WorldWideScience

Sample records for dose rate evaluation

  1. Critical commentary on dose-rate evaluations

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Malenfant, R.E.; Plassmann, E.A.

    1984-01-01

    Survivors of Hiroshima and Nagasaki present a unique problem in dosimetry: the effects of radiation exposure may be inferred although the exposure itself is unknown. Experience with a replica of Little Boy demonstrates the difficulties of measuring dose rates, the problems of comparing measurements with calculations, and the inadequacy of the conventional standards that are used to calibrate dosimeters

  2. Robust ray-tracing algorithms for interactive dose rate evaluation

    International Nuclear Information System (INIS)

    Perrotte, L.

    2011-01-01

    More than ever, it is essential today to develop simulation tools to rapidly evaluate the dose rate received by operators working on nuclear sites. In order to easily study numerous different scenarios of intervention, computation times of available softwares have to be all lowered. This mainly implies to accelerate the geometrical computations needed for the dose rate evaluation. These computations consist in finding and sorting the whole list of intersections between a big 3D scene and multiple groups of 'radiative' rays meeting at the point where the dose has to be measured. In order to perform all these computations in less than a second, we first propose a GPU algorithm that enables the efficient management of one big group of coherent rays. Then we present a modification of this algorithm that guarantees the robustness of the ray-triangle intersection tests through the elimination of the precision issues due to floating-point arithmetic. This modification does not require the definition of scene-dependent coefficients ('epsilon' style) and only implies a small loss of performance (less than 10%). Finally we propose an efficient strategy to handle multiple ray groups (corresponding to multiple radiative objects) which use the previous results.Thanks to these improvements, we are able to perform an interactive and robust dose rate evaluation on big 3D scenes: all of the intersections (more than 13 million) between 700 000 triangles and 12 groups of 100 000 rays each are found, sorted along each ray and transferred to the CPU in 470 milliseconds. (author) [fr

  3. Dose rate evaluation after accident in a PWR

    International Nuclear Information System (INIS)

    Cladel, C.; Duchemin, B.; Le Dieu de Ville, A.; Nimal, B.; Nimal, J.C.; Evrard, J.M.

    1983-05-01

    A calculation scheme for the gamma radiation dose rate after accident in a PWR is presented. These studies use a fine description of the geometry and of the fission product inventory. Some results are given and some improvements are planned

  4. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  5. Evaluation of 1cm dose equivalent rate using a NaI(Tl) scintilation spectrometer

    International Nuclear Information System (INIS)

    Matsuda, Hideharu

    1990-01-01

    A method for evaluating 1 cm dose equivalent rates from a pulse height distribution obtained by a 76.2mmφ spherical NaI(Tl) scintillation spectrometer was described. Weak leakage radiation from nuclear facilities were also measured and dose equivalent conversion factor and effective energy of leakage radiation were evaluated from 1 cm dose equivalent rate and exposure rate. (author)

  6. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  7. Current evaluation of dose rate calculation - analytical method

    International Nuclear Information System (INIS)

    Tello, Marcos; Vilhena, Marco Tulio

    1996-01-01

    The accuracy of the dose calculations based on pencil beam formulas such as Fokker-Plank equations and Fermi equations for charged particle transport are studied and a methodology to solve the Boltzmann transport equation is suggested

  8. Study on the evaluation method of radiation dose rate around spent fuel shipping casks

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1986-01-01

    This study aims at developing a simple calculation method which can evaluate radiation dose rate around casks with high accuracy in a short time. The method is based on a concept of the radiation shielding characteristics of cask walls. The concept was introduced to replace for ordinary radiation shielding calculation which requires a long calculation time and a large memory capacity of a computer in the matrix calculation. For the purpose of verifying the accuracy and reliability of the new method, it was applied to the analysis of the dose rate distribution around actual casks, which had been measured. The results of the analysis revealed that the newly proposed method was excellent for the forecast of radiation dose rate distribution around casks in view of the accuracy and calculation time. The short calculation time and high accuracy by the proposed method were attained by dividing the whole procedure of ordinary fine radiation shielding calculation into the calculation of radiation dose rate on a cask surface by the matrix expression of the characteristic function and the calculation of dose rate distribution using the simple analytical expression of dose rate distribution around casks. The effect of the heterogeneous array of spent fuel in different burnup state on dose rate distribution around casks was evaluated by this method. (Kako, I.)

  9. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  10. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    Science.gov (United States)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  11. Evaluation of functioning of high dose rate brachytherapy at the Instituto Nacional do Cancer

    International Nuclear Information System (INIS)

    Guedes, Laura M.A.; Barreto, Rodrigo V.; Silva, Penha M.; Macedo, Afranio A.; Borges, Solange C.; Martinez, Valeria P.O.

    2001-01-01

    Quality control tests are very useful tools to assure the quality of patient's treatment. A daily control of the high dose rate micro selectron was performed based on the security parameters of the equipment and on the quickness of performance. The purpose of this report is to evaluate and to discuss the errors found during the first three years with the high dose rate brachytherapy, at the Instituto Nacional de Cancer. (author)

  12. Dosimetric Evaluation of High-Dose-Rate Interstitial Brachytherapy Boost Treatments for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Froehlich, Georgina; Agoston, Peter; Loevey, Jozsef; Somogyi, Andras; Fodor, Janos; Polgar, Csaba; Major, Tibor

    2010-01-01

    Purpose: to quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Material and methods: treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D min ) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D r ) and urethra (D u ), dose to volume of 2 cm 3 of the rectum (D 2ccm ), and 0.1 cm 3 and 1% of the urethra (D 0.1ccm and D1) were determined. Nonparametric correlation analysis was performed between these parameters. Results: the median number of needles was 16, the mean prostate volume (V p ) was 27.1 cm 3 . The mean V90, V100, V150, and V200 were 90%, 97%, 39% and 13%, respectively. The mean D90 was 109%, and the D min was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D 2ccm = 49% for the rectum, D 0.1ccm = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D r , D 2ccm ) = 0.69, R(D u , D 0.1ccm ) = 0.64, R(D u , D1) = 0.23. Conclusion: US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric

  13. Dosimetric Evaluation of High-Dose-Rate Interstitial Brachytherapy Boost Treatments for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Georgina [Semmelweis Univ., Budapest (Hungary); Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Agoston, Peter; Loevey, Jozsef; Somogyi, Andras; Fodor, Janos; Polgar, Csaba; Major, Tibor [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary)

    2010-07-15

    Purpose: to quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Material and methods: treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D{sub min}) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D{sub r}) and urethra (D{sub u}), dose to volume of 2 cm{sup 3} of the rectum (D{sub 2ccm}), and 0.1 cm{sup 3} and 1% of the urethra (D{sub 0.1ccm} and D1) were determined. Nonparametric correlation analysis was performed between these parameters. Results: the median number of needles was 16, the mean prostate volume (V{sub p}) was 27.1 cm{sup 3}. The mean V90, V100, V150, and V200 were 90%, 97%, 39% and 13%, respectively. The mean D90 was 109%, and the D{sub min} was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D{sub 2ccm} = 49% for the rectum, D{sub 0.1ccm} = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D{sub r}, D{sub 2ccm}) = 0.69, R(D{sub u}, D{sub 0.1ccm}) = 0.64, R(D{sub u}, D1) = 0.23. Conclusion: US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose

  14. Dosimetric evaluation of high-dose-rate interstitial brachytherapy boost treatments for localized prostate cancer.

    Science.gov (United States)

    Fröhlich, Georgina; Agoston, Péter; Lövey, József; Somogyi, András; Fodor, János; Polgár, Csaba; Major, Tibor

    2010-07-01

    To quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D(min)) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D(r)) and urethra (D(u)), dose to volume of 2 cm(3) of the rectum (D(2ccm)), and 0.1 cm(3) and 1% of the urethra (D(0.1ccm) and D1) were determined. Nonparametric correlation analysis was performed between these parameters. The median number of needles was 16, the mean prostate volume (V(p)) was 27.1 cm(3). The mean V90, V100, V150, and V200 were 99%, 97%, 39%, and 13%, respectively. The mean D90 was 109%, and the D(min) was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D(2ccm) = 49% for the rectum, D(0.1ccm) = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D(r),D(2ccm)) = 0.69, R(D(u),D0.(1ccm)) = 0.64, R(D(u),D1) = 0.23. US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric parameter is recommended.

  15. Use of thermoluminescence dosimetry for evaluation of internal beta dose-rate in archaeological dating

    Energy Technology Data Exchange (ETDEWEB)

    Bailiff, I K; Aitken, M J [Oxford Univ. (UK). Research Lab. for Archaeology

    1980-07-01

    An experimental technique is described for the absolute determination of beta dose-rate in pottery. The calibrated system utilizes thermoluminescent dosimeters (natural calcium fluoride) which are located external to the pottery sample. These measurements give an evaluation of the dose-rate at the centre of the pottery that is effectively independent of the relative importance of the thorium, uranium and potassium content (typically 12 ppm Th, 3 ppm U and 1% K/sub 2/O in pottery). This has been checked using analysed uranium, thorium and potassium materials. A dose-rate evaluation may be made after 10-14 d with an accuracy of +-5%, where the dose-rate to the dosimeter is of the order of 0.3 mrad d/sup -1/. Although the background dose-rate due to cosmic radiation and that arising from radioactive impurities in the calcium fluoride is significant (one third), measurements have shown that it may be accurately established. The technique described is to be preferred to other systems used in pottery dating because of its independence of relative radioisotope concentration.

  16. The evaluation the magnitude radiation exposure dose rate in digital radiography room design

    Science.gov (United States)

    Dwiyanto, Agung; Setia Budi, Wahyu; Hardiman, Gagoek

    2017-12-01

    This study discusses the dose rate in digital radiography room, buit according to meet the provisions of KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation of BAPETEN No. 8 / 2011. The provisions primary concern of radiation safety, not comfort, by considering the space design. There are five aspects to consider in designing the space: functionality, comfort, security, movement activities and aesthetics. However provisions only met three aspects of the design, which are a function, security and movement activity. Therefore, it is necessary to evaluate digital radiography room in terms of its ability to control external radiation exposure to be safe and comfortable The dose rate is measured by the range of primary and secondary radiation in the observation points by using Surveymeter. All data are obtained by the preliminary survey prior to the study. Furthermore, the review of digital radiography room is done based on architectural design theory. The dose rate for recommended improvement room is recalculated using the same method as the actual room with the help of computer modeling. The result of dose rate calculation at the inner and outer part of digital radiography observation room shows that in-room dose for a week at each measuring point exceeds the allowable dose limit both for staff and public. During a week of observation, the outdoor dose at some measuring points exceeds the dose limit set by the KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation BEPETEN No 8/2011. Meanwhile, the result of dose rate calculation in the inner and outer part of the improved digital radiography room can meet the applicable regulations better.

  17. Evaluation of the dose uniformity for double-plane high dose rate interstitial breast implants with the use of dose reference points and dose non-uniformity ratio

    International Nuclear Information System (INIS)

    MAjor, T.; Polgar, C.; Somogyi, A.; Nemeth, G.

    2000-01-01

    This study investigated the influence of dwell time optimizations on dose uniformity characterized by dose values in dose points and dose non-uniformity ratio (DNR) and analyzed which implant parameters have influence on the DNR. Double-plane breast implants with catheters arranged in triangular pattern were used for the calculations. At a typical breast implant, dose values in dose reference points inside the target volume and volumes enclosed by given isodose surfaces were calculated and compared for non-optimized and optimized implants. The same 6-cm treatment length was used for the comparisons. Using different optimizations plots of dose non-uniformity ratio as a function of catheter separation, source step size, number of catheters, length of active sections were drawn and the minimum DNR values were determined. Optimization resulted in less variation in dose values over dose points through the whole volume and in the central plane only compared to the non-optimized case. At implant configurations consisting of seven catheters with 15-mm separation, 5-mm source step size and various active lengths adapted according to the type of optimization, the no optimization, geometrical (volume mode) and dose point (on dose points and geometry) optimization resulted in similar treatment volumes, but an increased high dose volume was observed due to the optimization. The dose non-uniformity ratio always had the minimum at average dose over dose normalization points, defined in the midpoints between the catheters through the implant volume. The minimum value of DNR depended on catheter separation, source step size, active length and number of catheters. The optimization had only a small influence on DNR. In addition to the reference points in the central plane only, dose points positioned in the whole implant volume can be used for evaluating the dose uniformity of interstitial implants. The dose optimization increases not only the dose uniformity within the implant but

  18. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  19. Dose and dose rate monitor

    International Nuclear Information System (INIS)

    Novakova, O.; Ryba, J.; Slezak, V.; Svobodova, B.; Viererbl, L.

    1984-10-01

    The methods are discussea of measuring dose rate or dose using a scintillation counte. A plastic scintillator based on polystyrene with PBD and POPOP activators and coated with ZnS(Ag) was chosen for the projected monitor. The scintillators were cylindrical and spherical in shape and of different sizes; black polypropylene tubes were chosen as the best case for the probs. For the counter with different plastic scintillators, the statistical error 2σ for natural background was determined. For determining the suitable thickness of the ZnS(Ag) layer the energy dependence of the counter was measured. Radioisotopes 137 Cs, 241 Am and 109 Cd were chosen as radiation sources. The best suited ZnS(Ag) thickness was found to be 0.5 μm. Experiments were carried out to determine the directional dependence of the detector response and the signal to noise ratio. The temperature dependence of the detector response and its compensation were studied, as were the time stability and fatigue manifestations of the photomultiplier. The design of a laboratory prototype of a dose rate and dose monitor is described. Block diagrams are given of the various functional parts of the instrument. The designed instrument is easiiy portable, battery powered, measures dose rates from natural background in the range of five orders, i.e., 10 -2 to 10 3 nGy/s, and allows to determine a dose of up to 10 mGy. Accouracy of measurement in the energy range of 50 keV to 1 MeV is better than +-20%. (E.S.)

  20. Evaluation of the influence of weather conditions on external dose rate

    International Nuclear Information System (INIS)

    Knight, A.

    1993-01-01

    Six time periods in 1989/90, when there were high gamma ray dose rate readings at three or more RIMNET Phase 1 sites, were selected for detailed study. The high dose rates were compared with meteorological data (rainfall, temperatures, windspeeds and atmospheric pressure) at the sites for the time periods studied. The results using daily and hourly data clearly show a correlation between gamma ray dose rate and rainfall but not with the other meteorological parameters studied. The increase in dose rate with increased rainfall is believed to be due to radon decay products being washed down with heavy rain. (author)

  1. Evaluation of absorbed radiation dose rate in a didactic X-ray equipment

    International Nuclear Information System (INIS)

    Costa, Phelipe Amaral Ferreira; Perini, Ana Paula; Neves, Lucio Pereira

    2016-01-01

    This work was performed in order to create a new didactic experiment in the X-ray apparatus of PHYWE, where the saturation current was obtained through a free air ionization chamber. The values of saturation currents were obtained in two ways. Initially, the anodic DDP was kept constant and the anodic current was varied. In the second way, the anodic current was kept constant while the anodic DDP was varied. Therefore, we were able to evaluate the dependence of the absolved dose rate in relation to the DDP and the tube current. (author)

  2. Dose rate constants for new dose quantities

    International Nuclear Information System (INIS)

    Tschurlovits, M.; Daverda, G.; Leitner, A.

    1992-01-01

    Conceptual changes and new quantities made is necessary to reassess dose rate quantities. Calculations of the dose rate constant were done for air kerma, ambient dose equivalent and directional dose equivalent. The number of radionuclides is more than 200. The threshold energy is selected as 20 keV for the dose equivalent constants. The dose rate constant for the photon equivalent dose as used mainly in German speaking countries as a temporary quantity is also included. (Author)

  3. Instrument evaluation no. 8. Nuclear Enterprises beta/gamma dose rate meter type 0500

    International Nuclear Information System (INIS)

    Iles, W.J.; Burgess, P.H.; Callowhill, K.

    1977-04-01

    This instrument is a portable, battery powered survey meter covering the dose rate range from 0 to 10,000 mrad h -1 and the dose range 0 to 1000 mrad. The instrument was designed to measure X and γ-radiation dose and dose rate over a wide energy range, and also β-radiation dose and dose rate. An unsealed ionisation chamber is used as the detector. The aluminised melinex thin end window of the chamber is provided with a detachable plastic end cap. The calibration plane of the chamber is indicated by a cross on the side of the instrument. The information is given under the following headings: facilities and controls; radiation characteristics; electrical characteristics; environmental characteristics; mechanical characteristics; summary of performance; conclusions. (U.K.)

  4. Dose rate evaluation of workers on the operation floor in Fukushima-Daiichi Unit 3

    Science.gov (United States)

    Matsushita, Kaoru; Kurosawa, Masahiko; Shirai, Keisuke; Matsuoka, Ippei; Mukaida, Naoki

    2017-09-01

    At Fukushima Daiichi Nuclear Power Plant Unit 3, installation of a fuel handling machine is planned to support the removal of spent fuel. The dose rates at the workplace were calculated based on the source distribution measured using a collimator in order to confirm that the dose rates on the operation floor were within a manageable range. It was confirmed that the accuracy of the source distribution was C/M = 1.0-2.4. These dose rates were then used to plan the work on the operation floor.

  5. A quality indicator to evaluate high-dose-rate intracavitary brachytherapy for cancer of the cervix

    International Nuclear Information System (INIS)

    Morales, Francisco Contreras; Soboll, Daniel Scheidegger

    2000-01-01

    The aim of this report is to prevent a simple quality indicator (QI) that can be promptly used to evaluate the high-dose-rate (HDR) intracavitary brachytherapy for the treatment of cancer of the cervix, and if necessary, to correct applicators' geometry before starting the treatment. We selected 51 HDR intracavitary applications of brachytherapy of patients with carcinoma of the cervix treated with 60 mm uterine tandem and small Fletcher colpostat, according to the Manchester method (dose prescription on point A). A QI was defined as the ratio between the volume of 100% isodose curve of the study insertion and the volume of the 100% isodose curve of an insertion considered to be ideal. The data obtained were distributed in three groups: the group with tandem placement slippage (67,5%), a group with colpostat placement slippage (21,9%), and a third group, considered normal (10,6%). Each group showed particular characteristics (p < 0.0001). QI can be the best auxiliary method to establish the error tolerance (%) allowed for HDR intracavitary brachytherapy. (author)

  6. Instrument evaluation no. 9. Mini-instruments dose rate meter type 5 - 1OR

    International Nuclear Information System (INIS)

    Iles, W.J.; Burgess, P.H.; Callowhill, K.

    1977-04-01

    This instrument is a portable, battery powered dose rate meter covering the dose rate range from 0 to 200 mrad h -1 . The instrument is designed to measure X- and γ-radiation dose rates over the energy range from 45 keV to 3 MeV. The radiation detector of the instrument is a GM tube with a specially designed energy compensation sheath. This detector is incorporated in a probe connected to the rate meter by an extensible cable which may be either hand-held or clipped on to the top of the instrument case. All the measurements in this report have been taken with the long axis of the probe normal to the direction of the incident radiation, the orientation recommended by the manufacturer. The information is given under the following headings: facilities and controls; radiation characteristics; electrical characteristics; effect of ambient temperature; mechanical characteristics; summary of performance; conclusions. (U.K.)

  7. Radiation dose rate meter

    International Nuclear Information System (INIS)

    Kronenberg, S.; Siebentritt, C.R.

    1981-01-01

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts

  8. Decontamination evaluation based on radioactivity measurement instead of air dose rate

    International Nuclear Information System (INIS)

    Shozugawa, Katsumi

    2013-01-01

    Air dose rate at 1 m above the ground comes from gamma radiations emitted from vast area ranging over several ten meters of the contaminated field from the counter. After showing the actual example of the difference between air dose rate data and Cs 137 distribution map made by using a shielded NaI-scintillation counter within and around a contaminated sinkhole (a ditch or trench) near Fukushima Daiichi Nuclear Power Plants, the author proposes to make a decontamination program according to the radioactivity distribution measurement instead of air dose rate measurement. Furthermore, he explains some problems arising from a point and plane radiation source, and also difficulties accompanied by movement of Cs 137 atoms in the soils according to the absorption characteristics of the existing minerals but these are also important to consider for performing an effective decontamination. (S. Ohno)

  9. Evaluation of surface dose rate on C-14 scrubber and gas bag

    International Nuclear Information System (INIS)

    Gang, D. W.; Lee, H. S.; Lee, D. H.

    2003-01-01

    In CANDU(Canadian Deuterium Uranium) reactors, purge and discharge of moderator cover gas has been performed via vapor recovery system. The methods employed in C-14 removal are mainly based on reactions of CO 2 with absorber of adsorbent. In order to choose an optimum process, we should consider the characteristics of the process, such as, temperature, pressure, humidity etc. and surface dose rate on C-14 scrubber and gas bag to estimate job-related personnel doses. Assuming that the whole C-14 scrubber was completely replaced after one-cycle operation, and that its C-14 activity for one-cycle operation was 40 mCi, we calculated the surface dose rate at the six points of the C-14 scrubber. This calculation showed that the dose rate on the surface of cartridge was only 1.25μSυ/hγ because of low energy of β ray. It is concluded, therefore, that the cartridge change-out is safe because the operation of C-14 removal system causes only a small increase in dose rate

  10. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    Science.gov (United States)

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  11. MicroShield 6.20 computations to evaluate dose rate in unprotected materials

    International Nuclear Information System (INIS)

    Slaveikova, M.; Stanev, I.

    2013-01-01

    An analysis of compliance with the requirement of Art. 36 of the Regulation on the conditions and procedure of transport of radioactive material is made.This analysis is carried out in connection with the construction of sites for temporary storage of radioactive materials and radioactive wastes from decommissioning activities of the Kozloduy NPP units 1-4. The aim is to assess the dose in unprotected materials. An analysis of the conformity with the requirements of the Bulgarian legislation to assess the dose rate of material in the absence of physical or other barriers. Many calculations are carried out to assess the dose rate around a piece of metal from the dismantling of the primary circuit, which is conservatively assumed that contamination is greatest

  12. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  13. Dose rate evaluation of body phantom behind ITER bio-shield wall using Monte Carlo method

    International Nuclear Information System (INIS)

    Beheshti, A.; Jabbari, I.; Karimian, A.; Abdi, M.

    2012-01-01

    One of the most critical risks to humans in reactors environment is radiation exposure. Around the tokamak hall personnel are exposed to a wide range of particles, including neutrons and photons. International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion research and engineering project, which is the most advanced experimental tokamak nuclear fusion reactor. Dose rates assessment and photon radiation due to the neutron activation of the solid structures in ITER is important from the radiological point of view. Therefore, the dosimetry considered in this case is based on the Deuterium-Tritium (DT) plasma burning with neutrons production rate at 14.1 MeV. The aim of this study is assessment the amount of radiation behind bio-shield wall that a human received during normal operation of ITER by considering neutron activation and delay gammas. To achieve the aim, the ITER system and its components were simulated by Monte Carlo method. Also to increase the accuracy and precision of the absorbed dose assessment a body phantom were considered in the simulation. The results of this research showed that total dose rates level near the outside of bio-shield wall of the tokamak hall is less than ten percent of the annual occupational dose limits during normal operation of ITER and It is possible to learn how long human beings can remain in that environment before the body absorbs dangerous levels of radiation. (authors)

  14. SU-F-T-266: Dynalogs Based Evaluation of Different Dose Rate IMRT Using DVH and Gamma Index

    International Nuclear Information System (INIS)

    Ahmed, S; Ahmed, S; Ahmed, F; Hussain, A

    2016-01-01

    Purpose: This work investigates the impact of low and high dose rate on IMRT through Dynalogs by evaluating Gamma Index and Dose Volume Histogram. Methods: The Eclipse™ treatment planning software was used to generate plans on prostate and head and neck sites. A range of dose rates 300 MU/min and 600 MU/min were applied to each plan in order to investigate their effect on the beam ON time, efficiency and accuracy. Each plan had distinct monitor units per fraction, delivery time, mean dose rate and leaf speed. The DVH data was used in the assessment of the conformity and plan quality.The treatments were delivered on Varian™ Clinac 2100C accelerator equipped with 120 leaf millennium MLC. Dynalogs of each plan were analyzed by MATLAB™ program. Fluence measurements were performed using the Sun Nuclear™ 2D diode array and results were assessed, based on Gamma analysis of dose fluence maps, beam delivery statistics and Dynalogs data. Results: Minor differences found by adjusted R-squared analysis of DVH’s for all the plans with different dose rates. It has been also found that more and larger fields have greater time reduction at high dose rate and there was a sharp decrease in number of control points observed in dynalog files by switching dose rate from 300 MU/min to 600 MU/min. Gamma Analysis of all plans passes the confidence limit of ≥95% with greater number of passing points in 300 MU/min dose rate plans. Conclusion: The dynalog files are compatible tool for software based IMRT QA. It can work perfectly parallel to measurement based QA setup and stand-by procedure for pre and post delivery of treatment plan.

  15. SU-F-T-266: Dynalogs Based Evaluation of Different Dose Rate IMRT Using DVH and Gamma Index

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S [Aga Khan University Hospital, Karachi, Sindh (Pakistan); Ahmed, S [Pakistan Inst of Eng Applied Sciences, Islamabad (Pakistan); Ahmed, F; Hussain, A

    2016-06-15

    Purpose: This work investigates the impact of low and high dose rate on IMRT through Dynalogs by evaluating Gamma Index and Dose Volume Histogram. Methods: The Eclipse™ treatment planning software was used to generate plans on prostate and head and neck sites. A range of dose rates 300 MU/min and 600 MU/min were applied to each plan in order to investigate their effect on the beam ON time, efficiency and accuracy. Each plan had distinct monitor units per fraction, delivery time, mean dose rate and leaf speed. The DVH data was used in the assessment of the conformity and plan quality.The treatments were delivered on Varian™ Clinac 2100C accelerator equipped with 120 leaf millennium MLC. Dynalogs of each plan were analyzed by MATLAB™ program. Fluence measurements were performed using the Sun Nuclear™ 2D diode array and results were assessed, based on Gamma analysis of dose fluence maps, beam delivery statistics and Dynalogs data. Results: Minor differences found by adjusted R-squared analysis of DVH’s for all the plans with different dose rates. It has been also found that more and larger fields have greater time reduction at high dose rate and there was a sharp decrease in number of control points observed in dynalog files by switching dose rate from 300 MU/min to 600 MU/min. Gamma Analysis of all plans passes the confidence limit of ≥95% with greater number of passing points in 300 MU/min dose rate plans. Conclusion: The dynalog files are compatible tool for software based IMRT QA. It can work perfectly parallel to measurement based QA setup and stand-by procedure for pre and post delivery of treatment plan.

  16. A Performance Evaluation of a Notebook PC under a High Dose-Rate Gamma Ray Irradiation Test

    Directory of Open Access Journals (Sweden)

    Jai Wan Cho

    2014-01-01

    Full Text Available We describe the performance of a notebook PC under a high dose-rate gamma ray irradiation test. A notebook PC, which is small and light weight, is generally used as the control unit of a robot system and loaded onto the robot body. Using TEPCO’s CAMS (containment atmospheric monitoring system data, the gamma ray dose rate before and after a hydrogen explosion in reactor units 1–3 of the Fukushima nuclear power plant was more than 150 Gy/h. To use a notebook PC as the control unit of a robot system entering a reactor building to mitigate the severe accident situation of a nuclear power plant, the performance of the notebook PC under such intense gamma-irradiation fields should be evaluated. Under a similar dose-rate (150 Gy/h gamma ray environment, the performances of different notebook PCs were evaluated. In addition, a simple method for a performance evaluation of a notebook PC under a high dose-rate gamma ray irradiation test is proposed. Three notebook PCs were tested to verify the method proposed in this paper.

  17. Evaluation of residual radioactivity and dose rate of a target assembly in an IBA cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Yong; Kim, Young Ju; Lee, Seung Wook [School of Mechanical Engineering, Pusan National University (Korea, Republic of)

    2016-12-15

    When a cyclotron produces 18F-, accelerated protons interact with metal parts of the cyclotron machine and induces radioactivity. Especially, the target window and chamber of the target assembly are the main parts where long-lived radionuclides are generated as they are incident by direct beams. It is of great importance to identify radionuclides induced in the target assembly for the safe operation and maintenance of a cyclotron facility. In this study, we analyzed major radionuclides generated in the target assembly by an operation of the Cyclotron 18/9 machine and measured dose rates after the operation to establish the radiation safety guideline for operators and maintenance personnel of the machine. Gamma spectroscopy with HPGe was performed on samples from the target chamber and Havar foil target window to identify the radionuclides generated during the operation for production of 18F-- isotope and their specific activity. Also, the dose rates from the target were measured as a function of time after an operation. These data will help improve radiological safety of operating the cyclotron facilities.

  18. Method for measuring and evaluation dose equivalent rate from fast neutrons in mixed gamma-neutron fields around particles accelerators

    International Nuclear Information System (INIS)

    Cruceru, I.; Sandu, M.; Cruceru, M.

    1994-01-01

    A method for measuring and evaluation of doses and dose equivalent rate in mixed gamma- neutron fields is discussed in this paper. The method is basedon a double detector system consist of an ionization chamber with components made from a plastic scintillator, coupled to on photomultiplier. Generally the radiation fields around accelerators are complex, often consisting of many different ionizing radiations extending over a broad range of energies. This method solve two major difficulties: determination of response functions of radiation detectors; interpretation of measurement and determination of accuracy. The discrimination gamma-fast neutrons is assured directly without a pulse shape discrimination circuit. The method is applied to mixed fields in which particle energies are situated in the energy range under 20 MeV and an izotropic emision (Φ=10 4 -10 11 n.s -1 ). The dose equivalent rates explored is 0.01mSV--0.1SV

  19. Improvement of dose evaluation system for employees at severe accident in a nuclear power plant. Introduction of the dose rate conversion coefficient and addition of the access route edit function

    International Nuclear Information System (INIS)

    Sasaki, Yasuhiro; Minami, Noritoshi; Yoshida, Yoshitaka

    2006-01-01

    Institute of Nuclear Safety System, Inc. had developed the dose evaluation system to evaluate the radiation dose of employees at severe accident in a nuclear power plant. This system has features, which are (1) the dose rate of any evaluation point can be evaluated, (2) the dose rate at any time can be evaluated in consideration of the change in the radioactive source, (3) the dose rate map in the plant can be displayed (4) the dose along the access route when moving can be evaluated, and it is possible to use it for examination of the accident management guideline on the dose side etc.. To upgrade the dose evaluation function of this system, the improvements had been done which were introduction of the dose rate conversion coefficient and addition of the access route edit function. By introducing the dose rate conversion coefficient, the calculation time of the dose rate map in the plant was shortened at about 20 seconds, and a new function to evaluate time-dependent dose rate of any evaluation point was added. By adding the access route edit function, it became possible to re-calculate the dose easily at the route change. (author)

  20. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture

    OpenAIRE

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2015-01-01

    The air dose rate in an environment contaminated with 134Cs and 137Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima D...

  1. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo, E-mail: Facundo.Ballester@uv.es [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Carlsson Tedgren, Åsa [Department of Medical and Health Sciences (IMH), Radiation Physics, Faculty of Health Sciences, Linköping University, Linköping SE-581 85, Sweden and Department of Medical Physics, Karolinska University Hospital, Stockholm SE-171 76 (Sweden); Granero, Domingo [Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia E-46014 (Spain); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Institute of Technology, Melbourne, Victoria 3000 (Australia); Mourtada, Firas [Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware 19713 (United States); Fonseca, Gabriel Paiva [Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Zourari, Kyveli; Papagiannis, Panagiotis [Medical Physics Laboratory, Medical School, University of Athens, 75 MikrasAsias, Athens 115 27 (Greece); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105 (Germany); Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  2. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths

    International Nuclear Information System (INIS)

    Anav, A.; Rafanelli, C.; Di Menno, I.; Di Menno, M.

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Aalesund (Svalbard Islands (Norway)) and Ushuaia (Tierra del Fuego (Argentina)). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectro-radiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about ±2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than ∼20% for solar zenith angles <50 deg.. (authors)

  3. Evaluation of absorbed radiation dose rate in a didactic X-ray equipment; Avaliacao da taxa de dose absorvida em um equipamento de raios-X didatico

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Phelipe Amaral Ferreira; Perini, Ana Paula; Neves, Lucio Pereira, E-mail: lucio.neves@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica

    2016-07-01

    This work was performed in order to create a new didactic experiment in the X-ray apparatus of PHYWE, where the saturation current was obtained through a free air ionization chamber. The values of saturation currents were obtained in two ways. Initially, the anodic DDP was kept constant and the anodic current was varied. In the second way, the anodic current was kept constant while the anodic DDP was varied. Therefore, we were able to evaluate the dependence of the absolved dose rate in relation to the DDP and the tube current. (author)

  4. Needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer evaluated by repeated MRI.

    Science.gov (United States)

    Buus, Simon; Lizondo, Maria; Hokland, Steffen; Rylander, Susanne; Pedersen, Erik M; Tanderup, Kari; Bentzen, Lise

    To quantify needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer and propose a threshold for needle migration. Twenty-four high-risk prostate cancer patients treated with an HDR boost of 2 × 8.5 Gy were included. Patients received an MRI for planning (MRI1), before (MRI2), and after treatment (MRI3). Time from needle insertion to MRI3 was ∼3 hours. Needle migration was evaluated from coregistered images: MRI1-MRI2 and MRI1-MRI3. Dose volume histogram parameters from the treatment plan based on MRI1 were related to parameters based on needle positions in MRI2 or MRI3. Regression was used to model the average needle migration per implant and change in D90 clinical target volume, CTV prostate+3mm . The model fit was used for estimating the dosimetric impact in equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy. Needle migration was on average 2.2 ± 1.8 mm SD from MRI1-MRI2 and 5.0 ± 3.0 mm SD from MRI1-MRI3. D90 CTV prostate+3mm was robust toward average needle migration ≤3 mm, whereas for migration >3 mm D90 decreased by 4.5% per mm. A 3 mm of needle migration resulted in a decrease of 0.9, 1.7, 2.3, 4.8, and 7.6 equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy, respectively. Substantial needle migration in high-dose-rate brachytherapy occurs frequently in 1-3 hours following needle insertion. A 3-mm threshold of needle migration is proposed, but 2 mm may be considered for dose levels ≥15 Gy. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  5. Evaluation of failure modes of computerized planning phase of interstitial implants with high dose rate brachytherapy using HFMEA

    International Nuclear Information System (INIS)

    Biazotto, Bruna; Tokarski, Marcio

    2014-01-01

    This paper evaluates the failure modes of the computerized planning step in interstitial implants with high dose rate brachytherapy. The prospective tool of risk management Health Care Failure Mode and Effects Analysis (HFMEA) was used. Twelve subprocesses were identified, and 33 failure modes of which 21 justified new safety actions, and 9 of them were intolerable risks. The method proved itself useful in identifying failure modes, but laborious and subjective in their assessment. The main risks were due to human factors, which require training and commitment of management to their mitigation. (author)

  6. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  7. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  8. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  9. Instrument evaluation no. 1. Nuclear Enterprises dose rate meter type NE 2602

    International Nuclear Information System (INIS)

    White, D.F.

    1974-01-01

    The NE2602 is a portable, battery-operated instrument for the measurement of exposure rates from 0.1 mR/h to 200 mR/h. The detector is an internally mounted Geiger-Muller tube provided with a correcting filter to minimise the variation of response with radiation energy. The instrument was specifically designed for the measurement of exposure rates from packages intended for transport. The detector is therefore mounted very close to the front surface of the instrument. The information is given under the following headings: facilities and controls; radiation performance; electrical characteristics; summary of performance; calibration procedure; construction; conclusions. (U.K.)

  10. SU-F-J-38: Dose Rates and Preliminary Evaluation of Contouring Similarity Metrics Using 4D Cone Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Santoso, A [Wayne State University School of Medicine, Detroit, Michigan (United States); Song, K; Qin, Y; Gardner, S; Liu, C; Cattaneo, R; Chetty, I; Movsas, B; Aljouni, M; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: 4D imaging modalities require detailed characterization for clinical optimization. The On-Board Imager mounted on the linear accelerator was used to investigate dose rates in a tissue mimicking phantom using 4D-CBCT and assess variability of contouring similarity metrics between 4D-CT and 4D-CBCT retrospective reconstructions. Methods: A 125 kVp thoracic protocol was used. A phantom placed on a motion platform simulated a patient’s breathing cycle. An ion chamber was affixed inside the phantom’s tissue mimicking cavities (i.e. bone, lung, and soft tissue). A sinusoidal motion waveform was executed with a five second period and superior-inferior motion. Dose rates were measured at six ion chamber positions. A preliminary workflow for contouring similarity between 4D-CT and 4D-CBCT was established using a single lung SBRT patient’s historical data. Average intensity projection (Ave-IP) and maximum intensity projection (MIP) reconstructions generated offline were compared between the 4D modalities. Similarity metrics included Dice similarity coefficient (DSC), Hausdorff distance, and center of mass (COM) deviation. Two isolated lesions were evaluated in the patient’s scans: one located in the right lower lobe (ITVRLL) and one located in the left lower lobe (ITVLLL). Results: Dose rates ranged from 2.30 (lung) to 5.18 (bone) E-3 cGy/mAs. For fixed acquisition parameters, cumulative dose is inversely proportional to gantry speed. For ITVRLL, DSC were 0.70 and 0.68, Hausdorff distances were 6.11 and 5.69 mm, and COM deviations were 1.24 and 4.77 mm, for Ave-IP and MIP respectively. For ITVLLL, DSC were 0.64 and 0.75, Hausdorff distances were 10.74 and 8.00 mm, and COM deviations were 7.55 and 4.3 mm, for Ave-IP and MIP respectively. Conclusion: While the dosimetric output of 4D-CBCT is low, characterization is necessary to assure clinical optimization. A basic workflow for comparison of simulation and treatment 4D image-based contours was established

  11. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  12. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  14. Evaluation of the impact of a system for real-time visualisation of occupational radiation dose rate during fluoroscopically guided procedures

    International Nuclear Information System (INIS)

    Sandblom, V; Almén, A; Cederblad, A.; Båth, M; Lundh, C; Mai, T; Rystedt, H

    2013-01-01

    Optimisation of radiological protection for operators working with fluoroscopically guided procedures has to be performed during the procedure, under varying and difficult conditions. The aim of the present study was to evaluate the impact of a system for real-time visualisation of radiation dose rate on optimisation of occupational radiological protection in fluoroscopically guided procedures. Individual radiation dose measurements, using a system for real-time visualisation, were performed in a cardiology laboratory for three cardiologists and ten assisting nurses. Radiation doses collected when the radiation dose rates were not displayed to the staff were compared to radiation doses collected when the radiation dose rates were displayed. When the radiation dose rates were displayed to the staff, one cardiologist and the assisting nurses (as a group) significantly reduced their personal radiation doses. The median radiation dose (H p (10)) per procedure decreased from 68 to 28 μSv (p = 0.003) for this cardiologist and from 4.3 to 2.5 μSv (p = 0.001) for the assisting nurses. The results of the present study indicate that a system for real-time visualisation of radiation dose rate may have a positive impact on optimisation of occupational radiological protection. In particular, this may affect the behaviour of staff members practising inadequate personal radiological protection. (paper)

  15. The dose-rate effect

    International Nuclear Information System (INIS)

    Steel, G.G.

    1989-01-01

    This paper presents calculations that illustrate two conclusions; for any particular cell type there will be a critical radius at which tumor control breaks down, and the radius at which this occurs is strongly dependent upon the low-dose-rate radiosensitivity of the cells

  16. Radiation shielding and dose rate evaluation at the interim storage facility for spent fuel from Cernavoda NPP

    International Nuclear Information System (INIS)

    Stanciu, Marcela; Mateescu, Silvia; Pantazi, Doina; Penescu, Maria

    2000-01-01

    At present studies necessary to license the Interim Storage Facility for the Spent Fuel (CANDU type) from Cernavoda NPP are developed in our country.The spent fuel from Cernavoda NPP is discharged into Spent Fuel Bay in Service Building of the plant, where it remains several years for cooling. After this period, the bundles of spent fuel are to be transferred to the Interim Storage Facility.The dry interim storage solution seems to be the most appropriate variant for Cernavoda NPP.The design of the Spent Fuel Interim Storage Facility must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility achievement. In this paper we intend to present the calculation of radiation shielding at the spent fuel interim storage facility for two technical solutions: - Concrete Monolithic Module and Concrete Storage Cask. In order to quantify the fuel composition after irradiation, the isotope generation and depletion code ORIGEN 2.1 has been used, taking into account a cooling time of 7 years and 9 years, respectively, for these two variants. The shielding calculations have been performed using the computer codes QAD-5K and MICROSHIELD-4. The evaluations refer only to gamma radiation because the resulting neutron source (from (α,n) reactions and spontaneous fission) is insignificant as compared to the gamma source. The final results consist in the minimum thickness of the shielding and the corresponding external dose rates, ensuring a design average dose rate based on national and international regulations. (authors)

  17. Dosimetric evaluation of a novel high dose rate (HDR) intraluminal / interstitial brachytherapy applicator for gastrointestinal and bladder cancers

    Science.gov (United States)

    Aghamiri, Seyyed Mahmoud Reza; Najarian, Siamak; Jaberi, Ramin

    2010-01-01

    High dose rate (HDR) brachytherapy is one of the accepted treatment modalities in gastro‐intestinal tract and bladder carcinomas. Considering the shortcoming of contact brachytherapy routinely used in gastrointestinal tract in treatment of big tumors or invasive method of bladder treatment, an intraluminal applicator with the capability of insertion into the tumor depth seems to be useful. This study presents some dosimetric evaluations to introduce this applicator to the clinical use. The radiation attenuation characteristics of the applicator were evaluated by means of two dosimetric methods including well‐type chamber and radiochromic film. The proposed 110 cm long applicator has a flexible structure made of stainless steel for easy passage through lumens and a needle tip to drill into big tumors. The 2 mm diameter of the applicator is thick enough for source transition, while easy passage through any narrow lumen such as endoscope or cystoscope working channel is ensured. Well‐chamber results showed an acceptably low attenuation of this steel springy applicator. Performing absolute dosimetry resulted in a correlation coefficient of R=0.9916(p‐value≈10−7) between standard interstitial applicator and the one proposed in this article. This study not only introduces a novel applicator with acceptable attenuation but also proves the response independency of the GAFCHROMIC EBT films to energy. By applying the dose response of the applicator in the treatment planning software, it can be used as a new intraluminal / interstitial applicator. PACS number: 87.53.Bn, 87.53.Jw, 29.40.Cs

  18. Performance evaluation and dose verification of the low dose rate permanent prostrate brachytherapy system at the korle-bu Teaching Hospital

    International Nuclear Information System (INIS)

    Asenso, Y.A.

    2015-07-01

    Low dose rate prostate brachytherapy equipment that is newly acquired or substantially upgraded requires acceptance testing before being put into clinical service as well as Quality control after installation and when in use. Thus, quality control tests typically are periodic repetitions, partial or full, of acceptance and commissioning tests. The ultrasound system is the most important equipment used in LDR prostate brachytherapy. The AAPM TG 128 provides a set of instructions for quality control testing of an ultrasound system with a specific focus on those tests applicable to image guidance during a prostate implant procedure. Following the AAPM TG 128 protocol and CIRS 045 brachytherapy QA phantom as well as other protocols, eight experiments were performed to evaluate the performance of the system. The overall average axial distance in the B and F columns were found to be 10.12 ± 0.1 mm and 10.10 ± 0.11 mm respectively deviating by approximately 1.2 % and 1.0 % respectively from a standard inter- target distance of 10 mm. Also the lateral distance measured along the rows 1, 2, 3 and 4 resulted in an average distance of 10.07 ± 0.06 mm along rows B4 – C4, deviating from the standard inter- target distance of 10 mm by approximately 0.07 mm or ± 0.7 %, that of B3 – D3 also was 20.01 ± 0.07, deviating from 20 mm standard inter- target distance by 0.01 mm or 0.05 %, targets along B2 – E2 recorded an average distance of 29.56 ± 0.33 mm deviating from 30 mm standard inter- target distance by approximately -0.44 mm or -1.47 % and the last which is B1 – F1 also recorded an average distance of 39.54 ± 0.38 mm deviating from 40 mm standard inter- target distance by approximately -0.46 mm or – 1.15 %. Volume measurement accuracy of the three standard volumes, 4 cm 3 , 9 cm 3 and 20 cm 3 produced average measurements of 3.97 ± 0.16 cm 3 , 8.86 ± 0.29 cm 3 and 20.11 ± 1.04 cm 3 resulting in approximate deviations of -0.75 %, -1.56 % and 0

  19. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  20. Evaluation of Geometrically Optimized Single- and Double-plane Interstitial High Dose Rate Implants with Respect to Conformality and Homogeneity

    International Nuclear Information System (INIS)

    Major, Tibor; Polgar, Csaba; Fodor, Janos; Takacsi-nagy, Zoltan; Mangel, Laszlo; Nemeth, Gyoergy

    2003-01-01

    The use of a stepping source in high dose rate brachytherapy supported with dwell-time optimization makes it possible to deviate from the classical dosimetry systems. Dose distributions of single- and double-plane implants were analysed for conformality and homogeneity at idealized target volumes. The Paris system was used for catheter positioning and target volume determination. Geometric optimization and individual dose prescription were applied. Volumetric indices and dose parameters were calculated at optimal active length, which was found to be equal to target volume length. The mean conformality, homogeneity, external volume and overdose volume indices were 0.78, 0.67, 0.22 and 0.13, respectively. The average minimum target and reference doses were 69% and 86%, respectively. Comparisons between the volumetric indices of geometrical optimized and non-optimized implants were also performed, and a significant difference was found regarding any index. The geometrical optimization resulted in superior conformality and slightly inferior homogeneity. At geometrically optimized implants, the active length can be reduced compared to non-optimized implants. Volumetric parameters and dose-volume histogram-based individual dose prescription are recommended for quantitative assessment of interstitial implants

  1. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  2. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit

    Science.gov (United States)

    Dehairs, M.; Bosmans, H.; Desmet, W.; Marshall, N. W.

    2017-08-01

    Current automatic dose rate controls (ADRCs) of dynamic x-ray imaging systems adjust their acquisition parameters in response to changes in patient thickness in order to achieve a constant signal level in the image receptor. This work compares a 3 parameter (3P) ADRC control to a more flexible 5-parameter (5P) method to meet this goal. A phantom composed of 15 composite poly(methyl) methacrylate (PMMA)/aluminium (Al) plates was imaged on a Siemens Artis Q dynamic system using standard 3P and 5P ADRC techniques. Phantom thickness covered a water equivalent thickness (WET) range of 2.5 cm to 37.5 cm. Acquisition parameter settings (tube potential, tube current, pulse length, copper filtration and focus size) and phantom entrance air kerma rate (EAKR) were recorded as the thickness changed. Signal difference to noise ratio (SDNR) was measured using a 0.3 mm iron insert centred in the PMMA stack, positioned at the system isocentre. SDNR was then multiplied by modulation transfer function (MTF) based correction factors for focal spot penumbral blurring and motion blurring, to give a spatial frequency dependent parameter, SDNR(u). These MTF correction factors were evaluated for an object motion of 25 mm s-1 and at a spatial frequency of 1.4 mm-1 in the object plane, typical for cardiac imaging. The figure of merit (FOM) was calculated as SDNR(u)²/EAKR for the two ADRC regimes. Using 5P versus 3P technique showed clear improvements over all thicknesses. Averaged over clinically relevant adult WET values (20 cm-37.5 cm), EAKR was reduced by 13% and 27% for fluoroscopy and acquisition modes, respectively, while the SDNR(u) based FOM increased by 16% and 34% for fluoroscopy and acquisition. In conclusion, the generalized FOM, taking into account the influence of focus size and object motion, showed benefit in terms of image quality and patient dose for the 5-parameter control over 3-parameter method for the ADRC programming of dynamic x-ray imaging systems.

  3. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    International Nuclear Information System (INIS)

    Lu, Sharon M.; Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn

    2012-01-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6–1 and 8–1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10–1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3–1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura

  4. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  5. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  6. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  7. Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nicolae, Alexandru [Department of Physics, Ryerson University, Toronto, Ontario (Canada); Department of Medical Physics, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Morton, Gerard; Chung, Hans; Loblaw, Andrew [Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Jain, Suneil; Mitchell, Darren [Department of Clinical Oncology, The Northern Ireland Cancer Centre, Belfast City Hospital, Antrim, Northern Ireland (United Kingdom); Lu, Lin [Department of Radiation Therapy, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Helou, Joelle; Al-Hanaqta, Motasem [Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Heath, Emily [Department of Physics, Carleton University, Ottawa, Ontario (Canada); Ravi, Ananth, E-mail: ananth.ravi@sunnybrook.ca [Department of Medical Physics, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2017-03-15

    Purpose: This work presents the application of a machine learning (ML) algorithm to automatically generate high-quality, prostate low-dose-rate (LDR) brachytherapy treatment plans. The ML algorithm can mimic characteristics of preoperative treatment plans deemed clinically acceptable by brachytherapists. The planning efficiency, dosimetry, and quality (as assessed by experts) of preoperative plans generated with an ML planning approach was retrospectively evaluated in this study. Methods and Materials: Preimplantation and postimplantation treatment plans were extracted from 100 high-quality LDR treatments and stored within a training database. The ML training algorithm matches similar features from a new LDR case to those within the training database to rapidly obtain an initial seed distribution; plans were then further fine-tuned using stochastic optimization. Preimplantation treatment plans generated by the ML algorithm were compared with brachytherapist (BT) treatment plans in terms of planning time (Wilcoxon rank sum, α = 0.05) and dosimetry (1-way analysis of variance, α = 0.05). Qualitative preimplantation plan quality was evaluated by expert LDR radiation oncologists using a Likert scale questionnaire. Results: The average planning time for the ML approach was 0.84 ± 0.57 minutes, compared with 17.88 ± 8.76 minutes for the expert planner (P=.020). Preimplantation plans were dosimetrically equivalent to the BT plans; the average prostate V150% was 4% lower for ML plans (P=.002), although the difference was not clinically significant. Respondents ranked the ML-generated plans as equivalent to expert BT treatment plans in terms of target coverage, normal tissue avoidance, implant confidence, and the need for plan modifications. Respondents had difficulty differentiating between plans generated by a human or those generated by the ML algorithm. Conclusions: Prostate LDR preimplantation treatment plans that have equivalent quality to plans created

  8. Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Nicolae, Alexandru; Morton, Gerard; Chung, Hans; Loblaw, Andrew; Jain, Suneil; Mitchell, Darren; Lu, Lin; Helou, Joelle; Al-Hanaqta, Motasem; Heath, Emily; Ravi, Ananth

    2017-01-01

    Purpose: This work presents the application of a machine learning (ML) algorithm to automatically generate high-quality, prostate low-dose-rate (LDR) brachytherapy treatment plans. The ML algorithm can mimic characteristics of preoperative treatment plans deemed clinically acceptable by brachytherapists. The planning efficiency, dosimetry, and quality (as assessed by experts) of preoperative plans generated with an ML planning approach was retrospectively evaluated in this study. Methods and Materials: Preimplantation and postimplantation treatment plans were extracted from 100 high-quality LDR treatments and stored within a training database. The ML training algorithm matches similar features from a new LDR case to those within the training database to rapidly obtain an initial seed distribution; plans were then further fine-tuned using stochastic optimization. Preimplantation treatment plans generated by the ML algorithm were compared with brachytherapist (BT) treatment plans in terms of planning time (Wilcoxon rank sum, α = 0.05) and dosimetry (1-way analysis of variance, α = 0.05). Qualitative preimplantation plan quality was evaluated by expert LDR radiation oncologists using a Likert scale questionnaire. Results: The average planning time for the ML approach was 0.84 ± 0.57 minutes, compared with 17.88 ± 8.76 minutes for the expert planner (P=.020). Preimplantation plans were dosimetrically equivalent to the BT plans; the average prostate V150% was 4% lower for ML plans (P=.002), although the difference was not clinically significant. Respondents ranked the ML-generated plans as equivalent to expert BT treatment plans in terms of target coverage, normal tissue avoidance, implant confidence, and the need for plan modifications. Respondents had difficulty differentiating between plans generated by a human or those generated by the ML algorithm. Conclusions: Prostate LDR preimplantation treatment plans that have equivalent quality to plans created

  9. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  10. A summary of the performance of exposure rate and dose rate instruments contained in instrument evaluation reports NRPB-IE1 to NRPB-IE13

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1979-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report provides a concise summary of measurements of the more important performance characteristics of radiation protection dose rate or exposure rate survey instruments which have been assessed by NRPB as part

  11. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  12. Dose-rate dependence of thermoluminescence response

    International Nuclear Information System (INIS)

    McKeever, S.W.S.; Chen, R.; Groom, P.J.; Durrani, S.A.

    1980-01-01

    The previously observed dose-rate effect of thermoluminescence in quartz at high dose-rates is given at theoretical formulation. Computer calculations simulating the experimental conditions yield similar results to the experimental ones. (orig.)

  13. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  14. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  15. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  16. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  17. Estimation of dose rate of a package ({sup 223+}Ra) and evaluation of transport index; Dosisleistungsabschaetzung bei einem Versandstueck ({sup 223+}Ra) und Ermittlung der Transportkennzahl nach ADR

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Michael [TUEV SUED Industrie Services GmbH, Region Nordost, Leipzig (Germany). Anlagensicherheit/Strahlenschutz; Richter, Jens [TUEV SUED Industrie Services GmbH, Region Nordost, Dresden (Germany). Anlagensicherheit/Strahlenschutz

    2016-08-01

    The transport index of a package is to be determined according to provisions of the ADR. It is directly related to the maximum radiation level in mSv/h at a distance of 1 m from the external surface of the package or pallet. To evaluate the existing distribution of the dose equivalent outside the package or pallet calculations of photon dose rates are required. For Monte-Carlo simulations with MCNP5 a three-dimensional model of a package containing Xofigo trademark was created, which contains all relevant sources from {sup 223}Ra and its decay chain.

  18. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  19. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  20. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1995-09-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP(Monte Carlo N-Particle) computer code and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time

  1. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1996-01-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP (Monte Carlo N-Particle) computer code (Briesmeister 1993) and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time. copyright 1996 American Institute of Physics

  2. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    implants with a weight of 1393 g the maximum dose rate of 6.5276 kGy /h, the minimum dose rate of 3.5684 kGy /h and the dose uniformity of 1 83 were determined. Then, based on the minimum dose rate irradiation times were calculated for different doses to evaluate in the microbial decontamination of food (3, 5, 8 and 12 kGy) and the sterilization of medical material by radiation (15, 20, 25 and 40 kGy), corroborating the applied doses with routine dosimeters of ethanol chlorobenzene (1-100 kGy) and perspex network 4034 (5-50 kGy). Other routine dosimeters used in different applications according to the doses range are Gafchromic Hd (40-400 Gray) for induced mutation by radiation and the development of new varieties of plants, the sterile insect technique to eradicate pests, quarantine treatment to solve plant health problems. Ambar Perspex 3042 C (3-15 kGy) for microbial decontamination of dried foods, spices, aromatic herbs, medicinal plants, etc. GEX B-3000 (1-140 kGy) and FWT (0.5-200 kGy) for sterilization of medical and pharmaceutical material, cosmetics, biological tissues, etc. The minimum dose rate allowing to calculate the irradiation times to apply the desired dose for the research or industrial processes, taking into account the density and geometry of product. Is notorious the difference in dose uniformity in food (1, 16) and medical material (1, 83) due to the geometry and relative density of the products within the irradiation cylinder. (author)

  3. Dose rate correction in medium dose rate brachytherapy for carcinoma cervix

    International Nuclear Information System (INIS)

    Patel, F.D.; Negi, P.S.; Sharma, S.C.; Kapoor, R.; Singh, D.P.; Ghoshal, S.

    1998-01-01

    Purpose: To establish the magnitude of brachytherapy dose reduction required for stage IIB and III carcinoma cervix patients treated by external radiation and medium dose rate (MDR) brachytherapy at a dose rate of 220±10 cGy/h at point A.Materials and methods: In study-I, at the time of MDR brachytherapy application at a dose rate of 220±10 cGy/h at point A, patients received either 3060 cGy, a 12.5% dose reduction (MDR-12.5), or 2450 cGy, a 30% dose reduction (MDR-30), to point A and they were compared to a group of previously treated LDR patients who received 3500 cGy to point A at a dose rate of 55-65 cGy/h. Study-II was a prospective randomized trial and patients received either 2450 cGy, a 30% dose reduction (MDR-II (30)) or 2800 cGy, a 20% dose reduction (MDR-II (20)), at point A. Patients were evaluated for local control of disease and morbidity. Results: In study-I the 5-year actuarial local control rate in the MDR-30 and MDR-12.5 groups was 71.7±10% and 70.5±10%, respectively, compared to 63.4±10% in the LDR group. However, the actuarial morbidity (all grades) in the MDR-12.5 group was 58.5±14% as against 34.9±9% in the LDR group (P 3 developed complication as against 62.5% of those receiving a rectal BED of (140 3 (χ 2 =46.43; P<0.001). Conclusion: We suggest that at a dose rate of 220±10 cGy/h at point A the brachytherapy dose reduction factor should be around 30%, as suggested by radiobiological data, to keep the morbidity as low as possible without compromising the local control rates. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Endorectal high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  5. Evaluation of quality characteristics and functional properties of mechanically deboned chicken meats treated with different dose rates of ionizing radiation and use of antioxidants

    International Nuclear Information System (INIS)

    Brito, Poliana de Paula

    2012-01-01

    The Mechanically Deboned chicken meat (MDCM) is used in traditional meat products, in greater proportion in those emulsified, replacing meat raw materials more expensive. The raw material can have high MDCM the microbial load, as a result of contamination during processing or failure during the evisceration. The irradiation process is accepted as one of the most effective technologies when compared to conventional techniques of preservation, to reduce contamination of pathogens and spoilage. However, little information is available about the use and effects of different dose rates of ionizing radiation processing. Irradiation causes chemical changes in food, a major cause of deterioration of quality of raw or cooked meat products during refrigerated storage, frozen. The objective of this study was to evaluate the effects of different dose rates of ionizing radiation on the production of Thiobarbituric Acid Reactive Substances (TBARS), color, microbiological and sensory characteristics of mechanically deboned chicken added or without added antioxidants, during the cold storage and evaluation of functional properties. The results showed that among the tested dose rates using cobalt-60 source, dose rate of 4.04 kGy.h-1 was the best for processing MDCM. Furthermore, the use of the combination of rosemary antioxidant and α-tocopherol were able to reduce lipid oxidation generated by irradiation of the samples, showed a synergistic effect to the processing with ionizing radiation in reduction of psychrotrophic bacteria count and contributed to a better sensory quality. The use of radiation in the processing FDMI did not adversely affect the functional properties studied. (author)

  6. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin [Department of Radiation Oncology, Peggy and Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (United States)

    2012-10-23

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  7. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  8. Evaluation of the effect of radiation levels and dose rates in irradiation of murine fibroblasts used as a feeder layer in the culture of human keratinocytes

    International Nuclear Information System (INIS)

    Yoshito, Daniele; Almeida, Tiago L.; Santin, Stefany Plumeri; Somessari, Elizabeth S.R.; Silveira, Carlos G. da; Mathor, Monica B.; Altran, Silvana C.; Isaac, Cesar

    2009-01-01

    In 1975, Rheinwald and Green published an effective methodology for obtaining and cultivating human keratinocytes. This methodology consisted of seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate of which is then controlled through the action of ionizing radiation. The presence of the feeder layer encourages the development of keratinocyte colonies and their propagation in similar cultures, becoming possible several clinical applications as skin substitutes or wound dressings in situations such as post burn extensive skin loss and other skin disorders. However, good development of these keratinocytes depends on a high quality feeder layer among other factors. In the present work, we evaluated the relationship between radiation levels and dose rates applied to fibroblasts used in construction of feeder layers and the radiation effect on keratinocytes colonies forming efficiency. Results indicate 3T3 lineage murine fibroblasts irradiated with doses varying between 60 and 100 Gy can be used as a feeder layer immediately after irradiation or storage of the irradiated cells in suspension at 4 g C for 24 hours with similar results. The exception is when the irradiation dose rate is 2.75 Gyh -1 ; in this case, results suggested that the fibroblasts should be used immediately after irradiation. (author)

  9. Concrete spent fuel storage casks dose rates

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Trontl, K.

    1998-01-01

    Our intention was to model a series of concrete storage casks based on TranStor system storage cask VSC-24, and calculate the dose rates at the surface of the casks as a function of extended burnup and a prolonged cooling time. All of the modeled casks have been filled with the original multi-assembly sealed basket. The thickness of the concrete shield has been varied. A series of dose rate calculations for different burnup and cooling time values have been performed. The results of the calculations show rather conservative original design of the VSC-24 system, considering only the dose rate values, and appropriate design considering heat rejection.(author)

  10. Analysis of radiation dose rate profile in the ambient Bhabha Atomic Research Centre, Trombay environment to evaluate radiation hazard

    International Nuclear Information System (INIS)

    Vikas; Anoj Kumar; Meena, T.R.; Vikas Kumar; Patra, R.P.; Patil, S.S.; Murali, S.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    Periodic radiological survey and its analysis are useful on a two way approach. First, it will be used to generate baseline dose profile that will be prominently important during any radiological emergency. Secondly, due to some unforeseen human acts if orphan/abandoned radioactive source were present across Bhabha Atomic Research Centre site, the same can be detected and retrieved from the incident location. Periodic radiation survey of Bhabha Atomic Research Centre, Trombay site primarily validate/serve as an indicator of integrity of the various safety measures at the different nuclear fuel cycle facilities and on the prevailing radiological status at the vicinity of the facilities at Bhabha Atomic Research Centre, Trombay site. Radiation dose profile as a quality information has been accumulated in the last five years. Analysis of data has led to the conclusion that there has been no increase in hazard over the years though the quantum of radioactivity processed at the various facilities has undergone wide increase and radiation hazard at the site continues to be very negligible. Nuclear fuel cycle activities at Bhabha Atomic Research Centre do not pose any excess radiation risk at the site

  11. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  12. Terrestrial gamma dose rate in Pahang state Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  13. Investigation of the dose rate dependency of the PAGAT gel dosimeter at low dose rates

    International Nuclear Information System (INIS)

    Zehtabian, M.; Faghihi, R.; Zahmatkesh, M.H.; Meigooni, A.S.; Mosleh-Shirazi, M.A.; Mehdizadeh, S.; Sina, S.; Bagheri, S.

    2012-01-01

    Medical physicists need dosimeters such as gel dosimeters capable of determining three-dimensional dose distributions with high spatial resolution. To date, in combination with magnetic resonance imaging (MRI), polyacrylamide gel (PAG) polymers are the most promising gel dosimetry systems. The purpose of this work was to investigate the dose rate dependency of the PAGAT gel dosimeter at low dose rates. The gel dosimeter was used for measurement of the dose distribution around a Cs-137 source from a brachytherapy LDR source to have a range of dose rates from 0.97 Gy h −1 to 0.06 Gy h −1 . After irradiation of the PAGAT gel, it was observed that the dose measured by gel dosimetry was almost the same at different distances (different dose rates) from the source, although the points nearer the source had been expected to receive greater doses. Therefore, it was suspected that the PAGAT gel is dose rate dependent at low dose rates. To test this further, three other sets of measurements were performed by placing vials containing gel at different distances from a Cs-137 source. In the first two measurements, several plastic vials were exposed to equal doses at different dose rates. An ionization chamber was used to measure the dose rate at each distance. In addition, three TLD chips were simultaneously irradiated in order to verify the dose to each vial. In the third measurement, to test the oxygen diffusion through plastic vials, the experiment was repeated again using plastic vials in a nitrogen box and glass vials. The study indicates that oxygen diffusion through plastic vials for dose rates lower than 2 Gy h −1 would affect the gel dosimeter response and it is suggested that the plastic vials or (phantoms) in an oxygen free environment or glass vials should be used for the dosimetry of low dose rate sources using PAGAT gel to avoid oxygen diffusion through the vials.

  14. High dose rate versus low dose rate interstitial radiotherapy for carcinoma of the floor of mouth

    International Nuclear Information System (INIS)

    Inoue, Takehiro; Inoue, Toshihiko; Yamazaki, Hideya; Koizumi, Masahiko; Kagawa, Kazufumi; Yoshida, Ken; Shiomi, Hiroya; Imai, Atsushi; Shimizutani, Kimishige; Tanaka, Eichii; Nose, Takayuki; Teshima, Teruki; Furukawa, Souhei; Fuchihata, Hajime

    1998-01-01

    Purpose: Patients with cancer of the floor of mouth are treated with radiation because of functional and cosmetic reasons. We evaluate the treatment results of high dose rate (HDR) and low dose rate (LDR) interstitial radiation for cancer of the floor of mouth. Methods and Materials: From January 1980 through March 1996, 41 patients with cancer of the floor of mouth were treated with LDR interstitial radiation using 198 Au grains, and from April 1992 through March 1996 16 patients with HDR interstitial radiation. There were 26 T1 tumors, 30 T2 tumors, and 1 T3 tumor. For 21 patients treated with interstitial radiation alone, a total radiation dose of interstitial therapy was 60 Gy/10 fractions/6-7 days in HDR and 85 Gy within 1 week in LDR. For 36 patients treated with a combination therapy, a total dose of 30 to 40 Gy of external radiation and a total dose of 48 Gy/8 fractions/5-6 days in HDR or 65 Gy within 1 week in LDR were delivered. Results: Two- and 5-year local control rates of patients treated with HDR interstitial radiation were 94% and 94%, and those with LDR were 75% and 69%, respectively. Local control rate of patients treated with HDR brachytherapy was slightly higher than that with 198 Au grains (p = 0.113). For late complication, bone exposure or ulcer occurred in 6 of 16 (38%) patients treated with HDR and 13 of 41 (32%) patients treated with LDR. Conclusion: HDR fractionated interstitial brachytherapy can be an alternative to LDR brachytherapy for cancer of the floor of mouth and eliminate radiation exposure for the medical staff

  15. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  16. Evolution of radon dose evaluation

    Directory of Open Access Journals (Sweden)

    Fujimoto Kenzo

    2004-01-01

    Full Text Available The historical change of radon dose evaluation is reviewed based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR reports. Since 1955, radon has been recognized as one of the important sources of exposure of the general public. However, it was not really understood that radon is the largest dose contributor until 1977 when a new concept of effective dose equivalent was introduced by International Commission on Radiological Protection. In 1982, the dose concept was also adapted by UNSCEAR and evaluated per caput dose from natural radiation. Many researches have been carried out since then. However, lots of questions have remained open in radon problems, such as the radiation weighting factor of 20 for alpha rays and the large discrepancy of risk estimation among dosimetric and epidemiological approaches.

  17. Carcinogenesis in mice after low doses and dose rates

    International Nuclear Information System (INIS)

    Ullrich, R.L.

    1979-01-01

    The results from the experimental systems reported here indicate that the dose-response curves for tumor induction in various tissues cannot be described by a single model. Furthermore, although the understanding of the mechanisms involved in different systems is incomplete, it is clear that very different mechanisms for induction are involved. For some tumors the mechanism of carcinogenesis may be mainly a result of direct effects on the target cell, perhaps involving one or more mutations. While induction may occur, in many instances, through such direct effects, the eventual expression of the tumor can be influenced by a variety of host factors including endocrine status, competence of the immune system, and kinetics of target and interacting cell populations. In other tumors, indirect effects may play a major role in the initiation or expression of tumors. Some of the hormone-modulated tumors would fall into this class. Despite the complexities of the experimental systems and the lack of understanding of the types of mechanisms involved, in nearly every example the tumorigenic effectiveness per rad of low-LET radiation tends to decrease with decreasing dose rate. For some tumor types the differences may be small or may appear only with very low dose rates, while for others the dose-rate effects may be large

  18. Air dose rate in Aichi Prefecture

    International Nuclear Information System (INIS)

    Ohnuma, Shoko; Chaya, Kunio; Tomita, Banichi; Aoyama, Kan; Yamada, Naoki; Yamada, Masuo; Hamamura, Norikatsu

    1985-01-01

    We have carried out the observations of air dose rate during 1964--1983 at the fixed points of Aichi Prefecture and investigated the distribution of air dose rate in this prefecture during 1979--1983. The results of these researches are as follows. 1) The apparent half time of radiation dose from the earth and the atmosphere during the last 20 years was about 9.7 years and it was longer than the apparent half time of fallout total β radioactivity in every rainfall that was about 3.2 years. 2) The influence of nuclear explosion test in China on the measurements of air does rate did not existed directly during the latter half of 20 years, not so as during the former and it was keeping decreasing. It was expected that the air dose rate would begin to indicate the natural radiation dose from the earth and the atmosphere in the near future. 3) The distribution of air dose rate in this prefecture depended strongly on the geology. The maximum value was 5.6 μR/hr (except cosmic rays) in Fujioka Cho, the minimum value was 1.9 μR/hr (except cosmic rays) in Tahara Cho and the average in the whole prefecture was 3.5+-0.7 μR/hr (except cosmic rays). 4) It was estimated that the radiation dose which the inhabitants received from the earth and the atmosphere was 17--52 m rem a year and the average was 31 m rem a year. (author)

  19. Air dose rate in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Chaya, Kunio; Tomita, Banichi; Aoyama, Kan; Yamada, Naoki; Yamada, Masuo; Hamamura, Norikatsu

    1985-03-01

    We have carried out the observations of air dose rate during 1964-1983 at the fixed points of Aichi Prefecture and investigated the distribution of air dose rate in this prefecture during 1979-1983. The results of these researches are as follows. 1) The apparent half time of radiation dose from the earth and the atmosphere during the last 20 years was about 9.7 years and it was longer than the apparent half time of fallout total ..beta.. radioactivity in every rainfall that was about 3.2 years. 2) The influence of nuclear explosion test in China on the measurements of air does rate did not existed directly during the latter half of 20 years, not so as during the former and it was keeping decreasing. It was expected that the air dose rate would begin to indicate the natural radiation dose from the earth and the atmosphere in the near future. 3) The distribution of air dose rate in this prefecture depended strongly on the geology. The maximum value was 5.6 ..mu..R/hr (except cosmic rays) in Fujioka Cho, the minimum value was 1.9 ..mu..R/hr (except cosmic rays) in Tahara Cho and the average in the whole prefecture was 3.5 +- 0.7 ..mu..R/hr (except cosmic rays). 4) It was estimated that the radiation dose which the inhabitants received from the earth and the atmosphere was 17-52 m rem a year and the average was 31 m rem a year.

  20. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  1. A new method for evaluating annual absorbed gamma dose rates in an archaeological site by combining the SSNTD technique with Monte Carlo simulations

    CERN Document Server

    Misdaq, M A; Erramli, H; Mikdad, A; Rzama, A; Yousif-Charif, M L

    1998-01-01

    Uranium and thorium contents in different layers of an archaeological site have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha-particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption coefficient of the gamma-photons emitted by the uranium ( sup 2 sup 3 sup 8 U), thorium ( sup 2 sup 3 sup 2 Th) and their corresponding decay products as well as the potassium-40 ( sup 4 sup 0 K) isotope for evaluating the annual absorbed gamma dose rates in the considered material samples. Results obtained have been compared with data obtained by using the TL dosimetry and Bell's methods. Ceramic samples belonging to the studied archaeological site have been dated.

  2. Radioactivities (dose rates) of rocks in Japan

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Minato, Susumu

    1995-01-01

    The radioactive distribution (radiation doses) of major rocks in Japan was monitored to clarify the factors influencing terrestrial gamma-ray absorbed dose rates. The rock samples were reduced to powder and analyzed by well-type NaI(Tl) scintillation detector and pulse height analyzer. Terrestrial gamma-ray dose rates were estimated in terms of gamma radiation dose rate 1 m above the ground. The radioactivity concentration was highest in acidic rock which contains much SiO 2 among igneous rock, followed by neutral rock, basic rock, and ultrabasic rock. The radioactive concentration was 30-40% lower in acidic and clastic rocks than those of the world average concentration. Higher radioactive concentration was observed in soils than the parent rocks of sedimentary rock and metamorphic rock. The gamma radiation dose rate was in proportion to the radioactive concentration of the rocks. To clarify the radioactive effect in the change course of rocks into soils, comparative measurement of outcrop and soil radioactive concentrations is important. (S.Y.)

  3. Reference Dose Rates for Fluoroscopy Guided Interventions

    International Nuclear Information System (INIS)

    Geleijns, J.; Broerse, J.J.; Hummel, W.A.; Schalij, M.J.; Schultze Kool, L.J.; Teeuwisse, W.; Zoetelief, J.

    1998-01-01

    The wide diversity of fluoroscopy guided interventions which have become available in recent years has improved patient care. They are being performed in increasing numbers, particularly at departments of cardiology and radiology. Some procedures are very complex and require extended fluoroscopy times, i.e. longer than 30 min, and radiation exposure of patient and medical staff is in some cases rather high. The occurrence of radiation-induced skin injuries on patients has shown that radiation protection for fluoroscopy guided interventions should not only be focused on stochastic effects, i.e. tumour induction and hereditary risks, but also on potential deterministic effects. Reference dose levels are introduced by the Council of the European Communities as an instrument to achieve optimisation of radiation protection in radiology. Reference levels in conventional diagnostic radiology are usually expressed as entrance skin dose or dose-area product. It is not possible to define a standard procedure for complex interventions due to the large inter-patient variations with regard to the complexity of specific interventional procedures. Consequently, it is not realistic to establish a reference skin dose or dose-area product for complex fluoroscopy guided interventions. As an alternative, reference values for fluoroscopy guided interventions can be expressed as the entrance dose rates on a homogeneous phantom and on the image intensifier. A protocol has been developed and applied during a nationwide survey of fluoroscopic dose rate during catheter ablations. From this survey reference entrance dose rates of respectively 30 mGy.min -1 on a polymethylmethacrylate (PMMA) phantom with a thickness of 21 cm, and of 0.8 μGy.s -1 on the image intensifier have been derived. (author)

  4. Dose-rate determination by radiochemical analysis

    International Nuclear Information System (INIS)

    Mangini, A.; Pernicka, E.; Wagner, G.A.

    1983-01-01

    At the previous TL Specialist Seminr we had suggested that α-counting is an unsuitable technique for dose-rate determination due to overcounting effects. This is confirmed by combining α-counting, neutron activation analysis, fission track counting, α-spectrometry on various pottery samples. One result of this study is that disequilibrium in the uranium decay chain alone cannot account for the observed discrepancies between α-counting and chemical analysis. Therefore we propose for routine dose-rate determination in TL dating to apply chemical analysis of the radioactive elements supplemented by an α-spectrometric equilibrium check. (author)

  5. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    Science.gov (United States)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly

  6. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  7. On determining dose rate constants spectroscopically

    International Nuclear Information System (INIS)

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-01

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of 125 I and 103 Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089–6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated 125 I and 103 Pd sources. Methods: Spectra generated by 14 125 I and 6 103 Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm 3 voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the 125 I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for 103 Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ⩽0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in 125 I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The 103 Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different

  8. Manual of dose evaluation from atmospheric releases

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Abrol, V [Health Physics Division, Bhabha Atomic Research Centre, Bombay (India)

    1978-07-01

    The problem of dose evaluation from atmospheric releases is reduced to simple arithmetic by giving tables of concentrations and time integrated concentrations for instantaneous plumes and long time (1 year), sector averaged plumes for distances upto 10 km, effective release heights of upto 200 m and the six Pasquill stability classes. Correction factors for decay, depletion due to deposition and rainout are also given. Inhalation doses, immersion doses and contamination levels can be obtained from these by using multiplicative factors tabulated for various isotopes of significance. Tables of external gamma doses from plume are given separately for various gamma energies. Tables are also given to evaluate external beta and gamma dose rates from contaminated surfaces. The manual also discusses the basic diffusion model relevant to the problem. (author)

  9. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  10. Problems in continuous dose rate measurement

    International Nuclear Information System (INIS)

    Yoshioka, Mitsuo

    1983-01-01

    The system of continuous dose rate measurement in Fukui Prefecture is described. A telemeter system was constructed in October, 1976, and it has been operated since 1977. Observation has been made at 11 observation stations in the Prefecture. In addition to the continuous measurement of dose rate by using NaI(T1)-DBM systems, the ionization chambers for high dose rate were installed, and also meteorological data have been collected. The detectors are covered with 1 mm thick aluminum designed so that the absorption of external radiation is kept as small as possible. To keep the environmental temperature of the detectors constant, constant temperature wind blow is made. With these consideration, the measurement of Xe-133 is possible, and the standard deviation of yearly dose is around 0.4 mR/Y. By measuring DBM transmission rate, the contribution of Xe-133, which comes from the exhaust pumps in power plants, can be detected. The problems of this system are as follows. First of all, the characteristics of the system must meet the purpose of dose monitoring. The system must detect the dose less than the target value to be achieved. The second is the selection of measuring systems to be set. The system is still not unified, and it is difficult to exchange data between different stations. Finally, the method of data analysis is not yet unified. Manuals or guide-books for this purpose are necessary for the mutual comparison of the data from the stations in different districts. (Kato, T.)

  11. Circuit arrangement for indicating radiation dose rates

    International Nuclear Information System (INIS)

    Virag, Ernoe; Nyari, Istvan; Simon, Jozsef; Styevko, Mihaly; Krampe, Geza.

    1981-01-01

    The invention presents a dosemeter electronic circuit arrangement indicating hazardous dose rate threshold. If the treshold is reached or exceeded, well distinguished sound and light alarm is turned on immidiately. Moreover, certain critical levels can also be indicated by making the intermittent singalling continuous. (A.L.)

  12. SMART, Radiation Dose Rates on Cask Surface

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1989-01-01

    1 - Description of program or function: SMART calculates radiation dose rate at the center of each cask surface by using characteristic functions for radiation shielding ability and for radiation current back-scattered from cask wall and cask cavity of each cask, once cask-type is specified. 2 - Method of solution: Matrix Calculation

  13. Estimating average glandular dose by measuring glandular rate in mammograms

    International Nuclear Information System (INIS)

    Goto, Sachiko; Azuma, Yoshiharu; Sumimoto, Tetsuhiro; Eiho, Shigeru

    2003-01-01

    The glandular rate of the breast was objectively measured in order to calculate individual patient exposure dose (average glandular dose) in mammography. By employing image processing techniques and breast-equivalent phantoms with various glandular rate values, a conversion curve for pixel value to glandular rate can be determined by a neural network. Accordingly, the pixel values in clinical mammograms can be converted to the glandular rate value for each pixel. The individual average glandular dose can therefore be calculated using the individual glandular rates on the basis of the dosimetry method employed for quality control in mammography. In the present study, a data set of 100 craniocaudal mammograms from 50 patients was used to evaluate our method. The average glandular rate and average glandular dose of the data set were 41.2% and 1.79 mGy, respectively. The error in calculating the individual glandular rate can be estimated to be less than ±3%. When the calculation error of the glandular rate is taken into consideration, the error in the individual average glandular dose can be estimated to be 13% or less. We feel that our method for determining the glandular rate from mammograms is useful for minimizing subjectivity in the evaluation of patient breast composition. (author)

  14. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  15. The evaluation of a 2D diode array in "magic phantom" for use in high dose rate brachytherapy pretreatment quality assurance.

    Science.gov (United States)

    Espinoza, A; Petasecca, M; Fuduli, I; Howie, A; Bucci, J; Corde, S; Jackson, M; Lerch, M L F; Rosenfeld, A B

    2015-02-01

    High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position-time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position-time gamma index showed that all modifications made could be readily detected. The MPh was able to

  16. The evaluation of a 2D diode array in “magic phantom” for use in high dose rate brachytherapy pretreatment quality assurance

    International Nuclear Information System (INIS)

    Espinoza, A.; Petasecca, M.; Fuduli, I.; Lerch, M. L. F.; Rosenfeld, A. B.; Howie, A.; Bucci, J.; Corde, S.; Jackson, M.

    2015-01-01

    Purpose: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named “magic phantom” (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. Methods: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the “position–time gamma index,” was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. Results: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position–time gamma index showed that all modifications made could be

  17. The evaluation of a 2D diode array in “magic phantom” for use in high dose rate brachytherapy pretreatment quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, A.; Petasecca, M.; Fuduli, I.; Lerch, M. L. F.; Rosenfeld, A. B., E-mail: anatoly@uow.edu.au [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Howie, A.; Bucci, J. [St George Hospital Cancer Care Centre, New South Wales 2217 (Australia); Corde, S.; Jackson, M. [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)

    2015-02-15

    Purpose: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named “magic phantom” (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. Methods: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the “position–time gamma index,” was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. Results: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position–time gamma index showed that all modifications made could be

  18. Dose rate in a deactivated uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner S.; Kelecom, Alphonse G.A.C.; Silva, Ademir X.; Marques, José M.; Carmo, Alessander S. do; Dias, Ayandra O., E-mail: pereiraws@gmail.com, E-mail: wspereira@inb.gov.br, E-mail: lararapls@hotmail.com, E-mail: Ademir@nuclear.ufrj.br, E-mail: marqueslopes@yahoo.com.br [Universidade Veiga de Almeida (UVA), Rio de Janeiro, RJ (Brazil); Indústrias Nucleares do Brasil (COMAP.N/FCN/INB), Resende RJ (Brazil). Fábrica de Combustível Nuclear. Coordenação de Meio Ambiente e Proteção Radiológica Ambiental; Universidade Federal Fluminense (LARARA-PLS/UFF), Niterói, RJ (Brazil). Laboratório de Radiobiologia e Radiometria; Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The Ore Treatment Unit is a deactivated uranium mine and milling situated in Caldas, MG, BR. Although disabled, there are still areas considered controlled and supervised from the radiological point of view. In these areas, it is necessary to keep an occupational monitoring program to ensure the workers' safety and to prevent the dispersion of radioactive material. For area monitoring, the dose rate, in μSv∙h{sup -1}, was measured with Geiger Müller (GM) area monitors or personal electronic monitors type GM and thermoluminescence dosimetry (TLD), in mSv∙month{sup -1}, along the years 2013 to 2016. For area monitoring, 577 samples were recorded; for personal dosimeters monitoring, 2,656; and for TLD monitoring type, 5,657. The area monitoring showed a mean dose rate of 6.42 μSv∙h{sup -1} associated to a standard deviation of 48 μSv∙h{sup -1} with a maximum recorded value of 685 μSv∙h{sup -1}. 96 % of the samples were below the derived limit per hour for workers (10 μSv∙h{sup -1}). For the personal electronic monitoring, the average of the data sampled was 15.86 μSv∙h{sup -1}, associated to a standard deviation of 61.74 μSv∙h{sup -1}. 80 % of the samples were below the derived limit and the maximum recorded was 1,220 μSv∙h{sup -1}. Finally, the TLD showed a mean of 0.01 mSv∙h{sup -1} (TLD detection limit is 0.2 mSv∙month{sup -1}), associated to a standard deviation of 0.08 mSv∙h{sup -1}. 98% of the registered values were below 0.2 mSv and less than 2 % of the measurements had values above the limit of detection. The samples show areas with low risk of external exposure, as can be seen by the TLD evaluation. Specific areas with greater risk of contamination have already been identified, as well as operations at higher risks. In these cases, the use of the individual electronic dosimeter is justified for a more effective monitoring. Radioprotection identified all risks and was able to extend individual electronic monitoring to all

  19. Dose rate in a deactivated uranium mine

    International Nuclear Information System (INIS)

    Pereira, Wagner S.; Kelecom, Alphonse G.A.C.; Silva, Ademir X.; Marques, José M.; Carmo, Alessander S. do; Dias, Ayandra O.; Indústrias Nucleares do Brasil; Universidade Federal Fluminense; Coordenacao de Pos-Graduacao e Pesquisa de Engenharia

    2017-01-01

    The Ore Treatment Unit is a deactivated uranium mine and milling situated in Caldas, MG, BR. Although disabled, there are still areas considered controlled and supervised from the radiological point of view. In these areas, it is necessary to keep an occupational monitoring program to ensure the workers' safety and to prevent the dispersion of radioactive material. For area monitoring, the dose rate, in μSv∙h"-"1, was measured with Geiger Müller (GM) area monitors or personal electronic monitors type GM and thermoluminescence dosimetry (TLD), in mSv∙month"-"1, along the years 2013 to 2016. For area monitoring, 577 samples were recorded; for personal dosimeters monitoring, 2,656; and for TLD monitoring type, 5,657. The area monitoring showed a mean dose rate of 6.42 μSv∙h"-"1 associated to a standard deviation of 48 μSv∙h"-"1 with a maximum recorded value of 685 μSv∙h"-"1. 96 % of the samples were below the derived limit per hour for workers (10 μSv∙h"-"1). For the personal electronic monitoring, the average of the data sampled was 15.86 μSv∙h"-"1, associated to a standard deviation of 61.74 μSv∙h"-"1. 80 % of the samples were below the derived limit and the maximum recorded was 1,220 μSv∙h"-"1. Finally, the TLD showed a mean of 0.01 mSv∙h"-"1 (TLD detection limit is 0.2 mSv∙month"-"1), associated to a standard deviation of 0.08 mSv∙h"-"1. 98% of the registered values were below 0.2 mSv and less than 2 % of the measurements had values above the limit of detection. The samples show areas with low risk of external exposure, as can be seen by the TLD evaluation. Specific areas with greater risk of contamination have already been identified, as well as operations at higher risks. In these cases, the use of the individual electronic dosimeter is justified for a more effective monitoring. Radioprotection identified all risks and was able to extend individual electronic monitoring to all risk operations, even with the use of the TLD

  20. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote after-loader

    International Nuclear Information System (INIS)

    Melhus, C. S.; Rivard, M. J.; KurKomelis, J.; Liddle, C. B.; Masse, F. X.

    2005-01-01

    In support of the effort to begin high-dose rate 252 Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252 Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 ± 0.02 μSv h -1 with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 μSv h -1 ) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252 Cf. (authors)

  1. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  2. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A wide variety of portable survey instruments employing GM, ionization chamber and scintillation detectors exist for the measurement of gamma exposure rates. Often these same survey instruments are used for monitoring beta fields. This is done by making measurements with and without a removable shield which is intended to shield out the non-penetrating component (beta) of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. In many instances correction factors have been derived, that if properly applied, can reduce these errors substantially. However, this requires some knowledge of the beta spectra, calibration techniques and source geometry. This paper discusses some aspects of the proper use of instruments for beta measurements including the application of appropriate correction factors. Ionization type instruments are commonly used to measure beta dose rates. Through design and calibration these instruments will give an accurate reading only for uniform irradiation of the detection volume. Often in the field it is not feasible to meet these conditions. Large area uniform distributions of activity are not generally encountered and it is not possible to use large source-to-detector distances due to beta particle absorption in air. An example of correction factors required for various point sources is presented when a cutie pie ionization chamber is employed. The instrument reading is multiplied by the appropriate correction factor to obtain the dose rate at the window. When a different detector is used or for other geometries, a different set of correction factors must be used

  3. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  4. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  5. A Prospective Longitudinal Clinical Trial Evaluating Quality of Life After Breast-Conserving Surgery and High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd A. [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Deshields, Teresa L. [Department of Medicine, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Margenthaler, Julie A.; Cyr, Amy E. [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Naughton, Michael [Department of Medicine, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Aft, Rebecca [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Department of Surgery, John Cochran Veterans Hospital, St. Louis, Missouri (United States); Gillanders, William E.; Eberlein, Timothy [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Matesa, Melissa A.; Ochoa, Laura L. [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Zoberi, Imran, E-mail: izoberi@radonc.wustl.edu [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States)

    2013-12-01

    Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ≤3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, version 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment.

  6. A Prospective Longitudinal Clinical Trial Evaluating Quality of Life After Breast-Conserving Surgery and High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer

    International Nuclear Information System (INIS)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd A.; Deshields, Teresa L.; Margenthaler, Julie A.; Cyr, Amy E.; Naughton, Michael; Aft, Rebecca; Gillanders, William E.; Eberlein, Timothy; Matesa, Melissa A.; Ochoa, Laura L.; Zoberi, Imran

    2013-01-01

    Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ≤3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, version 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment

  7. Low dose irradiation reduces cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    2000-01-01

    Low doses of ionizing radiation stimulate development, growth, memory, sensual acuity, fecundity, and immunity (Luckey, T.D., ''Radiation Hormesis'', CRC Press, 1991). Increased immune competence reduces cancer mortality rates and provides increased average lifespan in animals. Decreased cancer mortality rates in atom bomb victims who received low dose irradiation makes it desirable to examine populations exposed to low dose irradiation. Studies with over 300,000 workers and 7 million person-years provide a valid comparison of radiation exposed and control unclear workers (Luckey, T.D., Nurture with Ionizing Radiation, Nutrition and Cancer, 34:1-11, 1999). Careful selection of controls eliminated any ''healthy worker effect''. The person-year corrected average indicated the cancer mortality rate of exposed workers was only 51% that of control workers. Lung cancer mortality rates showed a highly significant negative correlation with radon concentrations in 272,000 U.S. homes (Cohen, B.L., Health Physics 68:157-174, 1995). In contrast, radon concentrations showed no effect on lung cancer rates in miners from different countries (Lubin, J.H. Am. J. Epidemiology 140:323-332, 1994). This provides evidence that excessive lung cancer in miners is caused by particulates (the major factor) or toxic gases. The relative risk for cancer mortality was 3.7% in 10,000 Taiwanese exposed to low level of radiation from 60 Co in their steel supported homes (Luan, Y.C. et al., Am. Nuclear Soc. Trans. Boston, 1999). This remarkable finding needs further study. A major mechanism for reduced cancer mortality rates is increased immune competence; this includes both cell and humoral components. Low dose irradiation increases circulating lymphocytes. Macrophage and ''natural killer'' cells can destroy altered (cancer) cells before the mass becomes too large. Low dose irradiation also kills suppressor T-cells; this allows helper T-cells to activate killer cells and antibody producing cells

  8. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  9. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  10. High dose rate versus medium dose rate intraluminal brachytherapy in inoperable esophageal carcinoma

    International Nuclear Information System (INIS)

    Langendijk, J.; Jager, J.; Jong, J. de; Rijken, J.; Pannebakker, M.

    1996-01-01

    Introduction: The purpose of this study was to compare the results of medium dose rate (MDR) intraluminal brachytherapy (ILBT) and high dose rate (HDR) ILBT in patients with inoperable esophageal carcinoma, with regard to dysphagia, complication rate and survival. Material and methods: Included were 114 patients with inoperable esophageal cancer who were treated with a single session of ILBT. In all cases a single dose of 15 Gy was administered, calculated at a 1 cm radius. Forty-eight patients were treated with MDR ( 137 Cs)ILBT. In June 1990 MDR was replaced by HDR and from then 66 patients were treated with HDR ( 192 Ir). Dysphagia was prospectively scored using a 5-point scale at 6 weeks, 3, 6, 9 and 12 months. Results: No significant differences were noted between the two groups with regard to pretreatment variables. In patients treated with MDR-ILBT improvement of swallowing ability was noted in 30 out of 42 evaluable patients (71%), no change in 9 (21%) and progression of dysphagia in 3 patients (8%), as compared to 34 out of 59 evaluable patients (58%), 16 (27%) and 6 (15%) resp. in de HDR-ILBT group. In the latter category, progression of dysphagia was caused by fistulae in 2 patients. The differences were not significant (ns). Additional treatment in case of recurrent or persistent dysphagia was needed in 50% of the cases in the MDR-ILBT group as compared to 41% in the HDR-ILBT group (ns). The median survival of the MDR-ILBT group was 3.9 months as compared to 4.3 months in the HDR-ILBT group (ns). In 2 patients (4%) treated with MDR-ILBT bronchio-oesphageal fistulae developed at 6 weeks and 2 months. In the HDR-ILBT group fistulae were noted in 7 cases (11%) at 2 weeks, 4 weeks, 2, 3, 3, 4 and 9 months (ns). In all of these cases persistent of recurrent tumour was present. Conclusions: No significant differences were noted with regard to palliation of dysphagia, survival and complication rate between MDR-ILBT and HDR-ILBT in the management of esophageal

  11. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  12. High dose rate endobronchial brachytherapy - treatment technique

    International Nuclear Information System (INIS)

    Carvalho, Heloisa de Andrade; Aisen, Salim; Haddad, Cecilia Maria Kalil; Nadalin, Wladimir; Pedreira Junior, Wilson Leite; Chavantes, Maria Cristina

    1998-01-01

    High dose rate endobronchial brachytherapy is efficient in symptom relief due to obstructive endobronchial malignancies. However, it's role in survival improvement for patients with lung cancer is not yet established. The use of this treatment in increasing, specially in the developing countries. The purpose of this paper is to present the treatment technique used in the Radiotherapy Department of the Hospital da Clinicas, University of Sao Paulo, based on an experience of 60 cases treated with 180 procedures. Some practical suggestions and rules adopted in the Department are described. The severe complications rate is 6.7%, demonstrating an adequate patient selection associated with the technique utilized. (author)

  13. Evaluation of effective dose and excess lifetime cancer risk from ...

    African Journals Online (AJOL)

    Evaluation of effective dose and excess lifetime cancer risk from indoor and outdoor gamma dose rate of university of Port Harcourt Teaching Hospital, Rivers State. ... Therefore, the management of University of Port Harcourt teaching hospital ...

  14. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1997-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume -- Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) -- Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  15. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1996-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume --Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) --Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  16. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer

    International Nuclear Information System (INIS)

    Oliveira, Jetro Pereira de; Batista, Delano Valdivino Santos; Bardella, Lucia Helena; Carvalho, Arnaldo Rangel

    2009-01-01

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  17. SU-E-T-375: Evaluation of a MapCHECK2(tm) Planar 2-D Diode Array for High-Dose-Rate Brachytherapy Treatment Delivery Verifications

    Energy Technology Data Exchange (ETDEWEB)

    Macey, N; Siebert, M; Shvydka, D; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2015-06-15

    Purpose: Despite improvements of HDR brachytherapy delivery systems, verification of source position is still typically based on the length of the wire reeled out relative to the parked position. Yet, the majority of errors leading to medical events in HDR treatments continue to be classified as missed targets or wrong treatment sites. We investigate the feasibility of using dose maps acquired with a two-dimensional diode array to independently verify the source locations, dwell times, and dose during an HDR treatment. Methods: Custom correction factors were integrated into frame-by-frame raw counts recorded for a Varian VariSource™ HDR afterloader Ir-192 source located at various distances in air and in solid water from a MapCHECK2™ diode array. The resultant corrected counts were analyzed to determine the dwell position locations and doses delivered. The local maxima of polynomial equations fitted to the extracted dwell dose profiles provided the X and Y coordinates while the distance to the source was determined from evaluation of the full width at half maximum (FWHM). To verify the approach, the experiment was repeated as the source was moved through dwell positions at various distances along an inclined plane, mimicking a vaginal cylinder treatment. Results: Dose map analysis was utilized to provide the coordinates of the source and dose delivered over each dwell position. The accuracy in determining source dwell positions was found to be +/−1.0 mm of the preset values, and doses within +/−3% of those calculated by the BrachyVision™ treatment planning system for all measured distances. Conclusion: Frame-by-frame data furnished by a 2 -D diode array can be used to verify the dwell positions and doses delivered by the HDR source over the course of treatment. Our studies have verified that measurements provided by the MapCHECK2™ can be used as a routine QA tool for HDR treatment delivery verification.

  18. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A large number of portable survey instruments employing G.M., ionization chamber, and scintillation detectors used for gamma measurements are also used for monitoring in beta fields by using removable shields to separate the beta and gamma components of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. Appropriate calibrations and correction factors can be used to reduce the errors in beta measurements to a tolerable level

  19. Dose dependence of complication rates in cervix cancer radiotherapy

    International Nuclear Information System (INIS)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder

  20. Dose dependence of complication rates in cervix cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder.

  1. Dose evaluation of narrow-beam

    International Nuclear Information System (INIS)

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  2. Automatic dose-rate controlling equipment

    International Nuclear Information System (INIS)

    Szasz, T.; Nagy Czirok, Cs.; Batki, L.; Antal, S.

    1977-01-01

    The patent of a dose-rate controlling equipment that can be attached to X-ray image-amplifiers is presented. In the new equipment the current of the photocatode of the image-amplifier is led into the regulating unit, which controls the X-ray generator automatically. The advantages of the equipment are the following: it can be simply attached to any type of X-ray image-amplifier, it accomplishes fast and sensitive regulation, it makes possible the control of both the mA and the kV values, it is attached to the most reliable point of the image-transmission chain. (L.E.)

  3. A study on gamma dose rate in Seoul (I)

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kim, Chang Kyun; Choi, Jong Hak; Kim, Jeong Min

    2001-01-01

    This study was conducted to find out gamma dose rate in Seoul, from January to December in 2000, and the following results were achieved : The annual gamma dose rate in Seoul was 17.24 μR/hr as average. The annual gamma dose rate in subway of Seoul was 14.96 μR/hr as average. The highest annual gamma dose rate was Dong-daemon ku. Annual gamma dose rate in Seoul was higher autumn than winter

  4. Dose Response Model of Biological Reaction to Low Dose Rate Gamma Radiation

    International Nuclear Information System (INIS)

    Magae, J.; Furikawa, C.; Hoshi, Y.; Kawakami, Y.; Ogata, H.

    2004-01-01

    It is necessary to use reproducible and stable indicators to evaluate biological responses to long term irradiation at low dose-rate. They should be simple and quantitative enough to produce the results statistically accurate, because we have to analyze the subtle changes of biological responses around background level at low dose. For these purposes we chose micronucleus formation of U2OS, a human osteosarcoma cell line, as indicators of biological responses. Cells were exposed to gamma ray in irradiation rom bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide, respectively. the number of binuclear cells bearing micronuclei was counted under a fluorescence microscope. Dose rate in the irradiation room was measured with PLD. Dose response of PLD is linear between 1 mGy to 10 Gy, and standard deviation of triplicate count was several percent of mean value. We fitted statistically dose response curves to the data, and they were plotted on the coordinate of linearly scale response and dose. The results followed to the straight line passing through the origin of the coordinate axes between 0.1-5 Gy, and dose and does rate effectiveness factor (DDREF) was less than 2 when cells were irradiated for 1-10 min. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose above 0.1 Gy when 5,000 binuclear cells were analyzed. In contrast, dose response curves never followed LNT, when cells were irradiated for 7 to 124 days. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose below 6 Gy, when cells were continuously irradiated for 124 days. These results suggest that dose response curve of biological reaction is remarkably affected by exposure

  5. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  6. Effective dose rate coefficients for exposure to contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States); Bellamy, M.B.; Hiller, M.M.; Dewji, S.A. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Hertel, N.E. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Georgia Institute of Technology, Atlanta, GA (United States); Manger, R. [University of California San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA (United States)

    2017-08-15

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios. (orig.)

  7. Prostate Specific Antigen (PSA) as Predicting Marker for Clinical Outcome and Evaluation of Early Toxicity Rate after High-Dose Rate Brachytherapy (HDR-BT) in Combination with Additional External Beam Radiation Therapy (EBRT) for High Risk Prostate Cancer.

    Science.gov (United States)

    Ecke, Thorsten H; Huang-Tiel, Hui-Juan; Golka, Klaus; Selinski, Silvia; Geis, Berit Christine; Koswig, Stephan; Bathe, Katrin; Hallmann, Steffen; Gerullis, Holger

    2016-11-10

    High-dose-rate brachytherapy (HDR-BT) with external beam radiation therapy (EBRT) is a common treatment option for locally advanced prostate cancer (PCa). Seventy-nine male patients (median age 71 years, range 50 to 79) with high-risk PCa underwent HDR-BT following EBRT between December 2009 and January 2016 with a median follow-up of 21 months. HDR-BT was administered in two treatment sessions (one week interval) with 9 Gy per fraction using a planning system and the Ir192 treatment unit GammaMed Plus iX. EBRT was performed with CT-based 3D-conformal treatment planning with a total dose administration of 50.4 Gy with 1.8 Gy per fraction and five fractions per week. Follow-up for all patients was organized one, three, and five years after radiation therapy to evaluate early and late toxicity side effects, metastases, local recurrence, and prostate-specific antigen (PSA) value measured in ng/mL. The evaluated data included age, PSA at time of diagnosis, PSA density, BMI (body mass index), Gleason score, D'Amico risk classification for PCa, digital rectal examination (DRE), PSA value after one/three/five year(s) follow-up (FU), time of follow-up, TNM classification, prostate volume, and early toxicity rates. Early toxicity rates were 8.86% for gastrointestinal, and 6.33% for genitourinary side effects. Of all treated patients, 84.81% had no side effects. All reported complications in early toxicity were grade 1. PSA density at time of diagnosis ( p = 0.009), PSA on date of first HDR-BT ( p = 0.033), and PSA on date of first follow-up after one year ( p = 0.025) have statistical significance on a higher risk to get a local recurrence during follow-up. HDR-BT in combination with additional EBRT in the presented design for high-risk PCa results in high biochemical control rates with minimal side-effects. PSA is a negative predictive biomarker for local recurrence during follow-up. A longer follow-up is needed to assess long-term outcome and toxicities.

  8. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  9. Dose rate measuring device and dose rate measuring method using the same

    International Nuclear Information System (INIS)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-01-01

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  10. Dose rate measuring device and dose rate measuring method using the same

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-11-13

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  11. Dose gradient curve: A new tool for evaluating dose gradient.

    Science.gov (United States)

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  12. Low dose rate and high dose rate intracavitary treatment for cervical cancer

    International Nuclear Information System (INIS)

    Hareyama, Masato; Oouchi, Atsushi; Shidou, Mitsuo

    1997-01-01

    From 1984 through 1993, 144 previous untreated patients with carcinoma of uterine cervix were treated with either low dose rate 137 Cs therapy (LDR) or high dose rate 60 Co therapy (HDR). The local failure rates for more than 2-years for the primary lesions were 11.8% (8 of 63 patients) for LDR and 18.0% (11 of 61 patients). Rectal complication rates were significantly lower for HDR versus LDR (14.3% VS. 32.8%. p<0.01). Also, bladder complication rates were significantly lower for HDR versus LDR (0% VS. 10.4%, p<0.005). Treatment results in term of local control were equivalent for HDR and LDR treatment. However, the incidence of complications was higher for the LDR group than for the HDR group. (author)

  13. DuraSeal® as a spacer to reduce rectal doses in low-dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Heikkilä, Vesa-Pekka; Kärnä, Aarno; Vaarala, Markku H.

    2014-01-01

    The purpose of this study was to evaluate the utility of off-label use of DuraSeal® polyethylene glycol (PEG) gel in low-dose rate (LDR) prostate brachytherapy seed implantation to reduce rectal doses. Diluted DuraSeal® was easy to use and, in spite of a clearance effect, useful in decreasing D 2cc rectal doses

  14. An evaluation of a Low-Dose-Rate (LDR) brachytherapy procedure using a systems engineering & error analysis methodology for health care (SEABH) - (SAVE)

    LENUS (Irish Health Repository)

    Chadwick, Liam

    2012-03-12

    Health Care Failure Modes and Effects Analysis (HFMEA®) is an established tool for risk assessment in health care. A number of deficiencies have been identified in the method. A new method called Systems and Error Analysis Bundle for Health Care (SEABH) was developed to address these deficiencies. SEABH has been applied to a number of medical processes as part of its validation and testing. One of these, Low Dose Rate (LDR) prostate Brachytherapy is reported in this paper. The case study supported the validity of SEABH with respect to its capacity to address the weaknesses of (HFMEA®).

  15. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko; Furukawa, Souhei; Kakimoto, Naoya

    2003-01-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  16. Safety analysis for the Abadia de Goias repository: alternative evaluation of the ingestion dose rate critical distance; Analise de seguranca para o repositorio de Abadia de Goias: avaliacao alternativa da distancia critica de taxa de dose de ingestao

    Energy Technology Data Exchange (ETDEWEB)

    Martin Alves, A.S. de; Passos, E.M. dos [NUCLEN, Rio de Janeiro, RJ (Brazil)

    1995-12-31

    An alternative calculation of the ingestion dose rate critical distance due to a hypothetical release of Cs-137 from the structure of the Repository of Abadia de Goias is presented. The release pathway considers the repository - groundwater region - well - and food chain. The main adopted modification comparing to the previous work is the inclusion of the convective and molecular diffusion terms in the radionuclide transport equation in addition to the radioactive decay term. (author). 6 refs, 1 tab.

  17. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  18. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  19. Development of dose rate estimation system for FBR maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Iizawa, Katsuyuki [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, International Cooperation and Technology Development Center, Tsuruga, Fukui (Japan); Takeuchi, Jun; Yoshikawa, Satoru [Hitachi Engineering Company, Ltd., Hitachi, Ibaraki (Japan); Urushihara, Hiroshi [Ibaraki Hitachi Information Service Co., Ltd., Omika, Ibaraki (Japan)

    2001-09-01

    During maintenance activities on the primary sodium cooling system by an FBR Personnel radiation exposure arises mainly from the presence of radioactive corrosion products (CP). A CP behavior analysis code, PSYCHE, and a radiation shielding calculation code, QAD-CG, have been developed and applied to investigate the possible reduction of radiation exposure of workers. In order to make these evaluation methods more accessible to plant engineers, the user interface of the codes has been improved and an integrated system, including visualization of the calculated gamma-ray radiation dose-rate map, has been developed. The system has been verified by evaluating the distribution of the radiation dose-rate within the Monju primary heat transport system cells from the estimated saturated CP deposition and distribution which would be present following about 20 cycles of full power operation. (author)

  20. Development of dose rate estimation system for FBR maintenance

    International Nuclear Information System (INIS)

    Iizawa, Katsuyuki; Takeuchi, Jun; Yoshikawa, Satoru; Urushihara, Hiroshi

    2001-01-01

    During maintenance activities on the primary sodium cooling system by an FBR Personnel radiation exposure arises mainly from the presence of radioactive corrosion products (CP). A CP behavior analysis code, PSYCHE, and a radiation shielding calculation code, QAD-CG, have been developed and applied to investigate the possible reduction of radiation exposure of workers. In order to make these evaluation methods more accessible to plant engineers, the user interface of the codes has been improved and an integrated system, including visualization of the calculated gamma-ray radiation dose-rate map, has been developed. The system has been verified by evaluating the distribution of the radiation dose-rate within the Monju primary heat transport system cells from the estimated saturated CP deposition and distribution which would be present following about 20 cycles of full power operation. (author)

  1. Evaluation of shipping doses and compositions for vitrified waste

    International Nuclear Information System (INIS)

    Shapiro, A.

    1996-01-01

    Shipments of radioactive materials must adhere to dose limits specified in the Code of Federal Regulations. This paper discusses methods for evaluating shipping doses of vitrified waste. A methodology was developed for evaluating the change in vitrification composition required to maintain shipping dose rates within limits. The point kernel codes QAD and Microshield were used to evaluate dose equivalent rates from specified waste forms and radioactivity measurements. The Origen code was utilized to provide the gamma-ray activity as a function of time from isotopic activity measurements. This gamma-ray activity served as source input for QAD. Microshield developed its own source from the given isotopic activities

  2. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  3. Brachytherapy treatment with high dose rate

    International Nuclear Information System (INIS)

    Santana Rodriguez, Sergio Marcelino; Rodriguez Rodriguez, Lissi Lisbet; Ciscal Chiclana, Onelio Alberto

    2009-01-01

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  4. Evaluation of eleven years of area monitoring for external dose rate in a deposit of radioactive waste at the ore treatment unit

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, W.S.; Oliveira, S.Q. de; Py Junior, D.A.; Silva, A.C.A.; Garcia Filho, O., E-mail: pereiraws@gmail.com [Industrias Nucleares do Brasil (INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerio. Grupo Multidisciplinar de Radioprotecao; Kelecom, A., E-mail: akelecom@id.uff.br [Universidade Federal Fluminense (LARARA-PLS/GETA/UFF), Niteroi, RJ, (Brazil). Lab. de Radiobiologia e Radiometria. Grupo de Estudos em Temas Ambientais; Pereira, J.R.S., E-mail: pereirarsj@gmail.com [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil)

    2013-07-01

    At Ore Treatment Unit (UTM, in Portuguese) situated in Pocos de Caldas, MG, there is a deposit of about 40 tons radioactive waste produced decades ago from Santo Amaro deactivated plant (SAP) and then from NUCLEMON that processed monazite sands to extract rare earth elements. This waste contains uranium and thorium and it is stored in six hangars. This study aims to analyze the dose rates in the hangars from 2002 to 2012. Annually, two samples were obtained, for a total of 24 samples. The results showed the highest doses rates at UTM, ranging from 0.5 to 409.8 μSv h{sup -}'1 for the total set of samples. The averages extended from 0.96 μSv h{sup -1} in hangar C-02 up to 282.64 μSv h{sup -1} in hangar C-05. Considering each hangar separately, the results were as follows: hangar C-01 average 30.34 μSv h{sup -1}, ranging from 6.2 to 71.7 μSv h{sup -1}; hangar C-02 average 0.96 μSv h{sup -1} (min-max 0.5 to 2.51 μSv h{sup -1}); hangar C-05 average 282.64 μSv h{sup -1} (min-max 3.7 to 409.8 μSv h{sup -1}); hangar C-06 average 188.92 μSv h{sup -1} (min-max 1.85 to 338.0 μSv h{sup -1}); hangar C-07, average 172.05 μSv h{sup -1} (min-max 1.95 to 283.0 μSv h{sup -1}) and hangar C-09, average 122.59 μSv h{sup -1} (min-max 1.11 to 277.0 μSv h{sup -1}). ANOVA test indicated that the dose rates averages in the six hangars are different (F{sub calc} of 70.90 higher F{sub crit} of 2.28), and the Tukey test allowed to group the hangars in the following sequence: C-05> C-06 = C-07> C-09> C-01 = C-02. (author)

  5. Evaluation of eleven years of area monitoring for external dose rate in a deposit of radioactive waste at the ore treatment unit

    International Nuclear Information System (INIS)

    Pereira, W.S.; Oliveira, S.Q. de; Py Junior, D.A.; Silva, A.C.A.; Garcia Filho, O.

    2013-01-01

    At Ore Treatment Unit (UTM, in Portuguese) situated in Pocos de Caldas, MG, there is a deposit of about 40 tons radioactive waste produced decades ago from Santo Amaro deactivated plant (SAP) and then from NUCLEMON that processed monazite sands to extract rare earth elements. This waste contains uranium and thorium and it is stored in six hangars. This study aims to analyze the dose rates in the hangars from 2002 to 2012. Annually, two samples were obtained, for a total of 24 samples. The results showed the highest doses rates at UTM, ranging from 0.5 to 409.8 μSv h - '1 for the total set of samples. The averages extended from 0.96 μSv h -1 in hangar C-02 up to 282.64 μSv h -1 in hangar C-05. Considering each hangar separately, the results were as follows: hangar C-01 average 30.34 μSv h -1 , ranging from 6.2 to 71.7 μSv h -1 ; hangar C-02 average 0.96 μSv h -1 (min-max 0.5 to 2.51 μSv h -1 ); hangar C-05 average 282.64 μSv h -1 (min-max 3.7 to 409.8 μSv h -1 ); hangar C-06 average 188.92 μSv h -1 (min-max 1.85 to 338.0 μSv h -1 ); hangar C-07, average 172.05 μSv h -1 (min-max 1.95 to 283.0 μSv h -1 ) and hangar C-09, average 122.59 μSv h -1 (min-max 1.11 to 277.0 μSv h -1 ). ANOVA test indicated that the dose rates averages in the six hangars are different (F calc of 70.90 higher F crit of 2.28), and the Tukey test allowed to group the hangars in the following sequence: C-05> C-06 = C-07> C-09> C-01 = C-02. (author)

  6. Experimental evaluation of neutron dose in radiotherapy patients: Which dose?

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Expósito, M., E-mail: mariateresa.romero@uab.cat; Domingo, C.; Ortega-Gelabert, O.; Gallego, S. [Grup de Recerca en Radiacions Ionizants (GRRI), Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Sánchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009 (Spain); Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41009 (Spain)

    2016-01-15

    Purpose: The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter “immeasurable” by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor w{sub R}, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with w{sub R}. Methods: Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. Results: The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. Conclusions: Quality factor can be replaced by the radiation weighting factor in the evaluation of dose

  7. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  8. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources.

    Science.gov (United States)

    Chen, Zhe Jay; Nath, Ravinder

    2010-10-21

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value ((CON)Λ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either (125)I (14 models), (103)Pd (6 models) or (131)Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant ((PST)Λ) for each source model. Source-dependent variations in (PST)Λ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of (PST)Λ for the encapsulated sources of (103)Pd, (125)I and (131)Cs varied from 0.661 to 0.678 cGyh(-1) U(-1), 0.959 to 1.024 cGyh(-1)U(-1) and 1.066 to 1.073 cGyh(-1)U(-1), respectively. The relative variation in (PST)Λ among the six (103)Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in (PST)Λ were observed among the 14 (125)I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some (125)I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the (PST)Λ value to vary from 0.959 to 1.019 cGyh(-1)U(-1) depending on the amount of silver used by a given source model. For those (125)I sources that contain no silver, their (PST)Λ was less variable and had values within 1% of 1.024 cGyh(-1)U(-1). For the 16

  9. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  10. Medium-dose-rate intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Isohashi, Fumiaki; Oh, Ryoong-Jin

    2003-01-01

    The purpose of this study was to evaluate the results of medium-dose-rate (MDR) intracavitary brachytherapy (ICRT) for cervical cancer. Between May 1991 and March 2001, 80 patients with cervical cancer were treated with external radiotherapy combined with MDR-ICRT. Two patients were excluded from this study. The median age of patients was 61 years (range: 30-87 years). Seventy-five patients had pathologically proved squamous cell carcinoma, and 3 had adenocarcinoma. The patients were staged by Union Internationale Contre le Cancer (UICC) classification as follows: Stage IA (2), Stage IB (4), Stage IIA (5), Stage IIB (22), Stage IIIA (1), Stage IIIB (32), Stage IVA (5), Stage IVB (7). Median follow-up for survivor was 68 months (range: 12-131 months). The radiation therapy was based on a combination of ICRT and external pelvic irradiation. Patients with stages II, III and IVA were treated with whole-pelvic irradiation with respective total doses of 20, 30, and 40 Gy. Doses of 40, 30, 20, and 20 Gy parametrial irradiation were added with central shield pelvic irradiation for stages IB, II, III and IVA lesions respectively. For MDR-ICRT, from May 1991 to December 1995, point A dose were 40 Gy/4 fractions for stages I and II, 38 Gy/4 fractions for stage III, and 28.5 Gy/3 fractions for stage IVA. And from January 1996 to March 2001, point A dose of 36 Gy/4 fractions for stages I and II, 34 Gy/4 fractions for stage III, and 25.5 Gy/3 fractions for stage IVA. The median dose rate at point A was 1.7 Gy/hour (range: 1.3-2.2 Gy/hour). The 5-year cause-specific survival rates were 100%, 76%, 51% and 40% for stages I, II, III and IVA respectively. All patients with stage IVB died from the tumor with a median survival time of 12 months. The 5-year pelvic control rates were 100%, 88%, 69% and 40% for stages I, II, III and IVA respectively. Major late complications occurred in 2 patients (3%). One patient developed vesico- and recto-vaginal fistulae, and died of pelvic infection

  11. SU-G-TeP4-05: An Evaluation of a Low Dose Rate (LDR) Prostate Brachytherapy Procedure Using a Failure Modes and Effects Analysis (FMEA)

    International Nuclear Information System (INIS)

    Cheong, S-K; Kim, J

    2016-01-01

    Purpose: The aim of the study is the application of a Failure Modes and Effects Analysis (FMEA) to access the risks for patients undergoing a Low Dose Rate (LDR) Prostate Brachytherapy Treatment. Methods: FMEA was applied to identify all the sub processes involved in the stages of identifying patient, source handling, treatment preparation, treatment delivery, and post treatment. These processes characterize the radiation treatment associated with LDR Prostate Brachytherapy. The potential failure modes together with their causes and effects were identified and ranked in order of their importance. Three indexes were assigned for each failure mode: the occurrence rating (O), the severity rating (S), and the detection rating (D). A ten-point scale was used to score each category, ten being the number indicating most severe, most frequent, and least detectable failure mode, respectively. The risk probability number (RPN) was calculated as a product of the three attributes: RPN = O X S x D. The analysis was carried out by a working group (WG) at UPMC. Results: The total of 56 failure modes were identified including 32 modes before the treatment, 13 modes during the treatment, and 11 modes after the treatment. In addition to the protocols already adopted in the clinical practice, the prioritized risk management will be implanted to the high risk procedures on the basis of RPN score. Conclusion: The effectiveness of the FMEA method was established. The FMEA methodology provides a structured and detailed assessment method for the risk analysis of the LDR Prostate Brachytherapy Procedure and can be applied to other radiation treatment modes.

  12. SU-G-TeP4-05: An Evaluation of a Low Dose Rate (LDR) Prostate Brachytherapy Procedure Using a Failure Modes and Effects Analysis (FMEA)

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, S-K; Kim, J [University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-06-15

    Purpose: The aim of the study is the application of a Failure Modes and Effects Analysis (FMEA) to access the risks for patients undergoing a Low Dose Rate (LDR) Prostate Brachytherapy Treatment. Methods: FMEA was applied to identify all the sub processes involved in the stages of identifying patient, source handling, treatment preparation, treatment delivery, and post treatment. These processes characterize the radiation treatment associated with LDR Prostate Brachytherapy. The potential failure modes together with their causes and effects were identified and ranked in order of their importance. Three indexes were assigned for each failure mode: the occurrence rating (O), the severity rating (S), and the detection rating (D). A ten-point scale was used to score each category, ten being the number indicating most severe, most frequent, and least detectable failure mode, respectively. The risk probability number (RPN) was calculated as a product of the three attributes: RPN = O X S x D. The analysis was carried out by a working group (WG) at UPMC. Results: The total of 56 failure modes were identified including 32 modes before the treatment, 13 modes during the treatment, and 11 modes after the treatment. In addition to the protocols already adopted in the clinical practice, the prioritized risk management will be implanted to the high risk procedures on the basis of RPN score. Conclusion: The effectiveness of the FMEA method was established. The FMEA methodology provides a structured and detailed assessment method for the risk analysis of the LDR Prostate Brachytherapy Procedure and can be applied to other radiation treatment modes.

  13. Ageing effects of polymers at very low dose-rates

    International Nuclear Information System (INIS)

    Chenion, J.; Armand, X.; Berthet, J.; Carlin, F.; Gaussens, G.; Le Meur, M.

    1987-10-01

    The equipment irradiation dose-rate into the containment is variable from 10 -6 to 10 -4 gray per second for the most exposed materials. During qualification, safety equipments are submitted in France to dose-rates around 0.28 gray per second. This study purpose is to now if a so large irradiation dose-rate increase is reasonable. Three elastomeric materials used in electrical cables, o'rings seals and connectors, are exposed to a very large dose-rates scale between 2.1.10 -4 and 1.4 gray per second, to 49 KGy dose. This work was carried out during 3.5 years. Oxygen consumption measurement of the air in contact with polymer materials, as mechanical properties measurement show that: - at very low dose-rate, oxygen consumption is maximum at the same time (1.4 year) for the three elastomeric samples. Also, mechanical properties simultaneously change with oxygen consumption. At very low dose-rate, for the low irradiation doses, oxygen consumption is at least 10 times more important that it is showed when irradiation is carried out with usual material qualification dose-rate. At very low dose-rate, oxygen consumption decreases when absorbed irradiation dose by samples increases. The polymer samples irradiation dose is not still sufficient (49 KGy) to certainly determine, for the three chosen polymer materials, the reasonable irradiation acceleration boundary during nuclear qualification tests [fr

  14. Influence of the dose rate in the PVDF degradation processes

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M.; Pereira, Claubia, E-mail: adriananuclear@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Gual, Maritza R., E-mail: maritzargual@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InsTEC), Departamento de Ingenieria Nuclear, La Habana (Cuba); Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  15. Influence of the dose rate in the PVDF degradation processes

    International Nuclear Information System (INIS)

    Batista, Adriana S.M.; Pereira, Claubia; Gual, Maritza R.; Faria, Luiz O.

    2015-01-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm -1 which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm -1 which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm -1 which were associated with NH stretch of NH 2 and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  16. Secondary standard dosimetry system with automatic dose/rate calculation

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Bernhart, J.; Stehno, G.; Klosch, W.

    1980-01-01

    A versatile and automated secondary standard instrument has been designed for quick and accurate dose/rate measurement in a wide range of radiation intensity and quality (between 1 μR and 100 kR; 0.2 nC/kg - 20C/kg) for protection and therapy level dosimetry. The system is based on a series of secondary standard ionization chambers connected to a precision digital current integrator with microprocessor circuitry for data evaluation and control. Input of measurement parameters and calibration factors stored in an exchangeable memory chip provide computation of dose/rate values in the desired units. The ionization chambers provide excellent long-term stability and energy response and can be used with internal check sources to test validity of calibration. The system is a useful tool particularly for daily measurements in a secondary standard dosimetry laboratory or radiation therapy center. (H.K.)

  17. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    International Nuclear Information System (INIS)

    Reyes Cac, Franky Eduardo

    2004-10-01

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192 Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192 Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192 Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192 Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192 Ir high dose rate sources. (author)

  18. A graphical review of radiogenic animal cancer data using the 'dose and dose-rate map'

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Hoshi, Yuko; Sakai, Kazuo

    2008-01-01

    We have been investigating the effects of low dose or low dose rate irradiation on mice, using our low dose-rate irradiation facilities. In these studies, we found that the effects were highly dependent on both total dose and dose rate. To show this visually, we proposed the 'dose/dose rate map', and plotted the results of our laboratory and our co-workers. The map demonstrated that dose/dose rate plane could be divided into three areas; 1) An area where harmful effects are observed, 2) An area where no harmful effects are observed, and 3) Another area, between previous two areas, where certain protective functions are enhanced. As this map would be a powerful tool to find some trend among the vast numbers of data relating the biological effects of ionizing radiation, we have developed a computer program which plots the collected data on the dose/dose rate map sorting by experimental conditions. In this study, we graphically reviewed and analyzed the data relating to the lifespan studies of animals with a view to determining the relationships between doses and dose rates of ionizing radiation and cancer incidence. The data contains about 800 sets of experiments, which concerns 187,000 animals exposed to gamma ray or X-ray and their 112,000 controls, and total of about 30,000 cancers in exposed animals and 14,000 cancers in controls. About 800 points of data were plotted on the dose/dose rate map. The plot showed that 1) The divided three areas in the dose/dose rate map were generally confirmed by these 800 points of data, and 2) In some particular conditions, e.g. sarcoma by X-rays, the biologically effective area is extended to relatively high dose/dose rate area. (author)

  19. LUDEP: A Lung Dose Evaluation Program

    International Nuclear Information System (INIS)

    Birchall, A.; Bailey, M.R.; James, A.C.

    1990-06-01

    A Task Group of the ICRP is currently reviewing its dosimetric model for the respiratory tract with the aim of producing a more comprehensive and realistic model which can be used both for dosimetry and bioassay purposes. This in turn requires deposition, clearance, and dosimetry to be treated in a more detailed manner in than in the current model. In order to examine the practical application and radiological implications of the proposed model, a microcomputer program has been developed in a modular form so that changes can be easily included as the model develops. LUDEP (Lung Dose Evaluation Program) is a user-friendly menu-driven program which can be operated on any IBM-compatible PC. It enables the user to calculate (a) doses to each region of the respiratory tract and all other body organs, and (b) excretion rates and retention curves for bioassay purposes. 11 refs., 4 figs., 6 tabs

  20. Quality control of 192Ir high dose rate after loading brachytherapy dose veracity

    International Nuclear Information System (INIS)

    Feng Zhongsu; Xu Xiao; Liu Fen

    2008-01-01

    Recently, 192 Ir high dose rate (HDR) afterloading are widely used in brachytherapy. The advantage of using HDR systems over low dose rate systems are shorter treatment time and higher fraction dose. To guarantee the veracity of the delivery dose, several quality control methods are deseribed in this work. With these we can improve the position precision, time precision and dose precision of the brachytherapy. (authors)

  1. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    Full text: Because of biological responses to ionizing radiation are dependent on irradiation time or dose rate as well as dose, simultaneous inclusion of dose and dose rate is required to evaluate the risk of long term irradiation at low dose rates. We previously published a novel statistical model for dose rate effect, modified exponential (MOE) model, which predicts irradiation time-dependent biological response to low dose rate ionizing radiation, by analyzing micronucleus formation and growth inhibition in a human osteosarcoma cell line, exposed to wide range of doses and dose rates of gamma-rays. MOE model demonstrates that logarithm of median effective dose exponentially increases in low dose rates, and thus suggests that the risk approaches to zero at infinitely low dose rate. In this paper, we extend the analysis in various kinds of human cell lines exposed to ionizing radiation for more than a year. We measured micronucleus formation and [ 3 H]thymidine uptake in human cell lines including an osteosarcoma, a DNA-dependent protein kinase-deficient glioma, a SV40-transformed fibroblast derived from an ataxia telangiectasia patient, a normal fibroblast, and leukemia cell lines. Cells were exposed to gamma-rays in irradiation room bearing 50,000 Ci of cobalt-60. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide. The number of binuclear cells bearing a micronucleus was counted under a fluorescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [ 3 H] thymidine was pulsed for 4 h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk. While dose and dose rate relationship cultured within one month followed MOE model in cell lines holding wild-type DNA repair system, dose rate effect was greatly impaired in DNA repair-deficient cell lines

  2. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  3. Effect of dose and dose rate of gamma radiation on catalytic activity of catalase

    International Nuclear Information System (INIS)

    Vaclav Cuba; Tereza Pavelkova; Viliam Mucka

    2010-01-01

    Catalytic activity of gamma irradiated catalase from bovine liver was studied for hydrogen peroxide decomposition at constant temperature and pressure. The measurement was performed at temperatures 27, 32, 37, 42 and 47 deg C. Solutions containing 1 and 0.01 g dm -3 of catalase in phosphate buffer were used for the study. Repeatability of both sample preparation and kinetics measurement was experimentally verified. Rate constants of the reaction were determined for all temperatures and the activation energy was evaluated from Arrhenius plot. Gamma irradiation was performed using 60 Co radionuclide source Gammacell 220 at two different dose rates 5.5 and 70 Gy h -1 , with doses ranging from 10 to 1000 Gy. The observed reaction of irradiated and non-irradiated catalase with hydrogen peroxide is of the first order. Irradiation significantly decreases catalytic activity of catalase, but the activation energy does not depend markedly on the dose. The effect of irradiation is more significant at higher dose rate. (author)

  4. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  5. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  6. Dosimetry in high dose rate endoluminal brachytherapy

    International Nuclear Information System (INIS)

    Uno, Takashi; Kotaka, Kikuo; Itami, Jun

    1994-01-01

    In endoluminal brachytherapy for the tracheobronchial tree, esophagus, and bile duct, a reference point for dose calculation has been often settled at 1 cm outside from the middle of source travel path. In the current study, a change in the ratio of the reference point dose on the convex to concave side (Dq/Dp) was calculated, provided the source travel path bends as is the case in most endoluminal brachytherapies. Point source was presumed to move stepwise at 1 cm interval from 4 to 13 locations. Retention time at each location was calculated by personal computer so as to deliver equal dose at 1 cm from the linear travel path. With the retention time remaining constant, the change of Dq/Dp was assessed by bending the source travel path. Results indicated that the length of the source travel path and radius of its curve influenced the pattern of change in Dq/Dp. Therefore, it was concluded that the difference in reference dose on the convex and concave side of the curved path is not negligible under certain conditions in endoluminal brachytherapy. In order to maintain the ratio more than 0.9, relatively greater radius was required when the source travel path was decreased. (author)

  7. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  8. A dose error evaluation study for 4D dose calculations

    Science.gov (United States)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  9. Dose Rate Determination from Airborne Gamma-ray Spectra

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1996-01-01

    The standard method for determination of ground level dose rates from airborne gamma-ray is the integral count rate which for a constant flying altitude is assumed proportional to the dose rate. The method gives reasonably results for natural radioactivity which almost always has the same energy...

  10. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  11. Electron dose rate and photon contamination in electron arc therapy

    International Nuclear Information System (INIS)

    Pla, M.; Podgorsak, E.B.; Pla, C.

    1989-01-01

    The electron dose rate at the depth of dose maximum dmax and the photon contamination are discussed as a function of several parameters of the rotational electron beam. A pseudoarc technique with an angular increment of 10 degrees and a constant number of monitor units per each stationary electron field was used in our experiments. The electron dose rate is defined as the electron dose at a given point in phantom divided by the number of monitor units given for any one stationary electron beam. For a given depth of isocenter di the electron dose rates at dmax are linearly dependent on the nominal field width w, while for a given w the dose rates are inversely proportional to di. The dose rates for rotational electron beams with different di are related through the inverse square law provided that the two beams have (di,w) combinations which give the same characteristic angle beta. The photon dose at the isocenter depends on the arc angle alpha, field width w, and isocenter depth di. For constant w and di the photon dose at isocenter is proportional to alpha, for constant alpha and w it is proportional to di, and for constant alpha and di it is inversely proportional to w. The w and di dependence implies that for the same alpha the photon dose at the isocenter is inversely proportional to the electron dose rate at dmax

  12. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives

    International Nuclear Information System (INIS)

    Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.

    2014-01-01

    The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 3 2 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4–6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus. - Highlights: • Gamma irradiation is a valid option to remove mold from books and documents. • We studied the effect of irradiation dose and dose rate on the physical properties of papers. • We found an optimum combination of dose and dose rate

  13. The status of low dose rate and future of high dose rate Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F.; Chuba, P.J.; Fontanesi, J.

    1997-12-01

    This work describes the current status of the US low dose rate (LDR) Cf-252 brachytherapy program. The efforts undertaken towards development of a high dose rate (HDR) remotely after loaded Cf-252 source, which can accommodate 1 mg or greater Cf-252, are also described. This HDR effort is a collaboration between Oak Ridge National Laboratory (ORNL), commercial remote after loader manufactures, the Gershenson Radiation Oncology Center (ROC), and Wayne State University. To achieve this goal, several advances in isotope chemistry and source preparation at ORNL must be achieved to yield a specific material source loading of greater than or equal 1 mg Cf-252 per mm3. Development work with both radioactive and non-radioactive stand-ins for Cf-252 have indicated the feasibility of fabricating such sources. As a result, the decreased catheter diameter and computer controlled source placement will permit additional sites (e.g. brain, breast, prostate, lung, parotid, etc.) to be treated effectively with Cf-252 sources. Additional work at the Radiochemical Engineering and Development Center (REDC) remains in source fabrication, after loader modification, and safe design. The current LDR Cf-252 Treatment Suite at the ROC is shielded and licensed to hold up to 1 mg of Cf-252. This was designed to maintain cumulative personnel exposure, both external to the room and in direct isotope handling, at less than 20 microSv/hr. However, cumulative exposure may be greatly decreased if a Cf-252 HDR unit is employed which would eliminate direct isotope handling and decrease treatment times from tilde 3 hours to an expected range of 3 to 15 minutes. Such a Cf-252 HDR source will also demonstrate improved dose distributions over current LDR treatments due to the ability to step the point-like source throughout the target volume and weight the dwell time accordingly

  14. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    International Nuclear Information System (INIS)

    Vettese, F.; Donichak, C.; Bourgeault, P.

    1995-01-01

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.)

  15. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives

    Science.gov (United States)

    Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.

    2014-03-01

    The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 32 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4-6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus.

  16. Routine quality control of high dose rate brachytherapy equipment

    International Nuclear Information System (INIS)

    Guzman Calcina, Carmen S.; Almeida, Adelaide de; Rocha, Jose R. Oliveira

    2001-01-01

    A Quality Assurance program should be installed also for High Dose Rate brachytherapy, in the order to achieve a correct dose administration to the patient and for the safety to those involved directly with the treatment. The work presented here has the following purposes: Analyze the types of equipment tests presented by the official protocols (TG40, TG56 e ARCAL XXX), evaluate the brachytherapy routine tests of protocols from various national and international radiotherapy services and compare the latter with those presented in the official protocols. As a result, we conclude the following: TG56 presents a higher number of tests when compared to the other official protocols and most of the tests presented by the analyzed services are present in TG56. A suggestion for a basic protocol is presented, emphasizing the periodicity and tolerance level of each of the tests. (author)

  17. Comparison between calculation methods of dose rates in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, E.A.; Biaggio, M.F.; D R, M.F.; Almeida, C.E. de

    1998-01-01

    In treatments with radiations for gynecologic tumors is necessary to evaluate the quality of the results obtained by different calculation methods for the dose rates on the points of clinical interest (A, rectal, vesicle). The present work compares the results obtained by two methods. The Manual Calibration Method (MCM) tri dimensional (Vianello E., et.al. 1998), using orthogonal radiographs for each patient in treatment, and the Theraplan/T P-11 planning system (Thratonics International Limited 1990) this last one verified experimentally (Vianello et.al. 1996). The results show that MCM can be used in the physical-clinical practice with a percentile difference comparable at the computerized programs. (Author)

  18. Distribution of dose rates due to fallout from the Fukushima Daiichi reactor accident

    International Nuclear Information System (INIS)

    Minato, Susumu

    2011-01-01

    A number of dose rate data taken after the Fukushima Daiichi reactor accident occurred have been collected through official websites of prefectural governments. Subtracting natural background dose rates from these data, contributions due to fallout alone were evaluated. A train-borne survey was carried out to verify the accuracy of the contour map. The dose rate variation pattern obtained by the survey coincided fairly well with that of the map. (author)

  19. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  20. Recommended de minimis radiation dose rates for Canada

    International Nuclear Information System (INIS)

    1990-07-01

    A de minimis dose or dose rate as used in this report represents a level of risk which is generally accepted as being of no significance to an individual, or in the case of a population, of no significance to society. The doses corresponding to these levels of risk are based on current scientific knowledge. Dose rates recommended in this report are as follows: a de minimis individual dose rate of 10 μSv a -1 , based on a risk level that would generally be regarded as negligible in comparison with other risks; and a de minimis collective dose rate of 1 person-Sv a -1 , based on an imperceptible increase above the normal incidences of cancer and genetic defects in the exposed population. The concept of de minimis is to be distinguished from 'exempt from regulation' (below regulatory concern). The latter involves broader social and economic factors which encompass but are not limited to the purely risk-based factors addressed by the de minimis dose. De minimis is one of the factors that determine the exemption of sources or practices that may result in doses below or above the de minimis level. Although these de minimis dose rates should be considered in developing criteria and guidelines for deriving quantities and concentrations of radioactive substances that may be exempted from regulation, this document is only concerned with establishing de minimis dose rates, not with exempting sources and practices

  1. Dose rate analysis for Tank 101 AZ (Project W151)

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP 2 ) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A

  2. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  3. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    Science.gov (United States)

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  4. Performance evaluation of a direct-conversion flat-panel detector system in imaging and quality assurance for a high-dose-rate 192Ir source

    Science.gov (United States)

    Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime

    2018-03-01

    In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X  +  γ), [D], and subtracted data for depicting the source ([D]  -  [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D]  -  [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2  >  0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74  ±  0.02 mm and 1.01  ±  0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.

  5. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  6. Leprosy Post-Exposure Prophylaxis (LPEP) programme: study protocol for evaluating the feasibility and impact on case detection rates of contact tracing and single dose rifampicin.

    Science.gov (United States)

    Barth-Jaeggi, Tanja; Steinmann, Peter; Mieras, Liesbeth; van Brakel, Wim; Richardus, Jan Hendrik; Tiwari, Anuj; Bratschi, Martin; Cavaliero, Arielle; Vander Plaetse, Bart; Mirza, Fareed; Aerts, Ann

    2016-11-17

    The reported number of new leprosy patients has barely changed in recent years. Thus, additional approaches or modifications to the current standard of passive case detection are needed to interrupt leprosy transmission. Large-scale clinical trials with single dose rifampicin (SDR) given as post-exposure prophylaxis (PEP) to contacts of newly diagnosed patients with leprosy have shown a 50-60% reduction of the risk of developing leprosy over the following 2 years. To accelerate the uptake of this evidence and introduction of PEP into national leprosy programmes, data on the effectiveness, impact and feasibility of contact tracing and PEP for leprosy are required. The leprosy post-exposure prophylaxis (LPEP) programme was designed to obtain those data. The LPEP programme evaluates feasibility, effectiveness and impact of PEP with SDR in pilot areas situated in several leprosy endemic countries: India, Indonesia, Myanmar, Nepal, Sri Lanka and Tanzania. Complementary sites are located in Brazil and Cambodia. From 2015 to 2018, contact persons of patients with leprosy are traced, screened for symptoms and assessed for eligibility to receive SDR. The intervention is implemented by the national leprosy programmes, tailored to local conditions and capacities, and relying on available human and material resources. It is coordinated on the ground with the help of the in-country partners of the International Federation of Anti-Leprosy Associations (ILEP). A robust data collection and reporting system is established in the pilot areas with regular monitoring and quality control, contributing to the strengthening of the national surveillance systems to become more action-oriented. Ethical approval has been obtained from the relevant ethics committees in the countries. Results and lessons learnt from the LPEP programme will be published in peer-reviewed journals and should provide important evidence and guidance for national and global policymakers to strengthen current

  7. The choice of food consumption rates for radiation dose assessments

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Webb, G.A.M.

    1981-01-01

    The practical problem in estimating radiation doses due to radioactive contamination of food is the choice of the appropriate food intakes. To ensure compliance or to compare with dose equivalent limits, higher than average intake rates appropriate to critical groups should be used. However for realistic estimates of health detriment in the whole exposed population, average intake rates are more appropriate. (U.K.)

  8. Evaluation of rate of unstable chromosomal changes in human blood irradiated by X-rays: establishment of dose-response curve

    International Nuclear Information System (INIS)

    Mendonça, J.C.G.; Mendes, M.E.; Melo, A.M.M.A.; Silva, L.M.; Andrade, A.M.G.; Hwang, S.F.; Lima, F.F.

    2017-01-01

    Since the discovery of ionizing radiation, and consequently of its properties, there has been an increasing in its use, which in turn has raised concerns about the biological damage that it could cause in exposed individuals. As a result, cytogenetic dosimetry has emerged: a method that can be used as a complement or, in the absence of physical dosimetry, relating the frequency of chromosomal changes found in the blood of the exposed individual and the dose absorbed through dose-response calibration curves. This work aimed to verify the frequencies of the unstable chromosomal changes in human blood lymphocytes irradiated by X-rays of 250 kVp with different absorbed doses and later establish the dose-response calibration curves. The irradiation was performed at the CRCN-NE/CNEN-PE, Brazil metrology service on a PANTAK X-ray machine, model HF 320. The blood samples had their lymphocytes cultured in culture media and, after the processing, the metaphases were obtained. The chromosomal alterations analyzed were chromosomes dicentric, ring and isolated actinic fragments. There was an increase in frequencies of all chromosomal changes with increased absorbed dose. The calibration curves of dicentric and dicentric + rings presented good adjustments with the values of the coefficients Y = 0.0013 + 0.0271D + 0.0556D 2 (X 2 = 10.36 / GL = 6) and Y = 0.0013 + 0.0263D + 0.0640D 2 (X 2 = 7.43 / GL = 6), respectively. The establishment of these curves enables the Laboratory of Biological Dosimetry of the CRCN/NE/CNEN-PE to estimate the dose absorbed by occupationally exposed individuals and in cases of radiological accidents

  9. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  10. Determination and Analysis of Ar-41 Dose Rate Characteristic at Thermal Column of Kartini Reactor

    International Nuclear Information System (INIS)

    Widarto; Sardjono, Y.

    2007-01-01

    Determination and Analysis of Ar-41 activity dose rate at the thermal column after shutdown of Kartini reactor has been done. Based on evaluation and analysis concluded that external dose rate is D = 1.606x10 -6 Sv/second and internal dose rate is 3.429x10 -1 1 Sv/second. It means that if employee work at the column thermal area for 15 minutes a day, 5 days a week, in a year will be 0.376 Sv still under dose rate limit i.e. 0.5 Sv, so that the column thermal facility is safely area. (author)

  11. Exact comparison of dose rate measurements and calculation of TN12/2 packages

    International Nuclear Information System (INIS)

    Taniuchi, H.; Matsuda, F.

    1998-01-01

    Both of dose rate measurements of TN 12/2 package and calculations by Monte Carlo code MORSE in SCALE code system and MCNP were performed to evaluate the difference between the measurement and the calculation and finding out the cause of the difference. The calculated gamma-ray dose rates agreed well with measured ones, but calculated neutron dose rates overestimated more than a factor of 1.7. When considering the cause of the difference and applying the modification into the neutron calculation, the calculated neutron dose rates become to agree well, and the factor decreased to around 1.3. (authors)

  12. High dose rate brachytherapy for the palliation of malignant dysphagia

    International Nuclear Information System (INIS)

    Homs, Marjolein Y.V.; Eijkenboom, Wilhelmina M.H.; Coen, Veronique L.M.A.; Haringsma, Jelle; Blankenstein, Mark van; Kuipers, Ernst J.; Siersema, Peter D.

    2003-01-01

    Background and purpose: High dose rate (HDR) brachytherapy is a commonly used palliative treatment for esophageal carcinoma. We evaluated the outcome of HDR brachytherapy in patients with malignant dysphagia. Material and methods: A retrospective analysis over a 10-year period was performed of 149 patients treated with HDR brachytherapy, administered in one or two sessions, at a median dose of 15 Gy. Patients were evaluated for functional outcome, complications, recurrent dysphagia, and survival. Results: At 6 weeks after HDR brachytherapy, dysphagia scores had improved from a median of 3 to 2 (n=104; P<0.001), however, dysphagia had not improved in 51 (49%) patients. Procedure-related complications occurred in seven (5%) patients. Late complications, including fistula formation or bleeding, occurred in 11 (7%) patients. Twelve (8%) patients experienced minor retrosternal pain. Median survival of the patients was 160 days with a 1-year survival rate of 15%. Procedure-related mortality was 2%. At follow-up, 55 (37%) patients experienced recurrent dysphagia. In 34 (23%) patients a metal stent was placed to relieve persistent or recurrent dysphagia. Conclusion: HDR brachytherapy is a moderately effective treatment for the palliation of malignant dysphagia. The incidence of early major complications is low, however, persistent and recurrent dysphagia occur frequently, and require often additional treatment

  13. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  14. Conversion Factors for Predicting Unshielded Dose Rates in Shielded Waste

    International Nuclear Information System (INIS)

    Clapham, M.; Seamans Jr, J.V.; Arbon, R.E.

    2009-01-01

    This document describes the methodology developed and used by the Advanced Mixed Waste Treatment Project for determining the activity content and the unshielded surface dose rate for lead lined containers contaminated with transuranic waste. Several methods were investigated: - Direct measurement of the dose rate after removing the shielding. - Use of a MicroShield R derived dose conversion factor, (mRem/hr unshielded )/(mRem/hr shielded ), applied to the measured surface dose rate to estimate the unshielded surface dose rate. - Use of a MicroShield R derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. - Use of an empirically derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. The last approach proved to be the most efficacious by using a combination of nondestructive assay and empirically defined dose rate conversion factors. Empirically derived conversion factors were found to be highly dependent upon the matrix of the waste. Use of conversion factors relied on activity values corrected to address the presence of a lead liner. (authors)

  15. Leprosy Post-Exposure Prophylaxis (LPEP) programme: Study protocol for evaluating the feasibility and impact on case detection rates of contact tracing and single dose rifampicin

    NARCIS (Netherlands)

    Barth-Jaeggi, T. (Tanja); Steinmann, P. (Peter); Mieras, L. (Liesbeth); W.H. van Brakel (Wim); J.H. Richardus (Jan Hendrik); Tiwari, A. (Anuj); Bratschi, M. (Martin); Cavaliero, A. (Arielle); Vander Plaetse, B. (Bart); Mirza, F. (Fareed); Aerts, A. (Ann)

    2016-01-01

    textabstractIntroduction: The reported number of new leprosy patients has barely changed in recent years. Thus, additional approaches or modifications to the current standard of passive case detection are needed to interrupt leprosy transmission. Large-scale clinical trials with single dose

  16. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  17. Dose rate-dependent marrow toxicity of TBI in dogs and marrow sparing effect at high dose rate by dose fractionation.

    Science.gov (United States)

    Storb, R; Raff, R F; Graham, T; Appelbaum, F R; Deeg, H J; Schuening, F G; Sale, G; Seidel, K

    1999-01-01

    We evaluated the marrow toxicity of 200 and 300 cGy total-body irradiation (TBI) delivered at 10 and 60 cGy/min, respectively, in dogs not rescued by marrow transplant. Additionally, we compared toxicities after 300 cGy fractionated TBI (100 cGy fractions) to that after single-dose TBI at 10 and 60 cGy/min. Marrow toxicities were assessed on the basis of peripheral blood cell count changes and mortality from radiation-induced pancytopenia. TBI doses studied were just below the dose at which all dogs die despite optimal support. Specifically, 18 dogs were given single doses of 200 cGy TBI, delivered at either 10 (n=13) or 60 (n=5) cGy/min. Thirty-one dogs received 300 cGy TBI at 10 cGy/min, delivered as either single doses (n=21) or three fractions of 100 cGy each (n=10). Seventeen dogs were given 300 cGy TBI at 60 cGy/min, administered either as single doses (n=5) or three fractions of 100 cGy each (n=10). Within the limitations of the experimental design, three conclusions were drawn: 1) with 200 and 300 cGy single-dose TBI, an increase of dose rate from 10 to 60 cGy/min, respectively, caused significant increases in marrow toxicity; 2) at 60 cGy/min, dose fractionation resulted in a significant decrease in marrow toxicities, whereas such a protective effect was not seen at 10 cGy/min; and 3) with fractionated TBI, no significant differences in marrow toxicity were seen between dogs irradiated at 60 and 10 cGy/min. The reduced effectiveness of TBI when a dose of 300 cGy was divided into three fractions of 100 cGy or when dose rate was reduced from 60 cGy/min to 10 cGy/min was consistent with models of radiation toxicity that allow for repair of sublethal injury in DNA.

  18. Superficial dose evaluation of four dose calculation algorithms

    Science.gov (United States)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  19. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  20. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  1. Intracavitary radiation treatment planning and dose evaluation

    International Nuclear Information System (INIS)

    Anderson, L.L.; Masterson, M.E.; Nori, D.

    1987-01-01

    Intracavitary radiation therapy with encapsulated radionuclide sources has generally involved, since the advent of afterloading techniques, inserting the sources in tubing previously positioned within a body cavity near the region to be treated. Because of the constraints on source locations relative to the target region, the functions of treatment planning and dose evaluation, usually clearly separable in interstitial brachytherapy, tend to merge in intracavitary therapy. Dose evaluation is typically performed for multiple source-strength configurations in the process of planning and thus may be regarded as complete when a particular configuration has been selected. The input data for each dose evaluation, of course, must include reliable dose distribution information for the source-applicator combinations used. Ultimately, the goal is to discover the source-strength configuration that results in the closest possible approach to the dose distribution desired

  2. Radiation induced skeletal changes in beagle: dose rates, dose, and age effect analysis from 226Ra

    International Nuclear Information System (INIS)

    Momeni, M.H.; Williams, J.R.; Rosenblatt, L.S.

    1976-01-01

    Radiation-induced skeletal injury (E) and the rate of skeletal injury were studied as a function of time and dose in beagles administered 226 Ra Cl 2 in eight semimonthly iv injections starting at 2, 4, or 14 months of age. Skeletal changes were evaluated with a radiographic x-ray scoring system in 20 skeletal regions; each region was scored on a 0 to 6 scale. Bone changes in six regions of humeri were qualitatively analyzed for comparison with total skeletal changes. Skeletal changes were classified by endosteal or periosteal cortical sclerosis and thickening, fractures, osteolytic lesions, and trabecular coarsening

  3. The calculation of dose rates from rectangular sources

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1998-01-01

    A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)

  4. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  5. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  6. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  7. Dose rate reduction method for NMCA applied BWR plants

    International Nuclear Information System (INIS)

    Nagase, Makoto; Aizawa, Motohiro; Ito, Tsuyoshi; Hosokawa, Hideyuki; Varela, Juan; Caine, Thomas

    2012-09-01

    BRAC (BWR Radiation Assessment and Control) dose rate is used as an indicator of the incorporation of activated corrosion by products into BWR recirculation piping, which is known to be a significant contributor to dose rate received by workers during refueling outages. In order to reduce radiation exposure of the workers during the outage, it is desirable to keep BRAC dose rates as low as possible. After HWC was adopted to reduce IGSCC, a BRAC dose rate increase was observed in many plants. As a countermeasure to these rapid dose rate increases under HWC conditions, Zn injection was widely adopted in United States and Europe resulting in a reduction of BRAC dose rates. However, BRAC dose rates in several plants remain high, prompting the industry to continue to investigate methods to achieve further reductions. In recent years a large portion of the BWR fleet has adopted NMCA (NobleChem TM ) to enhance the hydrogen injection effect to suppress SCC. After NMCA, especially OLNC (On-Line NobleChem TM ), BRAC dose rates were observed to decrease. In some OLNC applied BWR plants this reduction was observed year after year to reach a new reduced equilibrium level. This dose rate reduction trends suggest the potential dose reduction might be obtained by the combination of Pt and Zn injection. So, laboratory experiments and in-plant tests were carried out to evaluate the effect of Pt and Zn on Co-60 deposition behaviour. Firstly, laboratory experiments were conducted to study the effect of noble metal deposition on Co deposition on stainless steel surfaces. Polished type 316 stainless steel coupons were prepared and some of them were OLNC treated in the test loop before the Co deposition test. Water chemistry conditions to simulate HWC were as follows: Dissolved oxygen, hydrogen and hydrogen peroxide were below 5 ppb, 100 ppb and 0 ppb (no addition), respectively. Zn was injected to target a concentration of 5 ppb. The test was conducted up to 1500 hours at 553 K. Test

  8. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  9. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Buchori; Dadong Iskandar

    2007-01-01

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  10. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  11. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  12. Risks to health from radiation at low dose rates

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1997-01-01

    Our focus is on whether, using a balance-of-evidence approach, it is possible to say that at a low enough dose, or at a sufficiently low dose rate, radiation risk reduces to zero in a population. We conclude that insufficient evidence exists at present to support such a conclusion. In part this reflects statistical limitations at low doses, and in part (although mechanisms unquestionably exist to protect us against much of the damage induced by ionizing radiation) the biological heterogeneity of human populations, which means these mechanisms do not act in all members of the population at all times. If it is going to be possible to demonstrate that low doses are less dangerous than we presently assume, the evidence, paradoxically, will likely come from studies of higher dose and dose rate scenarios than are encountered occupationally. (author)

  13. Design of movable fixed area γ dose rate monitor

    International Nuclear Information System (INIS)

    Li Dongyu; Cheng Wen; Li Jikai; Huang Hong; Shen Qiming; Zhang Qiang; Liu Zhengshan

    2005-10-01

    Movable fixed area γ dose rate monitor has not only the characteristics of fixed area γ dose rate monitor, but that of portable meter as well. Its main function is to monitor the areas where dose rate would change without orderliness to prevent unplanned radiation exposure accidents from happening. The design way of the monitor, the main indicators description, the working principle and the comprising of software and hardware are briefly introduced. The monitor has the characteristics of simple installation, easy maintenance, little power consumption, wide range, notability of visual and audible alarm and so on. Its design and technique have novelty and advancement. (authors)

  14. Nuclear Enterprises portable dose rate meter type PDR 2

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    This instrument is a portable battery powered dose rate meter covering the dose rate range from 0.05 to 500 mrad h -1 . It is designed to measure X- and γ-radiation dose rates over the energy range from 35 keV to 3 MeV. The radiation detector is an MX 164/S GM tube provided with a compensation sheath. The report describes the instrument under the headings: facilities and controls; radiation characteristics; electrical characteristics; environmental characteristics; mechanical characteristics; the manual; summary of performance. (U.K.)

  15. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  16. Determination of surface dose rate for cloisonne using thermoluminescent dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hengyuan, Zhao; Yulian, Zhang

    1985-07-01

    In this paper, the measuring method and results of surface dose rate of cloisonne using CaSO/sub 4/ Dy-Teflon foil dosimeter are described. The surface dose rate of all products are below 0.015 mrad/h. These products contain 42 sorts of jewelery and 20 sets of wares (such as vases, plates, ash-trays, etc.). Most of the data fall within the range of natural background. For comparison, some jewelery from Taiwan and 3 vases from Japan are measured. The highest surface dose rate of 0.78 mrad/h is due to the necklace jewelery from Taiwan.

  17. High dose rate brachytherapy source measurement intercomparison.

    Science.gov (United States)

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR 192 Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single 192 Ir source using their own equipment and local protocols. Results were compared to the 192 Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for 192 Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  18. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  19. Audits in high dose rate brachytherapy in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.; Rosa, L.A.; Velasco, A.; Paiva, E. de; Goncalves, M.; Castelo, L.C.

    2002-01-01

    The lack of well established dosimetry protocols for HDR sources is a point of great concern regarding the uniformity of procedures within a particular country. The main objective of this paper is to report the results of an implementation of the audit program in dosimetry of high dose rate brachytherapy sources used by the radiation therapy centers in Brazil. In Brazil, among 169 radiotherapy centers, 35 have HDR brachytherapy systems. This program started in August 2001 and until now eight radiotherapy services were audited. The audit program consists of the visit in loco to each center and the evaluation of the intensity of the source with a well type chamber specially design for HDR 192 Ir sources. The measurements was carried out with a HDR1000PLUS Brachytherapy Well Type Chamber and a MAX 4000 Electrometer, both manufactured by Standard Imaging Inc. The chamber was calibrated in air kerma strength by the Accredited Dosimetry Calibration Laboratory, Department of Medical Physics, University of Wisconsin in the USA. The same chamber was calibrated in Brazil using a 192 lr high dose rate source whose intensity was determined by 60 Co gamma rays and 250 kV x rays interpolation methodology. The Nk of 60 Co and 250 kV x rays were provided by the Brazilian National Standard Laboratory for Ionizing Radiation (LMNRI)

  20. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  1. Estimates of external dose-rate conversion factors and internal dose conversion factors for selected radionuclides released from fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Togawa, Orihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-11-01

    This report provides a tabulation of both external dose-rate conversion factors and internal dose conversion factors using radioactive decay data in the updated Evaluated Nuclear Structure Data File (ENSDF) for selected 26 radionuclides and all their daughter radionuclides of potential importance in safety assessments of fusion facilities. The external dose-rate conversion factors for 21 target organs are tabulated for three exposure modes that are immersion in contaminated air, irradiation at a height of 1 m above a contaminated ground surface and immersion contaminated water. For internal exposure, committed dose equivalents, based on the methodology of ICRP Publication 30, in the same target organs per intake of unit activity are given for the inhalation and ingestion exposure pathways. The data presented here is intended to be generally used for safety assessments of fusion reactors. Comparisons of external effective dose-rate conversion factors and committed effective dose equivalents are made with the previous data from the independent data bases to provide quality assurance on our calculated results. There is generally good agreement among data from the independent data bases. The differences in the values of both effective dose-rate and dose conversion factors appeared are primarily due to differences in calculational methodology, the use of different radioactive decay data, and compilation errors. (author)

  2. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  3. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  4. In vivo dosimetry with semiconductors in medium dose rate (MDR) brachytherapy for cervical cancer.

    Science.gov (United States)

    Allahverdi, Mahmoud; Jaberi, Ramin; Aghili, Mehdi; Ghahremani, Fatemeh; Geraily, Ghazale

    2013-03-01

    This study was performed to evaluate the role of in vivo dosimetry with semiconductor detectors in gynaecological medium dose rate brachytherapy, and to compare the actual doses delivered to organs at risk (as measured using in vivo dosimetry) with those calculated during treatment planning. Doses to the rectum and bladder were measured in a group of patients with cervical carcinoma using semiconductor detectors and compared to the doses calculated using a treatment planning system. 36 applications of brachytherapy at dose rates of 1.8-2.3 Gy/h were performed in the patients. The mean differences between the measured and calculated doses were 3 % for the rectum and 11 % for the bladder. The main reason for the differences between the measured and calculated doses was patient movement. To reduce the risk of large errors in the dose delivered, in vivo dosimetry should be performed in addition to treatment planning system computations.

  5. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  6. Economic assessment of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution for cervix carcinoma;Evaluation economique de la curietherapie de debit pulse gynecologique (PDR) avec optimisation de la dose pour les cancers du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Remonnay, R.; Morelle, M.; Pommier, P.; Carrere, M.O. [Lyon Univ., 69 (France); Remonnay, R.; Morelle, M.; Pommier, P. [Axe Economie de la Sante, GATE, CNRS-UMR 5824, Centre Leon-Berard, 69 - Lyon (France); Pommier, P. [Centre Leon-Berard, 69 - Lyon (France); Haie-Meder, C. [Institut Gustave-Roussy, 94 - Villejuif (France); Quetin, P. [Centre Paul-Strauss, 67 - Strasbourg (France); Kerr, C. [Centre Val-d' Aurelle, parc Euromedecine, 34 - Montpellier (France); Delannes, M. [Institut Claudius-Regaud, 31 - Toulouse (France); Castelain, B. [Centre Oscar-Lambret, 59 - Lille (France); Peignaux, K. [Centre Georges Francois Leclerc, 21 - Dijon (France); Kirova, Y. [Institut Curie, 75 - Paris (France); Romestaing, P. [Centre hospitalier Lyon Sud, 69 - Pierre-Benite (France); Williaume, D. [Centre Eugene-Marquis, 35 - Rennes (France); Krzisch, C. [Hopital Sud, 80 - Amiens (France); Thomas, L. [Institut Bergonie, 33 - Bordeaux (France); Lang, P. [Groupe hospitalier Pitie-Salpetriere, 75 - Paris (France); Baron, M.H. [Hopital Jean-Minjoz, 25 - Besancon (France); Cussac, A. [Centre Rene-Gauducheau, 44 - Nantes-Saint-Herblain (France); Lesaunier, F. [Centre Francois-Baclesse, 14 - Caen (France); Maillard, S. [Institut Jean-Godinot, 51 - Reims (France); Barillot, I. [Hopital Bretonneau, 37 - Tours (France); Charra-Brunaud, C.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France)

    2010-06-15

    Purpose: Our study aims at evaluating the cost of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution versus traditional treatments (iridium wires, cesium, non-optimized P.D.R.). Issues surrounding reimbursement were also explored. Materials and methods: This prospective, multi-centre, non-randomized study conducted in the framework of a project entitled 'Support Program for Costly Diagnostic and Therapeutic Innovations' involved 21 hospitals. Patients with cervix carcinoma received either classical brachytherapy or the innovation. The direct medical costs of staff and equipment, as well as the costs of radioactive sources, consumables and building renovation were evaluated from a hospital point of view using a micro costing approach. Subsequent costs per brachytherapy were compared between the four strategies. Results: The economic study included 463 patients over two years. The main resources categories associated with P.D.R. brachytherapy (whether optimized or not) were radioactive sources (1053 Euros) and source projectors (735 Euros). Optimized P.D.R. induced higher cost of imagery and dosimetry (respectively 130 Euros and 367 Euros) than non-optimized P.D.R. (47 Euros and 75 Euros). Extra costs of innovation over the less costly strategy (iridium wires) reached more than 2100 Euros per treatment, but could be reduced by half in the hypothesis of 40 patients treated per year (instead of 24 in the study). Conclusion: Aside from staff, imaging and dosimetry, the current hospital reimbursements largely underestimated the cost of innovation related to equipment and sources. (authors)

  7. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  8. VMATc: VMAT with constant gantry speed and dose rate

    International Nuclear Information System (INIS)

    Peng, Fei; Romeijn, H Edwin; Epelman, Marina A; Jiang, Steve B

    2015-01-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units. (paper)

  9. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    International Nuclear Information System (INIS)

    FOUST, D.J.

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering

  10. GARDEC, Estimation of dose-rates reduction by garden decontamination

    International Nuclear Information System (INIS)

    Togawa, Orihiko

    2006-01-01

    1 - Description of program or function: GARDEC estimates the reduction of dose rates by garden decontamination. It provides the effect of different decontamination Methods, the depth of soil to be considered, dose-rate before and after decontamination and the reduction factor. 2 - Methods: This code takes into account three Methods of decontamination : (i)digging a garden in a special way, (ii) a removal of the upper layer of soil, and (iii) covering with a shielding layer of soil. The dose-rate conversion factor is defined as the external dose-rate, in the air, at a given height above the ground from a unit concentration of a specific radionuclide in each soil layer

  11. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  12. Beta induced Bremsstrahlung dose rate in concrete shielding

    International Nuclear Information System (INIS)

    Manjunatha, H.C.

    2013-01-01

    Dosimetric study of beta-induced Bremsstrahlung in concrete is importance in the field of radiation protection. The efficiency, intensity and dose rate of beta induced Bremsstrahlung by 113 pure beta nuclides in concrete shielding is computed. The Bremsstrahlung dosimetric parameters such as the efficiency (yield), Intensity and dose rate of Bremsstrahlung are low for 199 Au and high for 104 Tc in concrete. The efficiency, Intensity and dose rate of Bremsstrahlung increases with maximum energy of beta nuclide (Emax) and modified atomic number (Zmod) of the target. The estimated Bremsstrahlung efficiency, Intensity and dose rate are useful in the calculations photon track-length distributions. These parameters are useful to determine the quality and quantity of the radiation (known as the source term). Precise estimation of this source term is very important in planning of radiation shielding. (author)

  13. Treatment of the prostate cancer with high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Torres Silva, Felipe

    2002-01-01

    The prostate cancer treatment in early stages is controversial. The high dose rate brachytherapy has been used like monotherapy or boost with external beam radiotherapy in advanced disease. This paper describes the technique and the advantages over other modalities

  14. establishment of background radiation dose rate in the vicinity

    African Journals Online (AJOL)

    nb

    radiation dose rate data prior to commencement of uranium mining activities. Twenty stations in seven ... and geological structures of soil and rocks. (Florou and Kritids 1992, ... Selection of Sampling Points and location of. Field Dosimeters.

  15. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  16. Dose rate from the square volume radiation source

    International Nuclear Information System (INIS)

    Karpov, V.I.

    1978-01-01

    The expression for determining the dose rate from a three-dimensional square flat-parallel source of any dimensions is obtained. A simplified method for integrating the resultant expression is proposed. A comparison of the calculation results with the results by the Monte Carlo method has shown them to coincide within 6-8%. Since buildings and structures consist of rectangular elements, the method is recommended for practical calculations of dose rates in residential buildings

  17. Beta particle dose rates to micro-organisms in soil

    International Nuclear Information System (INIS)

    Kabir, M.; Spiers, F.W.; Iinuma, Takeshi.

    1977-01-01

    Studies were made to estimate the beta-particle dose rates to micro-organisms of various sizes in soil. The small insects and organisms living in soil are constantly exposed to beta-radiation arising from naturally occuring radionuclides in soil as in this case no overlying tissue shields them. The technique of measuring beta-particle dose rate consisted of using of a thin plastic scintillator to measure the pulse height distribution as the beta particle traverses the scintillator. The integrated response was determined by the number and size of the photomultiplier pulses. From the data of soil analyses it was estimated that typically about 29% of the beta particles emitted per gm. of soil were contributed by the U/Ra series, 21% by the Th series and about 50% by potassium. By combining the individual spectra of these three radionuclides in the proportion found in a typical soil, a resultant spectrum was computed representing the energy distribution of the beta particles. The dose rate received by micro-organisms of different shape and size in soil was derived from the equilibrium dose rates combined with a 'Geometrical Factor' of the organisms. For small organisms, the dose rates did not vary between the spherical and cylindrical types, but in the case of larger organisms, the dose rates were found to be greater for the spherical types of the same diameter. (auth.)

  18. Radiobiological responses for two cell lines following continuous low dose-rate (CLDR) and pulsed dose rate (PDR) brachytherapy

    International Nuclear Information System (INIS)

    Hanisch, Per Henrik; Furre, Torbjoern; Olsen, Dag Rune; Pettersen, Erik O.

    2007-01-01

    The iso-effective irradiation of continuous low-dose-rate (CLDR) irradiation was compared with that of various schedules of pulsed dose rate (PDR) irradiation for cells of two established human lines, T-47D and NHIK 3025. Complete single-dose response curves were obtained for determination of parameters α and β by fitting of the linear quadratic formula. Sublethal damage repair constants μ and T 1/2 were determined by split-dose recovery experiments. On basis of the acquired parameters of each cell type the relative effectiveness of the two regimens of irradiation (CLDR and PDR) was calculated by use of Fowler's radiobiological model for iso-effect irradiation for repeated fractions of dose delivered at medium dose rates. For both cell types the predicted and observed relative effectiveness was compared at low and high iso-effect levels. The results indicate that the effect of PDR irradiation predicted by Fowler's model is equal to that of CLDR irradiation for both small and large doses with T-47D cells. With NHIK 3025 cells PDR irradiation induces a larger effect than predicted by the model for small doses, while it induces the predicted effect for high doses. The underlying cause of this difference is unclear, but cell-cycle parameters, like G2-accumulation is tested and found to be the same for the two cell lines

  19. Rapid Measurement of Neutron Dose Rate for Transport Index

    International Nuclear Information System (INIS)

    Morris, R.L.

    2000-01-01

    A newly available neutron dose equivalent remmeter with improved sensitivity and energy response has been put into service at Rocky Flats Environmental Technology Site (RFETS). This instrument is being used to expedite measurement of the Transport Index and as an ALARA tool to identify locations where slightly elevated neutron dose equivalent rates exist. The meter is capable of measuring dose rates as low as 0.2 μSv per hour (20 μrem per hour). Tests of the angular response and energy response of the instrument are reported. Calculations of the theoretical instrument response made using MCNPtrademark are reported for materials typical of those being shipped

  20. SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mok Tsze Chung, E; Aleman, D [University of Toronto, Toronto, Ontario (Canada); Safigholi, H; Nicolae, A; Davidson, M; Ravi, A; Song, W [Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: The effectiveness of using a combination of three sources, {sup 60}Co, {sup 192}Ir and {sup 169}Yb, is analyzed. Different combinations are compared against a single {sup 192}Ir source on prostate cancer cases. A novel inverse planning interior point algorithm is developed in-house to generate the treatment plans. Methods: Thirteen prostate cancer patients are separated into two groups: Group A includes eight patients with the prostate as target volume, while group B consists of four patients with a boost nodule inside the prostate that is assigned 150% of the prescription dose. The mean target volume is 35.7±9.3cc and 30.6±8.5cc for groups A and B, respectively. All patients are treated with each source individually, then with paired sources, and finally with all three sources. To compare the results, boost volume V150 and D90, urethra Dmax and D10, and rectum Dmax and V80 are evaluated. For fair comparison, all plans are normalized to a uniform V100=100. Results: Overall, double- and triple-source plans were better than single-source plans. The triple-source plans resulted in an average decrease of 21.7% and 1.5% in urethra Dmax and D10, respectively, and 8.0% and 0.8% in rectum Dmax and V80, respectively, for group A. For group B, boost volume V150 and D90 increased by 4.7% and 3.0%, respectively, while keeping similar dose delivered to the urethra and rectum. {sup 60}Co and {sup 192}Ir produced better plans than their counterparts in the double-source category, whereas {sup 60}Co produced more favorable results than the remaining individual sources. Conclusion: This study demonstrates the potential advantage of using a combination of two or three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. Our results show that {sup 60}Co, {sup 192}Ir and {sup 169}Yb produce the best plans when used simultaneously and

  1. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Cantinha, Rebeca S.; Nakano, Eliana; Silva, Luanna R.S.

    2009-01-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60 Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD 50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  2. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  3. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    Science.gov (United States)

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  4. Dose rate effects during damage accumulation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  5. Dose rate effects during damage accumulation in silicon

    International Nuclear Information System (INIS)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates

  6. The usefulness of metal markers for CTV-based dose prescription in high-dose-rate interstitial brachytherapy

    International Nuclear Information System (INIS)

    Yoshida, Ken; Mitomo, Masanori; Nose, Takayuki; Koizumi, Masahiko; Nishiyama, Kinji; Yoshida, Mineo

    2002-01-01

    We employ a clinical target volume (CTV)-based dose prescription for high-dose-rate (HDR) interstitial brachytherapy. However, it is not easy to define CTV and organs at risk (OAR) from X-ray film or CT scanning. To solve this problem, we have utilized metal markers since October 1999. Moreover, metal markers can help modify dose prescription. By regulating the doses to the metal markers, refining the dose prescription can easily be achieved. In this research, we investigated the usefulness of the metal markers. Between October 1999 and May 2001, 51 patients were implanted with metal markers at Osaka Medical Center for Cancer and Cardiovascular Diseases (OMCC), Osaka National Hospital (ONH) and Sanda City Hospital (SCH). Forty-nine patients (head and neck: 32; pelvis: 11; soft tissue: 3; breast: 3) using metal markers were analyzed. During operation, we implanted 179 metal markers (49 patients) to CTV and 151 markers (26 patients) to OAR. At treatment planning, CTV was reconstructed judging from the metal markers, applicator position and operation records. Generally, we prescribed the tumoricidal dose to an isodose surface that covers CTV. We also planned to limit the doses to OAR lower than certain levels. The maximum normal tissue doses were decided 80%, 150%, 100%, 50% and 200% of the prescribed doses for the rectum, the urethra, the mandible, the skin and the large vessel, respectively. The doses to the metal markers using CTV-based dose prescription were generated. These were compared with the doses theoretically calculated with the Paris system. Treatment results were also investigated. The doses to the 158 metal markers (42 patients) for CTV were higher than ''tumoricidal dose''. In 7 patients, as a result of compromised dose prescription, 9 markers were lower than the tumoricidal dose. The other 12 markers (7%) were excluded from dose evaluation because they were judged as miss-implanted. The doses to the 142 metal markers (24 patients) for OAR were lower

  7. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Skwarchuk, Mark W.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1997-01-01

    Purpose: To describe a newly developed technique to study radiation tolerance of rat spinal cord to continuous interstitial irradiation (IRT) at different dose rates. Material and methods: Two parallel catheters are inserted just laterally on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters are afterloaded with two 192 Ir wires of 4 cm length each (activity 1-2.3 mCi/cm) for the low dose rate (LDR) IRT or connected to the HDR micro-Selectron for the high dose rate (HDR) IRT. Spinal cord target volume is located at the level of Th 12 -L 2 . Due to the rapid dose fall-off around the implanted sources, a dose inhomogeneity across the spinal cord thickness is obtained in the dorso-ventral direction. Using the 100% reference dose (rate) at the ventral side of the spinal cord to prescribe the dose, experiments have been carried out to obtain complete dose response curves at average dose rates of 0.49, 0.96 and 120 Gy/h. Paralysis of the hind-legs after 5-6 months and histopathological examination of the spinal cord of each irradiated rat are used as experimental endpoints. Results: The histopathological damage seen after irradiation is clearly reflected the inhomogeneous dose distribution around the implanted catheters, with the damage predominantly located in the dorsal tract of the cord or dorsal roots. With each reduction in average dose rate, spinal cord radiation tolerance is significantly increased. When the dose is prescribed at the 100% reference dose rate, the ED 50 (induction of paresis in 50% of the animals) for the HDR-IRT is 17.3 Gy. If the average dose rate is reduced from 120 Gy/h to 0.96 or 0.49 Gy/h, a 2.9- or 4.7-fold increase in the ED 50 values to 50.3 Gy and 80.9 Gy is observed; for the dose prescribed at the 150% reference dose rate (dorsal side of cord) ED 50 values are 26.0, 75.5 and 121.4 Gy, respectively. Using different types of analysis and in dependence of the dose prescription and reference dose rate, the

  8. Physics and quality assurance for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1995-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial as well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  9. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  10. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  11. Survey of environmental radiation dose rates in Tokushima prefecture

    International Nuclear Information System (INIS)

    Sakama, Minoru; Imura, Hiroyoshi; Akou, Natsuki; Takeuchi, Emi; Morihiro, Yukinori

    2004-01-01

    Survey of environmental radiation dose rates in Tokushima prefecture has been carried out using a portable NaI (Tl) scintillation survey meter and a CsI(Tl) pocket type one. To our knowledge, previous several surveys in Tokushima, for example by Abe et al. (1982) and Yoshino et al. (1991), have remained to report the environmental radiation dose rates merely about the major cities, that is Tokushima City and others along the Pacific. Up to now, there have been few efforts to survey the environmental radiation dose rates about mountain valleys in Tokushima. In this work, it is remarkable that we have for the first time made surveys of environmental radiation dose rates on the 6 routes across the Sanuki mountains and inside the pier of Onaruto Bridge, 'Naruto Uzu-no-michi', in the northern area of Tokushima. In the course of present surveys, the maximum value of the environmental radiation dose rates was 0.117±0.020 μGy/h at Higetouge in Sanuki City, and then it was found that the radiation dose rates across the Sanuki mountains tend to increase slightly with approaching Kagawa area from Tokushima one. Considering geological formation around the northern side of Sanuki mountains, there are mainly geological layers of granodiorite containing in the substantial amount of naturally occurring radionuclides, 40 K, U-series, and Th-series, than other geological rocks and it was found that the terrestrial gamma-rays have effect on the environmental radiation dose rates according to the geological formation. (author)

  12. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  13. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures

  14. SU-F-T-32: Evaluation of the Performance of a Multiple-Array-Diode Detector for Quality Assurance Tests in High-Dose-Rate Brachytherapy with Ir-192 Source

    Energy Technology Data Exchange (ETDEWEB)

    Harpool, K; De La Fuente Herman, T; Ahmad, S; Ali, I [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dose verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and

  15. Clinical application of a OneDose(TM) MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-01-01

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose(TM) in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs. (note)

  16. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    Science.gov (United States)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  17. Evaluation of the response of concurrent high dose rate intracavitary brachytherapy with external beam radiotherapy in management of early stage carcinoma cervix.

    Science.gov (United States)

    Patidar, Arvind Kumar; Kumar, H S; Walke, Rahul V; Hirapara, Pushpendra H; Jakhar, Shankar Lal; Bardia, M R

    2012-10-01

    To evaluate local disease control and early complications of concomitant brachytherapy with external beam-radiotherapy in early stage carcinoma cervix. Fifty patients of early stage carcinoma cervix (FIGO-IB/IIA) were randomly divided into study group concomitant external beam irradiation (EBRT) and HDR-ICBT (intra-cavitary brachytherapy, xrt = 50 Gy/25 Fr, HDR 5.2 Gy*5 Fr) and the control group EBRT followed by HDR-ICBT (xrt = 50 Gy/25 Fr, HDR 7.5 Gy*3 Fr). Acute reactions and local disease response were compared between treatment and at 6-month follow up. Median overall treatment times were 38 and 61 days in the study and the control groups, respectively. Acute skin reactions and diarrhea were more in the study but manageable. At the completion of the study, there were 80 and 68 % complete responses, 16 and 20 % partial responses, 0 and 8 % stable diseases in the study group and the control group, respectively. Response was better in the study group but statistically insignificant. Larger number of patients and longer follow up are required to arrive at concrete conclusion.

  18. Urethral stricture following high dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Sullivan, Lisa; Williams, Scott G.; Tai, Keen Hun; Foroudi, Farshad; Cleeve, L.; Duchesne, Gillian M.

    2009-01-01

    Purpose: To evaluate the incidence, timing, nature and outcome of urethral strictures following high dose rate brachytherapy (HDRB) for prostate carcinoma. Methods and materials: Data from 474 patients with clinically localised prostate cancer treated with HDRB were analysed. Ninety percent received HDRB as a boost to external beam radiotherapy (HDRBB) and the remainder as monotherapy (HDRBM). Urethral strictures were graded according to the Common Terminology Criteria for Adverse Events v3.0. Results: At a median follow-up of 41 months, 38 patients (8%) were diagnosed with a urethral stricture (6-year actuarial risk 12%). Stricture location was bulbo-membranous (BM) urethra in 92.1%. The overall actuarial rate of grade 2 or more BM urethral stricture was estimated at 10.8% (95% CI 7.0-14.9%), with a median time to diagnosis of 22 months (range 10-68 months). All strictures were initially managed with either dilatation (n = 15) or optical urethrotomy (n = 20). Second line therapy was required in 17 cases (49%), third line in three cases (9%) and 1 patient open urethroplasty (grade 3 toxicity). Predictive factors on multivariate analysis were prior trans-urethral resection of prostate (hazard ratio (HR) 2.81, 95% CI 1.15-6.85, p = 0.023); hypertension (HR 2.83, 95% CI 1.37-5.85, p = 0.005); and dose per fraction used in HDR (HR for 1 Gy increase per fraction 1.33, 95% CI 1.08-1.64, p = 0.008). Conclusions: BM urethral strictures are the most common late grade 2 or more urinary toxicity following HDR brachytherapy for prostate cancer. Most are manageable with minimally invasive procedures. Both clinical and dosimetric factors appear to influence the risk of stricture formation.

  19. Precedents For Authorization Of Contents Using Dose Rate Measurements

    International Nuclear Information System (INIS)

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-01-01

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  20. Terrestrial Gamma Radiation Dose Rate of West Sarawak

    Science.gov (United States)

    Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.

    2017-10-01

    A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.

  1. Comparison of Radiation Dose Rates with the Flux to Dose Conversion Factors Recommended in ICRP-74 and ICRP-116

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Kil, A Reum; Lee, Jo Eun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae

    2016-01-01

    The evaluation of radiation shielding has been performed for the design and maintenance of various facilities using radioactive sources such as nuclear fuel, accelerator, and radionuclide. The conversion of flux to dose mainly used in nuclear and radiation fields has been generally made with the dose coefficients presented in ICRP Publication 74 (ICRP- 74), which are produced based on ICRP Publication 60. On the other hand, ICRP Publication 116 (ICRP-116), which adopts the protection system of ICRP Publication 103, has recently been published and provides the dose conversion coefficients calculated with a variety of Monte Carlo codes. The coefficients have more than an update of those in ICRP-74, including new particle types and a greatly expanded energy range. In this study, a shielding evaluation of a specific container for neutron and gamma sources was performed with the MCNP6 code. The dose rates from neutron and gamma-ray sources were calculated using the MCNP6 codes, and these results were based on the flux to dose conversion factors recommended in ICRP-74 and ICRP-116. As a result, the dose rates evaluated with ICRP-74 were generally shown higher than those with ICRP-116. For neutrons, the difference is mainly occurred by the decrease of radiation weighting factors in a part of energy ranges in the ICRP-116 recommendations. For gamma-rays, the ICRP-74 recommendation applied with the kerma approximation leads to overestimated results than the other assessment

  2. Modified Exponential (MOE) Models: statistical Models for Risk Estimation of Low dose Rate Radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Furukawa, C.; Kawakami, Y.; Magae, J.

    2004-01-01

    Simultaneous inclusion of dose and dose-rate is required to evaluate the risk of long term irradiation at low dose-rates, since biological responses to radiation are complex processes that depend both on irradiation time and total dose. Consequently, it is necessary to consider a model including cumulative dose,dose-rate and irradiation time to estimate quantitative dose-response relationship on the biological response to radiation. In this study, we measured micronucleus formation and (3H) thymidine uptake in U2OS, human osteosarcoma cell line, as indicators of biological response to gamma radiation. Cells were exposed to gamma ray in irradiation room bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and propidium iodide. The number of binuclear cells bearing a micronucleus was counted under a florescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and (3h) thymidine was pulsed for 4h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk at low dose/dose-rate. (Author)

  3. Evaluation of quality characteristics and functional properties of mechanically deboned chicken meats treated with different dose rates of ionizing radiation and use of antioxidants; Avaliacao de caracteristicas de qualidade e propriedades funcionais da carne mecanicamente separada de frango tratada com diferentes taxas de dose de radiacao ionizante e uso de antioxidantes

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula

    2012-07-01

    The Mechanically Deboned chicken meat (MDCM) is used in traditional meat products, in greater proportion in those emulsified, replacing meat raw materials more expensive. The raw material can have high MDCM the microbial load, as a result of contamination during processing or failure during the evisceration. The irradiation process is accepted as one of the most effective technologies when compared to conventional techniques of preservation, to reduce contamination of pathogens and spoilage. However, little information is available about the use and effects of different dose rates of ionizing radiation processing. Irradiation causes chemical changes in food, a major cause of deterioration of quality of raw or cooked meat products during refrigerated storage, frozen. The objective of this study was to evaluate the effects of different dose rates of ionizing radiation on the production of Thiobarbituric Acid Reactive Substances (TBARS), color, microbiological and sensory characteristics of mechanically deboned chicken added or without added antioxidants, during the cold storage and evaluation of functional properties. The results showed that among the tested dose rates using cobalt-60 source, dose rate of 4.04 kGy.h-1 was the best for processing MDCM. Furthermore, the use of the combination of rosemary antioxidant and α-tocopherol were able to reduce lipid oxidation generated by irradiation of the samples, showed a synergistic effect to the processing with ionizing radiation in reduction of psychrotrophic bacteria count and contributed to a better sensory quality. The use of radiation in the processing FDMI did not adversely affect the functional properties studied. (author)

  4. Remanent dose rates around the collimators of the LHC beam cleaning insertions

    International Nuclear Information System (INIS)

    Brugger, M.; Roesler, S.

    2005-01-01

    The LHC will require an extremely powerful and unprecedented collimation system. As ∼30% of the LHC beam is lost in the cleaning insertions, these will become some of the most radioactive locations around the entire LHC ring. Thus, remanent dose rates to be expected during later repair or maintenance interventions must be considered in the design phase itself. As a consequence, the beam cleaning insertions form a unique test bed for a recently developed approach to calculate remanent dose rates. A set of simulations, different in complexity, is used in order to evaluate methods for the estimation of remanent dose rates. The scope, as well as the restrictions, of the omega-factor method are shown and compared with the explicit simulation approach. The latter is then used to calculate remanent dose rates in the beam cleaning insertions. Furthermore, a detailed example for maintenance dose planning is given. (authors)

  5. Remanent dose rates around the collimators of the LHC beam cleaning insertions.

    Science.gov (United States)

    Brugger, M; Roesler, S

    2005-01-01

    The LHC will require an extremely powerful and unprecedented collimation system. As approximately 30% of the LHC beam is lost in the cleaning insertions, these will become some of the most radioactive locations around the entire LHC ring. Thus, remanent dose rates to be expected during later repair or maintenance interventions must be considered in the design phase itself. As a consequence, the beam cleaning insertions form a unique test bed for a recently developed approach to calculate remanent dose rates. A set of simulations, different in complexity, is used in order to evaluate methods for the estimation of remanent dose rates. The scope, as well as the restrictions, of the omega-factor method are shown and compared with the explicit simulation approach. The latter is then used to calculate remanent dose rates in the beam cleaning insertions. Furthermore, a detailed example for maintenance dose planning is given.

  6. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    International Nuclear Information System (INIS)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-01-01

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10 11 Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410 9 Gy/s within 2% (OSL and TLD) and up to 1510 9 Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  7. In vitro study of dose rate effect on Leksell Gamma Knife Perfexion

    International Nuclear Information System (INIS)

    Pastykova, V.; Novotny, J. jr.; Vachelova, J.; Davidkova, M.; Liscak, R.

    2018-01-01

    The main purpose of the study is to evaluate the radiobiological effect of the dose rate changes in Leksell Gamma Knife (LGK) clinical conditions. In principle there are two reasons why dose rate on LGK is reduced during patient irradiation: 1) Co-60 sources decay with a half-life of 5.26 years and 2) using multiple iso-centers and conformal treatment plans (e.g. with blocked beams). This pilot study is an experimental work performed in vitro with medulloblastoma DAOY cells. Are there effects caused by low dose rate which could negatively influence the clinical outcome of the radiosurgery? (authors)

  8. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  9. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  10. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  11. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  12. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  13. Simplification of an MCNP model designed for dose rate estimation

    Science.gov (United States)

    Laptev, Alexander; Perry, Robert

    2017-09-01

    A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  14. Simplification of an MCNP model designed for dose rate estimation

    Directory of Open Access Journals (Sweden)

    Laptev Alexander

    2017-01-01

    Full Text Available A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  15. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.; O'Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h -1 (1 rad d -1 ). A dose rate no greater than 0.4 mGy h -1 to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h -1 will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted

  16. Vancomycin Utilization Evaluation: Are We Dosing Appropriately?

    Directory of Open Access Journals (Sweden)

    Ladan Ayazkhoo

    2015-10-01

    Full Text Available Background: Inappropriate use of vancomycin not only increase health care costs but also contribute to the emergence of resistant organisms. Higher trough serum vancomycin concentrations (>10mg/L has been recommended for avoidance of development of resistance. We aim to compare the administered dose with recommended doses based on guideline-recommended weight-based dosing.Methods: In a cross sectional study, all patients who received vancomycin between July and October 2013, in infectious disease, internal medicine wards and emergency department of a teaching hospital in Tehran, Iran were entered to the study. Indication of vancomycin and necessary data for dose calculation including height and serum creatinine were recorded. Prescribed doses were compared with recommended doses in guidelines and calculated Glomerular filtration rate (GFR for each patient.Results: One hundred and four patients (45 females and 59 males recruited in the study. Our results indicated that, from all administered doses of vancomycin, 64.4% and 88.8% differs significantly (more than 20% based on American Pharmacist Association (AphA vancomycin monograph and guideline-recommended, weight-based vancomycin dosing (for adults, respectively.Conclusion: Underdosing of vancomycin is a major risk factor for developing resistance of gram positive organisms to this glycopeptide. Our results showed that more than half of patients receiving vancomycin are in the risk of low drug levels based on guidelines. So, having a comprehensive plan for the proper use of this drug especially designing effective internal guidelines can prevent emergence of resistance to vancomycin in future.

  17. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  18. An overview of zinc addition for BWR dose rate control

    Energy Technology Data Exchange (ETDEWEB)

    Marble, W.J. [GE Nuclear Energy, San Jose, CA (United States)

    1995-03-01

    This paper presents an overview of the BWRs employing feedwater zinc addition to reduce primary system dose rates. It identifies which BWRs are using zinc addition and reviews the mechanical injection and passive addition hardware currently being employed. The impact that zinc has on plant chemistry, including the factor of two to four reduction in reactor water Co-60 concentrations, is discussed. Dose rate results, showing the benefits of implementing zinc on either fresh piping surfaces or on pipes with existing films are reviewed. The advantages of using zinc that is isotopically enhanced by the depletion of the Zn-64 precursor to Zn-65 are identified.

  19. Dose rates from a C-14 source using extrapolation chamber and MC calculations

    International Nuclear Information System (INIS)

    Borg, J.

    1996-05-01

    The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14 C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a 14 C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs

  20. Some aspects of dose evaluation, 3

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu

    1979-01-01

    This paper describes methods of calculating the radioiodine releases and resultant doses in the ''Guide for calculation of doses to man from routine releases of effluents from light-water-cooled nuclear power plants for evaluating compliance with dose objectives around a site of LWRs'' by the Japan Nuclear Safety Commission. Examples of dose calculation in the design stage of plants and releases of radioiodine from operating plants are also given. The thyroid dose objective from radioiodine in reactor effluents was determined to be 15 mrem per year by the AEC of Japan in 1975. In the guide, models and parameters are given as most realistic on the basis of current knowledge and experience; in cases involving unknown factors these are on conservative side. Calculations of annual average releases of gaseous and liquid effluents are made using the models and parameters established through operational experiences of the LWR plants. Annual thyroid doses are calculated from inhalation and ingestion of leafy vegetable and cow's milk for gaseous effluents and ingestion of marine food for liquid effluents. In calculation of the thyroid dose, fw = 0.2 is used instead of = 0.3 in ICRP publ. 2 for ingestion of foods excluding seaweed and the specific activity method for ingestion of foods including seaweed. It is because Japanese take foods with much stable iodine. Calculated annual releases of 131 I in gaseous effluents of typical BWR (1100 MWe) and PWR (800 MWe) are about 2 Ci and 0.7 Ci per year per plant and the annual thyroid doses are about 4 mrem and 9 mrem per year, respectively. Actually, however, releases of 131 I in gaseous effluents from the operating LWR plants are about less than one tenth of the above figures. (author)

  1. [Evaluation of patient doses in interventional radiology].

    Science.gov (United States)

    Ropolo, R; Rampado, O; Isoardi, P; Gandini, G; Rabbia, C; Righi, D

    2001-01-01

    To verify the suitability of indicative quantities to evaluate the risk related to patient exposure, in abdominal and vascular interventional radiology, by the study of correlations between dosimetric quantities and other indicators. We performed in vivo measurements of entrance skin dose (ESD) and dose area product (DAP) during 48 procedures to evaluate the correlation among dosimetric quantities, and an estimation of spatial distribution of exposure and effective dose (E). To measure DAP we used a transmission ionization chamber and to evaluate ESD and its spatial distribution we used radiographic film packed in a single envelope and placed near the patient's skin. E was estimated by a calculation software using data from film digitalisation. From the data derived for measurements in 27 interventional procedures on 48 patients we obtained a DAP to E conversion factor of 0.15 mSv / Gy cm2, with an excellent correlation (r=.99). We also found a good correlation between DAP and exposure parameters such as fluoroscopy time and number of images. The greatest effective dose was evaluated for a multiple procedure in the hepatic region, with a DAP value of 425 Gy cm2. The greatest ESD was about 550 mGy. For groups of patients undergoing similar interventional procedures the correlation between ESD and DAP had conversion factors from 6 to 12 mGy Gy-1 cm-2. The evaluation of ESD and E by slow films represents a valid method for patient dosimetry in interventional radiology. The good correlation between DAP and fluoroscopy time and number of images confirm the suitability of these indicators as basic dosimetric information. All the ESD values found are lower than threshold doses for deterministic effects.

  2. Determination of alpha-dose rates and chronostratigraphical study of travertine samples

    International Nuclear Information System (INIS)

    Oufni, L.; University Moulay Ismail, Errachidia; Misdaq, M.A.; Boudad, L.; Kabiri, L.

    2001-01-01

    Uranium and thorium contents in different layers of stratigraphical sedimentary deposits have been evaluated by using LR-115 type II and CR-39 solid state nuclear track detectors (SSNTD). A method has been developed for determining the alpha-dose rates of the sedimentary travertine samples. Using the U/Th dating method, we succeeded in age dating carbonated level sampled in the sedimentary deposits. Correlation between the stratigraphy, alpha-dose rates and age has been investigated. (author)

  3. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography.

    Science.gov (United States)

    Laspas, Fotios; Tsantioti, Dimitra; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John

    2011-04-01

    Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR ≤65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure.

  4. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  5. In vitro and in vivo effects of low dose HTO contamination modulated by dose rate

    International Nuclear Information System (INIS)

    Petcu, I.; Savu, D.; Moisoi, N.; Koeteles, G.J.

    1997-01-01

    The experiment performed in vitro intended to examine whether an adaptive response could be elicited on lymphocytes by low-level contamination of whole blood with tritiated water and if the modification of the dose rate has any influence on it. Lymphocytes pre-exposed to 3 HOH (0.2 - 6.6 MBq/ml) and subsequently irradiated with I Gy γ-rays showed micronuclei frequency significantly lower (40% - 45%) than the expected member (sum of the yields induced by 3 HOH and γ-rays separately). The degree of the radioresistance induced by HTO pre-treatments became higher with decreasing dose-rate for a rather similar total adapting dose. In vivo, the aim of the study was to investigate if different dose rates are inducing modulation of the lipid peroxidation level and of the thymidine uptake in different tissues of animals contaminated by HTO ingestion. The total doses varied between 5 and 20 cGy and were delivered as chronic (100 days) or acute contamination (5 days). It was observed that only doses about 20 cGy caused a dose-rate dependent increase of the lipid peroxidation level in the tissues of small intestine, kidney and spleen. Both chronic and acute contamination did produce reduced incorporation of thymidine in the cells of bone marrow. The most effective decrease of thymidine uptake was induced by the acute contamination in the lower dose domain (approx. 5 cGy). Our hypothesis is that in this dose domain the modification of thymidine uptake could be due to changes at the level of membrane transport. (author)

  6. Dose rate determining factors of PWR primary water

    International Nuclear Information System (INIS)

    Terachi, Takumi; Kuge, Toshiharu; Nakano, Nobuo

    2014-01-01

    The relationship between dose rate trends and water chemistry has been studied to clarify the determining factors on the dose rates. Therefore dose rate trends and water chemistry of 11 PWR plants of KEPCO (Kansai Electric Power Co., Inc.) were summarized. It is indicated that the chemical composition of the oxide film, behaviour of corrosion products and Co-58/Co-60 ratio in the primary system have effected dose rate trends based on plant operation experiences for over 40 years. According to plant operation experiences, the amount of Co-58 has been decreasing with the increasing duration of SG (Steam Generator) usage. It is indicated that the stable oxide film formation on the inner surface of SG tubing, is a major beneficial factor for radiation sources reduction. On the other hand, the reduction of the amount of Co-60 for the long term has been not clearly observed especially in particular high dose plants. The primary water parameters imply that considering release and purification balance on Co-59 is important to prevent accumulation of source term in primary water. In addition, the effect of zinc injection, which relates to the chemical composition of oxide film, was also assessed. As the results, the amount of radioactive Co has been clearly decreased. The decreasing trend seems to correlate to the half-life of Co-60, because it is considered that the injected zinc prevents the uptake of radioactive Co into the oxide film on the inner surface of the components and piping. In this paper, the influence of water chemistry and the replacement experiences of materials on the dose rates were discussed. (author)

  7. Comparison of traditional low-dose-rate to optimized and nonoptimized high-dose-rate tandem and ovoid dosimetry

    International Nuclear Information System (INIS)

    Decker, William E.; Erickson, Beth; Albano, Katherine; Gillin, Michael

    2001-01-01

    Purpose: Few dose specification guidelines exist when attempting to perform high-dose-rate (HDR) dosimetry. The purpose of this study was to model low-dose-rate (LDR) dosimetry, using parameters common in HDR dosimetry, to achieve the 'pear-shape' dose distribution achieved with LDR tandem and ovoid applications. Methods and Materials: Radiographs of Fletcher-Suit LDR applicators and Nucletron 'Fletcher-like' HDR applicators were taken with the applicators in an idealized geometry. Traditional Fletcher loadings of 3M Cs-137 sources and the Theratronics Planning System were used for LDR dosimetry. HDR dosimetry was performed using the Nucletron Microselectron HDR UPS V11.22 with an Ir-192 source. Dose optimization points were initially located along a line 2 cm lateral to the tandem, beginning at the tandem tip at 0.5-cm intervals, ending at the sail, and optimized to 100% of the point A dose. A single dose optimization point was also placed laterally from the center of each ovoid equal to the radius of the ovoid (ovoid surface dose). For purposes of comparison, dose was also calculated for points A and B, and a point located 1 cm superior to the tandem tip in the plane of the tandem, (point F). Four- and 6-cm tandem lengths and 2.0-, 2.5-, and 3.0-cm ovoid diameters were used for this study. Based on initial findings, dose optimization schemes were developed to best approximate LDR dosimetry. Finally, radiographs were obtained of HDR applications in two patients. These radiographs were used to compare the optimization schemes with 'nonoptimized' treatment plans. Results: Calculated doses for points A and B were similar for LDR, optimized HDR, and nonoptimized HDR. The optimization scheme that used tapered dose points at the tandem tip and optimized a single ovoid surface point on each ovoid to 170% of point A resulted in a good approximation of LDR dosimetry. Nonoptimized HDR resulted in higher doses at point F, the bladder, and at points lateral to the tandem tip

  8. Determination of dose rates from natural radionuclides in dental materials

    International Nuclear Information System (INIS)

    Veronese, I.; Guzzi, G.; Giussani, A.; Cantone, M.C.; Ripamonti, D.

    2006-01-01

    Different types of materials used for dental prosthetics restoration, including feldspathic ceramics, glass ceramics, zirconia-based ceramics, alumina-based ceramics, and resin-based materials, were investigated with regard to content of natural radionuclides by means of thermoluminescence beta dosimetry and gamma spectrometry. The gross beta dose rate from feldspathic and glass ceramics was about ten times higher than the background measurement, whereas resin-based materials generated negligible beta dose rate, similarly to natural tooth samples. The specific activity of uranium and thorium was significantly below the levels found in the period when addition of uranium to dental porcelain materials was still permitted. The high-beta dose levels observed in feldspathic porcelains and glass ceramics are thus mainly ascribable to 4 K, naturally present in these specimens. Although the measured values are below the recommended limits, results indicate that patients with prostheses are subject to higher dose levels than other members of the population. Alumina- and zirconia-based ceramics might be a promising alternative, as they have generally lower beta dose rates than the conventional porcelain materials. However, the dosimetry results, which imply the presence of inhomogeneously distributed clusters of radionuclides in the sample matrix, and the still unsuitable structural properties call for further optimization of these materials

  9. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    International Nuclear Information System (INIS)

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D 90 of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD 2 ) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D mean (EQD 2 ) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D mean (EQD 2 ) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD 2 ) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  10. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  11. Radiation dose rates from adult patients undergoing nuclear medicine investigations

    International Nuclear Information System (INIS)

    Mountford, P.J.; O'Doherty, M.J.; Forge, N.I.; Jeffries, A.; Coakley, A.J.

    1991-01-01

    Adult patients undergoing nuclear medicine investigations may subsequently come into close contact with members of the public and hospital staff. In order to expand the available dosimetry and derive appropriate recommendations, dose rates were measured at 0.1, 0.5 and 1.0 m from 80 adult patients just before they left the nuclear medicine department after undergoing one of eight 99 Tc m studies, an 123 I thyroid, an 111 In leucocyte or a 201 Tl cardiac scan. The maximum departure dose rates at these distances of 150, 30 and 7.3 μSv h -1 were greater than those found in similar published studies of adult and paediatric patients. To limit the dose to an infant to less than 1 mSv, an 111 In leucocyte scan is the only investigation for which it may be necessary to restrict close contact between the infant and a radioactive parent, depending on the dose rate near the surface of the patient, the parent's habits and how fretful is the infant. It is unlikely that a ward nurse will receive a dose of 60 μSv in a working day if caring for just one radioactive adult patient, unless the patient is classified as totally helpless and had undergone a 99 Tc m marrow, bone or brain scan. The data and revised calculations of effective exposure times based on a total close contact time of 9 h in every 24 h period should allow worst case estimates of radiation dose to be made and recommendations to be formulated for other circumstances, including any future legislative changes in dose limits or derived levels. (author)

  12. Dose rate of restroon in facilities using radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Gwi [Dept. of uclear Medicine, Inha University hospital, Incheon (Korea, Republic of); An, Seong Min [Dept. of Radiology, Gachon University, Incheon (Korea, Republic of)

    2016-06-15

    This study is therefore aimed at measuring the surface dose rate and the spatial dose rate in and outside the radionuclide facility in order to ensure safety of the patients, radiation workers and family care-givers in their use of such equipment and to provide a basic framework for further research on radiation protection. The study was conducted at 4 restrooms in and outside the radionuclide facility of a general hospital in Incheon between May 1 and July 31, 2014. During the study period, the spatial contamination dose rate and the surface contamination dose rate before and after radiation use were measured at the 4 places−thyroid therapy room, PET center, gamma camera room, and outpatient department. According to the restroom use survey by hospitals, restrooms in the radionuclide facility were used not only by patients but also by family care-givers and some of radiation workers. The highest cumulative spatial radiation dose rate was 8.86 mSv/hr at camera room restroom, followed by 7.31 mSv/hr at radioactive iodine therapy room restroom, 2.29 mSv/hr at PET center restroom, and 0.26 mSv/hr at outpatient department restroom, respectively. The surface radiation dose rate measured before and after radiation use was the highest at toilets, which are in direct contact with patient's excretion, followed by the center and the entrance of restrooms. Unsealed radioactive sources used in nuclear medicine are relatively safe due to short half lives and low energy. A patient who received those radioactive sources, however, may become a mobile radioactive source and contaminate areas the patient contacts−camera room, sedation room, and restroom−through secretion and excretion. Therefore, patients administered radionuclides should be advised to drink sufficient amounts of water to efficiently minimize radiation exposure to others by reducing the biological half-life, and members of the public−family care-givers, pregnant women, and children−be as far away from

  13. ACDOS2: an improved neutron-induced dose rate code

    International Nuclear Information System (INIS)

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere

  14. Temperature dependence of dose rate laser simulation adequacy

    International Nuclear Information System (INIS)

    Skorobogatov, P.K.; Nikiforov, A.Y.; Demidov, A.A.

    1999-01-01

    2-D numerical modeling was carried out to analyze the temperature dependence of dose rate laser simulation adequacy in application to p-n junction ionising current. Experimental validation was performed using test structure in the temperature range of 0 to 100 deg.C. (authors)

  15. ACDOS2: an improved neutron-induced dose rate code

    Energy Technology Data Exchange (ETDEWEB)

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  16. Evaluation of lens dose in medulloblastoma radiotherapy

    International Nuclear Information System (INIS)

    Oliveira, F.L.; Vilela, E.C.; Sousa, S.A; Lima, F.F. de

    2007-01-01

    The improvement of the applied radiotherapy techniques in the cranial-spinal therapy, which is used in the cases of medulloblastoma, aims the reduction of the risks of future damages in enclosed critical agencies in the irradiation fields. This work aims to evaluate the lens doses due two common techniques used in medulloblastoma radiotherapy. For this, thermoluminescent dosimeters, previously calibrated, were located in an anthropomorphic phantom (ALDERSON - RANDON Laboratory), in the tumor and lens positions. The employed techniques were as following: (1) angled fields technique and (2) half-beam block technique. The phantom was irradiated five times in each technique with two lateral opposed fields in the brain with a total prescribed dose of 1.5 Gy, followed of two posterior spinal fields with the same prescribed dose, using a 6MV accelerator. The results showed that the doses in the first technique were 0.10 +- 0,04 Gy and, in second one, 0.09 +- 0,02 Gy. It was observed that, independent of the employed technique, the lens doses practically are the same. (author)

  17. Evaluation of doses in gastrointestinal fluoroscopy

    International Nuclear Information System (INIS)

    Canevaro, Lucia Viviana

    1995-04-01

    This work aims at the development of a methodology to measure radiation doses to patients and professionals (radiologists) in fluoroscopic gastrointestinal tract examinations. Also, it aims at the assessment of the performance of this type of medical x-ray equipment, from the radiation protection point of view at the Department of Radiology of the Hospital Universitario Clementino Fraga Filho (Universidade Federal de Rio de Janeiro). This work was developed in order to identify the actual status and to set base lines as a reference for a quality control program. The calibration procedures of thermoluminescent dosimeters for radiodiagnosis quality beams are discussed and described here as well as its application in dose measurements, for patients and radiologists. The performance of two types of x-ray equipment (fluorescent screen and image intensifier) usually used to perform this examinations was evaluated through appropriate tests. Radiation protection features are also considered. Dose to radiologists at unprotected regions and to patients at several sample points were measured. A comparison of the measured doses given by both types of equipment was made. After further analysis, the necessity to look for methods that reduce unnecessary doses became evident. The high values obtained in some procedures using fluorescent screen make the use of this type of equipment unacceptable. With these results, we consider that Health Care authorities have the responsibility of replacing all fluorescent screen equipment and of establishing standards, and raising awareness the responsible staff. (author)

  18. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    DEFF Research Database (Denmark)

    Helle, K.B.; Müller, T.O.; Astrup, Poul

    2014-01-01

    of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64......Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often...... source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given...

  19. HIGH-DOSE RATE BRACHYTHERAPY IN CARCINOMA CERVIX STAGE IIIB

    Directory of Open Access Journals (Sweden)

    Sathya Maruthavanan

    2016-07-01

    Full Text Available INTRODUCTION Radiotherapy is the standard treatment in locally advanced (IIB-IVA and early inoperable cases. The current standard of practice with curable intent is concurrent chemoradiation in which intracavitary brachytherapy is an integral component of radiotherapy. This study aims at assessing the efficacy of HDR ICBT (High-dose rate intracavitary brachytherapy in terms local response, normal tissue reactions, and feasibility. METHODS AND MATERIALS A total of 20 patients of stage IIIB cancer of the uterine cervix were enrolled in the study and were planned to receive concurrent chemotherapy weekly along with EBRT (external beam radiotherapy to a dose of 50 Gy/25 Fr. Suitability for ICBT was assessed at 40 Gy/20 Fr. 6/20 patients were suitable at 40 Gy and received HDR ICBT with a dose of 5.5 Gy to point A in 4 sessions (5.5 Gy/4 Fr. The remaining 14/20 patients completed 50 Gy and received HDR ICBT with a dose of 6 Gy to point A in 3 sessions (6 Gy/3 Fr. RESULTS A total of 66 intracavitary applications were done and only one application required dose modification due to high bladder dose, the pelvic control rate was 85% (17/20. 10% (2/20 had stable disease and 5% (1/20 had progressive disease at one year of follow up. When toxicity was considered only 15% developed grade I and grade II rectal complications. Patient compliance and acceptability was 100%. Patients were very comfortable with the short treatment time as compared with patients on LDR ICBT (low-dose rate intracavitary brachytherapy treatment interviewed during the same period. CONCLUSION This study proves that HDR brachytherapy is efficacious and feasible in carcinoma of cervix stage IIIB. It also proves that good dose distribution can be achieved with HDR intracavitary facility by the use of dose optimization. The short treatment time in HDR ICBT makes it possible to maintain this optimised dose distribution throughout the treatment providing a gain in the therapeutic ratio and

  20. Mapping the outdoor gamma dose rate in Indonesia

    International Nuclear Information System (INIS)

    Iskandar, Dadong; Syarbaini, Sutarman; Bunawas, Kusdiana

    2008-01-01

    Full text: Indonesia is the largest archipelago in the world, comprising five main islands - Java, Sumatra, Sulawesi, Kalimantan and Papua - as well as 30 archipelagoes totaling 17,508 islands with about 6000 of those inhabited. Mapping the outdoor gamma dose rate in Indonesia is a research project conducted by National Nuclear Energy Agency since 2005 aiming to produce a baseline data map as an overview for planning purposes. In these three years 4 main islands has been measured. The grid system has been used in the research. In Sumatra Island the grid is 50 x 50 km 2 , while in Java 40 x 40 km 2 , in Kalimantan 60 x 60 km 2 , and in Sulawesi 40 x 40 km 2 . The gamma dose rates have been measured by Mini Gamma Ray Spectrometer Model GR-130 made by Exploranium-Canada. Figure 1 shows the map of outdoor gamma dose rate in Indonesia. Range of dose rate are in Sumatra from 22,96 ± 0,46 n Sv/h to 186,08 ± 3,72 n Sv/h, in Java 11,32 ± 0,72 n Sv/h to 127,54 ± 6,14 n Sv/h, in Kalimantan 10.72 ± 8.32 n Sv/h to 349,48 ± 57,21 n Sv/h, and in Sulawesi 17.7 ± 11,5 n Sv/h to 467 ± 102 n Sv/h. The arithmetic and geometric mean of dose rate in Indonesia are 68 n Sv/h and 53 n Sv/h, respectively. In general, outdoor gamma dose rate in Indonesia is in a normal range. There are some regions have anomaly of gamma dose rate, for examples at North Sumatra 186.08 ± 3,72 n Sv/h (N 2.12727, E 99.80909), at West Kalimantan 349,48 ± 57,21 n Sv/h (S 1.39507, E 110.57584), at West Sulawesi 487 ± 103 n Sv/h (S 2.95781, E 118.86995), etc. These data is very useful as a radiation baseline in Indonesia. (author)

  1. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  2. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  3. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  4. Image Quality, Overall Evaluability, and Effective Radiation Dose of Coronary Computed Tomography Angiography With Prospective Electrocardiographic Triggering Plus Intracycle Motion Correction Algorithm in Patients With a Heart Rate Over 65 Beats Per Minute.

    Science.gov (United States)

    Pontone, Gianluca; Muscogiuri, Giuseppe; Baggiano, Andrea; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Fazzari, Fabio; Mushtaq, Saima; Conte, Edoardo; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Verdecchia, Massimo; Fusini, Laura; Bonfanti, Lorenzo; Consiglio, Elisa; Rabbat, Mark G; Bartorelli, Antonio L; Pepi, Mauro

    2018-01-16

    Recently, a new intracycle motion correction algorithm (MCA) was introduced to reduce motion artifacts from heart rate (HR) in coronary computed tomography angiography (cCTA). The aim of the study was to evaluate the image quality, overall evaluability, and effective radiation dose (ED) of cCTA with prospective electrocardiographic (ECG) triggering plus MCA as compared with standard protocol with retrospective ECG triggering in patients with HR≥65 bpm. One hundred consecutive patients (67±10 y) scheduled for cCTA with 65Ethics Committee and a written informed consent was obtained from all patients. Image noise, signal to noise ratio, contrast to noise ratio, Likert image quality score (score 1, nondiagnostic; score 2, adequate; score 3, good; score 4, excellent), overall image evaluability, and ED were measured and compared between the 2 groups. Both vessel-based and patient-based analyses were evaluated. Student test or Wilcoxon test were used to evaluate differences of continuous variables, whereas the χ test was used to study differences with regard to categorical data. A P-value <0.05 was considered statistically significant. cCTA was successfully performed in all patients. In a segment-based model, group 1 compared with group 2 showed a lower rate of overall artifacts (67% vs. 83%; P<0.001) and motion artifacts (49% vs. 66%; P<0.001), resulting in a better Likert image quality score (2.83±1.03 vs. 2.37±1.02; P<0.01) and overall evaluability (85% vs. 75%; P<0.01). Group 1 showed a lower ED as compared with group 2 (3.1±1.9 vs. 11.9±3.3 mSv; P<0.01). MCA and cCTA with prospective ECG-triggering acquisition in patients with high HR improves image quality and overall evaluability compared with cCTA with standard retrospective ECG triggering.

  5. Braquiterapia de alta taxa de dose no Brasil High-dose rate brachytherapy in Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Carlos Barros Esteves

    2004-10-01

    Full Text Available A braquiterapia de alta taxa de dose foi introduzida em nosso meio em janeiro de 1991. Desde então, houve uma mudança significativa na abordagem das neoplasias malignas em relação às vantagens do novo método, e também resolução da demanda reprimida de braquiterapia para as neoplasias ginecológicas. Nos primeiros dez anos de atividade, o Brasil tratou, em 31 serviços, 26.436 pacientes com braquiterapia, sendo mais de 50% das pacientes portadoras de neoplasias do colo uterino. Este estudo mostra o número e o perfil de pacientes tratados com esse método e a sua distribuição no território nacional, deixando explícito o benefício da braquiterapia de alta taxa de dose para o Brasil.High-dose rate brachytherapy was first introduced in Brazil in January 1991. Significant changes in the management of malignant neoplasms were observed since utilization of high-dose rate brachytherapy. The high number of gynecological patients awaiting for brachytherapy also decreased during this period. In the first ten years 26,436 patients were treated with high-dose rate brachytherapy. More than 50% of these patients presented neoplasms of the uterine cervix. In this study we present the number and profile of the patients treated with high-dose rate brachytherapy as well as the distribution of these patients in the Brazilian territory, proving the benefit of the use of high-dose rate brachytherapy in Brazil.

  6. Effect of dose rate on radical and property of gelatin

    International Nuclear Information System (INIS)

    Geng Shengrong; Chen Yuxia; Zu Xiaoyan; Li Xin; Jiang Hongyou

    2015-01-01

    The gelatin was irradiated respectively in the range of 0-32 kGy by dose rates of 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator, and the relationships of the radical character and gelatin property with dose rate were investigated through electron spin resonance (ESR) and gelatin permeation chromatogram. The results show that there is weak ESR signal from unirradiated gelatin, but irradiated one presents typical double peak. The order of ESR signal intensity of gelatin with the same absorbed dosage from high to low is 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator. The linear relationship between ESR signal intensity from 60 Co irradiated gelatin and absorbed dose is y= 26.983x 2 +1 641.8x-205.69. The intrinsic viscosity, average relative molecular weight, gelatin strength and breaking elongation of irradiated gelatin from high to low are 480 Gy/min 60 Co, 12000 Gy/min accelerator and 60 Gy/min 60 Co. The protection mechanism of high dose rate radiation on gelatin degradation is that the production of effective long life free radicals reduces. (authors)

  7. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  8. Australian high-dose-rate brachytherapy protocols for gynaecological malignancy

    International Nuclear Information System (INIS)

    MacLeod, C.; Dally, M.; Stevens, M.; Thornton, D.; Carruthers, S.; Jeal, P.

    2001-01-01

    There is no consensus over the optimal dose fractionation schedules for high-dose-rate (HDR) brachytherapy used for gynaecological malignancy. In Australian public hospital departments of radiation oncology, HDR brachytherapy for gynaecological cancer is being more commonly used. A survey of public departments that are using this technology, or that plan to introduce this technology, was performed. Their current protocols are presented. In general, protocols are similar biologically; however, the practical aspects such as the number of fractions given do vary and may reflect resource restrictions or, alternatively, differences in interpretations of the literature and of the best protocols by clinicians. Copyright (2001) Blackwell Science Pty Ltd

  9. DOZIM - evaluation dose code for nuclear accident

    International Nuclear Information System (INIS)

    Oprea, I.; Musat, D.; Ionita, I.

    2008-01-01

    During a nuclear accident an environmentally significant fission products release can happen. In that case it is not possible to determine precisely the air fission products concentration and, consequently, the estimated doses will be affected by certain errors. The stringent requirement to cope with a nuclear accident, even minor, imposes creation of a computation method for emergency dosimetric evaluations needed to compare the measurement data to certain reference levels, previously established. These comparisons will allow a qualified option regarding the necessary actions to diminish the accident effects. DOZIM code estimates the soil contamination and the irradiation doses produced either by radioactive plume or by soil contamination. Irradiations either on whole body or on certain organs, as well as internal contamination doses produced by isotope inhalation during radioactive plume crossing are taken into account. The calculus does not consider neither the internal contamination produced by contaminated food consumption, or that produced by radioactive deposits resuspension. The code is recommended for dose computation on the wind direction, at distances from 10 2 to 2 x 10 4 m. The DOZIM code was utilized for three different cases: - In air TRIGA-SSR fuel bundle destruction with different input data for fission products fractions released into the environment; - Chernobyl-like accident doses estimation; - Intervention areas determination for a hypothetical severe accident at Cernavoda Nuclear Power Plant. For the first case input data and results (for a 60 m emission height without iodine retention on active coal filters) are presented. To summarize, the DOZIM code conception allows the dose estimation for any nuclear accident. Fission products inventory, released fractions, emission conditions, atmospherical and geographical parameters are the input data. Dosimetric factors are included in the program. The program is in FORTRAN IV language and was run on

  10. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  11. Dose rate and SDD dependence of commercially available diode detectors

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2004-01-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10x10 cm 2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38 900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39 060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38 900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38 990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21 870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21 870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17 870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21 870 cGy/s) for the p-type preirradiated Scanditronix EDP20 3G , and 0.998 (1490 cGy/s)-1.015 (38 880 cGy/s) for Scanditronix EDP10 3G diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  12. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  13. Dose-rate effects and chronological changes of chromosome aberration rates in spleen cells from mice that are chronically exposed to gamma-ray at low dose rates

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kohda, Atsushi; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Oghiso, Yoichi

    2006-01-01

    Dose-rate effects have not been examined in the low dose-rate regions of less than 60-600 mGy/h. Mice were chronically exposed to gamma-ray at 20 mGy/day (approximately 1 mGy/h) up to 700 days and at 1 mGy/day (approximately 0.05 mGy/h) for 500 days under SPF conditions. Chronological changes of chromosome aberration rates in spleen cells were observed along with accumulated doses at both low dose-rates. Unstable aberrations increased in a biphasic manner within 0-2 Gy and 4-14 Gy in 20 mGy/day irradiation. They slightly increased up to 0.5 Gy in 1 mGy/day irradiation. Chromosome aberration rates at 20 mGy/day and 1 mGy/day were compared at the same total doses of 0.5 Gy and 0.25 Gy. They were 2.0 vs. 0.53, and 1.0 vs. 0.47 respectively. Thus, dose-rate effects were observed in these low dose-rate regions. (author)

  14. High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films.

    Science.gov (United States)

    Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude

    2017-02-01

    The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋ m ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋ p ) of up to 8 × 10 6 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋ m dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋ m between 0.55 and 4.40 Gy/min, while Ḋ p dependence was probed at the prototype machine for Ḋ p ranging from 7 × 10 3 to 8 × 10 6 Gy/s. Ḋ p dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋ m dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋ p

  15. Retrospective analysis of dose delivery in intra-operative high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Oh, M.; Avadhani, J.S.; Malhotra, H.K.; Cunningham, B.; Tripp, P.; Jaggernauth, W.; Podgorsak, M.B.

    2007-01-01

    Background. This study was performed to quantify the inaccuracy in clinical dose delivery due to the incomplete scatter conditions inherent in intra-operative high dose rate (IOHDR) brachytherapy. Methods. Treatment plans of 10 patients previously treated in our facility, which had irregular shapes of treated areas, were used. Treatment geometries reflecting each clinical case were simulated using a phantom assembly with no added build-up on top of the applicator. The treatment planning geometry (full scatter surrounding the applicator) was subsequently simulated for each case by adding bolus on top of the applicator. Results. For geometries representing the clinical IOHDR incomplete scatter environment, measured doses at the 5 mm and 10 mm prescription depths were lower than the corresponding prescribed doses by about 7.7% and 11.1%, respectively. Also, for the two prescription methods, an analysis of the measured dose distributions and their corresponding treatment plans showed average decreases of 1.2 mm and 2.2 mm in depth of prescription dose, respectively. Conclusions. Dosimetric calculations with the assumption of an infinite scatter environment around the applicator and target volume have shown to result in dose delivery errors that significantly decrease the prescription depth for IOHDR treatment.(author)

  16. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  17. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  18. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  19. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Yuko, E-mail: kaneyasu@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kita, Midori [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Department of Clinical Radiology, Tokyo Metropolitan Tama Medical Center, Tokyo (Japan); Okawa, Tomohiko [Evaluation and Promotion Center, Utsunomiya Memorial Hospital, Tochigi (Japan); Maebayashi, Katsuya [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kohno, Mari [Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Sonoda, Tatsuo; Hirabayashi, Hisae [Department of Radiology, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  20. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    International Nuclear Information System (INIS)

    Kaneyasu, Yuko; Kita, Midori; Okawa, Tomohiko; Maebayashi, Katsuya; Kohno, Mari; Sonoda, Tatsuo; Hirabayashi, Hisae; Nagata, Yasushi; Mitsuhashi, Norio

    2012-01-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women’s Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  1. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  2. Dose evaluation from multiple detector outputs using convex optimisation

    International Nuclear Information System (INIS)

    Hashimoto, M.; Iimoto, T.; Kosako, T.

    2011-01-01

    A dose evaluation using multiple radiation detectors can be improved by the convex optimisation method. It enables flexible dose evaluation corresponding to the actual radiation energy spectrum. An application to the neutron ambient dose equivalent evaluation is investigated using a mixed-gas proportional counter. The convex derives the certain neutron ambient dose with certain width corresponding to the true neutron energy spectrum. The range of the evaluated dose is comparable to the error of conventional neutron dose measurement equipments. An application to the neutron individual dose equivalent measurement is also investigated. Convexes of particular dosemeter combinations evaluate the individual dose equivalent better than the dose evaluation of a single dosemeter. The combinations of dosemeters with high orthogonality of their response characteristics tend to provide a good suitability for dose evaluation. (authors)

  3. Development of miniature γ dose rate monitor with high sensitivity

    International Nuclear Information System (INIS)

    Shi Huilu; Tuo Xianguo; Xi Dashun; Tang Rong; Mu Keliang; Yang Jianbo

    2009-01-01

    This paper introduces a miniature γ dose rate monitor with high sensitivity which design based on single chip microcomputer, it can continue monitoring γ dose rate and then choose wire or wireless communications to sent the monitoring data to host according to the actual conditions. It has two kinds of power supply system, AC power supply system and battery which can be chose by concrete circumstances. The design idea and implementation technology of hardware and software and the system structure of the monitor are detailed illustrated in this paper. The experimental results show that measurable range is 0.1 mR/h-200 mR/h, the sensitivity of γ is 90 cps/mR/h, dead time below 200 us, error of stability below ±10%. (authors)

  4. Indoor external dose rates due to decorative sheet stone

    Energy Technology Data Exchange (ETDEWEB)

    Lu, C.H.; Sheu, R.D.; Jiang, S.H. [Dept. of Engineering and System Science, National Tsing Hua Univ., Hsinchu (Taiwan)

    2002-03-01

    The specific activities in decorative sheet stone made of granite or marble were measured, whereby the absolute peak efficiency of the HPGe detectors employed in the measurements for the sheet-stone sample was determined using the semi-empirical method. The spatial distribution for the indoor external dose rates due to the radionuclides present in the decorative sheet stone used to clad the floor and the four walls of a standard room was calculated using a three-dimensional point kernel computer code. It was found that the spatial distribution for the indoor dose rates was complex and non-uniform, which represents a difference in relation to the results of earlier studies. (orig.)

  5. Indoor external dose rates due to decorative sheet stone

    International Nuclear Information System (INIS)

    Lu, C.H.; Sheu, R.D.; Jiang, S.H.

    2002-01-01

    The specific activities in decorative sheet stone made of granite or marble were measured, whereby the absolute peak efficiency of the HPGe detectors employed in the measurements for the sheet-stone sample was determined using the semi-empirical method. The spatial distribution for the indoor external dose rates due to the radionuclides present in the decorative sheet stone used to clad the floor and the four walls of a standard room was calculated using a three-dimensional point kernel computer code. It was found that the spatial distribution for the indoor dose rates was complex and non-uniform, which represents a difference in relation to the results of earlier studies. (orig.)

  6. High and low dose-rate brachytherapy for cervical carcinoma

    International Nuclear Information System (INIS)

    Orton, C.G.

    1998-01-01

    For the brachytherapy component of the r[iation treatment of cervical carcinoma, high dose rate (HDR) is slowly replacing conventional low dose rate (LDR) due primarily to r[iation safety and other physical benefits attributed to the HDR modality. Many r[iation oncologists are reluctant to make this change because of perceived r[iobiological dis[vantages of HDR. However, in clinical practice HDR appears to be as effective as LDR but with a lower risk of late complications, as demonstrated by one randomized clinical trial and two comprehensive literature and practice surveys. The reason for this appears to be that the r[iobiological dis[vantages of HDR are outweighed by the physical [vantages. (orig.)

  7. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co γ rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for γ-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD 50 is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD 50 can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate

  8. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co gamma rays in a specially constructed facility. The exposure rates were 5, 19, 17 or 35 R/day, and the exposures were terminated at 600, 1400, 2000 or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for gamma-ray exposures given at a number of exposure rates. They also allow comparison of the relativeimportance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 344 R (258 rads) delivered at 15 R/minute to approximately 4000 R (approximately 3000 rads) at 10 R/day. Over this entire range, the LD 50 is dependent upon haematopoietic damage. At 5 R/day and less, no definitive LD 50 can be determined; there is nearly normal continued haematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in the organ systems. Although the experiment is not complete, interim data allow serveral important conclusions. Terminated exposures, while not as effective as irradiation continued until death, can produce myelogenous leukaemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates appear more damaging than higher rates on the basis of the rate and degree of haematological recovery that occurs after termination of irradiation. Thus, the rate of haematologic depression, the nadir of the depression and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the first two are directly related to exposure rate. ( author)

  9. Towards a new dose and dose-rate effectiveness factor (DDREF)? Some comments.

    Science.gov (United States)

    Chadwick, K H

    2017-06-26

    The aim of this article is to offer a broader, mechanism-based, analytical tool than that used by (Rühm et al 2016 Ann. ICRP 45 262-79) for the interpretation of cancer induction relationships. The article explains the limitations of this broader analytical tool and the implications of its use in view of the publications by Leuraud et al 2015 (Lancet Haematol. 2 e276-81) and Richardson et al 2015 (Br. Med. J. 351 h5359). The publication by Rühm et al 2016 (Ann. ICRP 45 262-79), which is clearly work in progress, reviews the current status of the dose and dose-rate effectiveness factor (DDREF) as recommended by the ICRP. It also considers the issues which might influence a reassessment of both the value of the DDREF as well as its application in radiological protection. In this article, the problem is approached from a different perspective and starts by commenting on the limited scientific data used by Rühm et al 2016 (Ann. ICRP 45 262-79) to develop their analysis which ultimately leads them to use a linear-quadratic dose effect relationship to fit solid cancer mortality data from the Japanese life span study of atomic bomb survivors. The approach taken here includes more data on the induction of DNA double strand breaks and, using experimental data taken from the literature, directly relates the breaks to cell killing, chromosomal aberrations and somatic mutations. The relationships are expanded to describe the induction of cancer as arising from radiation induced cytological damage coupled to cell killing since the cancer mutated cell has to survive to express its malignant nature. Equations are derived for the induction of cancer after both acute and chronic exposure to sparsely ionising radiation. The equations are fitted to the induction of cancer in mice to illustrate a dose effect relationship over the total dose range. The 'DDREF' derived from the two equations varies with dose and the DDREF concept is called into question. Although the equation for

  10. Dose rate effect from the relationship between ICRU rectal dose and local control rate in intracavitary radiotherapy for carcinoma of the uterine cervix. Six fraction HDR and three-fraction LDR in three weeks

    International Nuclear Information System (INIS)

    Jingu, Kenichi; Akita, Yuzou; Ohmagari, Jyunichi

    2001-01-01

    The dose rate effect, low dose rate radiotherapy (LDR)/high dose rate radiotherapy (HDR), was calculated using the isoeffect ICRU rectal dose by intracavitary radiotherapy (ICRT) for uterine cervix cancer. The subjects analyzed consisted of 78 LDR and 74 HDR patients whose ICRU rectal dose could be calculated and whose local control as stage II/III cases could be evaluated. The point A dose in ICRT was 45-55 Gy/3 fractions/3 weeks for LDR and 30 Gy/6 fractions/3 weeks for HDR. The dose effect relationships associated with local control at each whole pelvis external radiation dose were calculated using the double integration method and Probit analysis, and the 50% and 90% local control ICRU rectal doses were calculated from this relationship. Finally, the dose rate effect LDR/HDR was determined from 50% and 90% local control doses. The dose rate effect calculated from the 50% local control dose was 1.24 and that from the 90% local control dose was 1.14. (author)

  11. Installation and commissioning of instantaneous dose rate monitoring system

    CERN Document Server

    Iaydjiev, Plamen

    2018-01-01

    INRNE-Sofia was working on the installation and commissioning of new instantaneous dose rate monitoring system for the GIF++ facility at CERN. The final device, containing an 8-channels readout board was designed and tested at the CERN facility during November 2017, in an irradiation campaign supported by the AIDA-2020 TA program. The system is designed to be fully integrated in the GIF++ control system and the data measured are available to the users.

  12. NAC-1 cask dose rate calculations for LWR spent fuel

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1999-01-01

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation

  13. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  14. Pharmacogenetic analysis of opioid dependence treatment dose and dropout rate.

    Science.gov (United States)

    Crist, Richard C; Li, James; Doyle, Glenn A; Gilbert, Alex; Dechairo, Bryan M; Berrettini, Wade H

    2018-01-01

    Currently, no pharmacogenetic tests for selecting an opioid-dependence pharmacotherapy have been approved by the US Food and Drug Administration. Determine the effects of variants in 11 genes on dropout rate and dose in patients receiving methadone or buprenorphine/naloxone (ClinicalTrials.gov Identifier: NCT00315341). Variants in six pharmacokinetic genes (CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A4) and five pharmacodynamic genes (HTR2A, OPRM1, ADRA2A, COMT, SLC6A4) were genotyped in samples from a 24-week, randomized, open-label trial of methadone and buprenorphine/naloxone for the treatment of opioid dependence (n = 764; 68.7% male). Genotypes were then used to determine the metabolism phenotype for each pharmacokinetic gene. Phenotypes or genotypes for each gene were analyzed for association with dropout rate and mean dose. Genotype for 5-HTTLPR in the SLC6A4 gene was nominally associated with dropout rate when the methadone and buprenorphine/naloxone groups were combined. When the most significant variants associated with dropout rate were analyzed using pairwise analyses, SLC6A4 (5-HTTLPR) and COMT (Val158Met; rs4860) had nominally significant associations with dropout rate in methadone patients. None of the genes analyzed in the study was associated with mean dose of methadone or buprenorphine/naloxone. This study suggests that functional polymorphisms related to synaptic dopamine or serotonin levels may predict dropout rates during methadone treatment. Patients with the S/S genotype at 5-HTTLPR in SLC6A4 or the Val/Val genotype at Val158Met in COMT may require additional treatment to improve their chances of completing addiction treatment. Replication in other methadone patient populations will be necessary to ensure the validity of these findings.

  15. Global shutdown dose rate maps for a DEMO conceptual design

    International Nuclear Information System (INIS)

    Leichtle, D.; Pereslavtsev, P.; Sanz, J.; Catalan, J.P.; Juarez, R.

    2015-01-01

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  16. Global shutdown dose rate maps for a DEMO conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D., E-mail: dieter.leichtle@f4e.europa.eu [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pereslavtsev, P. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sanz, J.; Catalan, J.P.; Juarez, R. [Universidad Nacional de Educación a Distancia(UNED), E.T.S. Ingenieros Industriales, C/ Juan del Rosal 12, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  17. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  18. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  19. 106Ru and 125I radiation dose rate gauge

    International Nuclear Information System (INIS)

    Machaj, B.; Swistowski, E.; Do Hoang Cuong

    2002-01-01

    Pulse count rate from plastic scintillator is a measure of the dose rate. Low dead time of measured channel and digital processing of measuring head signal with compensation of dead time enables correct registration of very high pulse count rate. The radiation source is set with an accuracy not worse than 0.1 mm in relation to the scintillator, and the movement of the source in horizontal and vertical direction is done with the accuracy of 0.01 mm. Additionally the gauge permits to measure the source activity and to check the uniform distribution of the radioactive material on the source surface. Random error due to pulse count rate fluctuation is negligible. The error due to instability of PTM gain is approx. 1,5% for 106 Ru and 5% for 125 I. (author)

  20. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-01-01

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses ≥70 Gy may compensate the effect of close margins ≥1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses ≤50 Gy with PHDRB alone.

  1. Comparison of high-dose-rate and low-dose-rate brachytherapy in the treatment of endometrial carcinoma

    International Nuclear Information System (INIS)

    Fayed, Alaa; Mutch, David G.; Rader, Janet S.; Gibb, Randall K.; Powell, Matthew A.; Wright, Jason D.; El Naqa, Issam; Zoberi, Imran; Grigsby, Perry W.

    2007-01-01

    Purpose: To compare the outcomes for endometrial carcinoma patients treated with either high-dose-rate (HDR) or low-dose-rate (LDR) brachytherapy. Methods and Materials: This study included 1,179 patients divided into LDR (1,004) and HDR groups (175). Patients with International Federation of Gynecology and Obstetrics (FIGO) surgical Stages I-III were included. All patients were treated with postoperative irradiation. In the LDR group, the postoperative dose applied to the vaginal cuff was 60-70 Gy surface doses to the vaginal mucosa. The HDR brachytherapy prescription was 6 fractions of 2 Gy each to a depth of 0.5 cm from the surface of the vaginal mucosa. Overall survival, disease-free survival, local control, and complications were endpoints. Results: For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the LDR group were 70%, 69%, and 81%, respectively. For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the HDR group were 68%, 62%, and 78%, respectively. There were no significant differences in early or late Grade III and IV complications in the HDR or LDR groups. Conclusion: Survival outcomes, pelvic tumor control, and Grade III and IV complications were not significantly different in the LDR brachytherapy group compared with the HDR group

  2. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  3. Measurement and monitoring of entrance exposure dose rate in X-ray image intensifier television with dose rate control

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J [Bezirkskrankenhaus Brandenburg (German Democratic Republic)

    1981-03-01

    For X-ray image intensifier television operation very low entrance dose rates (about 5.2 nA/kg) are stated and demanded, respectively. These required values are often manifold exceeded in practice so that a check seems to be necessary. It is shown and proved how these measurements can be performed with simple, generally available means of measurement in the radiological practice. For ZnCdS-image intensifiers should be considered that about 13 nA/kg for the large entrance size are not to be exceeded; for the CsI type lower values (factor 1.5) are practicable because of the twofold quantum absorption efficiency. Furthermore, some tests for a semiquantitative function check of the automatic dose rate control are proposed.

  4. The calculation of absorbed dose rate in freshwater fish from high background natural radioactivity areas

    International Nuclear Information System (INIS)

    Pereira, W.S.; Moraes, S.R.; Cavalcante, J.J.V.; Pinto, C.E.C.; Kelecom, A.

    2017-01-01

    Areas of increased radiation may expose biota to radiation doses greater than the world averages, and depending on the magnitude of the exposure causing biota damage. The region of the municipality of Caldas, MG, BR is considered a region of increased natural radioactivity. The present work aims to evaluate the exposure of biota to natural radionuclides in the region of Caldas, MG. In order to evaluate the biota exposure in the region, the concentrations of the natural radionuclides U nat , 226 Ra, 210 Pb and 232 Th and 228 Ra were evaluated in two species of fishes: lambari (Astymax spp.) And traíra (Hoplias spp.). The dose rates of the analyzed fish were: for Astymax spp of 0.08 μGy d -1 and for Hoplias spp of 0.12 μGy∙d -1 . With these dose rate values no measurable deleterious effects are expected in the species studied

  5. Dose-rate effects of low-dropout voltage regulator at various biases

    International Nuclear Information System (INIS)

    Wang Yiyuan; Zheng Yuzhan; Gao Bo; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    A low-dropout voltage regulator, LM2941, was irradiated by 60 Co γ-rays at various dose rates and biases for investigating the total dose and dose rate effects. The radiation responses show that the key electrical parameters, including its output and dropout voltage, and the maximum output current, are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias. The integrated circuits damage change with the dose rates and biases, and the dose-rate effects are relative to its electric field. (authors)

  6. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  7. Distribution and characteristics of gamma and cosmic ray dose rate in living environment

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Moriuchi, Shigeru

    1991-01-01

    A series of environmental radiation surveys was carried out from the viewpoint of characterizing the natural radiation dose rate distribution in the living environment, including natural and artificial ones. Through the analysis of the data obtained at numbers of places, several aspects of the radiation field in living environments were clarified. That is the gamma ray dose rate varies due to the following three dominant causes: 1) the radionuclide concentration of surrounding materials acting as gamma ray sources, 2) the spatial distribution of surrounding materials, and 3) the geometrical and shielding conditions between the natural gamma ray sources and the measured point; whereas, the cosmic ray dose rate varies due to the thickness of upper shielding materials. It was also suggested that the gamma ray dose rate generally shows an upward tendency, and the cosmic ray dose rate a downward one in artificial environment. This kind of knowledge is expected to serve as fundamental information for accurate and realistic evaluation of the collective dose in the living environment. (author)

  8. Calibration in a manikin of a high dose rate equipment by remote charge

    International Nuclear Information System (INIS)

    Alfonso La Guardia, Rodolfo; Toledo Jimenez, Pablo; Pich Leon, Victor

    1996-01-01

    The aim of this study was to know the immediate results obtained with laparoscopic cholecystectomy in The use of High Dose Rate brachytherapy in Cuba has been limited to AGAT-V Soviet installations. In order to calibrate one of these installations for its clinical use, it was developed a procedure based on the direct measurement of the dose absorbed in referral point B of a paraffin manikin. Results obtained as a result of calibration are shown. According to these results, it was carried out an evaluation of the effective doses administered on prescription point A by using the linear quadratic model

  9. Monte Carlo dosimetry of the IRAsource high dose rate 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Sarabiasl, Akbar; Ayoobian, Navid; Jabbari, Iraj; Poorbaygi, Hossein; Javanshir, Mohammad Reza

    2016-01-01

    High-dose-rate (HDR) brachytherapy is a common method for cancer treatment in clinical brachytherapy. Because of the different source designs, there is a need for specific dosimetry data set for each HDR model. The purpose of this study is to obtain detailed dose rate distributions in water phantom for a first prototype HDR 192 Ir brachytherapy source model, IRAsource, and compare with the other published works. In this study, Monte Carlo N-particle (MCNP version 4C) code was used to simulate the dose rate distributions around the HDR source. A full set of dosimetry parameters reported by the American Association of Physicists in Medicine Task Group No. 43U1 was evaluated. Also, the absorbed dose rate distributions in water, were obtained in an along-away look-up table. The dose rate constant, Λ, of the IRAsource was evaluated to be equal to 1.112 ± 0.005 cGy h −1 U −1 . The results of dosimetry parameters are presented in tabulated and graphical formats and compared with those reported from other commercially available HDR 192 Ir sources, which are in good agreement. This justifies the use of specific data sets for this new source. The results obtained in this study can be used as input data in the conventional treatment planning systems.

  10. Dose rate to the inner ear during Moessbauer experiments

    International Nuclear Information System (INIS)

    Kliauga, P.; Khanna, S.M.

    1983-01-01

    The most widely used technique for studying vibrations of the inner ear utilises the Moessbauer effect; this requires placement of a radioactive source on the basilar membrane. This source, although small in size and less than 37 MBq(1 mCi) in strength, is placed in close proximity to sensitive receptor cells. Using a series solution for the radiation field of a rectangular source the absorbed dose rate delivered to receptor cells at various depths and at points off-axis from the centre of the source is calculated. It is concluded that the dose delivered during the course of a Moessbauer experiment may well be sufficient to damage receptor cells and cause a loss of response. (author)

  11. Outdoor γ-ray dose rate in Shariki Village and environmental factors affecting outdoor γ-ray dose rate in IES

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    Previously, we surveyed the outdoor γ-ray dose rate throughout Aomori Prefecture from 1992 to 1995, and found an annual mean dose rate of 51 nGy h -1 . Relatively high dose rates were also observed in several areas (municipalities) of the survey locations. In this study, we examined the detailed distribution of the γ-ray dose rate in one such high dose rate area, Shariki Village. Glass dosemeters were used for the monitoring of cumulative γ-ray dose rate at 10 locations in the village. The dose rate from each radioactive nuclide in the ground at the monitoring locations was measured by using an in situ γ-ray spectrometer with a Ge detector. The results obtained with the glass dosemeters showed that the γ-ray dose rates in Shariki Village varied from 49 to 55 nGy h -1 . Although the dose rates were generally higher than the mean dose in Aomori Prefecture (1992-1995), the rates were lower than other high dose rate areas which had already been measured. The in situ γ-ray spectrometry revealed that these relatively high dose rates were mainly caused by 40 K and Th series radionuclides in the village. The effect of meteorological conditions on the γ-ray dose rate was studied at a monitoring station in the IES site. The dose rate was continuously recorded by a DBM NaI(Tl) scintillation detector system. The mean dose rate obtained when precipitation was sensed was 27 nGy h -1 and higher than when no precipitation was sensed (25 nGy h -1 ). (author)

  12. Outdoor γ-ray dose rate in Mutsu city and environmental factors affecting outdoor γ-ray dose rate in IES

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2001-01-01

    Previously, we surveyed outdoor γ-ray dose rates throughout Aomori Prefecture from 1992 to 1995, and found a mean annual dose rate of 28 nGy h -1 . Relatively high dose rates were also observed in several areas (municipalities) of the survey locations. In this study, we examined the detailed distribution of the γ-ray dose rate in one such high dose rate area, Mutsu City. Glass dosemeters were used for the monitoring of cumulative γ-ray dose rate at 10 locations in the city. The dose rate from each radioactive nuclide in the ground at the monitoring locations was measured by using an in situ γ-ray spectrometer with a Ge detector. The results obtained with the glass dosemeters showed that the γ-ray dose rates in Mutsu City varied from 17 to 32 nGy h -1 . Although the dose rates were almost the same as the mean dose in Aomori Prefecture (1992-1995), the rates were lower than other high dose rate areas which had already been measured. The in situ γ-ray spectrometry revealed that these relatively high dose rates were mainly caused by 40 K and Th series radionuclides in the local ground. The effect of meteorological conditions on the γ-ray dose rate was studied at a monitoring station in the IES site. The dose rate was continuously recorded by a DBM NaI(Tl) scintillation detector system. The mean dose rate obtained when precipitation was sensed was 26 nGy h -1 and higher than when no precipitation was sensed (24 nGy h -1 ). (author)

  13. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  14. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Laspas, Fotios; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John; Tsantioti, Dimitra

    2011-01-01

    Background: Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. Purpose: To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Material and Methods: Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Results: Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR =65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Conclusion: Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure

  15. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer; Avaliacao da dose no reto em pacientes submetidas a braquiterapia de alta taxa de dose para o tratamento do cancer do colo uterino

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jetro Pereira de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina; Rosa, Luiz Antonio Ribeiro da [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: lrosa@ird.gov.br; Batista, Delano Valdivino Santos; Bardella, Lucia Helena [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil). Unit of Medical Physics; Carvalho, Arnaldo Rangel [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. of Thermoluminescent Dosimetry

    2009-03-15

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  16. Effect of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Takanori; Shirata, Katsutoshi; Saitou, Mikio; Tanaka, Satoshi; Onodera, Junichi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Department of Radiobiology, Rokkasho, Aomori (Japan)

    1999-07-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice, SPF C3H/HeN female mice were irradiated by {sup 137}Cs {gamma}-rays with doses of 1-8 Gy at the dose rate of 20 mGy (22 h-day){sup -1}. After irradiation, the number of hemopoietic cells contained in bone marrow was determined by the methods of CFU-S and CFU-GM assay, and the number of peripheral blood cells was counted. It was shown that the day 12-CFU-S, which is in the earlier stage of differentiation, decreased as the dose increased. Decreases of the numbers of day 7-CFU-S and CFU-GM were also observed. However, there were no remarkable changes in the number of peripheral blood cells. (author)

  17. Effect of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Takanori; Shirata, Katsutoshi; Yamada, Yutaka; Saitou, Mikio; Izumi, Jun; Tanaka, Satoshi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    2000-07-01

    For evaluation of effects of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice, SPF C3H/HeN female mice were irradiated with {sup 137}Cs {gamma}-rays with doses of 1-4 Gy at the dose rate of 20 mGy/22h-day. After irradiation, the number of hemopoietic cells contained in spleen was determined by the methods of CFU-S and CFU-GM assay, and the number of peripheral blood cells was counted. It was shown that the number of CFU-S colonies on day 12, which is in the earlier stage of differentiation, decreased as dose increased. No remarkable changes in the number of peripheral blood cells, however, were observed. (author)

  18. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids

    DEFF Research Database (Denmark)

    Jiang, Ping; Baumann, René; Dunst, Jürgen

    2016-01-01

    PURPOSE: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. METHODS AND MATERIALS: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immed...

  19. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-10-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  20. Problems of dose rate in radiation protection regulation

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    2001-01-01

    Some modern problems of Radiation Safety Standards are discussed. It is known that Standards are based on the Linear-Non-Threshold Concept (LNTC) of radiation risk, which is now called by many experts as conservative. It is thought it is necessary to include in the Standards such factor as dose rate or duration of irradiation. Some model of effects of radiation exposure with taking into account the reparation of cell damage is presented. The practical method for assessment of effects of duration of irradiation on detriments is proposed.(author)

  1. Radiation dose rates from commercial PWR and BWR spent fuel elements

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel

  2. Effect of the rate and dose rate of irradiation on the quality of mushrooms, shrimps and marinated poultry

    International Nuclear Information System (INIS)

    Lacroix, M.; Mahrour, A.; Beaulieu, M.; Jobin, M.; Nketsa-Tabiri, J.; Gagnon, M.

    1998-01-01

    In this research programme, three investigations involving irradiation in combination with other preservation treatments are described. The first study evaluated the effect of the gamma irradiation dose rate combined with control storage at 15 deg. C and 90% relative humidity on the biochemical, microbiological and physical quality of mushrooms (Agaricus bisporus). A 2 kGy dose was necessary to control the pathogenic microorganisms and to decrease the ageing process of mushrooms. The shelf-life of the mushrooms, as assessed by colour, was extended by 4 days at the lower dose rate (4.5 kGy/h) and by only 2 days at the higher dose rate (32 kGy/h). The higher dose rate caused stress to the cells and altered cell permeability. The second study was to verify the efficacy of ionizing radiation ( 60 Co) on frozen shrimps in eliminating or reducing the pathogenic bacteria that may occasionally be present and to increase the cold storage life of thawed shrimps. A dose of 2.5 kGy permitted storage at 4 deg. C for 1 month without affecting the quality of the product. The third study investigated the anti-oxidant and anti-microbial properties of the natural substances added to fresh poultry before irradiation. Irradiation of poultry at 5 kGy was found to be highly effective in eliminating Salmonella and reducing the number of spoilage microorganisms to ensure safety and quality. Moreover, use of marinating techniques had a synergistic effect with irradiation in reducing the microbial load and the oxidation rate of unsaturated fatty acids, particularly C18:2. The essential oils in rosemary and thyme were the most potent anti-microbial agents investigated and prevented the deterioration of stored foods by bacteria. Several phenolic compounds with anti-oxidant activities were also isolated from rosemary. (author)

  3. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  4. Multicentre evaluation of a novel vaginal dose reporting method in 153 cervical cancer patients

    DEFF Research Database (Denmark)

    Westerveld, Henrike; de Leeuw, Astrid; Kirchheiner, Kathrin

    2016-01-01

    Background and purpose Recently, a vaginal dose reporting method for combined EBRT and BT in cervical cancer patients was proposed. The current study was to evaluate vaginal doses with this method in a multicentre setting, wherein different applicators, dose rates and protocols were used. Materia...

  5. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  6. Analysis of the spatial rates dose rates during dental panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jong Kyung [Dept. of Radiation Safety Management Commission, Daegu Health College, Daegu (Korea, Republic of); Park, Myeong Hwan [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of); Kim, Yong Min [Dept. of Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2016-12-15

    A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a 45°, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is 3,840 μSv/h, which is four times higher than the lowest level 778 μSv/h. Furthermore, the spatial dose rate was 408 μSv/h on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

  7. Evaluation of sources and rates of P fertilizers on the initial growth of corn/ Avaliação de fontes e doses de fósforo no crescimento inicial do milho

    Directory of Open Access Journals (Sweden)

    Toshio Sérgio Watanabe

    2007-07-01

    Full Text Available Phosphorus is an essential element for all living organisms and important also for agricultural production. The content of P in most agricultural soils in Brazil is low. In order to supply the plant needs and the soil fixation, application of P fertilizer is required. Among the various options of P fertilizers in the market, the totally acidified phosphates are usually commercialized. The evaluation of the efficiency of the reactive natural phosphates as P fertilizers is important due to the increase of the utilization of cheaper sources of natural P. The experiment was carried out in green house, using a Nitossolo. The experimental design used was complete randomized design, with the treatments in a 4x2 factorial arrangement, and four replications. The objective of the experiment was to evaluate the effects of sources and rates of P on the growth of corn. The production of dry matter and the content of P on the corn leave and stalks (above ground corn parts increased as rates of P increased, regardless the P sources tested. However, the Triple Super Phosphate was more efficient compared with Arad phosphate, providing better nutrition and initial growth of corn plants.O fósforo é componente vital para todos os seres vivos e é essencial para a produção agrícola. No Brasil, a maior parte dos solos agricultáveis tem baixos teores de fósforo disponível. Para atender as exigências das plantas e suprimento adequado de fósforo há a necessidade da aplicação de adubos fosfatados. Dentre as opções de fontes no mercado, os fosfatos totalmente acidulados são os usualmente comercializados. Com o aumento do uso dos fosfatos naturais reativos, a avaliação da eficiência da aplicação do fertilizante é importante no manejo da adubação fosfatada. O experimento foi realizado em casa de vegetação, utilizando um Nitossolo. O delineamento experimental empregado foi o inteiramente casualizado com os tratamentos arranjados em um fatorial 4 x 2

  8. High-dose rate fractionated interstitial radiotherapy for oropharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Takayuki; Inoue, Toshihiko; Inoue, Takehiro; Teshima, Teruki; Murayama, Shigeyuki [Osaka Univ. (Japan). Faculty of Medicine

    1995-03-01

    The limitations of treating oropharyngeal cancer patients with definitive external radiotherapy are the complications of salivary glands, taste buds, mandible and temporomandibular joints. To avoid these complications we started interstitial radiotherapy as boost after 46 Gy of external radiotherapy. Ten cases (retromolar trigone; 1, soft palate; 1, base of tongue; 3, lateral wall; 5) were treated with this method and seven cases were controlled locally. With short follow-up period, xerostomia and dysgeusia are less than definitive external radiotherapy as clinical impression and no in-field recurrences have been experienced. With markedly increased tumor dose, the local control rate can be improved. This treatment method will be an alternative to definitive external radiotherapy to gain better QOL and higher control rate. (author).

  9. Design study on dose evaluation method for employees at severe accident

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio; Kudo, Seiichi; Nishimura, Kazuya

    2001-01-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  10. Design study on dose evaluation method for employees at severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio [Institute of Nuclear Safety Systems Inc., Mihama, Fukui (Japan); Kudo, Seiichi [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Nishimura, Kazuya [Computer Software Development Co., Ltd., Tokyo (Japan)

    2001-09-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  11. A study of microscopic dose rate distribution of 99Tcm-MIBI in the liver of mice

    International Nuclear Information System (INIS)

    Wang Mingxi; Zhang Liang'an; Wang Yong; Dai Guangfu

    2002-01-01

    Objective: A microdosimetry model was tried to develop an accurate way to evaluate absorbed dose rates in target cell nuclei from radiopharmaceuticals. Methods: Microscopic frozen section autoradiography was used to determine the subcellular locations of 99 Tc m -MIBI relative to the tissue histology in the liver of mice after injection of 99 Tc m -MIBI via tail for two hours, and a mathematical model was developed to evaluate the microscopic dose rates in cell nuclei. The Medical Internal Radiation Dose (MIRD) schema was also used to evaluate the dose rates at the same time, and a comparison of the results of the two methods was conducted to determine which method is better to accurately estimate microscopic dose rates. Results: The spatial distribution of 99 Tc m -MIBI in the liver of mice at subcellular level was not uniform, and the differences between the microdosimetry model and MIRD schema were significant (P 99 Tc m -labeled pharmaceuticals at the microscopic level

  12. Calculation of the gamma-dose rate from a continuously emitted plume

    International Nuclear Information System (INIS)

    Huebschmann, W.; Papadopoulos, D.

    1975-06-01

    A computer model is presented which calculates the long term gamma dose rate caused by the radioactive off-gas continuously emitted from a stack. The statistical distribution of the wind direction and velocity and of the stability categories is taken into account. The emitted activity, distributed in the atmosphere according to this statistics, is assumed to be concentrated at the mesh points of a three-dimensional grid. The grid spacing and the integration limits determine the accuracy as well as the computer time needed. When calculating the dose rate in a given wind direction, the contribution of the activity emitted into the neighbouring sectors is evaluated. This influence is demonstrated in the results, which are calculated with a error below 3% and compared to the dose rate distribution curves of the submersion model and the model developed by K.J. Vogt. (orig.) [de

  13. Cost minimization analysis of high-dose-rate versus low-dose-rate brachytherapy in endometrial cancer

    International Nuclear Information System (INIS)

    Pinilla, James

    1998-01-01

    Purpose: Endometrial cancer is a common, usually curable malignancy whose treatment frequently involves low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy. These treatments involve substantial resource commitments and this is increasingly important. This paper presents a cost minimization analysis of HDR versus LDR brachytherapy in the treatment of endometrial cancer. Methods and Materials: The perspective of the analysis is that of the payor, in this case the Ministry of Health. One course of LDR treatment is compared to two courses of HDR treatment. The two alternatives are considered to be comparable with respect to local control, survival, and toxicities. Labor, overhead, and capital costs are accounted for and carefully measured. A 5% inflation rate is used where applicable. A univariate sensitivity analysis is performed. Results: The HDR regime is 22% less expensive compared to the LDR regime. This is $991.66 per patient or, based on the current workload of this department (30 patients per year) over the useful lifetime of the after loader, $297,498 over 10 years in 1997 dollars. Conclusion: HDR brachytherapy minimizes costs in the treatment of endometrial cancer relative to LDR brachytherapy. These results may be used by other centers to make rational decisions regarding brachytherapy equipment replacement or acquisition

  14. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  15. Gamma dose rate estimation and operation management suggestions for decommissioning the reactor pressure vessel of HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Fang; Hong Li; Jianzhu Cao; Wenqian Li; Feng Xie; Jiejuan Tong [Institute of Nuclear and New Energy Technology, Tsinghua, University, Beijing (China)

    2013-07-01

    China is now designing and constructing a high temperature gas cooled reactor-pebble bed module (HTR-PM). In order to investigate the future decommissioning approach and evaluate possible radiation dose, gamma dose rate near the reactor pressure vessel was calculated for different cooling durations using QAD-CGA program. The source term of this calculation was provided by KORIGEN program. Based on the calculated results, the spatial distribution and temporal changes of gamma dose rate near reactor pressure vessel was systematically analyzed. A suggestion on planning decommissioning operation of reactor pressure vessel of HTRPM was given based on calculated dose rate and the Chinese Standard GB18871-2002. (authors)

  16. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  17. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  18. Dose evaluation in diagnostic for computerized tomography

    International Nuclear Information System (INIS)

    Flores, W.; Borges, J.C.; Mota, H.

    1998-01-01

    The patients which are subjected to computerized tomography tests are exposed to relatively high doses given as result doses on organs that are not matter to test. It was realized a dose levels raising in patients subjected to tests by T C, utilizing to measure this magnitude, TLD-100 thermoluminescent dosemeters which were put directly on the patient, in eye regions, thyroid, breast and navel; founding doses fluctuating between 29.10-49.39 mGy in organs examined and dose values between 0.21-29.10 mGy for organs that no matter to test. The applications of ionizing radiations in medicine do not have dose limits, but paying attention to the radiological protection optimization principle, it is recommended the use of clothes to anti-rays protection for zones not examined, getting with this to reduce the level doses as low as possible, without this to diminish the test quality. (Author)

  19. High dose rate versus low dose rate brachytherapy for oral cancer--a meta-analysis of clinical trials.

    Directory of Open Access Journals (Sweden)

    Zhenxing Liu

    Full Text Available To compare the efficacy and safety of high dose rate (HDR and low dose rate (LDR brachytherapy in treating early-stage oral cancer.A systematic search of MEDLINE, EMBASE and Cochrane Library databases, restricted to English language up to June 1, 2012, was performed to identify potentially relevant studies.Only randomized controlled trials (RCT and controlled trials that compared HDR to LDR brachytherapy in treatment of early-stage oral cancer (stages I, II and III were of interest.Two investigators independently extracted data from retrieved studies and controversies were solved by discussion. Meta-analysis was performed using RevMan 5.1. One RCT and five controlled trials (607 patients: 447 for LDR and 160 for HDR met the inclusion criteria. The odds ratio showed no statistically significant difference between LDR group and HDR group in terms of local recurrence (OR = 1.12, CI 95% 0.62-2.01, overall mortality (OR = 1.01, CI 95% 0.61-1.66 and Grade 3/4 complications (OR = 0.86, CI 95% 0.52-1.42.This meta-analysis indicated that HDR brachytherapy was a comparable alternative to LDR brachytherapy in treatment of oral cancer. HDR brachytherapy might become a routine choice for early-stage oral cancer in the future.

  20. Late effects of chronic low dose-rate γ-rays irradiation on mice

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Sasagawa, Sumiko; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Otsu, Hiroshi; Sato, Fumiaki

    2002-01-01

    To evaluate late biological effects of chronic low dose-rate radiation, we are conducting two experiments. Experiment 1 - Late effects of chronic low dose-rate g-rays irradiation on SPF mice, using life-span and pathological changes as parameters. Continuous irradiation with g-rays for 400 days was performed using 137 Cs γ-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8,000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until they died a natural death. As of 2002 March 31, 3,999 of the total 4,000 mice have died. Preliminary analyses of data show that 20 mGy/day suggested a shortened life span in both sexes. Partial results show that the most common lethal neoplasms in the pooled data of non-irradiated control and irradiated male mice, in order of frequency, were neoplasms of the lymphohematopoietic system, liver, and lung. In female mice, neoplasms of the lymphohematopoietic system, soft tissue, and endocrine system were common. Experiment 2 - Effects on the progeny of chronic low dose-rate g-ray irradiated SPF mice: pilot study, was started in 1999 and is currently in progress. (author)

  1. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry

    International Nuclear Information System (INIS)

    Metz-Flamant, Camille

    2011-01-01

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  2. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    International Nuclear Information System (INIS)

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-01-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to ≤± 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was

  3. Radiation dosemeters and ambient dose rate measuring systems

    International Nuclear Information System (INIS)

    Maushart, R.

    1985-01-01

    The manufacturers have got the feeling that the PTB only reluctantly accepts complex dosimetric systems or systems with modern digital and microprocessor technology. Especially the fact that the PTB demands a restriction to a defined system configuration which must not be changed after design approval is felt to be a severe handicap. The rigid frame of design qualification forces manufacturers to adopt a two-tier development line, at least for ambient dose rate measuring systems, and frequently it is not necessarily the 'nature' system, i.e. equipment with modern technology, that is sent in to the PTB for testing. The way of solving the problem could be that PTB more readily accepts less familiar technologies, for instance by more frequently approving equipment at least preliminarily or for a restricted period of time, in order to collect experience. Another way could be to grant licence for system components, especially detectors. (orig./HP) [de

  4. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  5. Calibration of {sup 192}Ir high dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M H [Instituto de Radioprotecao e Dozimetria, Rio de Jainero (Brazil); Almeida, C.E. de [Laboratorio de Ciencias Radiologicas, UERL, Rio de Janeiro (Brazil); Sibata, C H [Roswell Park Cancer Inst., Buffalo, NY (United States)

    1996-08-01

    A method for calibration of high dose rate sources used in afterloading brachytherapy systems is described. The calibration for {sup 192}Ir is determined by interpolating {sup 60}Co gamma-rays and 250 kV x-rays calibration factors. All measurements were done using the same build up caps as described by Goetsch et al and recommended by AAPM. The attenuation correction factors were determined to be 0.9903, 0.9928 and 0.9993 for {sup 192}Ir, {sup 60}Co and 250 kV x-ray, respectively. A wall + cap thickness of 0.421 g.cm{sup -2} is recommended for all measurements to ensure electronic equilibrium for {sup 60}Co and {sup 192}Ir gamma-ray beams. A mathematical formalism is described for determination of (N{sub x}){sub Ir}. (author). 5 refs, 1 fig.

  6. Quality control in pulsed dose rate brachytherapy; Controle de qualite en curietherapie de debit de dose pulse

    Energy Technology Data Exchange (ETDEWEB)

    Metayer, Y.; Brunaud, C.; Peiffert, D. [Centre Alexis-Vautrin, Unite de Radiophysique, 54 - Vandoeuvre-les-Nancy (France); Meyer, P. [Centre Paul-Strauss, 67 - Strasbourg (France)

    2009-07-15

    A prospective multicenter study (P.D.R.) was leaded on pulsed dose rate brachytherapy over 2 years (2005/2006) in 20 French centres, as part of a programme entitled (Support for the innovative and expensive techniques) S.t.i.c.-P.D.R. and supported by the French ministry of health. Eight hundred and fifty patients were treated for cervix carcinoma with 2D classic or 3D innovative brachytherapy (425 in each arm). The main objectives of this study were to assess the cost of P.D.R. brachytherapy with dose optimization compared to traditional treatments, and to evaluate the complications and local control. A joint programme of quality control was established by the physicists of the different centres, concerning the software treatment planning, the source replacement, the projector and the technical parameters of the course of patient treatment. This technical note lists these controls, and their frequency. (authors)

  7. Effects of gamma irradiation dose rate on microbiological and physical quality of mushrooms (Agaricus bisporus)

    International Nuclear Information System (INIS)

    Beaulieu, M.; Lacroix, M.; Charbonneau, R.; Laberge, I.; Gagnon, M.

    1992-01-01

    The effects of gamma irradiation (2 kGy) and dose rate of irradiation (4.5 and 32.0 kGy/h) on increasing the shelf-life and some quality properties of the mushrooms (Agaricus bisporus) were investigated during storage at 15 deg C and 90% R.H. The retardation of mushroom growth and ageing by reduction of gamma irradiation dose rate (4.5 kGy) was observed by measurements of the cap opening, the stipe increase, the cap diameter, the weight loss and the color of the caps. The color was measured in order to evaluate the lightness with the L value measurement and the color changes were measured in terms of lightness, hue and chroma. The control of fungal and bacterial diseases were also evaluated. The irradiation of mushrooms at both dose rates of irradiation was found to be effective in lowering microorganism counts initially and throughout storage and increased the shelf-life by four days. This study also showed that mushrooms exposed to a lower dose rate (4.5 kGy/h) of irradiation preserve the whiteness and reduce the stripe increase of mushrooms during storage

  8. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  9. Life span and tumorigenesis in mice exposed to continuous low dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Braga-Tanaka III, Ignacia; Takabatake, Takashi; Ichinohe, Kazuaki; Tanaka, Kimio; Matsumoto, Tsuneya; Sato, Fumiaki

    2004-01-01

    Two experiments were conducted to evaluate late biological effects of chronic low dose-rate radiation. 1: Late effects of chronic low dose-rate gamma-ray irradiation on SPF mice, using life span and pathological changes as parameters. Continuous irradiation for approximately 400 days was performed using 137 Cs gamma-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until their natural death. Statistical analyses show that the life spans of the both sexes irradiated at 20 mGy/day (p<0.0001) and of females irradiated at 1 mGy/day (p<0.05) were significantly shorter than those of the control group. There was no evidence of lengthened life span in mice continuously exposed to very low dose-rates of gama-rays. Pathodological examinations showed that the most frequently observed lethal neoplasms in males were malignant lymphomas, liver, lung, and soft tissue neoplasms, whereas, in females, malignant lymphomas and soft tissue neoplasms were common. No significant difference in the causes of death and mortality rates between groups. Hematopoietic neoplasms (malignant lymphoma and myeloid leukemia), liver, lung and soft tissue neoplasms, showed a tendency to appear at a younger age in both sexes irradiated at 20 mGy/day. Experiment 2: effects on the progeny of chronic low dose-rate gamma-ray irradiated SPF mice: preliminary study. No significant difference was observed between non-irradiated group and irradiated group with regards to litter size, sex ratio and causes of death in F1 and F2 mice. (author)

  10. Islet oxygen consumption rate (OCR) dose predicts insulin independence for first clinical islet allotransplants

    Science.gov (United States)

    Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK

    2014-01-01

    Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089

  11. A theoretical and experimental dose rate study at a multipurpose gamma irradiation facility in Ghana

    International Nuclear Information System (INIS)

    Sackey, Tracey A.

    2015-01-01

    Radiation dose rate monitoring out at the Radiation Technology Centre (RTC) of the Ghana Atomic Energy Commission (GAEC) to establish the safety or otherwise of staff at the occupied areas is presented. The facility operates a rectangular source of Co-60 gamma with an having activity of 27.4kCi as at March 2015 and has 14 workers. The aim of the research was determine by means of practical and theoretical evaluations shielding effectiveness of the irradiation chamber. This was to ensure that occupationally exposed workers are not over exposed or their exposures do not exceed the regulatory limits of 7.5μSv/h or 50mSv per annum. The study included dose rate measurements at controlled areas, evaluation of personnel dose history, comparison of experimental and theoretical values and determination of whether the shielding can support a. 18.5PBq (500kCi) Co-60 source. Practical dose rate measurements when the source was in the irradiation position was carried out using a Thermo Scientific Rad-Eye Gamma Survey Meter in the controlled areas of the facility which included the control room, electric room, deionizer room, on top of the roof of irradiation chamber (specifically above the roof plugs) and the two entrances to the irradiation chamber; the personnel door and the goods door. Background reading was found to be 0.08±0.01μSv/h whilst the average dose rates at the two entrances to the irradiation chamber (i e.,- the personnel door and the goods door) were measured to be 0.090μSv/h and 0.109μSv/h respectively. Practical measurements at the roof plugs produced average values of 0.135μSv/h. A particular point on the roof marked as plug-3 produced a relatively higher dose rate of 8.151μSv/h due probably to leakage along the cable to the drive motor. Measurements in the control room, electrical room and deionizer room had average readings of 0.116μSv/h, 0.089μSv/h and 0.614μSv/h respectively. All these average values were below the regulatory limits of 7.5

  12. Dose rate distribution of the GammaBeam: 127 irradiator using MCNPX code

    International Nuclear Information System (INIS)

    Gual, Maritza Rodriguez; Batista, Adriana de Souza Medeiros; Pereira, Claubia; Faria, Luiz O. de; Grossi, Pablo Andrade

    2013-01-01

    The GammaBeam - 127 Irradiator is widely used for biological, chemical and medical applications of the gamma irradiation technology using Cobalt 60 radioactive at the Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The source has maximum activity of 60.000Ci, which is composed by 16 double encapsulated radioactive pencils placed in a rack. The facility is classified by the IAEA as Category II (dry storage facility). The aim of this work is to present a modelling developed to evaluate the dose rates at the irradiation room and the dose distribution at the irradiated products. In addition, the simulations could be used as a predictive tool of dose evaluation in the irradiation facility helping benchmark experiments in new similar facilities. The MCNPX simulated results were compared and validated with radiometric measurements using Fricke and TLDs dosimeters along several positions inside the irradiation room. (author)

  13. Fetal dose evaluation during breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Antypas, Christos; Sandilos, Panagiotis; Kouvaris, John; Balafouta, Ersi; Karinou, Eleftheria; Kollaros, Nikos; Vlahos, Lambros

    1998-01-01

    Purpose: The aim of the work was to estimate the radiation dose delivered to the fetus in a pregnant patient irradiated for breast cancer. Methods and Materials: A 45-year woman was treated for left breast cancer using a 6 MV photon beam with two isocentric opposing tangential unwedged fields. Daily dose was 2.3 Gy at 95% isodose line given by two fields/day, 5 days/week. A total dose of 46 Gy was given in 20 fractions over a 4-week period. Pregnancy confirmed during the second therapeutic week. Treatment lasted between the second and sixth gestation week. Radiation dose to fetus was estimated from in vivo and phantom measurements using thermoluminescence dosimeters and an ionization chamber. In vivo measurements were performed by inserting either a catheter with TL dosimeters or ionization chamber into the patient's rectum. Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. Results: TLD measurements (in vivo and phantom) revealed fetal dose to be 0.085% of the tumor dose, corresponding to a cumulative fetal dose of 3.9 cGy for the entire treatment of 46 Gy. Chamber measurements (in vivo and phantom) revealed a fetal dose less than the TLD result: 0.079 and 0.083% of the tumor dose corresponding to cumulative fetal dose of 3.6 cGy and 3.8 cGy for in vivo and phantom measurement, respectively. Conclusions: It was concluded that the cumulative dose delivered to the unshielded fetus was 3.9 cGy for a 46 Gy total tumor dose. The estimated fetal dose is low compared to the total tumor dose given due to the early stage of pregnancy, the large distance between fundus-radiation field, and the fact that no wedges and/or lead blocks were used. No deterministic biological effects of radiation on the live-born embryo are expected. The lifetime risk for radiation-induced fatal cancer is higher than the normal incidence, but is considered as inconsequential

  14. External dose rates in coastal urban environments in Brazil

    International Nuclear Information System (INIS)

    Souza, E.M.; Rochedo, E.R.R.; Conti, C.C.

    2015-01-01

    A long term activity aiming on assessing the exposure of the Brazilian population to natural background radiation is being developed at IRD/CNEN. Several research groups within IRD work in this activity, although mostly as a parallel work associated to main research lines followed by researches of the institution. One main activity is related to the raise of external gamma dose rates throughout the country. The objective of this work is to present results from recent surveys performed as part of the emergency preparedness for radiological emergencies during major public events in Brazil, such as the the World Youth Day, held in Rio de Janeiro in 2013, and the Confederations Cup and the FIFA World Cup soccer games, in 2013 and 2014, respectively. In this work, only the recent (2014) coastal urban environments measurements were included. Average kerma rates for Fortaleza is 80 ± 23 nGy/h, for Vitoria is 96 ± 33 nGy/h and for Angra dos Reis is 147 ± 16 nGy/h. These results are then compared to previous results on other coastal urban towns (Rio de Janeiro, Niterói and Salvador), and with the high background coastal area of Guarapari town. (authors)

  15. High-dose-rate brachytherapy in uterine cervical carcinoma

    International Nuclear Information System (INIS)

    Patel, Firuza D.; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  16. Collection of radiation resistant characteristics reports for instruments and materials in high dose rate environment

    International Nuclear Information System (INIS)

    Kusano, Joichi

    2008-03-01

    This document presents the collected official reports of radiation irradiation study for the candidate materials to be used in high dose rate environment as J-PARC facility. The effect of radiation damage by loss-beam or secondary particle beam of the accelerators influences the performance and the reliability of various instruments. The knowledge on the radiation resistivity of the materials is important to estimate the life of the equipments, the maintenance interval and dose evaluation for the personnel at the maintenance period. The radiation damage consists with mechanical property, electrical property and gas-evolution property. (author)

  17. Statistical variability and confidence intervals for planar dose QA pass rates

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher; Kumaraswamy, Lalith; Podgorsak, Matthew B. [Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260 (United States) and Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States) and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2011-11-15

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization

  18. Helicoverpa armigera (Lepidoptera: Noctuidae) larvae that survive sublethal doses of nucleopolyhedrovirus exhibit high metabolic rates.

    Science.gov (United States)

    Bouwer, Gustav; Nardini, Luisa; Duncan, Frances D

    2009-04-01

    To determine the effect of sublethal doses of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV) on the metabolic rate of H. armigera, the respiration rates of third instar H. armigera larvae inoculated with sublethal doses of HearSNPV were evaluated. Respiration rates, measured as the rate of CO(2) production (VCO(2)), were recorded daily using closed-system respirometry. By 4 days post-inoculation (dpi), the metabolic rates of LD(25) or LD(75) survivors were significantly higher than that of uninoculated controls. When dose data were pooled, the VCO(2) values of larvae that survived inoculation (0.0288mlh(-1)), the uninoculated controls (0.0250mlh(-1)), and the larvae that did not survive inoculation (0.0199mlh(-1)) differed significantly from one another. At 4dpi, the VCO(2) of the uninoculated controls were significantly lower than the VCO(2) of inoculation survivors, but significantly higher than the VCO(2) of inoculation non-survivors. Inoculation survivors may have had high metabolic rates due to a combination of viral replication, organ damage, and an energy-intensive induced cellular immune response. The high 4dpi metabolic rate of inoculation survivors may reflect an effective immune response and may be seen as the metabolic signature of larvae that are in the process of surviving inoculation with HearSNPV.

  19. Shutdown dose rate contribution from diagnostics in ITER upper port 18

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, M.S., E-mail: munseong@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Pak, S.; An, Y.H.; Seon, C.R.; Lee, H.G. [National Fusion Research Institute, Daejeon (Korea, Republic of); Bertalot, L.; Krasilnikov, V. [ITER Organization, St Paul-lez-Durance (France); Zvonkov, A. [Agency ITER-RF, Moscow (Russian Federation)

    2016-11-01

    Highlights: • The Shutdown Dose Rate in the interspace of ITER upper port 18 was evaluated. • VUV spectrometer is the dominant contributor to the average SDR. • The existence and size of the blanket cooling pipes impacts significantly on SDR. - Abstract: D-T operation of ITER plasma will produce high-energy fusion neutrons those can activate materials around the place where human-access is necessary. The interspace of the diagnostic port is one of the area where human-access is necessary for the maintenance of diagnostic systems installed at the port, so it is important to evaluate a dose rate of the interspace area in order to comply with ALARA principle. The shutdown dose rate (SDR) in the interspace of ITER upper port 18 was evaluated by the Direct 1-Step (D1S) method using MCNP5 code. This port contains three diagnostics: Vacuum Ultra-Violet (VUV) Spectrometer, Neutron Activation System (NAS), and Upper Vertical Neutron Camera (UVNC). The contribution of each diagnostic in the port was evaluated by running separate upper port MCNP models those contain individual diagnostic only, and the total dose rate contribution was evaluated with the model which was fully integrated with all the diagnostics. The effect of the opening around the upper port plug and of the other ports was also investigated. The purpose of this assessment is to provide the shielding design basis for the preliminary design of the diagnostic integration in the port. The method and result of the calculation will be presented in this paper.

  20. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assessment

    International Nuclear Information System (INIS)

    Feder, Russell E.; Youssef, Mahmoud Z.

    2009-01-01

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA(reg s ign) and SEVERIAN(reg s ign) (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER 'Brand Model' MCNP benchmark model. A biased quadrature set equivalent to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 (micro)Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 (micro)Sv/hr but fell below the limit to 90 (micro)Sv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1

  1. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  2. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  3. Realization of 3D evaluation algorithm in dose-guided radiotherapy

    International Nuclear Information System (INIS)

    Wang Yu; Li Gui; Wang Dong; Wu Yican; FDS Team

    2012-01-01

    3D evaluation algorithm instead of 2D evaluation method of clinical dose verification is highly needed for dose evaluation in Dose-guided Radiotherapy. 3D evaluation algorithm of three evaluation methods, including Dose Difference, Distance-To-Agreement and 7 Analysis, was realized by the tool of Visual C++ according to the formula. Two plans were designed to test the algorithm, plan 1 was radiation on equivalent water using square field for the verification of the algorithm's correctness; plan 2 was radiation on the emulation head phantom using conformal field for the verification of the algorithm's practicality. For plan 1, the dose difference, in the tolerance range has a pass rate of 100%, the Distance-To-Agreement and 7 analysis was of a pass rate of 100% in the tolerance range, and a pass rate of 99±1% at the boundary of range. For plan 2, the pass rate of algorithm were 88.35%, 100%, 95.07% for the three evaluation methods, respectively. It can be concluded that the 3D evaluation algorithm is feasible and could be used to evaluate 3D dose distributions in Dose-guided Radiotherapy. (authors)

  4. Assessment of ambient gamma dose rate around a prospective uranium mining area of South India - A comparative study of dose by direct methods and soil radioactivity measurements

    Science.gov (United States)

    Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.

    Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.

  5. Prescribing and evaluating target dose in dose-painting treatment plans

    DEFF Research Database (Denmark)

    Håkansson, Katrin; Specht, Lena; Aznar, Marianne C

    2014-01-01

    BACKGROUND: Assessment of target dose conformity in multi-dose-level treatment plans is challenging due to inevitable over/underdosage at the border zone between dose levels. Here, we evaluate different target dose prescription planning aims and approaches to evaluate the relative merit of such p......-painting and multi-dose-level plans. The tool can be useful for quality assurance of multi-center trials, and for visualizing the development of treatment planning in routine clinical practice....... of such plans. A quality volume histogram (QVH) tool for history-based evaluation is proposed. MATERIAL AND METHODS: Twenty head and neck cancer dose-painting plans with five prescription levels were evaluated, as well as clinically delivered simultaneous integrated boost (SIB) plans from 2010 and 2012. The QVH...

  6. Monte Carlo assessment of the dose rates produced by spent fuel from CANDU reactors

    International Nuclear Information System (INIS)

    Pantazi, Doina; Mateescu, Silvia; Stanciu, Marcela

    2003-01-01

    One of the technical measures considered for biological protection is radiation shielding. The implementation process of a spent fuel intermediate storage system at Cernavoda NPP includes an evolution in computation methods related to shielding evaluation: from using simpler computer codes, like MicroShield and QAD, to systems of codes, like SCALE (which contains few independent modules) and the multipurpose and multi-particles transport code MCNP, based on Monte Carlo method. The Monte Carlo assessment of the dose rates produced by CANDU type spent fuel, during its handling for the intermediate storage, is the main objective of this paper. The work had two main features: -establishing of geometrical models according to description mode used in code MCNP, capable to account for the specific characteristics of CANDU nuclear fuel; - confirming the correctness of proposed models, by comparing MCNP results and the related results obtained with other computer codes for shielding evaluation and dose rates calculations. (authors)

  7. High-dose-rate brachytherapy alone post-hysterectomy for endometrial cancer

    International Nuclear Information System (INIS)

    MacLeod, Craig; Fowler, Allan; Duval, Peter; D'Costa, Ieta; Dalrymple, Chris; Firth, Ian; Elliott, Peter; Atkinson, Ken; Carter, Jonathan

    1998-01-01

    Purpose: To evaluate the outcome of post-hysterectomy adjuvant vaginal high-dose-rate (HDR) brachytherapy. Methods and Materials: A retrospective analysis was performed on a series of 143 patients with endometrial cancer treated with HDR brachytherapy alone post-hysterectomy from 1985 to June 1993. Of these patients, 141 received 34 Gy in four fractions prescribed to the vaginal mucosa in a 2-week period. The median follow-up was 6.9 years. Patients were analyzed for treatment parameters, survival, local recurrence, distant relapse, and toxicity. Results: Five-year relapse free survival and overall survival was 100% and 88% for Stage 1A, 98% and 94% for Stage IB, 100% and 86% for Stage IC, and 92% and 92% for Stage IIA. The overall vaginal recurrence rate was 1.4%. The overall late-toxicity rate was low, and no RTOG grade 3, 4, or 5 complications were recorded. Conclusion: These results are similar to reported international series that have used either low-dose-rate or HDR brachytherapy. The biological effective dose was low for both acute and late responding tissues compared with some of the HDR brachytherapy series, and supports using this lower dose and possibly decreasing late side-effects with no apparent increased risk of vaginal recurrence

  8. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  9. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    Science.gov (United States)

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to tissues and organs remain above IDRE thresholds).

  10. An energy-independent dose rate meter for beta and gamma radiation

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Keller, M.

    1986-01-01

    An easy to handle dose rate meter has been developed at the Juelich Nuclear Research Centre with a small probe for the energy-independent determination of the dose rate in mixed radiation fields. The dose rate meter contains a small ionisation chamber with a volume of 15.5 cm 3 . The window of the ionisation chamber consists of an aluminised plastic foil of 7 mg.cm -2 . The dose rate meter is suitable for determining the dose rate in skin. With a supplementary depth dose cap, the dose rate can be determined in tissue at a depth of 1 cm. The dose rate meter is energy-independent within +-20% for 147 Pm, 204 Tl and 90 Sr/ 90 Y beta radiation and for gamma radiation in the energy range above 35 keV. (author)

  11. Design study on dose evaluation method for employees at severe accident

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio; Kudo, Seiichi; Nishimura, Kazuya

    2002-01-01

    If a severe accident occurs in a pressurized water reactor plant, it is required to estimate dose values of operators engaged in emergency such as accident management, repair of failed parts. However, it might be difficult to measure radiation dose rate during the progress of an accident, because radiation monitors are not always installed in areas where the emergency activities are required. In this study, we analyzed the transport of radioactive materials in case of a severe accident, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system from this design study, and then evaluated its availability. As a result, we obtained the following: (1) A new dose evaluation method was established to predict the radiation dose rate at any point in the plant during a severe accident scenario. (2) This evaluation of total dose including access route and time for emergency activities is useful for estimating radiation dose limit for these employee actions. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  12. Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Science.gov (United States)

    Papas, Klearchos K; Bellin, Melena D; Sutherland, David E R; Suszynski, Thomas M; Kitzmann, Jennifer P; Avgoustiniatos, Efstathios S; Gruessner, Angelika C; Mueller, Kathryn R; Beilman, Gregory J; Balamurugan, Appakalai N; Loganathan, Gopalakrishnan; Colton, Clark K; Koulmanda, Maria; Weir, Gordon C; Wilhelm, Josh J; Qian, Dajun; Niland, Joyce C; Hering, Bernhard J

    2015-01-01

    Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  13. Islet Oxygen Consumption Rate (OCR Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Directory of Open Access Journals (Sweden)

    Klearchos K Papas

    Full Text Available Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR in predicting clinical islet autotransplant (IAT insulin independence (II. IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.Membrane integrity staining (FDA/PI, OCR normalized to DNA (OCR/DNA, islet equivalent (IE and OCR (viable IE normalized to recipient body weight (IE dose and OCR dose, and OCR/DNA normalized to islet size index (ISI were used to characterize autoislet preparations (n = 35. Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis.Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001. These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC = 0.94 for IE dose and 0.96 for OCR dose. FDA/PI (AUC = 0.49 and OCR/DNA (AUC = 0.58 did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72.Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  14. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Protection Technique; Pineau, J.F. [ALGADE, Bessines (France); Chameaud, J. [Compagnie Generale des Matieres Nucleaires (COGEMA), 87 - Razes (France)

    1994-12-31

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10{sup 6} J.m{sup -3} (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author).

  15. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    International Nuclear Information System (INIS)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R.; Chameaud, J.

    1994-01-01

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10 6 J.m -3 (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author)

  16. Influence of radiation dose and dose-rate on modification of barley seed radiosensitivity by post-treatment with caffeine

    International Nuclear Information System (INIS)

    Sharma, G.J.

    1987-01-01

    Influence of radiation doses (100, 150 and 200 Gy) and dose-rates (1.27-0.023 Gy/Sec) on the modification of oxic and anoxic radiation damage by caffeine at different concentrations has been investigated using metabolizing barley seeds as test system. As the radiation dose increases from 100 to 200 Gy, the magnitude of oxic and anoxic damages increase at all the dose-rates. Caffeine is able to afford partial radioprotection against the oxic damage, at the same time potentiating the anoxic damage. However, caffeine effect against the oxic and anoxic components of damage depend largely upon the dose of radiation applied and also on the dose-rate used. The possible mechanism of action of caffeine in bringing about the differential modification of oxic and anoxic damages has been discussed. 19 refs., 2 tables. (author)

  17. Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods; A case study from Artvin, Turkey

    International Nuclear Information System (INIS)

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkin, Halim; Çevik, Uğur

    2015-01-01

    In this study, compliance of geostatistical estimation methods is compared to ensure investigation and imaging natural Fon radiation using the minimum number of data. Artvin province, which has a quite hilly terrain and wide variety of soil and located in the north–east of Turkey, is selected as the study area. Outdoor gamma dose rate (OGDR), which is an important determinant of environmental radioactivity level, is measured in 204 stations. Spatial structure of OGDR is determined by anisotropic, isotropic and residual variograms. Ordinary kriging (OK) and universal kriging (UK) interpolation estimations were calculated with the help of model parameters obtained from these variograms. In OK, although calculations are made based on positions of points where samples are taken, in the UK technique, general soil groups and altitude values directly affecting OGDR are included in the calculations. When two methods are evaluated based on their performances, it has been determined that UK model (r = 0.88, p < 0.001) gives quite better results than OK model (r = 0.64, p < 0.001). In addition, as a result of the maps created at the end of the study, it was illustrated that local changes are better reflected by UK method compared to OK method and its error variance is found to be lower. - Highlights: • The spatial dispersion of gamma dose rates in Artvin, which possesses one of the roughest lands in Turkey were studied. • The performance of different Geostatistic methods (OK and UK methods) for dispersion of gamma dose rates were compared. • Estimation values were calculated for non-sampling points by using the geostatistical model, the results were mapped. • The general radiological structure was determined in much less time with lower costs compared to experimental methods. • When theoretical methods are evaluated, it was obtained that UK gives more descriptive results compared to OK.

  18. Comparison of high dose rate (HDR) and low dose rate (LDR) brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone. The preliminary results

    International Nuclear Information System (INIS)

    Trippe, Nivaldo; Novaes, P.E.; Ferrigno, R.; Pellizzon, A.C.; Salvajoli, J.V.; Fogaroli, R.C.; Maia, M.A.C.; Baraldi, H.E.

    1996-01-01

    Purpose/Objective: To compare the results between HDR and LDR brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone through a prospective and randomized trial. Materials and Methods: From September 1992 to December 1993, 65 patients with stage IIIB cervical cancer were randomized to one of the following treatment schedule according to the brachytherapy used to complement the dose of external beam radiotherapy (EBRT): 1 - High dose rate (HDR) - 36 patients - 4 weekly insertions of 6,0 Gy at point A 2 - Low dose rate (LDR) - 29 patients - 2 insertions two weeks apart of 17,5 Gy at point A The External Beam radiotherapy was performed through a Linac 4MV, in box arrangement for whole pelvis and in AP-PA fields for parametrial complementation of dose. The dose at the whole pelvis was 45 Gy in 25 fractions of 1,8 Gy and the parametrial dose was 16 Gy. The brachytherapy was realized with Fletcher colpostats and intrauterine tandem, in both arms. The HDR brachytherapy was realized through a Micro-Selectron device, working with Iridium-192 with initial activity of 10 Ci and started ten days after the beginning of EBRT. The total treatment time was shortened in two weeks for this group. The LDR brachytherapy started only after the end of EBRT. Results: With the minimum follow up of 24 months and medium of 31 months, the disease free survival was 50% among the 36 patients in HDR group and 47,8% among the 29 patients in LDR group. Local failures occurred in 50% and 52,8% respectively. Grade I and II complications were restricted to rectites and cistites and the incidence of them was 8,3% for HDR group and 13% for LDR group. Until the time of evaluation there were no grade III complications in any group. Conclusions: Although the number of patients is small and the time of follow up still short, these preliminary results suggest that the HDR brachytherapy has an equivalent efficiency in local control as the LDR in the treatment of stage IIIB

  19. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Alzimami, K.; Habeeballa, B.; Osman, H.; Abdelaziz, I.; Sassi, S.A.; Sam, A.K.

    2015-01-01

    This study intends to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (DHS) and (ii) Dynamic Cannula Screw (DCS) and to evaluate entrance surface Air kerma (ESAK) dose and organ doses and effective doses. Calibrated Thermoluminescence dosimeters (TLD-GR200A) were used. The mean patients’ doses were 0.46 mGy and 0.07 mGy for DHS and DCS procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean organ and effective dose for patients and staff were higher in DHS compared to DCS. Orthopedic surgeons were exposed to unnecessary radiation doses due to the lack of protection measures. The radiation dose per hip procedure is within the safety limit and less than the previous studies

  20. Correct statistical evaluation for total dose in rural settlement

    International Nuclear Information System (INIS)

    Vlasova, N.G.; Skryabin, A.M.

    2001-01-01

    Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose