of rats. These standard curves are to be used in the carcinogenesis experiment which compare the effectiveness of internal with external irradiation under the condition of iodine deficiency or sufficiency in the rats of different ages. (K.H.)

  11. Whole-body CT for lymphoma staging: Feasibility of halving radiation dose and risk by iterative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M., E-mail: mathias.meyer@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Klein, S.A., E-mail: stefan.klein@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Brix, G., E-mail: gbrix@bfs.de [Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Fink, C., E-mail: Christian.Fink@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Pilz, L., E-mail: lothar.pilz@medma.uni-heidelberg.de [Department of Biostatistics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Jafarov, H., E-mail: Hashim.Jafarov@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Hofmann, W.K., E-mail: w.k.hofmann@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoenberg, S.O., E-mail: Stefan.Schoenberg@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); and others

    2014-02-15

    Objectives: Patients with lymphoma are at higher-risk of secondary malignancies mainly due to effects of cancer therapy as well as frequent radiological surveillance. We thus aimed to investigate the objective and subjective image quality as well as radiation exposure and risk of full-dose standard (FDS), full-dose iterative (FDI), and half-dose iterative (HDI) image reconstruction in patients with lymphoma. Material and methods: In 100 lymphoma patients, contrast-enhanced whole-body staging was performed on a dual-source CT. To acquire full-dose and half-dose CT data simultaneously, the total current-time product was equally distributed on both tubes operating at 120 kV. HDI reconstructions were calculated by using only data from one tube. Quantitative image quality was assessed by measuring image noise in different tissues of the neck, thorax, and abdomen. Overall diagnostic image quality was assessed using a 5-point Likert scale. Radiation doses and risks were estimated for a male and female reference person. Results: For all anatomical regions apart from the lungs image noise was significantly lower and the overall subjective image quality significantly better when using FDI and HDI instead of FDS reconstruction (p < 0.05). For the half-dose protocol, the risk to develop a radiation-induced cancer was estimated to be less than 0.11/0.19% for an adult male/female. Conclusions: Image quality of FDI and more importantly of HDI is superior to FDS reconstruction, thus enabling to halve radiation dose and risk to lymphoma patients.

  12. The Total Body Irradiation Schedule Affects Acute Leukemia Relapse After Matched T Cell–Depleted Hematopoietic Stem Cell Transplantation

    International Nuclear Information System (INIS)

    Aristei, Cynthia; Carotti, Alessandra; Palazzari, Elisa; Amico, Lucia; Ruggeri, Loredana; Perrucci, Elisabetta; Falcinelli, Lorenzo; Lancellotta, Valentina; Palumbo, Isabella; Falzetti, Franca; Aversa, Franco; Merluzzi, Mara; Velardi, Andrea; Martelli, Massimo Fabrizio

    2016-01-01

    Purpose: We sought to determine whether the total body irradiation (TBI) schedule affected outcome in patients with acute leukemia in complete remission who received T cell–depleted allogeneic hematopoietic stem cell transplantation from HLA identical siblings. Methods and Materials: The study recruited 55 patients (median age, 48 years; age range, 20-66 years; 30 men and 25 women; 34 with acute myeloid leukemia and 21 with acute lymphoid leukemia). Hyperfractionated TBI (HTBI) (1.2 Gy thrice daily for 4 days [for a total dose of 14.4 Gy] from day −12 to day −9) was administered to 29 patients. Single-dose TBI (STBI) (8 Gy, at a median dose rate of 10.7 cGy/min on day −9) was given to 26 patients. Results: All patients achieved primary, sustained engraftment with full donor-type chimerism. At 10 years, the overall cumulative incidence of transplant-related mortality was 11% (SE, ±0.1%). It was 7% (SE, ±0.2%) after HTBI and 15% (SE, ±0.5%) after STBI (P=.3). The overall cumulative incidence of relapse was 33% (SE, ±0.5). It was 13% (SE, ±0.5%) after HTBI and 46% (SE, ±1%) after STBI (P=.02). The overall probability of disease-free survival (DFS) was 59% (SE, ±7%). It was 67% (SE, ±0.84%) after HTBI and 37% (SE, ±1.4%) after STBI (P=.01). Multivariate analyses showed the TBI schedule was the only risk factor that significantly affected relapse and DFS (P=.01 and P=.03, respectively). Conclusions: In patients with acute leukemia, HTBI is more efficacious than STBI in eradicating minimal residual disease after HLA-matched T cell–depleted hematopoietic stem cell transplantation, thus affecting DFS.

  13. The Total Body Irradiation Schedule Affects Acute Leukemia Relapse After Matched T Cell–Depleted Hematopoietic Stem Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Aristei, Cynthia, E-mail: cynthia.aristei@unipg.it [Radiation Oncology Section, Department of Surgery and Biomedical Sciences, University of Perugia and Perugia General Hospital, Perugia (Italy); Carotti, Alessandra [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy); Palazzari, Elisa [Radiation Oncology Section, University of Perugia, Perugia (Italy); Amico, Lucia; Ruggeri, Loredana [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy); Perrucci, Elisabetta; Falcinelli, Lorenzo [Radiation Oncology Division, Perugia General Hospital, Perugia (Italy); Lancellotta, Valentina [Radiation Oncology Section, University of Perugia, Perugia (Italy); Palumbo, Isabella [Radiation Oncology Section, Department of Surgery and Biomedical Sciences, University of Perugia and Perugia General Hospital, Perugia (Italy); Falzetti, Franca [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy); Aversa, Franco [Hematology and Bone Marrow Transplant Unit, Department of Clinical and Experimental Medicine, Parma General Hospital and University, Parma (Italy); Merluzzi, Mara; Velardi, Andrea; Martelli, Massimo Fabrizio [Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, Perugia General Hospital and University, Perugia (Italy)

    2016-11-15

    Purpose: We sought to determine whether the total body irradiation (TBI) schedule affected outcome in patients with acute leukemia in complete remission who received T cell–depleted allogeneic hematopoietic stem cell transplantation from HLA identical siblings. Methods and Materials: The study recruited 55 patients (median age, 48 years; age range, 20-66 years; 30 men and 25 women; 34 with acute myeloid leukemia and 21 with acute lymphoid leukemia). Hyperfractionated TBI (HTBI) (1.2 Gy thrice daily for 4 days [for a total dose of 14.4 Gy] from day −12 to day −9) was administered to 29 patients. Single-dose TBI (STBI) (8 Gy, at a median dose rate of 10.7 cGy/min on day −9) was given to 26 patients. Results: All patients achieved primary, sustained engraftment with full donor-type chimerism. At 10 years, the overall cumulative incidence of transplant-related mortality was 11% (SE, ±0.1%). It was 7% (SE, ±0.2%) after HTBI and 15% (SE, ±0.5%) after STBI (P=.3). The overall cumulative incidence of relapse was 33% (SE, ±0.5). It was 13% (SE, ±0.5%) after HTBI and 46% (SE, ±1%) after STBI (P=.02). The overall probability of disease-free survival (DFS) was 59% (SE, ±7%). It was 67% (SE, ±0.84%) after HTBI and 37% (SE, ±1.4%) after STBI (P=.01). Multivariate analyses showed the TBI schedule was the only risk factor that significantly affected relapse and DFS (P=.01 and P=.03, respectively). Conclusions: In patients with acute leukemia, HTBI is more efficacious than STBI in eradicating minimal residual disease after HLA-matched T cell–depleted hematopoietic stem cell transplantation, thus affecting DFS.

  14. Variable beam dose rate and DMLC IMRT to moving body anatomy

    International Nuclear Information System (INIS)

    Papiez, Lech; Abolfath, Ramin M.

    2008-01-01

    Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used. Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.

  15. Variable beam dose rate and DMLC IMRT to moving body anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Papiez, Lech; Abolfath, Ramin M. [Department of Radiation Oncology, UTSouthwestern Medical Center, Dallas, Texas 75390 (United States)

    2008-11-15

    Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used. Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.

  16. Dose impact of a carbon fiber couch for stereotactic body radiation therapy of lung tumors

    International Nuclear Information System (INIS)

    Tominaga, Hirofumi; Kanetake, Nagisa; Kawasaki, Keiichi; Iwashita, Yuki; Sakata, Junichi; Okuda, Tomoko; Araki, Fujio; Shimohigashi, Yoshinobu; Tomiyama, Yuki

    2013-01-01

    The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned with and without ICT in a lung tumor phantom and ten cases of clinical lung tumors. The results were analyzed from isocenter doses and a dose-volume histogram (DVH): D 95 , D mean , V 20 , V 5 , homogeneity index (HI), and conformity index (CI). The dose attenuation of the ICT modeled with TPS agreed to within ±1% of the actually measured values. The isocenter doses, D 95 and D mean with and without ICT showed differences of 4.1-5% for posterior single field and three fields in the phantom study, and differences of 0.6-2.4% for five fields and rotation in the phantom study and six fields in ten clinical cases. The dose impact of ICT was not significant for five or more fields in SBRT. It is thus possible to reduce the dose effect of ICT by modifying the beam angle and beam weight in the treatment plan. (author)

  17. Initial dose of vancomycin based on body weight and creatinine clearance to minimize inadequate trough levels in Japanese adults.

    Science.gov (United States)

    Maki, N; Ohkuchi, A; Tashiro, Y; Kim, M R; Le, M; Sakamoto, T; Matsubara, S; Hakamata, Y

    2012-10-01

    Our aims were to elucidate the factors that affected vancomycin (VCM) serum trough levels and to find the optimal initial dose based on creatinine clearance (CrCl) and body weight (BW) to minimize inadequate trough levels in a retrospective observational study among Japanese adults. One hundred and six inpatients, in whom VCM trough levels were measured after completing the third dosing, were consecutively recruited into our study in a tertiary hospital. We considered the frequency of initial VCM total daily dose, CrCl, and BW were independent risk factors of VCM trough levels. In patients with CrCl ≥30 and level of ≥20 mcg/mL, regardless of BW. In patients with CrCl ≥50 mL/min, 2 g/day yielded low frequencies of a trough level of initial total daily dose may be 1 g/day in patients with CrCl ≥30 and <50 mL/min regardless of BW and 2 g/day in patients weighing <55 kg with CrCl ≥50 mL/min among Japanese adults.

  18. Comparison of wrist and head TLD doses with whole body TLD doses during high active jobs at RAPS-5 and 6

    International Nuclear Information System (INIS)

    Sharma, Ravi Kant; Abhishek, Neel; Kakkar, Amandeep; Kumar, Rajesh

    2016-01-01

    In nuclear power plant radiation dose monitoring and assessment is done to control the individual dose and station collective doses. While performing a radioactive job on systems or equipment with significant radiation levels of non uniform and beaming radiation; there is potential of localized exposure to extremities hands in particular and lens of the eye in comparison to other body parts. Keeping in view of this, separate equivalent dose limit to the extremities (hands and feet) and lens of the eye are defined by ICRP. A study has been carried out during Biennial Shutdown (BSD) of RAPS-6 in the month of October-2015 to establish the correlation between the doses received by chest TLDs which is being used to estimate the effective whole body dose of the radiation worker and the doses received in wrist TLD and head TLDs which are being used to monitor the equivalent dose received by hands and lens of the eye with applying a suitable correction factor

  19. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation.

    Science.gov (United States)

    Sweet, Tara B; Hurley, Sean D; Wu, Michael D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2016-12-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137 Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel.

  20. Calibration of semiconductors diodes for in vivo dosimetry in total body irradiation treatments; Calibracao de diodos semicondutores para dosimetria in vivo em tratamentos de irradiacao de corpo inteiro

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernanda F.; Costa, Alessandro M.; Ghilardi Netto, Thomaz, E-mail: ferretti.oliveira@gmail.com [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias e Letras. Departamento de Fisica; Amaral, Leonardo L. [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2012-08-15

    This paper presents the results of in vivo dosimetry with p-type semiconductors diodes, EDP-15 (Scanditronix Wellhoefer) of two patients who underwent total body irradiation treatments, at Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto University of Sao Paulo (HCFMRP-USP). The diodes were well calibrated and the calibration factors were determined with the aid of a reference ionization chamber (FC065, IBA dosimetry, sensitive volume of 0.65 cm{sup 3}).The calibration was performed in a Total Body Irradiation (TBI) setup, using solid water phantoms. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings (half of the lateral thickness). The response difference between diode readings and the prescribed dose for both treatments was below 4%. This difference is in agreement as recommended by International Commission on Radiation Units (ICRU), which is {+-}5%. (author)

  1. Should dosing of rocuronium in obese patients be based on ideal or corrected body weight?

    DEFF Research Database (Denmark)

    Meyhoff, Christian S; Lund, Jørgen; Jenstrup, Morten T

    2009-01-01

    BACKGROUND: Pharmacokinetic studies in obese patients suggest that dosing of rocuronium should be based on ideal body weight (IBW). This may, however, result in a prolonged onset time or compromised conditions for tracheal intubation. In this study, we compared onset time, conditions for tracheal...... intubation, and duration of action in obese patients when the intubation dose of rocuronium was based on three different weight corrections. METHODS: Fifty-one obese patients, with a median (range) body mass index of 44 (34-72) kg/m2, scheduled for laparoscopic gastric banding or gastric bypass under...... propofol-remifentanil anesthesia were randomized into three groups. The patients received rocuronium (0.6 mg/kg) based on IBW (IBW group, n = 17), IBW plus 20% of excess weight (corrected body weight [CBW]20% group, n = 17), or IBW plus 40% of excess weight (CBW40% group, n = 17). Propofol was administered...

  2. Creatine Supplementation Increases Total Body Water in Soccer Players: a Deuterium Oxide Dilution Study.

    Science.gov (United States)

    Deminice, R; Rosa, F T; Pfrimer, K; Ferrioli, E; Jordao, A A; Freitas, E

    2016-02-01

    This study aimed to evaluate changes in total body water (TBW) in soccer athletes using a deuterium oxide dilution method and bioelectrical impedance (BIA) formulas after 7 days of creatine supplementation. In a double-blind controlled manner, 13 healthy (under-20) soccer players were divided randomly in 2 supplementation groups: Placebo (Pla, n=6) and creatine supplementation (CR, n=7). Before and after the supplementation period (0.3 g/kg/d during 7 days), TBW was determined by deuterium oxide dilution and BIA methods. 7 days of creatine supplementation lead to a large increase in TBW (2.3±1.0 L) determined by deuterium oxide dilution, and a small but significant increase in total body weight (1.0±0.4 kg) in Cr group compared to Pla. The Pla group did not experience any significant changes in TBW or body weight. Although 5 of 6 BIA equations were sensitive to determine TBW changes induced by creatine supplementation, the Kushner et al. 16 method presented the best concordance levels when compared to deuterium dilution method. In conclusion, 7-days of creatine supplementation increased TBW determined by deuterium oxide dilution or BIA formulas. BIA can be useful to determine TBW changes promoted by creatine supplementation in soccer athletes, with special concern for formula choice. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi

    2017-03-01

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  4. Total body irradiation: what schedule(s). Les irradiations corporelles totales: quel(s) schema(s)

    Energy Technology Data Exchange (ETDEWEB)

    Cosset, J M [Institut Curie, 75 - Paris (France)

    1993-01-01

    In this article, the author explains why a whole-body irradiation is still an essential step before a bone marrow graft. He presents irradiation protocols for acute myeloid leukemia and chronic myeloid leukemia. 14 refs.

  5. Long-Term Effects of Stem Cells on Total-Body Irradiated Mice

    International Nuclear Information System (INIS)

    Vyalkina, M V; Alchinova, I B; Yakovenko, E N; Medvedeva, Yu S; Saburina, I N; Karganov, M Yu

    2017-01-01

    C57Bl/6 mice were exposed to γ-radiation in a sublethal dose of 7.5 Gy. In 3 hours injection 10 6 /mouse of bone marrow multipotent mesenchymal stromal cells stem cells intravenously to experimental group was done. Methods used: body weight measurement, open field behavior, subfraction composition of blood serum (laser correlation spectroscopy, LCS), histological examination of the spleen, liver, and pancreas, count of T and B cells, white blood formula. After 1.5 and 3 months the general trend towards intermediate position of the parameters observed in the experimental between those in intact and irradiated controls attests to partial protective/restorative effects of the injected cells. (paper)

  6. Recovery of the Erythropoietin-Sensitive Stem-Cell Population following Total-Body X-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Byron, J. W. [Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester (United Kingdom)

    1968-08-15

    Erythropoietin acts upon haemopoietic stem cells to initiate their differentiation into the erythroid series. This effect may be used in polycythaemic mice to estimate changes in the erythropoietin-sensitive stem-cell population following total-body irradiation (TBR). Generally, single doses of erythropoietin, less than that needed for maximum stem-cell response, are used to estimate changes in the stem-cell population. The validity of results using this test is based upon accepting several assumptions regarding erythropoietin kinetics. These are: (a) the contribution of endogenous erythropoietin is always negligible; (b) the origin of the dose-response curve to erythropoietin alters only because of changes in stem-cell numbers; (c) the proportion of stem cells responding to a given concentration of erythropoietin is independent of stem-cell numbers; (d) the slope of the dose-response curve does not alter; and (e) competition between erythropoietin and other factors for the stem cells remains unchanged. The studies to be reported indicate that some of these assumptions m a y not always be valid. Following 150 rad TBR, changes in erythropoietin dose-response curves were not always due to changes in the size of the stem-cell population, but also due to changes in erythropoietin kinetics. Changes in erythropoietin kinetics could be corrected for by using doses of erythropoietin which at any particular time after TBR gave maximum stem-cell response; through full dose-response studies, the nature of changes in erythropoietin kinetics following TBR could be established. These studies appear to explain discrepancies in results obtained in different laboratories using the erythropoietin test. The effect of 150 rad TBR on the erythropoietin-sensitive stem-cell population is an initial depression within 30 min to 20% of normal followed by a second depression (post-irradiation dip) at about 12 h. Twenty-four hours after TBR there is a recovery to the initial depression. This

  7. Comparison of total body irradiation-based or non-total body irradiation-based conditioning regimens for allogeneic stem cell transplantation in pediatric leukemia patients

    Directory of Open Access Journals (Sweden)

    Sang Jeong Kim

    2010-04-01

    Full Text Available Purpose : This study aims to compare the outcome of total body irradiation (TBI- or non-TBI-containing conditioning regimens for leukemia in children. Methods : We retrospectively evaluated 77 children conditioned with TBI (n=40 or non-TBI (n=37 regimens, transplanted at Chonnam National University Hospital between January 1996 and December 2007. The type of transplantation, disease status at the time of transplant, conditioning regimen, engraftment kinetics, development of graft-versus-host disease (GVHD, complications, cause of deaths, overall survival (OS, and event-free survival (EFS were compared between the 2 groups. Results : Among 34 patients with acute lymphoblastic leukemia (ALL, 28 (82.4% were in the TBI group, while 72.7% (24/33 of patients with myeloid leukemia were in the non-TBI group. Although the 5-year EFS of the 2 groups was similar for all patients (62% vs 63%, the TBI group showed a better 5-year EFS than the non-TBI group when only ALL patients were analyzed (65% vs 17%; P =0.005. In acute myelogenous leukemia patients, the non-TBI group had better survival tendency (73% vs 38%; P=0.089. The incidence of GVHD, engraftment, survival, cause of death, and late complications was not different between the 2 groups. Conclusion : The TBI and non-TBI groups showed comparable results, but the TBI group showed a significantly higher 5-year EFS than the non-TBI group in ALL patients. Further prospective, randomized controlled studies involving larger number of patients are needed to assess the late-onset complications and to compare the socioeconomic quality of life.

  8. Fetal liver transplantation in 2 patients with acute leukaemia after total body irradiation

    International Nuclear Information System (INIS)

    Lucarelli, G.; Izzi, T.; Porcellini, A.; Delfini, C.; Galimberti, M.; Moretti, L.; Polchi, P.; Agostinelli, F.; Andreani, M.; Manna, M.; Dallapiccola, B.

    1982-01-01

    2 patients with acute leukaemia in relapse were transplanted with fetal liver cells following a conditioning regimen of cyclophosphamide (120 mg/kg) and total body irradiation (1000 r). Each patient achieved a remission with haematopoietic recovery that was rapid in one case and delayed in the other. In one case there was evidence of chimerism as demonstrated by the presence of the XYY karyotype of the donor fetus in 20 % of marrow metaphases, by the presence of double Y bodies in the peripheral blood, by the appearance of new HLA-antigens, and by red cell isoenzyme phenotypes of donor origin. In the second case there was prompt haemotopoietic recovery and the appearance of red cell isoenzyme phenotypes of donor origin. Survival was 153 and 30 d, respectively, and both patients died of interstitial pneumonia without evidence of graft versus host disease. (author)

  9. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation

    International Nuclear Information System (INIS)

    Xiao Yao; Guo Hong-Xia; Zhang Feng-Qi; Zhao Wen; Wang Yan-Ping; Zhang Ke-Ying; Ding Li-Li; Luo Yin-Hong; Wang Yuan-Ming; Fan Xue

    2014-01-01

    Synergistic effects of the total ionizing dose (TID) on the single event upset (SEU) sensitivity in static random access memories (SRAMs) were studied by using protons. The total dose was cumulated with high flux protons during the TID exposure, and the SEU cross section was tested with low flux protons at several cumulated dose steps. Because of the radiation-induced off-state leakage current increase of the CMOS transistors, the noise margin became asymmetric and the memory imprint effect was observed. (interdisciplinary physics and related areas of science and technology)

  10. Total dose and dose-rate effects on start-up current in anti-fuse FPGA

    International Nuclear Information System (INIS)

    Wang, J.; Wong, W.; McCollum, J.; Cronquist, B.; Katz, R.; Kleyner, I.; Kleyner, F.

    1999-01-01

    Radiation enhanced start-up current (RESC) in an anti-fuse FPGA, A1280A, is thoroughly investigated and a comprehensive transistor-level mechanism is proposed. Low dose-rate testing, appropriate for civilian space applications, and annealing at room temperature shows RESC to be negligible for the lot of parts tested with a fixed power supply slew rate. (authors)

  11. High dietary protein intake is associated with an increased body weight and total death risk.

    Science.gov (United States)

    Hernández-Alonso, Pablo; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Corella, Dolores; Estruch, Ramón; Fitó, Montserrat; Arós, Fernando; Gómez-Gracia, Enrique; Fiol, Miquel; Lapetra, José; Basora, Josep; Serra-Majem, Lluis; Muñoz, Miguel Ángel; Buil-Cosiales, Pilar; Saiz, Carmen; Bulló, Mònica

    2016-04-01

    High dietary protein diets are widely used to manage overweight and obesity. However, there is a lack of consensus about their long-term efficacy and safety. Therefore, the aim of this study was to assess the effect of long-term high-protein consumption on body weight changes and death outcomes in subjects at high cardiovascular risk. A secondary analysis of the PREDIMED trial was conducted. Dietary protein was assessed using a food-frequency questionnaire during the follow-up. Cox proportional hazard models were used to estimate the multivariate-adjusted hazard ratio (HR) and 95% confidence intervals (95%CI) for protein intake in relation to the risk of body weight and waist circumference changes, cardiovascular disease, cardiovascular death, cancer death and total death. Higher total protein intake, expressed as percentage of energy, was significantly associated with a greater risk of weight gain when protein replaced carbohydrates (HR: 1.90; 95%CI: 1.05, 3.46) but not when replaced fat (HR: 1.69; 95%CI: 0.94, 3.03). However, no association was found between protein intake and waist circumference. Contrary, higher total protein intake was associated with a greater risk of all-cause death in both carbohydrate and fat substitution models (HR: 1.59; 95%CI: 1.08, 2.35; and HR: 1.66; 95%CI: 1.13, 2.43, respectively). A higher consumption of animal protein was associated with an increased risk of fatal and non-fatal outcomes when protein substituted carbohydrates or fat. Higher dietary protein intake is associated with long-term increased risk of body weight gain and overall death in a Mediterranean population at high cardiovascular risk. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. The effect of increased body mass index on patient dose in paediatric radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ladia, Arsenoi P., E-mail: arsenoh@gmail.com; Skiadopoulos, Spyros G., E-mail: skiado@upatras.gr; Karahaliou, Anna N., E-mail: akarahaliou@upatras.gr; Messaris, Gerasimos A.T., E-mail: messaris@upatras.gr; Delis, Harry B., E-mail: hdelis@gmail.com; Panayiotakis, George S., E-mail: panayiot@upatras.gr

    2016-10-15

    Radiation protection is of particular importance in paediatric radiology. In this study, the influence of increased body mass index (BMI) in radiation dose and associated risk was investigated for paediatric patients aged 5–6.5 years, undergoing chest (64 patients) or abdomen (64 patients) radiography. Patients were categorized into normal and overweight, according to the BMI classification scheme. Entrance surface dose (ESD), organ dose, effective dose (ED) and risk of exposure induced cancer death (REID) were calculated using the Monte Carlo based code PCXMC 2.0. Statistically significant increase in patient radiation dose and REID was obtained for overweight patients as compared to normal ones, in both chest and abdomen examinations (Wilcoxon singed-rank test for paired data, p < 0.001). The percentage increase in overweight as compared to normal patients of ESD, organ dose (maximum value), ED and REID was 13.6%, 24.4%, 18.9% and 20.6%, respectively, in case of chest radiographs. Corresponding values in case of abdomen radiographs were 15.0%, 24.7%, 21.8% and 19.8%, respectively. An increased BMI results in increased patient radiation dose in chest and abdomen paediatric radiography.

  13. Absorbed dose to the patient by computerized whole body X-ray tomography

    International Nuclear Information System (INIS)

    Krauss, O.; Schuhmacher, H.

    1977-01-01

    The absorbed dose to the patient was measured for several medical investigations by computerized whole body scanning. An Alderson-phantom mounted with LiF-TLD was irradiated with a Delta-Scan (Ohio-Nuclear, 120 kV, 30 mA). The integral dose to the brain during a full examination (6 scans, filtration 3 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 3.2 rd and at the exit 0.6 rd. The dose to the eyes is 0.7 rd and to the thyroid gland 0.03 rd. The integral dose to the trunk (5 scans in the region of liver and kidneys, filtration 6 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 2.4 rd and at the exit 0.25 rd. The dose to the gonads is less than 2 and 4 mrd if the distance between the last scan and the gonads is more than 15 cm

  14. The modifying effect of ibuprofen on total body irradiation-induced elevation of oxidative reactions in male hamsters

    International Nuclear Information System (INIS)

    Dokmeci, D.; Akpolat, M.; Aydogdu, N.; Uzal, C.; Turan, N.F.

    2004-01-01

    Radiation therapy plays an important role in curative and palliative treatments of malignant diseases. Because of the lipid component in the membrane, lipid peroxidation has been reported to be particularly susceptible to radiation damage. However, lipid peroxidation is reversed by cellular defense mechanisms, and the use of various antioxidants involved in these mechanisms have recently been suggested to be beneficial. It is known that ibuprofen has antioxidative and/or free radical scavenging activities. Our purpose is to examine the antioxidant capacity of ibuprofen in hamsters undergoing total body irradiation (TBI). Ibuprofen was given by gavage at dose of 10 mg/kg for 15 consecutive days. After this period, animals were exposed to TBI 60 Co gamma irradiation with a single dose of 8 Gy. After 24 h radiation exposure, the hamsters were killed and samples were taken from blood. Plasma thiobarbituric acid reactive substances (TBARS) increased significantly after radiation exposure, and ibuprofen diminished the amounts of TBARS. Significant protection of the radiation-induced changes in the activities of superoxide dismutase (SOD) and catalase was also recorded in the blood of ibuprofen-treated and -irradiated hamsters. These results suggest that ibuprofen with its antioxidant capacity could play a modulatory role against cellular damage effected by free radicals induced by TBI. (author)

  15. Immediate total-body CT scanning versus conventional imaging and selective CT scanning in patients with severe trauma (REACT-2): a randomised controlled trial.

    Science.gov (United States)

    Sierink, Joanne C; Treskes, Kaij; Edwards, Michael J R; Beuker, Benn J A; den Hartog, Dennis; Hohmann, Joachim; Dijkgraaf, Marcel G W; Luitse, Jan S K; Beenen, Ludo F M; Hollmann, Markus W; Goslings, J Carel

    2016-08-13

    one in a patient who was excluded after random allocation. All five patients died. Diagnosing patients with an immediate total-body CT scan does not reduce in-hospital mortality compared with the standard radiological work-up. Because of the increased radiation dose, future research should focus on the selection of patients who will benefit from immediate total-body CT. ZonMw, the Netherlands Organisation for Health Research and Development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Increased body mass index is a predisposition for treatment by total hip replacement

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Sonne-Holm, Stig

    2005-01-01

    We investigated the radiological and epidemiological data of 4,151 subjects followed up from 1976 to 2003 to determine individual risk factors for hip osteoarthritis (OA), hip pain and/or treatment by total hip replacement (THR). Pelvic radiographs recorded in 1992 were assessed for evidence of hip......-joint degeneration and dysplasia. Sequential body mass index (BMI) measurements from 1976 to 1992, age, exposure to daily lifting and hip dysplasia were entered into logistic regression analyses. The prevalence of hip dysplasia ranged from 5.4% to 12.8% depending on the radiographical index used. Radiological hip OA...

  17. Indication of total body irradiation in adult allogeneic bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Masaharu (Sapporo Hokuyu Hospital (Japan). Artificial Organ and Transplantation Hospital)

    1992-10-01

    Indication of total body irradiation (TBI) in adult allogeneic bone marrow transplantation was discussed in comparison with non-TBI method of busulfan and cyclophosphamide (BU+CY). Each method has unique advantages and disadvantages. Concerning adverse effects of interstitial pneumonia, liver dysfunction and so on, there are no significant differences in both methods. TBI method should be preferably indicated for lymphatic leukemias and leukemias involving central nervous systems. It is important to clarify what kinds of combination regimen depending on the type and the stage of disease are most suitable for the longer survival of patients with leukemia or aplastic anemia by multicentric randomized study. (author).

  18. An Acute Transverse Myelitis Attack after Total Body Irradiation: A Rare Case

    Directory of Open Access Journals (Sweden)

    Muzaffer Keklik

    2013-01-01

    Full Text Available Total body irradiation (TBI combined with chemotherapy is widely used as a pretreatment regimen of bone marrow transplantation (BMT in hematologic disorders. Late complications related to TBI as part of the conditioning regimen for hematopoietic stem cell transplantation have been revealed. Acute transverse myelitis (ATM is a neurological syndrome characterized by disorder of motor, sensorial, and autonomic nerves, and tracts at medulla spinalis, which is resulted from involvement of spinal cord. In this paper, we presented an ATM attack developed after TBI in a patient with acute lymphoblastic leukemia (ALL as it is a rarely seen case.

  19. Revisiting Biomarkers of Total-Body and Partial-Body Exposure in a Baboon Model of Irradiation.

    Directory of Open Access Journals (Sweden)

    Marco Valente

    Full Text Available In case of a mass casualty radiation event, there is a need to distinguish total-body irradiation (TBI and partial-body irradiation (PBI to concentrate overwhelmed medical resources to the individuals that would develop an acute radiation syndrome (ARS and need hematologic support (i.e., mostly TBI victims. To improve the identification and medical care of TBI versus PBI individuals, reliable biomarkers of exposure could be very useful. To investigate this issue, pairs of baboons (n = 18 were exposed to different situations of TBI and PBI corresponding to an equivalent of either 5 Gy 60Co gamma irradiation (5 Gy TBI; 7.5 Gy left hemibody/2.5 right hemibody TBI; 5.55 Gy 90% PBI; 6.25 Gy 80% PBI; 10 Gy 50% PBI, 15 Gy 30% PBI or 2.5 Gy (2.5 Gy TBI; 5 Gy 50% PBI. More than fifty parameters were evaluated before and after irradiation at several time points up to 200 days. A partial least square discriminant analysis showed a good distinction of TBI from PBI situations that were equivalent to 5 Gy. Furthermore, all the animals were pooled in two groups, TBI (n = 6 and PBI (n = 12, for comparison using a logistic regression and a non parametric statistical test. Nine plasmatic biochemical markers and most o