WorldWideScience

Sample records for dose rate strontium-90

  1. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.

    2011-07-20

    The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarily attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.

  2. Determination of the uncertainties in radiation doses from ingestion of strontium-90

    Science.gov (United States)

    Apostoaei, Andrei Iulian

    Quantification of the uncertainties in the internal dosimetry is important because it can impact the outcome of dose reconstruction, risk assessment or epidemiological studies. This research focused on determination of the uncertainties in the dose factors from a single ingestion of 90Sr by adults, and analyzed the changes with age and the effect of gender. The uncertainties in the estimated dose factors are a factor of 6 for the bone surface, 5 for the red bone marrow, 2.5 for bladder and stomach, 2.2 for the small intestine, 2.1 for the upper large intestine and 2.7 for the lower large intestine. For the rest of the organs the uncertainty is a factor of 3. Only four parameters of the biokinetic model showed an age-dependency within the adult age group: the fractional transfers of strontium from plasma to cortical and trabecular bone, and the removal rates from the cortical and trabecular bone, respectively. When age-dependent biokinetic parameters were used, the estimated dose-factors are very close to the dose factors obtained using age-independent kinetics (within 40%). Thus, the dose factors based on age-independent parameters should suffice for most practical purposes. The dose factors and the associated uncertainties were also calculated as a function of age-at-exposure and attained age. These age dependent curves can be used for estimating doses from continuous intakes, or doses delivered over a limited portion of time. In addition to the committed dose, an expected dose is also estimated in this work. The expected dose is calculated using the dose rate weighted by the probability of surviving up to the age when the dose-rate is delivered. For exposure at young ages the expected dose and the committed dose are similar, but the committed dose decreases to zero when exposure occurs close to age 70, while the expected dose has elevated values pass age 70. No gender differences were found for bone surface, for red bone marrow, and the large intestine. The doses

  3. Vitrification of strontium-90 fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M.; Schulz, W.W.

    1977-04-01

    At Hanford, strontium-90 is removed from high-level nuclear fuel reprocessing waste and converted to strontium-90 fluoride. This /sup 90/SrF/sub 2/ is doubly encapsulated in high-integrity containers which are placed under water in monitored storage pools. Conversion of /sup 90/SrF/sub 2/ to a more immobile compound may be necessary and/or desirable as part of the overall plan for the long-term management of Hanford Defense Wastes. Glasses containing up to 40 mass percent SrF/sub 2/ and having leach rates in the range 1 x 10/sup -8/ to 1 x 10/sup -5/ gram Sr/(m/sup 2/ . s) (1 x 10/sup -7/ to 1 x 10/sup -4/ g Sr/cm/sup 2/ . day)) have now been prepared. From 0.2 to 5 percent of the fluorine is volatilized during the melting of the glass batch at temperatures up to 1500/sup 0/K. At present, the heat generation limit for commercial glasses stored at a nuclear waste repository is 5 kW per canister. All glasses described here would exceed that limit by more than a factor of five. The stored /sup 90/SrF/sub 2/ may be treated separately from the bulk of Hanford waste, in which case it would be diluted to an acceptable power level with inert chemicals in the glass batch. Another option is to blend the /sup 90/SrF/sub 2/ with the bulk of the other Hanford wastes when those wastes are converted to some immobile form.

  4. Strontium-90 at the Hanford Site and its ecological implications

    Energy Technology Data Exchange (ETDEWEB)

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  5. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    HOHL, T.; PLACE, D.; WITTMAN, R.

    2004-08-05

    A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.

  6. Investigations into the transfer of cesium 137 and strontium 90 in selected exposure pathways. Final report; Untersuchungen ueber den Transfer von Caesium 137 und Strontium 90 in ausgewaehlten Belastungspfaden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Roemmelt, R.; Hiersche, L.; Wirth, E.

    1991-12-01

    This research project investigates the behaviour of radiocesium and strontium 90 in natural conifer forest sites and derives corresponding transfer factors for radioecological calculations. As a point of particular interest the question was investigated in how far the requirements of the different mushroom species and the properties of the forest soil bear on the dynamics and transfer rate of radiocesium and strontium 90. To complement the investigations, autotrophic plants were included. The results of these studies are compared with the behaviour of the same radionuclides on farmland. The differences are discussed. (orig./HP). [Deutsch] Im Forschungsvorhaben wurde das Verhalten von Radiocaesium und Strontium 90 in den natuerlichen Nadelstandorten untersucht und entsprechende Transferfaktoren fuer radiooekologische Berechnungen abgeleitet. Besondere Aufmerksamkeit galt der Frage, inwieweit die Lebensweise der verschiedenen Pilzspezies und die Waldbodeneigenschaften die Dynamik und die Transferrate von Radiocaesium und Strontium 90 beeinflussen. Als Ergaenzung wurden autotrophe Pflanzen in die Untersuchungen einbezogen. Die Ergebnisse dieser Untersuchungen werden mit dem Verhalten dieser Radionuklide auf landwirtschaftlich genutzten Flaechen verglichen und die Unterschiede diskutiert. (orig./HP).

  7. Calcium and Strontium in Swedish Waters and Fish, and Accumulation of Strontium-90

    Energy Technology Data Exchange (ETDEWEB)

    Agnedal, P.O.

    1966-04-15

    The purpose of this study has been to investigate the correlation between calcium and strontium in fish in relation to the concentration of these elements in the water. An investigation of the uptake of strontium-90 has also been made and permissible levels of strontium-90 in the water is calculated based upon the uptake in fish muscle tissues. Lakes with calcium concentrations between 2 - 63 mg/l have been studied and samples from the Baltic coastal water are also included. Three fish species are studied, viz. pike (Esox lucius (L.)), perch (Perca fluviatilis (L.)) and roach (Leuciscus rutilus (L.)). Bones, muscle tissues and skin + scales have been analysed. Strontium-90 measurements have been made showing an increase in both water and fish. Calculations show that in water with about 2 mg Ca/l a 10-fold increase of the existing strontium-90 level might give strontium-90 concentrations in fish muscle tissues close to what is permissible. In lakes with calcium concentrations 20 - 40 mg/l the permissible levels for drinking water will be exceeded before the fish consumption would have to be restricted.

  8. Strontium-90 content of human bone collected in 1967; Teneur en strontium 90 d'os humains preleves en 1967

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, L.; Patti, F. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report follows report CEA-R-3381 and presents the strontium 90 content of human bones collected in 1967 in the Paris area. The main trend is much the same as during 1966; contamination levels are falling down in infants up to 5 year old. Beyond this age, the values are the same or experience a slight increase. (authors) [French] Ce rapport fait suite au rapport CEA-R-3381 et indique les teneurs en strontium 90 d'os humains preleves au cours de l'annee 1967 dans la region parisienne. L'evolution generale des resultats est sensiblement la meme qu'au cours de l'annee 1966; nous assistons a une baisse de la contamination chez les enfants jusqu'a 5 ans. Au-dela de cet ge, les valeurs sont les memes, ou en legere augmentation. (auteurs)

  9. Evaluation of excess carbon 14 and strontium 90 data for suitability to test two-dimensional stratospheric models

    Science.gov (United States)

    Johnston, Harold

    1989-12-01

    From reports by the Atomic Energy Commission concerning the atmospheric distribution of radionucleides following the nuclear bomb tests of 1958-1959 and 1961-1962, excess carbon 14 data from the period 1959-1970 and strontium 90 data from 1963-1967 are reviewed for possible use as inert tracers to test two-dimensional stratospheric-tropospheric models. Contrary to some views expressed in the literature, it is concluded that the carbon 14 data are suitable to test (1) the altitude (at 4 latitudes) of the transition region between troposphere and stratosphere with respect to transport of an inert tracer, (2) some aspects of transport between the northern and southern hemispheres, (3) horizontal and vertical transport as the vertical profile between 4.5 and 33 km and at 31°N evolves from a skewed Gaussian in 1963 to an almost stair-step profile in 1966, and (4) the long-term one-dimensional aspect of a two-dimensional model over the period 1966-1970. More tentatively, it is concluded that the strontium 90 data may be used as a model for the distribution and gross settling rate of the natural stratospheric aerosol layer between 15 and 25 km. Data from difficultly obtained laboratory reports and suggested initial conditions and boundary conditions are included as a microfiche supplement to this paper.

  10. In-vivo determination of strontium 90 and cesium 137 in exposed persons in the Tscheljabinsk region (southern Ural); In-vivo-Bestimmung von Strontium 90 und Caesium 137 an exponierten Personen in der Region Tscheljabinsk (Suedural)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeffmann, E. [Bayerisches Landesamt fuer Umweltschutz, Muenchen (Germany). Referat Betrieb der LfU-Messnetzzentrale; Zeising, H. [Bayerisches Landesamt fuer Umweltschutz, Muenchen (Germany). Referat Radioaktivitaetsmesswesen

    1994-12-31

    While the Russians have been busy for decades determining the doses received by, and resulting health effects to, the concerned population - which falls into three groups: (a) workers at the Majak plutonium factory, (b) the population along the Techa river, and (c) the population from the area contaminated by the Kyschtym accident - it is also true that the integral strontium 90 exposure has been, and is being, determined subsequently via whole-body bremsstrahlung measurement (both on the part of the Russians and as a German scheme in 1993). In accordance with what was indicated by the Russian side, the Majak workers were found to have a distinctly higher risk of cancer. The population along the Techa river, too, with an average dose of 0.4 Gy for the red bone marrow, showed a significant increase in the rate of leukemia. By contrast, the persons affected by the Kyschtym accident, with a distinctly lower mean dose of about 0.02 Gy, so far have not shown any long-term effects.- As yet no exact quantitative statement regarding the cancer risks can be made, for two reasons: the comprehensive data material collected by the Russians has not yet been sufficiently evaluated, and suitable control persons need yet to be found. (orig./HP) [Deutsch] An einer Bestimmung der Dosen und der daraus resultierenden gesundheitlichen Effekte der betroffenen Bevoelkerung - naemlich der drei Gruppen (a) Arbeiter der Plutoniumfabrik Majak, (b) die Bevoelkerung entlang des Flusses Techa und (c) die Bevoelkerung aus dem durch den Kyschtym-Unfall kontaminierten Gebiet, wird zwar von russischer Seite seit Jahrzehnten gearbeitet, aber die integrale Sr 90-Exposition wurde und wird nachtraeglich ueber die Messung von Bremsstrahlung im Ganzkoerper (neben russischer Messung auch die deutsche Messaktion im Jahre 1993) bestimmt. Wie von russischer Seite angegeben, fand sich bei den Majak-Arbeitern eine deutliche Erhoehung des Krebsrisikos, ebenso wurde bei der Bevoelkerungsgruppe entlang des

  11. Strontium-90 concentration measurements in human bones and teeth in Greece.

    Science.gov (United States)

    Stamoulis, K C; Assimakopoulos, P A; Ioannides, K G; Johnson, E; Soucacos, P N

    1999-05-19

    Strontium-90 concentration was measured in human bones and teeth collected in Greece during the period 1992-1996. One hundred and five bone samples, mainly cancellous bone, and 108 samples, taken from a total of 896 individual teeth were processed. Samples were classified according to the age and sex of the donors. Samples were chemically pre-treated according to a specially devised method to enable extraction of 90Y, at equilibrium with 90Sr in the original sample. Subsequently, 90Y beta activity was measured with a gas proportional counter. Radiostrontium concentration in bone samples showed small variations with respect to age or sex, with an average value of 30 mBq 90Sr/g Ca. However, 90Sr concentration measurements in teeth demonstrated a pronounced structure, which clearly reflects contamination from the 1960s atmospheric nuclear weapons tests and the more recent Chernobyl accident. This difference is attributed to the different histological structure of skeletal bones and teeth, the later consisting mainly of compact bone. An age-dependent model for radiostrontium concentration in human bones and teeth is developed which is able to successfully reproduce the experimental data. Through a fitting process, the model also yielded calcium turnover rates for compact bone, as a function of age, as well as an estimate of radiostrontium contamination of foodstuffs in Greece for the past four decades. The results obtained in this study indicate that radiostrontium environmental contamination which resulted from the atmospheric nuclear weapons tests in the 1960s, exceed by far that caused by the Chernobyl accident.

  12. Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident.

    Science.gov (United States)

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Uekusa, Yoshinori; Hachisuka, Akiko; Matsuda, Rieko; Teshima, Reiko

    2015-01-01

    As a result of the Fukushima Daiichi nuclear power plant (NPP) accident, various radionuclides were released into the environment. In this study, we surveyed strontium-90 ((90)Sr) concentrations in several foodstuffs. Strontium-90 is thought to be the third most important residual radionuclide in food collected after the Fukushima Daiichi, NPP accident after following cesium-137 ((137)Cs) and cesium-134 ((134)Cs). Results of (90)Sr analyses indicated that (90)Sr was detect in 25 of the 40 radioactive cesium (r-Cs) positive samples collected in areas around the Fukushima Daiichi NPP, ranging in distance from 50 to 250 km. R-Cs positive samples were defined as containing both (134)Cs and (137)Cs which are considered to be indicators of the after-effects of the Fukushima Daiichi NPP accident. We also detected (90)Sr in 8 of 13 r-Cs negative samples, in which (134)Cs was not detected. Strontium-90 concentrations in the r-Cs positive samples did not significantly exceed the (90)Sr concentrations in r-Cs negative samples or the (90)Sr concentration ranges in comparable food groups found in previous surveys before the Fukushima Daiichi NPP accident. Thus, (90)Sr concentrations in r-Cs positive samples were indistinguishable from the background (90)Sr concentrations arising from global fallout prior to the Fukushima accident, suggesting that no marked increase of (90)Sr concentrations has occurred in r-Cs positive samples as a result of the Fukushima Daiichi NPP accident.

  13. High Throughput Method of Extracting and Counting Strontium-90 in Urine

    Energy Technology Data Exchange (ETDEWEB)

    Shkrob, I. [Argonne National Lab. (ANL), Argonne, IL (United States); Kaminski, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Mertz, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hawkins, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Dietz, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Tisch, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    A method has been developed for the rapid extraction of Sr-90 from the urine of individuals exposed to radiation in a terrorist attack. The method employs two chromatographic ion-exchange materials: Diphonix resin and Sr resin, both of which are commercially available. The Diphonix resin reduces the alkali ion concentrations below 10 mM, and the Sr resin concentrates and decontaminates strontium-90. Experimental and calculational data are given for a variety of test conditions. On the basis of these results, a flowsheet has been developed for the rapid concentration and extraction of Sr-90 from human urine samples for subsequent beta-counting.

  14. Strontium-90 adsorption-desorption properties and sediment characterization at the 100 N-Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; LeGore, V.L.

    1996-01-01

    Strontium-90 ({sup 90}Sr) has been seeping into the Columbia River since the early 1980s. The likely source is subsurface migration of {sup 90}Sr from once-through cooling water from the Hanford N Reactor disposed into the two disposal crib/trench facilities. Background information has been provided on the operational history of the two liquid waste disposal facilities and some of the regulatory drivers that have lead to the various characterization activities and remediation demonstrations being performed to help choose future full-scale remediation alternatives. The work presented in this topical report had two main objectives. First, we obtained numerous borehole samples from newly installed wells/borings and performed physical and chemical characterization that,included particle size analysis, moisture content, and Strontium-90, Tritium and gamma activity analyses to help improve the conceptual model of where the contaminants currently reside in the sediments. The second objective was to perform laboratory adsorption-desorption tests using both batch and flow- through column techniques to gather data for use in contaminant transport conceptual models and to aid in specific pump-and-treat calculations needed to interpret a field demonstration.

  15. Rapid determination of strontium-90 by solid phase extraction using DGA Resin® for seawater monitoring

    Science.gov (United States)

    Tazoe, H.; Obata, H.; Yamagata, T.; Karube, Z.; Yamada, M.

    2015-12-01

    Strontium-90 concentrations in seawater exceeding the background level have been observed at the accidents of nuclear facilities, such as Chernobyl and Fukushima. However, analytical procedure for strontium-90 in seawater is still quite complicated and challenging. Here we show a simple and rapid analytical technique for the determination of strontium-90 in seawater samples without time-consuming separation of strontium from calcium. The separation with DGA Resin® is used to determine the abundance of strontium-90, which selectively collects yttrium-90, progeny of strontium-90. Naturally occurring radioactive nuclides (such as potassium, lead, bismuth, uranium, and thorium) and anthropogenic radionuclides (such as cesium, barium, lanthanum, and cerium) were separated from yttrium. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 93.9 % for seawater. The result of IAEA 443 certified seawater analysis was in good agreement with the certified value. At 20 hrs counting a lower detection limit of 1.5 mBq L-1 was obtained from 3 L of seawater. The proposed method can finish analyzing 8 samples per day, which is a reasonably fast throughput in actual seawater monitoring. Reproducibility was found to be 3.4 % according to 10 separate analyses of natural seawater samples from the vicinity of Fukushima Daiichi Nuclear Power Plant in September 2013.

  16. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  17. Investigation of the Strontium-90 Contaminant Plume along the Shoreline of the Columbia River at the 100-N Area of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Donaldo P.; Patton, Gregory W.; Hartman, Mary J.; Spane, Frank A.; Sweeney, Mark D.; Fritz, Brad G.; Gilmore, Tyler J.; Mackley, Rob D.; Bjornstad, Bruce N.; Clayton, Ray E.

    2007-10-01

    Efforts are underway to remediate strontium-laden groundwater to the Columbia River at the 100-N Area of the Hanford Site. Past practices of the 100-N reactor liquid waste disposal sites has left strontium-90 sorbed onto sediments which is a continuing source of contaminant discharge to the river. The Remediation Task of the Science and Technology Project assessed the interaction of groundwater and river water at the hyporheic zone. Limited data have been obtained at this interface of contaminant concentrations, geology, groundwater chemistry, affects of river stage and other variables that may affect strontium-90 release. Efforts were also undertaken to determine the extent, both laterally and horizontally, of the strontium-90 plume along the shoreline and to potentially find an alternative constituent to monitor strontium-90 that would be more cost effective and could possibly be done under real time conditions. A baseline of strontium-90 concentrations along the shoreline was developed to help assess remediation technologies.

  18. An unexpected rise in strontium-90 in US deciduous teeth in the 1990s.

    Science.gov (United States)

    Mangano, Joseph J; Gould, Jay M; Sternglass, Ernest J; Sherman, Janette D; McDonnell, William

    2003-12-30

    For several decades, the United States has been without an ongoing program measuring levels of fission products in the body. Strontium-90 (Sr-90) concentrations in 2089 deciduous (baby) teeth, mostly from persons living near nuclear power reactors, reveal that average levels rose 48.5% for persons born in the late 1990s compared to those born in the late 1980s. This trend represents the first sustained increase since the early 1960s, before atmospheric weapons tests were banned. The trend was consistent for each of the five states for which at least 130 teeth are available. The highest averages were found in southeastern Pennsylvania, and the lowest in California (San Francisco and Sacramento), neither of which is near an operating nuclear reactor. In each state studied, the average Sr-90 concentration is highest in counties situated closest to nuclear reactors. It is likely that, 40 years after large-scale atmospheric atomic bomb tests ended, much of the current in-body radioactivity represents nuclear reactor emissions.

  19. Advanced Polymer Technology for Containing and Immobilizing Strontium-90 in the Subsurface - 8361

    Energy Technology Data Exchange (ETDEWEB)

    K. Baker; G. Heath; C. Scott; A. Schafer; S. Bryant; M. Sharma; C. Huh; S. K. Choi

    2008-02-01

    Many Department of Energy (DOE) sites, including Idaho and Hanford, have heavy metals and/or radionuclides (e.g. strontium-90) present that are strongly adsorbed in the vadose zone, but which nevertheless are propagating toward the water table. A key challenge for immobilization of these contaminants is bringing the chosen amendment or remediation technology into contact with the contaminated porous medium, while ensuring that contaminated water and colloids do not escape. This is particularly challenging when the subsurface geology is complex and highly heterogeneous, as is the case at many DOE sites. The Idaho National Laboratory (INL) in collaboration with the University of Texas at Austin (UT) has conducted research sponsored through the DOE Office of Environmental Management (EM) Advanced Remediation Technologies Phase I program that successfully demonstrated application of a novel, pH-triggered advanced polymer for creating a physical barrier that prevents heavy metals and radionuclides in vadose zone soil and soil-pore water from migrating to the groundwater. The focus of this paper is on the column and sandbox experiments conducted by researchers at the Idaho National Laboratory in support of the Phase I program objectives. Proof of these concepts provides a technology basis for confining or isolating a volume of contaminated groundwater, to be implemented in future investigations at the Vadose Zone Research Park (VZRP) at INL.

  20. Comparison of bone cancer risks in beagle dogs for inhaled plutonium-238 dioxide, inhaled strontium-90 chloride, and injected strontium-90

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, W.C.; Muggenburg, B.A.; Hahn, F.F. [and others

    1995-12-01

    There is a continuing need to understand dose-response relationships for ionizing radiation in order to protect the health of the public and nuclear workers from undue exposures. However, relatively few human populations have been exposed to doses of radiation high enough to cause observable, long-term health effects from which to derive dose-response relationships. This is particularly true for internally deposited radionuclides, although much effort has been devoted to epidemiological studies of the few types of exposures available, including lung cancers in uranium miners form the inhalation of the radioactive decay products of Ra, liver cancers in patients injected with Thorotrast X-ray contrast medium containing Th, bone cancers in radium dial painters who ingested Ra, and bone cancers in patients who received therapeutic doses of Ra. These four types of exposures to internally deposited radionuclides provide a basis for understanding the health effects of many other radionuclides for which a potential for exposure exists. However, potential exposures to internally deposited radionuclides may differ in many modifying factors, such as route of exposure, population differences, and physical, chemical, and elemental forms of radionuclides. The only means available to study many of these modifying factors has been in laboratory animals, and to then extrapolate the results to humans. Three conclusions can be drawn from this example.

  1. RADIATION HYGIENIC MONITORING AND ASSESSMENT OF POPULATION DOSES IN RADIOACTIVELY CONTAMINATED AREAS OF TULA REGION

    Directory of Open Access Journals (Sweden)

    T. M. Chichura

    2016-01-01

    Full Text Available The goal. The analyses of radiation hygienic monitoring conducted in Tula region territories affected by the Chernobyl NPP accident regarding cesium-137 and strontium- 90 in the local foodstuffs and the analyses of populational annual effective dose. The materials and methods. The survey was conducted in Tula Region since 1997 to 2015. Over that period, more than fifty thousand samples of the main foodstuffs from the post-Chernobyl contaminated area were analyzed. Simultaneously with that, the external gamma - radiation dose rate was measured in the fixed control points. The dynamics of cesium -137 and strontium-90 content in foodstuffs were assessed along with the maximum values of the mean annual effective doses to the population and the contribution of the collective dose from medical exposures into the structure of the annual effective collective dose to the population. The results. The amount of cesium-137 and strontium -90 in the local foodstuffs was identified. The external gamma- radiation dose rate values were found to be stable and not exceeding the natural fluctuations range typical for the middle latitudes of Russia’s European territory. The maximum mean annual effective dose to the population reflects the stable radiation situation and does not exceed the permissible value of 1 mSv. The contribution of the collective dose from medical exposures of the population has been continuously reducing as well as the average individual dose to the population per one medical treatment under the annual increase of the medical treatments quantities. The conclusion. There is no exceedance of the admissible levels of cesium-137 and strontium- 90 content in the local foodstuffs. The mean annual effective dose to the population has decreased which makes it possible to transfer the settlements affected by the Chernobyl NPP accident to normal life style. This is covered by the draft concept of the settlements’ transfer to normal life style.

  2. Strontium- 90 beta plesiotberapy treated capillary haemangioma in enfant skin%90Sr-β敷贴治疗儿童皮肤毛细血管瘤

    Institute of Scientific and Technical Information of China (English)

    刘学公; 程义壮; 洪波; 何瑞启

    2009-01-01

    目的 探讨90Sr-β敷贴治疗儿童皮肤毛细血管瘤的疗效.方法 使用放射性核素90Sr-90Y敷贴器对363例皮肤血管瘤患儿进行敷贴治疗,观察治疗反应及对症处理.结果 各类型血管瘤疗效差异有统计学意义(P<0.01),治疗效果依次为单纯性毛细血管瘤鲜红斑痣混合型血管瘤海绵状血管瘤.血管瘤厚度≤5 mm痊愈率高于5 mm(P<0.01).血管瘤面积≤450 mmm2痊愈率高于450 mm2(P<0.05).结论 90Sr-β敷贴治疗疗效好,特别适合于儿童皮肤浅表毛细血管瘤的治疗.%Objective To discuss the effect of strontium -90 beta plesiotherapy in the treatment of children skin capillary haeman-gioma. Methods 363 children with haemangioma were treated with 99mSr-90Y radionuclide applicator, treated reaction was observed and disposed. Results The treated effects were difference among difference of types haemangioma (P <0.01 ). Preferably treated effect in order was as follow: simplicity capillary haemangioma fresh erythema and naevus mix - haemangioma sponqiness haemangioma. The cura-tive rate in patients with the thichness of haemangioma ≤Smm was higher than that of Smm (P <0.01 ), so was the area of haemangioma ≤450mm2and 450mm2(P<0.05 ). Conclusion The strontium - 90 beta plesiotherapy is very effective, especially for the children with skin superficial capillary haemangioma.

  3. Radionuclide Sensors and Systems for Monitoring Technetium-99 and Strontium-90 in Groundwater at the Hanford Site

    Science.gov (United States)

    Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.

    2009-12-01

    We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.

  4. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  5. Chronic exposure to low concentrations of strontium 90 affects bone physiology but not the hematopoietic system in mice.

    Science.gov (United States)

    Synhaeve, Nicholas; Wade-Gueye, Ndéye Marième; Musilli, Stefania; Stefani, Johanna; Grandcolas, Line; Gruel, Gaëtan; Souidi, Maâmar; Dublineau, Isabelle; Bertho, Jean-Marc

    2014-01-01

    The aim of this work was to delineate the effects of chronic ingestion of strontium 90 ((90) Sr) at low concentrations on the hematopoiesis and the bone physiology. A mouse model was used for that purpose. Parent animals ingested water containing 20 kBq l(-1) of (90) Sr two weeks before mating. Offspring were then continuously contaminated with (90) Sr through placental transfer during fetal life, through lactation after birth and through drinking water after weaning. At various ages between birth and 20 weeks, animals were tested for hematopoietic parameters such as blood cell counts, colony forming cells in spleen and bone marrow and cytokine concentrations in the plasma. However, we did not find any modification in (90) Sr ingesting animals as compared with control animals. By contrast, the analysis of bone physiology showed a modification of gene expression towards bone resorption. This was confirmed by an increase in C-telopeptide of collagen in the plasma of (90) Sr ingesting animals as compared with control animals. This modification in bone metabolism was not linked to a modification of the phosphocalcic homeostasis, as measured by calcium, phosphorus, vitamin D and parathyroid hormone in the blood. Overall these results suggest that the chronic ingestion of (90) Sr at low concentration in the long term may induce modifications in bone metabolism but not in hematopoiesis.

  6. Dose rate mapping of VMAT treatments

    Science.gov (United States)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  7. Estimation of the Dose and Dose Rate Effectiveness Factor

    Science.gov (United States)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  8. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.

    Science.gov (United States)

    Spalding, B P; Spalding, I R

    2001-01-15

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity

  9. Dose rate mapping of VMAT treatments.

    Science.gov (United States)

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  10. Assessing dose rate distributions in VMAT plans

    Science.gov (United States)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  11. Brachytherapy treatment simulation of strontium-90 and ruthenium-106 plaques on small size posterior uveal melanoma using MCNPX code

    Science.gov (United States)

    Barbosa, N. A.; da Rosa, L. A. R.; Facure, A.; Braz, D.

    2014-02-01

    Concave eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are usually used in brachytherapy for the treatment of superficial intraocular tumors as uveal melanoma with thickness up to 5 mm. The aim of this work consisted in using the Monte Carlo code MCNPX to calculate the 3D dose distribution on a mathematical model of the human eye, considering 90Sr/90Y and 160Ru/160Rh beta-ray eye applicators, in order to treat a posterior uveal melanoma with a thickness 3.8 mm from the choroid surface. Mathematical models were developed for the two ophthalmic applicators, CGD produced by BEBIG Company and SIA.6 produced by the Amersham Company, with activities 1 mCi and 4.23 mCi respectively. They have a concave form. These applicators' mathematical models were attached to the eye model and the dose distributions were calculated using the MCNPX *F8 tally. The average doses rates were determined in all regions of the eye model. The *F8 tally results showed that the deposited energy due to the applicator with the radionuclide 106Ru/106Rh is higher in all eye regions, including tumor. However the average dose rate in the tumor region is higher for the applicator with 90Sr/90Y, due to its high activity. Due to the dosimetric characteristics of these applicators, the PDD value for 3 mm water is 73% for the 106Ru/106Rh applicator and 60% for 90Sr/90Y applicator. For a better choice of the applicator type and radionuclide it is important to know the thickness of the tumor and its location.

  12. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  13. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  14. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2010-09-01

    Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River at a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.

  15. Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.

    2004-12-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).

  16. [Hopes of high dose-rate radiotherapy].

    Science.gov (United States)

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-04-01

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject. Copyright © 2017. Published by Elsevier Masson SAS.

  17. γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90.

    Directory of Open Access Journals (Sweden)

    Helen C Turner

    Full Text Available In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy and 90Sr (0 to 49 Gy were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA

  18. Increase in accumulation of strontium-90 in the maternal skeleton during pregnancy and lactation: analysis of the Techa River data

    Energy Technology Data Exchange (ETDEWEB)

    Tolstykh, Evgenia I.; Shagina, Natalia B.; Degteva, Marina O. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation)

    2014-08-15

    The unique contamination of the Techa River (Southern Urals, Russia) in the 1950s by long-lived {sup 90}Sr allows investigation of the accumulation of bone-seeking elements in humans. This study is based on information compiled at the Urals Research Center for Radiation Medicine (Chelyabinsk, Russia) over a long period of time. It includes the results of in vivo measurements of {sup 90}Sr-body burden with a whole body counter (WBC), data on personal medical examinations and residence and family histories. Data on 185 women from two Techa riverside villages Muslyumovo and Brodokalmak were selected. The settlements differ in terms of {sup 90}Sr diet intake (higher in Muslyumovo than in Brodokalmak) and ethnicity (residents were mainly Slavs in Brodokalmak and Turkic in Muslyumovo). Results of a total of 555 WBC measurements performed in 1974-1997 were available for the women studied; maximum measured values reached 40 kBq/body. The women from each settlement were subdivided into three groups according to their childbearing history: pregnancy and lactation occurred (1) during the period of maximal {sup 90}Sr intake (1950-1951); (2) after the period of maximal intake and (3) before this period or women who were childless. An increase was found in accumulation of {sup 90}Sr in maternal skeleton during pregnancy and lactation (group 1) by a factor of 1.5-2 in comparison with non-pregnant, non-lactating women. This result was found in both Muslyumovo and Brodokalmak samples. An increase in accumulation of toxic elements in pregnant/lactating women is associated with increased radiation/toxic doses and risk for the women's health. (orig.)

  19. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Toyonaka Municipal Hospital, Osaka (Japan); Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Graduate School of Medicine; Furukawa, Souhei; Kakimoto, Naoya [Osaka Univ., Suita (Japan). Graduate School of Dentistry

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  20. Brachytherapy for early oral tongue cancer: low dose rate to high dose rate.

    Science.gov (United States)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Furukawa, Souhei; Kakimoto, Naoya; Shimizutani, Kimishige; Inoue, Toshihiko

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n = 341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer.

  1. β-Radiation Stress Responses on Growth and Antioxidative Defense System in Plants: A Study with Strontium-90 in Lemna minor

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    In the following study, dose dependent effects on growth and oxidative stress induced by β-radiation were examined to gain better insights in the mode of action of β-radiation induced stress in plant species. Radiostrontium (90Sr) was used to test for β-radiation induced responses in the freshwater macrophyte Lemna minor. The accumulation pattern of 90Sr was examined for L. minor root and fronds separately over a seven-day time period and was subsequently used in a dynamic dosimetric model to calculate β-radiation dose rates. Exposing L. minor plants for seven days to a 90Sr activity concentration of 25 up to 25,000 kBq·L−1 resulted in a dose rate between 0.084 ± 0.004 and 97 ± 8 mGy·h−1. After seven days of exposure, root fresh weight showed a dose dependent decrease starting from a dose rate of 9.4 ± 0.5 mGy·h−1. Based on these data, an EDR10 value of 1.5 ± 0.4 mGy·h−1 was estimated for root fresh weight and 52 ± 17 mGy·h−1 for frond fresh weight. Different antioxidative enzymes and metabolites were further examined to analyze if β-radiation induces oxidative stress in L. minor. PMID:26198226

  2. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    Strontium-90 (90Sr) is present both in the aquifer near the river and in the vadose and riparian zones of the river’s shore at 100-NR-2. Phytoextraction of 90Sr is being considered as a potential remediation system along the riparian zone of the Columbia River. Phytoextraction would employ coyote willow (Salix exigua). Past studies have shown that willow roots share uptake mechanisms for Sr with Ca, a plant macronutrient as well as no discrimination between Sr and 90Sr. Willow 90Sr concentration ratios [CR’s; (pCi 90Sr/g dry wt. of new growth tissue)/(pCi 90Sr/g soil porewater)] were consistently greater than 65 with three-quarters of the assimilated label partitioned into the above ground shoot. Insect herbivore experiments also demonstrated no significant potential for bioaccumulation or food chain transfer from their natural activities. The objectives of this field study were three-fold: (1) to demonstrate that a viable, “managed” plot of coyote willows can be established on the shoreline of the Columbia River that would survive the same microenvironment to be encountered at the 100-NR-2 shoreline; (2) to show through engineered barriers that large and small animal herbivores can be prevented from feeding on these plants; and (3) to show that once established, the plants will provide sufficient biomass annually to support the phytoextraction technology. A field treatability demonstration plot was established on the Columbia River shoreline alongside the 100-K West water intake at the end of January 2007. The plot was delimited by a 3.05 m high chain-link fence and was approximately 10 x 25 m in size. A layer of fine mesh metal small animal screening was placed around the plot at the base of the fencing to a depth of 45 cm. A total of sixty plants were placed in six slightly staggered rows with 1-m spacing between plants. The actual plot size was 0.00461 hectare (ha). At the time of planting (March 12, 2007), the plot was located about 10 m from the

  3. 100-N Area Strontium-90 Treatability Demonstration Project: Food Chain Transfer Studies for Phytoremediation Along the 100-N Columbia River Riparian Zone

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.

    2009-04-01

    Strontium-90 (90Sr) exceeds the U.S. Environmental Protection Agency’s drinking water standards for groundwater (8 picocuries/L) by as much as a factor of 1000 at several locations within the Hanford 100-N Area and along the 100-N Area Columbia River shoreline). Phytoextraction, a managed remediation technology in which plants or integrated plant/rhizosphere systems are employed to phytoextract and/or sequester 90Sr, is being considered as a potential remediation system along the riparian zone of the Columbia River as part of a treatment train that includes an apatite barrier to immobilize groundwater transport of 90Sr. Phytoextraction would employ coyote willow (Salix exigua) to extract 90Sr from the vadose zone soil and aquifer sediments (phytoextraction) and filter 90Sr (rhizofiltration) from the shallow groundwater along the riparian zone of the Columbia River. The stem and foliage of coyote willows accumulating 90Sr may present not only a mechanism to remove the contaminant but also can be viewed as a source of nutrition for natural herbivores, therefore becoming a potential pathway for the isotope to enter the riparian food chain. Engineered barriers such as large and small animal fencing constructed around the field plot will control the intrusion of deer, rodents, birds, and humans. These efforts, however, will have limited effect on mobile phytophagous insects. Therefore, this study was undertaken to determine the potential for food chain transfer by insects prior to placement of the remediation technology at 100-N. Insect types include direct consumers of the sap or liquid content of the plants vascular system (xylem and phloem) by aphids as well as those that would directly consume the plant foliage such as the larvae (caterpillars) of Lepidoptera species. Heavy infestations of aphids feeding on the stems and leaves of willows growing in 90Sr-contaminated soil can accumulate a small amount (~0.15 ± 0.06%) of the total label removed from the soil by

  4. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  5. Electron dose rate and photon contamination in electron arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pla, M.; Podgorsak, E.B.; Pla, C. (McGill Univ., Montreal, Quebec (Canada))

    1989-09-01

    The electron dose rate at the depth of dose maximum dmax and the photon contamination are discussed as a function of several parameters of the rotational electron beam. A pseudoarc technique with an angular increment of 10 degrees and a constant number of monitor units per each stationary electron field was used in our experiments. The electron dose rate is defined as the electron dose at a given point in phantom divided by the number of monitor units given for any one stationary electron beam. For a given depth of isocenter di the electron dose rates at dmax are linearly dependent on the nominal field width w, while for a given w the dose rates are inversely proportional to di. The dose rates for rotational electron beams with different di are related through the inverse square law provided that the two beams have (di,w) combinations which give the same characteristic angle beta. The photon dose at the isocenter depends on the arc angle alpha, field width w, and isocenter depth di. For constant w and di the photon dose at isocenter is proportional to alpha, for constant alpha and w it is proportional to di, and for constant alpha and di it is inversely proportional to w. The w and di dependence implies that for the same alpha the photon dose at the isocenter is inversely proportional to the electron dose rate at dmax.

  6. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  7. Dose and dose rate effects of irradiation on blood count and cytokine assay in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong Sun [Research center, Dongnam institute of radiological and Medical Sciences (DIRAMS), Busan (Korea, Republic of)

    2013-11-15

    The possible role of exposure to radiation as a risk factor for human health has been of increasing public concern in the series of explosions at earthquake damaged nuclear reactors on the Japan. Current events throughout the world underscore the growing threat of different forms of accidental exposure to radiation including nuclear accidents, atomic weapons use and testing, and the side effects of cancer therapy. A large range of dose rates of ionizing radiations could be encountered in accidental radiation situations. Nevertheless, most of the studies related to radiation effects have only examined a high dose rate. In this study, we investigated the blood count and the cytokine levels in the serum of mice exposed to a high or low dose rate of radiation. In this study, the precise molecular mechanism underlying the low dose rate of radiation remains unclear, but differential hematopoietic effects of radiation exposed at a high dose rate versus low dose rate were observed using the number of peripheral blood count and serum cytokines. These data suggest that chronic low dose rate exposure caused a stimulation of heamatopoietic system occurrence, unlike those observed after higher dose rate exposure. Our data suggest that the dose rate, rather than the total dose, may be more critical in causing damage to the cellular hematopoietic compartments of the body.

  8. Total ionizing dose effects of domestic SiGe HBTs under different dose rates

    Science.gov (United States)

    Liu, Mo-Han; Lu, Wu; Ma, Wu-Ying; Wang, Xin; Guo, Qi; He, Cheng-Fa; Jiang, Ke; Li, Xiao-Long; Xun, Ming-Zhu

    2016-03-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestically are investigated under dose rates of 800 mGy(Si)/s and 1.3 mGy(Si)/s with a Co-60 gamma irradiation source. The changes of transistor parameters such as Gummel characteristics, and excess base current before and after irradiation, are examined. The results of the experiments show that for the KT1151, the radiation damage is slightly different under the different dose rates after prolonged annealing, and shows a time dependent effect (TDE). For the KT9041, however, the degradations of low dose rate irradiation is higher than for the high dose rate, demonstrating that there is a potential enhanced low dose rate sensitivity (ELDRS) effect for the KT9041. The possible underlying physical mechanisms of the different dose rates responses induced by the gamma rays are discussed.

  9. Total ionizing dose effects of domestic SiGe HBTs under different dose rate

    CERN Document Server

    Mo-Han, Liu; Wu-Ying, Ma; Xin, Wang; Qi, Guo; Cheng-Fa, He; Ke, Jiang; Xiao-Long, Li; Ming-Zhu, Xiong

    2015-01-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestic were investigated under the dose rate of 800mGy(Si)/s and 1.3mGy(Si)/s with Co-60 gamma irradiation source, respectively. The changes of the transistor parameter such as Gummel characteristics, excess base current before and after irradiation are investigated. The results of the experiments shows that for the KT1151, the radiation damage have slightly difference under the different dose rate after the prolonged annealing, shows an time dependent effect(TDE). But for the KT9041, the degradations of low dose rate irradiation are more higher than the high dose rate, demonstrate that there have potential enhanced low dose rate sensitive(ELDRS) effect exist on KT9041. The underlying physical mechanisms of the different dose rates response induced by the gamma ray are detailed discussed.

  10. Topographic Effects on Ambient Dose Equivalent Rates from Radiocesium Fallout

    CERN Document Server

    Malins, Alex; Machida, Masahiko; Saito, Kimiaki

    2015-01-01

    Land topography can affect air radiation dose rates by locating radiation sources closer to, or further, from detector locations when compared to perfectly flat terrain. Hills and slopes can also shield against the propagation of gamma rays. To understand the possible magnitude of topographic effects on air dose rates, this study presents calculations for ambient dose equivalent rates at a range of heights above the ground for varying land topographies. The geometries considered were angled ground at the intersection of two planar surfaces, which is a model for slopes neighboring flat land, and a simple conical geometry, representing settings from hilltops to valley bottoms. In each case the radiation source was radioactive cesium fallout, and the slope angle was varied systematically to determine the effect of topography on the air dose rate. Under the assumption of homogeneous fallout across the land surface, and for these geometries and detector locations, the dose rates at high altitudes are more strongly...

  11. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  12. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  13. Strategy for stochastic dose-rate induced enhanced elimination of malignant tumour without dose escalation.

    Science.gov (United States)

    Paul, Subhadip; Roy, Prasun Kumar

    2016-09-01

    The efficacy of radiation therapy, a primary modality of cancer treatment, depends in general upon the total radiation dose administered to the tumour during the course of therapy. Nevertheless, the delivered radiation also irradiates normal tissues and dose escalation procedure often increases the elimination of normal tissue as well. In this article, we have developed theoretical frameworks under the premise of linear-quadratic-linear (LQL) model using stochastic differential equation and Jensen's inequality for exploring the possibility of attending to the two therapeutic performance objectives in contraposition-increasing the elimination of prostate tumour cells and enhancing the relative sparing of normal tissue in fractionated radiation therapy, within a prescribed limit of total radiation dose. Our study predicts that stochastic temporal modulation in radiation dose-rate appreciably enhances prostate tumour cell elimination, without needing dose escalation in radiation therapy. However, constant higher dose-rate can also enhance the elimination of tumour cells. In this context, we have shown that the sparing of normal tissue with stochastic dose-rate is considerably more than the sparing of normal tissue with the equivalent constant higher dose-rate. Further, by contrasting the stochastic dose-rate effects under LQL and linear-quadratic (LQ) models, we have also shown that the LQ model over-estimates stochastic dose-rate effect in tumour and under-estimates the stochastic dose-rate effect in normal tissue. Our study indicates the possibility of utilizing stochastic modulation of radiation dose-rate for designing enhanced radiation therapy protocol for cancer.

  14. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Rajib Lochan [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Department of Physics, Osmania University, Hyderabad (India); Reddy, Palreddy Yadagiri [Department of Physics, Osmania University, Hyderabad (India); Rao, Ramakrishna [Department of Radiation Physics, MNJ Institute of Oncology and Regional Cancer Center, Hyderabad (India); Muralidhar, Kanaparthy R. [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Kudchadker, Rajat J., E-mail: rkudchad@mdanderson.org [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  15. Measurements of neutron dose rates with a balloon in Japan.

    Science.gov (United States)

    Nagaoka, K; Hiraide, I; Sato, K; Yamagami, T; Nakamura, T; Yabutani, T

    2007-01-01

    Measurements of cosmic-ray neutron dose rates with a balloon in Sanriku, Japan (geographic location: 39 degrees N, 142 degrees E; corresponding geomagnetic latitude: 30 degrees N) were conducted at an altitude from 0.2 to 25 km on 25-26 August 2004 when solar activity was at an average level. Neutron dose rates given as ambient dose equivalent rates (H(10)) were measured with high-sensitive neutron dose equivalent counters and electronic silicon personal dosimeters (EPDs). The neutron dose rates increased with increasing altitude, but they were saturated around 15-20 km and decreased with increasing altitude beyond 20 km. The neutron ambient dose equivalent rate was 1.5 microSv/h(- 1) at 20 km. Measured values were corrected for the deviation of the energy response of the dose equivalent counter from the fluence-to-ambient dose equivalent conversion coefficient, and the corrected values were very close to the calculated values with EPCARD. On the other hand, neutron measurements by the EPDs gave about 10 times overestimation because of the high sensitivity to cosmic-ray protons.

  16. ELDRS and dose-rate dependence of vertical NPN transistor

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu-Zhan; LU Wu; REN Di-Yuan; WANG Gai-Li; YU Xue-Feng; GUO Qi

    2009-01-01

    The enhanced low-dose-rate sensitivity (ELDRS) and dose-rate dependence of vertical NPN transistors are investigated in this article.The results show that the vertical NPN transistors exhibit more degradation at low dose rate,and that this degradation is attributed to the increase on base current.The oxide trapped positive charge near the SiO2-Si interface and interface traps at the interface can contribute to the increase on base current and the two-stage hydrogen mechanism associated with space charge effect can well explain the experimental results.

  17. High dose rate brachytherapy source measurement intercomparison.

    Science.gov (United States)

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  18. Comparative toxicity of strontium-90 and radium-226 in beagle dogs. Progress report of second year, December 16, 1990--December 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, O.G.; Culbertson, M.R.; White, R.G.; Spangler, W.L.; Cain, G.R.; Parks, N.J.; Samuels, S.J.

    1991-12-01

    We are completing a 30-year study of the biological effects of {sup 90}Sr and {sup 226}Ra in the beagle in order to predict the possible long-term hazards to people from chronic exposure to low levels of irradiation. Animals received either radionuclide by several means of administration: (a) continual ingestion of {sup 90}Sr, (b) a single intravenous injection of {sup 90}Sr, or (c) a series of eight intravenous injections of {sup 226}Ra. Although administration of {sup 90}Sr and {sup 226}Ra ended at 540 days of age, the animals continued to receive chronic, low-level radiation doses from these bone-seeking radionuclides throughout life. This project is the largest single cohort study in beagles of internally deposited radionuclides. It is unique in use of the ingestion route for {sup 90}Sr and in exposure that began before birth and continued throughout development to adulthood with uniform labeling of the skeletons with {sup 90}Sr. The last of the dogs died in 1986 at age 18.5 years, but we are continuing to investigate the significance of these long-term exposures given at low dose rates with regard to cancer production, physiologic well-being, and shortening of life through the detailed records that were kept and by study of preserved materials. All the data have been successfully accumulated and entered into a main-frame computer data base management system. Current work is exclusively directed at preparing research papers summarizing the results and the associated biostatistical and survival analyses. 15 refs., 1 fig., 4 tabs.

  19. Comparative toxicity of strontium-90 and radium-226 in beagle dogs. Report of first year, December 16, 1989--December 15, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, O.G.; Culbertson, M.R.; White, R.G.; Spangler, W.L.; Cain, G.R.; Parks, N.J.; Samuels, S.J.

    1990-12-31

    The authors are completing a 30-year study of the biologic effects of {sup 90}Sr and {sup 226}Ra in the beagle in order to predict the possible long-term hazards to people from chronic exposure to low levels of irradiation. Animals received either radionuclide by several means of administration: (a) continual ingestion of {sup 90}Sr, (b) a single intravenous injection of {sup 90}Sr, or (c) a series of eight intravenous injections of {sup 226}Ra. Although administration of {sup 90}Sr and {sup 226}Ra ended at 540 days of age, the animals continued to receive chronic, low-level radiation doses from these bone-seeking radionuclides throughout life. This project is the largest single cohort study in beagles of internally deposited radionuclides. It is unique in use of the ingestion route for {sup 90}Sr and in exposures that began before birth and continued throughout development to adulthood with uniform labeling of the skeletons with {sup 90}Sr. The last of the dogs died in 1986 at age 18.5, but the authors are continuing to investigate the significance of these long-term exposures given at low dose rates with regard to cancer production, physiologic well-being, and shortening of life through the detailed records that were kept and by study of preserved materials. All the data have been successfully accumulated and entered into a main-frame computer data base management system. Current work is exclusively directed at preparing research papers summarizing the results and the associated biostatistical and survival analyses.

  20. Comparative toxicity of strontium-90 and radium-226 in beagle dogs. Report of second year, December 16, 1990--December 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, O.G.; Culbertson, M.R.; White, R.G.; Spangler, W.L.; Cain, G.R.; Parks, N.J.; Samuels, S.J.

    1991-12-31

    The authors are completing a 30-year study of the biological effects of {sup 90}Sr and {sup 226}Ra in the beagle in order to predict the possible long-term hazards to people from chronic exposure to low levels of irradiation. Animals received either radionuclide by several means of administration: (a) continual ingestion of {sup 90}Sr, (b) a single intravenous injection of {sup 90}Sr, or (c) a series of eight intravenous injections of {sup 226}Ra. Although administration of {sup 90}Sr and {sup 226}Ra ended at 540 days of age, the animals continued to receive chronic, low-level radiation doses from these bone-seeking radionuclides throughout life. This project is the largest single cohort study in beagles of internally deposited radionuclides. It is unique in use of the ingestion route for {sup 90}Sr and in exposures that began before birth and continued throughout development to adulthood with uniform labeling of the skeletons with {sup 90}Sr. The last of the dogs died in 1986 at age 18.5 years, but the authors are continuing to investigate the significance of these long-term exposures given at low dose rates with regard to cancer production, physiologic well-being, and shortening of life through the detailed records that were kept and by study of preserved materials. All the data have been successfully accumulated and entered into a main-frame computer data base management system. Current work is exclusively directed at preparing research papers summarizing the results and the associated biostatistical and survival analyses.

  1. Microfluidic Thrombosis under Multiple Shear Rates and Antiplatelet Therapy Doses

    Science.gov (United States)

    Ku, David N.; Forest, Craig R.

    2014-01-01

    The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s−1) and therapy concentrations (0–2.4 µM for eptifibatide, 0–2 mM for acetyl-salicylic acid (ASA), 3.5–40 Units/L for heparin) using a microfluidic device. We also measured complete blood counts (CBC) and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose). Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment. PMID:24404131

  2. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  3. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  4. VMATc: VMAT with constant gantry speed and dose rate

    Science.gov (United States)

    Peng, Fei; Jiang, Steve B.; Romeijn, H. Edwin; Epelman, Marina A.

    2015-04-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units.

  5. Terrestrial gamma dose rates and physical-chemical properties of ...

    African Journals Online (AJOL)

    Terrestrial gamma dose rates and physical-chemical properties of farm soils ... African Journal of Environmental Science and Technology ... left a legacy derelict landscapes and impoverished agricultural farm lands in the Jos, Plateau Nigeria.

  6. Failures Of CMOS Devices At Low Radiation-Dose Rates

    Science.gov (United States)

    Goben, Charles A.; Price, William E.

    1990-01-01

    Method for obtaining approximate failure-versus-dose-rate curves derived from experiments on failures of SGS 4007 complementary metal oxide/semiconductor (CMOS) integrated circuits irradiated by Co60 and Cs137 radioactive sources.

  7. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  8. The transit dose component of high dose rate brachytherapy: Direct measurements and clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, K.T.; Podgorsak, M.B.; Thomadsen, B.R. (Univ. of Wisconsin Hospitals and Clinics, Madison, WI (United States))

    1993-07-15

    The purpose was to measure the transit dose produced by a moving high dose rate brachytherapy source and assess its clinical significance. The doses produced from source movement during Ir-192 HDR afterloading were measured using calibrated thermoluminescent dosimeter rods. Transit doses at distances of 0.5-4.0 cm from an endobronchial applicator were measured using a Lucite phantom accommodating 1 x 1 x 6 mm thermoluminescent rods. Surface transit dose measurements were made using esophageal and endobronchial catheters, a gynecologic tandem, and an interstitial needle. No difference was detected in thermoluminescent dosimeter rod responses to 4 MV and Ir-192 spectra (427 nC/Gy) in a range of dose between 2 and 300 cGy. The transit dose at 0.5 cm from an endobronchial catheter was 0.31 cGy/(Curie-fraction) and followed an inverse square fall-off with increasing distance. Surface transit doses ranged from 0.38 cGy/(Curie-fraction) for an esophageal catheter to 1.03 cGy/(Curie-fraction) for an endobronchial catheter. Source velocity is dependent on the interdwell distance and varies between 220-452 mm/sec. A numeric algorithm was developed to calculate total transit dose, and was based on a dynamic point approximation for the moving high dose rate source. This algorithm reliably predicted the empirical transit doses and demonstrated that total transit dose is dependent on source velocity, number of fractions, and source activity. Surface transit doses are dependent on applicator diameter and wall material and thickness. Total transit doses within or outside the desired treatment volume are typically <100 cGy, but may exceed 200 cGy when using a large number of fractions with a high activity source. 9 refs., 8 figs., 1 tab.

  9. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  10. Neutron dose equivalent rate for heavy ion bombardment

    Institute of Scientific and Technical Information of China (English)

    LiGui-Sheng; ZhangTian-Mei; 等

    1998-01-01

    The fluence rate distribution of neutrons in the reactionsof 50MeV/u 18O-ion on thick Be,Cu and Au targets have been measured with an activation method of threshold detectors andthe neutron dose equivalent rate distributions at 1m from the tqrgets in intermediate energy heavy ion target area are obtained by using the conversion factors from neutron fluence rate to neutron doseequivalent rate.

  11. Equivalent dose rate by muons to the human body.

    Science.gov (United States)

    Băcioiu, I

    2011-11-01

    In this paper, the relative sensitivity from different human tissues of the human body, at a ground level, from muon cosmic radiation has been studied. The aim of this paper was to provide information on the equivalent dose rates received from atmospheric muons to human body, at the ground level. The calculated value of the effective dose rate by atmospheric muons plus the radiation levels of the natural annual background radiation dose, at the ground level, in the momentum interval of cosmic ray muon (0.2-120.0 GeV/c) is about 2.106±0.001 mSv/y, which is insignificant in comparison with the values of the doses from the top of the atmosphere.

  12. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  13. Remote Afterloading High Dose Rate Brachytherapy AMC EXPERIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Gyong; Chang, Hye Sook; Choi, Eun Kyong; Yi, Byong Yong [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1992-12-15

    Remote afterloading high dose rate brachytherapy(HDRB) is a new technology and needs new biological principle for time and dose schedule. Here, authors attempt to evaluate the technique and clinical outcome in 116 patients, 590 procedures performed at Asan Medical Center for 3 years. From Sep. 1985 to Aug 1992, 471 procedures of intracavitary radiation in 55 patients of cervical cancer and 26 of nasopharyngeal cancer, 79 intraluminal radiation in 12 of esophageal cancer, 11 of endobronchial cancer and 1 Klatskin tumor and 40 interstitial brachytherapy in 4 of breast cancer, 1 sarcoma and 1 urethral cancer were performed. Median follow-up was 7 months with range 1-31 months. All procedures except interstitial were performed under the local anesthesia and they were all well tolerated and completed the planned therapy except 6 patients. 53/58 patients with cervical cancer and 22/26 patients with nasopharynx cancer achieved CR. Among 15 patients with palliative therapy, 80% achieves palliation. We will describe the details of the technique and results in the text. To evaluate biologic effects of HDRB and optimal time/dose/fractionation schedule, we need longer follow-up. But authors feel that HDRB with proper fractionation schedule may yield superior results compared to the low dose rate brachytherapy considering the advantages of HDRB in safety factor for operator, better control of radiation dose and volume and patients comfort over the low dose brachytherapy.

  14. Énergie nucléaire. Mesure de la radioactivité dans l'environnement. Eau. Mesurage de l'indice de radioactivité bêta globale en équivalent strontium 90 et yttrium 90 dans l'eau peu chargée en sels.

    CERN Document Server

    Association Française de Normalisation. Paris

    1997-01-01

    Énergie nucléaire. Mesure de la radioactivité dans l'environnement. Eau. Mesurage de l'indice de radioactivité bêta globale en équivalent strontium 90 et yttrium 90 dans l'eau peu chargée en sels.

  15. Determination of dose rates from natural radionuclides in dental materials

    Energy Technology Data Exchange (ETDEWEB)

    Veronese, I. [Dipartimento di Fisica, Universita degli Studi di Milano, Milan (Italy) and INFN, Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milan (Italy)]. E-mail: ivan.veronese@unimi.it; Guzzi, G. [AIRMEB - Italian Association for Metal and Biocompatibility Research, Milan (Italy); Giussani, A. [Dipartimento di Fisica, Universita degli Studi di Milano, Milan (Italy); INFN, Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milan (Italy); Cantone, M.C. [Dipartimento di Fisica, Universita degli Studi di Milano, Milan (Italy); INFN, Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milan (Italy); Ripamonti, D. [Dipartimento di Fisica, Universita degli Studi di Milano, Milan (Italy)

    2006-07-01

    Different types of materials used for dental prosthetics restoration, including feldspathic ceramics, glass ceramics, zirconia-based ceramics, alumina-based ceramics, and resin-based materials, were investigated with regard to content of natural radionuclides by means of thermoluminescence beta dosimetry and gamma spectrometry. The gross beta dose rate from feldspathic and glass ceramics was about ten times higher than the background measurement, whereas resin-based materials generated negligible beta dose rate, similarly to natural tooth samples. The specific activity of uranium and thorium was significantly below the levels found in the period when addition of uranium to dental porcelain materials was still permitted. The high-beta dose levels observed in feldspathic porcelains and glass ceramics are thus mainly ascribable to {sup 4}K, naturally present in these specimens. Although the measured values are below the recommended limits, results indicate that patients with prostheses are subject to higher dose levels than other members of the population. Alumina- and zirconia-based ceramics might be a promising alternative, as they have generally lower beta dose rates than the conventional porcelain materials. However, the dosimetry results, which imply the presence of inhomogeneously distributed clusters of radionuclides in the sample matrix, and the still unsuitable structural properties call for further optimization of these materials.

  16. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  17. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  18. Patient release criteria for low dose rate brachytherapy implants.

    Science.gov (United States)

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes.

  19. Dose rate of restroon in facilities using radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Gwi [Dept. of uclear Medicine, Inha University hospital, Incheon (Korea, Republic of); An, Seong Min [Dept. of Radiology, Gachon University, Incheon (Korea, Republic of)

    2016-06-15

    This study is therefore aimed at measuring the surface dose rate and the spatial dose rate in and outside the radionuclide facility in order to ensure safety of the patients, radiation workers and family care-givers in their use of such equipment and to provide a basic framework for further research on radiation protection. The study was conducted at 4 restrooms in and outside the radionuclide facility of a general hospital in Incheon between May 1 and July 31, 2014. During the study period, the spatial contamination dose rate and the surface contamination dose rate before and after radiation use were measured at the 4 places−thyroid therapy room, PET center, gamma camera room, and outpatient department. According to the restroom use survey by hospitals, restrooms in the radionuclide facility were used not only by patients but also by family care-givers and some of radiation workers. The highest cumulative spatial radiation dose rate was 8.86 mSv/hr at camera room restroom, followed by 7.31 mSv/hr at radioactive iodine therapy room restroom, 2.29 mSv/hr at PET center restroom, and 0.26 mSv/hr at outpatient department restroom, respectively. The surface radiation dose rate measured before and after radiation use was the highest at toilets, which are in direct contact with patient's excretion, followed by the center and the entrance of restrooms. Unsealed radioactive sources used in nuclear medicine are relatively safe due to short half lives and low energy. A patient who received those radioactive sources, however, may become a mobile radioactive source and contaminate areas the patient contacts−camera room, sedation room, and restroom−through secretion and excretion. Therefore, patients administered radionuclides should be advised to drink sufficient amounts of water to efficiently minimize radiation exposure to others by reducing the biological half-life, and members of the public−family care-givers, pregnant women, and children−be as far away from

  20. Method of simulation of low dose rate for total dose effect in 0.18 {mu}m CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    He Baoping; Yao Zhibin; Guo Hongxia; Luo Yinhong; Zhang Fengqi; Wang Yuanming; Zhang Keying, E-mail: baopinghe@126.co [Northwest Institute of Nuclear Technology, Xi' an 710613 (China)

    2009-07-15

    Three methods for simulating low dose rate irradiation are presented and experimentally verified by using 0.18 {mu}m CMOS transistors. The results show that it is the best way to use a series of high dose rate irradiations, with 100 {sup 0}C annealing steps in-between irradiation steps, to simulate a continuous low dose rate irradiation. This approach can reduce the low dose rate testing time by as much as a factor of 45 with respect to the actual 0.5 rad (Si)/s dose rate irradiation. The procedure also provides detailed information on the behavior of the test devices in a low dose rate environment.

  1. Activation and Dose Rate Analysis of 316 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XU; Zhi-long; SUN; Zheng; LIU; Xing-min; WAN; Hai-xia

    2012-01-01

    <正>In order to conduct research on 316 stainless steel to be used in reactors, neutron activation during irradiation and dose rate after irradiation in China Experiment Fast Reactor (CEFR) are calculated and analyzed. Based on 1 g of 316 stainless steel specimen, analysis on the activity of 316 stainless steel irradiated

  2. ACDOS2: an improved neutron-induced dose rate code

    Energy Technology Data Exchange (ETDEWEB)

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  3. Total Dose Effects on Error Rates in Linear Bipolar Systems

    Science.gov (United States)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  4. Impact of surface curvature on dose delivery in intraoperative high-dose-rate brachytherapy.

    Science.gov (United States)

    Oh, Moonseong; Wang, Zhou; Malhotra, Harish K; Jaggernauth, Wainwright; Podgorsak, Matthew B

    2009-01-01

    In intraoperative high-dose-rate (IOHDR) brachytherapy, a 2-dimensional (2D) geometry is typically used for treatment planning. The assumption of planar geometry may cause serious errors in dose delivery for target surfaces that are, in reality, curved. A study to evaluate the magnitude of these errors in clinical practice was undertaken. Cylindrical phantoms with 6 radii (range: 1.35-12.5 cm) were used to simulate curved treatment geometries. Treatment plans were developed for various planar geometries and were delivered to the cylindrical phantoms using catheters inserted into Freiburg applicators of varying dimension. Dose distributions were measured using radiographic film. In comparison to the treatment plan (for a planar geometry), the doses delivered to prescription points were higher on the concave side of the geometry, up to 15% for the phantom with the smallest radius. On the convex side of the applicator, delivered doses were up to 10% lower for small treated areas (5 catheters). Our measurements have shown inaccuracy in dose delivery when the original planar treatment plan is delivered with a curved applicator. Dose delivery errors arising from the use of planar treatment plans with curved applicators may be significant.

  5. Influence of the dose rate in the PVDF degradation processes

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M.; Pereira, Claubia, E-mail: adriananuclear@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Gual, Maritza R., E-mail: maritzargual@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InsTEC), Departamento de Ingenieria Nuclear, La Habana (Cuba); Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  6. Dose rate and SDD dependence of commercially available diode detectors.

    Science.gov (United States)

    Saini, Amarjit S; Zhu, Timothy C

    2004-04-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10 x 10 cm2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38,900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39,060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38,900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38,990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21,870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21,870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17,870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21,870 cGy/s) for the p-type preirradiated Scanditronix EDP20(3G), and 0.998 (1490 cGy/s)-1.015 (38,880 cGy/s) for Scanditronix EDP10(3G) diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  7. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    Science.gov (United States)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  8. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  9. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, T E; Norris, W P; Tolle, D V; Seed, T M; Poole, C M; Lombard, L S; Doyle, D E

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to /sup 60/Co ..gamma.. rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD/sub 50/ for ..gamma..-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD/sub 50/ for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD/sub 50/ is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD/sub 50/ can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate.

  10. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy(-1)) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was radiation exposure. The LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the

  11. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  12. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Granero, Domingo, E-mail: dgranero@eresa.com [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, Javier [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  13. Combined scintillation detector for gamma dose rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L.; Novakova, O.; Jursova, L. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky)

    1990-01-01

    The specifications are described of a newly developed scintillation detector, essentially consisting of a plastic scintillator completed with inorganic scintillators ZnS(Ag) and NaI(Tl). The gamma dose rate is derived from the photomultiplier anode current. The composition and sizes of the scintillators and the capsule are selected so as to minimise the energy dependence errors and directional dependence errors of the detector response over a wide range of energies and/or angles. (author).

  14. Global shutdown dose rate maps for a DEMO conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D., E-mail: dieter.leichtle@f4e.europa.eu [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pereslavtsev, P. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sanz, J.; Catalan, J.P.; Juarez, R. [Universidad Nacional de Educación a Distancia(UNED), E.T.S. Ingenieros Industriales, C/ Juan del Rosal 12, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  15. Physical characteristics of the Selectron high dose rate intracavitary afterloader

    Energy Technology Data Exchange (ETDEWEB)

    Chenery, S.G.A.; Pla, M.; Podgorsak, E.B. (Royal Victoria Hospital, Montreal, Quebec (Canada); McGill Univ., Montreal, Quebec (Canada))

    1985-08-01

    The physics measurements on a Selectron high dose-rate afterloading cobalt-60 unit are reported. The installation was found to be acceptable from the standpoint of radiation safety and cost effectiveness; hospital bed space was saved as treatment could be on an outpatient basis. A source calibration 4% higher than the value stated by the manufacturer was obtained. Measurement of the ratio of exposure rate in water to that in air confirmed the calibration and the applicability of correction factors for routine clinical dosimetry recommended in the literature.

  16. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  17. Image-guided high dose rate endorectal brachytherapy.

    Science.gov (United States)

    Devic, Slobodan; Vuong, Té; Moftah, Belal; Evans, Michael; Podgorsak, Ervin B; Poon, Emily; Verhaegen, Frank

    2007-11-01

    Fractionated high dose rate endorectal brachytherapy (HDR-EBT) using CT-based treatment planning is an alternative method for preoperative down-sizing and down-staging of advanced rectal adeno-carcinomas. The authors present an image guidance procedure that was developed to ensure daily dose reproducibility for the four brachytherapy treatment fractions. Since the applicator might not be placed before each treatment fraction inside the rectal lumen in the same manner as it was placed during the 3D CT volume acquisition used for treatment planning, there is a shift along the catheter axis that may have to be performed. The required shift is determined by comparison of a daily radiograph with the treatment planning digitally-reconstructed radiograph (DRR). A procedure is developed for DRR reconstruction from the 3D data set used for the treatment planning, and two possible daily longitudinal shifts are illustrated: above and below the planning dose distribution. The authors also describe the procedure for rotational alignment illustrated on a clinical case. Reproduction of the treatment planned dose distribution on a daily basis is crucial for the success of fractionated 3D based brachytherapy treatments. Due to the cylindrical symmetry of the applicator used for preoperative HDR-EBT, two types of adjustments are necessary: applicator rotation and dwell position shift along the applicator's longitudinal axis. The impact of the longitudinal applicator shift prior to treatment delivery for 62 patients treated in our institution is also assessed.

  18. Project Work Plan: Sequestration of Strontium-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of an Apatite Solution

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, Jim E.

    2006-04-30

    We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 years to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.

  19. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  20. Final report for DOE Grant No. DE-SC0006609 - Persistence of Microbially Facilitated Calcite Precipitation as an in situ Treatment for Strontium-90

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W [University of Idaho; Fujita, Yoshiko [Idaho National Laboratory

    2013-11-15

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide Sr-90, is co-precipitation in calcite. We have previously found that nutrient addition can stimulate microbial ureolytic activity, that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days and was followed by long-term monitoring which continued for 13 months. A post experiment core located within the inter-wellbore zone was collected on day 321 and characterized with respect to cation exchange capacity, mineral carbonate content, urease activity, ureC gene abundance, extractable ammonium (a urea hydrolysis product) content, and the C-13 isotopic composition of solid carbonates. It was also subjected to selective extractions for strontium and uranium. Result of the core

  1. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  2. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  3. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  4. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing.

    Science.gov (United States)

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-11-07

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of

  5. Radon exhalation rates and gamma doses from ceramic tiles.

    Science.gov (United States)

    O'Brien, R S; Aral, H; Peggie, J R

    1998-12-01

    This study was carried out to assess the possible radiological hazard resulting from the use of zircon in glaze applied to tiles used in buildings. The 226Ra content of various stains and glazing compounds was measured using gamma spectroscopy and the 222Rn exhalation rates for these materials were measured using adsorption on activated charcoal. The radon exhalation rates were found to be close to or less than the minimum detectable values for the equipment used. This limit was much lower than the estimated exhalation rates, which were calculated assuming that the parameters controlling the emanation and diffusion of 222Rn in the materials studied were similar to those of soil. This implied that the 222Rn emanation coefficients and/or diffusion coefficients for most of the materials studied were very much lower than expected. Measurements on zircon powders showed that the 222Rn emanation coefficient for zircon was much lower than that for soil, indicating that only a small fraction of the 222Rn produced by the decay of 226Ra was able to escape from the zircon grains. The estimated increase in radon concentration in room air and the estimated external gamma radiation dose resulting from the use of zircon glaze are both much lower than the relevant action level and dose limit.

  6. Reaction rate theory of radiation exposure: Effects of the dose rate on mutation frequencies

    CERN Document Server

    Manabe, Yuichiro; Nakamura, Issei

    2014-01-01

    We develop a kinetic reaction model for the cells having the irradiated DNA molecules due to the ionizing radiation exposure. Our theory simultaneously accounts for the time-dependent reactions of the DNA damage, the DNA mutation, the DNA repair, and the proliferation and apoptosis of cells in a tissue with a minimal set of model parameters. In contrast to the existing theories for the radiation exposition, we do not assume the relationships between the total dose and the induced mutation frequency. We show good agreement between theory and experiment. Importantly, our result shows a new perspective that the key ingredient in the study of the irradiated cells is the rate constants depending on the dose rate. Moreover, we discuss the universal scaling function for mutation frequencies due to the irradiation at low dose rates.

  7. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    Science.gov (United States)

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3.

  8. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  9. Analysis of the spatial rates dose rates during dental panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jong Kyung [Dept. of Radiation Safety Management Commission, Daegu Health College, Daegu (Korea, Republic of); Park, Myeong Hwan [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of); Kim, Yong Min [Dept. of Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2016-12-15

    A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a 45°, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is 3,840 μSv/h, which is four times higher than the lowest level 778 μSv/h. Furthermore, the spatial dose rate was 408 μSv/h on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

  10. Neutron and gamma ray total dose rate determination using anisn

    Science.gov (United States)

    Amin, E.; Ashoub, N.; Elkady, A.

    1994-07-01

    The National Center for Nuclear Safety and Radiation Control is in the process of acquiring a computer software library based mainly on internationally widely used computer codes. These codes are to be used as basic tools in safety analysis and radiation control and risk assessment. A complementary part of this activity is to validate the computer codes and set standard procedures with the limits of confidence for the different areas of applications of the one or the other code or set of codes. The present work has been then initiated in order to develop a standard shielding calculating procedure to be applied for the different applications of interest to the center, namely: shielding of nuclear installations, such as the ET-RR-1 reactor, the gamma unit, nuclear accelerator, radiotherapy units; shielding of nuclear sources (mainly neutron and gamma sources); shielding of transportation containers. In developing such a standard method, the sources of error to the final results (i.e. the dose rate and dose rate distribution) have to been identified and the error to be quantified. Through applying the developed procedure to benchmark PWR shielding problems, and to documented results for fission sources in water and concrete, the levels of confidence of the procedure in different application areas have been set.

  11. Neutron and gamma ray total dose rate determination using ANISN

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E.; Elkady, A. [Atomic Energy Authority, Cairo (Egypt). National Center for Nuclear Safety and Radiation Control; Ashoub, N. [Nuclear Research Center, Cairo (Egypt)

    1994-07-01

    The National Center for Nuclear Safety and Radiation Control is in the process of acquiring a computer software library based mainly on internationally widely used computer codes. These codes are to be used as basic tools in safety analysis and radiation control and risk assessment. A complementary part of this activity is to validate the computer codes and set standard procedures with the limits of confidence for the different areas of applications of the one or the other code or set of codes. The present work has been then initiated in order to develop a standard shielding calculating procedure to be applied for the different applications of interest to the center, namely: shielding of nuclear installations, such as the ET-RR-1 reactor, the gamma unit, nuclear accelerator, radiotherapy units; shielding of nuclear sources (mainly neutron and gamma sources); shielding of transportation containers. In developing such a standard method, the sources of error to the final results (i.e. the dose rate and dose rate distribution) have to be identified and the error to be quantified. Through applying the developed procedure to benchmark PWR shielding problems, and to documented results for fission sources in water and concrete, the levels of confidence of the procedure in different application areas have been set. (author).

  12. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.

    Directory of Open Access Journals (Sweden)

    Daniel G Zhang

    Full Text Available MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF and conventional flattened 6MV photon beams were used. High dose rate (HDR brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL would be needed.

  13. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.

    Science.gov (United States)

    Zhang, Daniel G; Feygelman, Vladimir; Moros, Eduardo G; Latifi, Kujtim; Zhang, Geoffrey G

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed.

  14. High dose rate versus low dose rate brachytherapy for oral cancer--a meta-analysis of clinical trials.

    Directory of Open Access Journals (Sweden)

    Zhenxing Liu

    Full Text Available OBJECTIVE: To compare the efficacy and safety of high dose rate (HDR and low dose rate (LDR brachytherapy in treating early-stage oral cancer. DATA SOURCES: A systematic search of MEDLINE, EMBASE and Cochrane Library databases, restricted to English language up to June 1, 2012, was performed to identify potentially relevant studies. STUDY SELECTION: Only randomized controlled trials (RCT and controlled trials that compared HDR to LDR brachytherapy in treatment of early-stage oral cancer (stages I, II and III were of interest. DATA EXTRACTION AND SYNTHESIS: Two investigators independently extracted data from retrieved studies and controversies were solved by discussion. Meta-analysis was performed using RevMan 5.1. One RCT and five controlled trials (607 patients: 447 for LDR and 160 for HDR met the inclusion criteria. The odds ratio showed no statistically significant difference between LDR group and HDR group in terms of local recurrence (OR = 1.12, CI 95% 0.62-2.01, overall mortality (OR = 1.01, CI 95% 0.61-1.66 and Grade 3/4 complications (OR = 0.86, CI 95% 0.52-1.42. CONCLUSIONS: This meta-analysis indicated that HDR brachytherapy was a comparable alternative to LDR brachytherapy in treatment of oral cancer. HDR brachytherapy might become a routine choice for early-stage oral cancer in the future.

  15. ACDOS3: a further improved neutron dose-rate code

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.S.

    1982-07-01

    ACD0S3 is a computer code designed primarily to calculate the activities and dose rates produced by neutron activation in a variety of simple geometries. Neutron fluxes, in up to 50 groups and with energies up to 20 MeV, must be supplied as part of the input data. The neutron-source strength must also be supplied, or alternately, the code will compute it from neutral-beam operating parameters in the case where the source is a fusion-reactor injector. ACD0S3 differs from the previous version ACD0S2 in that additional geometries have been added, the neutron cross-section library has been updated, an estimate of the energy deposited by neutron reactions has been provided, and a significant increase in efficiency in reading the data libraries has been incorporated.

  16. Gamma spectrum, count rate, and dose rate measurements of the Columbia riverbank from Vernita to Sacajawea

    Energy Technology Data Exchange (ETDEWEB)

    Grande, L.A.

    1966-01-31

    The purpose of this study was to evaluate radiological conditions that exist on the riverbank of the Columbia River. Included was a comparative study of the suitability of three instruments to measure the dose rates. These instruments were a NaI (T1) scintillation counter normally used for aerial monitoring, a bioplastic scintillation counter normally used as a road monitor, and a portable 40 liter ionization chamber normally used to measure very low gamma dose rates. The selection of representative sites for the comparative study was based on an initial GM survey of the general areas in question. Seven sites were studied--from Vernita Ferry Landing above the Hanford project to Sacajawea Park below Pasco.

  17. Ultra-trace determination of Strontium-90 in environmental soil samples from Qatar by collision/reaction cell-inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Meer, S. H.; Amr, M. A. [Central Laboratories Unit, Qatar University, Doha (Qatar); Helal, A.I. [Atomic Energy Authority, Cairo (Egypt); Al-Kinani, A.T. [Minstery of Environment, Doha (Qatar)

    2013-07-01

    Because of the very low level of {sup 90}Sr in the environmental soil samples and its determination by beta counting may take several weeks, we developed a procedure for ultra-trace determination of {sup 90}Sr using collision reaction cell-inductively coupled plasma tandem mass spectrometry (CRC-ICP-MS/MS, Agilent 8800). Soil samples were dried at 105 deg. C and then heated in a furnace at 550 deg. C to remove any organics present. 500 g of each soil samples were aliquoted into 2000 ml glass beakers. Each Soils samples were soaked in 2 ppm Sr solution carrier to allow determination of chemical yield. The solid to liquid ratio was 1:1. Finally the soil samples were dried at 105 deg. C. Five hundred milliliters concentrated nitric acid and 250 ml hydrochloric acid volumes were added on 500 g soil samples. The samples were digested on hot plate at 80 deg. C to prevent spraying with continuous manual mixing. The leachate solution was separated. The solids were rinsed with 500 ml deionized water, warmed on a hot plate and the leachate plus previous leachate were filtered and the total volume was reduced to 500 ml by evaporation. Final leachate volume was transferred to a centrifuge tubes. The centrifuge tubes were centrifuged at 3,500 rpm for 10 min. The leachate was transferred to a 1 L beaker and heated on a hot plate to evaporate the leachate to dryness. The reside was re-dissolved in 100 ml of 2% HNO{sub 3} and reduced by evaporation to 10 mL. The solution was measured directly by CRC-ICP-MS/MS by setting the first quadruple analyzer to m/z 90 and introducing oxygen gas into the reaction cell for elimination isobar interference from zirconium-90. The method was validated by measurements of standard reference materials and applied on environmental soil samples. The overall time requirement for the measurement of strontium-90 by CRC-ICP-MS/MS is 2 days, significantly shorter than any radioanalytical protocol currently available. (authors)

  18. Final Technical Report for DOE Award DE-FG02-07ER64403 [Modeling of Microbially Induced Calcite Precipitation for the Immobilization of Strontium-90 Using a Variable Velocity Streamtube Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Timothy R. [University of California, Davis; Weathers, Tess [University of California, Davis

    2013-08-26

    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understanding of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized

  19. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models.

    Science.gov (United States)

    Tang, Feng Ru; Loke, Weng Keong; Khoo, Boo Cheong

    2017-03-01

    Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  1. Induction of chromosome aberrations is non-linear within the low dose region and depends on dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, A.A.; Geras' kin, S.A.; Dikarev, V.G.; Nesterov, Y.B.; Dikareva, N.S

    2002-07-01

    The low dose region was evaluated for meristem cells of spring barley. A study of the cytogenetic damage in the low dose range was carried out to determine the genuine shape of the dose curve. The relationship between the frequency of aberrant cells and the absorbed dose is shown to be non-linear with a site at low doses within which the cytogenetic damage exceeds the control level significantly and does not depend on dose value. Within the tested exposure region, the aberrant cell frequency is found to decrease with increasing dose rate, but the shape of the dose curve remained invariable. The piecewise linear model fits the experimental data much better than the linear one. (author)

  2. Pulsed-dose-rate and low-dose-rate brachytherapy : Comparison of sparing effects in cells of a radiosensitive and a radioresistant cell line

    NARCIS (Netherlands)

    Pomp, J; Woudstra, EC; Kampinga, HH

    Pulsed-dose-rate regimens are an attractive alternative to continuous low-dose-rate brachytherapy. However, apart from data obtained from modeling, only a few irt vitro results are available for comparing the biological effectiveness of both modalities. Cells of two human cell lines with survival

  3. SU-E-T-165: Characterization of Dose Distributions in High-Dose-Rate Surface Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Buzurovic, I; Hansen, J; Bhagwat, M; O’Farrell, D; Damato, A; Friesen, S; Devlin, P; Cormack, R [Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: To characterize dose distributions in high-dose-rate(HDR) surface brachytherapy using an Ir-125 source for different geometries, field sizes and topology of the clinical targets(CT). To investigate the depth doses at the central axis(CAX), edges of the treatment fields(E), and lateral dose distributions(L) present when using flap applicators in skin cancer treatments. Methods: When malignancies diagnosed on the skin are treated, various geometries of the CT require proper adaptation of the flap or custom-made applicators to the treatment site. Consequently, the dose at the depth on CAX and field edges changes with variation of the curvatures and size of the applicators. To assess the dose distributions, we created a total of 10 treatment plans(TP) for 10×10 and 20×20 field sizes(FS) with a step size of 1cm. The geometry of the applicators was: planar(PA), curved to 30(CA30) and 60(CA60) degrees with respect to the CAX, half-cylinder(HC), and cylindrical shape(CS). One additional TP was created in which the applicators were positioned to form a dome shape(DS) with a diameter of 16cm. This TP was used to emulate treatment of the average sized scalp. All TPs were optimized to deliver a prescription dose at 8mm equidistantly from the planes containing the dwell positions. This optimization is equivalent to the clinical arrangement since the SSD for the flap applicators is 5mm and the prescription depth is 3mm in the majority of clinical cases. Results: The depths (in mm) of the isodose lines were: FS(10×10):PA[90%(9.1CAX,8.0E,7.6L),50%(28.3CAX,20E,17.3L), 25%(51.1CAX,40E,27L)],CA30[90%(10.3CAX,8.2E,7.9L),50%(32.1CAX, 16.2E,15.8L),25%(61.3CAX,36.7E,31.8L)],CA60[90%(12.2CAX,6.1E,6.3L ),50%(47CAX,14E,16.6L),25%(70.8CAX,31.9E,35.4L)],HC[90%(11.1CA X,6.3E,7.3L),50%(38.3CAX,14.6E,16.1L),25%(66.2CAX,33.8E,34.2L)];FS (20×20):PA[90%(11.1CAX,9.0E,7.0L),50%(34.4CAX,21.9E,15.3L),25%(7 0.4CAX,50.9E,34.8L)],CA30[90%(10.9CAX,7.5E,7.1L),50%(38.8CAX,16. 7E,15.4L),25

  4. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    Science.gov (United States)

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  5. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  6. Modeling Low-Dose-Rate Effects in Irradiated Bipolar-Base Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cirba, C.R.; Fleetwood, D.M.; Graves, R.J.; Michez, A.; Milanowski, R.J.; Saigne, F.; Schrimpf, R.D.; Witczak, S.C.

    1998-10-26

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in bipolar junction transistors. Multiple-trapping simulations show that space charge limited transport is partially responsible for low-dose-rate enhancement. At low dose rates, more holes are trapped near the silicon-oxide interface than at high dose rates, resulting in larger midgap voltage shifts at lower dose rates. The additional trapped charge near the interface may cause an exponential increase in excess base current, and a resultant decrease in current gain for some NPN bipolar technologies.

  7. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    Science.gov (United States)

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  8. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  9. The usefulness of metal markers for CTV-based dose prescription in high-dose-rate interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken; Mitomo, Masanori [Osaka National Hospital (Japan); Nose, Takayuki; Koizumi, Masahiko; Nishiyama, Kinji [Osaka Prefectural Center for Adult Diseases (Japan); Yoshida, Mineo [Sanda City Hospital, Hyogo (Japan)

    2002-12-01

    We employ a clinical target volume (CTV)-based dose prescription for high-dose-rate (HDR) interstitial brachytherapy. However, it is not easy to define CTV and organs at risk (OAR) from X-ray film or CT scanning. To solve this problem, we have utilized metal markers since October 1999. Moreover, metal markers can help modify dose prescription. By regulating the doses to the metal markers, refining the dose prescription can easily be achieved. In this research, we investigated the usefulness of the metal markers. Between October 1999 and May 2001, 51 patients were implanted with metal markers at Osaka Medical Center for Cancer and Cardiovascular Diseases (OMCC), Osaka National Hospital (ONH) and Sanda City Hospital (SCH). Forty-nine patients (head and neck: 32; pelvis: 11; soft tissue: 3; breast: 3) using metal markers were analyzed. During operation, we implanted 179 metal markers (49 patients) to CTV and 151 markers (26 patients) to OAR. At treatment planning, CTV was reconstructed judging from the metal markers, applicator position and operation records. Generally, we prescribed the tumoricidal dose to an isodose surface that covers CTV. We also planned to limit the doses to OAR lower than certain levels. The maximum normal tissue doses were decided 80%, 150%, 100%, 50% and 200% of the prescribed doses for the rectum, the urethra, the mandible, the skin and the large vessel, respectively. The doses to the metal markers using CTV-based dose prescription were generated. These were compared with the doses theoretically calculated with the Paris system. Treatment results were also investigated. The doses to the 158 metal markers (42 patients) for CTV were higher than ''tumoricidal dose''. In 7 patients, as a result of compromised dose prescription, 9 markers were lower than the tumoricidal dose. The other 12 markers (7%) were excluded from dose evaluation because they were judged as miss-implanted. The doses to the 142 metal markers (24 patients

  10. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  11. Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system.

    Science.gov (United States)

    Palm, Asa; Nilsson, Elisabeth; Herrnsdorf, Lars

    2010-01-28

    According to published data, the absorbed dose used for a CBCT image acquisition with Varian OBI v1.3 can be as high as 100 mGy. In 2008 Varian released a new OBI version (v1.4), which promised to reduce the imaging dose. In this study, absorbed doses used for CBCT image acquisitions with the default irradiation techniques of Varian OBI v1.3 and v1.4 are measured. TLDs are used to derive dose distributions at three planes inside an anthropomorphic phantom. In addition, point doses and dose profiles inside a 'stack' of three CTDI body phantoms are measured using a new solid state detector, the CT Dose Profiler. With the CT Dose Profiler, the individual pulses from the X-ray tube are also studied. To verify the absorbed dose measured with the CT Dose Profiler, it is compared to TLD. The image quality is evaluated using a Catphan phantom. For OBI v1.3, doses measured in transverse planes of the Alderson phantom range between 64 mGy and 144 mGy. The average dose is around 100 mGy. For OBI v1.4, doses measured in transverse planes of the Alderson phantom range between 1 mGy and 51 mGy. Mean doses range between 3-35 mGy depending on CBCT mode. CT Dose Profiler data agree with TLD measurements in a CTDI phantom within the uncertainty of the TLD measurements (estimated SD +/- 10%). Instantaneous dose rate at the periphery of the phantom can be higher than 20 mGy/s, which is 10 times the dose rate at the center. The spatial resolution in v1.4 is not as high as in v1.3. In conclusion, measurements show that the imaging doses for default modes in Varian OBI v1.4 CBCT system are significantly lower than in v1.3. The CT Dose Profiler is proven fast and accurate for CBCT applications.

  12. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  13. Possible use of EPDM in radioactive waste disposal: Long term low dose rate and short term high dose rate irradiation in aquatic and atmospheric environment

    Science.gov (United States)

    Hacıoğlu, Fırat; Özdemir, Tonguç; Çavdar, Seda; Usanmaz, Ali

    2013-02-01

    In this study, changes in the properties of ethylene propylene diene terpolymer (EPDM) irradiated with different dose rates in ambient atmosphere and aqueous environment were investigated. Irradiations were carried out both with low dose and high dose rate irradiation sources. EPDM samples which were differentiated from each other by peroxide type and 5-ethylidene 2-norbornene (ENB) contents were used. Long term low dose rate irradiations were carried out for the duration of up to 2.5 years (total dose of 1178 kGy) in two different irradiation environments. Dose rates (both high and low), irradiation environments (in aquatic and open to atmosphere), and peroxide types (aliphatic or aromatic) were the parameters studied. Characterization of irradiated EPDM samples were performed by hardness, compression, tensile, dynamic mechanical analysis (DMA), TGA-FTIR, ATR-FTIR, XRD and SEM tests. It was observed that the irradiation in water environment led to a lower degree of degradation when compared to that of irradiation open to atmosphere for the same irradiation dose. In addition, irradiation environment, peroxide type and dose rate had effects on the extent of change in the properties of EPDM. It was observed that EPDM is relatively radiation resistant and a candidate polymer for usage in radioactive waste management.

  14. Dose rate effects on the thermoluminescence kinetics properties of MWCVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Gastelum, S.; Chernov, V.; Melendrez, R.; Soto-Puebla, D.; Pedroza-Montero, M.; Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, AP 5-088 Hermosillo, Sonora 83190 (Mexico); Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70-543 Mexico D.F. (Mexico); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and the Security of the Citizen, TP800,Via E. Fermi, 21020 Ispra (Italy)

    2007-09-15

    Dose rate effects are important in thermoluminescent (TL) dosimeter applications because a certain absorbed dose given at different dose rates may result in a different TL yield. The present work reports about the dose rate effects on TL glow curves and kinetics properties of microwave plasma assisted chemical vapor deposition (MWCVD) diamond films grown on (100) silicon. The diamond films were exposed to {gamma} radiation at 20.67, 43.4 and 81.11 Gy min{sup -1} dose rates in the range of 0.05-10 kGy. The films showed a linear dose behavior up to 2 kGy and reached saturation for higher doses. The TL intensity varied as a function of dose rate and the samples had a maximum TL response for relatively lower dose rates. A single first order kinetics TL peak was typical for low doses while at higher doses two first order kinetics peaks were necessary to fit the glow curves. The results indicate that dose rate effects may be significant in dosimetric applications of MWCVD diamond. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Dose-Dependent Mutation Rates Determine Optimum Erlotinib Dosing Strategies for EGFR Mutant Non-Small Cell Lung Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Lin L Liu

    Full Text Available The advent of targeted therapy for cancer treatment has brought about a paradigm shift in the clinical management of human malignancies. Agents such as erlotinib used for EGFR-mutant non-small cell lung cancer or imatinib for chronic myeloid leukemia, for instance, lead to rapid tumor responses. Unfortunately, however, resistance often emerges and renders these agents ineffective after a variable amount of time. The FDA-approved dosing schedules for these drugs were not designed to optimally prevent the emergence of resistance. To this end, we have previously utilized evolutionary mathematical modeling of treatment responses to elucidate the dosing schedules best able to prevent or delay the onset of resistance. Here we expand on our approaches by taking into account dose-dependent mutation rates at which resistant cells emerge. The relationship between the serum drug concentration and the rate at which resistance mutations arise can lead to non-intuitive results about the best dose administration strategies to prevent or delay the emergence of resistance.We used mathematical modeling, available clinical trial data, and different considerations of the relationship between mutation rate and drug concentration to predict the effectiveness of different dosing strategies.We designed several distinct measures to interrogate the effects of different treatment dosing strategies and found that a low-dose continuous strategy coupled with high-dose pulses leads to the maximal delay until clinically observable resistance. Furthermore, the response to treatment is robust against different assumptions of the mutation rate as a function of drug concentration.For new and existing targeted drugs, our methodology can be employed to compare the effectiveness of different dose administration schedules and investigate the influence of changing mutation rates on outcomes.

  16. Dose-rate effects on the bulk etch-rate of CR-39 track detector exposed to low-LET radiations

    CERN Document Server

    Yamauchi, T; Oda, K; Ikeda, T; Honda, Y; Tagawa, S

    1999-01-01

    The effect of gamma-rays and pulsed electrons has been investigated on the bulk etch rate of CR-39 detector at doses up to 100 kGy under various dose-rate between 0.0044 and 35.0 Gy/s. The bulk etch rate increased exponentially with the dose at every examined dose-rates. It was reveled to be strongly depend on the dose-rate: the bulk etch rate was decreased with increasing dose-rate at the same total dose. A primitive model was proposed to explain the dose-rate effect in which oxygen dissolved was assumed to dominate the damage formation process.

  17. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    Science.gov (United States)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  18. Clinical application of a OneDose(TM) MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Kinhikar, Rajesh A [Department of Medical Physics, Tata Memorial Hospital, Parel, Mumbai 400 012 (India); Sharma, Pramod K [Department of Medical Physics, Tata Memorial Hospital, Parel, Mumbai 400 012 (India); Tambe, Chandrashekhar M [Department of Medical Physics, Tata Memorial Hospital, Parel, Mumbai 400 012 (India); Mahantshetty, Umesh M [Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400 012 (India); Sarin, Rajiv [Advanced Centre for Training Research and Education in Cancer, Kharghar, Navi Mumbai (India); Deshpande, Deepak D [Department of Medical Physics, Tata Memorial Hospital, Parel, Mumbai 400 012 (India); Shrivastava, Shyam K [Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400 012 (India)

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose(TM) in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs. (note)

  19. Feasibility of constant dose rate VMAT in the treatment of nasopharyngeal cancer patients

    OpenAIRE

    Yu, Wenliang; Shang, Haijiao; Xie, Congying; Han, CE; Yi, Jinling; Zhou, Yongqiang; Jin, Xiance

    2014-01-01

    Purpose To investigate the feasibility of constant dose rate volumetric modulated arc therapy (CDR-VMAT) in the treatment of nasopharyngeal cancer (NPC) patients and to introduce rotational arc radiotherapy for linacs incapable of dose rate variation. Materials and methods Twelve NPC patients with various stages treated previously using variable dose rate (VDR) VMAT were enrolled in this study. CDR-VMAT, VDR-VMAT and mutlicriteria optimization (MCO) VMAT plans were generated for each patient ...

  20. The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection.

    Directory of Open Access Journals (Sweden)

    Safeer K Mughal

    Full Text Available The non-targeted effects of human exposure to ionising radiation, including transgenerational instability manifesting in the children of irradiated parents, remains poorly understood. Employing a mouse model, we have analysed whether low-dose acute or low-dose-rate chronic paternal γ-irradiation can destabilise the genomes of their first-generation offspring. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR locus Ms6-hm was established in DNA samples extracted from sperm of directly exposed BALB/c male mice, as well as from sperm and the brain of their first-generation offspring. For acute γ-irradiation from 10-100 cGy a linear dose-response for ESTR mutation induction was found in the germ line of directly exposed mice, with a doubling dose of 57 cGy. The mutagenicity of acute exposure to 100 cGy was more pronounced than that for chronic low-dose-rate irradiation. The analysis of transgenerational effects of paternal irradiation revealed that ESTR mutation frequencies were equally elevated in the germ line (sperm and brain of the offspring of fathers exposed to 50 and 100 cGy of acute γ-rays. In contrast, neither paternal acute irradiation at lower doses (10-25 cGy, nor low-dose-rate exposure to 100 cGy affected stability of their offspring. Our data imply that the manifestation of transgenerational instability is triggered by a threshold dose of acute paternal irradiation. The results of our study also suggest that most doses of human exposure to ionising radiation, including radiotherapy regimens, may be unlikely to result in transgenerational instability in the offspring children of irradiated fathers.

  1. Vitamin D production depends on ultraviolet-B dose but not on dose rate: a randomized controlled trial

    DEFF Research Database (Denmark)

    Bogh, Morten K B; Schmedes, Anne V; Philipsen, Peter A

    2011-01-01

    Ultraviolet-B (UV-B) radiation increases serum vitamin D level expressed as 25-hydroxyvitamin D(3) (25(OH)D), but the dose-response relationship and the importance of dose rate is unclear. Of 172 fair-skinned persons screened for 25(OH)D, 55 with insufficient baseline 25(OH)D=50 nm (mean 31.2 nm......-B treatments of 3 SED with 24.8 nm on average and 14.2 nm after four UV-B treatments of just 0.375 SED. In conclusion, the increase in 25(OH)D after UV-B exposure depends on the dose but not on the dose rate (1-20 min). Further, a significant increase in 25(OH)D was achieved with a very low UV-B dose.......) were selected and randomized to one of 11 groups of five participants. Each group was exposed to one of four different UV-B doses: 0.375, 0.75, 1.5 or 3.0 standard erythema dose (SED) for 1, 5, 10 or 20 min. All participants had four UV-B sessions with 2- to 3-day interval with 24% of their skin...

  2. ``In vivo'' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    Science.gov (United States)

    Mejía, C. A. Reynoso; Burgos, A. E. Buenfil; Trejo, C. Ruiz; García, A. Mota; Durán, E. Trejo; Ponce, M. Rodríguez; de Buen, I. Gamboa

    2010-12-01

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured "in vivo" by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the "in vivo" measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the "in vivo" dose is fully described.

  3. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1).

  4. ``In Vivo'' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    Science.gov (United States)

    González-Azcorra, S. A.; Mota-García, A.; Poitevín-Chacón, M. A.; Santamaría-Torruco, B. J.; Rodríguez-Ponce, M.; Herrera-Martínez, F. P.; Gamboa de Buen, I.; Ruíz-Trejo, C.; Buenfil, A. E.

    2008-08-01

    In this prospective study, rectal dose was measured "in vivo" using TLD-100 crystals (3×3×1 mm3), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerología (INCan).

  5. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Science.gov (United States)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  6. Effect of gamma-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Pradeep K. [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Department of Management Science, U.P. Technical University, Lucknow 226021 (India); Jha, Rakhi [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Toxicology Laboratory, Department of Zoology, Ch. C.S. University, Meerut 200005 (India); Gupta, B.L. [CH3/56 Kendriya Vihar, Kharghar, Sector-11, Navi Mumbai-410 210 (India); Guha, Sujoy K., E-mail: guha_sk@yahoo.co [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-05-15

    Functional necessity to use a particular range of dose rate and total dose of gamma-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min gamma-dose rate and 2.0-2.4 kGy gamma-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  7. Life span of C57 mice as influenced by radiation dose, dose rate, and age at exposure

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, J.F.; Thomas, R.G.; Tietjen, G.L.

    1982-10-01

    This study was designed to measure the life shortening of C57BL/6J male mice as a result of exposure to five external doses from /sup 60/Co gamma radiation delivered at six different dose rates. Total doses ranged from 20 to 1620 rad at exposure rates ranging from 0.7 to 36,000 R/day. The ages of the mice at exposure were newborn, 2, 6, or 15 months. Two replications were completed. Although death was the primary endpoint, we did perform gross necropsies. The life span findings are variable, but we found no consistent shortening compared to control life spans. Therefore, we cannot logically extrapolate life shortening to lower doses, from the data we have obtained. In general, the younger the animals were at the beginning of exposure, the longer their life spans were compared to those of controls. This relationship weakened at the higher doses and dose rates, as mice in these categories tended not to have significantly different life spans from controls. Using life span as a criterion, we find this study suggests that some threshold dosage may exist beyond which effects of external irradiation may be manifested. Up to this threshold, there is no shortening effect on life span compared to that of control mice. Our results are in general agreement with the results of other researchers investigating human and other animal life span effects on irradiation.

  8. Dose-rate conversion factors for external exposure to photons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1981-08-01

    Dose-rate conversion factors for external exposure to photons and electrons have been calculated for approximately 500 radionuclides of potential importance in environmental radiological assessments. The dose-rate factors were obtained using the DOSFACTER computer code. The results given in this report incorporate calculation of electron dose-rate factors for radiosensitive tissues of the skin, improved estimates of organ dose-rate factors for photons, based on organ doses for monoenergetic sources at the body surface of an exposed individual, and the spectra of scattered photons in air from monoenergetic sources in an infinite, uniformly contaminated atmospheric cloud, calculation of dose-rate factors for other radionuclides in addition to those of interest in the nuclear fuel cycle, and incorporation of updated radioactive decay data for all radionuclides. Dose-rate factors are calculated for three exposure modes - immersion in contaminated air, immersion in contaminated water, and exposure at a height of 1 m above a contaminated ground surface. The report presents the equations used to calculate the external dose-rate factors for photons and electrons, documentation of the revised DOSFACTER computer code, and a complete tabulation of the calculated dose-rate factors. 30 refs., 12 figs.

  9. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  10. Use of virtual reality to estimate radiation dose rates in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, Silas C.; Mol, Antonio C.A.; Jorge, Carlos A.F. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: silas@ien.gov.br; Couto, Pedro M. [Faculdade Paraiso, Sao Goncalo, RJ (Brazil). Sistemas de Informacao]. E-mail: pedro98@gmail.com; Cunha, Gerson G.; Landau, Luis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)]. E-mail: gerson@lamce.ufrj.br

    2007-07-01

    Operators in nuclear plants receive radiation doses during several different operation procedures. A training program capable of simulating these operation scenarios will be useful in several ways, helping the planning of operational procedures so as to reduce the doses received by workers, and to minimize operations' times. It can provide safe virtual operation training, visualization of radiation dose rates, and estimation of doses received by workers. Thus, a virtual reality application, a free game engine, has been adapted to achieve the goals of this project. Simulation results for Argonauta research reactor of Instituto de Engenharia Nuclear are shown in this paper. A database of dose rate measurements, previously performed by the radiological protection service, has been used to display the dose rate distribution in the region of interest. The application enables the user to walk in the virtual scenario, displaying at all times the dose accumulated by the avatar. (author)

  11. Inverse modelling of radionuclide release rates using gamma dose rate observations

    Science.gov (United States)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  12. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  13. Low or High Fractionation Dose {beta}-Radiotherapy for Pterygium? A Randomized Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Viani, Gustavo Arruda, E-mail: gusviani@gmail.com [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil); De Fendi, Ligia Issa; Fonseca, Ellen Carrara [Department of Ophthalmology, Marilia Medicine School, Sao Paulo, SP (Brazil); Stefano, Eduardo Jose [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil)

    2012-02-01

    Purpose: Postoperative adjuvant treatment using {beta}-radiotherapy (RT) is a proven technique for reducing the recurrence of pterygium. A randomized trial was conducted to determine whether a low fractionation dose of 2 Gy within 10 fractions would provide local control similar to that after a high fractionation dose of 5 Gy within 7 fractions for surgically resected pterygium. Methods: A randomized trial was conducted in 200 patients (216 pterygia) between February 2006 and July 2007. Only patients with fresh pterygium resected using a bare sclera method and given RT within 3 days were included. Postoperative RT was delivered using a strontium-90 eye applicator. The pterygia were randomly treated using either 5 Gy within 7 fractions (Group 1) or 2 Gy within 10 fractions (Group 2). The local control rate was calculated from the date of surgery. Results: Of the 216 pterygia included, 112 were allocated to Group 1 and 104 to Group 2. The 3-year local control rate for Groups 1 and 2 was 93.8% and 92.3%, respectively (p = .616). A statistically significant difference for cosmetic effect (p = .034), photophobia (p = .02), irritation (p = .001), and scleromalacia (p = .017) was noted in favor of Group 2. Conclusions: No better local control rate for postoperative pterygium was obtained using high-dose fractionation vs. low-dose fractionation. However, a low-dose fractionation schedule produced better cosmetic effects and resulted in fewer symptoms than high-dose fractionation. Moreover, pterygia can be safely treated in terms of local recurrence using RT schedules with a biologic effective dose of 24-52.5 Gy{sub 10.}.

  14. Energy spectrum measurement and dose rate estimation of natural neutrons in Tibet region

    Institute of Scientific and Technical Information of China (English)

    吴建华; 徐勇军; 刘森林; 汪传高

    2015-01-01

    In this work, natural neutron spectra at nine sites in Tibet region were measured using a multi-sphere neutron spectrometer. The altitude-dependence of the spectra total fluence rate and ambient dose equivalent rate were analyzed. From the normalized natural neutron spectra at different altitudes, the spectrum fractions for neutrons of greater than 0.1 MeV do not differ obviously, while those of the thermal neutrons differ greatly from each other. The total fluence rate, effective dose rate and the ambient dose equivalent rate varied with the altitude according to an exponential law.

  15. Enhanced charge trapping in bipolar spacer oxides during low-dose-rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S. [Sandia National Labs., Albuquerque, NM (United States); Kosier, S.L.; Schrimpf, R.D. [Arizona Univ., Tucson, AZ (United States). Dept. of Electrical and Computer Engineering; Nowlin, R.N. [Air Force Phillips Laboratory, Albuquerque, NM (United States); Pease, R.L. [RLP Research, Inc., Albuquerque, NM (United States); DeLaus, M. [Analog Devices, Wilmington, MA (United States)

    1994-03-01

    Thermally-stimulated-current and capacitance-voltage measurements reveal enhanced hole trapping in bipolar spacer-oxide capacitors irradiated at 0 V at low dose rates. Possible mechanisms and implications for bipolar low-rate response are discussed.

  16. CONTRASTING DOSE-RATE EFFECTS OF GAMMA-IRRADIATION ON RAT SALIVARY-GLAND FUNCTION

    NARCIS (Netherlands)

    VISSINK, A; DOWN, JD; KONINGS, AWT

    1992-01-01

    The aim of this study was to investigate the effects of Co-60 irradiation delivered at high (HDR) and low (LDR) dose-rates on rat salivary gland function. Total-body irradiation (TBI; total doses 7.5, 10 and 12.5 Gy) was applied from a Co-60 source at dose-rates of 1 cGy/min (LDR) and 40 cGy/min (HD

  17. Modeling low-dose-rate effects in irradiated bipolar-base oxides

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.J.; Cirba, C.R.; Schrimpf, R.D.; Milanowski, R.J.; Saigne, F. [Vanderbilt Univ., Nashville, TN (United States); Michez, A. [Univ. Montpellier 2 (France); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); Witczak, S.C. [Aerospace Corp., Los Angeles, CA (United States)

    1997-02-01

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in BJTs. Simulations show that space charge limited transport is partially responsible for the low-dose-rate enhancement.

  18. Neutron dose equivalent rate in intermediate energy heavy ion target area

    CERN Document Server

    Li Gui Sheng; Li Zong Wei; Su You Wu; Zhang Shu Mi

    2000-01-01

    The fluence rate distributions of neutrons emitted in the reactions of 50 MeV/u sup 1 sup 8 O-ion on thick Be, Cu, Au targets were measured with an activation method of threshold detectors and the neutron dose equivalent rate distributions at 1 m from the targets in intermediate energy heavy ion target area were obtained using the conversion coefficients for neutron fluence rate to ambient dose equivalent rate.

  19. Variations of dose rate observed by MSL/RAD in transit to Mars

    CERN Document Server

    Guo, Jingnan; Wimmer-Schweingruber, Robert F; Hassler, Donald M; Posner, Arik; Heber, Bernd; Köhler, Jan; Rafkin, Scot; Ehresmann, Bent; Appel, Jan K; Böhm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Brinza, David E; Lohf, Henning; Martin, Cesar; Reitz, Günther

    2015-01-01

    Aims: To predict the cruise radiation environment related to future human missions to Mars, the correlation between solar modulation potential and the dose rate measured by the Radiation Assessment Detector (RAD) has been analyzed and empirical models have been employed to quantify this correlation. Methods: The instrument RAD, onboard Mars Science Laboratory's (MSL) rover Curiosity, measures a broad spectrum of energetic particles along with the radiation dose rate during the 253-day cruise phase as well as on the surface of Mars. With these first ever measurements inside a spacecraft from Earth to Mars, RAD observed the impulsive enhancement of dose rate during solar particle events as well as a gradual evolution of the galactic cosmic ray (GCR) induced radiation dose rate due to the modulation of the primary GCR flux by the solar magnetic field, which correlates with long-term solar activities and heliospheric rotation. Results: We analyzed the dependence of the dose rate measured by RAD on solar modulatio...

  20. LET and dose rate effect on radiation-induced copolymerization in physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiko, E-mail: Nakagawa.Seiko@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Taguchi, Mitsumasa; Kimura, Atsushi; Nagasawa, Naotsugu; Hiroki, Akihiro [Environmental Radiation Processing Group, Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-09-01

    Highlights: •LET and dose rate effect on polymerization in gel was almost the same as in solution. •The ratio of the dose rate effect in the gel was higher than that in solution. •The initiation and termination processes show the difference on the dose rate effect. -- Abstract: N{sub 2}-saturated 2-propanol solutions containing styrene and maleimide were gelled by the addition of hydroxypropylcellulose and irradiated by proton, He and C-ion beams. The trend in the dose rate and LET effects on the yield and molecular weight distribution of the polymer produced in the gel was almost the same in the solution. On the contrary, the dose rate effect in the gel was higher than that in the solution. This effect was accelerated for irradiations by proton as well as heavier ion with a higher LET value.

  1. Natural background radiation and estimation of gonadal dose rate of population of Chittagong region

    Energy Technology Data Exchange (ETDEWEB)

    Mostofa, M.N.; Ahmed, J.U. (Chittagong Univ. (Bangladesh). Dept. of Physics); Ahmed, R.; Ishaque, A.M. (Nuclear Medicine Center, Chittagong (Bangladesh)); Ahmed, K. (Institute of Nuclear Medicine, Dacca (Bangladesh))

    1981-07-01

    A survey was made on the background radiation to estimate the gonadal dose rate in the district of Chittagong from the year 1978 to 80. This was done with the help of a calibrated Nuclear Chicago transistorized survey meter. The measurements were made in different types of dwellings and occupational buildings constructed with wood, straw/bamboo, tin/bamboo, tin/brick and single and multistoried buildings of brick and concrete. For measurement of outdoor radiation the investigating areas taken were the roads, fields and the Karnafuly river. The variation in the population dose rate as well as gonadal dose rate were observed in different types of dwellings and occupational buildings including outdoors. The average population dose rate including cosmic ray intensity was found to be 172.41+-8.61 mrad/year. Thus, the annual gonadal dose rate due to gamma radiation was found to be 137.92+-6.89 mrad/year.

  2. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  3. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  4. Temporal Variations of Air Dose Rates in East Fukushima During Japanese Fiscal Years 2012 and 2013.

    Science.gov (United States)

    Akimoto, Kazuhiro

    2017-01-01

    Temporal variations of ambient air dose rates in eastern Fukushima prefecture during Japanese fiscal years 2012 and 2013 are analyzed. The average overall variation rate of air dose rates in east Fukushima during the examined period is found to be 0.49 (51% down) compared to the theoretically predicted value 0.65 (35% down) based on physical decay of radioactive cesium nuclides. On average, local dose rates declined almost linearly for the relatively short period. Temporal characteristics of air dose rates may be classified into variation rates, peaks, spikes, and oscillations. During the examined period, a typical dose-rate curve formed a long-term peak in summer that lasted one through a few months as well as a long-term spike in winter that lasted likewise. Otherwise, occasional short-term peaks and short-term spikes, in addition to long-term oscillations, were observed. Air dose rates may be effectively modulated at short timescales mainly by precipitation. Moreover, it is likely that winds may oscillate air dose rates due to resuspension of radio-dusts.

  5. Effect of different ionizing radiation dose rates on the Staphylococcal enterotoxin in mechanically deboned chicken meat

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Heliana de; Brito, Poliana de Paula; Fukuma, Henrique Takuji; Roque, Claudio Vitor; Custodio, Wilson [Brazilian Nuclear Energy Commission (CNEN-MG), Pocos de Caldas, MG (Brazil)], e-mail: hazevedo@cnen.gov.br, e-mail: pbrito@cnen.gov.br, e-mail: cvroque@cnen.gov.br, e-mail: htfukuma@cnen.gov.br, e-mail: wilsonc@cnen.gov.br; Kodama, Yasko [Nuclear and Energy Research Institute (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: ykodama@ipen.br; Miya, Norma Terugo Nago; Pereira, Jose Luiz [Campinas State University (UNICAMP), SP (Brazil). Dept. of Food Sciences], e-mail: pereira@fea.unicamp.br, e-mail: miya@fea.unicamp.br

    2009-07-01

    Samples weighing 50g each were prepared from allotments of back with skin MDCM, to the EEB contamination or not (control). Each sample of MDCM contaminated or not with EEB was conditioned in low density polyethylene bag, frozen (-18 {+-} 1 deg C) for one night in a tunnel and irradiated with gamma rays from {sup 60}Co source in this state with doses of 0.0 kGy (control), 1.5 kGy (5.7 kGy.h{sup -1} - higher dose rate, 1.8 kGy.h{sup -1} - intermediary dose rate and 0.6 kGy.h{sup -1} - lower dose rate) and 3.0 kGy (8.4 kGy.h{sup -}'1 - higher dose rate, 2.4 kGy.h{sup -1} - intermediary dose rate and 0.6 kGy.h{sup -1} - lower dose rate). Irradiated or non irradiated MDCM samples were processed to the EEB extraction, according to the VIDAS Staph enterotoxin II kit (bioMerieux) manufacturer protocol. The calculation to determinate the MDCM EEB recovery after the sample (control or irradiated) processing were carried out applying the principle of mass balance, along the whole process. Described experiment was performed in triplicate. Results showed that the irradiation process was effective to remove the MDCM EEB, to both 1.5 kGy and 3.0 kGy. According to the expected, doses of 3.0 kGy showed the highest values of MDCM EEB removal. Regarding the effect of dose rate of radiation on the removal of EEB of the MDCM, it could be observed only for samples irradiated with 1.5 kGy radiation dose; in these processing conditions, the highest value of EEB removal was obtained for samples processed with low radiation dose rate. (author)

  6. Monte Carlo-based revised values of dose rate constants at discrete photon energies

    Directory of Open Access Journals (Sweden)

    T Palani Selvam

    2014-01-01

    Full Text Available Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength S k needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30-50 keV and up to 4% at 0.2 cm at 30 keV. A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. S k calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20-50 keV when compared to the published values. The deviations observed in the values of dose rate and S k affect the values of dose rate constants up to 3%.

  7. Dose Assessment of Phosphorus-32 (32P for the Treatment of Recurrent Pterygium

    Directory of Open Access Journals (Sweden)

    Alireza Nazempoor

    2014-11-01

    Full Text Available Introduction Pterygium is a wing-shaped, vascular, fleshy growth that originates from the conjunctiva and can spread into the corneal limbus and beyond. Beta irradiation after bare sclera surgery of primary pterygium is a simple, effective, and safe treatment, which reduces the risk of local recurrence. Materials and Methods Dosimetric components of strontium-90 (90Sr, phosphorous-32 (32P, and ruthenium-106 (106Ru, in form of ophthalmic applicators, were evaluated, using the Monte Carlo method. Results The obtained results indicated that 32P applicator could deliver higher doses (about 10 Gy to a target, located within a close distance from the surface, compared to 90Sr and 106Ru; it also delivered a lower dose to normal tissues. Conclusion The risk of pterygium has increased given the geographical location and climate of Iran. Spread of dust in the country over the past few years has also contributed to the rising rate of this condition. Our results showed that using 32P applicator is a cost-effective method for pterygium treatment.

  8. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  9. SEMICONDUCTOR PHYSICS Dose-rate dependence of optically stimulated luminescence signal

    Science.gov (United States)

    Pingqiang, Wei; Zhaoyang, Chen; Yanwei, Fan; Yurun, Sun; Yun, Zhao

    2010-10-01

    Optically stimulated luminescence (OSL) is the luminescence emitted from a semiconductor during its exposure to light. The OSL intensity is a function of the total dose absorbed by the sample. The dose-rate dependence of the OSL signal of the semiconductor CaS doped Ce and Sm was studied by numerical simulation and experiments. Based on a one-trap/one-center model, the whole OSL process was represented by a series of differential equations. The dose-rate properties of the materials were acquired theoretically by solving the equations. Good coherence was achieved between numerical simulation and experiments, both of which showed that the OSL signal was independent of dose rate. This result validates that when using OSL as a dosimetry technique, the dose-rate effect can be neglected.

  10. INFLUENCE OF DOSE RATE ON THE CELLULAR RESPONSE TO LOW- AND HIGH-LET RADIATIONS

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eWozny

    2016-03-01

    Full Text Available Nowadays, head and neck squamous cell carcinoma (HNSCC treatment failure is mostly explained by loco-regional progression or intrinsic radioresistance. Radiotherapy has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy which modify the dose-rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional radiotherapy or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72MeV/n carbon ions at a dose rate of 0.5, 2 or 10Gy/min.For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure, this variation of radiosensitivity was associated to the number of initial and residual DNA double-strand breaks. By contrast, the dose rate change did not affect neither cell survival nor the residual DNA double-strand breaks after carbon ion irradiation. As a result, the Relative Biological Efficiency at 10% survival increased when the dose rate decreased.In conclusion, in the radiotherapy treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes towards altered-fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation

  11. Occurence and implications of radiation dose-rate effects for material aging studies

    Science.gov (United States)

    Gillen, Kenneth T.; Clough, Roger L.

    A number of commercial cable materials, including ethylene propylene rubber and crosslinked polyolefin insulations and chloroprene and chlorosulfonated polyethylene jackets have been radiation aged in air and nitrogen at radiation dose rates ranging from approximately 10 3 to 10 6{rad}/{hr}. Material degradation was followed using ultimate tensile properties (elongation and tensile strength), swelling measurements and infrared spectroscopy. The tensile results indicate that in air environments radiation dose rate effects are important for all four materials, with more mechanical damage occurring as the dose rate is lowered. These results are interpreted as coming from a competition between crosslinking and oxidative scission in which scission becomes more important as the dose rate is lowered. The swelling results offer direct evidence in support of this interpretation. In addition the infrared results show increased carbonyl content at lower dose rates, also indicative of increased oxidation. The conclusions of this study have important implications for the qualification of elastomeric materials for nuclear applications, since they clearly indicate that the mechanism of degradation is quite different (and the amount usually more severe) under low dose rate exposures compared to the mechanism occurring under the high dose rate exposures normally utilized for stimulating the natural aging.

  12. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    Science.gov (United States)

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.

  13. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations.

    Science.gov (United States)

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation.

  14. Impact of dose rate on clinical course in uveal melanoma after brachytherapy with ruthenium-106

    Energy Technology Data Exchange (ETDEWEB)

    Mossboeck, G.; Rauscher, T.; Langmann, G. [Medical Univ. of Graz (Austria). Dept. of Opthalmology; Winkler, P.; Kapp, K.S. [Medical Univ. of Graz (Austria). Dept. of Therapeutic Radiology and Oncology

    2007-10-15

    Background and Purpose: It has been suggested that the actual dose rate of an irradiating source may be a distinct influencing factor for the biological effect after brachytherapy with ruthenium-106 for uveal melanoma. The purpose of this study was to investigate a hypothesized impact of the dose rate on the clinical and echographic course after brachytherapy. Patients and Methods: In total, 45 patients were included in this retrospective study. According to the actual dose rate, two groups were defined: group 1 with a dose rate < 4 Gy/h and group 2 with a dose rate {>=} 4 Gy/h. Regarding age, tumor height, basal diameter, scleral and apical dose, differences between the groups were not significant. Clinical parameters, including early and late side effects, and echographic courses were compared. Results: A significantly lower metastatic rate was found in group 2. Using univariate Cox proportional hazards regression, only dose rate predicted metastatic spread significantly (p < 0.05), while in a multivariate analysis, using age at the time of treatment, greatest tumor height and greatest basal diameter as covariates, the variable dose rate was of borderline significance (p = 0.077). Patients in group 2 had more early side effects and more pronounced visual decline, but these differences were of borderline significance with p-values of 0.072 and 0.064, respectively. Conclusion: These data suggest that a higher dose rate may confer a lower risk for metastatic spread, but may be associated with more side effects and more pronounced visual decline. (orig.)

  15. Applicator Attenuation Effect on Dose Calculations of Esophageal High-Dose Rate Brachytherapy Using EDR2 Film

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Hosseini Daghigh

    2012-03-01

    Full Text Available Introduction Interaluminal brachytherapy is one of the important methods of esophageal cancer treatment. The effect of applicator attenuation is not considered in dose calculation method released by AAPM-TG43. In this study, the effect of High-Dose Rate (HDR brachytherapy esophageal applicator on dose distribution was surveyed in HDR brachytherapy. Materials and Methods A cylindrical PMMA phantom was built in order to be inserted by various sizes of esophageal applicators. EDR2 films were placed at 33 mm from Ir-192 source and irradiated with 1.5 Gy after planning using treatment planning system for all applicators. Results The results of film dosimetry in reference point for 6, 8, 10, and 20 mm applicators were 1.54, 1.53, 1.48, and 1.50 Gy, respectively. The difference between practical and treatment planning system results was 0.023 Gy (

  16. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Yuko, E-mail: kaneyasu@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kita, Midori [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Department of Clinical Radiology, Tokyo Metropolitan Tama Medical Center, Tokyo (Japan); Okawa, Tomohiko [Evaluation and Promotion Center, Utsunomiya Memorial Hospital, Tochigi (Japan); Maebayashi, Katsuya [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kohno, Mari [Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Sonoda, Tatsuo; Hirabayashi, Hisae [Department of Radiology, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  17. Relationship of HepG2 cell sensitivity to continuous low dose-rate irradiation with ATM phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Quelin Mei; Jianyong Yang; Duanming Du; Zaizhong Cheng; Pengcheng liu

    2008-01-01

    Objective: To investigate the change of ATM phosphorylation in HepG2 cells and its effect on HepG2 cell survival under a continuous low dose-rate irradiation.Methods: HepG2 cells were exposed to equivalent doses of irradiation delivered at either a continuous low dose-rate (7.76 cGy/h) or a high dose-rate (4500 cGy/h).The ATM phosphorylated proteins and surviving fraction of HepG2 cell after low dose-rate irradiation were compared with that after equivalent doses of high dose-rate irradiation.Results: The phosphorylation of ATM protein was maximal at 0.5 Gy irradiation delivered at either a high dose-rate or a continuous low dose-rate.As the radiation dose increased, the phosphorylation of ATM protein decreased under continuous low dose-rate irradiation.However, the phosphorylation of ATM protein was remained stable under high dose-rate irradiation.When the phosphorylation of ATM protein under continuous low dose-rate irradiation was equal to that under high dose-rate irradiation, there was no significant difference in the surviving fraction of HepG2 cells between two ir-radiation methods (P>0.05).When the phosphorylation of ATM protein significantly decreased after continuous low dose-rate irradiation compared with that after high dose-rate irradiation, increased amounts of cell killing was found in low dose-rate irradiation (P<0.01).Conclusion: Continuous low dose-rate irradiation increases HepG2 cells radiosensitivity compared with high dose-rate irradiation.The increased amounts of cell killing following continuous low dose-rate exposures are associated with reduced ATM phosphorylated protein.

  18. DETECTORS AND EXPERIMENTAL METHODS: ELDRS and dose-rate dependence of vertical NPN transistor

    Science.gov (United States)

    Zheng, Yu-Zhan; Lu, Wu; Ren, Di-Yuan; Wang, Gai-Li; Yu, Xue-Feng; Guo, Qi

    2009-01-01

    The enhanced low-dose-rate sensitivity (ELDRS) and dose-rate dependence of vertical NPN transistors are investigated in this article. The results show that the vertical NPN transistors exhibit more degradation at low dose rate, and that this degradation is attributed to the increase on base current. The oxide trapped positive charge near the SiO2-Si interface and interface traps at the interface can contribute to the increase on base current and the two-stage hydrogen mechanism associated with space charge effect can well explain the experimental results.

  19. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    Science.gov (United States)

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  20. A case of percutaneous high dose rate brachytherapy for superior pulmonary sulcus tumor

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, Tamaki; Imamura, Masahiro; Murata, Takashi [Kansai Medical Univ., Moriguchi, Osaka (Japan)] [and others

    1996-07-01

    A 64-year-old man with advanced superior pulmonary sulcus tumor suffered severe unrelieved pain even after chemotherapy, external irradiation and hyperthermia. So we planned to introduce a percutaneous high dose rate brachytherapy using the microselectron HDR {sup 192}Ir. With the estimation using the Pain Score, satisfying pain relief was attainable with a combination of the percutaneous high dose rate brachytherapy and conventional treatment. So the percutaneous high dose rate brachytherapy had the possibility to contribute to the alleviation of the pain. (author)

  1. Effects of different doses of dexamethasone plus flunixin meglumine on survival rate in lethal endotoxemia

    OpenAIRE

    Er A.; Uney K.; Altan F.; Cetin G.; Yazar E.; Elmas M.

    2009-01-01

    Effects of different doses of dexamethasone plus flunixin meglumine on survival rate were investigated in lethal endotoxemia. A total of 60 Balb/C female mice were divided into 4 equal groups. Lethal endotoxemia (80-100%) was induced by lipopolysaccharide injection (Group 1, 1 mg, intraperinoneally). At 4 hours after the lipopolysaccharide injection; low-dose dexamethasone (0.6 mg/kg, SID, 5 days, intramuscularly) + flunixin meglumine (2 mg/kg, SID, 5 days, subcutaneously), normal-dose dexame...

  2. Dose rate measurement of a cobalt source 'Issledovatel' by means of Fricke dosimeter

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The results of measurements leading to the elaboration of a reliable and accurate dose rate determination for a cobalt irradiator 'Issledovatel' were presented. The dose measurements were done by means of classic Fricke dosimeter. The conclusions from measurements can be useful also for the dosimetry of other kinds of cobalt irradiators. The measurements were performed by a newly employed Laboratory for Measurements of Technological Doses staff and were a practical test of their proficiency in gamma ray dosimetry.

  3. Neutron dose rate for {sup 252} Cf AT source in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, L.; Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Francois, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)

    2006-07-01

    The AAPM TG-43 modified protocol was used for the calculation of the neutron dose rate of {sup 252}Cf sources for two tissue substitute materials, five normal tissues and six tumours. The {sup 252}Cf AT source model was simulated using the Monte Carlo MCNPX code in spherical geometry for the following factors: a) neutron air kerma strength conversion factor, b) dose rate constant, c) radial dose function, d) geometry factor, e) anisotropy function and f) neutron dose rate. The calculated dose rate in water at 1 cm and 90 degrees from the source long axis, using the Watt fission spectrum, was D{sub n}(r{sub 0}, {theta}{sub 0})= 1.9160 cGy/h-{mu}g. When this value is compared with Rivard et al. calculation using MCNP4B code, 1.8730 cGy/h-{mu}g, a difference of 2.30% is obtained. The results for the reference neutron dose rate in other media show how small variations in the elemental composition between the tissues and malignant tumours, produce variations in the neutron dose rate up to 12.25%. (Author)

  4. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  5. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Richard P. [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  6. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  7. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  8. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic

  9. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic

  10. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    DEFF Research Database (Denmark)

    Borg, J.; Christensen, P.

    1995-01-01

    of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high...

  11. Environmental dose rate assessment of ITER using the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2014-01-01

    Full Text Available Exposure to radiation is one of the main sources of risk to staff employed in reactor facilities. The staff of a tokamak is exposed to a wide range of neutrons and photons around the tokamak hall. The International Thermonuclear Experimental Reactor (ITER is a nuclear fusion engineering project and the most advanced experimental tokamak in the world. From the radiobiological point of view, ITER dose rates assessment is particularly important. The aim of this study is the assessment of the amount of radiation in ITER during its normal operation in a radial direction from the plasma chamber to the tokamak hall. To achieve this goal, the ITER system and its components were simulated by the Monte Carlo method using the MCNPX 2.6.0 code. Furthermore, the equivalent dose rates of some radiosensitive organs of the human body were calculated by using the medical internal radiation dose phantom. Our study is based on the deuterium-tritium plasma burning by 14.1 MeV neutron production and also photon radiation due to neutron activation. As our results show, the total equivalent dose rate on the outside of the bioshield wall of the tokamak hall is about 1 mSv per year, which is less than the annual occupational dose rate limit during the normal operation of ITER. Also, equivalent dose rates of radiosensitive organs have shown that the maximum dose rate belongs to the kidney. The data may help calculate how long the staff can stay in such an environment, before the equivalent dose rates reach the whole-body dose limits.

  12. On the dose-rate estimate of carbonate-rich sediments for trapped charge dating

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, R.P. [Research Laboratory for Archaeology and the History of Art, 6 Keble Road, Oxford OX1 3QJ (United Kingdom); Mauz, B. [Department of Geography, University of Liverpool, Liverpool L69 7ZT (United Kingdom)], E-mail: mauz@liv.ac.uk

    2008-01-15

    In a wide range of environmental conditions sediments are subject to changing water content and carbonate cementation during burial. Trapped charge dating of these carbonate-rich deposits requires the determination of a dose rate which is not constant during burial because sediments were subject to post-depositional geochemical alterations. The dose-rate model established in this study assumes linear increase of carbonate mass and linear decrease of water mass in pores between sediment particles during burial. Numerical modelling assesses the effect of carbonate and water on the infinite-matrix dose rate as a function of time. Sensitivity testing of the system indicated that water and carbonate content have the greatest effect on the resulting dose rate, followed by the timing of onset and completion of carbonate formation. As a consequence, a comprehensive re-calculation of the water correction factors was undertaken. It revealed a 5% lower value for the annual beta dose and a 10% lower value for the annual gamma dose compared to values formulated by Zimmerman [1971. Thermoluminescence dating using fine grains from pottery. Archaeometry 13, 29-52]. The dose-rate model was tested using samples from geologically well-constrained coastal sites. The differences between onset and final dose rate were up to 30% resulting in differences between modelled and conventional optical ages between 2% and 15% depending on the final (today's) water and carbonate content. The divergence of dates may be greater under certain conditions. The dose-rate model can be applied to a wide range of contexts similar to those considered in this case study.

  13. Dose rate effects in radiation degradation of polymer-based cable materials

    Science.gov (United States)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  14. Estimates of Radiation Dose Rates Near Large Diameter Sludge Containers in T Plant

    CERN Document Server

    Himes, D A

    2002-01-01

    Dose rates in T Plant canyon during the handling and storage of large diameter storage containers of K Basin sludge were estimated. A number of different geometries were considered from which most operational situations of interest can be constructed.

  15. Thermal-stress effects on enhanced low-dose-rate sensitivity of linear bipolar circuits

    Energy Technology Data Exchange (ETDEWEB)

    SHANEYFELT,MARTY R.; SCHWANK,JAMES R.; WITCZAK,STEVEN C.; RIEWE,LEONARD CHARLES; WINOKUR,PETER S.; HASH,GERALD L.; PEASE,R.L.; FLEETWOOD,D.M.

    2000-02-17

    Thermal-stress effects are shown to have a significant impact on the enhanced low-dose-rate sensitivity of linear bipolar circuits. Implications of these results on hardness assurance testing and mechanisms are discussed.

  16. establishment of background radiation dose rate in the vicinity of the ...

    African Journals Online (AJOL)

    nb

    radiation dose rate data prior to commencement of uranium mining activities. Twenty stations in seven ... exploration activities in this period of rising uranium demand .... Magnesium Borate (MgB407) (Mathur 1983). In this study, calcium ...

  17. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  18. Panthere V2: Multipurpose Simulation Software for 3D Dose Rate Calculations

    Science.gov (United States)

    Penessot, Gaël; Bavoil, Éléonore; Wertz, Laurent; Malouch, Fadhel; Visonneau, Thierry; Dubost, Julien

    2017-09-01

    PANTHERE is a multipurpose radiation protection software developed by EDF to calculate gamma dose rates in complex 3D environments. PANTHERE takes a key role in the EDF ALARA process, enabling to predict dose rates and to organize and optimize operations in high radiation environments. PANTHERE is also used for nuclear waste characterization, transport of nuclear materials, etc. It is used in most of the EDF engineering units and their design service providers and industrial partners.

  19. The Influence of Radon (Gas and Progeny) and Weather Conditions on Ambient Dose Equivalent Rate.

    Science.gov (United States)

    Márquez, J L; Benito, G; Saez, J C; Navarro, N; Alvarez, A; Quiñones, J

    2016-08-13

    The purpose of this study is to identify the influence of radon (gas and progeny) on the ambient dose equivalent rate measured at the reference station ESMERALDA, where continuous measurements of the ambient dose equivalent rate (every 10 min) combined with activity concentration measurements of radon gas and radon progeny as well as meteorological parameters have been collected. This study has been performed using a correlation study based on a principal components analysis and the Spearman's rank correlation coefficient.

  20. Dosimetric Evaluation of High-Dose-Rate Interstitial Brachytherapy Boost Treatments for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Georgina [Semmelweis Univ., Budapest (Hungary); Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Agoston, Peter; Loevey, Jozsef; Somogyi, Andras; Fodor, Janos; Polgar, Csaba; Major, Tibor [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary)

    2010-07-15

    Purpose: to quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Material and methods: treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D{sub min}) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D{sub r}) and urethra (D{sub u}), dose to volume of 2 cm{sup 3} of the rectum (D{sub 2ccm}), and 0.1 cm{sup 3} and 1% of the urethra (D{sub 0.1ccm} and D1) were determined. Nonparametric correlation analysis was performed between these parameters. Results: the median number of needles was 16, the mean prostate volume (V{sub p}) was 27.1 cm{sup 3}. The mean V90, V100, V150, and V200 were 90%, 97%, 39% and 13%, respectively. The mean D90 was 109%, and the D{sub min} was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D{sub 2ccm} = 49% for the rectum, D{sub 0.1ccm} = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D{sub r}, D{sub 2ccm}) = 0.69, R(D{sub u}, D{sub 0.1ccm}) = 0.64, R(D{sub u}, D1) = 0.23. Conclusion: US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose

  1. Impact on ambient dose rate in metropolitan Tokyo from the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Inoue, Kazumasa; Tsuruoka, Hiroshi; Van Le, Tan; Arai, Moeko; Saito, Kyoko; Fukushi, Masahiro

    2016-07-01

    A car-borne survey was made in metropolitan Tokyo, Japan, in December 2014 to estimate external dose. This survey was conducted for all municipalities of Tokyo and the results were compared with measurements done in 2003. The ambient dose rate measured in the whole area of Tokyo in December 2014 was 60 nGy h(-1) (23-142 nGy h(-1)), which was 24% higher than the rate in 2003. Higher dose rates (>70 nGy h(-1)) were observed on the eastern and western ends of Tokyo; furthermore, the contribution ratio from artificial radionuclides ((134)Cs and (137)Cs) to ambient dose rate in eastern Tokyo was twice as high as that of western Tokyo. Based on the measured ambient dose rate, the effective dose rate after the accident was estimated to be 0.45 μSv h(-1) in Tokyo. This value was 22% higher than the value before the accident as of December 2014.

  2. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Mougnaud, S., E-mail: sarah.mougnaud@cea.fr [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Tribet, M.; Rolland, S. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Renault, J.-P. [CEA Saclay, NIMBE UMR 3685 CEA/CNRS, 91191 Gif-sur-Yvette cedex (France); Jégou, C. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2015-07-15

    Highlights: • The nuclear glass/water interface is studied. • The way the energy of alpha particles is deposited is modeled using MCNPX code. • A model giving dose rate profiles at the interface using intrinsic data is proposed. • Bulk dose rate is a majoring estimation in alteration layer and in surrounding water. • Dose rate is high in small cracks; in larger ones irradiated volume is negligible. - Abstract: Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  3. Removal of Cryptosporidium sized particle under different filtration temperature, flow rate and alum dosing

    Institute of Scientific and Technical Information of China (English)

    XU Guo-ren; Fitzpatrick S. B. Caroline; Gregory John; DENG Lin-yu

    2007-01-01

    Recent Cryptosporidium outbreaks have highlighted concerns about filter efficiency and in particular particle breakthrough. It is essential to ascertain the causes of Cryptosporidium sized particle breakthrough for Cryptosporidium cannot be destroyed by conventional chlorine disinfection. This research tried to investigate the influence of temperature, flow rate and chemical dosing on particle breakthrough during filtration. The results showed that higher temperatures and coagulant doses could reduce particle breakthrough. The increase of filtration rate made the residual particle counts become larger. There was an optimal dose in filtration and was well correlated to ζ potential.

  4. Assessment of Environmental Gamma Radiation Dose Rate in Ardabil and Sarein in 2009

    Directory of Open Access Journals (Sweden)

    M Alighadri

    2011-10-01

    Full Text Available Background and Objectives: Gamma rays, the most energetic photons within the any other wave in the electromagnetic spectrum, pose enough energy to form charged particles and adversely affect human health. Provided that the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, environmental gamma dose rate and corresponding annual effective dose were determined in the cities of Ardabil and Sar Ein.Materials and Methods: Outdoor environmental gamma dose rates were measured using an Ion Chamber Survey Meter in 48 selected locations (one in city center and the remaining in cardinal and ordinal directions in Ardabil and Sar Ein. Ten more locations were monitored along the hot springs effluent in Sar Ein. Measurements of gamma radiation dose rate were performed at 20 and 100 cm above the ground for a period of one hour.Results: Average outdoor environmental gamma dose rate were determined as 265, 219, and 208  for Ardabil, Sar Ein, and along the hot spring effluent, respectively. The annual affective dose for Ardabil and Sar Ein residents were estimated to be 1.45 and 1.39 mSv, respectively.Conclusion: Calculated annual effective dose of 1.49 and 1.35 are appreciably higher than the population weighted average exposure to environmental gamma radiation worldwide and that analysis of soil content to different radionuclide is suggested.

  5. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Science.gov (United States)

    Mougnaud, S.; Tribet, M.; Rolland, S.; Renault, J.-P.; Jégou, C.

    2015-07-01

    Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  6. On-site gamma dose rates at the Andreeva Bay shore technical base, northwest Russia.

    Science.gov (United States)

    Reistad, O; Dowdall, M; Standring, W J F; Selnaes, Ø G; Hustveit, S; Steinhusen, F; Sørlie, A

    2008-07-01

    The spent nuclear fuel (SNF) and radioactive waste (RAW) storage facility at Andreeva Bay shore technical base (STB) is one of the largest and most hazardous nuclear legacy sites in northwest Russia. Originally commissioned in the 1960s the facility now stores large amounts of SNF and RAW associated with the Russian Northern Fleet of nuclear powered submarines. The objective of the present study was to map ambient gamma dose rates throughout the facility, in particular at a number of specific sites where SNF and RAW are stored. The data presented here are taken from a Norwegian-Russian collaboration enabling the first publication in the scientific literature of the complete survey of on-site dose rates. Results indicate that elevated gamma dose rates are found primarily at discrete sites within the facility; maximum dose rates of up to 1000 microSv/h close to the ground (0.1m) and up to 3000 microSv/h at 1m above ground were recorded, higher doses at the 1m height being indicative primarily of the presence of contaminated equipment as opposed to ground contamination. Highest dose rates were measured at sites located in the immediate vicinity of buildings used for storing SNF and sites associated with storage of solid and liquid radioactive wastes. Elevated dose rates were also observed near the former channel of a small brook that became heavily contaminated as a result of radioactive leaks from the SNF storage at Building 5 starting in 1982. Isolated patches of elevated dose rates were also observed throughout the STB. A second paper detailing the radioactive soil contamination at the site is published in this issue of Journal of Environmental Radioactivity.

  7. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-02-07

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives.

  8. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lahanas, M [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach (Germany); Baltas, D [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach (Germany); Zamboglou, N [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach (Germany)

    2003-02-07

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives.

  9. A review of the clinical experience in pulsed dose rate brachytherapy.

    Science.gov (United States)

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N; Pieters, Bradley R

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose.

  10. Experiences of high dose rate interstitial brachytherapy for carcinoma of the mobile tongue

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hiroshi; Inoue, Toshihiko; Yamazaki, Hideya (Osaka Univ. (Japan). Faculty of Medicine) (and others)

    1994-03-01

    Interstitial brachytherapy was conducted for mobile tongue carcinoma using a high dose rate remote afterloading machine with small [sup 192]I source. Detailed method, named as 'linked double-botton technique', is to approach from submandibular skin by an open-ended stainless steel needles to the tongue lesion, and to replace each needle into flexible nylon tube from the oral cavity. Delivered dose was 60 Gy/10 Fr./5-6 days at the distance 5 mm from the source plane. Ten patients with mobile tongue carcinoma Tl-2N0 were treated with this method from October 1991 through August 1992. Local was uncontrolled in one patient, in whom the lesion was combined with leukoplakia at both lateral borders of the tongue. This was in accordance with the result in low dose rate treatment. This can be a substitute to low dose rate system for treatment of mobile tongue carcinoma. (author).

  11. Effect of Radiocesium Transfer on Ambient Dose Rate in Forest Environment

    Science.gov (United States)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Hisadome, Keigo; Kawamori, Ayumi

    2014-05-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Daiichi nuclear power plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (beech with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). In decreasing order of total Cs-137 deposition from the canopy to forest floor were the mature cedar stand, the young cedar stand, and the broad-leaved forest. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied by forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rates at the canopy (approx. 10 m-) decreased earlier than physical attenuation of radiocesium, whereas those at the forest floor varied among three forest stands. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor.

  12. High dose rate endobronchial brachytherapy: a curative treatment; La curietherapie endobronchique de haut debit de dose: un traitement curatif

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D.; Spaeth, D.; Winnefeld, J. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Menard, O. [Centre Hospitalier Universitaire Nancy-Brabois, 54 - Vandoeuvre-les-Nancy (France)

    2000-06-01

    New endobronchial techniques of treatment allow a good unblocking. Nevertheless, only high dose rate brachytherapy delivers a curative treatment for invasive carcinomas. This study analyses the results of the first 33 consecutive patients treated with curative intent by this technique from 1994 to 1997, and followed-up more than one year. Thirty-seven lesions were treated, with usual schedule delivering 30 Gy at 1 cm depth in six fractions and three to five weeks. All the patients were meticulously selected on the local involvement of the tumour and absolute contraindications to a surgical treatment. All of them have a pulmonary disease history or a general contraindication. With a 14-month follow-up, the local control at two months after the treatment was 95 % (endoscopic and histologic), and 90 % of the patients presented a prolonged local control. Four patients died of the treated cancer, another of a controlateral cancer. Ten patients died of another disease, five of them from a respiratory insufficiency. The overall survival rate at two years was 53 % and the specific survival rate 80 %. The acute tolerance was good, without incident. Asymptomatic bronchial stenoses, described by endoscopic follow-up, were described for seven patients. We conclude that, on the basis of a good selection of the patients, and a respect of the indications, high dose rate endobronchial brachytherapy is an effective curative treatment. It offers a new curative option and must be proposed for the small invasive carcinomas in non-operable patients. (author)

  13. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    Directory of Open Access Journals (Sweden)

    Karolina Stark

    Full Text Available Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later, to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  14. Dose rate effects in the radiation damage of the plastic scintillators of the CMS Hadron Endcap Calorimeter

    CERN Document Server

    Khachatryan, V.

    2016-01-01

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. We show that the scaling with dose rate is consistent with that expected from diffusion effects.

  15. 3D-printed applicators for high dose rate brachytherapy: Dosimetric assessment at different infill percentage.

    Science.gov (United States)

    Ricotti, Rosalinda; Vavassori, Andrea; Bazani, Alessia; Ciardo, Delia; Pansini, Floriana; Spoto, Ruggero; Sammarco, Vittorio; Cattani, Federica; Baroni, Guido; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-12-01

    Dosimetric assessment of high dose rate (HDR) brachytherapy applicators, printed in 3D with acrylonitrile butadiene styrene (ABS) at different infill percentage. A low-cost, desktop, 3D printer (Hamlet 3DX100, Hamlet, Dublin, IE) was used for manufacturing simple HDR applicators, reproducing typical geometries in brachytherapy: cylindrical (common in vaginal treatment) and flat configurations (generally used to treat superficial lesions). Printer accuracy was investigated through physical measurements. The dosimetric consequences of varying the applicator's density by tuning the printing infill percentage were analysed experimentally by measuring depth dose profiles and superficial dose distribution with Gafchromic EBT3 films (International Specialty Products, Wayne, NJ). Dose distributions were compared to those obtained with a commercial superficial applicator. Measured printing accuracy was within 0.5mm. Dose attenuation was not sensitive to the density of the material. Surface dose distribution comparison of the 3D printed flat applicators with respect to the commercial superficial applicator showed an overall passing rate greater than 94% for gamma analysis with 3% dose difference criteria, 3mm distance-to-agreement criteria and 10% dose threshold. Low-cost 3D printers are a promising solution for the customization of the HDR brachytherapy applicators. However, further assessment of 3D printing techniques and regulatory materials approval are required for clinical application. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    Science.gov (United States)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  17. Early effects comparison of X-rays delivered at high-dose-rate pulses by a plasma focus device and at low dose rate on human tumour cells.

    Science.gov (United States)

    Virelli, A; Zironi, I; Pasi, F; Ceccolini, E; Nano, R; Facoetti, A; Gavoçi, E; Fiore, M R; Rocchi, F; Mostacci, D; Cucchi, G; Castellani, G; Sumini, M; Orecchia, R

    2015-09-01

    A comparative study has been performed on the effects of high-dose-rate (DR) X-ray beams produced by a plasma focus device (PFMA-3), to exploit its potential medical applications (e.g. radiotherapy), and low-DR X-ray beams produced by a conventional source (XRT). Experiments have been performed at 0.5 and 2 Gy doses on a human glioblastoma cell line (T98G). Cell proliferation rate and potassium outward currents (IK) have been investigated by time lapse imaging and patch clamp recordings. The results showed that PFMA-3 irradiation has a greater capability to reduce the proliferation rate activity with respect to XRT, while it does not affect IK of T98G cells at any of the dose levels tested. XRT irradiation significantly reduces the mean IK amplitude of T98G cells only at 0.5 Gy. This work confirms that the DR, and therefore the source of radiation, is crucial for the planning and optimisation of radiotherapy applications.

  18. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  19. Effect of fractionation and rate of radiation dose on human leukemic cells, HL-60

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, J.G.; Song, C.W.; Kim, T.H.; Levitt, S.H.

    1985-03-01

    The capacity of HL-60 cells, human acute promyelocytic leukemic cells established in culture, to repair sublethal radiation damage was estimated from the response of the cells to fractionated irradiation or to a single irradiation at difference dose rates. After exposure of cells to a single dose of X rays at a dose rate of 78 rad/min, the survival curve was characterized by n = 2.5, D/sub q/ = 80 rad, and D/sub 0/ = 83.2 rad. Split-dose studies demonstrated that the cells were able to repair a substantial portion of sublethal radiation damage in 2 hr. The response of the cells to irradiation at different dose rates decreased with a decrease in the dose rates, which could be attributed to repair of sublethal radiation damage. The possibility that some of the malignant hemopoietic cells, if not all, may possess a substantial capacity to repair sublethal radiation damage should not be underestimated in planning total-body irradiation followed by bone marrow transplantation.

  20. Extension of CASCADE.04 to estimate neutron fluence and dose rates and its validation

    Indian Academy of Sciences (India)

    H Kumawat; V Kumar; P Srinivasan

    2009-03-01

    Capability to compute neutron dose rate is introduced for the first time in the new version of the CASCADE.04 code. Two different methods, `track length estimator' and `collision estimator' are adapted for the estimation of neutron fluence rate needed to calculate the ambient dose rate. For the validation of the methods, neutron dose rates are experimentally measured at different locations of a 5Ci Am–Be source, shielded in Howitzer-type system and these results are compared with those estimated using (i) modified CASCADE.04.d and (ii) MCNP4A codes and it is found that the agreement is good. The paper presents details of modification and results of the comparative study.

  1. Predictions of Radionuclide Dose Rates from Sellafield Discharges using a Compartmental Model

    Energy Technology Data Exchange (ETDEWEB)

    McCubbin, D.; Leonard, K.S.; Gurbutt, P.A.; Round, G.D

    1998-07-01

    A multi-compartmental model (MIRMAID) of the Irish Sea has been used to predict radionuclide dose rates to the public, via seafood consumption pathways. Radionuclides originate from the authorised discharge of low level liquid effluent from the BNF plc nuclear reprocessing plant at Sellafield. The model has been used to predict combined annual doses, the contribution of dose from individual radionuclides and to discriminate dose between present day and historic discharges. An assessment has been carried out to determine the sensitivity of the predictions to changes in various model parameters. The predicted dose to the critical group from seafood consumption in 1995 ranged from 37-96 {mu}Sv of which the majority originated from current discharges. The contribution from {sup 99}Tc was predicted to have increased from 0.2% in 1993 up to 20% in 1995. The predicted contribution of Pu and Am from historic discharges is underestimated in the model. (author)

  2. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio Carlos A., E-mail: mol@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Pereira, Claudio Marcio N.A., E-mail: cmnap@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Freitas, Victor Goncalves G. [Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Rio de Janeiro, RJ (Brazil); Jorge, Carlos Alexandre F., E-mail: calexandre@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil)

    2011-02-15

    This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.

  3. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Laspas, Fotios; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John (CT and MRI Dept., Hygeia Hospital, Athens (Greece)), e-mail: fotisdimi@yahoo.gr; Tsantioti, Dimitra (Statistician, Hygeia Hospital, Athens (Greece))

    2011-04-15

    Background: Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. Purpose: To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Material and Methods: Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Results: Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR =65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Conclusion: Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure

  4. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A. [Canis Lupus LLC and Department of Human Oncology, University of Wisconsin, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Departments of Human Oncology, Medical Physics, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa

  5. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation.

    Science.gov (United States)

    Brooks, Antone L; Hoel, David G; Preston, R Julian

    2016-08-01

    This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2-30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP ( 2007 ) and BEIR VII (NRC/NAS 2006 ).

  6. Dose-rate mapping and search of radioactive sources in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Ylaetalo, S.; Karvonen, J.; Ilander, T.; Honkamaa, T.; Toivonen, H.

    1996-12-01

    The Estonian Ministry of Environment and the Finnish Centre for Radiation and Nuclear Safety (STUK) agreed in 1995 on a radiation mapping project in Estonia. The country was searched to find potential man-made radioactive sources. Another goal of the project was to produce a background dose-rate map over the whole country. The measurements provided an excellent opportunity to test new in-field measuring systems that are useful in a nuclear disaster. The basic idea was to monitor road sides, cities, domestic waste storage places and former military or rocket bases from a moving vehicle by measuring gamma spectrum and dose rate. The measurements were carried out using vehicle installed systems consisting of a pressurised ionisation chamber (PIC) in 1995 and a combination of a scintillation spectrometer (NaI(TI)) and Geiger-Mueller-counter (GM) in 1996. All systems utilised GPS-satellite navigation signals to relate the measured dose rates and gamma-spectra to current geographical location. The data were recorded for further computer analysis. The dose rate varied usually between 0.03-0.17 {mu}Sv/h in the whole country, excluding a few nuclear material storage places (in Saku and in Sillamae). Enhanced dose rates of natural origin (0.17-0.5 {mu}Sv/h) were measured near granite statues, buildings and bridges. No radioactive sources were found on road sides or in towns or villages. (orig.) (14 refs.).

  7. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, Antonio Cassio Assis, E-mail: acapellizzon@hcancer.org.br [A.C. Camargo Cancer Center, Sao Paulo, SP (Brazil). Departamento de Radioterapia

    2016-05-15

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. (author)

  8. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer*

    Science.gov (United States)

    Pellizzon, Antônio Cássio Assis

    2016-01-01

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. PMID:27403021

  9. Current topics in the treatment of prostate cancer with low-dose-rate brachytherapy.

    Science.gov (United States)

    Stock, Richard G; Stone, Nelson N

    2010-02-01

    The treatment of prostate cancer with low dose rate prostate brachytherapy has grown rapidly in the last 20 years. Outcome analyses performed in this period have enriched understanding of this modality. This article focuses on the development of a real-time ultrasound-guided implant technique, the importance of radiation dose, trimodality treatment of high-risk disease, long-term treatment outcomes, and treatment-associated morbidity.

  10. Comparative dosimetry of GammaMed Plus high-dose rate 192 Ir brachytherapy source

    Directory of Open Access Journals (Sweden)

    Patel N

    2010-01-01

    Full Text Available The comparative dosimetry of GammaMed (GM Plus high-dose rate brachytherapy source was performed by an experiment using 0.1-cc thimble ionization chamber and simulation-based study using EGSnrc code. In-water dose measurements were performed with 0.1-cc chamber to derive the radial dose function (r = 0.8 to 20.0 cm and anisotropy function (r = 5.0 cm with polar angle from 10° to 170°. The nonuniformity correction factor for 0.1-cc chamber was applied for in-water measurements at shorter distances from the source. The EGSnrc code was used to derive the dose rate constant (L, radial dose function g L (r and anisotropy function F(r, q of GM Plus source. The dosimetric data derived using EGSnrc code in our study were in very good agreement relative to published data for GM Plus source. The radial dose function up to 12 cm derived from measured dose using 0.1-cc chamber was in agreement within ±3% of data derived by the simulation study.

  11. Measured dose rate constant from oncology patients administered 18F for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Brian; Holahan, Brian; Aime, Jean; Humm, John; St Germain, Jean; Dauer, Lawrence T. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (United States) and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (United States) and Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (United States)

    2012-10-15

    Purpose: Patient exposure rate measurements verify published patient dose rate data and characterize dose rates near 2-18-fluorodeoxyglucose ({sup 18}F-FDG) patients. A specific dose rate constant based on patient exposure rate measurements is a convenient quantity that can be applied to the desired distance, injection activity, and time postinjection to obtain an accurate calculation of cumulative external radiation dose. This study reports exposure rates measured at various locations near positron emission tomography (PET) {sup 18}F-FDG patients prior to PET scanning. These measurements are normalized for the amount of administered activity, measurement distance, and time postinjection and are compared with other published data. Methods: Exposure rates were measured using a calibrated ionization chamber at various body locations from 152 adult oncology patients postvoid after a mean uptake time of 76 min following injection with a mean activity of 490 MBq {sup 18}F-FDG. Data were obtained at nine measurement locations for each patient: three near the head, four near the chest, and two near the feet. Results: On contact with, 30 cm superior to and 30 cm lateral to the head, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.482 (0.511), 0.135 (0.155), and 0.193 (0.223) {mu}Sv/MBq h, respectively. On contact with, 30 cm anterior to, 30 cm lateral to and 1 m anterior to the chest, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.623 (0.709), 0.254 (0.283), 0.190 (0.218), and 0.067 (0.081) {mu}Sv/MBq h respectively. 30 cm inferior and 30 cm lateral to the feet, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.024 (0.022) and 0.039 (0.044) {mu}Sv/MBq h, respectively. Conclusions: The measurements for this study support the use of 0.092 {mu}Sv m{sup 2}/MBq h as a reasonable representation of the dose rate anterior from the chest of

  12. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  13. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    Science.gov (United States)

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-03-08

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may

  14. Efficacy of a Low Dose of Estrogen on Antioxidant Defenses and Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Cristina Campos

    2014-01-01

    Full Text Available This study tested whether a low dose (40% less than the pharmacological dose of 17-β estradiol would be as effective as the pharmacological dose to improve cardiovascular parameters and decrease cardiac oxidative stress. Female Wistar rats (n=9/group were divided in three groups: (1 ovariectomized (Ovx, (2 ovariectomized animals treated for 21 days with low dose (LE; 0.2 mg, and (3 high dose (HE; 0.5 mg 17-β estradiol subcutaneously. Hemodynamic assessment and spectral analysis for evaluation of autonomic nervous system regulation were performed. Myocardial superoxide dismutase (SOD and catalase (CAT activities, redox ratio (GSH/GSSG, total radical-trapping antioxidant potential (TRAP, hydrogen peroxide, and superoxide anion concentrations were measured. HE and LE groups exhibited an improvement in hemodynamic function and heart rate variability. These changes were associated with an increase in the TRAP, GSH/GSSG, SOD, and CAT. A decrease in hydrogen peroxide and superoxide anion was also observed in the treated estrogen groups as compared to the Ovx group. Our results indicate that a low dose of estrogen is just as effective as a high dose into promoting cardiovascular function and reducing oxidative stress, thereby supporting the approach of using low dose of estrogen in clinical settings to minimize the risks associated with estrogen therapy.

  15. Preliminary survey of outdoor gamma dose rates in Lesvos Island (Greece).

    Science.gov (United States)

    Petalas, Anastasios B; Vogiannis, Efstratios; Nikolopoulos, Dimitrios; Halvadakis, Constantinos P

    2005-01-01

    This study reports the first attempt to record the radioactive background due to gamma radiation in Lesvos Island (Greece). The study reports the results from 335 outdoor total gamma effective dose rate measurements conducted using GPS navigation and a Geiger-Muller detector (Bicron, Micro Sievert) on the whole surface of the island together with a digital map produced by appropriate mapping GIS programme. The study also reports the measurements of outdoor gamma dose rates due to the 238U, 232Th and 40K radionuclides as estimated via in situ gamma-ray spectrometry measurements performed at 26 sites using a 3 x 3 inch NaI (thallium activated) portable detector. The results from the outdoor total gamma effective dose rates range between 0.0023 and 0.28 microSv h(-1). The highest outdoor total gamma effective dose rates (0.013-0.28 microSv h(-1)) were detected in the northeastern part of the island and the intermediate rates (0.066-0.13 microSv h(-1)) in the central region. The outdoor gamma dose rates due to 238U, 232Th and 40K radionuclides range between 1.7 +/- 0.8 and 154 +/- 7 nGy h(-1) with an average of 86 +/- 6 nGy h(-1). The average contribution of each of the examined radionuclides (238U, 232Th and 40K) to the total gamma dose rate was found to be equal to 12 +/- 4% for 238U, 58 +/- 6% for 232Th and 29 +/- 7% for 40K, respectively.

  16. Shutdown dose rate assessment with the Advanced D1S method: Development, applications and validation

    Energy Technology Data Exchange (ETDEWEB)

    Villari, R., E-mail: rosaria.villari@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Fischer, U. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Moro, F. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Pereslavtsev, P. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Petrizzi, L. [European Commission, DG Research and Innovation K5, CDMA 00/030, B-1049 Brussels (Belgium); Podda, S. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Serikov, A. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: Development of Advanced-D1S for shutdown dose rate calculations; Recent applications of the tool to tokamaks; Summary of the results of benchmarking with measurements and R2S calculations; Limitations and further development. Abstract: The present paper addresses the recent developments and applications of Advanced-D1S to the calculations of shutdown dose rate in tokamak devices. Results of benchmarking with measurements and Rigorous 2-Step (R2S) calculations are summarized and discussed as well as limitations and further developments. The outcomes confirm the essential role of the Advanced-D1S methodology and the evidence for its complementary use with the R2Smesh approach for the reliable assessment of shutdown dose rates and related statistical uncertainties in present and future fusion devices.

  17. Correlation analysis of gamma dose rate from natural radiation in the test field

    Directory of Open Access Journals (Sweden)

    Avdic Senada

    2016-01-01

    Full Text Available This paper deals with correlation analysis of gamma dose rate measured in the test field with the five distinctive soil samples from a few minefields in Federation of Bosnia and Herzegovina. The measurements of ambient dose equivalent rate, due to radionuclides present in each of the soil samples, were performed by the RADIAGEMTM 2000 portable survey meter, placed on the ground and 1m above the ground. The gamma spectrometric analysis of the same soil samples was carried out by GAMMA-RAD5 spectrometer. This study showed that there is a high correlation between the absorbed dose rate evaluated from soil radioactivity and the corresponding results obtained by the survey meter placed on the ground. Correlation analysis indicated that the survey meter, due to its narrow energy range, is not suitable for the examination of cosmic radiation contribution.

  18. Gamma Radiation Measurements and Dose Rates in Commonly Used Building Materials in Cyprus

    CERN Document Server

    Michael, F; Parpottas, Y

    2010-01-01

    A first comprehensive study is presented on radioactivity concentrations and dose rates in 87 commonly used materials, manufactured or imported in Cyprus, for building purposes. The natural radioactivity of K-40, Th-232, U-238 and Ra-226 is determined using high-resolution gamma ray spectroscopy. The respective dose rates and the associated radiological effect indices are also calculated. A comparison of the measured specific activity values with the corresponding world average values shows that most of them are below the world average activity values. The annual indoor effective dose rates received by an individual from three measured imported granites and four measured imported ceramics are found to be higher than the world upper limit value of 1 mSv y-1. Hence, these materials should have a restricted use according to their corresponding calculated activity concentration index values and the related EC 1999 guidelines.

  19. The enhanced low dose rate sensitivity of a linear voltage regulator with different biases

    Institute of Scientific and Technical Information of China (English)

    Wang Yiyuan; Lu Wu; Ren Diyuan; Guo Qi; Yu Xuefeng; Gao Bo

    2011-01-01

    A linear voltage regulator was irradiated by 60Co γ at high and low dose rates with two bias conditions to investigate the dose rate effect.The devices exhibit enhanced low dose rate sensitivity (ELDRS) under both biases.Comparing the enhancement factors between zero and working biases,it was found that the ELDRS is more severe under zero bias conditions.This confirms that the ELDRS is related to the low electric field in a bipolar structure.The reasons for the change in the line regulation and the maximum drive current were analyzed by combining the principle of linear voltage regulator with irradiation response of the transistors and error amplifier in the regulator.This may be helpful for designing radiation hardened devices.

  20. Model of radiation-induced gain degradation of NPN bipolar junction transistor at different dose rates

    Science.gov (United States)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2015-06-01

    Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  1. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Ma, Yingwu [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan (China); Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China)

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  2. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Heming; Nelms, Benjamin E.; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 and Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-10-15

    Purpose: The purpose of this work is to explore the usefulness of the gamma passing rate metric for per-patient, pretreatment dose QA and to validate a novel patient-dose/DVH-based method and its accuracy and correlation. Specifically, correlations between: (1) gamma passing rates for three 3D dosimeter detector geometries vs clinically relevant patient DVH-based metrics; (2) Gamma passing rates of whole patient dose grids vs DVH-based metrics, (3) gamma passing rates filtered by region of interest (ROI) vs DVH-based metrics, and (4) the capability of a novel software algorithm that estimates corrected patient Dose-DVH based on conventional phan-tom QA data are analyzed. Methods: Ninety six unique ''imperfect'' step-and-shoot IMRT plans were generated by applying four different types of errors on 24 clinical Head/Neck patients. The 3D patient doses as well as the dose to a cylindrical QA phantom were then recalculated using an error-free beam model to serve as a simulated measurement for comparison. Resulting deviations to the planned vs simulated measured DVH-based metrics were generated, as were gamma passing rates for a variety of difference/distance criteria covering: dose-in-phantom comparisons and dose-in-patient comparisons, with the in-patient results calculated both over the whole grid and per-ROI volume. Finally, patient dose and DVH were predicted using the conventional per-beam planar data as input into a commercial ''planned dose perturbation'' (PDP) algorithm, and the results of these predicted DVH-based metrics were compared to the known values. Results: A range of weak to moderate correlations were found between clinically relevant patient DVH metrics (CTV-D95, parotid D{sub mean}, spinal cord D1cc, and larynx D{sub mean}) and both 3D detector and 3D patient gamma passing rate (3%/3 mm, 2%/2 mm) for dose-in-phantom along with dose-in-patient for both whole patient volume and filtered per-ROI. There was

  3. Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Lorenzen, Ebbe L; Brink, Carsten

    2011-01-01

    Elekta accelerators controlled by the current clinically used accelerator control system, Desktop 7.01 (D7), uses binned variable dose rate (BVDR) for volumetric modulated arc therapy (VMAT). The next version of the treatment control system (Integrity) supports continuously variable dose rate (CVDR......) as well as BVDR. Using CVDR opposed to BVDR for VMAT has the potential of reducing the treatment time but may lead to lower dosimetric accuracy due to faster moving accelerator parts. Using D7 and a test version of Integrity, differences in ability to control the accelerator, treatment efficiency...

  4. Dose rate distribution in the containment of the CAREM-25 reactor during full power operation

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, Fabian E. [Investigacion Aplicada SE (INVAP), San Carlos de Bariloche (Argentina)

    1997-12-01

    The estimation of dose rates in the containment of the CAREM-25 reactor during full power (100 MW) operation was performed in order to: (i) verify the ordinary concrete biological shieldings proposed, and (ii) classify the different rooms from the radiation protection viewpoint. Thirteen relevant radiation sources were characterized, and the dose rate distribution corresponding to each of the most relevant reported in the form of isodose maps. The results show the utmost importance of the N-16 source due to the exposed layout of the pressure vessel. (author). 7 refs., 10 figs., 1 tab.

  5. Ruthenium-106 brachytherapy for thick uveal melanoma: reappraisal of apex and base dose radiation and dose rate

    Directory of Open Access Journals (Sweden)

    Masood Naseripour

    2016-02-01

    Full Text Available Purpose: To evaluate the outcomes of ruthenium-106 ( 106 Ru brachytherapy in terms of radiation parameters in patients with thick uveal melanomas. Material and methods: Medical records of 51 patients with thick (thickness ≥ 7 mm and < 11 mm uveal melanoma treated with 106 Ru brachytherapy during a ten-year period were reviewed. Radiation parameters, tumor regression, best corrected visual acuity (BCVA, and treatment-related complications were assessed. Results: Fifty one eyes of 51 consecutive patients including 25 men and 26 women with a mean age of 50.5 ± 15.2 years were enrolled. Patients were followed for 36.1 ± 26.5 months (mean ± SD. Mean radiation dose to tumor apex and to sclera were 71 (± 19.2 Gy and 1269 (± 168.2 Gy. Radiation dose rates to tumor apex and to sclera were 0.37 (± 0.14 Gy/h and 6.44 (± 1.50 Gy/h. Globe preservation was achieved in 82.4%. Preoperative mean tumor thickness of 8.1 (± 0.9 mm decreased to 4.5 (± 1.6 mm, 3.4 (± 1.4 mm, and 3.0 (± 1.46 mm at 12, 24, and 48 months after brachytherapy (p = 0.03. Four eyes that did not show regression after 6 months of brachytherapy were enucleated. Secondary enucleation was performed in 5 eyes because of tumor recurrence or neovascular glaucoma. Tumor recurrence was evident in 6 (11.8% patients. Mean Log MAR (magnification requirement visual acuity declined from 0.75 (± 0.63 to 0.94 (± 0.5 (p = 0.04. Best corrected visual acuity of 20/200 or worse was recorded in 37% of the patients at the time of diagnosis and 61.7% of the patients at last exam (p = 0.04. Non-proliferative and proliferative radiation-induced retinopathy was observed in 20 and 7 eyes. Conclusions : Thick uveal melanomas are amenable to 106 Ru brachytherapy with less than recommended apex radiation dose and dose rates.

  6. Statistical variability and confidence intervals for planar dose QA pass rates

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher; Kumaraswamy, Lalith; Podgorsak, Matthew B. [Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260 (United States) and Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States) and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2011-11-15

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization

  7. Assessment of potential radiation dose rates to marine organisms around the Korean Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Myung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jun Ho [University of Science and Technology, Daejeon (Korea, Republic of)

    2016-05-15

    It is very difficult to set a regulatory guidance or criteria for the protection of non-human species from the ionizing radiation, because there are no generally or internationally accepted methods for demonstrating the compliance with such criteria. It is needed that Korea develop the primary dose rate standards for the protection of both aquatic and terrestrial biota in the near future. The potential dose rates due to both external and internal radiation exposures to marine organisms such as plaice/flounder, gray mullet, and brown seaweed collected within territorial seas around the Korean Peninsula were estimated. The total dose rates to plaice/flounder, gray mullet and brown seaweed due to {sup 40}K, a primordial radionuclide in marine environment, were found to be 0.2%, 0.08% and 0.3% of approximately the values of the Derived Consideration Reference Levels (DCRLs, i.e. 1-10 mGy d{sup -1}), respectively, as suggested by the International Commission on Radiological Protection (ICRP) publication 124. The total dose rates to marine fishes and brown seaweed due to anthropogenic radionuclides such as {sup 90}Sr, {sup 137}Cs and {sup 239+240}Pu were considered to be negligible compared to the total dose rate due to {sup 40}K. The external exposure to benthic fish due to all radionuclides was much higher than that of pelagic fish. From this study, it is recommended that the further study is required to develop a national regulatory guidance for the evaluation of doses to non-human species.

  8. Dose-rate dependence of epitaxial diodes response for gamma dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, J.A.C.; Santos, T.C. dos; Barbosa, R.F.; Pascoalino, K.C.S.; Bueno, C.C. [Instituto de Pesquisas Energeticas e Nucleares (CTR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes

    2011-07-01

    Full text: In this work, we present the preliminary results about the evaluation of dose-rate influence on the response of rad-hard epitaxial (EPI) diodes for on-line gamma-ray dosimetry using Co-60 irradiators. The diodes used were processed at University of Hamburg on n-type 75 micrometer thick epitaxial silicon layer (nominal resistivity of 69 Ohm.cm) grown on a highly doped n-type 300 micrometer thick Czochralski (Cz) silicon substrate. Two samples of EPI diodes were investigated: EPI-08 and EPI-10 - both non-irradiated previously. These devices, with 5mm x 5mm active area, were housed in a PMMA probe and connected, in a photovoltaic mode, to a Keithley 617 electrometer. The EPI-10 device irradiation was performed in the Radiation Technology Center at IPEN-CNEN/SP using a Co-60 irradiator (Gammacell 220 - Nordion) which delivers a dose rate of 2.16 kGy/h, while the EPI-08 device irradiation was performed in Nuclear Energy Department at UFPE/PE using the same model Co-60 irradiator, but with a dose-rate of 7.47 kGy/h. During the irradiation, the devices photocurrents were monitored as a function of the exposure time. The diodes were irradiated at room temperature. The dose-response curves of the EPI diodes were achieved through the integration of the current signals as a function of the exposure time. The normalized current signals as a function of the dose evidenced a decrease of about 60 percent from the initial current for the first 100 kGy dose received. After 500 kGy of exposure, the current signals stabilize (ou maintain stable). The dose-response curves behave as a second order polynomial fit, with correlation coefficients of about 0.99991 and 0.99995, respectively to EPI-10 and EPI-08 diodes. The preliminary results obtained evinced that the EPI diodes response are not dose-rate dependent within the range of 2.16 kGy/h up to 7.47 kGy/h. On the other hand, the devices studied are tolerant to radiation damages for total absorbed doses of approximately 550

  9. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    Science.gov (United States)

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of

  10. Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models.

    Science.gov (United States)

    Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J

    2015-01-01

    Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this

  11. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Wang, Junjie, E-mail: junjiewang47@yahoo.com [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Xu, Feng [Department of Biomedical Engineering, Peking University Third Hospital, Beijing (China); Li, Hua [Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing (China); Zhang, Xile [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China)

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  12. Beam rate influence on dose distribution and fluence map in IMRT dynamic technique.

    Science.gov (United States)

    Slosarek, Krzysztof; Grządziel, Aleksandra; Osewski, Wojciech; Dolla, Lukasz; Bekman, Barbara; Petrovic, Borislava

    2012-01-01

    To examine the impact of beam rate on dose distribution in IMRT plans and then to evaluate agreement of calculated and measured dose distributions for various beam rate values. Accelerators used in radiotherapy utilize some beam rate modes which can shorten irradiation time and thus reduce ability of patient movement during a treatment session. This aspect should be considered in high conformal dynamic techniques. Dose calculation was done for two different beam rates (100 MU/min and 600 MU/min) in an IMRT plan. For both, a comparison of Radiation Planning Index (RPI) and MU was conducted. Secondly, the comparison of optimal fluence maps and corresponding actual fluence maps was done. Next, actual fluence maps were measured and compared with the calculated ones. Gamma index was used for that assessment. Additionally, positions of each leaf of the MLC were controlled by home made software. Dose distribution obtained for lower beam rates was slightly better than for higher beam rates in terms of target coverage and risk structure protection. Lower numbers of MUs were achieved in 100 MU/min plans than in 600 MU/min plans. Actual fluence maps converted from optimal ones demonstrated more similarity in 100 MU/min plans. Better conformity of the measured maps to the calculated ones was obtained when a lower beam rate was applied. However, these differences were small. No correlation was found between quality of fluence map conversion and leaf motion accuracy. Execution of dynamic techniques is dependent on beam rate. However, these differences are minor. Analysis shows a slight superiority of a lower beam rate. It does not significantly affect treatment accuracy.

  13. Comparative influence of dose rate and radiation nature, on lethality after big mammals irradiation; Influence, a dose egale, du debit de dose et de la nature du rayonnement sur la mortalite

    Energy Technology Data Exchange (ETDEWEB)

    Destombe, C.; Le Fleche, Ph.; Grasseau, A.; Reynal, A. [Etablissement Technique Central de l`Armement (ETCA), 94 - Arcueil (France)

    1997-12-31

    For the same dose and the 30 days lethality as biological criterion, the dose rate influence is more important than the radiation nature on the results of an big mammals total body irradiation. (authors)

  14. Remote Sensing of Radiation Dose Rate by Customizing an Autonomous Robot

    Science.gov (United States)

    Kobayashi, T.; Nakahara, M.; Morisato, K.; Takashina, T.; Kanematsu, H.

    2012-03-01

    Distribution of radiation dose was measured by customizing an autonomous cleaning robot "Roomba" and a scintillation counter. The robot was used as a vehicle carrying the scintillation survey meter, and was additionally equipped with an H8 micro computer to remote-control the vehicle and to send measured data. The data obtained were arranged with position data, and then the distribution map of the radiation dose rate was produced. Manual, programmed and autonomous driving tests were conducted, and all performances were verified. That is, for each operational mode, the measurements both with moving and with discrete moving were tried in and outside of a room. Consequently, it has been confirmed that remote sensing of radiation dose rate is possible by customizing a robot on market.

  15. A dose rate model predicting radon-induced lung cancer risk in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, W.; Lettner, H. (Salzburg Univ. (Austria). Div. of Biophysics); Crawford-Brown, D.J. (North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering)

    1992-01-01

    The laboratory rat has been used in inhalation studies as a surrogate to estimate human lung cancer risk following exposure to ambient radon progeny. Deposition, mucociliary clearance and dosimetry for the inhalation of radon progeny in the rat lung have been simulated for a variety of inhalation conditions. A state-vector model for radiation carcinogenesis has then been applied to predict the carcinogenic risk in the rat lung for different doses and dose rates. The model is based on the concepts of initiation and promotion, with the irradiation acting both to damage intercellular structures and to change the state of cells surrounding an initiated cell. Predicted lung cancer incidences show fair agreement with the experimental data. Consistent with the experimental evidence is the inverse dose rate effect observed for intermediate cumulative exposures. (author).

  16. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha, Bondel [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Ravikumar, Manickam, E-mail: drravikumarm@gmail.com [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Supe, Sanjay S.; Sathiyan, Saminathan [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Lokesh, Vishwanath [Department of Radiotherapy, Kidwai, Memorial Institute of Oncology, Bangalore (India); Keshava, Subbarao L. [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India)

    2012-04-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  17. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning.

    Science.gov (United States)

    Bahadur, Yasir A; Constantinescu, Camelia; Hassouna, Ashraf H; Eltaher, Maha M; Ghassal, Noor M; Awad, Nesreen A

    2015-01-01

    To retrospectively compare the potential dosimetric advantages of a multichannel vaginal applicator vs. a single channel one in intracavitary vaginal high-dose-rate (HDR) brachytherapy after hysterectomy, and evaluate the dosimetric advantage of fractional re-planning. We randomly selected 12 patients with endometrial carcinoma, who received adjuvant vaginal cuff HDR brachytherapy using a multichannel applicator. For each brachytherapy fraction, two inverse treatment plans (for central channel and multichannel loadings) were performed and compared. The advantage of fractional re-planning was also investigated. Dose-volume-histogram (DVH) analysis showed limited, but statistically significant difference (p = 0.007) regarding clinical-target-volume dose coverage between single and multichannel approaches. For the organs-at-risk rectum and bladder, the use of multichannel applicator demonstrated a noticeable dose reduction, when compared to single channel, but statistically significant for rectum only (p = 0.0001). For D2cc of rectum, an average fractional dose of 6.1 ± 0.7 Gy resulted for single channel vs. 5.1 ± 0.6 Gy for multichannel. For D2cc of bladder, an average fractional dose of 5 ± 0.9 Gy occurred for single channel vs. 4.9 ± 0.8 Gy for multichannel. The dosimetric benefit of fractional re-planning was demonstrated: DVH analysis showed large, but not statistically significant differences between first fraction plan and fractional re-planning, due to large inter-fraction variations for rectum and bladder positioning and filling. Vaginal HDR brachytherapy using a multichannel vaginal applicator and inverse planning provides dosimetric advantages over single channel cylinder, by reducing the dose to organs at risk without compromising the target volume coverage, but at the expense of an increased vaginal mucosa dose. Due to large inter-fraction dose variations, we recommend individual fraction treatment plan optimization.

  18. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications.

    Science.gov (United States)

    Shwetha, Bondel; Ravikumar, Manickam; Supe, Sanjay S; Sathiyan, Saminathan; Lokesh, Vishwanath; Keshava, Subbarao L

    2012-01-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  19. Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley

    Directory of Open Access Journals (Sweden)

    Muhammad Rafique

    2014-01-01

    Full Text Available Human beings are continuously exposed to the radiations coming from outside and inside their bodies. Outside and inside radiations are coming from ground, building materials, food, air, the universe and even elements within human own bodies. According to UNSCEAR 2000 report, background radiations deliver an average effective dose of 2.4 mSv per person worldwide. Sustained exposure from high background radiation levels may pose substantial health threats to general public. In the current study we are presenting the results of ambient outdoor gamma dose rates measured for Jhelum valley of the state of Azad Kashmir. This study has been carried out by using Ludlum micrometer-19 which is an active and portable detector. Effects of different parameters of interest on the measured values of gamma dose rates have been investigated. For the region under investigation, minimum and maximum indoor gamma dose rates were found as 610 ± 4.05 μGy·y−1 and 1372 ± 2.7 μGy·y−1, respectively, whilst minimum and maximum outdoor gamma dose rates were found as 495 ± 4.49 μGy·y−1 and 1296 ± 2.78 μGy·y−1, respectively. Overall arithmetic mean (A.M and geometric mean (G.M values of gamma dose rates for indoor and outdoor measurements were found as 940 ± 3.26 μGy·y−1, 892 ± 3.35 μGy·y−1 and 928 ± 3.28 μGy·y−1, 880 ± 3.37 μGy·y−1 respectively. Excess life time cancer risk (ELCR for indoor exposure ranges from 1.057 × 10−3 to 2.377 × 10−3 with an average value of 1.629 × 10−3. For outdoor exposure, ELCR varies from 0.352 × 10−3 to 0.792 × 10−3 with mean value of 0.543 × 10−3. Average values of indoor gamma doses were found to be greater than the world population-weighted average for indoor gamma dose rates (780 μGy·y−1 or 89 nGy h−1.

  20. Dependence of dose coefficients for {sup 239}Pu on transfer rates and absorption parameters

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Sekimoto, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan); Ishigure, N. [Division of Radiotoxicology and Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2000-05-01

    As it is reported of the biokinetic models and parameter values of the International Commission on Radiological Protection (ICRP) for dose estimation have uncertainties owing to insufficiency of human data. For most radionuclides, the data underlying such models and parameters of ICRP usually depend on animal experiments. Moreover, these values or model parameter are also greatly different between mammalian species. Recently, various radiation protection organizations are considering the biokinetic uncertainties from standpoints of data's sources, quality and completeness. In practice, a sensitivity analysis of doses to parameters is significant for the purpose of risk assessment. In general, movement or material in the body is depicted as a system of first-order processes, and parameter values are expressed as transfer rates between compartments. In this study, we made a code to reproduce the ICRP's dose coefficients for {sup 239}Pu, which is one of the most important elements for occupational exposure and its effective dose is much concerned with its own distribution in the body for dominance of alpha-decay. By using this code, we modified each transfer rate in a factor of 2, 3 and 4 in order to evaluate the effects, and calculated the sensitivities of effective doses due to these changes. Additionally, we examined the effects of modification of absorption parameters f{sub r}, S{sub r} and S{sub s}, which represent the absorption of particles from respiratory tract into blood. Consequently, the transfer rates that give a large sensitivity were specified, and it was shown that changes of transfer rates and absorption parameters are not so influential on effective doses for {sup 239}Pu in many cases. (author)

  1. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Bhavana [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Patel, Firuza D., E-mail: firuzapatel@gmail.com [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Aprem, Abi Santhosh [Corporate R and D Division, HLL Lifecare Limited, Karamana, Trivandrum (India)

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  2. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids

    DEFF Research Database (Denmark)

    Jiang, Ping; Baumann, René; Dunst, Juergen;

    2016-01-01

    PURPOSE: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. METHODS AND MATERIALS: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immed...

  3. Effects of gamma irradiation dose rate on microbiological and physical quality of mushrooms (Agaricus bisporus)

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, M.; Lacroix, M.; Charbonneau, R.; Laberge, I.; Gagnon, M. (Canadian Irradiation Centre, Laval, PQ (Canada))

    1992-01-01

    The effects of gamma irradiation (2 kGy) and dose rate of irradiation (4.5 and 32.0 kGy/h) on increasing the shelf-life and some quality properties of the mushrooms (Agaricus bisporus) were investigated during storage at 15 deg C and 90% R.H. The retardation of mushroom growth and ageing by reduction of gamma irradiation dose rate (4.5 kGy) was observed by measurements of the cap opening, the stipe increase, the cap diameter, the weight loss and the color of the caps. The color was measured in order to evaluate the lightness with the L value measurement and the color changes were measured in terms of lightness, hue and chroma. The control of fungal and bacterial diseases were also evaluated. The irradiation of mushrooms at both dose rates of irradiation was found to be effective in lowering microorganism counts initially and throughout storage and increased the shelf-life by four days. This study also showed that mushrooms exposed to a lower dose rate (4.5 kGy/h) of irradiation preserve the whiteness and reduce the stripe increase of mushrooms during storage.

  4. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NARCIS (Netherlands)

    Borot, Maxence; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-01-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance.

  5. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    Science.gov (United States)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented.

  6. Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands

    NARCIS (Netherlands)

    Hiemstra, P.H.; Pebesma, E.J.; Heuvelink, G.B.M.; Twenhöfel, C.J.W.

    2010-01-01

    The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations

  7. Measurement bias dependence of enhanced bipolar gain degradation at low dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Witczak, S.C.; Lacoe, R.C.; Mayer, D.C. [Aerospace Corp., Los Angeles, CA (United States). Electronics Technology Center; Schrimpf, R.D.; Barnaby, H.J.; Galloway, K.F. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Electrical and Computer Engineering; Pease, R.L. [RLP Research, Inc., Albuquerque, NM (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States)

    1998-03-01

    Oxide trapped charge, field effects from emitter metallization, and high level injection phenomena moderate enhanced gain degradation of lateral pnp transistors at low dose rates. Hardness assurance tests at elevated irradiation temperatures require larger design margins for low power measurement biases.

  8. A computational study to evaluate indoor gamma dose-rate on the basis of outdoor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nuccetelli, C.; Menghi, E.; Bochicchio, F. [Istituto Superiore di Sanita, Roma (Italy)

    2006-07-01

    A new method to estimate the indoor gamma dose rate has been developed. This method is based on outdoor gamma dose rate measurements and a computational model that requires the knowledge of some structural and geometrical characteristics of the dwelling. It can be a very useful tool in situations in which it is impossible entering the dwellings to measure the indoor gamma dose rate, such as epidemiological studies and other surveys. To validate the method, estimates and actual indoor measurements have been compared for a sample of dwellings. In a first phase, indoor gamma dose rate estimates were obtained using the detailed dwelling information contained in questionnaire filled-in during the indoor measurements. This first comparison gave excellent results. A more general and less site dependent approach has now been implemented, assuming average values for many indoor parameters instead of using questionnaire data, in order to evaluate the predictive characteristics of this method for a practical use. In this paper, the new procedure is presented and the results obtained till now are summarized. (authors)

  9. Time-driven activity-based costing of low-dose-rate and high-dose-rate brachytherapy for low-risk prostate cancer.

    Science.gov (United States)

    Ilg, Annette M; Laviana, Aaron A; Kamrava, Mitchell; Veruttipong, Darlene; Steinberg, Michael; Park, Sang-June; Burke, Michael A; Niedzwiecki, Douglas; Kupelian, Patrick A; Saigal, Christopher

    Cost estimates through traditional hospital accounting systems are often arbitrary and ambiguous. We used time-driven activity-based costing (TDABC) to determine the true cost of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy for prostate cancer and demonstrate opportunities for cost containment at an academic referral center. We implemented TDABC for patients treated with I-125, preplanned LDR and computed tomography based HDR brachytherapy with two implants from initial consultation through 12-month followup. We constructed detailed process maps for provision of both HDR and LDR. Personnel, space, equipment, and material costs of each step were identified and used to derive capacity cost rates, defined as price per minute. Each capacity cost rate was then multiplied by the relevant process time and products were summed to determine total cost of care. The calculated cost to deliver HDR was greater than LDR by $2,668.86 ($9,538 vs. $6,869). The first and second HDR treatment day cost $3,999.67 and $3,955.67, whereas LDR was delivered on one treatment day and cost $3,887.55. The greatest overall cost driver for both LDR and HDR was personnel at 65.6% ($4,506.82) and 67.0% ($6,387.27) of the total cost. After personnel costs, disposable materials contributed the second most for LDR ($1,920.66, 28.0%) and for HDR ($2,295.94, 24.0%). With TDABC, the true costs to deliver LDR and HDR from the health system perspective were derived. Analysis by physicians and hospital administrators regarding the cost of care afforded redesign opportunities including delivering HDR as one implant. Our work underscores the need to assess clinical outcomes to understand the true difference in value between these modalities. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Shielding optimisation of the ITER ICH&CD antenna for shutdown dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: andrew.turner@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Leichtle, Dieter [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lamalle, Philippe; Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St., Paul-lez-Durance (France); Meunier, Lionel [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Polunovskiy, Eduard [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St., Paul-lez-Durance (France); Sartori, Roberta [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Shannon, Mark [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Neutronics analysis on the ITER ICH&CD system conducted to reduce shutdown dose rate. • Several designs for shielding the port plug gaps were modelled. • Shielding significantly reduced interspace dose rate but still exceed project requirements. • Design optimisation of the ICH port is continuing. • Significant contributions from other ports require an integrated modelling approach. - Abstract: The Ion Cyclotron Heating and Current Drive (ICH&CD) system will reside in ITER equatorial port plugs 13 and 15. Shutdown dose rates (SDDR) within the port interspace are required to be less than 100 μSv/h at 10{sup 6} s cooling. A significant contribution to the SDDR results from neutrons streaming down gaps around the port frame, and the mitigation of this streaming is the main subject of these analyses. An updated MCNP model of the antenna was created and integrated into an ITER reference model. Shielding plates were defined in the port gaps, and scoping studies conducted to assess their effectiveness in several configurations, based on which a front dog-leg arrangement was selected for high resolution 3-D activation analysis using MCR2S. It was concluded that the selected configuration reduced the SDDR from ∼500 μSv/h to 220 μSv/h but were still in excess of dose rate requirements. Approximately 30% of this was due to cross-talk from neighbouring ports. In addition, increased dose rates were observed in the port interspace along the lines of sight of the removable vacuum transmission lines. Design optimisation is continuing, however an integrated approach is needed with regard to ITER port plug design and the shielding of surrounding systems.

  11. Failure Rate of Single Dose Methotrexate in Managment of Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Feras Sendy

    2015-01-01

    Full Text Available Background. One of the treatment modalities for ectopic pregnancy is methotrexate. The purpose of this study is to identify the failure rate of methotrexate in treating patients with ectopic pregnancy as well as the risk factors leading to treatment failure. Methods. A retrospective chart review of 225 patients who received methotrexate as a primary management option for ectopic pregnancy. Failure of single dose of methotrexate was defined as drop of BHCG level less than or equal to 14% in the seventh day after administration of methotrexate. Results. 225 patients had methotrexate. Most of the patients (151 (67% received methotrexate based on the following formula: f 50 mg X body surface area. Single dose of methotrexate was successful in 72% (162/225 of the patients. 28% (63/225 were labeled as failure of single dose of methotrexate because of suboptimal drop in BhCG. 63% (40/63 of failure received a second dose of methotrexate, and 37% (23/63 underwent surgical treatment. Among patient who received initial dose of methotrexate, 71% had moderate or severe pain, and 58% had ectopic mass size of more than 4 cm on ultrasound. Conclusion. Liberal use of medical treatment of ectopic pregnancy results in 71% success rate.

  12. Failure rate of single dose methotrexate in managment of ectopic pregnancy.

    Science.gov (United States)

    Sendy, Feras; AlShehri, Eman; AlAjmi, Amani; Bamanie, Elham; Appani, Surekha; Shams, Taghreed

    2015-01-01

    Background. One of the treatment modalities for ectopic pregnancy is methotrexate. The purpose of this study is to identify the failure rate of methotrexate in treating patients with ectopic pregnancy as well as the risk factors leading to treatment failure. Methods. A retrospective chart review of 225 patients who received methotrexate as a primary management option for ectopic pregnancy. Failure of single dose of methotrexate was defined as drop of BHCG level less than or equal to 14% in the seventh day after administration of methotrexate. Results. 225 patients had methotrexate. Most of the patients (151 (67%)) received methotrexate based on the following formula: f 50 mg X body surface area. Single dose of methotrexate was successful in 72% (162/225) of the patients. 28% (63/225) were labeled as failure of single dose of methotrexate because of suboptimal drop in BhCG. 63% (40/63) of failure received a second dose of methotrexate, and 37% (23/63) underwent surgical treatment. Among patient who received initial dose of methotrexate, 71% had moderate or severe pain, and 58% had ectopic mass size of more than 4 cm on ultrasound. Conclusion. Liberal use of medical treatment of ectopic pregnancy results in 71% success rate.

  13. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  14. The dosimetric characteristics of personal alarm dosimeter : Dependence of dose rate and photon energy

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Ha-Seok; Lee, Jun Hee; Kim, Jae Min; Song, Gi Chang; Park, Jae Duck [Iljin Radiation Engineering Co. Ltd., Hwaseong (Korea, Republic of)

    2015-10-15

    There is a need to accurately measure the radiation dose. The dosimeters such as TLD(main dosimeter) are cumulative personal dosimeter to be measured after the radiation exposure, not provide information in real-time personal dose. Therefore, active dosimeter such as electronic personal dosimeters have used together as an alternative dosimeter to manage radiation dose of worker in the work place. We have developed and produced electronic personal dosimeters using photo diode as a detector(Model name: CLOVER), have also programmed the dose calculating algorithms to fit this dosimeter. We have developed and produced electronic personal dosimeters using photo diode as a detector, have also programmed the dose calculating algorithms to fit this dosimeter. The result of tests to meet in KS C IEC 61526 requirements for this dosimeter could obtain the following conclusions. 3.1. The relative intrinsic error and the dependence of dose equivalent rate of this electronic dosimeter are not exceed 20%, and meet with requirements. 3.2. The dependence of energy in the low energy region is exceeded 30%.

  15. EURISOL Multi-MW Target Station - MAFF Configuration - Neutron Fluxes, Fission Rates, Dose Rates and Activation

    CERN Document Server

    Luis, R; Goncalves, I. F; Vaz, P; Kadi, Y; Kharoua, C; Rocca, R; Bermudez, J; Tecchio, L; Negoita, F; Ene, D; David, J.C

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims atproducing high intensity radioactive ion beams produced by neutron-induced fission on fissile targets(235U) surrounding a liquid mercury converter. A proton beam of 1GeV and 4MW impinges on theconverter, generating, by spallation reactions, high neutron fluxes that induce fission in thesurrounding fissile targets.In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess theneutronics performance of the system, which geometry, inspired in the MAFF concept, allows aversatile manipulation of the fission targets. The first objective of the study was to optimize thegeometry and the materials used in the fuel and reflector elements of the system, in order to achievethe highest possible fission rates. Indeed, it is shown that the appropriate combination of fission targetmaterial and surrounding reflector material leads to the aimed value of 1015 fissions/s per fissiontarget. The second part of this...

  16. Extensive antibiotic prescription rate among hospitalized patients in Uganda: but with frequent missed-dose days

    Science.gov (United States)

    Kiguba, Ronald; Karamagi, Charles; Bird, Sheila M.

    2016-01-01

    Objectives To describe the patterns of systemic antibiotic use and missed-dose days and detail the prescription, dispensing and administration of frequently used hospital-initiated antibiotics among Ugandan inpatients. Methods This was a prospective cohort of consented adult inpatients admitted on the medical and gynaecological wards of the 1790 bed Mulago National Referral Hospital. Results Overall, 79% (603/762; 95% CI: 76%–82%) of inpatients received at least one antibiotic during hospitalization while 39% (300/762; 95% CI: 36%–43%) had used at least one antibiotic in the 4 weeks pre-admission; 1985 antibiotic DDDs, half administered parenterally, were consumed in 3741 inpatient-days. Two-fifths of inpatients who received at least one of the five frequently used hospital-initiated antibiotics (ceftriaxone, metronidazole, ciprofloxacin, amoxicillin and azithromycin) missed at least one antibiotic dose-day (44%, 243/558). The per-day risk of missed antibiotic administration was greatest on day 1: ceftriaxone (36%, 143/398), metronidazole (27%, 67/245), ciprofloxacin (34%, 39/114) and all inpatients who missed at least one dose-day of prescribed amoxicillin and azithromycin. Most patients received fewer doses than were prescribed: ceftriaxone (74%, 273/371), ciprofloxacin (90%, 94/105) and metronidazole (97%, 222/230). Of prescribed doses, only 62% of ceftriaxone doses (1178/1895), 35% of ciprofloxacin doses (396/1130) and 27% of metronidazole doses (1043/3862) were administered. Seven percent (13/188) of patients on intravenous metronidazole and 6% (5/87) on intravenous ciprofloxacin switched to oral route. Conclusions High rates of antibiotic use both pre-admission and during hospitalization were observed, with low parenteral/oral switch of hospital-initiated antibiotics. Underadministration of prescribed antibiotics was common, especially on the day of prescription, risking loss of efficacy and antibiotic resistance. PMID:26945712

  17. Islet Oxygen Consumption Rate (OCR Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Directory of Open Access Journals (Sweden)

    Klearchos K Papas

    Full Text Available Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR in predicting clinical islet autotransplant (IAT insulin independence (II. IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.Membrane integrity staining (FDA/PI, OCR normalized to DNA (OCR/DNA, islet equivalent (IE and OCR (viable IE normalized to recipient body weight (IE dose and OCR dose, and OCR/DNA normalized to islet size index (ISI were used to characterize autoislet preparations (n = 35. Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis.Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001. These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC = 0.94 for IE dose and 0.96 for OCR dose. FDA/PI (AUC = 0.49 and OCR/DNA (AUC = 0.58 did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72.Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  18. Pulsed-Dose Rate Brachytherapy for the Treatment of Endometrial Cancer.

    Science.gov (United States)

    De Felice, Francesca; Caiazzo, Rossella; Benevento, Ilaria; Musio, Daniela; Rubini, Filippo; Tombolini, Vincenzo

    2017-01-01

    Endometrial cancer (EC) is the most frequent gynecologic malignancy. The aim of this review is to outline clinical practice recommendations, to suggest a technical solution, and to advise doses selection for pulsed-dose rate (PDR) brachytherapy in EC. Electronic bibliographic databases, including PubMed, clinicaltrials.gov, and the American Society of Clinical Oncology (ASCO) Meeting Library, were searched for articles in English. Clinical guidelines and systematic reviews were also considered. The appropriate therapeutic approach should consider risk factors for tumor relapse and PDR brachytherapy and have a convincing role in this multidisciplinary scenario. Performing PDR brachytherapy in EC requires robust training and experience. © 2017 S. Karger AG, Basel.

  19. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C. (Environmental Science Division); (Westlakes Scientific Consulting Ltd.); (Inst. de Radioprotection et de Surete Nucleaire); (Centre for Ecology & Hydrology); (Norwegian Radiation Protection Authority); (State Office for Nuclear Safety); (Korea Atomic Energy Research Institute); (Visible Information Centre Inc.); (Belgian Nuclear Research Centre); (University of Liverpool)

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  20. Pulsed dose rate brachytherapy (PDR): an analysis of the technique at 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, M. [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Van Eijkeren, M.; Van Hecke, H.; Boterberg, T.; De Neve, W.

    1995-12-01

    A total of 154 applications was analysed using a pulsed dose brachytherapy technique for 138 patients over a 2 year period with emphasis on technical aspects influencing the overall treatment time. Vaginal ovoids were used in 59 cases, plastic tubes in 52, a Fletcher-type in 18, vaginal cylinders in 14 and a perineal template in 11 cases. Pulses were given at hourly intervals with a median dose rate of 0.6 Gy per pulse (range 0.4 to 3 Gy). The number of pulses per application varied from 3 to 134 (median 32). The number of dwell positions varied from 1 to 542 over 1 to 18 catheters. Patient related problems were few. The room was entered almost every 77 minutes. We noted 561 status codes in 147 applications. Of the 25 different codes, the most frequent one was due to the door left open when a pulse had to be given (35%) or due to constriction of the plastic catheters at the transfer tube junction (26%). However, the median total treatment time was increased by only 5 minutes. With pulsed dose rate brachytherapy at hourly pulses we can treat our patients within the planned time despite frequent room entrance and occurrence of an appreciable number of status codes. This technique seems to fulfill its promise to replace low dose rate brachytherapy.

  1. RaD-X: Complementary measurements of dose rates at aviation altitudes

    Science.gov (United States)

    Meier, Matthias M.; Matthiä, Daniel; Forkert, Tomas; Wirtz, Michael; Scheibinger, Markus; Hübel, Robert; Mertens, Christopher J.

    2016-09-01

    The RaD-X stratospheric balloon flight organized by the National Aeronautics and Space Administration was launched from Fort Sumner on 25 September 2015 and carried several instruments to measure the radiation field in the upper atmosphere at the average vertical cutoff rigidity Rc of 4.1 GV. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) in cooperation with Lufthansa German Airlines supported this campaign with an independent measuring flight at the altitudes of civil aviation on a round trip from Germany to Japan. The goal was to measure dose rates under similar space weather conditions over an area on the Northern Hemisphere opposite to the RaD-X flight. Dose rates were measured in the target areas, i.e., around vertical cutoff rigidity Rc of 4.1 GV, at two flight altitudes for about 1 h at each position with acceptable counting statistics. The analysis of the space weather situation during the flights shows that measuring data were acquired under stable and moderate space weather conditions with a virtually undisturbed magnetosphere. The measured rates of absorbed dose in silicon and ambient dose equivalent complement the data recorded during the balloon flight. The combined measurements provide a set of experimental data suitable for validating and improving numerical models for the calculation of radiation exposure at aviation altitudes.

  2. Simulation of In-Core Dose Rates for an Offline CANDU Reactor

    Science.gov (United States)

    Gilbert, Jordan

    This thesis describes the development of a Monte Carlo simulation to predict the dose rates that will be encountered by a novel robotic inspection system for the pressure tubes of an offline CANDU reactor. Simulations were performed using the Monte Carlo N-Particle (MCNP) radiation transport code, version 6.1. The radiation fields within the reactor, even when shut down, are very high, and can cause significant damage to certain structural components and the electronics of the inspection system. Given that the robotic system will rely heavily on electronics, it is important to know the dose rates that will be encountered, in order to estimate the component lifetimes. The MCNP simulation was developed and benchmarked against information obtained from Ontario Power Generation and the Canadian Nuclear Laboratories. The benchmarking showed a good match between the simulated values and the expected values. This simulation, coupled with the accompanying user interface, represent a tool in dose field prediction that is currently unavailable. Predicted dose rates for a postulated inspection at 7 days after shutdown, with 2:5 cm of tungsten shielding around the key components, would survive for approximately 7 hours in core. This is anticipated to be enough time to perform an inspection and shows that the use of this tool can aid in designing the new inspection system.

  3. Interstitial pneumonitis following total body irradiation for bone marrow transplantation using two different dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.H.; Rybka, W.B.; Lehnert, S.; Podgorsak, E.B.; Freeman, C.R.

    1985-07-01

    A total of 22 patients with leukemia have undergone allogeneic bone marrow transplantation (BMT) by the Quebec Co-operative Group for Marrow Transplantation from 1980 to 1982. All patients received 900 cGy total body irradiation (TBI), in a single fraction, on the day preceding BMT. The first 11 patients were treated on a cobalt unit at a constant dose rate of 4.7 to 6.3 cGy/min. Six of these patients developed interstitial pneumonitis (IP). The clinical course of three patients, two with idiopathic and one with drug-induced pneumonitis, was mild and recovery was complete in all. The other three patients developed severe infectious IP and two died. The next 11 patients were treated with a sweeping beam technique on a 4 MV linear accelerator delivering a total tumor dose of 900 cGy at an average dose rate of 6.0 to 6.5 cGy/min but an instantaneous dose rate of 21.0 to 23.5 cGy/min. Eight patients developed severe IP. Five of these were idiopathic and four died. Three were infectious and all died. The fatality of interstitial pneumonitis appeared to be greater in the group treated with the sweeping beam technique.

  4. The effects of low dose rate irradiation and thermal aging on reactor structural alloys

    Science.gov (United States)

    Allen, T. R.; Trybus, C. L.; Cole, J. I.

    As part of the EBR-II reactor materials surveillance program, test samples of fifteen different alloys were placed into EBR-II in 1965. The surveillance (SURV) program was intended to determine property changes in reactor structural materials caused by irradiation and thermal aging. In this work, the effect of low dose rate (approximately 2 × 10 -8 dpa/s) irradiation at 380-410°C and long term thermal aging at 371°C on the properties of 20% cold worked 304 stainless steel, 420 stainless steel, Inconel X750, 304/308 stainless weld material, and 17-4 PH steel are evaluated. Doses of up to 6.8 dpa and thermal aging to 2994 days did not significantly affect the density of these alloys. The strength of 304 SS, X750, 17-4 PH, and 304/308 weld material increased with irradiation. In contrast, the strength of 420 stainless steel decreased with irradiation. Irradiation decreased the impact energy in both Inconel X750 and 17-4 PH steel. Thermal aging decreased the impact energy in 17-4 PH steel and increased the impact energy in Inconel X750. Tensile property comparisons of 304 SURV samples with 304 samples irradiated in EBR-II at a higher dose rate show that the higher dose rate samples had greater increases in strength and greater losses in ductility.

  5. A single dose of dark chocolate increases parasympathetic modulation and heart rate variability in healthy subjects

    Directory of Open Access Journals (Sweden)

    Ana Amélia Machado DUARTE

    Full Text Available ABSTRACT Objective: The aim of this study was to investigate the acute effect of a single dose of dark chocolate (70% cocoa on blood pressure and heart rate variability. Methods: Thirty-one healthy subjects (aged 18-25 years; both sexes were divided into two groups: 10 subjects in the white chocolate (7.4 g group and 21 in the dark chocolate (10 g group; measurements were performed at the university's physiology lab. An electrocardiogram measured the sympathovagal balance by spectral and symbolic analysis. Results: A single dose of dark chocolate significantly reduced systolic blood pressure and heart rate. After consuming 10 g of dark chocolate, significant increases were observed for heart rate variability, standard deviation of RR intervals standard deviation of all NN intervals, square root of the mean squared differences between adjacent normal RR intervals root mean square of successive differences, and an increase in the high frequency component in absolute values, representing the parasympathetic modulation. Conclusion: In conclusion the importance of our results lies in the magnitude of the response provoked by a single dose of cocoa. Just 10 g of cocoa triggered a significant increase in parasympathetic modulation and heart rate variability. These combined effects can potentially increase life expectancy because a reduction in heart rate variability is associated with several cardiovascular diseases and higher mortality.

  6. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  7. Idiorrhythmic dose-rate variability in dietary zinc intake generates a different response pattern of zinc metabolism than conventional dose-response feeding.

    Science.gov (United States)

    Momcilović, B; Reeves, P G; Blake, M J

    1997-07-01

    We compared the effects of idiorrhythmic dose-rate feeding and conventional dose-response on the induction of intestinal metallothionein (iMT), expression of aortal heat-shock protein mRNA (HSP70mRNA) induced by restraint stress, and accumulation of Zn in the femur and incisor of young growing male rats. An idiorrhythmic approach requires that the average dietary Zn concentration (modulo, M) over the whole experiment (epoch, E) is kept constant across different groups. This is done by adjusting the Zn concentration of the supplemented diet supplied to compensate for the reduction in the number of days on which Zn-supplemented diet is fed, the latter being spread evenly over the experiment. Idiorrhythms involve offering the diet with n times the overall Zn concentration (M) only every nth day with Zn-deficient diet offered on other days. Idiorrythmic Zn dose-rate feeding changed Zn accumulation in the femur and incisor in a complex bi-modal fashion, indicating that metabolic efficiency of dietary Zn is not constant but depends on Zn dose-rate. In contrast to feeding Zn in the conventional dose-response scheme, iMT and HSP70mRNA were not affected by idiorrhythmic dose-rate feeding. Idiorrhythmic cycling in dietary Zn load posed no risk of a biochemical overload nor caused the animals to be stressed. Idiorrhythmic dose-rate feeding brings the dimension of time to the conventional dose-response model.

  8. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sudahar, H., E-mail: h.sudahar@gmail.com [Department of Radiotherapy, Apollo Speciality Hospital, Chennai (India); Kurup, P.G.G.; Murali, V.; Mahadev, P. [Department of Radiotherapy, Apollo Speciality Hospital, Chennai (India); Velmurugan, J. [Department of Medical Physics, Anna University, Chennai (India)

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  9. Tandem-ring dwell time ratio in Nigeria: dose comparisons of two loading patterns in standard high-dose-rate brachytherapy planning for cervical cancer

    OpenAIRE

    2015-01-01

    Purpose In high-dose-rate (HDR) brachytherapy (BT), the source dwell times and dwell positions are essential treatment planning parameters. An optimal choice of these factors is fundamental to obtain the desired target coverage with the lowest achievable dose to the organs at risk (OARs). This study evaluates relevant dose parameters in cervix brachytherapy in order to assess existing tandem-ring dwell time ratio used at the first HDR BT center in Nigeria, and compare it with an alternative s...

  10. Interrelation of exposure and exposure rate in germinating seeds of barley and its concurrence with dose-rate theory

    Energy Technology Data Exchange (ETDEWEB)

    Bottino, P.J.; Sparrow, A.H.; Schwemmer, S.S.; Thompson, K.H.

    1975-01-01

    Germinating seeds of barley were irradiated with /sup 137/Cs gamma rays at various combinations of total exposure (400-3200 R) and exposure rate (30-24,000 R/hr). Seedling height was measured 5 days after the initiation of irradiation and the various levels of growth inhibition produced by each combination of treatments were determined. The results obtained ranged from no effect on growth to 100 percent growth inhibition. Growth inhibition curves based on both total exposure and exposure rate were constructed. The exposures required to produce 20 and 35 percent growth inhibition at each exposure rate were determined, 35 percent growth inhibition being the highest level that could be determined over the entire range of rates used (20 percent growth inhibition was used for comparative purposes). For both levels of growth inhibition, as exposure rate increased (or, concomitantly, as exposure time decreased), the total exposure required to produce the end point decreased (effectiveness increased) as a straight line relationship on a double logarithmic plot between 30 and 1500 R/hr (0.03 to 0.3 hr exposure time). Above 1500 R/hr, further increases in exposure rate (or decreases in exposure time) increased the total exposure required for a given effect, i.e., effectiveness decreased. Conversion of exposure rate to exposure time demonstrates this point of change in effectiveness to occur well within one mitotic cycle. These results are discussed with regard to current dose-rate theory and are at least partially consistent therewith. A straight-line dependency of the exposure rate producing maximum growth inhibition on total exposure is shown. The point at which the combinations of exposure and exposure rate for 35 percent growth inhibition occurs is restricted to barley and may differ for other species. This may depend on chromosome size or DNA content and/or the mitotic cycle time characteristic of a species. (auth)

  11. Final report for DOE Grant No. DE-FG02-07ER64404 - Field Investigations of Microbially Facilitated Calcite Precipitation for Immobilization of Strontium-90 and Other Trace Metals in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W; Fujita, Yoshiko; Ginn, Timothy R; Hubbard, Susan S

    2012-10-12

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that that nutrient addition can stimulate microbial ureolytic activity that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days followed by long-term monitoring which continued for 13 months. Following the recirculation phase we found persistent increases in urease activity (as determined from 14C labeled laboratory urea hydrolysis rates) in the upper portion of the inter-wellbore zone. We also observed an initial increase (approximately 2 weeks) in urea concentration associated with injection activities followed by decreasing urea concentration and associated increases in ammonium and dissolved inorganic carbon

  12. The Dose Rate Dependence of the Yield of Trapped Electrons in Crystalline Ice

    DEFF Research Database (Denmark)

    Nilsson, Johan Daniel Göran; Pagsberg, Palle Bjørn

    1980-01-01

    for the experimental dose rate dependence observed at −10° C. The reaction with the protons has a negative temperature coefficient while the reaction with the OH radicals has an activation energy of about 14 kcal mole−1. The mobility of the proton was estimated to be about 3 × 10−4 cm2 V−1 S−1 at −10°C.......The yield of localized excess electrons in crystalline H2O ice has been studied as a function of the dose rate at various temperatures in the range −10 to −40°C. The G value was found to decrease significantly with increasing dose rate. Thus it appears that the localization of electrons takes place...... in competition with other reactions and we propose a simple model where we assume that the mobile electrons can undergo bimolecular bulk reactions with protons and OH radicals. Rate constants of 3.0 × 1015 M−1 S−1 and 1.4 × 1014 M−1 S−1 for the two reactions were required in the model in order to account...

  13. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy.

    Science.gov (United States)

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-06-01

    In surface and interstitial high-dose-rate brachytherapy with either (60)Co, (192)Ir, or (169)Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for (60)Co and 1 mm for both (192)Ir and (169)Yb. Transmission data for (60)Co and (192)Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898-4906) for brachytherapy facility shielding; for (169)Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified.

  14. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'

    Science.gov (United States)

    Salter, Bill J.; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min-1) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach.

  15. A Phase I-II dose escalation study of fixed-dose rate gemcitabine, oxaliplatin and capecitabine every two weeks in advanced cholangiocarcinomas

    DEFF Research Database (Denmark)

    Lassen, Ulrik; Jensen, Lars Henrik; Sorensen, Morten;

    2011-01-01

    Gemcitabine based regimens have been widely used in patients with advanced cholangiocarcinoma (CC), but no standard therapy exists. In this study we aimed to find the maximally tolerated dose (MTD) of a two-week schedule of fixed dose rate (FDR) gemcitabine (G), oxaliplatin (O) and capecitabine (...

  16. High dose rate brachytherapy in early stage squamous-cell carcinoma of the lip.

    Science.gov (United States)

    Mut, Alejandro; Guinot, José Luis; Arribas, Leoncio; Díez-Presa, Lorena; Tortajada, María Isabel; Santos, Miguel Ángel; Samper, Josefa; Santamaría, Paula; Vendrell, Juan Bosco

    2016-01-01

    To analyze the results obtained after treatment of early stage (T1-T2) squamous cell carcinoma of the lip with high dose rate brachytherapy and evaluate the efficacy of this treatment in both local and regional control. Retrospective analysis of the treatments performed at our department from March 1999 to March 2013 with high dose rate brachytherapy with rigid needles. We included 68 patients, 63 men and 5 women; 37 patients (54.4%) presented a T1 tumour, less than or equal to 2cm, while the other 31 (45.6%) were classified as T2. Median total dose was 45Gy, with a median dose per fraction of 5Gy x 9 fractions twice a day for 5 days. With a mean follow-up of 56.4 months, local control was 96.9%. Stratifying by tumour size, local control of T1 cases was 100%, while T2 achieved 93.2% (2 local recurrences). Regional control at 5 years was 93.8% for T1, and 80.8% for T2. In 11 cases with elective cervical treatment, no regional failure happened. As for toxicity, no patient presented soft tissue, or bone, necrosis. All patients achieved good or excellent cosmetic and functional results. High dose rate brachytherapy allows effective, safe treatments for squamous cell carcinoma of the lip, with good aesthetic and functional results. It can be considered a valid alternative for surgery in early stage tumours. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  17. Effects of radiation types and dose rates on selected cable-insulating materials

    Science.gov (United States)

    Hanisch, F.; Maier, P.; Okada, S.; Schönbacher, H.

    A series of radiation tests have been carried out on halogen-free cable-insulating and cable-sheathing materials comprising commercial LDPE, EPR, EVA and SIR compounds. samples were irradiated at five different radiation sources, e.g. a nuclear reactor, fuel elements, a 60Co source, and in the stray radiation field of high-energy proton and electron accelerators at CERN and DESY. The integrated doses were within 50-5000 kGy and the dose rates within 10 mGy/s-70 Gy/s. Tensile tests and gel-fraction measurements were carried out. The results confirm that LDPEs are very sensitive to long-term ageing effects, and that important errors exceeding an order of magnitude can be made when assessing radiation damage by accelerated tests. On the other hand, well-stabilized LDPEs and the cross-linked rubber compounds do not show large dose-rate effects for the values given above. Furthermore, the interpretation of the elongation-at-break data and their relation to gel-fraction measurements show that radiation damage is related to the total absorbed dose irrespective of the different radiation types used in this experiment.

  18. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    Energy Technology Data Exchange (ETDEWEB)

    Gay, H A [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Allison, R R [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Downie, G H [Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Mota, H C [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Austerlitz, C [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Jenkins, T [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Sibata, C H [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States)

    2007-06-07

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  19. Strontium-90 Biokinetics from Simulated Wound Intakes in Non-human Primates Compared with Combined Model Predictions from National Council on Radiation Protection and Measurements Report 156 and International Commission on Radiological Protection Publication 67.

    Science.gov (United States)

    Allen, Mark B; Brey, Richard R; Gesell, Thomas; Derryberry, Dewayne; Poudel, Deepesh

    2016-01-01

    This study had a goal to evaluate the predictive capabilities of the National Council on Radiation Protection and Measurements (NCRP) wound model coupled to the International Commission on Radiological Protection (ICRP) systemic model for 90Sr-contaminated wounds using non-human primate data. Studies were conducted on 13 macaque (Macaca mulatta) monkeys, each receiving one-time intramuscular injections of 90Sr solution. Urine and feces samples were collected up to 28 d post-injection and analyzed for 90Sr activity. Integrated Modules for Bioassay Analysis (IMBA) software was configured with default NCRP and ICRP model transfer coefficients to calculate predicted 90Sr intake via the wound based on the radioactivity measured in bioassay samples. The default parameters of the combined models produced adequate fits of the bioassay data, but maximum likelihood predictions of intake were overestimated by a factor of 1.0 to 2.9 when bioassay data were used as predictors. Skeletal retention was also over-predicted, suggesting an underestimation of the excretion fraction. Bayesian statistics and Monte Carlo sampling were applied using IMBA to vary the default parameters, producing updated transfer coefficients for individual monkeys that improved model fit and predicted intake and skeletal retention. The geometric means of the optimized transfer rates for the 11 cases were computed, and these optimized sample population parameters were tested on two independent monkey cases and on the 11 monkeys from which the optimized parameters were derived. The optimized model parameters did not improve the model fit in most cases, and the predicted skeletal activity produced improvements in three of the 11 cases. The optimized parameters improved the predicted intake in all cases but still over-predicted the intake by an average of 50%. The results suggest that the modified transfer rates were not always an improvement over the default NCRP and ICRP model values.

  20. The dose rate observed on 19-21 October 1989 and its modulation by geophysical effects.

    Science.gov (United States)

    Smart, D F; Shea, M A; Dachev TsP; Bankov, N G; Petrov, V M; Bengin, V V

    1994-10-01

    The Liulin dosimeter-radiometer on the MIR space station detected the 19 October 1989 high energy solar proton event. These results show that the main particle increase contains protons with energies up to about 9 GeV. After the main particle onset the Liulin dosimeter observed a typical geomagnetic cutoff modulation of the dose rate from the solar particles as the MIR space station traversed magnetic latitudes. When the interplanetary shock and associated solar plasma enveloped the earth on 20 October between 14 and 17 UT the radiation exposure increased significantly due to the lowering of the geomagnetic cutoff. The analysis of this event shows how various geophysical phenomena can significantly modulate the dose rate encountered by earth-orbiting spacecraft.

  1. Factors affecting quality for beta dose rate measurements using ISO 6980 series I reference sources

    Energy Technology Data Exchange (ETDEWEB)

    Burns, R.E. Jr.; O`Brien, J.M. Jr. [Atlan-Tech, Rosewll, GA (United States)

    1993-12-31

    Atlan-Tech, Inc. has performed several calibrations of ISO 6980 Series 1 reference beta sources over the past two to three years. There were many problems encountered in attempting to compare the results of these calibrations with those from other laboratories, indicating the need for more standardization in the methodology employed for the measurement of the absorbed dose rate from ISO 6980 Series 1 reference beta sources. This document describes some of the problems encountered in attempting to intercompare results of beta dose-rate measurements. It proposes some solutions in an attempt to open a dialogue among facilities using reference beta standards for the purpose of promoting better measurement quality assurance through data intercomparison.

  2. Use of silicon photodiode optically connected to scintillator in measurement of gamma dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Gilar, O. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky); Petr, I. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska)

    1984-06-01

    Contributing to the signal which is produced in the photodiode by direct interaction with radiation may also be light photons produced by scintillation in the scintillator which is in optical contact with the photodiode. The scintillator/photodiode combination may increase sensitivity in comparison with the photodiode alone. The energy dependence of the detector will change according to the scintillator material and size. The configuration is described of a detector with CsI(Tl) scintillator. The detector is suitable for medium and large dose rates, the limiting factor for measuring small dose rates is the intensity of the photodiode dark current and its temperature dependence. A higher sensitivity of the designed detector configuration may be achieved by selecting a scintillator with a more suitable emission spectrum or by technological modifications of the photodiode.

  3. Open-source hardware and software and web application for gamma dose rate network operation.

    Science.gov (United States)

    Luff, R; Zähringer, M; Harms, W; Bleher, M; Prommer, B; Stöhlker, U

    2014-08-01

    The German Federal Office for Radiation Protection operates a network of about 1800 gamma dose rate stations as a part of the national emergency preparedness plan. Each of the six network centres is capable of operating the network alone. Most of the used hardware and software have been developed in-house under open-source license. Short development cycles and close cooperation between developers and users ensure robustness, transparency and fast maintenance procedures, thus avoiding unnecessary complex solutions. This also reduces the overall costs of the network operation. An easy-to-expand web interface has been developed to make the complete system available to other interested network operators in order to increase cooperation between different countries. The interface is also regularly in use for education during scholarships of trainees supported, e.g. by the 'International Atomic Energy Agency' to operate a local area dose rate monitoring test network.

  4. Effect of dose rate and multiple fractions per day on radiation-induced lung damage in mice

    Energy Technology Data Exchange (ETDEWEB)

    Collis, C.H.; Down, J.D. (Institute of Cancer Research, Sutton (UK). Surrey Branch)

    1984-11-01

    Acute single and fractionated exposures were carried out at a fixed dose rate, 1 Gy min/sup -1/, and exposure times therefore ranged from 10 to 28 min. For low dose-rate continuous irradiation, the overall treatment time (2, 4 or 8 h) was kept constant and the various test doses obtained by varying the dose rate. Rates ranged from 11.7 to 18.3 cGy min/sup -1/ for the 2-h exposure, from 6.7 to 11.7 cGy min/sup -1/ for the 4-h exposure, and from 3.7 to 6.7 cGy min/sup -1/ for the 8-h exposure. Results confirmed (a) the marked dose-sparing effect of fractionation even over short time intervals, and (b) that still greater sparing is obtained by low dose-rate irradiation.

  5. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACE METALS IN GROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES AT ARID WESTERN DOE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F. Grant; Fujita, Yoshiko; Smith, Robert W.

    2004-06-15

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project.

  6. ENVIRONMENTALMANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACEMETALS INGROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 ANDOTHER DIVALENT METALS AND RADIONUCLIDES AT ARIDWESTERN DOE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F. Grant; Fujita, Yoshiko; Smith, Robert W.; Cosgrove, Donna M.; Colwell, F. S.

    2004-06-15

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project.

  7. High-dose rate brachytherapy in the treatment of cancer of the cervix uteri

    Directory of Open Access Journals (Sweden)

    D. A. Aliyev

    2011-01-01

    Full Text Available Analysis of the results of examining and treating 246 patients with Stages IIA-IIIB cancer of the cervix uteri (CCU, receiving specific chemoradiotherapy (CRT at the Department of Radiotherapy, National Oncology Center (Baku, has ascertained that CRT using two high-dose (9 Gy rate brachytherapy fractions and competitive cisplatin chemotherapy is an effective, reasonably safe, and economically sound treatment method for locally advanced CCU. The method shows acceptable toxicity and may be used in routine clinical practice.

  8. The effect of low dose rate on metabolomic response to radiation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Maryam [Georgetown University, Biochemistry and Molecular and Cellular Biology, Washington, DC (United States); Mak, Tytus D. [Georgetown University, Lombardi Comprehensive Cancer Center, Washington, DC (United States); Chen, Congju; Smilenov, Lubomir B.; Brenner, David J. [Columbia University, Center for High-Throughput Minimally-Invasive Radiation Biodosimetry, New York, NY (United States); Fornace, Albert J. [Georgetown University, Biochemistry and Molecular and Cellular Biology, Washington, DC (United States); Georgetown University, Lombardi Comprehensive Cancer Center, Washington, DC (United States)

    2014-11-15

    Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment. (orig.)

  9. Failure Rate of Single Dose Methotrexate in Managment of Ectopic Pregnancy

    OpenAIRE

    Feras Sendy; Eman AlShehri; Amani AlAjmi; Elham Bamanie; Surekha Appani; Taghreed Shams

    2015-01-01

    Background. One of the treatment modalities for ectopic pregnancy is methotrexate. The purpose of this study is to identify the failure rate of methotrexate in treating patients with ectopic pregnancy as well as the risk factors leading to treatment failure. Methods. A retrospective chart review of 225 patients who received methotrexate as a primary management option for ectopic pregnancy. Failure of single dose of methotrexate was defined as drop of BHCG level less than or equal to 14% in th...

  10. Individual external dose monitoring of all citizens of Date City by passive dosimeter 5 to 51 months after the Fukushima NPP accident (series): 1. Comparison of individual dose with ambient dose rate monitored by aircraft surveys.

    Science.gov (United States)

    Miyazaki, Makoto; Hayano, Ryugo

    2016-12-06

    Date (da'te) City in Fukushima Prefecture has conducted a population-wide individual dose monitoring program after the Fukushima Daiichi Nuclear Power Plant Accident, which provides a unique and comprehensive data set of the individual doses of citizens. The purpose of this paper, the first in the series, is to establish a method for estimating effective doses based on the available ambient dose rate survey data. We thus examined the relationship between the individual external doses and the corresponding ambient doses assessed from airborne surveys. The results show that the individual doses were about 0.15 times the ambient doses, the coefficient of 0.15 being a factor of 4 smaller than the value employed by the Japanese government, throughout the period of the airborne surveys used. The method obtained in this study could aid in the prediction of individual doses in the early phase of future radiological accidents involving large-scale contamination.

  11. High-Dose-Rate Prostate Brachytherapy Consistently Results in High Quality Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    White, Evan C.; Kamrava, Mitchell R.; Demarco, John; Park, Sang-June; Wang, Pin-Chieh; Kayode, Oluwatosin; Steinberg, Michael L. [California Endocurietherapy at UCLA, Department of Radiation Oncology, David Geffen School of Medicine of University of California at Los Angeles, Los Angeles, California (United States); Demanes, D. Jeffrey, E-mail: jdemanes@mednet.ucla.edu [California Endocurietherapy at UCLA, Department of Radiation Oncology, David Geffen School of Medicine of University of California at Los Angeles, Los Angeles, California (United States)

    2013-02-01

    Purpose: We performed a dosimetry analysis to determine how well the goals for clinical target volume coverage, dose homogeneity, and normal tissue dose constraints were achieved with high-dose-rate (HDR) prostate brachytherapy. Methods and Materials: Cumulative dose-volume histograms for 208 consecutively treated HDR prostate brachytherapy implants were analyzed. Planning was based on ultrasound-guided catheter insertion and postoperative CT imaging; the contoured clinical target volume (CTV) was the prostate, a small margin, and the proximal seminal vesicles. Dosimetric parameters analyzed for the CTV were D90, V90, V100, V150, and V200. Dose to the urethra, bladder, bladder balloon, and rectum were evaluated by the dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} of each organ, expressed as a percentage of the prescribed dose. Analysis was stratified according to prostate size. Results: The mean prostate ultrasound volume was 38.7 {+-} 13.4 cm{sup 3} (range: 11.7-108.6 cm{sup 3}). The mean CTV was 75.1 {+-} 20.6 cm{sup 3} (range: 33.4-156.5 cm{sup 3}). The mean D90 was 109.2% {+-} 2.6% (range: 102.3%-118.4%). Ninety-three percent of observed D90 values were between 105 and 115%. The mean V90, V100, V150, and V200 were 99.9% {+-} 0.05%, 99.5% {+-} 0.8%, 25.4% {+-} 4.2%, and 7.8% {+-} 1.4%. The mean dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} for organs at risk were: Urethra: 107.3% {+-} 3.0%, 101.1% {+-} 14.6%, and 47.9% {+-} 34.8%; bladder wall: 79.5% {+-} 5.1%, 69.8% {+-} 4.9%, and 64.3% {+-} 5.0%; bladder balloon: 70.3% {+-} 6.8%, 59.1% {+-} 6.6%, and 52.3% {+-} 6.2%; rectum: 76.3% {+-} 2.5%, 70.2% {+-} 3.3%, and 66.3% {+-} 3.8%. There was no significant difference between D90 and V100 when stratified by prostate size. Conclusions: HDR brachytherapy allows the physician to consistently achieve complete prostate target coverage and maintain normal tissue dose constraints for organs at risk over a wide range of target volumes.

  12. Optimum injection dose rate of hydrogen sulfide scavenger for treatment of petroleum crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh

    2016-03-01

    Full Text Available Hydrogen sulfide H2S scavengers are chemicals that favorably react with hydrogen sulfide gas to eliminate it and produce environmental friendly products. These products depend on the type and composition of the scavenger and the conditions at which the reaction takes place. The scavenger should be widely available and economical for industry acceptance by having a low unit cost. The optimum values of H2S scavenger injection dose rate of scavenging hydrogen sulfide from the multiphase fluid produced at different wells conditions in one of the Petroleum Companies in Egypt were studied. The optimum values of H2S scavenger injection dose rate depend on pipe diameter, pipe length, gas molar mass velocity, inlet H2S concentration and pressure. The optimization results are obtained for different values of these parameters using the software program Lingo. In general, the optimum values of H2S scavenger injection dose rate of the scavenging of hydrogen sulfide are increased by increasing of the pipe diameter and increasing the inlet H2S concentration, and decreased by increasing the pipe length, gas molar mass velocity and pressure.

  13. High dose rate endorectal brachytherapy as a neoadjuvant treatment for patients with resectable rectal cancer.

    Science.gov (United States)

    Vuong, T; Devic, S; Podgorsak, E

    2007-11-01

    In the era of total mesorectal surgery, the issue of radiation toxicity is raised. A novel endocavitary brachytherapy technique was tested as a neoadjuvant treatment for patients with resectable rectal cancer. The objectives of the study were to evaluate the treatment-related toxicity and effects on local recurrence. A dose of 26 Gy was prescribed to the gross tumour volume and intramesorectal deposits seen on magnetic resonance imaging and given over four daily treatments, using the high dose rate delivery system followed by surgery 6-8 weeks later. The study included 93 T3, four T4 and three T2 tumours. Acute proctitis of grade 2 was observed in all patients, but one required transfusion. At a median follow-up time of 60 months, the 5-year actual local recurrence rate was 5%, disease-free survival was 65%, and overall survival was 70%. High dose rate endorectal brachytherapy seems to prevent local recurrence and has a favourable toxicity pattern compared with external beam radiotherapy.

  14. Simulation for estimation of hydrogen sulfide scavenger injection dose rate for treatment of crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh

    2015-12-01

    Full Text Available The presence of hydrogen sulfide in the hydrocarbon fluids is a well known problem in many oil and gas fields. Hydrogen sulfide is an undesirable contaminant which presents many environmental and safety hazards. It is corrosive, malodorous, and toxic. Accordingly, a need has been long left in the industry to develop a process which can successfully remove hydrogen sulfide from the hydrocarbons or at least reduce its level during the production, storage or processing to a level that satisfies safety and product specification requirements. The common method used to remove or reduce the concentration of hydrogen sulfide in the hydrocarbon production fluids is to inject the hydrogen sulfide scavenger into the hydrocarbon stream. One of the chemicals produced by the Egyptian Petroleum Research Institute (EPRI is EPRI H2S scavenger. It is used in some of the Egyptian petroleum producing companies. The injection dose rate of H2S scavenger is usually determined by experimental lab tests and field trials. In this work, this injection dose rate is mathematically estimated by modeling and simulation of an oil producing field belonging to Petrobel Company in Egypt which uses EPRI H2S scavenger. Comparison between the calculated and practical values of injection dose rate emphasizes the real ability of the proposed equation.

  15. Dose-rate distribution of {sup 32}P-glass microspheres for intra-arterial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Carla C.; Moralles, Mauricio; Sene, Frank F.; Martinelli, Jose R. [Centro de Ciencia e Tecnologia de Materiais, IPEN, Av. Lineu Prestes 2242, Sao Paulo, Sao Paulo 05508-000 (Brazil); Centro do Reator de Pesquisas, Energy and Nuclear Research Institute, IPEN/CNEN, CP 11049, CEP 05422-970, Sao Paulo, Sao Paulo (Brazil); Centro de Ciencia e Tecnologia de Materiais, IPEN, Av. Lineu Prestes 2242, Sao Paulo, Sao Paulo 05508-000 (Brazil)

    2010-02-15

    Purpose: The intra-arterial administration of radioactive glass microspheres is an alternative therapy option for treating primary hepatocellular carcinoma, the main cause of liver cancer death, and metastatic liver cancer, another important kind of cancer induced in the liver. The technique involves the administration of radioactive microspheres in the hepatic artery, which are trapped preferentially in the tumor. Methods: In this work the GEANT4 toolkit was used to calculate the radial dose-rate distributions in water from {sup 32}P-loaded glass microspheres and also from {sup 90}Y-loaded glass microspheres. To validate the toolkit for this application, the authors compared the dose-rate distribution of {sup 32}P and {sup 90}Y point sources in water with data from the International Commission on Radiation Units and Measurements report 72. Results: Tables of radial dose-rate distributions are provided for practical use in brachytherapy planning with these microspheres. Conclusions: The simulations with the microspheres show that the shape of the beta ray energy spectra with respect to the {sup 32}P and {sup 90}Y sources is significantly modified by the glass matrix.

  16. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    CERN Document Server

    Clouvas, A; Antonopoulos-Domis, M; Silva, J

    2000-01-01

    The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...

  17. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M., E-mail: meigikos@if.uff.br [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); Juri Ayub, J. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); GEA-Instituto de Matematica Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas, CCT-San Luis, Ej. de los Andes 950, D5700HHW San Luis (Argentina); Cid, A.S.; Cardoso, R.; Lacerda, T. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil)

    2011-11-15

    Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of {sup 232}Th, {sup 226}Ra, and {sup 40}K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg{sup -1}, 4.9-160 Bq kg{sup -1} and 190-2029 Bq kg{sup -1}, respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m x 4.0 m area, 2.8 m height) was found to be 120 nGy h{sup -1}, which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h{sup -1} due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of {sup 226}Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h{sup -1}) will be lower than 100 Bq m{sup -3}, value recommended as a reference level by the World Health Organization. - Highlights: > We used indirect methods to predict external gamma dose rate and radon concentration. > The gamma-ray dose rate was estimated by a Monte Carlo simulation method. > The results were validated by in-situ measurements with a NaI spectrometer. > Radon concentrations in the room were estimated by a simple mass balance equation. > Radon concentration in the room ventilated adequately will be lower than 100 Bq m{sup -3}.

  18. Success rates for computed tomography-guided musculoskeletal biopsies performed using a low-dose technique

    Energy Technology Data Exchange (ETDEWEB)

    Motamedi, Kambiz; Levine, Benjamin D.; Seeger, Leanne L.; McNitt-Gray, Michael F. [UCLA Health System, Radiology, Los Angeles, CA (United States)

    2014-11-15

    To evaluate the success rate of a low-dose (50 % mAs reduction) computed tomography (CT) biopsy technique. This protocol was adopted based on other successful reduced-CT radiation dose protocols in our department, which were implemented in conjunction with quality improvement projects. The technique included a scout view and initial localizing scan with standard dose. Additional scans obtained for further guidance or needle adjustment were acquired by reducing the tube current-time product (mAs) by 50 %. The radiology billing data were searched for CT-guided musculoskeletal procedures performed over a period of 8 months following the initial implementation of the protocol. These were reviewed for the type of procedure and compliance with the implemented protocol. The compliant CT-guided biopsy cases were then retrospectively reviewed for patient demographics, tumor pathology, and lesion size. Pathology results were compared to the ultimate diagnoses and were categorized as diagnostic, accurate, or successful. Of 92 CT-guided procedures performed during this period, two were excluded as they were not biopsies (one joint injection and one drainage), 19 were excluded due to non-compliance (operators neglected to follow the protocol), and four were excluded due to lack of available follow-up in our electronic medical records. A total of 67 compliant biopsies were performed in 63 patients (two had two biopsies, and one had three biopsies). There were 32 males and 31 females with an average age of 50 (range, 15-84 years). Of the 67 biopsies, five were non-diagnostic and inaccurate and thus unsuccessful (7 %); five were diagnostic but inaccurate and thus unsuccessful (7 %); 57 were diagnostic and accurate thus successful (85 %). These results were comparable with results published in the radiology literature. The success rate of CT-guided biopsies using a low-dose protocol is comparable to published rates for conventional dose biopsies. The implemented low-dose protocol

  19. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  20. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy

    Science.gov (United States)

    Campos, Luciana Tourinho; de Almeida, Carlos Eduardo Veloso

    2015-01-01

    Introduction The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®); it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86), which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21), which is also from BEBIG. Objective and Methods The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the

  1. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Demanes, D. Jeffrey, E-mail: jdemanes@mednet.ucla.edu [California Endocurietherapy at UCLA, Department of Radiation Oncology, David Geffen School of Medicine of University of California at Los Angeles, Los Angeles, CA (United States); Martinez, Alvaro A.; Ghilezan, Michel [William Beaumont Hospital, Royal Oak, MI (United States); Hill, Dennis R.; Schour, Lionel; Brandt, David [California Endocurietherapy, Oakland, CA (United States); Gustafson, Gary [William Beaumont Hospital, Royal Oak, MI (United States)

    2011-12-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography-defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis-free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  2. Clinical implementation of a novel applicator in high-dose-rate brachytherapy treatment of esophageal cancer

    Directory of Open Access Journals (Sweden)

    Ivan M. Buzurovic

    2016-08-01

    Full Text Available Purpose : In this study, we present the clinical implementation of a novel transoral balloon centering esophageal applicator (BCEA and the initial clinical experience in high-dose-rate (HDR brachytherapy treatment of esophageal cancer, using this applicator. Material and methods: Acceptance testing and commissioning of the BCEA were performed prior to clinical use. Full performance testing was conducted including measurements of the dimensions and the catheter diameter, evaluation of the inflatable balloon consistency, visibility of the radio-opaque markers, congruence of the markers, absolute and relative accuracy of the HDR source in the applicator using the radiochromic film and source position simulator, visibility and digitization of the applicator on the computed tomography (CT images under the clinical conditions, and reproducibility of the offset. Clinical placement of the applicator, treatment planning, treatment delivery, and patient’s response to the treatment were elaborated as well. Results : The experiments showed sub-millimeter accuracy in the source positioning with distal position at 1270 mm. The digitization (catheter reconstruction was uncomplicated due to the good visibility of markers. The treatment planning resulted in a favorable dose distribution. This finding was pronounced for the treatment of the curvy anatomy of the lesion due to the improved repeatability and consistency of the delivered fractional dose to the patient, since the radioactive source was placed centrally within the lumen with respect to the clinical target due to the five inflatable balloons. Conclusions : The consistency of the BCEA positioning resulted in the possibility to deliver optimized non-uniform dose along the catheter, which resulted in an increase of the dose to the cancerous tissue and lower doses to healthy tissue. A larger number of patients and long-term follow-up will be required to investigate if the delivered optimized treatment can

  3. Film dosimetry calibration method for pulsed-dose-rate brachytherapy with an 192Ir source.

    Science.gov (United States)

    Schwob, Nathan; Orion, Itzhak

    2007-05-01

    192Ir sources have been widely used in clinical brachytherapy. An important challenge is to perform dosimetric measurements close to the source despite the steep dose gradient. The common, inexpensive silver halide film is a classic two-dimensional integrator dosimeter and would be an attractive solution for these dose measurements. The main disadvantage of film dosimetry is the film response to the low-energy photon. Since the photon energy spectrum is known to vary with depth, the sensitometric curves are expected to be dependent on depth. The purpose of this study is to suggest a correction method for silver halide film dosimetry that overcomes the response changes at different depths. Sensitometric curves have been obtained at different depths with verification film near a 1 Ci 192Ir pulsed-dose-rate source. The depth dependence of the film response was observed and a correction function was established. The suitability of the method was tested through measurement of the radial dose profile and radial dose function. The results were compared to Monte Carlo-simulated values according to the TG43 formalism. Monte Carlo simulations were performed separately for the beta and gamma source emissions, using the EGS4 code system, including the low-energy photon and electron transport optimization procedures. The beta source emission simulation showed that the beta dose contribution could be neglected and therefore the film-depth dependence could not be attributed to this part of the source radioactivity. The gamma source emission simulations included photon-spectra collection at several depths. The results showed a depth-dependent softening of the photon spectrum that can explain the film-energy dependence.

  4. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    Science.gov (United States)

    Tobiska, W. Kent

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and

  5. Impact of small MU/segment and dose rate on delivery accuracy of volumetric-modulated arc therapy (VMAT).

    Science.gov (United States)

    Huang, Long; Zhuang, Tingliang; Mastroianni, Anthony; Djemil, Toufik; Cui, Taoran; Xia, Ping

    2016-05-08

    Volumetric-modulated arc therapy (VMAT) plans may require more control points (or segments) than some of fixed-beam IMRT plans that are created with a limited number of segments. Increasing number of control points in a VMAT plan for a given prescription dose could create a large portion of the total number of segments with small number monitor units (MUs) per segment. The purpose of this study is to investigate the impact of the small number MU/segment on the delivery accuracy of VMAT delivered with various dose rates. Ten patient datasets were planned for hippocampus sparing for whole brain irradiation. For each dataset, two VMAT plans were created with maximum dose rates of 600 MU/min (the maximum field size of 21 × 40 cm2) and 1000 MU/min (the maximum field size of 15 × 15 cm2) for a daily dose of 3 Gy. Without reoptimization, the daily dose of these plans was purposely reduced to 1.5 Gy and 1.0 Gy while keeping the same total dose. Using the two dose rates and three different daily doses, six VMAT plans for each dataset were delivered to a physical phantom to investigate how the changes of dose rate and daily doses impact on delivery accuracy. Using the gamma index, we directly compared the delivered planar dose profiles with the reduced daily doses (1.5 Gy and 1.0 Gy) to the delivered planar dose at 3 Gy daily dose, delivered at dose rate of 600 MU/min and 1000 MU/min, respectively. The average numbers of segments with MU/segment ≤ 1 were 35 ± 8, 87 ± 6 for VMAT-600 1.5 Gy, VMAT-600 1 Gy plans, and 30 ± 7 and 42 ± 6 for VMAT-1000 1.5 Gy and VMAT-1000 1 Gy plans, respectively. When delivered at 600 MU/min dose rate, the average gamma index passing rates (1%/1 mm criteria) of comparing delivered 1.5 Gy VMAT planar dose profiles to 3.0 Gy VMAT delivered planar dose profiles was 98.28% ± 1.66%, and the average gamma index passing rate of comparing delivered 1.0 Gy VMAT planar dose to 3.0 Gy VMAT delivered planar dose was 83.75% ± 4.86%. If using 2%/2mm

  6. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  7. Determination of the absorbed dose rate to water for the 18-mm helmet of a gamma knife.

    Science.gov (United States)

    Chung, Hyun-Tai; Park, Youngho; Hyun, Sangil; Choi, Yongsoo; Kim, Gi Hong; Kim, Dong Gyu; Chun, Kook Jin

    2011-04-01

    To measure the absorbed dose rate to water of (60)Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm(-1). After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Survival of tumor cells after proton irradiation with ultra-high dose rates

    Directory of Open Access Journals (Sweden)

    Belka Claus

    2011-10-01

    Full Text Available Abstract Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD, respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional continuous irradiation mode do not differ significantly.

  9. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  10. Dose-rate dependent effects of ionizing radiation on vascular reactivity.

    Science.gov (United States)

    Suvorava, T; Luksha, L; Bulanova, K Ya; Lobanok, L M

    2006-01-01

    This study was designed to investigate the dose-rate dependent effects of ionising radiation on endothelium- and NO-mediated reactivity of aorta and coronary vessels. Rats were exposed to acute ((137)Cs, 9 x 10(-4) Gy s(-1), 18 min) and chronic ((137)Cs, 2.8 x 10(-7) Gy s(-1), 41 days) radiation in 1 Gy dose. Acute irradiation transiently increased coronary flow in eNOS-activity-dependent manner on day 3 after exposure. In striking contrast, chronic irradiation caused a significant depression of coronary flow even on day 90 after irradiation and abolished the effects of NO-synthase inhibitor N-nitro-L-arginine methyl ester (10 micromol l(-1)). Furthermore, low intensity radiation strongly diminished the vasodilator properties of NO-donor sodium nitroprusside (5 micromol l(-1)). A similar pattern was observed in aortic rings. Endothelium-dependent vasodilation was increased on days 3 and 10 after acute irradiation, but strongly inhibited following chronic exposure for the entire post-radiation period. This was accompanied by a diminished vasodilator response to NO-donor on days 3, 10 and 30 of post-radiation but not on day 90. The data suggest that ionising radiation in 1 Gy induces changes of aortic and coronary vessels reactivity depending on the dose-rate and the interval after exposure.

  11. Background radiation dose-rates to non-human biota in a high mountain habitat in Norway

    DEFF Research Database (Denmark)

    Brown, J.E.; Gelsvik, R.; Kålås, J.A.

    2009-01-01

    Determination of background radiation dose-rates is important in the process of assessing risks to the environment from exposure to human activities both in terms of deriving the incremental dose-rate and as a point of reference for evaluating the significance of the exposure level. A consideration...

  12. A method applicable to effective dose rate estimates for aircrew dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Pelliccioni, M.; Rancati, T

    2001-07-01

    The inclusion of cosmic radiation as occupational exposure under ICRP Publication 60 and the European Union Council Directive 96/29/Euratom has highlighted the need to estimate the exposure of aircrew. According to a report of the Group of Experts established under the terms of Article 31 of the European Treaty, the individual estimates of dose for flights below 15 km may be done using an appropriate computer program. In order to calculate the radiation exposure at aircraft altitudes, calculations have been performed by means of the Monte Carlo transport code FLUKA. On the basis of the calculated results, a simple method is proposed for the individual evaluation of effective dose rate due to the galactic component of cosmic radiation as a function of latitude and altitude. (author)

  13. A method applicable to effective dose rate estimates for aircrew dosimetry

    CERN Document Server

    Ferrari, A; Rancati, T

    2001-01-01

    The inclusion of cosmic radiation as occupational exposure under ICRP Publication 60 and the European Union Council Directive 96/29/Euratom has highlighted the need to estimate the exposure of aircrew. According to a report of the Group of Experts established under the terms of Article 31 of the European Treaty, the individual estimates of dose for flights below 15 km may be done using an appropriate computer program. In order to calculate the radiation exposure at aircraft altitudes, calculations have been performed by means of the Monte Carlo transport code FLUKA. On the basis of the calculated results, a simple method is proposed for the individual evaluation of effective dose rate due to the galactic component of cosmic radiation as a function of latitude and altitude. (13 refs).

  14. Dependence of alanine gel dosimeter response as a function of photon clinical beams dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleber Feijo, E-mail: cleber.feijo@famesp.com.br [Faculdade Metodo de Sao Paulo (FAMESP), SP (Brazil); Campos, Leticia Lucente, E-mail: Icrodri@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-11-01

    Gel dosimetry is a new area developed by Gore, it is ery useful for application in radiotherapy because using NMR imaging as evaluation technique is possible to evaluate three dimensional absorbed dose distribution. The measure technique is based on difference of ferrous (Fe{sup 2+}) and ferric (Fe{sup 3+}) ) ions concentration that can be measured also by spectrophotometry technique. The Alanine gel dosimeter was developed at IPEN. The alanine is an amino acid and tissue equivalent material that presents significant improvement on previous alanine dosimetry systems. The addition of Alanine increases the production of ferric ions in the solution. This work aims to study the dose rate dependence of photon clinical beams radiation on the alanine gel dosimeter optical response, as well as the response repeatability and gel production reproducibility, since this property is very important for characterization and standardization of any dosimeter. (author)

  15. High dose rate interstitial brachytherapy in soft tissue sarcomas: technical aspect

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Mi Son; Kang, Seung Hee; Kim, Byoung Suck; Oh, Young Taek [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1999-03-01

    To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy. Between May 1995 and Dec. 1997, the patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1-1.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of source axis with 2-2.5 Gy/fraction, twice a day, starting on 6th day after the surgery. Within one month after the surgery, total dose of 50-55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12-41 months), no local recurrences were observed. And there was no severe form of chromic complication (RTOG/EORTC grade 3 or 4). The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  16. Technological developments for strontium-90 determination using AMS

    Energy Technology Data Exchange (ETDEWEB)

    Satou, Yukihiko, E-mail: yukihiko@ied.tsukuba.ac.jp [Accelerator Mass Spectrometry Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Sueki, Keisuke; Sasa, Kimikazu; Matsunaka, Tetsuya; Takahashi, Tsutomu; Shibayama, Nao; Izumi, Daiki [Accelerator Mass Spectrometry Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Kinoshita, Norikazu [Institute of Technology, Shimizu Corporation, 3-4-17 Etchujima, Koto-ku, Tokyo 135-8530 (Japan); Matsuzaki, Hiroyuki [The University Museum, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2015-10-15

    Accelerator mass spectrometry (AMS) is one of method used for {sup 90}Sr determination. It would enable rapid {sup 90}Sr measurements from environmental samples such as water, soil, and milk. However, routine analysis of {sup 90}Sr using AMS has not yet been achieved because of difficulties associated with isobaric separation and production of intense negative ion beams characterized by currents from hundreds of nanoamperes to several microamperes. We have developed a rapid procedure for preparing samples with optimum compositions for use with AMS, which enables production of intense Sr beam currents from an ion source. Samples of SrF{sub 2} were prepared from a standard Sr solution and agricultural soil. The time required to prepare a SrF{sub 2} sample from a soil sample was 10 h. Negative {sup 88}SrF{sub 3}{sup −} ions were successfully extracted at 500 nA from mixed samples of SrF{sub 2} and PbF{sub 2}. In the present work, negative ions of {sup 90}Zr, included as an impurity, were accelerated with a tandem accelerator operated at a terminal voltage of 5 MV. Ions characterized by a charge state of 6+ were channeled into a gas counter. An atomic ratio of {sup 90}Zr/{sup 88}Sr of 3 × 10{sup −8} was estimated for the soil sample. No signal was detected from the assay of PbF{sub 2}, which was pressed in an aluminum cathode, for a mass number of 90. PbF{sub 2} revealed good performance in the production of negative SrF{sub 3}{sup −} molecular ion beams and detection of {sup 90}Sr with a gas counter.

  17. Technological developments for strontium-90 determination using AMS

    Science.gov (United States)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Matsunaka, Tetsuya; Takahashi, Tsutomu; Shibayama, Nao; Izumi, Daiki; Kinoshita, Norikazu; Matsuzaki, Hiroyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is one of method used for 90Sr determination. It would enable rapid 90Sr measurements from environmental samples such as water, soil, and milk. However, routine analysis of 90Sr using AMS has not yet been achieved because of difficulties associated with isobaric separation and production of intense negative ion beams characterized by currents from hundreds of nanoamperes to several microamperes. We have developed a rapid procedure for preparing samples with optimum compositions for use with AMS, which enables production of intense Sr beam currents from an ion source. Samples of SrF2 were prepared from a standard Sr solution and agricultural soil. The time required to prepare a SrF2 sample from a soil sample was 10 h. Negative 88SrF3- ions were successfully extracted at 500 nA from mixed samples of SrF2 and PbF2. In the present work, negative ions of 90Zr, included as an impurity, were accelerated with a tandem accelerator operated at a terminal voltage of 5 MV. Ions characterized by a charge state of 6+ were channeled into a gas counter. An atomic ratio of 90Zr/88Sr of 3 × 10-8 was estimated for the soil sample. No signal was detected from the assay of PbF2, which was pressed in an aluminum cathode, for a mass number of 90. PbF2 revealed good performance in the production of negative SrF3- molecular ion beams and detection of 90Sr with a gas counter.

  18. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture

    CERN Document Server

    Malins, Alex; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with 134Cs and 137Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modelling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modelling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rate...

  19. Optimal bladder filling during high-dose-rate intracavitary brachytherapy for cervical cancer: a dosimetric study

    Science.gov (United States)

    Shetty, Saurabha; Majumder, Dipanjan; Adurkar, Pranjal; Swamidas, Jamema; Engineer, Reena; Chopra, Supriya; Shrivastava, Shyamkishore

    2017-01-01

    Purpose The aim of this study is to compare 3D dose volume histogram (DVH) parameters of bladder and other organs at risk with different bladder filling protocol during high-dose-rate intracavitary brachytherapy (HDR-ICBT) in cervical cancer, and to find optimized bladder volume. Material and methods This dosimetric study was completed with 21 patients who underwent HDR-ICBT with computed tomography/magnetic resonance compatible applicator as a routine treatment. Computed tomography planning was done for each patient with bladder emptied (series 1), after 50 ml (series 2), and 100 ml (series 3) bladder filling with a saline infusion through the bladder catheter. Contouring was done on the Eclipse Planning System. 7 Gy to point A was prescribed with the standard loading patterns. Various 3D DVH parameters including 0.1 cc, 1 cc, 2 cc doses and mean doses to the OAR’s were noted. Paired t-test was performed. Results The mean (± SD) bladder volume was 64.5 (± 25) cc, 116.2 (± 28) cc, and 172.9 (± 29) cc, for series 1, 2, and 3, respectively. The 0.1 cm3,1 cm3, 2 cm3 mean bladder doses for series 1, series 2, and series 3 were 9.28 ± 2.27 Gy, 7.38 ± 1.72 Gy, 6.58 ± 1.58 Gy; 9.39 ± 2.28 Gy, 7.85 ± 1.85 Gy, 7.05 ± 1.59 Gy, and 10.09 ± 2.46 Gy, 8.33 ± 1.75 Gy, 7.6 ± 1.55 Gy, respectively. However, there was a trend towards higher bladder doses in series 3. Similarly, for small bowel dose 0.1 cm3, 1 cm3, and 2 cm3 in series 1, 2, and 3 were 5.44 ± 2.2 Gy, 4.41 ± 1.84 Gy, 4 ± 1.69 Gy; 4.57 ± 2.89 Gy, 3.78 ± 2.21 Gy, 3.35 ± 2.02 Gy, and 4.09 ± 2.38 Gy, 3.26 ± 1.8 Gy, 3.05 ± 1.58 Gy. Significant increase in small bowel dose in empty bladder (series 1) compared to full bladder (series 3) (p = 0.03) was noted. However, the rectal and sigmoid doses were not significantly affected with either series. Conclusions Bladder filling protocol with 50 ml and 100 ml was well tolerated and achieved a reasonably reproducible bladder volume during cervical

  20. Performance assessment of the BEBIG MultiSource high dose rate brachytherapy treatment unit.

    Science.gov (United States)

    Palmer, Antony; Mzenda, Bongile

    2009-12-21

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource High Dose Rate (HDR) brachytherapy treatment unit with an (192)Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high

  1. Dose-rate effects of ethylene oxide exposure on developmental toxicity.

    Science.gov (United States)

    Weller, E; Long, N; Smith, A; Williams, P; Ravi, S; Gill, J; Henessey, R; Skornik, W; Brain, J; Kimmel, C; Kimmel, G; Holmes, L; Ryan, L

    1999-08-01

    In risk assessment, evaluating a health effect at a duration of exposure that is untested involves assuming that equivalent multiples of concentration (C) and duration (T) of exposure have the same effect. The limitations of this approach (attributed to F. Haber, Zur Geschichte des Gaskrieges [On the history of gas warfare], in Funf Vortrage aus den Jahren 1920-1923 [Five lectures from the years 1920-1923], 1924, Springer, Berlin, pp. 76-92), have been noted in several studies. The study presented in this paper was designed to specifically look at dose-rate (C x T) effects, and it forms an ideal case study to implement statistical models and to examine the statistical issues in risk assessment. Pregnant female C57BL/6J mice were exposed, on gestational day 7, to ethylene oxide (EtO) via inhalation for 1.5, 3, or 6 h at exposures that result in C x T multiples of 2100 or 2700 ppm-h. EtO was selected because of its short half-life, documented developmental toxicity, and relevance to exposures that occur in occupational settings. Concurrent experiments were run with animals exposed to air for similar periods. Statistical analysis using models developed to assess dose-rate effects revealed significant effects with respect to fetal death and resorptions, malformations, crown-to-rump length, and fetal weight. Animals exposed to short, high exposures of EtO on day 7 of gestation were found to have more adverse effects than animals exposed to the same C x T multiple but at longer, lower exposures. The implication for risk assessment is that applying Haber's Law could potentially lead to an underestimation of risk at a shorter duration of exposure and an overestimation of risk at a longer duration of exposure. Further research, toxicological and statistical, are required to understand the mechanism of the dose-rate effects, and how to incorporate the mechanistic information into the risk assessment decision process.

  2. Radioactivity measurements and dose rate calculations using ERICA tool in the terrestrial environment of Greece.

    Science.gov (United States)

    Sotiropoulou, Maria; Florou, Heleny; Manolopoulou, Metaxia

    2016-06-01

    In the present study, the radioactivity levels to which terrestrial non-human biota were exposed are examined. Organisms (grass and herbivore mammals) and abiotic components (soil) were collected during the period of 2010 to 2014 from grasslands where sheep and goats were free-range grazing. Natural background radionuclides ((226)Ra, (228)Ra, (228)Th) and artificial radionuclides ((137)Cs, (134)Cs, (131)I) were detected in the collected samples using gamma spectrometry. The actual measured activity concentrations and site-specific data of the studied organisms were imported in ERICA Assessment Tool (version 1.2.0) in order to provide an insight of the radiological dose rates. The highest activity concentrations were detected in samples collected from Lesvos island and the lowest in samples collected from Attiki and Etoloakarnania prefectures. The highest contribution to the total dose rate was clearly derived from the internal exposure and is closely related to the exposure to alpha emitters of natural background ((226)Ra and (228)Th). The Fukushima-derived traces of (137)Cs, (134)Cs, and (131)I, along with the residual (137)Cs, resulted in quite low contribution to the total dose rate. The obtained results may strengthen the adaptation of software tools to a wider range of ecosystems and may be proved useful in further research regarding the possible impact of protracted low level ionizing radiation on non-human biota. This kind of studies may contribute to the effective incorporation of dosimetry tools in the development of integrated environmental and radiological impact assessment policies.

  3. Dose-rate and total-dose radiation testing of the Texas Instruments TMS320C30 32-bit floating point digital signal processor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Siy, P.F.; Carter, J.T.; D' Addario, L.R.; Loeber, D.A.

    1991-08-01

    The MITRE Corporation has performed in-flux radiation testing of the Texas Instruments TMS320C30 32-bit floating point digital signal processor in both total dose and dose rate radiation environments. This test effort has provided data relating to the applicability of the TMS320C30 in systems with total dose and/or dose rate survivability requirements. In order to accomplish these tests, the MITRE Corporation developed custom hardware and software for in-flux radiation testing. This paper summarizes the effort by providing an overview of the TMS320C30, MITRE's test methodology, test facilities, statistical analysis, and full coverage of the test results. (Author)

  4. Dose variation due to change in planned position for patients with carcinoma of the cervix undergoing high-dose-rate brachytherapy- 2D dose analysis

    Directory of Open Access Journals (Sweden)

    Anil Talluri

    2015-03-01

    Full Text Available Purpose: To assess the dosimetry to organs at risk (OARs in lithotomy position with a planned time-dose pattern obtained from supine position. Methods: The sample consists of thirty patients with carcinoma of the uterine cervix, Stage II and III. Patients often feel discomfort in supine position (S position when compared to lithotomy position (M position due to relaxation of pelvic floor muscles after the insertion of applicator (tandem and ovoids or before delivery of the treatment. Each patient was imaged with orthogonal X- ray radiographs simultaneously in two positions, i.e. S position and M position. Dwell time and dwell position pattern obtained from the optimized plan in S position was used to generate plan in M position. Following dose reference points (point A, pelvic wall points, bladder points, rectal, anorectum (AR point and rectosigmoid (RS point points were identified for analysis in S and M positions. The dosimetric data for reference points generated by the Brachyvision TPS was analyzed.Results: Pelvic wall points registered lower doses in M position when compared to S position. Mean doses for right pelvic wall point (RPW and left pelvic wall point (LPW were reduced by -10.02 % and -11.5% in M position, respectively. International Commission on Radiation Units and Measurements (ICRU bladder point also registered lower doses in M position with a mean dose of -6.8%. Rectal point showed dose reduction by mean of -6.4%. AR and RS points showed an increased dose in M position by a mean of 16.5% and 10%, respectively. Conclusion: Current dosimetry procedure serves as a model with time-dose pattern planned for S position, but delivered in M position, without dose optimization. Prioritization of comfort and position can be considered in conjunction with optimization of dose

  5. High dose-rate brachytherapy source position quality assurance using radiochromic film.

    Science.gov (United States)

    Evans, M D C; Devic, S; Podgorsak, E B

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance.

  6. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation.

    Science.gov (United States)

    Jeong, Jong Cheol; Jambaldorj, Enkthuya; Kwon, Hyuk Yong; Kim, Myung-Gyu; Im, Hye Jin; Jeon, Hee Jung; In, Ji Won; Han, Miyeun; Koo, Tai Yeon; Chung, Junho; Song, Eun Young; Ahn, Curie; Yang, Jaeseok

    2016-02-01

    Combination therapy of intravenous immunoglobulin (IVIG) and rituximab showed a good transplant rate in highly sensitized wait-listed patients for deceased donor kidney transplantation (DDKT), but carried the risk of antibody-mediated rejection. The authors investigated the impact of a new combination therapy of bortezomib, IVIG, and rituximab on transplantation rate.This study was a prospective, open-labeled clinical trial. The desensitization regimen consisted of 2 doses of IVIG (2  g/kg), a single dose of rituximab (375  mg/m), and 4 doses of bortezomib (1.3  mg/m). The transplant rate was analyzed. Anti-Human leukocyte antigen (HLA) DRB antibodies were determined by a Luminex solid-phase bead assay at baseline and after 2, 3, and 6 months in the desensitized patients.There were 19 highly sensitized patients who received desensitization and 17 patients in the control group. Baseline values of class I and II panel reactive antibody (%, peak mean fluorescence intensity) were 83  ±  16.0 (14952  ±  5820) and 63  ±  36.0 (10321  ±  7421), respectively. Deceased donor kidney transplantation was successfully performed in 8 patients (42.1%) in the desensitization group versus 4 (23.5%) in the control group. Multivariate time-varying covariate Cox regression analysis showed that desensitization increased the probability of DDKT (hazard ratio, 46.895; 95% confidence interval, 3.468-634.132; P = 0.004). Desensitization decreased mean fluorescence intensity values of class I panel reactive antibody by 15.5% (20.8%) at 2 months. In addition, a liberal mismatch strategy in post hoc analysis increased the benefit of desensitization in donor-specific antibody reduction. Desensitization was well tolerated, and acute rejection occurred only in the control group.In conclusion, a desensitization protocol using bortezomib, high-dose IVIG, and rituximab increased the DDKT rate in highly sensitized, wait-listed patients.

  7. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model.

    Science.gov (United States)

    Tsiouri, V; Kovalets, I; Andronopoulos, S; Bartzis, J G

    2012-01-01

    This paper presents an efficient algorithm for estimating the unknown emission rate of radionuclides in the atmosphere following a nuclear accident. The algorithm is based on assimilation of gamma dose rate measured data in a Lagrangian atmospheric dispersion model. Such models are used in the framework of nuclear emergency response systems (ERSs). It is shown that the algorithm is applicable in both deterministic and stochastic modes of operation of the dispersion model. The method is evaluated by computational simulations of a 3-d field experiment on atmospheric dispersion of ⁴¹Ar emitted routinely from a research reactor. Available measurements of fluence rate (photons flux) in air are assimilated in the Lagrangian dispersion model DIPCOT and the ⁴¹Ar emission rate is estimated. The statistical analysis shows that the model-calculated emission rates agree well with the real ones. In addition the model-predicted fluence rates at the locations of the sensors, which were not used in the data assimilation procedure are in better agreement with the measurements. The first evaluation results of the method presented in this study show that the method performs satisfactorily and therefore it is applicable in nuclear ERSs provided that more comprehensive validation studies will be performed.

  8. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, S.

    2011-08-23

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits. 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels

  9. Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes

    CERN Document Server

    Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H

    2003-01-01

    This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...

  10. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source

    Science.gov (United States)

    Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2012-01-01

    Purpose Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V. Veenendaal, The Netherlands). This study aims to obtain dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Material and methods Two Monte Carlo radiation transport codes were used: Penelope2008 and GEANT4. The source was centrally-positioned in a 100 cm radius water phantom. Absorbed dose and collisional kerma were obtained using 0.01 cm (close) and 0.1 cm (far) sized voxels to provide high-resolution dosimetry near (far from) the source. Dose rate distributions obtained with the two Monte Carlo codes were compared. Results and Discussion Simulations performed with those two radiation transport codes showed an agreement typically within 0.2% for r > 0.8 cm and up to 2% closer to the source. Detailed results of dose distributions are being made available. Conclusions Dosimetric data are provided for the new Flexisource Co-60 source. These data are meant to be used in treatment planning systems in clinical practice. PMID:23346138

  11. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  12. The impact of body mass index on rectal dose in locally advanced cervical cancer treated with high-dose-rate brachytherapy.

    Science.gov (United States)

    Lim, Jihoon; Durbin-Johnson, Blythe; Valicenti, Richard; Mathai, Matthew; Stern, Robin L; Mayadev, Jyoti

    2013-01-01

    The impact of body mass index (BMI) on rectal dose in brachytherapy for cervical cancer is unknown. We assessed the association of BMI on rectal dose and lower gastrointestinal (GI) toxicity. Between 2007 and 2010, 51 patients with 97 brachytherapy planning images were reviewed. Volumetric measurements of the maximum percentage, mean percentage, dose to 2cc (D2cc), and dose to 1cc (D1cc) of the rectum, and the Internal Commission on Radiation Units and Measurement (ICRU) rectal point were recorded. Linear mixed effect models, analysis of variance, and regression analyses were used to determine the correlation between multiple observations or to detect a difference in the mean. The GI acute and late toxicity were prospectively recorded and retrospectively analyzed. The average BMI (kg/m(2)) was 27.7 with a range of 17.4-46.6. Among the patients, 8% were morbidly obese, 25% obese, 25% overweight, 40% normal weight, and 2% underweight. The mean D1cc, D2cc, mean rectal dose (%), maximum rectal dose (%), and ICRU rectum was 3.03 Gy, 2.78 Gy, 20%, 60%, and 2.99 Gy, respectively. On multivariate analysis, there was a significant decrease in the D1cc and D2cc rectal dose (p=0.016), ICRU rectal point dose (p=0.022), and mean rectal dose percentage (p=0.021) with an increase in BMI. There was, however, no statistically significant relationship between BMI and GI toxicity. Obesity decreases the rectal dose given in high-dose-rate brachytherapy for locally advanced cervical cancer because of an increase in fatty tissue in the recto-uterine space. There is no significant correlation between BMI and acute or late GI toxicity. Published by Elsevier Inc.

  13. High-Dose-Rate intraluminal brachytherapy for biliary obstruction by secondary malignant biliary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Won Sup; Kim, Tae Hyun; Yang, Dae Sik; Choi, Myung Sun; Kim, Chul Yong [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2003-03-01

    To analyze the survival period, prognostic factors and complications of patients having under gone high-dose-rate intraluminal brachytherapy (HDR-ILB) as a salvage radiation therapy, while having a catheter, for percutaneous transhepatic biliary drainage (PTBD), inserted due to biliary obstruction caused by a secondary malignant biliary tumor. A retrospective study was performed on 24 patients having undergone HDR-ILB, with PTBD catheter insertion, between December 1992 and August 2001, Their median age was 58.5, ranging from 35 to 82 years. The primary cancer site were the stomach, gallbladder, liver, pancreas and the colon, with 12, 6, 3, 2 and 1 cases, respectively. Eighteen patients were treated with external beam radiation therapy and HDR-ILB, while six were treated with HDR-ILB only. The total external beam, and brachytherapy radiations dose were 30-61.2 and 9-30 Gy, with median doses of 50 and 15 Gy, respectively. Of the 24 patients analyzed, 22 died during the follow-up period, with a median survival of 7.3 months. The 6 and 12 months survival rates were 54.2 (13 patients) and 20.8% (5 patients), respectively. The median survivals for stomach and gallbladder cancers were 7.8 and 10.2 months, respectively. According to the univariate analysis, a significant factor affecting survival of over one year was the total radiation dose (over 50 Gy) (0=0.0200), with all the patients surviving more than one year had been irradiated with more than 50 Gy. The acute side effects during the radiation therapy were managed with conservative treatment. During the follow-up period, 5 patients showed symptoms of cholangitis due to the radiation therapy. An extension to the survival of those patients treated with HDR-ILB is suggested compared to the median historical survival of those patients treated with external biliary drainage. A boost radiation dose could be effectively given, by performing HDR-ILB, which is a prognostic factor. In addition, the acute complications of

  14. Measurements of air dose rates in and around houses in the Fukushima Prefecture in Japan after the Fukushima accident.

    Science.gov (United States)

    Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro; Saito, Kimiaki

    2017-01-01

    Measurements of air dose rates for 192 houses in a less contaminated area (radiation cannot be neglected when we consider dose reduction factors in less contaminated areas. The reductions in indoor dose rates are observed because a patch of ground under each house is not contaminated (this is the so-called uncontaminated effect) since the shielding capability of light construction materials is typically low. For reinforced steel-framed concrete houses (classed as heavy), the dose rates inside the houses did not show a correlation with those outside the houses due to the substantial shielding capability of these materials. The average indoor dose rates were slightly higher than the arithmetic mean value of the outdoor dose rates from the natural background because concrete acts as a source of natural radionuclides. The characteristics of the uncontaminated effect were clarified through Monte Carlo simulations. It was found that there is a great variation in air dose rates even within one house, depending on the height of the area and its closeness to the outside boundary. Measurements of outdoor dose rates required consideration of local variations depending on the environment surrounding each house. The representative value was obtained from detailed distributions of air dose rates around the house, as measured by a man-borne survey. Therefore, it is imperative to recognize that dose reduction factors fluctuate in response to various factors such as the size and shape of a house, construction materials acting as a shield and as sources, position (including height) within a room, floor number, total number of floors, and surrounding environment.

  15. Quality control of high-dose-rate brachytherapy: treatment delivery analysis using statistical process control.

    Science.gov (United States)

    Able, Charles M; Bright, Megan; Frizzell, Bart

    2013-03-01

    Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    Energy Technology Data Exchange (ETDEWEB)

    Able, Charles M., E-mail: cable@wfubmc.edu [Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States); Bright, Megan; Frizzell, Bart [Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina (United States)

    2013-03-01

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.

  17. High dose rates obtained outside ISS in June 2015 during SEP event.

    Science.gov (United States)

    Dachev, T P; Tomov, B T; Matviichuk, Yu N; Dimitrov, Pl G; Bankov, N G

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000µGyh(-1), while the inner radiation belt maximum dose was at the level of 2200µGyh(-1). If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84mGy after 6.5h, which is similar to the average absorbed dose inside ISS for 15days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  18. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    Science.gov (United States)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  19. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: an example in California.

    Science.gov (United States)

    Wollenberg, H A; Revzan, K L; Smith, A R

    1994-01-01

    We examined the applicability of radioelement data from the National Aerial Radiometric Reconnaissance, an element of the National Uranium Resource Evaluation, to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of uranium, thorium, and potassium concentrations with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends, with low values of 25-30 nGy h-1 in the northernmost 1 x 2 degrees quadrangles between 41 and 42 degrees N to high values of 75-100 nGy h-1 in southeastern California. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy h-1, respectively. These are intermediate between a population-weighted global average of 51 nGy h-1 reported in 1982 by UNSCEAR and a weighted continental average of 70 nGy h-1, based on the global distribution of rock types. The concurrence of lithologically and aeroradiometrically determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the National Aerial Radiometric Reconnaissance data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters.

  20. Comparing Environmental Dose Rate Meters: A Method to Determine Natural and Non-natural Variations in External Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Reinen, A.J.M.; Slaper, H.; Overwater, R.M.W.; Stoop, P

    2000-07-01

    A method is described to determine low excess dose rates from a radiation source in the environment, which are small compared to the natural fluctuations of the background radiation. First a 'virtual reference dose rate meter' is constructed from data of the national monitoring network, to know the natural variations of the background radiation. Results from this virtual monitor are then compared to data of dose rate meters at sites of interest, to determine non-natural or very local natural variations and excess dose rates. Daily averaged excess dose rates down to 2 to 3 nSv.h{sup -1} can be identified. The method is applied successfully near nuclear installations in the Netherlands and can be used for all types of dose rate meters and sample frequencies. Finally, the calculations to derive the 'virtual reference dose rate meter' can also be used as a quality assessment tool for environmental radiation monitoring networks. (author)

  1. Modelling the dynamics of ambient dose rates induced by radiocaesium in the Fukushima terrestrial environment.

    Science.gov (United States)

    Gonze, Marc-André; Mourlon, Christophe; Calmon, Philippe; Manach, Erwan; Debayle, Christophe; Baccou, Jean

    2016-09-01

    Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy

  2. Modelling the dynamics of ambient dose rates induced by radiocaesium in the Fukushima terrestrial environment

    Science.gov (United States)

    Gonze, Marc-André; Mourlon, Christophe; Calmon, Philippe; Manach, Erwan; Debayle, Christophe; Baccou, Jean

    2017-09-01

    Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy

  3. Determination of scattered gamma radiation in the calibration of environmental dose rate meters

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Hedemann Jensen, P.

    1992-01-01

    Practical free-field and shadow-shield calibration techniques using a variety of environmental dose rate meters were studied, and experimental and theoretical determinations were made of the contribution of scattered photons to the air kerma rate from certificated Cs-137, Co-60 and Ra-226 gamma...... the detector responses. Insignificant differences of the order of 1 % between the results for the two geometries were found both experimentally and theoretically. It is thus concluded that the scattered radiation from surrounding buildings farther away than around 15 m from a calibration set-up contributes...... negligibly to the detector response relative to that from ground and air. Shadow-shield measurements were used to deduce the contribution to the response from the scattered radiation in free-field geometries and the experimentally obtained results were found to agree agree extremely well with those...

  4. Measurement uncertainty analysis of low-dose-rate prostate seed brachytherapy: post-implant dosimetry.

    Science.gov (United States)

    Gregory, Kent J; Pattison, John E; Bibbo, Giovanni

    2015-03-01

    The minimal dose covering 90 % of the prostate volume--D 90--is arguably the most important dosimetric parameter in low-dose-rate prostate seed brachytherapy. In this study an analysis of the measurement uncertainties in D 90 from low-dose-rate prostate seed brachytherapy was conducted for two common treatment procedures with two different post-implant dosimetry methods. The analysis was undertaken in order to determine the magnitude of D 90 uncertainty, how the magnitude of the uncertainty varied when D 90 was calculated using different dosimetry methods, and which factors were the major contributors to the uncertainty. The analysis considered the prostate as being homogeneous and tissue equivalent and made use of published data, as well as original data collected specifically for this analysis, and was performed according to the Guide to the expression of uncertainty in measurement (GUM). It was found that when prostate imaging and seed implantation were conducted in two separate sessions using only CT images for post-implant analysis, the expanded uncertainty in D 90 values were about 25 % at the 95 % confidence interval. When prostate imaging and seed implantation were conducted during a single session using CT and ultrasound images for post-implant analysis, the expanded uncertainty in D 90 values were about 33 %. Methods for reducing these uncertainty levels are discussed. It was found that variations in contouring the target tissue made the largest contribution to D 90 uncertainty, while the uncertainty in seed source strength made only a small contribution. It is important that clinicians appreciate the overall magnitude of D 90 uncertainty and understand the factors that affect it so that clinical decisions are soundly based, and resources are appropriately allocated.

  5. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  6. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC(1638N/+) mice.

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC(1638N/+)) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC(1638N/+) mice after exposure to energetic heavy ions at high (50cGy/min) and relatively low (0.33cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50cGy of (28)Si (energy: 300MeV/n; LET: 70keV/μm) or (56)Fe (energy: 1000MeV/n; LET: 148keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n=20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150days after radiation exposure. Intestinal tumorigenesis in male mice exposed to (56)Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after (28)Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic

  7. Measurement of the Radiation Dose Rates of Patients Receiving Treatment with I-131 Using Telescopic Radiation Survey Meter

    Directory of Open Access Journals (Sweden)

    Yehia Lahfi

    2016-03-01

    Full Text Available Introduction In order to discharge the patients receiving treatment with large radiation doses of 131I for thyroid cancer, it is necessary to measure and evaluate the external dose rates of these patients. The aim of the study was to assess a new method of external dose rate measurement, and to analyze the obtained results as a function of time. Materials and Methods In this study, a telescopic radiation survey meter was utilized to measure the external dose rates of a sample population of 192 patients receiving treatment with high-dose 131I at one, 24, and 48 hours after dose administration. Results The proposed technique could reduce the occupational radiation exposure of the physicist by a factor of 1/16. Moreover, the external dose rates of both genders rapidly decreased with time according to bi-exponential equations, which could be attributed to the additional factors associated with iodine excretion, as well as the physiology of the body in terms of 131I uptake. Conclusion According to the results of this study, telescopic radiation survey meter could be used to measure the external dose rates of patients receiving treatment with 131I. Furthermore, the average difference in the radiation exposure between female and male patients was calculated to be less than 17%.

  8. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  9. Testing cosmic dose rate models for ESR: Dating corals and molluscs on San Salvador, Bahamas

    Energy Technology Data Exchange (ETDEWEB)

    Deely, A.E. [RFK Science Research Institute, Glenwood Landing, NY, 11547-0866 (United States); Blackwell, B.A.B., E-mail: bonnie.a.b.blackwell@williams.edu [RFK Science Research Institute, Glenwood Landing, NY, 11547-0866 (United States); Dept. of Chemistry, Williams College, Williamstown MA, 01267-2692 (United States); Mylroie, J.E. [Dept. of Geosciences, Mississippi State University, MS, 39762-5448 (United States); Carew, J.L. [Dept. of Geology and Environmental Geosciences, College of Charleston, Charleston, SC 29424 (United States); Blickstein, J.I.B. [RFK Science Research Institute, Glenwood Landing, NY, 11547-0866 (United States); Skinner, A.R. [RFK Science Research Institute, Glenwood Landing, NY, 11547-0866 (United States); Dept. of Chemistry, Williams College, Williamstown MA, 01267-2692 (United States)

    2011-09-15

    Sealevel curves are best developed on tectonically stable coastlines, like San Salvador, where eolianites preserve transgressive and regressive phases associated with Quaternary high seastands, while reef facies mark the highstands. At 11 locations around San Salvador, terrestrial molluscs (Cerion) from the eolianites, lagoonal bivalves (Codakia), and corals from the highstand deposits were dated by ESR. Volumetrically averaged sedimentary dose rates were calculated from sedimentary geochemistry and time-averaged cosmic dose rates from each sample's current and past geologic contexts. Rice Bay Formation corals dated at 3.9 {+-} 0.3 to 7.1 {+-} 0.4 ka (OIS 1). Minimum ages for the Cockburn Town Member's regressive phase ranged from 49 {+-} 6 to 75 {+-} 8 ka, correlating with OIS 3-4. Codakia dates showed that an OIS 5a sealevel approached modern levels at 91-78 ka. In situ corals from the Cockburn Town Reef averaged from 127 {+-} 6 to 138 {+-} 10 ka, correlating well with OIS 5e. Ages from the Reef's rubble zones hint that some coral reefs grew as early as OIS 7, but were likely reworked during OIS 5. San Salvador preserves deposits from three mid to late Quaternary highstands above, and as many as three that closely approach, modern sealevel.

  10. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Cho, Kwan Ho; Moon, Sung Ho; Choi, Sung Weon; Park, Joo Yong; Yun, Tak; Lee, Sang Hyun; Lim, Young Kyung; Jeong, Chi Young [National Cancer Center, Goyang (Korea, Republic of)

    2014-12-15

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  11. Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites)

    CERN Document Server

    Tzortzis, M; Christofides, S; Christodoulides, G

    2003-01-01

    The gamma radiation in samples of a variety of natural tiling rocks (granites) imported in Cyprus for use in the building industry was measured, employing high-resolution gamma-ray spectroscopy. The rock samples were pulverized, sealed in 1 litre plastic Marinelli beakers, and measured in the laboratory with a live-time between 10 and 14 hours each. From the measured gamma-ray spectra, activity concentrations were determined for Th-232 (range from 1 to 906 Bq/kg), U-238 (from 1 to 588 Bq/kg) and K-40 (from 50 to 1606 Bq/kg). Elemental concentrations mean values of (35.2 +- 8.4) ppm, (6.2 +- 1.8) ppm and (4.0 +- 0.2) % were deduced, for thorium, uranium and potassium, respectively. The total absorbed dose rates in air calculated from the concentrations of the three radionuclides, Th-232 and U-238 series and K-40, ranged from 7 to 1209 nGy/h for full utilization of the materials, from 4 to 605 nGy/h for half utilization and from 2 to 302 nGy/h for one quarter utilization. The total effective dose rates per pers...

  12. Spatial analysis of ambient gamma dose equivalent rate data by means of digital image processing techniques.

    Science.gov (United States)

    Szabó, Katalin Zsuzsanna; Jordan, Gyozo; Petrik, Attila; Horváth, Ákos; Szabó, Csaba

    2017-01-01

    A detailed ambient gamma dose equivalent rate mapping based on field measurements at ground level and at 1 m height was carried out at 142 sites in 80 × 90 km area in Pest County, Hungary. Detailed digital image processing analysis was carried out to identify and characterise spatial features such as outlying points, anomalous zones and linear edges in a smoothed TIN interpolated surface. The applied method proceeds from the simple shaded relief model and digital cross-sections to the more complex gradient magnitude and gradient direction maps, 2nd derivative profile curvature map, relief map and lineament density map. Each map is analysed for statistical characteristics and histogram-based image segmentation is used to delineate areas homogeneous with respect to the parameter values in these maps. Assessment of spatial anisotropy is implemented by 2D autocorrelogram and directional variogram analyses. The identified spatial features are related to underlying geological and tectonic conditions using GIS technology. Results show that detailed digital image processing is efficient in revealing the pattern present in field-measured ambient gamma dose equivalent rates and they are related to regional scale tectonic zones and surface sedimentary lithological conditions in the study area.

  13. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    Science.gov (United States)

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with (137)Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2(nd) anagen phase.

  14. High dose rate endobronchial brachytherapy. Results and complications in 189 patients

    Energy Technology Data Exchange (ETDEWEB)

    Taulelle, M.; Chauvet, B.; Vincent, P.; Felix-Faure, C.; Buciarelli, B.; Garcia, R.; Brewer, Y.; Reboul, F. [Clinique Sainte Catherine, Dept. of Radiation Therapy, Avignon (France)

    1998-02-01

    The purpose of this study was to determine the benefit of high dose rate endobronchial brachytherapy in the treatment of obstructive lung cancer. Between September 1990 and March 1995, 189 patients with bronchogenic carcinoma were treated with high dose rate endobronchial brachytherapy. Most patients (63.3%) had received prior treatment and presented with symptomatic bronchial obstruction due to either recurrent or residual endobronchial disease. A small group (12%) was medically unfit for either surgical resection or thoracic radiotherapy and benefited from endobronchial brachytherapy alone for small endobronchial tumours. The remainder of the patients had not been treated previously and endobronchial brachytherapy was performed for life-threatening symptoms requiring emergency obstruction relief before other therapy. Treatment was performed weekly and consisted of three to four 8 to 10 Gy fractions at a radius of 10 mm from the centre of the source. Major symptomatic relief was obtained for haemoptysis (74%), dyspnoea (54%), and cough (54%). Complete endoscopic response was observed in 54% of cases. Median survival was 7 months for the entire group. For small, strictly endobronchial tumours, complete response rate was 96%, median survival 17 months, and 30 month survival 46%, with a plateau starting at 18 months. Grade 3 to 4 toxicities occurred at a rate of 17% and included massive haemoptysis (n=13), bronchial stenosis (n=12), soft tissue necrosis (n=8), and bronchial fistula (n=3). By univariate analysis, no factor was found to be predictive of late pulmonary toxicity. The present study confirms the usefulness of endobronchial brachytherapy in alleviating symptoms caused by endobronchial recurrence of bronchogenic carcinoma. In addition, this therapy can be tried with curative intent in patients who present with small endobronchial tumours and are not candidates for other forms of therapy. (au). 23 refs.

  15. A coupled deterministic/stochastic method for computing neutron capture therapy dose rates

    Science.gov (United States)

    Hubbard, Thomas Richard

    new method was validated by comparing results to experimental measurements and benchmark data in a series of test cases chosen to demonstrate the strengths and weaknesses of the method. Experimental cases included the SAINT gold foil irradiations at the UVAR and detailed phantom dosimetry measurements at the Brookhaven Medical Research Reactor (BMRR). Results of the validation studies showed that the method provides values that are, in most cases, within one fractional standard deviation (FSD) of accepted experimental and benchmark values. A sample brain tumor treatment case was modeled for the conceptual UVAR NCT facility in order to determine the effect of body orientation, size, position, and shielding on the neutron dose rate at a variety of body parts. Ssb{n} "ray effects" were apparent and caused inaccuracies toward the back of the coupling surface; these can be avoided. The method provides treatment planners the ability to calculate dose rates throughout a patient's body and in the treatment room for various treatment configurations in order to minimize the dose to healthy tissue. The thermal neutrons provide the major contribution to neutron dose, but their effect can be minimized by applying localized shielding and by orienting the patient in order to maximize self-shielding. The method may also be used for facility design studies, and such studies of the UVAR have confirmed its suitability as an NCT facility.

  16. Effects of orientation of substrate on the enhanced low-dose-rate sensitivity (ELDRS) in NPN transistors

    Institute of Scientific and Technical Information of China (English)

    LU Wu; ZHENG Yu-Zhan; WANG Yi-Yuan; REN Di-Yuan; GUO Qi; WANG Zhi-Kuan; WANG Jian-An

    2011-01-01

    The radiation effects and annealing characteristics of two types of domestic NPN bipolar junction transistors, fabricated with different orientations, were investigated under different dose-rate irradiation. The experimental results show that both types of the NPN transistors exhibit remarkable Enhanced Low-Dose-Rate Sensitivity (ELDRS). After irradiation at high or low dose rate, the excess base current of NPN transistors obviously increased, and the current gain would degrade rapidly. Moreover, the decrease of collector current was also observed. The NPN transistor with (111) orientation was more sensitive to ionizing radiation than that with (100) orientation. The underlying mechanisms of various experimental phenomena are discussed in detail in this paper.

  17. Effects of orientation of substrate on the enhanced low-dose-rate sensitivity (ELDRS) in NPN transistors

    Science.gov (United States)

    Lu, Wu; Zheng, Yu-Zhan; Wang, Yi-Yuan; Ren, Di-Yuan; Guo, Qi; Wang, Zhi-Kuan; Wang, Jian-An

    2011-02-01

    The radiation effects and annealing characteristics of two types of domestic NPN bipolar junction transistors, fabricated with different orientations, were investigated under different dose-rate irradiation. The experimental results show that both types of the NPN transistors exhibit remarkable Enhanced Low-Dose-Rate Sensitivity (ELDRS). After irradiation at high or low dose rate, the excess base current of NPN transistors obviously increased, and the current gain would degrade rapidly. Moreover, the decrease of collector current was also observed. The NPN transistor with orientation was more sensitive to ionizing radiation than that with orientation. The underlying mechanisms of various experimental phenomena are discussed in detail in this paper.

  18. Effect of radiocesium transfer on ambient dose rate in forest environments affected by the Fukushima Nuclear Power Plant accident

    Science.gov (United States)

    Kato, H.

    2015-12-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years following the Fukushima Daiichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents in throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured the ambient dose rate (ADR) at different heights in the forest using a survey meter and a portable Ge gamma-ray detector. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 166 kBq/m2, 174 kBq/m2, and 60 kBq/m2, respectively. These values correspond to 38%, 40% and 13% of total atmospheric input after the accident. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied with forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rate at the canopy (approx. 10 m-height) decreased faster than that expected from physical decay of the two radiocesium isotopes, whereas those at the forest floor varied between the three forest stands. The radiocesium deposition via throughfall seemed to increase ambient dose rate during the first 200 days after the accident, however there was no clear relationship between litterfall and ambient dose rate since 400 days after the accident. These data suggested that the ambient dose rate in forest environment varied both spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. However, further monitoring investigation and analysis are required to determine the effect of litterfall on long-term trend of ambient dose rate in forest environments.

  19. Automating and estimating glomerular filtration rate for dosing medications and staging chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Trinkley KE

    2014-05-01

    Full Text Available Katy E Trinkley,1 S Michelle Nikels,2 Robert L Page II,1 Melanie S Joy11Skaggs School of Pharmacy and Pharmaceutical Sciences, 2School of Medicine, University of Colorado, Aurora, CO, USA Objective: The purpose of this paper is to serve as a review for primary care providers on the bedside methods for estimating glomerular filtration rate (GFR for dosing and chronic kidney disease (CKD staging and to discuss how automated health information technologies (HIT can enhance clinical documentation of staging and reduce medication errors in patients with CKD.Methods: A nonsystematic search of PubMed (through March 2013 was conducted to determine the optimal approach to estimate GFR for dosing and CKD staging and to identify examples of how automated HITs can improve health outcomes in patients with CKD. Papers known to the authors were included, as were scientific statements. Articles were chosen based on the judgment of the authors.Results: Drug-dosing decisions should be based on the method used in the published studies and package labeling that have been determined to be safe, which is most often the Cockcroft–Gault formula unadjusted for body weight. Although Modification of Diet in Renal Disease is more commonly used in practice for staging, the CKD–Epidemiology Collaboration (CKD–EPI equation is the most accurate formula for estimating the CKD staging, especially at higher GFR values. Automated HITs offer a solution to the complexity of determining which equation to use for a given clinical scenario. HITs can educate providers on which formula to use and how to apply the formula in a given clinical situation, ultimately improving appropriate medication and medical management in CKD patients.Conclusion: Appropriate estimation of GFR is key to optimal health outcomes. HITs assist clinicians in both choosing the most appropriate GFR estimation formula and in applying the results of the GFR estimation in practice. Key limitations of the

  20. Low dose rate vaginal brachytherapy of endometrial adenocarcinomas; Curietherapie vaginale postoperatoire des adenocarcinomes de l`endometre a bas debit de dose

    Energy Technology Data Exchange (ETDEWEB)

    Charra-Brumaud, C.; Peiffert, D.; Hoffstetter, S.; Luporsi, E.; Guillemin, F.; Bey, P. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France)

    1998-01-01

    Surgery is the primary treatment for endometrial carcinoma. Methods of complementary treatment are still debated, with the potential association of external radiotherapy and/or brachytherapy before or after surgery. This study was aimed at evaluating local control and complication rates in a series of patients treated by hysterectomy followed by postoperative vaginal low-dose rate brachytherapy (BT) combined with pelvic irradiation in case of poor prognosis factors. From 1978 to 1993, 101 patients were treated at the Centre Alexis-Vautrin, France according to this scheme. Forty five had deep myometrial invasion, and thirteen cervical involvement. Fifty patients received pelvic irradiation (median dose 46 Gy) combined with BT (dose 14 Gy, median volume 127 cm{sup 3}); 51 patients had BT alone (dose 60 Gy, median volume 71 cm{sup 3}). The 5-year overall survival rate was 83 % and the local control rate 97 % with a median follow-up of 7 years. Multivariate analysis showed two factors of bad prognosis, i.e. deep myometrial invasion and cervical involvement. Three severe complications occurred in two patients for whom the treated volume was larger than the theoretical target volume. Eleven patients developed metastases. Results obtained from this series are comparable with those of previous studies, particularly in regard to pre-operative BT. The complication rate is also satisfactory and depends on the irradiation precision and the definition of the target volume. (authors)

  1. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products; Sistemas dosimetricos de altas dosis, tasa de dosis y uniformidad de dosis en alimentos y producto medico

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.; Vivanco, M.; Castro, E., E-mail: jvargas@ipen.gob.pe [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru)

    2014-08-15

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  2. Adaptive planning strategy for high dose rate prostate brachytherapy—a simulation study on needle positioning errors

    NARCIS (Netherlands)

    Borot, Maxence; Denis de Senneville, B; Maenhout, M; Hautvast, G; Binnekamp, D; Lagendijk, J J W; van Vulpen, M; Moerland, M A

    2016-01-01

    The development of magnetic resonance (MR) guided high dose rate (HDR) brachytherapy for prostate cancer has gained increasing interest for delivering a high tumor dose safely in a single fraction. To support needle placement in the limited workspace inside the closed-bore MRI, a single-needle MR-co

  3. Dedicated high dose rate 192Ir brachytherapy radiation fields for in vitro cell exposures at variable source-target cell distances: killing of mammalian cells depends on temporal dose rate fluctuation

    Science.gov (United States)

    Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef

    2017-02-01

    Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min-1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate

  4. High-Dose-Rate Brachytherapy Boost for Prostate Cancer: Comparison of Two Different Fractionation Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Kaprealian, Tania [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Weinberg, Vivian [Biostatistics and Computational Biology Core, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Speight, Joycelyn L. [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Gottschalk, Alexander R. [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Shinohara, Katsuto [Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Hsu, I.-Chow, E-mail: IHsu@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States)

    2012-01-01

    Purpose: This is a retrospective study comparing our experience with high-dose-rate (HDR) brachytherapy boost for prostate cancer, using two different fractionation schemes, 600 cGy Multiplication-Sign 3 fractions (patient group 1) and 950 cGy Multiplication-Sign 2 fractions (patient group 2). Methods and Materials: A total of 165 patients were treated for prostate cancer using external beam radiation therapy up to a dose of 45 Gy, followed by an HDR brachytherapy prostate radiation boost. Between July 1997 and Nov 1999, 64 patients were treated with an HDR boost of 600 cGy Multiplication-Sign 3 fractions; and between June 2000 and Nov 2005, 101 patients were treated with an HDR boost of 950 cGy Multiplication-Sign 2 fractions. All but 9 patients had at least one of the following risk features: pretreatment prostate-specific antigen (PSA) level >10, a Gleason score {>=}7, and/or clinical stage T3 disease. Results: Median follow-up was 105 months for group 1 and 43 months for group 2. Patients in group 2 had a greater number of high-risk features than group 1 (p = 0.02). Adjusted for comparable follow-up, there was no difference in biochemical no-evidence-of-disease (bNED) rate between the two fractionation scheme approaches, with 5-year Kaplan-Meier estimates of 93.5% in group 1 and 87.3% in group 2 (p = 0.19). The 5-year estimates of progression-free survival were 86% for group 1 and 83% for group 2 (p = 0.53). Among high-risk patients, there were no differences in bNED or PFS rate due to fractionation. Conclusions: Results were excellent for both groups. Adjusted for comparable follow-up, no differences were found between groups.

  5. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents

    Energy Technology Data Exchange (ETDEWEB)

    Tolstykh, E I; Shagina, N B; Degteva, M O; Anspaugh, L R; Napier, Bruce A

    2011-08-01

    The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorption was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year-1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.

  6. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    Science.gov (United States)

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  7. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    Science.gov (United States)

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  8. Angular Gamma Dose Rate Distribution at the Surface of Injected Ducted Concrete Shield

    Science.gov (United States)

    Sayed Ahmed, Fikria M.; Abboud, Aida

    The shielding problems that arise due to the irregular penetrations such as neutral beam injection ducts should be treated carefully to aid in the shield design. The present work was undertaken to describe the effects arising due to radiation streaming through the neutral beam injector ducts (NBID) on the angular distribution of the total gamma ray doses at the outer surface of illmenite concrete shield ( = 4.6g/cm3). The shield is pierced with NBID of different diameters and lengths.The measurements were performed using a collimated beam of both gamma rays and neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. The measurements were carried out using 7LiF teflon thermoliminescent dosimeters. Generally the obtained data reveal that the presence of the total dose increase at the centerline of NBID and which in turn tends to decrease with the increase of scattered angle. An empirical formula describing the differential dose rate ratio is predicted. The experimental data obtained reveal good agreement with the calculated ones.Translated AbstractDie radiale Verteilung der -Dosisrate auf der Oberfläuche einer durchlöcherten BetonabschirmungAbschirmprobleme, die ihren Ursprung in irregulärem Durchlaßvermögen haben, sollten sorgfältig untersucht werden, um die Konstruktion von Abschirmungen zu unterstützen. In der vorliegenden Arbeit wird versucht, den Effekt von ausgetretener Strahlung (nach dem Mechanismus der neutralen Strahlinjektordurchführung NBID) auf die radiale Verteilung der totalen y- Strahlendosis auf der äußeren Oberfläche einer Illmenitbetonabschirmung ( = 4,6 g/cm3) aufzuzeigen. Der Schild ist mit NBID's verschiedener Längen und Durchmesser versehen. Die experimentellen Werte stimmen gut mit berechneten überein. Eine empirische Formel für die radiale Verteilung wird angegeben.

  9. PRE-EXPOSURE OF MICE TO LOW DOSE OR LOW DOSE RATE IONIZING RADIATION REDUCES CHROMOSOME ABERRATIONS INDUCED BY SUBSEQUENT EXPOSURE TO HIGH DOSE OF RADIATION OR MITOMYCIN C

    Institute of Scientific and Technical Information of China (English)

    于文儒; 王明东; 蔡露; 金玉珂

    1995-01-01

    The phenomenon of cytogenetic adaptive and cross-adaptive response induced by low dose irradiation and chemical mutagen in mice is described. We found, firstly, that adapration can be induced by acute low dose X-irracliation (0—100 mGy). Secondly, a cross-adaptation can occur between X-irradiatlon and rrdto-mycin C (MMC). And finally, mice pre-exposed to chronic low dose rate 60Co-Gamma irradiation (0-226. 0 mGy/day) are less susceptible to chromosome aberration induced by subsequent acute higher X-irradiation. Therefore, our data suggest that radioadaptlve respotrse depends on dose, dose rate and time interval. Possible mechanisms are also discussed.

  10. High-dose-rate-intracavitary brachytherapy applications and the difference in the bladder and rectum doses: A study from rural centre of Maharashatra, India

    Directory of Open Access Journals (Sweden)

    Jain Vandana

    2007-01-01

    Full Text Available Aim : To report the difference in the bladder and rectum doses with different applications by the radiotherapists in the same patient of the carcinoma of the uterine cervix treated by multiple fractions of high-dose-rate (HDR intracavitary brachytherapy (ICBT. Materials and Methods : Between January 2003 to December 2004, a total of 60 cases of the carcinoma uterine cervix were selected randomly for the retrospective analyses. All 60 cases were grouped in six groups according to the treating radiotherapist who did the HDR-ICBT application. Three radiotherapists were considered for this study, named A, B and C. Ten cases for each radiotherapist in whom all three applications were done by the same radiotherapist. And 10 cases for each radiotherapist with shared applications in the same patient (A+B, A+C and B+C. The bladder and rectal doses were calculated in reference to point "A" dose and were limited to 80% of prescribed point "A" dose, as per ICRU-38 recommendations. Received dose grouped in three groups- less then 80% (< 80%, 80-100% and above 100% (>100%. A total of 180 applications for 60 patients were calculated for the above analyses. Results : There is a lot of difference in the bladder and rectal doses with the application by the different radiotherapists, even in the same patient with multiple fractions of HDR-ICBT. Applications by ′A′ radiotherapist were within the limits in the self as well as in the shared groups more number of times, by ′B′ radiotherapist was more times exceeding the limit and by ′C′ radiotherapist doses were in between the A and B. Discussion and Conclusion : For the rectal and bladder doses most important factors are patient′s age, disease stage, duration between EBRT and HDR-ICRT and patient anatomy, but these differences can be minimized to some extent by careful application, proper packing and proper fixation.

  11. Effects of orientation of substrate on the enhanced low-dose-rate sensitivity (ELDRS) in NPN transistors

    Institute of Scientific and Technical Information of China (English)

    LU Wu; ZHENG Yu-Zhan; WANG Yi-Yuan; REN Di-Yuan; GUO Qi; WANG Zhi-Kuan; WANG Jian-An

    2011-01-01

    The radiation effects and annealing characteristics of two types of domestic NPN bipolar junction transistors, fabricated with different orientations, were investigated under different dose-rate irradiation. The experimental results show that both types o

  12. Investigation of bias dependence on enhanced low dose rate sensitivity in SiGe HBTs for space application

    Science.gov (United States)

    Sun, Yabin; Fu, Jun; Xu, Jun; Wang, Yudong; Zhou, Wei; Zhang, Wei; Cui, Jie; Li, Gaoqing; Liu, Zhihong

    2014-02-01

    NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were exposed to 60Co gamma source at different dose rates under two bias conditions. Excess base currents and normalized current gains are used to quantify performance degradation. Experiment results demonstrate that the lower the dose rate, the more the irradiation damage, and some enhanced low dose rate sensitivity (ELDRS) exists in SiGe HBTs. The ELDRS effect is found to depend highly on the bias condition during exposure, and the transistors with forward active mode exhibit a more serious ELDRS effect compared to the floating case. The performance degradation at different dose rates and bias conditions is compared and discussed, and furthermore the underlying physical mechanisms are analyzed and investigated in detail.

  13. Clinical and biochemical characteristics of Cushing’s disease with different suppression rates by high-dose dexamethasone

    Institute of Scientific and Technical Information of China (English)

    唐志清

    2013-01-01

    Objective To analyze the clinical and biochemical characteristics of Cushing’s disease with different suppression rates by high-dose dexamethasone.Methods Two hundred and two consecutive patients with

  14. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento, E-mail: rmv.fisica@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Pinezi, Juliana Castro Dourado [Pontificia Universidade Catolica de Goias (PUC-Goias), Goiania, GO (Brazil); Macedo, Luiz Eduardo Andrade [Hospital Chama, Arapiraca, AL (Brazil)

    2014-05-15

    To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and methods: in the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results: sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion: the authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. (author)

  15. Daily variation of radiation dose rate after the Fukushima Nuclear Accident

    Science.gov (United States)

    Yamauchi, Masatoshi

    2015-04-01

    After the radioactive contamination of the lands from the Fukushima Nuclear Power Plant accident, the radiation dose rates observed by the dosimeters often shows daily variations, at different local times at different places or time. These variations are caused by different reasons: the temperature-dependent characteristics of the dosimeter (instrumental effect), the daily convective wind that lifts up the radioactive small particle on the ground (local effect), and the daily sea-land wind that transports the radioactive small particle from highly contaminated area (regional effect). The last type is most important in understanding the internal dose by air taking. However, while very regular patterns can easily be judged as instrumental effect, variations that strongly depend on the weather conditions are not easily judged. Combining the atmospheric electric field measurement near the ground (potential gradient, PG) with the wind and weather data, some of these unclear cases can be classified into above three reasoning, which will be shown in the presentation. Thus, the PG measurement is important right after any nuclear accidents in the future.

  16. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing.

    Science.gov (United States)

    Otsuka, Kensuke; Iwasaki, Toshiyasu

    2015-07-01

    An understanding of the dynamics of intestinal Lgr5(+) stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5(+) stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-Cre(ERT2) × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ(+) crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5(+) stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool.

  17. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications.

  18. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael W [Los Alamos National Laboratory

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr-! versus 0.3 mSv yr-!). The estimated effective dose rate for a more homebound person was about 3 mSv yr-!. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-!, which is similar to the 1 mSv yr-! threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf! from radon background exposure in homes stands in

  19. Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect

    Science.gov (United States)

    Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1994-01-01

    Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.

  20. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)]. E-mail: jesus.hernandez.mangas@tel.uva.es; Arias, J. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Marques, L.A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Ruiz-Bueno, A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Bailon, L. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results.

  1. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume.

    Science.gov (United States)

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-10-29

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

  2. Dose-rate models for human survival after exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.D.; Morris, M.D.; Young, R.W.

    1986-01-01

    This paper reviews new estimates of the L/sub 50/ in man by Mole and by Rotblat, the biological processes contributing to hematologic death, the collection of animal experiments dealing with hematologic death, and the use of regression analysis to make new estimates of human mortality based on all relevant animal studies. Regression analysis of animal mortality data has shown that mortality is dependent strongly on dose rate, species, body weight, and time interval over which the exposure is delivered. The model has predicted human LD/sub 50/s of 194, 250, 310, and 360 rad to marrow when the exposure time is a minute, an hour, a day, and a week, respectively.

  3. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    CERN Document Server

    Abbasi, Akbar

    2015-01-01

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  4. Effect of low dose oxytocin treatment on the pregnancy rate of the dairy cows

    Directory of Open Access Journals (Sweden)

    H. Hamali,

    2011-02-01

    Full Text Available It is well known that during the natural mating, stimulation of the female genital system by the bull causes oxytocin release from the caudal part of the female pituitary gland and this hormone enhances the sperm transport in the genital tract. During the artificial insemination (A.I, this hormone dose not release perfectly. For determine of the oxytocin effect on the pregnancy rates of the cows, a total 100 cows were chosen in a dairy herd located in a suburb of Tabriz (North-west of Iran. These cows were randomly divided into two groups. In the group A, during the A.I, 30 IU oxytocin (3cc Vetocin was injected to the cows intramuscularly. In the group of B, 3cc saline was injected intramuscularly to the control cows. After 45 days of A.I, all of the cows were examined by rectal palpation for pregnancy detection. The pregnancy rates were 58% and 54% in the groups of oxytocin treated and control respectively. The difference between two groups did not differ significantly. These results indicated that oxytocin administration during the A.I had not significant effect on the cow's pregnancy rates.

  5. Measurements with a Ge detector and Monte Carlo computations of dose rate yields due to cosmic muons.

    Science.gov (United States)

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    2003-02-01

    The present work shows how portable Ge detectors can be useful for measurements of the dose rate due to ionizing cosmic radiation. The methodology proposed converts the cosmic radiation induced background in a Ge crystal (energy range above 3 MeV) to the absorbed dose rate due to muons, which are responsible for 75% of the cosmic radiation dose rate at sea level. The key point is to observe in the high energy range (above 20 MeV) the broad muon peak resulting from the most probable energy loss of muons in the Ge detector. An energy shift of the muon peak was observed, as expected, for increasing dimensions of three Ge crystals (10%, 20%, and 70% efficiency). Taking into account the dimensions of the three detectors the location of the three muon peaks was reproduced by Monte Carlo computations using the GEANT code. The absorbed dose rate due to muons has been measured in 50 indoor and outdoor locations at Thessaloniki, the second largest town of Greece, with a portable Ge detector and converted to the absorbed dose rate due to muons in an ICRU sphere representing the human body by using a factor derived from Monte Carlo computations. The outdoor and indoor mean muon dose rate was 25 nGy h(-1) and 17.8 nGy h(-1), respectively. The shielding factor for the 40 indoor measurements ranges from 0.5 to 0.9 with a most probable value between 0.7-0.8.

  6. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil.

  7. Simulation of the low-Earth-orbit dose rates using secondary radiations from the HZE particles at NIRS-HIMAC.

    Science.gov (United States)

    Yasuda, H; Suzuki, M; Ando, K; Fujitaka, K

    2001-01-01

    In order to study biological effects from cyclic dose rates encountered at the low-Earth orbit (LEO), an experimental facility was designed in the Biology room of the Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). An incubator placed in this facility is irradiated repeatedly by secondary radiations from HZE-particle beams supplied for independent users. The daily-average dose rate (1.4 mGy d-1) measured for 223 days and short-term dose rates measured for selected beam conditions were comparable to the dose rates observed in past LEO missions. Severe solar particle events can be simulated with hourly maximum dose rate of 2.8 mGy h-1. Preliminary measurements using CR-39 and TLD indicated that the dominant LET range is less than 5 keV micrometers-1. These results demonstrate the possibility of this facility for radiobiology studies of the effects of low dose rates comparable to the LEO environment.

  8. Surface activity distribution measurements and establishment of a dose rate map inside the destroyed Chernobyl reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chesnokov, A.V.; Fedin, V.I.; Gulyaev, A.A. [RECOM Ltd., Moscow (Russian Federation)] [and others

    1999-02-01

    A Gamma Locator designed for contamination survey inside the reactor hall of the 4th unit of Chernobyl NNP has been developed. The device consists of a detector head and a remote control computer connected by a 150 m long cable. The detector head (dimensions: 500 mm by 500 mm by 400 mm; weight: about 40 kg) is a collimated scintillation gamma detector (the collimation angle is 10 deg.). It is installed on a scanning unit and was placed inside the reactor hall. The Gamma Locator scans all surfaces of the reactor hall with angular steps ({<=} 1 deg. vertically as well as horizontally) and the particle fluence from the corresponding direction is recorded. The distance between the device head and the measured surface is instantaneously registered by a laser distance gauge. Inside the collimator there is a small CCD camera which makes it possible to obtain a visible image of the measured surface. The effective surface activity levels are presented in colour on the screen of the control computer. The gamma detector essentially consists of a CsI(TI) scintillator crystal ({phi} 8 mm in diameter, 2.5 mm in thickness) and a Si photodiode. The detector energy resolution is about 8% for radiation from {sup 137}Cs. The exposure dose rate distribution in the reactor hall is estimated from the measured effective surface activities ({sup 137}Cs is the main gamma emitting isotope inside the reactor hall). The results of dose rate calculations are presented in colour superposed on a drawing of the reactor hall. (au) 1 tab., 28 ills., 16 refs.

  9. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    Science.gov (United States)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  10. Clinical transition to model-based dose calculation algorithm: A retrospective analysis of high-dose-rate tandem and ring brachytherapy of the cervix.

    Science.gov (United States)

    Jacob, Dayee; Lamberto, Melissa; DeSouza Lawrence, Lana; Mourtada, Firas

    To retrospectively compare clinical dosimetry of CT-based tandem-ring treatment plans using a model-based dose calculation algorithm (MBDCA) with the standard TG-43-based dose formalism. A cohort of 10 cervical cancer cohorts treated using the tandem and ring high-dose-rate applicators were evaluated. The original treatment plans were created using the department CT-based volume optimization clinical standards. All plans originally calculated with TG-43 dose calculation formalism were recalculated using the MBDCA algorithm. The gross target volume and organs at risk (OARs) were contoured on each data set along with significant heterogeneities like air in cavity and high-density plastic tandem and ring components. The patient tissue was modeled as homogenous liquid water. D90, D95, and D100 for gross target volume, D0.1cm(3), D1.0cm(3), and D2.0cm(3) for bladder, rectum, and sigmoid were extracted from dose-volume histograms for TG-43 and MBDCA calculated plans. Mean absolute difference ± 2σ in the above metrics was calculated for each plan. Using the manual applicator contouring method, MBDCA plans (n = 10) showed 2.1 ± 1.1% reduction in dose to Point A average, 2.6 ± 0.9% reduction in Target D90 dose, and 2.1 ± 0.3% dose reduction to OARs. Results from plans using vendor supplied solid applicator models (n = 5) showed 2.2 ± 1.10% reduction in dose to Point A average, 2.7 ± 0.2% reduction in Target D90 dose, and 2.7 ± 1.0% dose reduction on average to OARs. For unshielded plastic gynecologic applicators, minimal dosimetric changes (<5%) were found using MBDCA relative to standard TG-43. Use of solid applicator model is more efficient than manual applicator contouring and also yielded similar MBDCA dosimetric results. Currently, TG-186 dose calculations should be reported along TG-43 until we obtain studies with larger cohorts to fully realize the potential of MBDCA dosimetry. Copyright © 2017 American Brachytherapy Society. Published by

  11. Low dose rate caesium-137 implant time of intracavitary brachytherapy source of a selected oncology center in Ghana

    OpenAIRE

    John Owusu Banahene; Emmanuel Ofori Darko; Baffour Awuah

    2015-01-01

    Background: The treatment time taken for a radioactive source is found to be very important in intracavitary brachytherapy treatment. The duration of the treatment time depends on the prescribed dose requested to a reference point and the calculated dose rate to the same point. The duration of the treatment time of source is found to depend on the tumour stage. In this work, the treatment time of implant has been calculated for a Caesium-137 low dose rate brachytherapy source at an oncology f...

  12. A Preliminary Analysis of Dose Rates Associated with ITER CVCS Equipment/Area Location

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, Edward D [ORNL; Ilas, Dan [ORNL; Petrov, Andrei Y [ORNL

    2012-03-01

    A preliminary analysis of the ITER Chemical and Volume Control System (CVCS) Area was performed to assess dose rates outside the walls and ceiling of the facility after 1.5 years of operation at shutdown, 2 days, and 10 days after shutdown. For this purpose a simplified Monte Carlo computer model was developed using the MCNP (MCNP5 Ver. 1.51) code. Two components are included: the smaller filter tank and the larger ion exchanger. These pieces of equipment are associated with the Integrated Blanket ELM Divertor Primary Heat Transfer System, which will have the largest dose rates associated with activated corrosion products during operation in comparison with other systems. The ion exchanger contained two source regions, a 1.2-m-thick resin bed above a 0.55 m-thick skirt, and a 0.8-m-thick water region. The filter constituted an additional source. Thus the model consisted of three sources (filter, resin, water), homogeneously distributed within the appropriate source regions. However, much of the results (that address individual isotopes) are presented with the two sources in the ion exchanger combined. In these cases the sources are referred to as the 'ion exchanger source' and the 'filter source.' Dimensions for the facility and components, as well as source isotopes and strengths, and material densities, were supplied by US ITER. Because of its simplification, the model does not contain pipes. Consequently, radiation streaming through pipe penetrations, radiation emanating from the pipes, and shielding from the pipes were not considered in this analysis. Dose rates on the outside of two walls and the ceiling were calculated. The two walls are labeled as the 'long' wall (aligned with the X-axis) and the 'short' wall (aligned with the Y-axis). These walls and ceiling were nominally set to 30-cm-thick concrete. In the original analysis, standard concrete (2.3 g/cc density) was used. In addition to the shielding walls/ceiling, a

  13. Response of the Sertoli cell and stem germ cell to /sup 60/Co. gamma. -radiation (dose and dose rate) in testes of immature rats

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, B.H.; Blend, M.J.

    1976-06-01

    Gamma-radiation effects (dose and dose rate) on the Sertoli cells and stem cells of the germinal line in immature rat testes were examined. Prior to Day 4 of postnatal development, the gonocyte or primitive germ cell was the most radiosensitive cell in the testis. From Day 4 to approximately Day 15 the Sertoli cell was the most critical element, and thereafter the stem cell was of first importance. A dose of 100 rads irreversibly reduced the number of Sertoli cells to 63 percent of control. Of the ages tested beyond Day 2, the 9-day testis was most severely affected. It was estimated that a dose of 400 rads would reduce sperm output of the 9-day testis to 21 percent of control. After Day 4 and prior to Day 20, 300 rads produced a permanent decrement in the stem-cell population. Six hundred rads are required to produce this effect in the adult. Dose rate was an important mediator of the radioresponse of both Sertoli and germ cells.

  14. Predictors of Toxicity After Image-guided High-dose-rate Interstitial Brachytherapy for Gynecologic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Larissa J. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01

    Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adverse Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to ensure

  15. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael [Los Alamos National Laboratory

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  16. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  17. Low doses of caffeine reduce heart rate during submaximal cycle ergometry

    Directory of Open Access Journals (Sweden)

    Wetter Thomas J

    2007-10-01

    Full Text Available Abstract Background The purpose of this study was to examine the cardiovascular effects of two low-levels of caffeine ingestion in non habitual caffeine users at various submaximal and maximal exercise intensities. Methods Nine male subjects (19–25 yr; 83.3 ± 3.1 kg; 184 ± 2 cm, underwent three testing sessions administered in a randomized and double-blind fashion. During each session, subjects were provided 4 oz of water and a gelatin capsule containing a placebo, 1.5 mg/kg caffeine, or 3.0 mg/kg caffeine. After thirty minutes of rest, a warm-up (30 Watts for 2 min the pedal rate of 60 rpm was maintained at a steady-state output of 60 watts for five minutes; increased to 120 watts for five minutes and to 180 watts for five minutes. After a 2 min rest the workload was 180 watts for one minute and increased by 30 watts every minute until exhaustion. Heart rate (HR was measured during the last 15-seconds of each minute of submaximal exercise. Systolic blood pressure (BP was measured at rest and during each of the three sub-maximal steady state power outputs. Minute ventilation (VE, Tidal volume (VT, Breathing frequency (Bf, Rating of perceived exertion (RPE, Respiratory exchange ratio (RER, and Oxygen consumption (VO2 were measured at rest and during each minute of exercise. Results Caffeine at 1.5 and 3.0 mg/kg body weight significantly lowered (p E, VT, VO2, RPE, maximal power output or time to exhaustion. Conclusion In non habitual caffeine users it appears that consuming a caffeine pill (1.5 & 3.0 mg/kg at a dose comparable to 1–3 cups of coffee lowers heart rate during submaximal exercise but not at near maximal and maximal exercise. In addition, this caffeine dose also only appears to affect systolic blood pressure at rest but not during cycling exercise.

  18. Implementation of High-Dose-Rate Brachytherapy and Androgen Deprivation in Patients With Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lilleby, Wolfgang, E-mail: wolfgang.lilleby@ous-hf.no [Cancer Clinic, Oslo University Hospital, Norwegian Radiumhospital, Department of Radiotherapy and Oncology, Oslo (Norway); Tafjord, Gunnar; Raabe, Nils K. [Cancer Clinic, Oslo University Hospital, Norwegian Radiumhospital, Department of Radiotherapy and Oncology, Oslo (Norway)

    2012-07-01

    Purpose: To evaluate outcome (overall survival [OS], the actuarial 5-year cancer-specific survival [CSS], disease-free survival [DFS], biochemical failure-free survival [BFS]), complications and morbidity in patients treated with high-dose-rate brachytherapy (HDR-BT) boost and hormonal treatment with curative aims. Methods: Between 2004 and 2009, 275 prospectively followed pN0/N0M0 patients were included: 19 patients (7%) with T2, Gleason score 7 and prostate-specific antigen (PSA) <10 and 256 patients (93%) with T3 or Gleason score 8-10 or PSA >20 received multimodal treatment with conformal four-field radiotherapy (prostate/vesiculae 2 Gy Multiplication-Sign 25) combined with HDR-BT (iridium 192; prostate 10 Gy Multiplication-Sign 2) with long-term androgen deprivation therapy (ADT). Results: After a median observation time of 44.2 months (range, 10.4-90.5 months) 12 patients had relapsed clinically and/or biochemically and 10 patients were dead, of which 2 patients died from prostate cancer. Five-year estimates of BFS, CSS, DFS, and OS rates were 98.5%, 99.3%, 95.6%, and 96.3%, respectively. None of the patients with either Gleason score <8 or with intermediate risk profile had relapsed. The number of HDR-BT treatments was not related to outcome. Despite of age (median, 65.7 years; range, 45.7-77 years) and considerable pretreatment comorbidity in 39 of 275 patients, Genitourinary treatment-related morbidity was moderate with long-lasting Radiation Therapy Oncology Group Grade 2 voiding problems in 26 patients (9.5%) and occasionally mucous discharge in 20 patients (7%), none with Grade >2 for gastrointestinal at follow-up. Complications during implantations were related to pubic arch interference (4 patients) and lithotomy time, causing 2 patients to develop compartment syndrome. Conclusion: Despite still preliminary observations, our 5-year outcome estimates favor the implementation of high-dose-rate brachytherapy in high-risk patients combined with conformal

  19. SU-D-BRE-04: Evaluating the Dose Accuracy of a 2D Ion Chamber Array in High Dose Rate Pencil Beam Scanning Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Perles, L; Mascia, A; Piskulich, F; Lepage, R; Zhang, Y; Giebeler, A; Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States)

    2014-06-01

    Purpose: To evaluate the absolute dose accuracy of the PTW Octavius 729 XDR 2D ion chamber array at a high dose rate pencil beam scanning proton therapy facility. Methods: A set of 18 plans were created in our treatment planning system, each of which comprising a unique combination of field sizes (FS), length of spread out of Bragg peaks (SOBP) and depths. The parameters used were: FS of 5×5cm{sup 2}, 10×10cm{sup 2} and 15×15cm{sup 2}; flat SOBP of 5cm and 10cm; and isocenter depths of 10cm, 15cm and 20cm, which coincides with the center of the SOBP. The 2D array detector was positioned at the machine isocenter and the appropriate amount of solid water was used to match the planned depths of 10, 15 and 20 cm water equivalent depth. Subsequently, we measured the absolute dose at isocenter using a CC04 ion chamber in a 1D water tank. Both 2D array and CC04 were previously cross calibrated. We also collected the MU rates used by our proton machine from the log files. Results: The relative differences between the CC04 and the 2D array can be summarized into two groups, one with 5 cm SOBP and another with 10 cm SOBP. Plotting these datasets against FS shows that the 2D array response for high dose rate fields (FS of 5×5cm{sup 2} and 5cm SOBP) can be up to 2% lower. Similarly, plotting them against isocenter depths reveals the detector's response can be up to 2% lower for higher energy beams (about 200MeV nominal). The MU rate found in the machine log files for 5cm SOBP's were as high as twice the MU rate for the 10cm SOBP. Conclusion: The 2D array dose response showed a dose rate effect in scanning pencil beam delivery, which needs to be corrected to achieve a better dose accuracy.

  20. Effect of different ionizing radiation doses and dose rates, using Cobalt-60 and electrons beam sources, on the staphylococcal enterotoxin inoculated in mechanically deboned chicken meat

    Energy Technology Data Exchange (ETDEWEB)

    Pomarico Neto, Walter; Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Fukuma, Henrique Takuji, E-mail: pbrito@cnen.gov.br, E-mail: hazevedo@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Kodama, Yasko, E-mail: ykodama@ipen.br [Nuclear and Energy Research Institute (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Miya, Norma Terugo Nago; Pereira, Jose Luiz, E-mail: miya@fea.unicamp.br, E-mail: pereira@fea.unicamp.br [Campinas State University (UNICAMP), SP (Brazil). Dept. of Food Sciences

    2011-07-01

    The purpose of food irradiation is the destruction of present pathogenic microorganisms and the increase of shelf life of foods. To achieve this process, the source of cobalt-60 and the electron accelerator can be used. The mechanically deboned chicken meat (MDCM) is used for the production of traditional meat products, and it may come to present pathogenic microorganisms such as staphylococcus aureus, a bacterium that produces enterotoxin, which causes food poisoning. The objective of this study is to analyze the effect of ionizing irradiation with different doses and dose rates, deriving from different radiation sources, on staphylococcal enterotoxin type B (SEB) in the MDCM. 50 g samples of MDCM were prepared in a batch of 6 kg of MDCM. The samples were contaminated, with the exception of the control, with SEB in amounts of about 100 ng. Then they were conditioned in a transparent bag made of low density polyethylene, frozen at -18{+-}1 deg C overnight and irradiated in these conditions with doses of 0.0 kGy (control), 1.5 kGy and 3.0 kGy, and with three different dose rates, both in the Cobalt-60 and the electron accelerator. The experiments were conducted in quintuplicate. The SEB extraction from the MDCM was performed according to the protocol recommended by the manufacturer of the kit VIDAS Staph Enterotoxin II (bioMerrieux). The principle of mass balance was used to determine the actual amount of SEB removed by irradiation. The treatment that presented the best results was the one with a dose of 1.5 kGy, high dose rate of the electron accelerator. (author)

  1. Survival of Chinese hamster ovary cells following ultrahigh-dose-rate electron and bremsstrahlung radiation. Final report, September 1988-February 1989

    Energy Technology Data Exchange (ETDEWEB)

    Holahan, P.K.; Meltz, M.L.

    1990-04-01

    The objective of this research was to measure cellular effects of ultrahigh dose rate X rays associated with high-power microwave devices. The intent was to detect differences in effect of ultrahigh dose-rate X rays compared to conventional dose-rate X rays at equivalent total doses. Cell survivability was used as the measure. No differences were noted until a dose of 4 Gray or greater was achieved.

  2. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the VSL and the BIPM

    DEFF Research Database (Denmark)

    Alvarez, J.T.; De Pooter, J.A.; Andersen, Claus E.

    2014-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate brachytherapy sources of the Dutch Metrology Institute (VSL), The Netherlands, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the VSL in November 2009. The comparison resu...

  3. Chronic low-dose-rate ionising radiation affects the hippocampal phosphoproteome in the ApoE-/- Alzheimer's mouse model

    DEFF Research Database (Denmark)

    Kempf, S. J.; Janik, Dirk; Barjaktarovic, Zarko

    2016-01-01

    Accruing data indicate that radiation-induced consequences resemble pathologies of neurodegenerative diseases such as Alzheimer's. The aim of this study was to elucidate the effect on hippocampus of chronic low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) given over 300 days...... that several molecular targets induced by chronic low-dose-rate radiation overlap with those of Alzheimer's pathology. It may suggest that ionising radiation functions as a contributing risk factor to this neurodegenerative disease....... with cumulative doses of 0.3 Gy and 6.0 Gy, respectively. ApoE deficient mutant C57Bl/6 mouse was used as an Alzheimer's model. Using mass spectrometry, a marked alteration in the phosphoproteome was found at both dose rates. The radiation-induced changes in the phosphoproteome were associated with the control...

  4. A generic high-dose rate (192)Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism.

    Science.gov (United States)

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Zourari, Kyveli; Papagiannis, Panagiotis; Rivard, Mark J; Siebert, Frank-André; Sloboda, Ron S; Smith, Ryan L; Thomson, Rowan M; Verhaegen, Frank; Vijande, Javier; Ma, Yunzhi; Beaulieu, Luc

    2015-06-01

    In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) (192)Ir source and a virtual water phantom were designed, which can be imported into a TPS. A hypothetical, generic HDR (192)Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic (192)Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra(®) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS™ ]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR (192)Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then

  5. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo, E-mail: Facundo.Ballester@uv.es [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Carlsson Tedgren, Åsa [Department of Medical and Health Sciences (IMH), Radiation Physics, Faculty of Health Sciences, Linköping University, Linköping SE-581 85, Sweden and Department of Medical Physics, Karolinska University Hospital, Stockholm SE-171 76 (Sweden); Granero, Domingo [Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia E-46014 (Spain); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Institute of Technology, Melbourne, Victoria 3000 (Australia); Mourtada, Firas [Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware 19713 (United States); Fonseca, Gabriel Paiva [Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Zourari, Kyveli; Papagiannis, Panagiotis [Medical Physics Laboratory, Medical School, University of Athens, 75 MikrasAsias, Athens 115 27 (Greece); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105 (Germany); Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  6. Calculating Ivalent Dose Rate Field Structure Applying the Method of Optimal Interpollation in the Baltic Sea Coast

    Directory of Open Access Journals (Sweden)

    Dmitrijus Styra

    2011-04-01

    Full Text Available Equivalent dose rate measurements were carried out in the Baltic Sea coast near Juodkrantė. The measurements were performed at the ground level and 1 meter above it at 63 points within the territory of 2,0´0,2 km on 2 July 2008 and 10 July 2008 under conditions of northern and southern wind directions respectively. The extreme rates of the equivalent dose rate were 51 and 90 nSv/h respectively which means that the structure of the equivalent dose field was unhomogeneous. The method of optimal interpollation was used to calculate and evaluate the structure of the equivalent dose rate field. This method was used in 3 cases when 63, 33 and 18 numbers of measurement were carried out. The identical structures of the equivalent dose field were accepted. Using 18 measurement points, coincidence between the measured and calculated values of the equivalent dose rate was satisfactory. Difference between the measured and calculated values does not exceed 15% in 80% of the measurement points.Article in Lithuanian

  7. Comparison of the effective dose rate to aircrew members using hybrid computational phantoms in standing and sitting postures.

    Science.gov (United States)

    Alves, M C; Galeano, D C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; da Silva, A X; Carvalho, A B

    2016-12-01

    Aircraft crew members are occupationally exposed to considerable levels of cosmic radiation at flight altitudes. Since aircrew (pilots and passengers) are in the sitting posture for most of the time during flight, and up to now there has been no data on the effective dose rate calculated for aircrew dosimetry in flight altitude using a sitting phantom, we therefore calculated the effective dose rate using a phantom in the sitting and standing postures in order to compare the influence of the posture on the radiation protection of aircrew members. We found that although the better description of the posture in which the aircrews are exposed, the results of the effective dose rate calculated with the phantom in the sitting posture were very similar to the results of the phantom in the standing posture. In fact we observed only a 1% difference. These findings indicate the adequacy of the use of dose conversion coefficients for the phantom in the standing posture in aircrew dosimetry. We also validated our results comparing the effective dose rate obtained using the standing phantom with values reported in the literature. It was observed that the results presented in this study are in good agreement with other authors (the differences are below 30%) who have measured and calculated effective dose rates using different phantoms.

  8. The effect of low dose rate irradiation on the swelling of 12% cold-worked 316 stainless steel.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, T. R.

    1999-03-02

    In pressurized water reactors (PWRs), stainless steel components are irradiated at temperatures that may reach 400 C due to gamma heating. If large amounts of swelling (>10%) occur in these reactor internals, significant swelling related embrittlement may occur. Although fast reactor studies indicate that swelling should be insignificant at PWR temperatures, the low dose rate conditions experienced by PWR components may possibly lead to significant swelling. To address these issues, JNC and ANL have collaborated to analyze swelling in 316 stainless steel, irradiated in the EBR-II reactor at temperatures from 376-444 C, at dose rates between 4.9 x 10{sup {minus}8} and 5.8 x 10{sup {minus}7} dpa/s, and to doses of 56 dpa. For these irradiation conditions, the swelling decreases markedly at temperatures less than approximately 386 C, with the extrapolated swelling at 100 dpa being around 3%. For temperatures greater than 386 C, the swelling extrapolated to 100 dpa is around 9%. For a factor of two difference in dose rate, no statistically significant effect of dose rate on swelling was seen. For the range of dose rates analyzed, the swelling measurements do not support significant (>10%) swelling of 316 stainless steel in PWRs.

  9. Higher dose rate Gamma Knife radiosurgery may provide earlier and longer-lasting pain relief for patients with trigeminal neuralgia.

    Science.gov (United States)

    Lee, John Y K; Sandhu, Sukhmeet; Miller, Denise; Solberg, Timothy; Dorsey, Jay F; Alonso-Basanta, Michelle

    2015-10-01

    Gamma Knife radiosurgery (GKRS) utilizes cobalt-60 as its radiation source, and thus dose rate varies as the fixed source decays over its half-life of approximately 5.26 years. This natural decay results in increasing treatment times when delivering the same cumulative dose. It is also possible, however, that the biological effective dose may change based on this dose rate even if the total dose is kept constant. Because patients are generally treated in a uniform manner, radiosurgery for trigeminal neuralgia (TN) represents a clinical model whereby biological efficacy can be tested. The authors hypothesized that higher dose rates would result in earlier and more complete pain relief but only if measured with a sensitive pain assessment tool. One hundred thirty-three patients were treated with the Gamma Knife Model 4C unit at a single center by a single neurosurgeon during a single cobalt life cycle from January 2006 to May 2012. All patients were treated with 80 Gy with a single 4-mm isocenter without blocking. Using an output factor of 0.87, dose rates ranged from 1.28 to 2.95 Gy/min. The Brief Pain Inventory (BPI)-Facial was administered before the procedure and at the first follow-up office visit 1 month from the procedure (mean 1.3 months). Phone calls were made to evaluate patients after their procedures as part of a retrospective study. Univariate and multivariate linear regression was performed on several independent variables, including sex, age in deciles, diagnosis, follow-up duration, prior surgery, and dose rate. In the short-term analysis (mean 1.3 months), patients' self-reported pain intensity at its worst was significantly correlated with dose rate on multivariate analysis (p = 0.028). Similarly, patients' self-reported interference with activities of daily living was closely correlated with dose rate on multivariate analysis (p = 0.067). A 1 Gy/min decrease in dose rate resulted in a 17% decrease in pain intensity at its worst and a 22% decrease

  10. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and National Dosimetry Centre (CND), Valencia 46009 (Spain); Niatsetski, Y. [Elekta Brachytherapy, Veenendaal 3905 TH (Netherlands); Laarse, R. van der [Quality Radiation Therapy BV, Zeist 3707 HB (Netherlands); Granero, D. [Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ballester, F. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Perez-Calatayud, J. [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and Department of Radiotherapy, Clínica Benidorm, Benidorm 03501 (Spain); Vijande, J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and Instituto de Física Corpuscular (UV-CSIC), Burjassot 46100 (Spain)

    2016-04-15

    Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a {sup 192}Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a {sup 192}Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth–dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new