WorldWideScience

Sample records for dose ionising radiation

  1. Dose limits for ionising radiation

    International Nuclear Information System (INIS)

    Gifford, D.

    1989-01-01

    Dose limits for exposure to ionising radiation are assessed to see if they give sufficient protection both for the occupationally exposed and for the general public. It is concluded that current limits give a level of safety that satisfies the necessary criteria in the light of present knowledge and further reductions would be unlikely to improve standards of safety. (author)

  2. Tumour induction by small doses of ionised radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1980-01-01

    The effect of low doses of ionised radiation on tumour induction in animals is discussed. It is hypothesised that high doses of radiation can strongly advance tumour induction from the combination of a stimulated cell growth, as a reaction to massive cell killing, and damage to DNA in the cell nuclei. This effect has a limit below which the radiation dose causes a non-significant amount of dead cells. However in animals where through other reasons, a chronic growth stimulation already exists, only one effect, the damage of DNA, is necessary to induce tumours. A linear dose effect without a threshold level applies in these cases. Applying this hypothesis to man indicates that calculating low dose effects by linear extrapolation of high dose effects is nothing more than a reasonable approximation. (C.F.)

  3. Long term effects of low doses of ionising radiation: facts and fallacies

    International Nuclear Information System (INIS)

    Iyer, G.K.

    1993-01-01

    Health effects of low doses of ionising radiation have been a public concern. The public perception of these low effects is that it causes cancer and genetic effects. Enormous amount of work regarding this cancer has been done all over the world, on occupational workers exposed to low doses of ionising radiation. These studies do not show any adverse effect on them. Epidemiological studies done on members of public staying near nuclear facilities also have shown that there is no health risk involved in staying near these facilities. Genetic effects have also shown negative results. These two aspects of health effects of low dose of radiation are discussed in detail. (author). 5 refs., 1 tab

  4. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    Eleveld, H.; Pruppers, M.

    2002-01-01

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  5. Problems associated with the effects of low doses of ionising radiations

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This book is the English version of the report number 34 of the Academie des Sciences, published in October 1995, and entitled 'Problemes lies aux effets des faibles doses des radiations ionisantes'. This report had been endorsed by CODER (Comite des Etudes et Rapports) on February 7, 1995. In dealing with problems associated with ionising radiation, a wide range of important aspects must be taken into account and many different international bodies are concerned with them. It was therefore though useful to make the report available in English. Several additions have been made to the original edition: it has been complemented with three appendices on the cellular, molecular and genetic effects of exposure to low doses of ionising radiations ; it was though useful to give, in addition to the references of the chapters and appendices, a summary of the main relevant work published by French research teams over the past few years; an addendum quotes some of the important contributions made over the past year; a symposium devoted to the effects of low doses of ionising radiations, and to repair enzyme systems will be organized by the Academy at the end of 1997. This will provide the opportunity to re-explore the situation in the light of the data accumulated at that time. This field is evolving rapidly and a periodic evaluation of the new data is mandatory. (authors)

  6. Metabolic changes in broiler chickens exposed to low dose of ionising radiation

    International Nuclear Information System (INIS)

    Danova, D.; Kafka, I.; Kalenicova, Z.; Petrovova, E.; Toropila, M.

    2008-01-01

    In our experiment broiler chickens, 28-day old, were exposed to single whole- body dose 3 Gy of ionising radiation in time gap 3., 7., 14. and 21 day. We applied zinc to organism of chicks after irradiation. We observed changes of concentrations of cholesterol and glucose in blood serum. From obtained results it is evident that despite relative high resistance of poultry to irradiation, it reacts strongly to ionising radiation even at laboratory levels. (authors)

  7. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  8. Ionising radiation - physical and biological effects

    International Nuclear Information System (INIS)

    Holter, Oe.; Ingebretsen, F.; Parr, H.

    1979-01-01

    The physics of ionising radiation is briefly presented. The effects of ionising radiation on biological cells, cell repair and radiosensitivity are briefly treated, where after the effects on man and mammals are discussed and related to radiation doses. Dose limits are briefly discussed. The genetic effects are discussed separately. Radioecology is also briefly treated and a table of radionuclides deriving from reactors, and their radiation is given. (JIW)

  9. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  10. Working Group on Ionising Radiations. Report 1987-88

    International Nuclear Information System (INIS)

    1989-01-01

    The programme of work for 1987/88 by the Working Group on Ionising Radiation, Health and Safety Commision in February 1988, included the main topics of continuing interest and concern in relation to ionising radiations in general and the Ionising Radiations Regulations 1985 (IRR 85) (Ref 1) in particular. These were: emergency dose limitation, occupational dose limitation, practical experience of the principle of keeping doses as low as reasonably practicable, experience of the regulatory requirements in respect of internal dosimetry and the need for a standing advisory committee on ionising radiations. Calibration of radiotherapy equipment was also considered as a matter of principle following a specific incident involving cancer patients. This report of progress during the first year summarises the Group's opinions on each topic and gives recommendations. (author)

  11. Immunosuppression by non-ionising and ionising radiation - are there similarities?

    International Nuclear Information System (INIS)

    Reeves, V.

    2003-01-01

    Solar UV radiation, the ubiqitous environmental non-ionising radiation, initiates its immunomodulating effects almost entirely in the skin. In direct contrast, ionising radiation penetrates much more efficiently, and has a multitude of internal targets throughout the body. As a consequence, the mechanisms underlying UV-induced immunosuppression have been more readily characterised, whereas surprisingly little is known about immunosuppression resulting from ionising radiation. Photoimmunological studies in mice during the past 20-30 years have established the action spectrum for UV-induced immunosuppression, implicating the UVB waveband, 290-320 nm. Controversy rages over the immunosuppressive potential of the UVA waveband, 320-400 nm, but we demonstrate that environmentally relevant doses of UVA not only are immunologically innocuous, but provide protection against UVB-immunosuppression. Increasingly larger UVA exposures increasingly immunosuppress mice. The UVA immunoprotective effect is strongly dependent on the induction of a cutaneous redox-regulated enzyme, haem oxygenase (heat shock protein 32) that is known to protect cells from oxidative stress, and it is consistent that a number of exogenous antioxidants (vitamin E, vitamin C, green tea polyphenols, isoflavones) can protect effectively from photoimmuno-suppression. Thus the UV-immunosuppressed state is promoted by oxidative damage and depletion of endogenous antioxidant molecules. It is also associated with cutaneous cytokine derangements, such that Th-2 cytokines (IL-4, IL-10) are increased at the expense of Th-1 cytokines (IFN-gamma, IL-12), and with histamine and inflammatory prostaglandin activity. In contrast, immunoprotective UVA irradiation protects the cutaneous cytokine array, inhibits IL-10 upregulation and increases IFN-gamma and IL-12 expression. On the other hand, while ionising radiation is known to cause immunosuppression, large doses target the bone marrow and haemopoiesis lethally and

  12. Working safely with ionising radiation

    International Nuclear Information System (INIS)

    McDowell, D.J.

    1990-01-01

    A small leaflet provides information on working safely with ionizing radiation. Topics covered include the types of radiation, radiological units, external radiation, contamination and internal radiation, methods of protection form radiation, radiation monitors, protective clothing for contamination, personal dosemeters, radiation dose limits for classified workers and finally the Ionising Radiations Regulations 1985. (UK)

  13. Antioxidant Protection in Blood against Ionising Radiation

    International Nuclear Information System (INIS)

    Bognar, G.; Meszaros, G.; Koteles, G. J.

    2001-01-01

    Full text: The quantities of the antioxidants in the human blood are important indicators of health status. The routine determinations of activities/capacities of antioxidant compounds would be of great importance in assessing individual sensitivities against oxidative effects. We have investigated the sensitivities of those antioxidant elements against various doses of ionising radiation tested by the RANDOX assays. Our results show dose-dependent decreases of antioxidant activities caused by the different doses. The total antioxidant status value linearly decreased up to 1 Gy, but further increase of dose (2 Gy) did not influence the respective values although the test system still indicated their presence. It means that the human blood retains 60-70% of its total antioxidant capacity. Radiation induced alterations of the antioxidant enzymes: glutathione peroxidase and superoxide dismutase have been also investigated. The activities of glutathione peroxidase and superoxide dismutase decreased linearly upon the effects of various doses of ionising radiation till 1 Gy. Between 1 and 2 Gy only further mild decreases could be detected. In this case the human blood retained 40-60% of these two antioxidant enzymes. These observations suggest either the limited response of antioxidant system against ionising radiation, or the existence of protection system of various reactabilities. (author)

  14. Health Service use of ionising radiations: Guidance

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet gives outline guidance on the use of ionising radiations in the Health Service in the United Kingdom. Extensive reference is made to documents where more detailed information may be found. The guidance covers general advice on the medical use of ionising radiations, statutory requirements, and guidance on selected Health Service issues such as patient identification procedures, information management systems, deviations from prescribed radiation dose, imaging and radiotherapy. (57 references) (U.K.)

  15. The design of a calorimetric standard of ionising radiation absorbed dose

    International Nuclear Information System (INIS)

    Huntley, R.B.

    1981-05-01

    The design of a calorimetric working standard of ionising radiation absorbed dose is discussed. A brief history of the appropriate quantities and units of measurement is given. Detailed design considerations follow a summary of the relevant literature. The methods to be used to relate results to national standards of measurement are indicated, including the need for various correction factors. A status report is given on the construction and testing program

  16. International Conference on Low Doses of Ionising Radiation

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1998-01-01

    Is there a threshold? and is a little radiation good for you? were two questions raised at the International Conference on Low Doses of Ionising Radiation : Biological Effects and Regulatory Control, jointly organised by the IAEA and WHO, and convened in Seville, Spain, over 17-21 November 1997. The answer to both these questions appears to be 'Maybe', but the answer has no present implications for radiation protection practice and regulation. The conference which had over 500 participants from 65 countries, was organised around ten fora which explored basic molecular mechanisms of radiation effects, through to radiation protection principles and implementation in practices and interventions. Each forum was introduced by an overview presentation by an invited keynote speaker. Brief presentations of a few of the proffered papers followed, and then open discussion. There was opportunity for all proffered papers to be presented as posters. The fora, which occupied 3 full days, were preceded by reports on biological effects of radiation from international orgnaisations, and on related international conferences held in the recent past. The fora were followed by round table presentations of regulatory control and scientiFic research, and a summary session drawing together conclusions on the topic areas of the conference. (author)

  17. FREQUENCY OF CHROMOSOMAL ABERRATIONS AND MICRONUCLEI IN HORSE LYMPHOCYTES FOLLOWING IN VITRO EXPOSURE TO LOW DOSE IONISING RADIATION

    Directory of Open Access Journals (Sweden)

    Dunja Rukavina

    2012-07-01

    Full Text Available Ionising radiation is known to cause chromosomal instability, which is observed as increased frequency of chromosomal aberration and micronuclei. These are listed as reliable criteria in biological dosimetry. Numerous experiments conducted on both animal and plant models demonstrated that increase in radiation dosage is followed by increased mutation frequency, and that mutations occur even at the lowest exposure. We used horse blood in vitro irradiated by low doses of ionizing radiation. Cultivation of peripheral blood lymphocytes and micronucleus test were used as biomarkers of genetic damage. The observed aberrations were recorded and classified in accordance with the International System of Cytogenetic Nomenclature. Micronuclei were identified on the basis of criteria proposed by Fenech et al. (8. Analysis of chromosomal aberration showed increased frequency of aberrations in blood cultures exposed to 0,1 Gy and 0,2 Gy compared to the controls. Microscopic analysis of chromosomal damage in in vitro micronucleus test revealed that the applied radiation dose induced micronuclei while no binucleated cells with micronuclei were found in lymphocytes that were not irradiated. In this paper we analysed the influence of low dose ionising radiation on frequency of chromosomal aberration and micronuclei in horse lymphocytes following in vitro exposure to X-rays (0,1 Gy and 0,2 Gy. Key words: chromosomal aberrations, micronuclei, ionising radiation, horse lymphocytes

  18. Occupational exposure to ionising radiation 1990-1996. Analysis of doses reported to the Health and Safety Executive's Central Index of Dose Information

    International Nuclear Information System (INIS)

    1998-01-01

    The Central Index of Dose Information (CIDI) is the Health and Safety Executive's (HSE's) national database of occupational exposure to ionising radiation. It is operated under contract by the National Radiological Protection Board (NRPB). CIDI receives annually, from Approved Dosimetry Services (ADS) summaries of radiation doses recorded for employees designated as classified persons in the United Kingdom. This is the second analysis of dose summary information to be published. (author)

  19. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies.

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde; Blust, Ronny

    2017-04-01

    Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. European Code against Cancer 4th Edition: Ionising and non-ionising radiation and cancer.

    Science.gov (United States)

    McColl, Neil; Auvinen, Anssi; Kesminiene, Ausrele; Espina, Carolina; Erdmann, Friederike; de Vries, Esther; Greinert, Rüdiger; Harrison, John; Schüz, Joachim

    2015-12-01

    Ionising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other epidemiological studies of groups that have been exposed to radiation from medical, occupational or environmental sources; experimental animal studies; and studies of cellular responses to radiation. Considering exposure to environmental ionising radiation, inhalation of naturally occurring radon is the major source of radiation in the population - in doses orders of magnitude higher than those from nuclear power production or nuclear fallout. Indoor exposure to radon and its decay products is an important cause of lung cancer; radon may cause approximately one in ten lung cancers in Europe. Exposures to radon in buildings can be reduced via a three-step process of identifying those with potentially elevated radon levels, measuring radon levels, and reducing exposure by installation of remediation systems. In the 4th Edition of the European Code against Cancer it is therefore recommended to: "Find out if you are exposed to radiation from naturally high radon levels in your home. Take action to reduce high radon levels". Non-ionising types of radiation (those with insufficient energy to ionise molecules) - including extremely low-frequency electric and magnetic fields as well as radiofrequency electromagnetic fields - are not an established cause of cancer and are therefore not addressed in the recommendations to reduce cancer risk. Copyright © 2015 International Agency for Research on Cancer. Published by Elsevier Ltd. All rights reserved.

  1. Health effects of low dose ionising radiation - recent advances and their implications

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings of this unusual interdisciplinary conference encompass the work of doctors, industrialists and civil servants. The discussion covers the investigation and quantification of dose response relationships for the various damaging effects of low level ionising radiation and a unified system for expressing biological damage, together with the results of epidemiological studies using models and data from the UK, Europe, Australia and the USA (including data base systems for assembling and validating data), the effects of background radiation (gamma ray and radon exposure), clustering studies, safety standards, radioactive waste discharge control and limitation through legislation and the monitoring of radioactivity in food. (author)

  2. Medical exposure to ionising radiation and the risk of brain tumours

    DEFF Research Database (Denmark)

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence

    2007-01-01

    BACKGROUND: The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. METHODS: We...... used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. RESULTS: For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95...... regions. CONCLUSION: We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation....

  3. Biological monitors for low levels of ionising radiation

    International Nuclear Information System (INIS)

    Mohankumar, M.N.; Jeevanram, R.K.

    1995-01-01

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author)

  4. Medical use of ionising radiation - challenges for the third millennium

    International Nuclear Information System (INIS)

    Leitz, W.

    2003-01-01

    From the very beginning after its discovery ionising radiation has been in beneficial use for health care. But even the drawbacks showed up very early: only a few months after Roentgens discovery reports were published on patients who got severe skin damage after fluoroscopy with x-rays. This finding of the adverse effects was soon turned into something positive: ionising radiation could be used for treatment of cancer. In 1928 radiologists took the initiative to the foundation of what later became the International Commission on Radiological Protection, ICRP. Medical use of ionising radiation is giving by far the largest contribution to the radiation burden of the global population from artificial sources, on average 0,3 mSv per year and inhabitant, excluding doses from radiation treatment. In the Nordic countries this dose is approximately 0,7 mSv. This isn't a problem by itself. The total benefit is exceeding the total radiation risk with large margins. But the margins could even be larger. Methods for examinations and treatments have often a potential for improvements, meaning that the medical effect can be obtained with a lower dose to the patient. In certain circumstances the examination does not contribute to the further treatment of the patient or to her/his well-being and is then regarded as not justified. The huge challenge we are facing depends among other things on the extreme fast technical development which enables exposures of a magnitude that we haven't seen before and applications we only could dream about. There is a risk that the motto 'do what is possible to do' is followed instead of 'do what the individual patient needs'. This presentation addresses the possibilities, but also the dangers that medical use of ionising radiation in medical care is facing in the new millennium, or at least in its first years. (orig.)

  5. Biological monitors for low levels of ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, M N; Jeevanram, R K [Safety Research and Health Physics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1996-12-31

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author). 98 refs., 11 figs., 4 tabs.

  6. S.I. No 125 of 2000 Radiological Protection Act 1991 (ionising radiation) Order 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This statutory instrument provides for the implementation of Council Directive 96/29/Euratom of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation. It also incorporates the provisions of Council Directive 90/641/Euratom of 4 December 1990 on the operational protection of outside workers exposed to the risk of ionising radiation during their activities in controlled areas. It replaces the provisions of the European Communities (Ionising Radiation) Regulations, 1991 (S.I. No. 43 of 1991), the Radiological Protection Act, 1991 (General Control of Radioactive Substances, Nuclear Devices and Irradiating Apparatus) Order, 1993 (S.I. No. 151 of 1993) and the European Communities (Protection of Outside Workers from Ionising Radiation) Regulations, 1994 (S.I. No. 144 of 1994). The main changes introduced in this Order are: the inclusion of work activities involving exposure to natural sources of radiation, stricter application of existing radiation protection principles through the introduction of lower dose limits, the use of dose constraints in keeping doses as low as reasonably achievable (i.e. optimisation process) and extended application of justification principles, the introduction of radiation protection principles for intervention in cases of radiological emergencies or lasting exposures. (author)

  7. Ionising radiation: a guide to the Regulations

    International Nuclear Information System (INIS)

    Hughes, Donald.

    1986-01-01

    The author explains the basic requirements on health and safety personnel in relation to the Ionising Radiations Regulations 1985. The outline paper is presented under the following headings: Dose assessment, Interpretation and general regulations 1-5, Dose limitation regulations 6 and 7, Regulation of work - regulations 8-12, Dosimetry and medical surveillance - regulations 13-17, summary of records to be kept, entry to controlled areas, Control of radioactive substances -regulations 18-23, Monitoring of radiation regulation 24, Assessments and notifications - regulations 25-31, Safety of articles and equipment - regulations 32-34, Other guidance. (U.K.)

  8. Student and intern awareness of ionising radiation exposure from common diagnostic imaging procedures

    International Nuclear Information System (INIS)

    Zhou, G. Z.; Wong, D. D.; Nguyen, L. K.; Mendelson, R. M.

    2010-01-01

    Full text: This study aims to evaluate medical student and intern awareness of ionising radiation exposure from common diagnostic imaging procedures and to suggest how education could be improved. Fourth to sixth year medical students enrolled at a Western Australian university and interns from three teaching hospitals in Perth were recruited. Participants were asked to complete a questionnaire consisting of 26 questions on their background, knowledge of ionising radiation doses and learning preferences for future teaching on this subject. A total of 331 completed questionnaires were received (95.9%). Of the 17 questions assessing knowledge of ionising radiation, a mean score of 6.0 was obtained by respondents (95% CI 5.8-6.2). Up to 54.8% of respondents underestimated the radiation dose from commonly requested radiological procedures. Respondents (11.3 and 25.5%) incorrectly believed that ultrasound and MRI emit ionising radiation, respectively. Of the four subgroups of respondents, the intern doctor subgroup performed significantly better (mean score 6.9, P< 0.0001, 95% CI 6.5-7.3) than each of the three medical student subgroups. When asked for the preferred method of teaching for future radiation awareness, a combination of lectures, tutorials and workshops was preferred. This study has clearly shown that awareness of ionising radiation from diagnostic imaging is lacking among senior medical students and interns. The results highlight the need for improved education to minimise unnecessary exposure of patients and the community to radiation. Further studies are required to determine the most effective form of education.

  9. The use of caffeine to assess high dose exposures to ionising radiation by dicentric analysis

    International Nuclear Information System (INIS)

    Pujol, M.; Puig, R.; Caballin, M. R.; Barrios, L.; Barquinero, J. F.

    2012-01-01

    Dicentric analysis is considered as a 'gold standard' method for biological dosimetry. However, due to the radiation-induced mitotic delay or inability to reach mitosis of heavily damaged cells, the analysis of dicentrics is restricted to doses up to 4-5 Gy. For higher doses, the analysis by premature chromosome condensation technique has been proposed. Here, it is presented a preliminary study is presented in which an alternative method to analyse dicentrics after high dose exposures to ionising radiation (IR) is evaluated. The method is based on the effect of caffeine in preventing the G2/M checkpoint allowing damaged cells to reach mitosis. The results obtained indicate that the co-treatment with Colcemide and caffeine increases significantly increases the mitotic index, and hence allows a more feasible analysis of dicentrics. Moreover in the dose range analysed, from 0 to 15 Gy, the dicentric cell distribution followed the Poisson distribution, and a simulated partial-body exposure has been clearly detected. Overall, the results presented here suggest that caffeine has a great potential to be used for dose-assessment after high dose exposure to IR. (authors)

  10. European Code against Cancer 4th Edition: Ionising and non-ionising radiation and cancer

    NARCIS (Netherlands)

    N. McColl (Neil); A. Auvinen (Anssi); A. Kesminiene (Ausrele); C. Espina (Carolina); F. Erdmann (Friederike); E. de Vries (Esther); R. Greinert (Rüdiger); J. Harrison (John); J. Schüz (Joachim)

    2015-01-01

    textabstractIonising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other

  11. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    The mutagenic effects of ionising radiation on germ cells with resulting genetic abnormalities in subsequent generations, are considered. Having examined a simple model to explain the interaction of ionising radiation with genetic material and discussed its limitations, the methods whereby mutations are transmitted are discussed. Methods of estimating genetic risks and the results of such studies are examined. (U.K.)

  12. Studies of Non-Targeted Effects of Ionising Radiation

    International Nuclear Information System (INIS)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae

    2006-01-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  13. Studies of Non-Targeted Effects of Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  14. Use of ionising radiation for food processing applications

    International Nuclear Information System (INIS)

    Ninjoor, V.

    1989-01-01

    Food irradiation is a recently developed technique used to sterilize and preserve food. Food products are exposed to ionising radiations such as X-rays, gamma rays or high energy electrons which destroy food borne pathogens and parasites and inhibit sprouting. Shelf life of food is extended. The following aspects of radiation processing of food are discussed in the monograph: radiation sources, choice of dose for specific results, safety and nutritional quality of radiation processed food, international status of acceptance of food irradiation, and cost. (M.G.B.). 6 tabs

  15. Gene expression analysis after low dose ionising radiation exposure of the developing organism

    International Nuclear Information System (INIS)

    Abderrafi Benotmane, M.

    2007-01-01

    Measuring gene expression using microarrays is relevant to many areas of biology and medicine, such as follow up of developmental stages and diseases onset, and treatment study. Since there can be tens of thousands of distinct probes on an array, each micro array experiment can accomplish the equivalent number of genetic tests in parallel. Arrays have therefore dramatically accelerated many types of investigations. For example, microarrays can be used to identify stress response genes by comparing gene expression in challenged versus normal cells. In the Molecular and Cellular Biology lab (MCB), the micro array experiments are performed within the Genomic Platform, fully equipped to analyse either the behaviour of bacteria during long space flight, the effect of low dose ionising radiation on the developing organism in mice, or the human individual radiation sensitivity. For the low dose effect, two main stages of development are of interest; 1) the gastrula stage at which ionizing radiation can induce several malformations. 2) the organogenesis. During brain development, epidemiological studies of the atomic bomb survivors of Hiroshima/Nagasaki showed increased risk of mental retardation in children of women exposed between weeks 8-15 of pregnancy or at a lower extend between weeks 15 to 25

  16. Non-targeted effects of ionising radiation—Implications for low dose risk

    DEFF Research Database (Denmark)

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric

    2013-01-01

    and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly......Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects....... Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE...

  17. Search for ionisation density effects in the radiation absorption stage in LiF:Mg,Ti

    International Nuclear Information System (INIS)

    Nail, I.; Horowitz, Y. S.; Oster, L.; Brandan, M. E.; Rodriguez-Villafuerte, M.; Buenfil, A. E.; Ruiz-Trejo, C.; Gamboa-deBuen, I.; Avila, O.; Tovar, V. M.; Olko, P.; Ipe, N.

    2006-01-01

    Optical absorption (OA) dose-response of LiF:Mg,Ti (TLD-100) is studied as a function of electron energy (ionisation density) and irradiation dose. Contrary to the situation in thermoluminescence dose-response where the supra-linearity is strongly energy-dependent, no dependence of the OA dose filling constants on energy is observed. This result is interpreted as indicating a lack of competitive process in the radiation absorption stage. The lack of an energy dependence of the dose filling constant also suggests that the charge carrier migration distances are sufficiently large to smear out the differences in the non-uniform distribution of ionisation events created by the impinging gamma/ electron radiation of various energies. (authors)

  18. Impact assessment of ionising radiation on wildlife

    International Nuclear Information System (INIS)

    Copplestone, D.; Bielby, S.; Jones, S.

    2001-01-01

    This R and D project was commissioned by the Environment Agency and English Nature in January 2001 to provide up-to-date information on the impacts of ionising radiation on wildlife, upon which a robust assessment approach may be developed. This approach will also feed into the European Commission funded project 'Framework for Assessment of Environmental Impact' (FASSET), due to complete in October 2003. This report describes the behaviour and transport of radionuclides in the environment, considers the impact of ionising radiation on wildlife, and makes recommendations on an approach for the impact assessment of ionising radiation on wildlife for England and Wales. The assessment approach focuses on three ecosystems representative of those considered potentially most at risk from the impact of authorised radioactive discharges, namely a coastal grassland (terrestrial ecosystem); estuarine and freshwater ecosystems. The likely scale of the impact on wildlife is also assessed in light of a preliminary analysis based on this assessment approach. The aims of the report are: to summarise the latest research on the behaviour, transfer and impact of ionising radiation effects on wildlife; an outline and review of the relevant European and national legislation which has impacts on the requirements for assessments of the impact of ionising radiation on wildlife in the UK; to consider the role of regulatory bodies in assessing the impact of ionising radiation on wildlife with respect to England and Wales; to make recommendations on the relative biological effectiveness of different types of radiation with respect to wildlife; and to recommend an approach to assess the impacts to wildlife from ionising radiation from authorised discharges in England and Wales, with spreadsheets to support the methodology. The report demonstrates the behaviour and transfer of radionuclides in a number of different ecosystem types. Particular emphasis is placed on exposure pathways in those

  19. Impact assessment of ionising radiation in wildlife

    International Nuclear Information System (INIS)

    2001-01-01

    This R and D project was commissioned by the Environment Agency and English Nature in January 2001 to provide up-to-date information on ionising radiation impact to wildlife, upon which a robust assessment approach may be developed. The methodology will provide an interim approach, whilst awaiting the outcome of the European Commission funded project 'Framework for Assessment of Environmental Impact' (FASSET) due to end in October 2003. The aims of the report were: to summarise the latest research on the behaviour, transfer and impact of ionising radiation effects on wildlife; to outline and review relevant European Directives which have impacted on the requirements to assess the impact to wildlife from ionising radiation in the UK; to consider the role of regulatory bodies in assessing the impact of ionising radiation on wildlife with respect to England and Wales; to make recommendations on the relative biological effectiveness of different types of radiation with respect to wildlife; and to recommend an approach with which to assess the 'scale of risk' to wildlife from the effects of ionising radiation, with spreadsheets to support the methodology. The report describes the behaviour and transfer of radionuclides in a number of different ecosystem types. Particular emphasis is placed on those ecosystems most likely to be impacted by the authorised discharges of radioactivity within the UK. As there is no international consensus on the approach to be taken to assess the impact of ionising radiation on wildlife, some countries have adopted their own legislation. The report evaluates these regulatory frameworks and describe the current UK position

  20. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2010-01-01

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  1. The Assessment of DNA Damage in Poultry Spermatozoa after Exposure to Low Doses of Ionising Radiation

    International Nuclear Information System (INIS)

    Kasuba, V.; Milic, M.; Pejakovic Hlede, J.; Gottstein, Z.; Karadjole, M.; Miljanic, S.

    2013-01-01

    The existence of dose-related induction of DNA strand breaks in spermatozoa following in vitro exposure to ionising radiation represents sperm DNA integrity as an important parameter in the evaluation of semen functionality. Maintaining of normal sperm becomes even more important when it is known that DNA in semen samples is already fragmentated in certain amount in human and turkey semen and that it lacks DNA repair mechanisms making DNA damage irreversible. The aim of this paper was to provide an insight in the amount of DNA damage detected in chicken spermatozoa (5 cocks, 45 weeks old) of heavy line after radiation with doses of 0.3, 0.5, 1 and 2 Gy gamma radiation and to address the question of the potential ecological consequences of the damage that was measured with comet assay. Scored parameters included tail intensity, tail length and tail moment. Results showed sensitivity of comet assay technique that detected significant DNA damage even after exposure to 0.3 Gy, but also showed no dose-related responses after 0.5, 1 and 2 Gy. Distribution of damaged cells was widely spread for the higher doses, showing the influence of possible adaptive response, but for further conclusions, larger studies are needed to answer that question.(author)

  2. Evaluation of cytogenetic damage in nuclear medicine personnel occupationally exposed to low-level ionising radiation

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.; Poropat, M.

    2005-01-01

    Despite intensive research over the last few decades, there still remains considerable uncertainty as to the genetic impact of ionising radiation on human populations, particularly at low levels. The aim of this study was to provide data on genetic hazards associated with occupational exposure to low doses of ionising radiation in nuclear medicine departments. The assessment of DNA damage in peripheral blood lymphocytes of medical staff was performed using the chromosome aberration (CA) test. Exposed subjects showed significantly higher frequencies of CA than controls. There were significant inter-individual differences in DNA damage within the exposed population, indicating differences in genome sensitivity. Age and gender were not confounding factors, while smoking enhanced the levels of DNA damage only in control subjects. The present study suggests that chronic exposure to low doses of ionising radiation in nuclear medicine departments causes genotoxic damage. Therefore, to avoid potential genotoxic effects, the exposed medical personnel should minimise radiation exposure wherever possible. Our results also point to the significance of biological indicators providing information about the actual risk to the radiation exposed individuals.(author)

  3. A Discussion about Ionising and Non-Ionising Radiation and the Critical Issue of Mobile Phones

    Science.gov (United States)

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2018-01-01

    Electromagnetic radiation is one of the most important issues affecting peoples' lives today. The misunderstanding of students and the general population of the effects of electromagnetic radiation is a problem which must be eliminated. Thus, a discussion about ionising and non-ionising radiation focusing on the crucial issue of radiation emitted…

  4. Injuries to embryo and foetus from ionising radiation

    International Nuclear Information System (INIS)

    Devik, F.

    1980-01-01

    A brief review is given of experimental and clinical evidence for tetatological effects of ionising radiation, against the background of general teratology. International and national recommendations and regulations for the protection of the conceptus are quoted. As to interruption of a pregnancy following an unintended exposure, it is pointed out that much of the present evidence points to a dose in the order of 0.1Gy (10 rads) as a dose which may be considered as a practical threshold for the induction of congenital defects. (Auth.)

  5. The work of the ILO in the field of protection of workers against ionising and non-ionising radiations

    International Nuclear Information System (INIS)

    Coppee, G.H.

    1980-01-01

    A chronological account since 1934 of the activities of the International Labour Organization (ILO) in the protection of workers against risks due to ionising and non-ionising radiations is given. Several ILO publication on safety standards and codes of practice for protection against mainly ionising radiation in various occupational situations are indicated. A more intensive study by the ILO on the protection of workers against non-ionising radiation was proposed for 1980-81. (UK)

  6. Investigation of damage mechanism by ionising radiation on biomolecules

    International Nuclear Information System (INIS)

    Lau How Mooi

    1996-01-01

    Occupational radiation hazard is a very controversial subject. Effects from high radiation doses are well known from past experiences. However, hazard from low doses is still a subject that is hotly debated upon until now. The occupational dosimetry used now is based on a macroscopic scale. Lately, microdosimetry is fast gaining recognition as a more superior way of measuring hazard. More importantly, scientists are researching the basic damage mechanism that leads to biological effects by ionising radiation. In this report, a simulation study of the basic damage mechanism is discussed . This simulation is based upon Monte Carlo calculations and using polyuridylic acid (Poly-U) as the DNA model This simulation tries to relate the physics and chemistry of interactions of ionising radiation with biomolecules. The computer codes used in this simulation, OREC and RADLYS were created by Hamm et al. (1983) in Oak Ridge National Laboratory. The biological endpoints in this simulation are the strand break and base release of the DNA, which is the precursor of all biological effects. These results are compared with model studies that had been done experimentally to check the validity of this simulation. The G-values of strand break and base release from this simulation were -2.35 and 2.75 and compared well with results from irradiation experiments by von Sonntag (I 98 7) from Max Plank's Institute, Germany

  7. The biological effects of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Higson, D.J.

    2016-01-01

    Scenarios for exposure to ionising radiation range from natural background radiation (chronic) to the explosions of atomic bombs (acute), with some medical, industrial and research exposures lying between these extremes. Biological responses to radiation that predominate at high doses incurred at high dose rates are different from those that predominate at low doses and low dose rates. Single doses from bomb explosions ranged up to many thousand mGy. Acute doses greater than about 1000 mGy cause acute radiation syndrome (ARS). Below this threshold, radiation has a variety of potential latent health effects: Change to the incidence of cancer is the most usual subject of attention but change to longevity may be the best overall measure because decreased incidences of non-cancer mortality have been observed to coincide with increased incidence of cancer mortality. Acute doses greater than 500 mGy cause increased risks of cancer and decreased life expectancy. For doses less than 100 mGy, beneficial overall health effects ('radiation hormesis') have been observed. At the other end of the spectrum, chronic exposure to natural radiation has occurred throughout evolution and is necessary for the normal life and health of current species. Dose rates greater than the present global average of about 2 mGy per year have either no discernible health effect or beneficial health effects up to several hundred mGy per year. It is clearly not credible that a single health effects model -- such as the linear no-threshold (LNT) model of risk estimation -- could fit all latent health effects. A more realistic model is suggested.

  8. Generator for ionising radiation

    International Nuclear Information System (INIS)

    Romanovsky, V.F.; Panasjuk, V.S.; Stepanov, B.M.; Ovcharov, A.M.; Akimov, J.A.

    1979-01-01

    The generator for ionising radiation wherein a transmitter for ionising radiation contains a resonance transformer wherein the field coil is composed of a low voltage outside portion and a transformer coil, electrically connected with an electrically conducting housing of the resonance transformer, and an acclerating tube wherein the high voltage electrode is coupled with the high voltage end of the transformer coil of the resonance transformer and fixed to one of the ends of the tubular insulator of the accelerator tube, wherein the low voltage electrode is electrically connected with the housing of the resonance transformer and a source of charged particles is introduced into the evacuated inner space of the acceleration tube and electrically connected with one of the electrodes thereof, is described. (G.C.)

  9. European Communities (Foodstuffs treated with ionising radiation) Regulations, 2000. Statutory Instrument S.I. No. 297 of 2000

    International Nuclear Information System (INIS)

    2000-01-01

    These Regulations give effect to Directive 1999/2/EC (the framework Directive) of the European Parliament and of the Council of 22 February 1999 on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation and Directive 1999/3/EC (the implementing Directive) of the European Parliament and of the Council of 22 February 1999 on the establishment of a Community list of foods and food ingredients treated with ionising radiation. The effect of these Regulations is to lay down the general provisions for the treatment of foodstuffs with ionising radiation. Provisions concerning the approval and control of irradiation facilities and rules on labelling are also included. A positive list of foodstuffs authorised for treatment with ionising radiation and their maximum radiation doses are defined in the implementing Directive. These Regulations should be read together with the two Directives (author)

  10. Martian sub-surface ionising radiation: biosignatures and geology

    Directory of Open Access Journals (Sweden)

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  11. Risks of low dose ionising radiation exposures Riesgos derivados de la exposición a dosis bajas de radiación ionizante

    Directory of Open Access Journals (Sweden)

    Almudena Real Gallego

    2010-12-01

    Full Text Available Although ionising radiation has been shown to have several beneficial applications for humans, it can also produce detrimental effects in humans and the environment. To adequately protect man and environment from the potential harmful effects of ionising radiation, is essential to know in detail the biological effects produced by it, its characteristics and the various factors that influence these effects. That is the objective of this article, describe the current status of knowledge about biological effects induced by ionising radiation, with special emphasis on those effects occurring after low dose exposures.La radiación ionizante ha mostrado tener diversas aplicaciones beneficiosas para el hombre, pero también puede dañar la salud de las personas y el medio ambiente. Para proteger adecuadamente al hombre de los posibles efectos nocivos de la radiación ionizante es imprescindible conocer en detalle los efectos biológicos producidos por esta, sus características y los distintos factores que influyen en dichos efectos. Ese es el objetivo de este artículo: describir el estado actual del conocimiento sobre los efectos biológicos que puede producir la radiación ionizante, con especial énfasis en aquellos efectos que se producen tras la exposición a dosis bajas.

  12. Evaluation of chromosomal aberrations in radiologists and medical radiographers chronically exposed to ionising radiation

    International Nuclear Information System (INIS)

    Kasuba, V.; Rozgaj, R.; Jazbec, A.

    2005-01-01

    Chromosomal aberrations are fairly reliable indicators of damage induced by ionising radiation. This study included 180 radiologists and medical radiographers (technicians) and 90 controls who were not occupationally exposed to ionising radiation. All exposed subjects were routinely monitored with film badge, and none was exposed to a radiation dose exceeding the limit for occupational exposure recommended by the International Commission on Radiological Protection (ICRP). Two hundred metaphases for each person were scored. The frequencies of acentric fragments, dicentrics, ring chromosomes and chromosomal exchanges were determined and compared to those obtained in the control group. Chromosome aberrations were analysed using Poisson regression for profession, age, sex, smoking and years of exposure. Age, smoking, diagnostic exposure to X-rays and occupation were found to correlate with the occurrence of acentric fragments. The influence of exposure duration on the frequency of acentric fragments was greater in medical radiographers than in radiologists. Smoking and sex were found to correlate with the occurrence of dicentric chromosomes, which were more common in men than in women. As chromosome aberrations exceeded the expected level with respect to the absorbed dose, our findings confirm the importance of chromosome analysis as a part of regular medical check-up of subjects occupationally exposed to ionising radiation.(author)

  13. Introducing Biological Microdosimetry for Ionising Radiation

    International Nuclear Information System (INIS)

    Scott, B.R.; Schoellnberger, H.

    2000-01-01

    Microdosimetry is important for radiation protection, for understanding mechanisms of radiation action, and for radiation risk assessment. This article introduces a generic, Monte Carlo based approach to biological microdosimetry for ionising radiation. Our Monte Carlo analyses are carried out with a widely used Crystal Ball software. The approach to biological microdosimetry presented relates to quantal biological effects data (e.g. cell survival, mutagenesis, neoplastic transformation) for which there is an initial linear segment to the dose-response curve. The macroscopic dose data considered were selected such that is could be presumed that the vast majority of cells at risk have radiation dose delivered to their critical target. For cell killing, neoplastic transformation, and mutagenesis, the critical biological target for radiation is presumed to be DNA. Our approach to biological microdosimetry does not require detailed information about the mass, volume, and shape of the critical biological target. Further, one does not have to know what formal distribution function applies to the microdose distribution. However, formal distributions are required for the biological data used to derive the non-parametric microdose distributions. Here, we use the binomial distribution to characterise the variability in the number of cells affected by a fixed macroscopic dose. Assuming this variability to arise from variability in the microscopic dose to the critical biological target, a non-parametric microdose distribution is generated by the standard Monte Carlo method. The non-parametric distribution is then fitted using a set of formal distributions (beta, exponential, extreme value, gamma, logistic, log-normal, normal, Pareto, triangular, uniform, and Weibull). The best fit is then evaluated based on statistical criteria (chi-square test). To demonstrate the application of biological microdosimetry, the standard Monte Carlo method is used with radiobiological data for

  14. Introducing Biological Microdosimetry for Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.; Schoellnberger, H

    2000-07-01

    Microdosimetry is important for radiation protection, for understanding mechanisms of radiation action, and for radiation risk assessment. This article introduces a generic, Monte Carlo based approach to biological microdosimetry for ionising radiation. Our Monte Carlo analyses are carried out with a widely used Crystal Ball software. The approach to biological microdosimetry presented relates to quantal biological effects data (e.g. cell survival, mutagenesis, neoplastic transformation) for which there is an initial linear segment to the dose-response curve. The macroscopic dose data considered were selected such that is could be presumed that the vast majority of cells at risk have radiation dose delivered to their critical target. For cell killing, neoplastic transformation, and mutagenesis, the critical biological target for radiation is presumed to be DNA. Our approach to biological microdosimetry does not require detailed information about the mass, volume, and shape of the critical biological target. Further, one does not have to know what formal distribution function applies to the microdose distribution. However, formal distributions are required for the biological data used to derive the non-parametric microdose distributions. Here, we use the binomial distribution to characterise the variability in the number of cells affected by a fixed macroscopic dose. Assuming this variability to arise from variability in the microscopic dose to the critical biological target, a non-parametric microdose distribution is generated by the standard Monte Carlo method. The non-parametric distribution is then fitted using a set of formal distributions (beta, exponential, extreme value, gamma, logistic, log-normal, normal, Pareto, triangular, uniform, and Weibull). The best fit is then evaluated based on statistical criteria (chi-square test). To demonstrate the application of biological microdosimetry, the standard Monte Carlo method is used with radiobiological data for

  15. Medical effects and risks of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Mettler, Fred A

    2012-01-01

    Effects and risk from exposure to ionising radiation depend upon the absorbed dose, dose rate, quality of radiation, specifics of the tissue irradiated and other factors such as the age of the individual. Effects may be apparent almost immediately or may take decades to be manifest. Cancer is the most important stochastic effect at absorbed doses of less than 1 Gy. The risk of cancer induction varies widely across different tissues; however, the risk of fatal radiation-induced cancer for a general population following chronic exposure is about 5% Sv −1 . Quantification of cancer risk at doses of less than 0.1 Gy remains problematic. Hereditary risks from irradiation that might result in effects to offspring of humans appear to be much lower and any such potential risks can only be estimated from animal models. At high doses (over 1 Gy) cell killing and modification causes deterministic effects such as skin burns, and bone marrow depression, in which case immunosuppression becomes a critical issue. Acute whole body penetrating gamma irradiation at doses in excess of 2 Gy results in varying degrees of acute radiation sickness and doses over 10 Gy are usually lethal as a result of combined organ injury. (note)

  16. Exposure of the French paediatric population to ionising radiation from diagnostic medical procedures in 2010

    International Nuclear Information System (INIS)

    Etard, Cecile; Aubert, Bernard; Mezzarobba, Myriam; Bernier, Marie-Odile

    2014-01-01

    Medical examination is the main source of artificial radiation exposure. Because children present an increased sensitivity to ionising radiation, radiology practices at a national level in paediatrics should be monitored. This study describes the ionising radiation exposure from diagnostic medical examinations of the French paediatric population in 2010. Data on frequency of examinations were provided by the French National Health Insurance through a representative sample including 107,627 children ages 0-15 years. Effective doses for each type of procedure were obtained from the published French literature. Median and mean effective doses were calculated for the studied population. About a third of the children were exposed to at least one examination using ionising radiation in 2010. Conventional radiology, dental exams, CT scans and nuclear medicine and interventional radiology represent respectively 55.3%, 42.3%, 2.1% and 0.3% of the procedures. Children 10-15 years old and babies from birth to 1 year are the most exposed populations, with respectively 1,098 and 734 examinations per 1,000 children per year. Before 1 year of age, chest and pelvis radiographs are the most common imaging tests, 54% and 32%, respectively. Only 1% of the studied population is exposed to CT scan, with 62% of these children exposed to a head-and-neck procedure. The annual median and mean effective doses were respectively 0.03 mSv and 0.7 mSv for the exposed children. This study gives updated reference data on French paediatric exposure to medical ionising radiation that can be used for public health or epidemiological purposes. Paediatric diagnostic use appears much lower than that of the whole French population as estimated in a previous study. (orig.)

  17. Exposure of the French paediatric population to ionising radiation from diagnostic medical procedures in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Etard, Cecile; Aubert, Bernard [Institut de Radioprotection et de Surete Nucleaire, Medical Expertise Unit, Fontenay-aux-Roses (France); Mezzarobba, Myriam [Institut de Radioprotection et de Surete Nucleaire, Laboratory of Epidemiology, Fontenay-aux-Roses (France); Bernier, Marie-Odile [Institut de Radioprotection et de Surete Nucleaire, Laboratory of Epidemiology, Fontenay-aux-Roses (France); Institut de Radioprotection et de Surete Nucleaire, IRSN/PRP-HOM/SRBE/LEPID, Laboratoire d' Epidemiologie, Fontenay-aux-Roses (France)

    2014-12-15

    Medical examination is the main source of artificial radiation exposure. Because children present an increased sensitivity to ionising radiation, radiology practices at a national level in paediatrics should be monitored. This study describes the ionising radiation exposure from diagnostic medical examinations of the French paediatric population in 2010. Data on frequency of examinations were provided by the French National Health Insurance through a representative sample including 107,627 children ages 0-15 years. Effective doses for each type of procedure were obtained from the published French literature. Median and mean effective doses were calculated for the studied population. About a third of the children were exposed to at least one examination using ionising radiation in 2010. Conventional radiology, dental exams, CT scans and nuclear medicine and interventional radiology represent respectively 55.3%, 42.3%, 2.1% and 0.3% of the procedures. Children 10-15 years old and babies from birth to 1 year are the most exposed populations, with respectively 1,098 and 734 examinations per 1,000 children per year. Before 1 year of age, chest and pelvis radiographs are the most common imaging tests, 54% and 32%, respectively. Only 1% of the studied population is exposed to CT scan, with 62% of these children exposed to a head-and-neck procedure. The annual median and mean effective doses were respectively 0.03 mSv and 0.7 mSv for the exposed children. This study gives updated reference data on French paediatric exposure to medical ionising radiation that can be used for public health or epidemiological purposes. Paediatric diagnostic use appears much lower than that of the whole French population as estimated in a previous study. (orig.)

  18. ALARA - the contribution of the proposed new ionising radiations regulations

    International Nuclear Information System (INIS)

    Young, T.O.

    1982-01-01

    This paper describes the proposed regulatory requirements and appropriate guidance contained in the approved code of practice on ionising radiations which are designed to support and help reach the objective of keeping radiation doses as low as reasonably achievable. This is discussed against the background of factory legislation, and the way in which the form of the proposed legislation handles this topic is illustrated. The measures required by the proposed legislation are reviewed, both as direct measures designed to create a climate of dose reduction, and as general measures designed to achieve the same end by means of a wide range of requirements. (author)

  19. Ionising radiation

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The law covering ionising radiation in Luxembourg is summarised under the headings: introduction (the outline law of 25 March 1963, and the Grand-Ducal Decree of 8 February 1967); the control of establishments (the authorisation procedure; emergency measures, suspension and withdrawal of the authorisation; alterations to the establishment); the importation, distribution and transit of radioactive substances; the transport of radioactive substances; the protection and safety of the population as a whole; sanctions; international conventions. (U.K.)

  20. Non-targeted effects of ionising radiation. Proceedings of the RISC-RAD specialised training course

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-12-01

    The training course 'Non-targeted effects of ionising radiation' took place at the STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland 14-16 February 2005. Proceeding of this course is collected in this volume. The idea of the course was to convene a number of scientists leading in the area of non-targeted effects of ionising radiation with the aim to outline their visions for the role of these effects and outline the future directions of radiation research on the basis of their expertise. The course was supported by the RISC-RAD IP FI6R-CT-2003-508842, Euratom specific programme for research and training on nuclear energy, 6th FP of the EC. The main objectives of the training course were: (1) to clarify the mechanisms of non-targeted effects, in particular, bystander effects, genomic instability and adaptive response; (2) to look if and how non-targeted effects modulate the cancer risk in the low dose region, and whether they relate to protective or harmful functions; (3) to clarify if ionising radiation can cause non-cancer diseases or beneficial effects at low and intermediate doses; (4) address the issue of individual susceptibility and other factors modifying non-targeted responses; (5) attempt to assess the relevance of non-targeted effects for radiation protection and to set the scientific basis for a modern, more realistic, radiation safety system; (6) and finally to contribute to the conceptualisation of a new paradigm in radiation biology that would cover both the classical direct (DNA-targeted) and non-targeted (indirect) effects

  1. Microdosimetric constraints on specific adaptation mechanisms to reduce DNA damage caused by ionising radiation

    International Nuclear Information System (INIS)

    Burkart, W.; Heusser, P.; Vijayalaxmi

    1990-01-01

    The protective effect of pre-exposure of lymphocytes to ionising radiation indicates the presence of 'adaptive repair' in mammalian cells. Microdosimetric considerations, however, raise some doubts on the advantage of such a cellular mechanism for specifically reducing the radiation damage caused by environmental exposures. Contrary to most chemicals which endanger the integrity of the mammalian genome, the local dose and dose rate from ionising radiation at the cellular level remain quite high, even at lowest exposures. A single electron or alpha particle passing through a cell nucleus already yields nuclear doses of up to about 3 mGy and 400 mGy, respectively. Macroscopic doses below these nuclear doses from a single event will only reduce the fraction of cell nuclei encountering the passage of a particle but not the dose or dose rate in the affected volume. At environmental doses in the range of 1 to 5 mGy per annum, the time between two consecutive hits in a specific cell nucleus is in the range of months to years. Very low concentrations of bleomycin, a drug with high affinity to DNA, also triggers an adaptive response. This points to a more general stress response mechanism which may benefit the cell even at environmental levels of radioactivity, e.g. by protecting the integrity of DNA from attacks by chemicals, by endogenous radicals, by acids from anoxia, etc. (author)

  2. Effects of low-dose ionising radiation on pituitary adenoma: is there a role for L-type calcium channel?

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia]. E-mail: santosr@cdtn.br

    2005-10-15

    Pituitary adenomas constitute about 6-18% of brain tumours in adults. Activation of voltage gated calcium currents can account for growth hormone over secretion in some GH-secreting pituitary adenomas that produce an acromegaly appearance and increase mortality. Ca{sup 2+} ions, as mediators of intracellular signalling, are crucial for the development of apoptosis. However, the role of [Ca{sup 2+}] in the development of apoptosis is ambiguous. In this study, the effects of low-dose ionising gamma radiation ({sup 60} Co) on rat pituitary adenoma cells survival and proliferation and the role of calcium channels on the apoptosis radio-induced were evaluated. Doses as low as 3 Gy were found to inhibit GH3 cell proliferation. Even though there was a significant number of live cells,168 hours following irradiation, they were not able to proliferate. The results indicate that the blockade of extracellular calcium influx through these channels does not interfere in the radiation-induced apoptosis in GH3 cells. (author)

  3. The risk of low doses of ionising radiation and the linear no threshold relationship debate

    International Nuclear Information System (INIS)

    Tubiana, M.; Masse, R.; Vathaire, F. de; Averbeck, D.; Aurengo, A.

    2007-01-01

    The ICRP and the B.E.I.R. VII reports recommend a linear no threshold (L.N.T.) relationship for the estimation of cancer excess risk induced by ionising radiations (IR), but the 2005 report of Medicine and Science French Academies concludes that it leads to overestimate of risk for low and very low doses. The bases of L.N.T. are challenged by recent biological and animal experimental studies which show that the defence against IR involves the cell microenvironment and the immunologic system. The defence mechanisms against low doses are different and comparatively more effective than for high doses. Cell death is predominant against low doses. DNA repairing is activated against high doses, in order to preserve tissue functions. These mechanisms provide for multicellular organisms an effective and low cost defence system. The differences between low and high doses defence mechanisms are obvious for alpha emitters which show several greys threshold effects. These differences result in an impairment of epidemiological studies which, for statistical power purpose, amalgamate high and low doses exposure data, since it would imply that cancer IR induction and defence mechanisms are similar in both cases. Low IR dose risk estimates should rely on specific epidemiological studies restricted to low dose exposures and taking precisely into account potential confounding factors. The preliminary synthesis of cohort studies for which low dose data (< 100 mSv) were available show no significant risk excess, neither for solid cancer nor for leukemias. (authors)

  4. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS)

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd

    2015-07-01

    Since July 2015 the study ''ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS) - an international cohort study'' is available. INWORKS comprised data from 300.000 occupational exposed and dosimetric monitored persons from France, USA and UK. The contribution is a critical discussion of this study with respect to the conclusion of a strong evidence of positive associations between protracted low-dose irradiation exposure and leukemia.

  5. Dose measurements in pulsed radiation fields with commercially available measuring components

    International Nuclear Information System (INIS)

    Friedrich, Sabrina; Hupe, Oliver

    2016-01-01

    Dose measurements in pulsed radiation fields with dosemeters using the counting technique are known to be inappropriate. Therefore, there is a demand for a portable device able to measure the dose in pulsed radiation fields. As a detector, ionisation chambers seem to be a good alternative. In particular, using a secondary standard ionisation chamber in combination with a reliable charge-measuring system would be a good solution. The Physikalisch-Technische Bundesanstalt (PTB) uses secondary standard ionisation chambers in combination with PTB-made measuring electronics for dose measurements at its reference fields. However, for general use, this equipment is too complex. For measurements on-site, a mobile special electronic system [Hupe, O. and Ankerhold, U. Determination of ambient and personal dose equivalent for personnel and cargo security screening. Radiat. Prot. Dosim. 121(4), 429-437 (2006)] has been used successfully. Still, for general use, there is a need for a much simpler but a just as good solution. A measuring instrument with very good energy dependence for H*(10) is the secondary standard ionisation chamber HS01. An easy-to-use and commercially available electrometer for measuring the generated charges is the UNIDOS by PTW Freiburg. Depending on the expected dose values, the ionisation chamber used can be selected. In addition, measurements have been performed by using commercially available area dosemeters, e.g. the Mini SmartION 2120S by Thermo Scientific, using an ionisation chamber and the Szintomat 6134 A/H by Automess, using a scintillation detector. (authors)

  6. Using ionising radiation against terrorism and contrabandism - dosimetric problems

    International Nuclear Information System (INIS)

    Ankerhold, U.; Hupe, O.; Buchholz, G.

    2006-01-01

    As will be explained in more detail in a talk at this conference, the personnel X-ray scanners can be divided into two groups, one using the transmitted X rays for image creation, the other one using the Compton back scatters X-rays. In the case of a backscatter scanner, a narrow, pencil -like X-ray beam is produced by a rotating chopper-wheel. The person/object is scanned in a raster scan pattern. The backscattered X-rays of all points are measured and recorded. The transmission X-ray scanner can use both fan-like and pencil like X-ray beams. The transmission detectors are installed behind the object and detect the absorption of the scanned person. Due to the very low dose values of the X-ray scanner systems in combination with a high dose rate in the direct beam for a short irradiation time, special dosemeters have to be used. In the literature and in manufacturers' specifications, the dose values given for some systems are in the range from 0.05 μSv to 5 μSv per scan with a typical irradiation time of a few milliseconds. Due to this pulse-like character of the radiation fields, the dose rate is several sieverts per hour. For the measurements of the investigated scanner, dosemeters were therefore needed having the capability to measure low doses at high dose rates and to measure in pulsed radiation fields. For the optimization of the measurements, the use of measuring devices with a direct indication is necessary. Ionisation chambers are the most suitable measuring instruments to fulfill these requirements. The difficulty for the measurements with an ionisation chamber is that the leakage charge integrated over time can reach values at the level of the expected radiation-produced charge. Additionally unpredictable variations of the leakage charge can be in the same order of magnitude as the expected signal. This challenge led to the development of a special electronics which allow the execution of time-resolved measurements. With this time resolution, it is

  7. Advisory group on ionising radiation

    International Nuclear Information System (INIS)

    Harrison, J.R.

    1996-01-01

    The Advisory Group on Ionising Radiation has a busy and challenging work programme. Its reports will be published in the Documents of the NRPB series. These may advise further research or could form the basis of formal NRPB advice. Covering the full spectrum of radiation issues at work, in public health and clinical medicine, and the environment, it should enhance the radiation advice available to NRPB. (author)

  8. An energy-independent dose rate meter for beta and gamma radiation

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Keller, M.

    1986-01-01

    An easy to handle dose rate meter has been developed at the Juelich Nuclear Research Centre with a small probe for the energy-independent determination of the dose rate in mixed radiation fields. The dose rate meter contains a small ionisation chamber with a volume of 15.5 cm 3 . The window of the ionisation chamber consists of an aluminised plastic foil of 7 mg.cm -2 . The dose rate meter is suitable for determining the dose rate in skin. With a supplementary depth dose cap, the dose rate can be determined in tissue at a depth of 1 cm. The dose rate meter is energy-independent within +-20% for 147 Pm, 204 Tl and 90 Sr/ 90 Y beta radiation and for gamma radiation in the energy range above 35 keV. (author)

  9. Occupational Exposure to Ionising Radiation in Greece (1994-1998)

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Drikos, G.; Dimitriou, P.

    2000-01-01

    This study was scheduled in order to analyse the individual annual dose information on classified workers in Greece, monitored and assessed by the central dosimetry service at the Greek Atomic Energy Commission for the years 1994-98. This service provides film badges to about 7500 workers all over the country on a monthly basis. Dose summaries were recorded and processed by the Dose Registry Information System, the database of which has been totally renewed since 1994. The statistical analysis provided refers to and deals with the mean annual dose, the collective dose, the distribution of the dose over the different specialities and the number of workers that have exceeded any of the established dose levels. Results concerning the annual dose summaries demonstrate a decrease in the collective and the mean individual dose to workers in the year 1995 and a slight but steady year-by-year increase thereafter during the period under consideration. This increasing tendency is discussed along with the increase in the ionising radiation applications, especially those in the medical sector, the change of the positioning of the film badge and the quality control measures provided by Greek law for radiation laboratories. (author)

  10. Ionising radiation. Part 2

    International Nuclear Information System (INIS)

    2000-01-01

    A brief tutorial on the health effects of ionising radiation is presented. The distinction between somatic and genetic health effects is explained. The two types of somatic health effects, i.e., acute and chronic effects, are discussed, as well as the concepts of ''deterministic'' and ''stochastic'' (also called ''probabilistic'') health effects. The possibility of cancer caused by DNA damage is discussed. The document ends with the definition of some key radiation terms

  11. Molecular mechanisms of plant response to ionising radiation. Exploration of the glucosinolate role in the anti-oxidative response

    International Nuclear Information System (INIS)

    Gicquel, M.

    2012-01-01

    Terrestrial organisms are exposed to low doses of ionising radiation from natural or anthropogenic sources. The major effects of the radiations are due to DNA deterioration and water radiolysis which generates an oxidative stress by free radical production. Plants constitute good models to study the effects of ionising radiations and the search of antioxidant molecules because of their important secondary metabolism. Thus this thesis, funded by the Brittany region, characterized the physiological and molecular response of the model plant Arabidopsis thaliana to low (10 Gy) and moderate (40 Gy) doses of ionising radiation, and was therefore interested in glucosinolates, characteristic compounds of the Brassicaceae family. The global proteomic and transcriptomic studies carried out on this model revealed (1) a common response for both doses dealing with the activation of DNA repair mechanisms, cell cycle regulation and protection of cellular structures; (2) an adjustment of the energetic metabolism and an activation of secondary compounds biosynthesis (i.e. glucosinolates and flavonoids) after the 10 Gy dose; (3) an induction of enzymatic control of ROS, the regulation of cellular components recycling and of programmed cell death after the 40 Gy dose. The potential anti-oxidative role of glucosinolates was then explored. The in vitro anti-oxidative power of some glucosinolates and their derivative products were demonstrated. Their modulating effects against irradiation-induced damages were then tested in vivo by simple experimental approaches. The importance of the glucosinolate level to give a positive or negative effect was demonstrated. (author)

  12. Fourth IRMF comparison of calibrations of portable gamma-ray dose- rate monitors 2001-2002 Ionising radiation

    CERN Document Server

    Lewis, V E

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a fourth comparison of calibrations of gamma-ray dose-rate monitors in which fifteen establishments in the UK participated. The exercise involved the circulation of three gamma-ray monitors for calibration in the fields produced using sup 1 sup 3 sup 7 Cs, sup 2 sup 4 sup 1 Am and sup 6 sup 0 Co. The instruments used were an Electra with MC 20 probe, a Mini-Instruments Mini-rad 1000 and a Siemens electronic personal dosemeter Mk 2 (EPD). The responses relative to 'true' dose equivalent rate were calculated by the individual participants and submitted to the for analysis along with details of the facilities and fields employed. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments. However, the participants' treatment of uncertainties needs improvement and demonstrates a need for guidance in this area.

  13. The case against protecting the environment from ionising radiation

    International Nuclear Information System (INIS)

    Smith, J.T.

    2004-01-01

    The objective of this paper is to present the (rarely heard) argument in favour of retention of the present system of radiation protection of the environment. There has been a recent trend in the radioecological and radiation protection community towards greater regulation of the effects of ionising radiations on biota. In particular, the often quoted International Commission on Radiation Protection (ICRP) hypothesis that: If humans are protected from the effects of ionising radiation, then flora and fauna are also adequately protected has been criticised as being too anthropocentric and not adequate for protection of the environment. In this paper I will challenge this view, arguing firstly that this statement is almost always quoted out of its proper context, and secondly that the ICRP hypothesis does adequately protect the environment from the effects of ionising radiations. In view of the relatively insignificant effect of regulated releases of ionising radiation on the environment, the economic cost of further regulation will not result in a significant environmental benefit. Whilst empirical research to test the ICRP hypothesis should continue, until there is clear evidence against it, this simple and cost-effective approach should be retained. This would benefit the environment by directing scarce resources to more urgent environmental problems. (author)

  14. The use of detectors based on ionisation recombination in radiation protection

    International Nuclear Information System (INIS)

    Sullivan, A.H.

    1984-01-01

    Intitial recombination of ionisation in a gas depends on the ionisation density and hence on the linear energy transfer along the tracks of charged particles. This effect can be used as a basis for instruments that respond to different types of ionising radiation approximately in the way required by the quality factor-linear energy transfer relation recommended by the ICRP for use in radiation protection. Empirical instruments based on ionisation recombination that have been used for radiation protection measurements are reviewed, and relations are derived from recombination theory that show that the response of such detectors can be readily predicted. The usefulness of recombination instruments in radiation protection is discussed and their advantages and limitations assessed. It is shown that their main application will be as reference instruments against which other detectors can be calibrated. As an extension to using recombination detectors as reference instruments, the feasibility of specifying radiation quality in terms of ionisation recombination is investigated. (author)

  15. Tumor induction by small doses ionising radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1981-01-01

    Tumour induction by low radiation doses is in general a non-linear process. However, two exceptions are well known: myeloid leukemia in Rf mice and mamma tumours in Sprague-Dawley rats. The hypothesis that radiation is highly oncogenic in combination with cell growth stimuli, as reaction to massive cell death after damage of nuclear DNA, is applied to man and the consequences are discussed. (Auth.)

  16. Disposal regulations and techniques applicable to devices using ionising radiation

    International Nuclear Information System (INIS)

    Vidal, J.P.

    1998-01-01

    L'office de Protection contre les rayonnement ionisants, being a government body under the supervision of Ministry of Health and Labour, among other different missions controls the compliance of radiation protection laws with the aim to guarantee the safe operation of equipment using ionising radiation sources. These regulations concerning competence of personnel, especially in the field of medicine or application of ionising radiation on humans, are restricted only to medical doctors (or dentists in their domain) by technical constraints dealing with design of equipment and its exploitation. At the same time regulations define conditions of permanent control in order to verify compliance of radiation protection laws

  17. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars.

    Science.gov (United States)

    Dartnell, Lewis R; Page, Kristian; Jorge-Villar, Susana E; Wright, Gary; Munshi, Tasnim; Scowen, Ian J; Ward, John M; Edwards, Howell G M

    2012-04-01

    Raman spectroscopy has proven to be a very effective approach for the detection of microorganisms colonising hostile environments on Earth. The ExoMars rover, due for launch in 2018, will carry a Raman laser spectrometer to analyse samples of the martian subsurface collected by the probe's 2-m drill in a search for similar biosignatures. The martian surface is unprotected from the flux of cosmic rays, an ionising radiation field that will degrade organic molecules and so diminish and distort the detectable Raman signature of potential martian microbial life. This study employs Raman spectroscopy to analyse samples of two model organisms, the cyanobacterium Synechocystis sp. PCC 6803 and the extremely radiation resistant polyextremophile Deinococcus radiodurans, that have been exposed to increasing doses of ionising radiation. The three most prominent peaks in the Raman spectra are from cellular carotenoids: deinoxanthin in D. radiodurans and β-carotene in Synechocystis. The degradative effect of ionising radiation is clearly seen, with significant diminishment of carotenoid spectral peak heights after 15 kGy and complete erasure of Raman biosignatures by 150 kGy of ionising radiation. The Raman signal of carotenoid in D. radiodurans diminishes more rapidly than that of Synechocystis, believed to be due to deinoxanthin acting as a superior scavenger of radiolytically produced reactive oxygen species, and so being destroyed more quickly than the less efficient antioxidant β-carotene. This study highlights the necessity for further experimental work on the manner and rate of degradation of Raman biosignatures by ionising radiation, as this is of prime importance for the successful detection of microbial life in the martian near subsurface.

  18. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Furlong, Hayley; Mothersill, Carmel; Lyng, Fiona M.; Howe, Orla

    2013-01-01

    Highlights: ► Molecular mechanisms involved in the production of a radiation induced bystander effect are not well known. ► We investigate gene expression changes in apoptotic genes in both direct and bystander responses. ► We demonstrate initiation of the apoptotic cascade in a bystander response. ► Lower doses reveal a specific but differential response related to apoptosis compared to higher doses. - Abstract: It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade post-exposure to low doses ultimately to remove damaged cells from a population, specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander reporter cells may initiate a similar apoptotic response if exposed to low doses of IR (0.05 Gy and 0.5 Gy) and compared to directly irradiated cells. Key apoptotic genes were selected according to their role in the apoptotic cascade; tumour suppressor gene TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated consolidated the role of apoptosis following direct IR exposure for all doses and time points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and effector caspase 3 and 9 were up-regulated. However, the gene expression profile for the bystander response was quite different and more complex in comparison to the direct response. The 0.05 Gy dose point had a more significant apoptosis gene expression profile compared to the 0.5 Gy dose point and genes were not always expressed within 1 h but were sometimes expressed 24 h later. The bystander data clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of the bystander samples demonstrated down-regulation in their gene expression levels at 0.05 Gy and 0.5 Gy at both time points therefore not

  19. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, Hayley, E-mail: hayley.furlong@dit.ie [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Mothersill, Carmel [Medical Physics and Applied Radiation Sciences, Nuclear Research Building, 1280 Hamilton, Ontario L8S 4K1 (Canada); Lyng, Fiona M. [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Howe, Orla [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland)

    2013-01-15

    Highlights: ► Molecular mechanisms involved in the production of a radiation induced bystander effect are not well known. ► We investigate gene expression changes in apoptotic genes in both direct and bystander responses. ► We demonstrate initiation of the apoptotic cascade in a bystander response. ► Lower doses reveal a specific but differential response related to apoptosis compared to higher doses. - Abstract: It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade post-exposure to low doses ultimately to remove damaged cells from a population, specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander reporter cells may initiate a similar apoptotic response if exposed to low doses of IR (0.05 Gy and 0.5 Gy) and compared to directly irradiated cells. Key apoptotic genes were selected according to their role in the apoptotic cascade; tumour suppressor gene TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated consolidated the role of apoptosis following direct IR exposure for all doses and time points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and effector caspase 3 and 9 were up-regulated. However, the gene expression profile for the bystander response was quite different and more complex in comparison to the direct response. The 0.05 Gy dose point had a more significant apoptosis gene expression profile compared to the 0.5 Gy dose point and genes were not always expressed within 1 h but were sometimes expressed 24 h later. The bystander data clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of the bystander samples demonstrated down-regulation in their gene expression levels at 0.05 Gy and 0.5 Gy at both time points therefore not

  20. Derivation of hazardous doses for amphibians acutely exposed to ionising radiation

    International Nuclear Information System (INIS)

    Fuma, Shoichi; Watanabe, Yoshito; Kawaguchi, Isao; Takata, Toshitaro; Kubota, Yoshihisa; Ban-nai, Tadaaki; Yoshida, Satoshi

    2012-01-01

    Derivation of effect benchmark values for each taxonomic group, which has been difficult due to lack of experimental effects data, is required for more adequate protection of the environment from ionising radiation. Estimation of effects doses from nuclear DNA mass and subsequent species sensitivity distribution (SSD) analysis were proposed as a method for such a derivation in acute irradiation situations for assumed nuclear accident scenarios. As a case study, 5% hazardous doses (HD 5 s), at which only 5% of species are acutely affected at 50% or higher lethality, were estimated on a global scale. After nuclear DNA mass data were obtained from a database, 50% lethal doses (LD 50 s) for 4.8 and 36% of the global Anura and Caudata species, respectively, were estimated by correlative equations between nuclear DNA mass and LD 50 s. Differences between estimated and experimental LD 50 s were within a factor of three. The HD 5 s obtained by the SSD analysis of these estimated LD 50 s data were 5.0 and 3.1 Gy for Anura and Caudata, respectively. This approach was also applied to the derivation of regional HD 5 s. The respective HD 5 s were 6.5 and 3.2 Gy for Anura and Caudata inhabiting Japan. This HD 5 value for the Japanese Anura was significantly higher than the global value, while Caudata had no significant difference in global and Japanese HD 5 s. These results suggest that this approach is also useful for derivation of regional benchmark values, some of which are likely different from the global values. - Highlights: ► A possible method was proposed for derivation of an effect benchmark value for each taxonomic group. ► 50% lethal doses were estimated from nuclear DNA mass in amphibian species. ► 5% hazardous doses (HD 5 s) were estimated by species sensitivity distribution. ► Respective HD 5 s were 5.0 and 3.1 Gy for Anura and Caudata globally. ► Respective HD 5 s were 6.5 and 3.2 Gy for Anura and Caudata inhabiting Japan.

  1. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Food preservation by ionising radiation

    International Nuclear Information System (INIS)

    Andrade, M. E.

    1996-01-01

    The process of food preservation by ionising radiation is an alternative, or a complement, to the traditional methods of heating, refrigerating, freezing or using chemical additives. The study and development of this technique has started on the beginning of the fifties but it is based on the radiation killing effect on micro-organisms discovered by the end of last century. Foodstuffs are treated in appropriate plants: isotopic facilities (gamma radiation) and accelerated electron beams produced by machines called accelerators. The FAO and WHO in close cooperation with the IAEA have played an important role on the development of the process and on the increment of the industrial application of food irradiation. Over the world there are about 37 countries trading foods treated by ionising radiation. However, governments have been slow to clear the utilization of this process. The main reason of this attitude is in general due to the fact that the advantages of the technique are not clearly understood. Therefore, the dissemination of the information could on one hand clarify who has to take decisions and on the other hand support the choice of those foods by the consumers. This is the unique way to dynamize the application of this process

  3. The report of the French Academy of Science: 'Problems associated with the effects of low doses of ionising radiation'

    International Nuclear Information System (INIS)

    Tubiana, M.

    1998-01-01

    In 1995 the French Academy of Science published a report on 'Problems associated with low doses of ionising radiation'. This report aroused interest among French-speaking scientists and a translation in English was published a year later. The report pointed out that an important issue in radioprotection was not whether to accept or reject the linear no-threshold model but rather to test its validity. The aim of this review is to analyse the report and its recommendations, and to briefly indicate the progress which has been made and the questions which remain open. Three areas of the report are covered in this review: DNA repair, carcinogenesis and epidemiological data. (author)

  4. Extra holiday because of ionising radiation not necessary

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The 'regulations for special measures to protect employees working with X-rays and radium radiation' of 21st November 1947, which included a statutory six-week holiday period annually, has now been superceded by 'regulations on special protective measures for work with ionising radiation', issued by the Directorate for Work Inspection on 31st March 1978, effective from 1st May 1978. In addition to removing the requirement for six weeks annual holiday for radiation personnel, routine medical surveillance is only required every third year instead of annually. A number of other changes are mentioned. The basis for these changes is that continuous personnel dosimetry and better knowledge of the effects of ionising radiation allows any necessary measures to be taken on the basis of these. (JIW)

  5. Documentation of Occupational Accidents and Diseases caused by Ionising Radiation

    International Nuclear Information System (INIS)

    Fehringer, F.; Seitz, G.

    2004-01-01

    . One of the major goals of the institutions for statutory accident insurance is the prevention of occupational diseases. To perform a successful prevention work it is necessary not only to count the number of accidents or diseases in the various working fields but to look for details of the conditions of work and the human response to those conditions. The institutions for statutory accident insurance have engaged the institution for statutory accident insurance in the precision engineering and electrical industry to carry out documentation, in form of a data bank, for all cases of occupational diseases which could be caused by ionising radiation. Those are not only the cases which are accepted as occupational disease but also the cases where a suspicion of an occupational disease is announced but finally rejected. At the moment about 1700 cases are included in the data bank. For preserving the anonymity information to name and residence are deleted. Various data to one single case are linked by a case-specific key-number. Information to occupation and field of working, to details of a possible exposure to ionising radiation like kind of radiation, time and duration of radiation, exposure of the whole body or of parts of the body and whole body or organ doses are collected. Additional information refers to medical aspects like diagnosis and date of diagnosis. (Author)

  6. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  7. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  8. IRID: specifications for the Ionising Radiations Incident Database

    International Nuclear Information System (INIS)

    Thomas, G.O.; Croft, J.R.; Williams, M.K.; McHugh, J.O.

    1996-01-01

    Technologies that make use of ionising radiations are widespread. They provide many benefits but, as with other technologies, the use of ionising radiations carries with it the potential for incidents and accidents. Their severity can vary from the trivial to the fatal and may involve substantial economic penalties. In order to minimise the number of incidents and their consequences it is important that there is a mechanism to learn the lessons from those that do occur. To help pursue this objective the National Radiological Protection Board, the Health and Safety Executive and the Environment Agency have established a national Ionising Radiations Incident Database (IRID) to cover radiation incidents in industry, medicine, research and teaching. This publication details the specifications for IRID and its methods of operation. All information in the database will be unattributable and names of persons or organisations will not be included. It is a personal computer based system with 24 fields to categorise an incident, including a text field that will provide a description of the incident giving the causes, consequences, follow-up actions and lessons to be learned. These descriptions will be used in subsequent publications to provide feedback to the users. (UK)

  9. Making ionising radiation a real experience for high school science students

    International Nuclear Information System (INIS)

    Whitlock, J.; Lang, P.; De La Matter, D.; Hinman, P.; White, B.

    2009-01-01

    The Canadian public has little understanding of ionising radiation due in part to its treatment in popular media. In principle, students learn about ionising radiation in their school science classes. Developments in science curricula are providing more education opportunities for this subject. The Canadian Nuclear Society's program for introducing real, personal experience with ionising radiation in the classroom is starting to make a difference. The demand is expected to exceed the resources of the CNS and the program is being developed to facilitate external support. This paper summarizes the need, the history of this program development, and the path forward. (author)

  10. Trends in doses to some UK radiation workers

    International Nuclear Information System (INIS)

    Best, R.J.; Kendall, G.M.; Pook, E.A.; Saunders, P.J.

    1990-01-01

    The NRPB runs a Personal Monitoring Service which issues dosemeters and keeps radiation dose records for over 10 000 workers. This database is a valuable source of information on occupational exposure to radiation though it is likely that in future the Central Index of Dose Information (CIDI) will provide more comprehensive statistics, albeit restricted to radiation workers in the sense of Ionising Radiation Regulations. This note describes doses incurred to the end of 1987 with some preliminary figures for 1988. It does not cover the same ground as earlier reports but gives more details of the structure of the monitored population by age and sex and examines evidence that mean radiation doses are decreasing with time. (author)

  11. Ionising radiation safety training in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1998-01-01

    Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation. However, most are designated as radiation protection officers as a secondary duty. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A Training Course, responding to these requirements, has been developed to emphasize, basic radiation theory and protection, operation of radiation monitors available in the ADO, an understanding of the Ionising Radiation Safety Manual, day-to-day radiation safety in units and establishments, and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved successful, both for the students and the ADO generally. To seek national accreditation of the course through the Australian National Training Authority, as a first step, competency standards have been proposed. (authors)

  12. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Crosbie, W.A.; Gittus, J.H.

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK)

  13. The ENEA calibration service for ionising radiations

    International Nuclear Information System (INIS)

    Monteventi, F.; Sermenghi, I.

    1999-01-01

    The report describes all the facilities available at the the service of the ENEA Calibration Service for Ionising Radiations at Bologna (Italy). It gives a detailed description of all equipments qualified for photon fields metrology including the secondary standards and the calibration procedures performed for radiation monitoring devices and dosemeters [it

  14. Proceedings. Protection of the natural environment. International symposium on ionising radiation

    International Nuclear Information System (INIS)

    Amiro, B.; Johansson, Gunnar; Larsson, Carl-Magnus; Luening, M.

    1996-01-01

    The symposium was organised jointly by the Swedish Radiation Protection Institute and the Atomic Energy Control Board of Canada. The programme was organised around six major topics: Biological effects of ionising radiation; Ecological effects of ionising radiation; Behaviour and transport of radionuclides in the natural environment; Criteria for environmental protection; Assessment methodology; and Social and economic aspects. All 86 contributions (excluding the opening addresses) have been separately indexed

  15. Diseases induced by ionising radiation

    International Nuclear Information System (INIS)

    1984-11-01

    An interim report is presented by the Industrial Injuries Advisory Council in accordance with Section 141 of the Social Security Act 1975 on the question whether the terms of prescription for occupational diseases induced by ionising radiation should be amended to cover a wider range of conditions. A lack of persuasive statistical data has prevented reliable estimates of health risks of radiation workers in the UK to be made. However the report gives details of the progress made so far and the difficulties encountered. (U.K.)

  16. The philosophy and assumptions underlying exposure limits for ionising radiation, inorganic lead, asbestos and noise

    International Nuclear Information System (INIS)

    Akber, R.

    1996-01-01

    Full text: A review of the literature relating to exposure to, and exposure limits for, ionising radiation, inorganic lead, asbestos and noise was undertaken. The four hazards were chosen because they were insidious and ubiquitous, were potential hazards in both occupational and environmental settings and had early and late effects depending on dose and dose rate. For all four hazards, the effect of the hazard was enhanced by other exposures such as smoking or organic solvents. In the cases of inorganic lead and noise, there were documented health effects which affected a significant percentage of the exposed populations at or below the [effective] exposure limits. This was not the case for ionising radiation and asbestos. None of the exposure limits considered exposure to multiple mutagens/carcinogens in the calculation of risk. Ionising radiation was the only one of the hazards to have a model of all likely exposures, occupational, environmental and medical, as the basis for the exposure limits. The other three considered occupational exposure in isolation from environmental exposure. Inorganic lead and noise had economic considerations underlying the exposure limits and the exposure limits for asbestos were based on the current limit of detection. All four hazards had many variables associated with exposure, including idiosyncratic factors, that made modelling the risk very complex. The scientific idea of a time weighted average based on an eight hour day, and forty hour week on which the exposure limits for lead, asbestos and noise were based was underpinned by neither empirical evidence or scientific hypothesis. The methodology of the ACGIH in the setting of limits later brought into law, may have been unduly influenced by the industries most closely affected by those limits. Measuring exposure over part of an eight hour day and extrapolating to model exposure over the longer term is not the most effective way to model exposure. The statistical techniques used

  17. Method for determining the irradiation dose deposited in a scintillator by ionising radiation and associated device - WO 2013060745 A1

    International Nuclear Information System (INIS)

    2013-01-01

    The invention relates to a method for determining an irradiation dose deposited in a scintillator (5) by ionising radiation, said method comprising the steps of: irradiating the scintillator (5) for a pre-determined time; detecting an instant at which the scintillator (5) is excited, using a first photodetector (11); subsequently, detecting an instant at which a scintillation photon is received, using a second photodetector (14) operating in single photon counting mode; identifying each sequence formed by the detection of an excitation instant by the first photodetector (11) and the detection of a reception instant by the second photodetector (14) at a coincidence event; counting the number of coincidence events; and obtaining the irradiation dose deposited during the irradiation time as a function of the number of coincidence events counted and a pre-determined proportionality factor. (authors)

  18. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    Maclot, Sylvain

    2014-01-01

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author) [fr

  19. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Aart, Jasper van der; Hallett, William A.; Rabiner, Eugenii A.; Passchier, Jan; Comley, Robert A.

    2012-01-01

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  20. An enhanced ionising radiation monitoring and detecting technique in radiotherapy units of hospitals using wireless sensor networks

    International Nuclear Information System (INIS)

    Ali, Peter

    2017-01-01

    In this paper, a solution of ionising radiation monitoring based on the concept of Wireless Sensor Network (WSN), is presented. Radiation dose rate measured by the sensor node is sent to the monitoring station through ZigBee wireless network operated on 2.4 GHz unlicensed Industrial Scientific Medical (ISM) band. The system is calibrated for use for ionizing radiation dose rate range of between amount of ionising radiation observed in radiotherapy unit of a hospital and 1.02 mSv/h. Power consumption of the sensor node is kept low by operating the node ZigBee radio with low duty cycle: i.e. by keeping the radio awake only during data transmission/reception. Two ATmega8 microcontrollers, one each for sensor node and the monitoring station, are programmed to perform interfacing, data processing, and control functions. The system range of coverage is 124m for outdoor (line of site) deployment and 56.8m for indoor application where 5 brick walls separated the sensor node and the monitoring station. Range of coverage of the system is extendable via the use of ZigBee router (s)

  1. Simulation and measurements of the response of an air ionisation chamber exposed to a mixed high-energy radiation field

    International Nuclear Information System (INIS)

    Vincke, H.; Forkel-Wirth, D.; Perrin, D.; Theis, C.

    2005-01-01

    CERN's radiation protection group operates a network of simple and robust ionisation chambers that are installed inside CERN's accelerator tunnels. These ionisation chambers are used for the remote reading of ambient dose rate equivalents inside the machines during beam-off periods. This Radiation Protection Monitor for dose rates due to Induced Radioactivity ('PMI', trade name: PTW, Type 34031) is a non-confined air ionisation plastic chamber which is operated under atmospheric pressure. Besides its current field of operation it is planned to extend the use of this detector in the Large Hadron Collider to measure radiation under beam operation conditions to obtain an indication of the machine performance. Until now, studies of the PMI detector have been limited to the response to photons. In order to evaluate its response to other radiation components, this chamber type was tested at CERF, the high-energy reference field facility at CERN. Six PMI detectors were installed around a copper target being irradiated by a mixed hadron beam with a momentum of 120 GeV c -1 . Each of the chosen detector positions was defined by a different radiation field, varying in type and energy of the incident particles. For all positions, detailed measurements and FLUKA simulations of the detector response were performed. This paper presents the promising comparison between the measurements and simulations and analyses the influence of the different particle types on the resulting detector response. (authors)

  2. Effect of low dose radiation on somatic intrachromosomal recombination in vivo and in vitro

    International Nuclear Information System (INIS)

    Hooker, A.M.; Cormack, J.; Morley, A.A.; Sykes, P.J.; Bhat, M.

    2003-01-01

    Full text: High doses of ionising radiation are mutagenic in a wide range of mutation assays. The majority of radiation exposure studies in in vivo mouse mutation assays have been performed at high doses, eg greater than 1 Gy. However, these doses are not relevant to the low doses of ionising radiation that the majority of the population might likely come into contact with. Radiation protection levels tend to be based on a simple linear no-threshold model which suggests that any radiation above zero is potentially harmful. The pKZ1 recombination mutagenesis mouse model has proven to be a sensitive assay for the detection of mutations caused by low doses of chemical agents. In pKZ1 mice, somatic intrachromosomal recombination (SICR) inversion events can be detected in cells using histochemistry for the E. coli LacZ transgene. We exposed pKZ1 mice to a single radiation dose ranging from 0.001 to 2 Gy. A significant increase in SICR was observed in spleen at the two highest doses of 0.1 and 2 Gy and a significant reduction in SICR below the endogenous frequency was observed at the two lowest doses of 0.01 and 0.001 Gy. After exposing a pKZ1 cell line to the same dose range, a similar J curve response was observed with significant increases in SICR observed at the 3 highest doses and a significant decrease below the endogenous frequency at the lowest dose (0.001 Gy). The next experiments will be to determine the dose where the SICR frequency returns to the endogenous level. The important question posed by these results is 'Is a reduction below the endogenous SICR level caused by low doses of ionising radiation anti-mutagenic?' Studies now need to be performed to investigate the effect of low doses of radiation on other mutation end-points, and the mechanism for the reduction in SICR

  3. Implications for human and environmental health of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Mothersill, Carmel; Seymour, Colin

    2014-01-01

    The last 20 years have seen a major paradigm shift in radiation biology. Several discoveries challenge the DNA centric view which holds that DNA damage is the critical effect of radiation irrespective of dose. This theory leads to the assumption that dose and effect are simply linked – the more energy deposition, the more DNA damage and the greater the biological effect. This is embodied in radiation protection (RP) regulations as the linear-non-threshold (LNT) model. However the science underlying the LNT model is being challenged particularly in relation to the environment because it is now clear that at low doses of concern in RP, cells, tissues and organisms respond to radiation by inducing responses which are not readily predictable by dose. These include adaptive responses, bystander effects, genomic instability and low dose hypersensitivity, and are commonly described as stress responses, while recognizing that “stress” can be good as well as bad. The phenomena contribute to observed radiation responses and appear to be influenced by genetic, epigenetic and environmental factors, meaning that dose and response are not simply related. The question is whether our discovery of these phenomena means that we need to re-evaluate RP approaches. The so-called “non-targeted” mechanisms mean that low dose radiobiology is very complex and supra linear or sub-linear (even hormetic) responses are possible but their occurrence is unpredictable for any given system level. Issues which may need consideration are synergistic or antagonistic effects of other pollutants. RP, at present, only looks at radiation dose but the new (NTE) radiobiology means that chemical or physical agents, which interfere with tissue responses to low doses of radiation, could critically modulate the predicted risk. Similarly, the “health” of the organism could determine the effect of a given low dose by enabling or disabling a critical response. These issues will be discussed

  4. The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins.

    Science.gov (United States)

    Filchenkov, Gennady N; Popoff, Eugene H; Naumov, Alexander D

    2014-01-01

    The paper deals with effects of the ionising radiation (γ-IR, 0.5 Gy) upon serum testosterone (T), characteristics of testosterone-binding globulin (TeBG) and androgen receptor (AR) in parallel with observation of androgen (A) responsive enzyme activity - hexokinase (HK). The interdependence or relationships of T-levels with parameters of the proteins that provide androgenic regulation are consequently analyzed in post-IR dynamics. The IR-stress adjustment data reveal expediency of TeBG- and AR-cooperativity measurements for more precise assessments of endocrine A-control at appropriate emergencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Genotoxicity in earthworm after combined treatment of ionising radiation and mercury

    International Nuclear Information System (INIS)

    Ryu, Tae Ho; Kim, Jin Kyu; An, Kwang-Guk

    2014-01-01

    This study was performed to investigate the acute genotoxic effects of mercury and radiation on earthworms (Eisenia fetida). The levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida treated with mercuric chloride (HgCl 2 ) and ionising radiation (gamma rays) were analysed by means of the comet assay. For detection of DNA damage and repair, E. fetida was exposed to HgCl 2 (0-160 mg kg -1 ) and irradiated with gamma rays (0-50 Gy) in vivo. The increase in DNA damage depended on the concentration of mercury or dose of radiation. The results showed that the more the oxidative stress induced by mercury and radiation the longer the repair time that was required. When a combination of HgCl 2 and gamma rays was applied, the cell damage was much higher than those treated with HgCl 2 or radiation alone, which indicated that the genotoxic effects were increased after the combined treatment of mercury and radiation. (authors)

  6. Recent trends in utilising ionising radiations for nondestructive evaluation of materials (Preprint No. SP-3)

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkatraman, B.

    1988-02-01

    The various NDT techniques based on the use of ionising radiations can be broadly classified into radiography, radiation gaging techniques and analytical techniques. This paper highlights the state of art of these techniques along with their applications. While an effort has been made to cover the major techniques based on ionising radiations, many techniques utilising ionising radiations as xeroradiography, laminography, ionography etc, have not been dealt with due to their restricted applications. (author). 23 refs., 4 figs

  7. Health protection of persons occupationally exposed to ionising radiation in Croatia

    International Nuclear Information System (INIS)

    Zavalic, M.

    2005-01-01

    The aim of this study was to investigate the health condition of workers occupationally exposed to ionising radiation. The results for 1406 workers exposed to ionising radiations, who were regularly examined in 2004, were analysed using Statistica 5.0. The analysis included workers' case histories, frequency of illnesses and causes of temporary or permanent work disability. Of 1406 workers, 16 (1.13%) were found permanently disabled; in 11 the cause of disability was lens opacity, in 2 persistent trombocitophenia, and in 2 malignant tumour. Twenty-four workers were temporarily disabled, of whom 5 due to pregnancy. Thrombocytopenia was found in 12 men and only one woman. Anaemia was found in 4 women; dicentric chromosomes were the cause of temporary disability in one person, and tuberculosis in one person. Medical examinations of Croatian workers confirm low occupational exposure to ionising radiation. With this type of radiation, the established lens impairments could not be characterised as occupational. The two malignant tumours however were recognised as occupational diseases.(author)

  8. Ionising radiation risk disclosure: When should radiographers assume a duty to inform?

    Science.gov (United States)

    Younger, C W E; Douglas, C; Warren-Forward, H

    2018-05-01

    Autonomy is a fundamental patient right for ethical practice, and informed consent is the mechanism by which health care professionals ensure this right has been respected. The ethical notion of informed consent has evolved alongside legal developments. Under Australian law, a provider who fails to disclose risk may be found to be in breach of a duty of disclosure, potentially facing legal consequences if the patient experiences harm that is attributable to an undisclosed risk. These consequences may include the common law tort of negligence. Ionising radiation, in the form of a medical imaging examination, has the potential to cause harm. However, stochastic effects cannot be attributable to a specific ionising radiation event. What then is the role of the Australian medical imaging service provider in disclosing ionising radiation risk? The ethical and legal principles of informed consent, and the duty of information provision to the patient are investigated. These general principles are then applied to the specific and unusual case of ionising radiation, and what responsibilities apply to the medical imaging provider. Finally, the legal, professional and ethical duties of the radiographer to disclose information to their patients are investigated. Australian law is unclear as to whether a radiographer has a common law responsibility to disclose radiation risk. There is ambiguity as to whether stochastic ionising radiation risk could be considered a legal disclosure responsibility. While it is unlikely that not disclosing risk will have medicolegal consequences, doing so represents sound ethical practice. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  9. Influence of SNP Polymorphisms in DNA Repair Genes on the Level of Persistent Damage in Human Lymphocytes After Exposure to 2 Gy of Ionising Radiation

    International Nuclear Information System (INIS)

    Milic, M.; Rozgaj, R.; Kasuba, V.; Kubelka, D.; Angelini, S.; Hrelia, P.

    2011-01-01

    Variation in cell response to ionising radiation could be result of changes in gene expression and/or polymorphisms of DNA repair genes. The aim of the study was to estimate the DNA damage level in human lymphocytes after exposure to 2 Gy of ionising radiation. Medical workers occupationally exposed to low doses of ionising radiation (N = 20) and matched controls (N 20) were genotyped for polymorphic hOGG1, XRCC1, APE1, XPD10, XPD23, XRCC3, PARP1 and MGMT genes. Micronucleus (MN) test was used for the estimation of DNA damage before and after radiation. Incidence of MN in irradiated samples positively correlated with age and negatively with polymorphic variants of XPD23. Significant difference was observed between irradiated homozygotes (HO) and heterozygotes (HE). HO and HE APE1 differed in MN before exposure. HO and polymorphic variants of XPD10 differed in MN after exposure. Gender showed different MN in the exposed group after exposure. Age correlated positively with MN after exposure, working probation and received dose. Multiple regression analysis revealed connection between polymorphic variants of APE1 and XRCC3 with MN before exposure. These results confirm the value of micronucleus assay in DNA damage estimation and suggest possible use of polymorphic genes in monitoring of individuals professionaly exposed to ionising radiation. (author)

  10. Effect of penetrating ionising radiation on the mechanical properties of pericardium

    Energy Technology Data Exchange (ETDEWEB)

    Daar, Eman, E-mail: e.daar@surrey.ac.u [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Woods, E. [Royal Free Hampstead NHS Trust, Pond Street, Hampstead, London NW3 2QG (United Kingdom); Keddie, J.L. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Nisbet, A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Royal Surrey County Hospital, Guildford (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-07-21

    The pericardium is an anistropic composite material made up of collagen and elastin fibres embedded in an amorphous matrix mainly composed of proteoglycan and hyaluronan. The collagen fibres are arranged in layers, with different directions of alignment in each layer, giving rise to interesting mechanical properties of pericardium, including the ability to undergo large deformation during performance of regular physiological functions. The present study aims to investigate the effect of penetrating photon ionising radiation on bovine pericardium tissue, being part of a study of the effect of cardiac doses received in breast radiotherapy and the possibility that this can give rise to cardiovascular complications. Irradiation doses in the range 5-80 Gy were used. To characterise the various mechanical properties [elastic modulus, stress relaxation, ultimate tensile strength (UTS) and fracture] a uniaxial tensile test method was applied. The preliminary results reflect the wide inter-sample variations that are expected in dealing with tissues, with only a weak indication of increase in the UTS of the pericardium tissue with increase in radiation dose. Such an effect has also been observed by others, with reduction in UTS at doses of 80 Gy.

  11. Modelling the propagation of effects of chronic exposure to ionising radiation from individuals to populations

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, F. [Laboratory of Environmental Modelling, DEI/SECRE/LME, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 159, BP3, 13115 St-Paul-lez-Durance Cedex (France); Laboratory of Radioecology and Ecotoxicology, DEI/SECRE/LRE, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France)], E-mail: frederic.alonzo@irsn.fr; Hertel-Aas, T. [Department of Plant and Environmental Sciences, P.O. Box 5003, Norwegian University of Life Sciences, 1432 Aas (Norway); Gilek, M. [School of Life Sciences, Soedertoern University College, 14189 Huddinge (Sweden); Gilbin, R. [Laboratory of Radioecology and Ecotoxicology, DEI/SECRE/LRE, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Oughton, D.H. [Department of Plant and Environmental Sciences, P.O. Box 5003, Norwegian University of Life Sciences, 1432 Aas (Norway); Garnier-Laplace, J. [Laboratory of Radioecology and Ecotoxicology, DEI/SECRE/LRE, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France)

    2008-09-15

    This study evaluated the potential effect of ionising radiation on population growth using simple population models and parameter values derived from chronic exposure experiments in two invertebrate species with contrasting life-history strategies. In the earthworm Eisenia fetida, models predicted increasing delay in population growth with increasing gamma dose rate (up to 0.6 generation times at 11 mGy h{sup -1}). Population extinction was predicted at 43 mGy h{sup -1}. In the microcrustacean Daphnia magna, models predicted increasing delay in population growth with increasing alpha dose rate (up to 0.8 generation times at 15.0 mGy h{sup -1}), only after two successive generations were exposed. The study examined population effects of changes in different individual endpoints (including survival, number of offspring produced and time to first reproduction). Models showed that the two species did not respond equally to equivalent levels of change, the fast growing daphnids being more susceptible to reduction in fecundity or delay in reproduction than the slow growing earthworms. This suggested that susceptibility of a population to ionising radiation cannot be considered independent of the species' life history.

  12. Review of retrospective dosimetry techniques for external ionising radiation exposures

    International Nuclear Information System (INIS)

    Ainsbury, E. A.; Bakhanova, E.; Barquinero, J. F.; Brai, M.; Chumak, V.; Correcher, V.; Darroudi, F.; Fattibene, P.; Gruel, G.; Guclu, I.; Horn, S.; Jaworska, A.; Kulka, U.; Lindholm, C.; Lloyd, D.; Longo, A.; Marrale, M.; Monteiro Gil, O.; Oestreicher, U.; Pajic, J.; Rakic, B.; Romm, H.; Trompier, F.; Veronese, I.; Voisin, P.; Vral, A.; Whitehouse, C. A.; Wieser, A.; Woda, C.; Wojcik, A.; Rothkamm, K.

    2011-01-01

    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. (authors)

  13. Radiobiological research at its best. Does a low radiation dose involve risks?

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.; Derradji, H.

    2011-01-01

    Radiotherapy, radiation protection, nuclear medicine, etc.: there is a growing interest in radio(bio)logy in the health care sector. The number of medical treatments with ionising radiation per year will increase even more. It is therefore increasingly important to closely monitor the possible harmful effects of low radiation doses.

  14. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  15. Additives in UV and ionising radiation grafting and curing processes

    International Nuclear Information System (INIS)

    Garnett, J.L.; Ng, L.T.; Viengkhou, V.

    1998-01-01

    Full text: Curing of polymers induced by both UV and ionising radiation are now established technologies. Currently both systems are predominantly based on acrylate chemistry. UV processes use photoinitiators to achieve fast polymerisation. In the proposed paper the significance of the occurrence of concurrent grafting with cure will be examined. particularly with respect to the recycling of finished product. Basic studies on grafting initiated by UV and ionising radiation will be discussed. Polar methyl methacrylate (MMA) and non-polar styrene will be used as representative monomers with cellulose and propylene typifying the backbone polymers. The additives chosen for examination in this study are predominantly components used in radiation curing formulations since grafting and curing are known to be mechanically related. The additives used were mineral acid, photoinitiators, vinyl ethers, oligomers, polyfunctional monomers including multifunctional acrylates (MFAs) and methacrylates (MFMAs). For the first time the use of charge transfer complexes in the Mulliken sense as additives in radiation grafting will be discussed. The CT complexes themselves, being monomers, have also been grafted to the above polymers. Recent developments with excimer laser sources for initiating these processes will be discussed, especially the use of non-acrylate chemistry. Excimer laser sources are shown to complement conventional UV and ionising radiation and are photoinitiator free. Mechanisms for the above grafting and curing processes will be outlined

  16. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Geisel, Dominik; Zimmermann, Elke; Rief, Matthias; Greupner, Johannes; Hamm, Bernd [Charite Medical School, Department of Radiology, Berlin (Germany); Laule, Michael; Knebel, Fabian [Charite Medical School, Department of Cardiology, Berlin (Germany); Dewey, Marc [Charite Medical School, Department of Radiology, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2012-08-15

    To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. On average there were 0.12 {+-} 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 {+-} 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. (orig.)

  17. How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?

    Directory of Open Access Journals (Sweden)

    X. Chen

    2016-11-01

    Full Text Available Most of the ion production in the atmosphere is attributed to ionising radiation. In the lower atmosphere, ionising radiation consists mainly of the decay emissions of radon and its progeny, gamma radiation of the terrestrial origin as well as photons and elementary particles of cosmic radiation. These types of radiation produce ion pairs via the ionisation of nitrogen and oxygen as well as trace species in the atmosphere, the rate of which is defined as the ionising capacity. Larger air ions are produced out of the initial charge carriers by processes such as clustering or attachment to pre-existing aerosol particles. This study aimed (1 to identify the key factors responsible for the variability in ionising radiation and in the observed air ion concentrations, (2 to reveal the linkage between them and (3 to provide an in-depth analysis into the effects of ionising radiation on air ion formation, based on measurement data collected during 2003–2006 from a boreal forest site in southern Finland. In general, gamma radiation dominated the ion production in the lower atmosphere. Variations in the ionising capacity came from mixing layer dynamics, soil type and moisture content, meteorological conditions, long-distance transportation, snow cover attenuation and precipitation. Slightly similar diurnal patterns to variations in the ionising capacity were observed in air ion concentrations of the cluster size (0.8–1.7 nm in mobility diameters. However, features observed in the 0.8–1 nm ion concentration were in good connection to variations of the ionising capacity. Further, by carefully constraining perturbing variables, a strong dependency of the cluster ion concentration on the ionising capacity was identified, proving the functionality of ionising radiation in air ion production in the lower atmosphere. This relationship, however, was only clearly observed on new particle formation (NPF days, possibly indicating that charges after

  18. Ionising radiation safety training in the Australian defence organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1996-01-01

    Full text: Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation, while others may be designated as radiation protection officers in remote units with few duties to perform in this role. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A training course, responding to these requirements, has been developed to emphasise: basic radiation theory and protection; operation of radiation monitors available in the ADO; an understanding of the Safety Manual; day-to-day radiation safety in units and establishments; and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved sufficiently successful, both for the students and the ADO generally, to seek national accreditation through the Australian National Training Authority and, as a first step, competency standards have been identified

  19. Living with radiation

    International Nuclear Information System (INIS)

    Tymen, G.

    1999-01-01

    This editorial article discusses the various forms of radiation that we live with. In particular, the general public's lack of knowledge on the subject is mentioned and the concentration of the media on radiation accidents and emissions is looked at critically. The various forms of radiation - ionising and non-ionising - are briefly discussed. Natural ionising radiation sources and in particular radon are described and the increasing proportion of doses attributed to cosmic radiation met in high-flying aircraft and radiation doses resulting from medical examination and treatment are discussed. Non-ionising radiation such as electromagnetic fields generated by power lines, mobile telephones and kitchen equipment and their implications on health are also looked at

  20. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  1. Biological Effects of Ionising Radiation and Countermeasures (Les effets biologiques des rayonnements ionisants et leurs contre-mesures)

    Science.gov (United States)

    2018-01-01

    radiation physicists. As an example, a special issue of Health Physics [3] presents a body of experimental work characterizing the outdoor...Terrorist Attack involving Ionising Radiation. Campus Vesta, Belgium September 25-29, 2016. [3] Health Physics (Special Issue) 2016:110;399- 547...of Radiobiology & Radiation Protection 128 Szaserów Street 04-141 Warsaw POLAND Email: mjaniak@wihe.waw.pl Mr. Tjerk KUIPERS Health Physics

  2. Updated estimates of the proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionising radiation

    International Nuclear Information System (INIS)

    Little, Mark P; Wakeford, Richard; Kendall, Gerald M

    2009-01-01

    The aetiology of childhood leukaemia remains generally unknown, although exposure to moderate and high levels of ionising radiation, such as was experienced during the atomic bombings of Japan or from radiotherapy, is an established cause. Risk models based primarily upon studies of the Japanese A-bomb survivors imply that low-level exposure to ionising radiation, including to ubiquitous natural background radiation, also raises the risk of childhood leukaemia. In a recent paper (Wakeford et al 2009 Leukaemia 23 770-6) we estimated the proportion of childhood leukaemia incidence in Great Britain attributable to natural background radiation to be about 20%. In this paper we employ the two sets of published leukaemia risk models used previously, but use recently published revised estimates of natural background radiation doses received by the red bone marrow of British children to update the previous results. Using the newer dosimetry we calculate that the best estimate of the proportion of cases of childhood leukaemia in Great Britain predicted to be attributable to this source of exposure is 15-20%, although the uncertainty associated with certain stages in the calculation (e.g. the nature of the transfer of risk between populations and the pertinent dose received from naturally occurring alpha-particle-emitting radionuclides) is significant. The slightly lower attributable proportions compared with those previously derived by Wakeford et al (Leukaemia 2009 23 770-6) are largely due to the lower doses (and in particular lower high LET doses) for the first year of life.

  3. The biological effects of ionising radiation on Crustaceans: A review

    International Nuclear Information System (INIS)

    Fuller, Neil; Lerebours, Adélaïde; Smith, Jim T.; Ford, Alex T.

    2015-01-01

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  4. The biological effects of ionising radiation on Crustaceans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Neil; Lerebours, Adélaïde [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom); Smith, Jim T. [School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL (United Kingdom); Ford, Alex T., E-mail: alex.ford@port.ac.uk [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom)

    2015-10-15

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  5. A review of multiple stressor studies that include ionising radiation

    International Nuclear Information System (INIS)

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Real, Almudena; Bradshaw, Clare; Stark, Karolina

    2012-01-01

    Studies were reviewed that investigated the combined effects of ionising radiation and other stressors on non-human biota. The aim was to determine the state of research in this area of science, and determine if a review of the literature might permit a gross generalization as to whether the combined effects of multi-stressors and radiation are fundamentally additive, synergistic or antagonistic. A multiple stressor database was established for different organism groups. Information was collected on species, stressors applied and effects evaluated. Studies were mostly laboratory based and investigated two-component mixtures. Interactions declared positive occurred in 58% of the studies, while 26% found negative interactions. Interactions were dependent on dose/concentration, on organism's life stage and exposure time and differed among endpoints. Except for one study, none of the studies predicted combined effects following Concentration Addition or Independent Action, and hence, no justified conclusions can be made about synergism or antagonism. - This review on multiple stressor studies involving radiation, highlights that most experimental designs used did not allow to deduce the nature of the interactive effects.

  6. Estimates of Health Detriments and Tissue Weighting Factors for Hong Kong Populations from Low Dose, Low Dose Rate and Low LET Ionising Radiation Exposure

    International Nuclear Information System (INIS)

    Lee, S.K.

    1998-01-01

    The total health detriments and the tissue weighting factors for the Hong Kong populations from low dose, low dose rate and low LET ionising radiation exposure are obtained according to the methodology recommended in ICRP Publication 60. The probabilities of fatal cancers for the general (ages 0-90) and working (ages 20-64) populations due to lifetime exposure at low dose and low dose rate are 4.9 x 10 -2 Sv -1 and 3.6 x 10 -2 Sv -1 respectively, comparing with the ICRP 60 estimates of 5.0 x 10 -2 Sv -1 and 4.0 x 10 -2 Sv -1 . The corresponding total health detriments for the general and working populations are 6.9 x 10 -2 Sv -1 and 4.9 x 10 -2 Sv -1 respectively comparing with the ICRP 60 estimates of 7.3 x 10 -2 Sv -1 and 5.6 x 10 -2 Sv -1 . Tissue weighting factors for the general population are 0.01 (bone surface and skin), 0.02 (liver, oesophagus and thyroid), 0.04 (bladder and breast), 0.08 (remainder), 0.10 (stomach), 0.11 (bone marrow), 0.15 (colon), 0.19 (lung) and 0.21 (gonads) and for the working population are 0.01 (bone surface and skin), 0.03 (liver, oesophagus and thyroid), 0.04 (breast), 0.06 (remainder), 0.07 (bladder), 0.08 (colon), 0.14 (bone marrow and stomach), 0.16 (lung) and 0.20 (gonads). (author)

  7. Assessing the surroundings for effects of ionising radiation on the granting of permits, DOVIS A. Emissions to air and water

    CERN Document Server

    Blaauboer, R O

    2002-01-01

    In the Netherlands, as in most other countries, one generally needs a permit to produce (including the manufacture, processing, control and storage), to apply or to dispose of radioactive materials, or to use equipment that produces ionising radiation. This permit must be in accordance with the Nuclear Energy Act. Limits that are set for radioactive material can be found in the Decree on radiation protection ('Besluit stralings-bescherming') which has been in force since March 1, 2002. Along with the application for a permit, calculation results have to be submitted on the radiation dose that members of the public receive as a consequence of (possible) emissions of radioactive material (into the atmosphere or surface water) or as a consequence of external irradiation. Fairly rough estimates, based on simple rules, will often be satisfactory. These rules can be found in an annex of a Ministerial Order on the assessment of consequences of ionising radiation (mr-AGIS). However, in some cases this will not be ade...

  8. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    Wu, K.; Guo, L.; Cong, J.B.; Sun, C.P.; Hu, J.M.; Zhou, Z.S.; Wang, S.; Zhang, Y.; Zhang, X.; Shi, Y.M.

    1998-01-01

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  9. Health Services management. Health Service use of ionising radiations

    International Nuclear Information System (INIS)

    1989-12-01

    This circular consolidates and updates advice on the statutory and management responsibilities of Health Authorities in relation to the use of ionising radiations (including radioactive substances) on premises controlled by them and/or by persons employed by them (author)

  10. Protection of the environment from ionising radiation: IUR's perspective

    International Nuclear Information System (INIS)

    Strand, P.; Brown, J. E.; Iospje, M.

    2004-01-01

    Sufficient information currently exists to introduce an overall framework for the protection of the environment from ionising radiation, drawing upon the large amount of radiobiological and radioecological information that has been gathered over the preceding decades. Nevertheless, there is a requirement to address numerous knowledge gaps and to improve upon existing databases. After the first presentation of a framework for the protection of the environment in 1999/2000 by the IUR, there has been activity to collate information and develop methodologies. This has allowed numerous recommendations to be made concerning future system development.. Although the transfer of radionuclides is quite well known within some food-chains, there are very few data on the behaviour of radionuclides in non-temperate zones and on uptake to species that do not form part of the human food chain. There is a need to develop both transfer models (flux, dynamic, ecosystem, etc.) and genotoxicological bio monitoring techniques that are capable of allowing impact assessments at a variety of species, population and ecosystem levels and that could also deal with other environmental stressors. Knowledge of the doses and effects of background radiation is lacking, as are dose-effect relationships, including information on RBE for a variety of species, doses and dose rates. The importance of various components of an environmental impact assessment can be explored, through the application of sensitivity and uncertainty analyses. An example of this type of analysis, for a marine system, demonstrated the importance of several radioecological parameters in the derivation of dose rates. However, although such examples provide insight, caution should be practiced in their interpretation. It is therefore suggested that further analyses are conducted in order to provide more robust priority lists for resource allocation. The recommendations made in this paper emphasize the need for further focussed

  11. Characterisation of ionisation chambers for a mixed radiation field and investigation of their suitability as radiation monitors for the LHC.

    Science.gov (United States)

    Theis, C; Forkel-Wirth, D; Perrin, D; Roesler, S; Vincke, H

    2005-01-01

    Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.

  12. Impact of chronic, low-level ionising radiation exposure on terrestrial invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Hingston, J.; Wood, M.D.; Copplestone, D.; Zinger, I. [Liverpool Univ., School of Biological Sciences, Merseyside (United Kingdom)

    2004-07-01

    There is a need to confirm that the environment is being adequately protected from the mixture of contaminants released into it. In the field of environmental radioactivity, tools have been developed to assess the impacts of ionising radiation on wildlife. The scientific data upon which these assessments are based is, however, lacking. New documentation has been produced by the UK Environment Agency to provide guidelines on structuring experiments (using environmentally relevant doses) and select suitable non-human species and endpoints for study. It is anticipated that this documentation will be used to direct future experiments in this field. This paper presents the results of the first of these experiments. Numbers of the earthworm Eisenia fetida and the wood louse Porcellio scaber were segregated and constantly exposed to one of six radiation doses (background, 0.1, 0.4, 1.5, 4.0 and 8.0 mGyh{sup -1}) for a total of 16 and 14 weeks respectively. The endpoints of mortality, number of viable offspring and average weight of an individual were recorded and the results of this study will be discussed here. (author)

  13. Radiation dose in paediatric cardiac catheterisation: A systematic literature review

    International Nuclear Information System (INIS)

    Gould, R.; McFadden, S.L.; Hughes, C.M.

    2017-01-01

    Objectives: It is believed that children are more sensitive to ionising radiation than adults. This work reviewed the reported radiation dose estimates for paediatric cardiac catheterisation. A systematic literature review was performed by searching healthcare databases for studies reporting radiation dose using predetermined key words relating to children having cardiac catheterisation. The quality of publications was assessed using relevant Critical Appraisal Skills Programme questions and their reported radiation exposures were evaluated. Key findings: It is only in recent years that larger cohort observations have been undertaken. Although radiation dose from paediatric cardiac catheterisation has decreased in recent years, the literature indicated that it remains varied and potentially substantial. Conclusion: Standardisation of weight categories and procedure types such as those recommended by the PiDRL project could help compare current and future radiation dose estimates. - Highlights: • 31 articles reporting radiation dose from paediatric cardiac catheterisation were reviewed. • In recent years, larger cohorts (>1000) have been reported. • Radiation dose to children has been lowered in the last decade but remains varied. • Future dosimetry should be consistent for weight categories and procedure types.

  14. Effective doses and standardised risk factors from paediatric diagnostic medical radiation exposures: Information for radiation risk communication

    International Nuclear Information System (INIS)

    Bibbo, Giovanni

    2018-01-01

    In the paediatric medical radiation setting, there is no consistency on the radiation risk information conveyed to the consumer (patient/carer). Each communicator may convey different information about the level of risk for the same radiation procedure, leaving the consumer confused and frustrated. There is a need to standardise risks resulting from medical radiation exposures. In this study, paediatric radiographic, fluoroscopic, CT and nuclear medicine examination data have been analysed to provide (i) effective doses and radiation induced cancer risk factors from common radiological and nuclear medicine diagnostic procedures in standardised formats, (II) awareness of the difficulties that may be encountered in communicating risks to the layperson, and (iii) an overview of the deleterious effects of ionising radiation so that the risk communicator can convey with confidence the risks resulting from medical radiation exposures. Paediatric patient dose data from general radiographic, computed tomography, fluoroscopic and nuclear medicine databases have been analysed in age groups 0 to <5 years, 5 to <10 years, 10 to <15 years and 15 to <18 years to determine standardised risk factors. Mean, minimum and maximum effective doses and the corresponding mean lifetime risks for general radiographic, fluoroscopic, CT and nuclear medicine examinations for different age groups have been calculated. For all examinations, the mean lifetime cancer induction risk is provided in three formats: statistical, fraction and category. Standardised risk factors for different radiological and nuclear medicine examinations and an overview of the deleterious effects of ionising radiation and the difficulties encountered in communicating the risks should facilitate risk communication to the patient/carer.

  15. Significance of grafting in radiation curing reactions. Comparison of ionising radiation and UV systems

    International Nuclear Information System (INIS)

    Zilic, E.; Ng, L.; Viengkhou, V.; Garnett, J.L.

    1998-01-01

    Full text: Radiation curing is now an accepted commercial technology where both ionising radiation (electron beam) and ultra violet light (UV) sources are used. Grafting is essentially the copolymerisation of a monomer/oligomer to a backbone polymer whereas curing is the rapid polymerisation of a monomer/oligomer mixture onto the surface of the substrate. There is no time scale theoretically associated with grafting processes which can occur in minutes or hours whereas curing reactions are usually very rapid, occurring within a fraction of a second. An important difference between grafting and curing is the nature of the bonding occurring in each process. In grafting covalent carbon-carbon bonds are formed, whereas in curing, bonding usually involves weaker Van der Waals or London dispersion forces. The bonding properties of the systems are important in determining their use commercially. Thus the possibility that concurrent grafting during curing could occur in a system is important since if present, grafting would not only minimise delamination of the coated product but could also, in some circumstances, render difficulties recycling of the finished product especially if it were cellulosic. Hence the conditions for observing the occurrence of concurrent grafting during radiation curing are important. In the present paper, this problem has been studied by examining the effect that the components used in radiation curing exert on a typical reaction. Instead of electron beam sources, the spent fuel element facility at Lucas Heights is used to simulate such ionising radiation sources. The model system utilised is the grafting of a typical methacrylate to cellulose. This is the generic chemistry used in curing systems. The effect of typical additives from curing systems including polyfunctional monomer and oligomers in the grafting reactions have been studied. The ionising radiation results have been compared with analogous data from UV experiments. The significance

  16. NDT using ionising radiation in the Indian space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1997-01-01

    Ionising radiations continue to play a vital role in the Non-Destructive Evaluation (NDE) of various components used in space vehicles and satellites. The different Non-Destructive Testing (NDT) methods which are useful to the Indian space programme are discussed. 4 refs., 5 figs

  17. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Petitfils, A.

    2007-09-01

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  18. Radiation protection and safety in medical use of ionising radiation in Republic of Bulgaria - Harmonisation of the national legislation with Euratom directives

    International Nuclear Information System (INIS)

    Ingilizova, K.; Vassileva, J.; Rupova, I.; Pavlova, A.

    2005-01-01

    From February 2002 to November 2003 the National Centre of Radiobiology and Radiation Protection conducted a PHARE twinning project 'Radiation Protection and Safety at Medical Use of Ionising Radiation'. The main purposes of the project were the harmonisation of Bulgarian legislation in the field of radiation protection with EC Directives 96/29 and 97/43 Euratom, and the establishment of appropriate institutional infrastructure and administrative framework for their implementation. This paper presents the main results of the project: elaboration of Ordinance for Protection of Individuals from Medical Exposure; performance of a national survey of distribution of patient doses in diagnostic radiology and of administered activities in nuclear medicine and establishment of national reference levels for the most common diagnostic procedures. (authors)

  19. Chapter 8. Ionisation radiation and human organism. Radioactivity of human tissues

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with ionisation radiation and human organism as well as with radioactivity of human tissues. Chapter consists of next parts: (1) Radiation stress of human organism; (2) Radioactivity of human tissues and the factors influencing radioactive contamination; (3) Possibilities of decreasing of radiation stress

  20. The application of ionising radiation in industrial wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kos, L. [Inst. of Knitting Technology and Techniques, Lodz (Poland); Perkowski, J. [Inst. of Applied Radiation Chemistry, Technical Univ. of Lodz, Lodz (Poland); Ledakowicz, S. [Dept. of Bioprocess Engineering, Technical Univ. of Lodz, Lodz (Poland)

    2003-07-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  1. Ionising radiation and trans-generational instability

    International Nuclear Information System (INIS)

    Vrhovac, I.; Niksic, G.

    2007-01-01

    Indirect monitoring of the impact posed by ionising radiation to the genome instability of the descendants, consequent to the irradiation of one of their parents, boils down to the investigation of changes occurring exclusively in the mini-satellite loci of the cells constituting the gametal developmental line. The resultant mini-satellite mutations are expressed in their percentages, and equal to the ratio of the number of mutated alleles in that particular generation over the total number of alleles present. The impact of ionising radiation to the irradiated parent's offspring was first noticed on haematopoietic mouse stem-cells. Even though an irradiated cell of a female parent lacks any mutations whatsoever, daughter cells present with the increased mutation rates. The observed phenomenon of the so called trans-generational instability has been defined as the occurrence of mutations in the genome of individuals originating from the irradiated ancestors. Due to the aforementioned, one can conclude that these mutations need not be present in the irradiated parental cells, and do not necessarily vanish in the next few generations, but may result in the increase in mutation rates observed in the latter. The results of the investigations performed on the animal model, as well as of those carried out in human population, point to the occurrence of significant changes to be found on mini-satellite loci of the descending generation, while the mechanism underlying those changes hasn't been completely clarified yet, and, therefore, calls for the further investigation. (author)

  2. Framework for the Protection of the Environment from Ionising Radiation (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Strand, P.; Brown, J.E.; Larsson, M

    2000-07-01

    A framework is proposed for the protection of the environment from ionising radiation. Key components include the assessment of the environmental transfer of radionuclides and uptake of radionuclides by organisms, the adaptation of existing dosimetric models to calculate absorbed doses and studies concerning dose-effects relationships for selected organisms. The proposed framework will also make use of 'reference' organisms, selection of which will be based on a number of criteria, e.g. radiosensitivity, ubiquity, and will involve the development of standardised biota exposure units which might integrate the Relative Biological Effect (RBE) of the radiation under consideration. In the second part of the study, initial efforts have been made to develop a computerised system in order to provide a simple example of how components of this framework may be formulated. An equilibrium absorbed dose constant model has been used for high LET (Linear Energy Transfer) radionuclides combined with the application of an absorbed fraction for {gamma}-emitting radionuclides. Generalised specific activity information for selected radionuclides from Norwegian marine environments have been used as model input data. For the radionuclides considered, total doses for marine organisms (lobster, mussels, seaweed) ranged between 1.35-2.5 mGy.y{sup -1}, mainly attributable to {sup 40}K and {sup 210}Po. Such levels are well below those where observable effects might be expected. (author)

  3. Biological effects of ionising radiation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper reports the proceedings of a conference organised jointly by Friends of the Earth (U.K.) and Greenpeace (International). The aim of the conference was to discuss the effects of low level radiation, particularly on man, within the terms of dose/risk relationships. The topics discussed included: sources of radiation, radiation discharges from nuclear establishments, predictive modelling of radiation hazards, radiation effects at Hiroshima, low dose effects and ICRP dose limits, variation in sensitivity to radiation, and the link between childhood cancer and nuclear power. (U.K.)

  4. Veterinary applications of ionising radiation HERCA Task Force on Veterinary Applications. Main results of the Questionnaire 'National regulatory requirements with regard to veterinary medical applications of ionising radiation' and conclusions of the TF

    International Nuclear Information System (INIS)

    Van Bladel, Lodewijk; Berlamont, Jolien; Michalczak, Herbert; Balogh, Lajos; Peremans, Kathelijne

    2013-11-01

    In the fall of 2012, the subject of radiation protection in veterinary medicine was raised during the meeting of the HERCA Board. Issues with regard to this subject had been brought to the attention of HERCA by the European College of Veterinary Diagnostic Imaging (ECVDI). In October 2012, the Board decided to charge a small Task Force (TF) to further explore the issues in this field. This TF drew up a questionnaire which looked at the general radiation protection regulatory requirements in veterinary medicine applications of ionizing radiation. The results of this study showed large differences in the requirements applicable in the HERCA member countries. The TF also noticed the increasing use of more complex imaging procedures and of different radio-therapeutic modalities, which may imply greater risks of exposure of humans to ionising radiation. These results were presented during the HERCA Board meeting in Berlin, Germany and on which the Board decided to establish a Working Group on veterinary applications of ionising radiations (WG Vet). The main results of the Questionnaire 'National regulatory requirements with regard to veterinary medicine applications of ionising radiation' is attached in Appendix

  5. Non-targeted effects of ionising radiation (note). A new European integrated project, 2006-2010

    International Nuclear Information System (INIS)

    Salomaa, S.; Wright, E.G.; Hildebrandt, G.; Kadhim, M.; Little, M.P.; Prise, K.M.; Belyakov, O.V.

    2007-01-01

    Complete text of publication follows. The general objectives of the NOTE project are: (1) to investigate the mechanisms of nontargeted effects, in particular, bystander effects, genomic instability and adaptive response; (2) to investigate if and how non-targeted effects modulate the cancer risk in the low dose region, and whether they relate to protective or harmful functions; (3) to investigate if ionising radiation can cause non-cancer diseases or beneficial effects at low and intermediate doses; (4) to investigate individual susceptibility and other factors modifying non-targeted responses; (5) to assess the relevance of non-targeted effects for radiation protection and to set the scientific basis for a modern, more realistic, radiation safety system; (6) to contribute to the conceptualisation of a new paradigm in radiation biology that would cover both the classical direct (DNA-targeted) and non-targeted (indirect) effects. The NOTE brings together 19 major European and Canadian groups involved in the discovery, characterisation and mechanistic investigation of non-targeted effects of ionising radiation in cellular, tissue and animal models. The NOTE research activities are organised in six work packages. Four work packages (WPs 2-5) are problem-oriented, focussing on major questions relevant for the scientific basis of the system of radiation protection: WP2 Mechanisms of non-targeted effects, WP3 Non-cancer diseases, WP4 Factors modifying non-targeted responses, WP5 Modelling of non-targeted effects. The integration activities provided by WP6 strengthen the collaboration by supporting the access to infrastructures, mobility and training. WP7 provides dissemination and exploitation activities in the form of workshops and a public website. Managerial activities (WP1) ensure the organisation and structures for decision making, monitoring of progress, knowledge management and efficient flow of information and financing. Coordinator of the NOTE project is Prof

  6. Use of ionising radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the safety requirements for the use of radiation in school education, as well as the principles regulating the use of radiation sources without the safety licence referred to in section 16 of the Finnish Radiation Act (592/1991). The guide covers the use of radiation sources emitting ionising radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions

  7. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  8. Doubling potential of fibroblasts from different species after ionising radiation

    International Nuclear Information System (INIS)

    Macieira-Coelho, A.; Diatloff, C.; Malaise, E.

    1976-01-01

    It is stated that whereas chicken fibroblasts invariably die after a certain number of doublings in vitro, and this fact is never altered by chemical or physical agents, mouse fibroblasts invariably acquire spontaneously an infinite growth potential. In the human species fibroblasts never acquire spontaneously the capacity to divide for ever, although they can become permanent cell lines after treatment with certain viruses. This behaviour of fibroblasts in vitro has been attributed to different nutritional requirements. Experiments are described with human and mouse fibroblasts in which it was found that the response to ionising radiation matches the relative tendencies of the fibroblasts to yield permanent cell lines. Irradiation was commenced during the phase of active proliferation. Human fibroblast cultures irradiated with 100 R stopped dividing earlier than the controls, whereas cultures irradiated with 200, 300 and 500 R had the same lifespan as the control cultures. Cultures irradiated with 400 R showed the longest survival. With mouse fibroblasts the growth curves of the irradiated cells were of the same type as in the controls, but recovery occurred earlier. The results indicated that ionising radiation accelerates a natural phenomenon; in cells with a limited growth potential (chicken) it shortens the lifespan, whereas in cells that can acquire an unlimited growth potential (mouse) it accelerates acquisition of this potential; human fibroblasts showed an intermediate response, since ionising radiation neither established the cultures as with mouse cells nor reduced the number of cells produced as with chicken fibroblasts. Possible explanations for the different behaviour of the species are offered. (U.K.)

  9. A 10-year review of the dose history of radiation workers in the University of Surrey

    International Nuclear Information System (INIS)

    Parami, V.K.

    1991-09-01

    This thesis presents data on internally and externally received doses for radiation workers whose records are kept at the Safety Office of the University of Surrey for the period 1981-1990. The distribution of doses by range is presented and analysed. The patterns of the collective equivalent dose (CED) and the average individual equivalent dose (IED) over the 10-year period are presented. The annual CED is very low, so that even the total for the 10-year period is less than 1 man-Sv. Likewise, the annual average IED is extremely low, well below the average annual dose to the U.K. population from overall sources of ionising radiation. Some relevant aspects of the 1990 ICRP Recommendations are examined and the impact of these to the 'practices' and sources of ionising radiation in the University is given consideration. The results of the 10-year review provide more evidence of over designation of radiation workers in the University. A recommendation is made to reduce the number of workers who are routinely monitored and justification and options are presented. This study is viewed as a useful database which could be of particular importance in the procedure of optimisation of radiation protection in the University of Surrey and U.K. establishments for higher education as a whole. (author)

  10. Problems Concerning Dose Assessments in Epidemiology of High Background Radiation Areas of Yangjiang, China (invited paper)

    International Nuclear Information System (INIS)

    Wei, L.X.; Yuan, Y.L.

    1998-01-01

    The purpose of this study on radiation levels and dose assessments in the epidemiology of a high background radiation area (HBRA) and the control area (CA) is to respond to the needs of epidemiology in these areas, where the inhabitants are continuously exposed to low dose, low dose rate ionising radiation. A brief description is given of how the research group evaluated the feasibility of the investigation by analysing the population size and the radiation levels, how simple reliable methods were used to get the individual annual dose for every cohort member, and how the cohort members were classified into various dose groups for dose-effect relationship analysis. Finally, the use of dose group classification for cancer mortality studies is described. (author)

  11. Food ionisation. Realities and perspectives; L'ionisation alimentaire. Realites et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G

    1994-06-01

    The ionisation of food is a treatment using a certain type of energy. the radiations used in the industrial treatments are limited to three sources. The gamma radiations, the x radiations and the electrons beams emitted with accelerators. The physical treatments by ionizing radiations have for aim to cleanse and to increase the conservation time of food. Now, the applications in agriculture and food industry, are still marginal. The industrial using ionisation are these ones that did not find any alternative decontamination method. The barriers are more scientific or technical or economical than a question of regulation or behaviour. (N.C.)

  12. Health effects of ionising radiation

    International Nuclear Information System (INIS)

    Mohammadi, S.

    2000-01-01

    Human and animal studies have shown an increased incidence of cancer and malformation due to radioactive materials and external radiation. The biological effects of radiation on tissues are the occurrence of morphological and functional changes in the body. The critical parts of the body are those tissues or organs which when irradiated, are likely to influence the health of the individual or its offspring. The probability of these changes depends on the radiation dose. There are two main types of damage due to radiation dose. Radiation Sickness with well-defined symptoms like cancer and inherited disorders which can appear after several years. A second type of damage, namely Acute Radiation Sickness results after exposure of the whole or parts of the body to high doses of radiation greater than 1 Gy. There are safety standards for the amount of dose equivalent that is taken as acceptable. The International Commission on Radiological Protection (ICRP) has given norms in which natural and medical causes were not included. These are given as recommended values (1966) and proposed values (2000), both in mSv/yr: population at large: 1.7 and 0.4; members of the public: 5 and 2; and radiologic workers: 50 and 20, respectively. Taking into account the increased number of reactor accidents, the question is how safe is our safety standards? Even when one is able to connect a quantitative risk with a radiation dose, there are three fundamental principles which we should obey in dealing with risks from radiation. These are: (1) Avoid any risk. (2) The risk should be related to the possible benefit. (3) Any dose below the politically agreed limits is acceptable

  13. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  14. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  15. Quantification of complex DNA damage by ionising radiation. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Fulford, J.

    2000-05-01

    Ionising radiation potentially produces a broad spectrum of damage in DNA including single and double strand breaks (ssb and dsb) and base damages. It has been hypothesised that sites of complex damage within cellular DNA have particular biological significance due to an associated decreased efficiency in repair. The aim of this study is to gain further understanding of the formation of complex DNA damage. Irradiations of plasmid DNA illustrate that an increase in ionising density of the radiation results in a decrease in ssb yields/Gy but an increase in dsb per ssb, indicative of an increase in the number of complex damage sites per simple isolated damage site. As the mechanism for damage formation shifts from purely indirect at low scavenging capacities to a significant proportion of direct at higher scavenging capacities the proportion of complex damage increases. Comparisons with the yields of ssb and dsb simulated by Monte-Carlo calculations for Al K USX and α-particles also indicate this correspondence. The ionisation density of low energy, secondary electrons produced by photons was assessed experimentally from the dependence of the yield of OH radicals escaping intra-track recombination on photon energy. As energy decreases the OH radical yield initially decreases reflecting an increased ionisation density. However, with further decrease in photon energy the yield of OH radicals increases in line with theoretical calculations. Base damage yields were determined for low and high ionising density radiation over a range of scavenging capacities. As scavenging capacity increases the base damage: ssb ratios increases implying a contribution from electrons to base damage. It is proposed that base damage contributes to DNA damage complexity. Complex damage analysis reveals that at cell mimetic scavenging capacities, 23% and 72% of ssb have an additional spatially close damage site following γ-ray and α-particle irradiation respectively. (author)

  16. Fitness of equipment used for medical exposures to ionising radiation

    International Nuclear Information System (INIS)

    1998-01-01

    The advice in this guidance note is aimed at employers in control of equipment used for medical exposures to ionising radiation and ancillary equipment. This includes NHS trusts, health authorities or boards, private hospitals, clinics, surgeries, medical X-ray facilities in industry, dentists and chiropractors. The guidance should also be useful to radiation protection advisers appointed by such employers. The guidance provides advice on the requirements of regulation 33 of the Ionising Radiations Regulations 1985 (IRR85). In particular, it covers: (a) the selection, installation, maintenance, calibration and replacement of equipment to ensure that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person to the extent that this is compatible with the intended diagnostic or therapeutic purpose; (b) recommended procedures for the definitive calibration of radiotherapy treatment; and (c) the need to investigate incidents involving a malfunction or defect in any 'radiation equipment' which result in medical exposures much greater than intended and to notify the Health and Safety Executive (HSE). 'Medical exposure' is defined in IRR85 as exposure of a person to ionising radiation for the purpose of his or her medical or dental examination or treatment which is conducted under the direction of a suitably qualified person and includes any such examination or treatment conducted for the purposes of research. For convenience, people undergoing medical exposure will be referred to as 'patients' in this guidance. Nothing in this publication is intended to indicate whether or not patients should be informed of any incident resulting from malfunction or defect in equipment used for medical exposure and the possible consequences of that exposure. As stated above, this guidance concerns medical exposures much greater than intended and although exposures much lower than intended can also have serious consequences, the incident would not

  17. The use of ionising radiation screening devices in airports

    International Nuclear Information System (INIS)

    Lazo, T.

    2010-01-01

    Although the NEA generally focuses on radiological protection at nuclear power plants and related facilities, it also addresses other areas of radiological protection of interest to member countries. A particular subject of recent importance concerns the use of ionising radiation screening devices as part of airport security efforts. Modern body scanners can produce human images that can be used to detect weapons that may be hidden beneath a person's clothing. Heightened concerns over terrorist threats to airline flights have prompted many countries to consider the use, or expanded use of body scanners. The use of such devices raises a wide series of questions, some of which concern the radiological protection of those who might be scanned. As such, the Inter-Agency Committee on Radiation Safety (IACRS), an expert body in which the NEA works together with several other international organisations addressing radiological protection issues, recently developed a joint information paper laying out the key radiological protection and other issues that should be or have been considered when making decisions as to whether ionising radiation body scanners should be deployed in airports. This article provides an overview of the information paper. In assessing the possible use of X-ray body scanners, there are two significant radiological protection issues that may be of relevance with regard to the government decision whether their use is justified. First, although the individual exposures are very low, the exposure experienced by the scanned population as a whole will depend on whether all passengers are systematically scanned, or alternatively whether passengers are selected for scanning randomly or on the basis of specific criteria. The manner in which passengers would be selected would need to be known in order to appropriately assess the full radiological protection impact of scanner use. Second, the use of X-ray body scanners on sensitive groups, such as pregnant

  18. Inhibition of apoptosis: the Consequence of Low Doses of Ionizing Radiation

    International Nuclear Information System (INIS)

    Osmak, M.; Abramic, M.; Brozovic, A.; Hadzija, M.

    1998-01-01

    In our previous studies we have shown that human cervical carcinoma HeLa cells exposed to low repeated doses of ionising radiation became resistant to cisplatin. The aim of the present study was to determine the molecular mechanisms involved in this resistance. With this purpose, the profile of cytosolic proteins was examined and the induction of apoptosis followed for control and preirradiated Hela cells. The profile of cytosolic proteins was analysed by SDS-electrophoresis. The kinetic of apoptosis was followed by fluorescent microscope in control HeLa and preirradiated HeLa cells during 72 hours after l hour cell treatment with 50 or 150 μM cisplatin. Analysis of DNA fragmentation was done by agarose gel electrophoresis. SDS-electrophoresis of the cytosolic proteins from parental Hela and preirradiated Hela cells exhibited similar pattern. Contrary to that, significantly lower number of apoptotic cells was determined in preirradiated than in control cells following the treatment with cisplatin. The nucleosome ladder was observed in human cervical carcinoma cells 12 hours after the cisplatin treatment. In conclusion, our in vitro studies indicate that repeated low doses of irradiation can cause drug resistance due to the inhibition of apoptosis. To our knowledge, it is shown for the first time that even low doses of ionising radiation may inhibit apoptosis. (author)

  19. Internet-based ICRP resource for healthcare providers on the risks and benefits of medical imaging that uses ionising radiation.

    Science.gov (United States)

    Demeter, S; Applegate, K E; Perez, M

    2016-06-01

    The purpose of the International Commission on Radiological Protection (ICRP) Committee 3 Working Party was to update the 2001 web-based module 'Radiation and your patient: a guide for medical practitioners' from ICRP. The key elements of this task were: to clearly identify the target audience (such as healthcare providers with an emphasis on primary care); to review other reputable sources of information; and to succinctly publish the contribution made by ICRP to the various topics. A 'question-and-answer' format addressing practical topics was adopted. These topics included benefits and risks of imaging using ionising radiation in common medical situations, as well as pertaining to specific populations such as pregnant, breast-feeding, and paediatric patients. In general, the benefits of medical imaging and related procedures far outweigh the potential risks associated with ionising radiation exposure. However, it is still important to ensure that the examinations are clinically justified, that the procedure is optimised to deliver the lowest dose commensurate with the medical purpose, and that consideration is given to diagnostic reference levels for particular classes of examinations. © The International Society for Prosthetics and Orthotics.

  20. Food ionisation. Realities and perspectives; L'ionisation alimentaire. Realites et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G

    1994-06-01

    The ionisation of food is a treatment using a certain type of energy. the radiations used in the industrial treatments are limited to three sources. The gamma radiations, the x radiations and the electrons beams emitted with accelerators. The physical treatments by ionizing radiations have for aim to cleanse and to increase the conservation time of food. Now, the applications in agriculture and food industry, are still marginal. The industrial using ionisation are these ones that did not find any alternative decontamination method. The barriers are more scientific or technical or economical than a question of regulation or behaviour. (N.C.)

  1. Predicting the effects of ionising radiation on ecosystems by a generic model based on the Lotka-Volterra equations

    International Nuclear Information System (INIS)

    Monte, Luigi

    2009-01-01

    The present work describes a model for predicting the population dynamics of the main components (resources and consumers) of terrestrial ecosystems exposed to ionising radiation. The ecosystem is modelled by the Lotka-Volterra equations with consumer competition. Linear dose-response relationships without threshold are assumed to relate the values of the model parameters to the dose rates. The model accounts for the migration of consumers from areas characterised by different levels of radionuclide contamination. The criteria to select the model parameter values are motivated by accounting for the results of the empirical studies of past decades. Examples of predictions for long-term chronic exposure are reported and discussed.

  2. A system for protecting the environment from ionising radiation: selecting reference fauna and flora, and the possible dose models and environmental geometries that could be applied to them.

    Science.gov (United States)

    Pentreath, R J; Woodhead, D S

    2001-09-28

    In order to demonstrate, explicitly, that the environment can be protected with respect to controlled sources of ionising radiation, it is essential to have a systematic framework within which dosimetry models for fauna and flora can be used. And because of the practical limitations on what could reasonably be modelled and the amount of information that could reasonably be obtained, it is also necessary to limit the application of such models to a 'set' of fauna and flora within a reference' context. This paper, therefore, outlines the factors that will need to be considered to select such 'reference' fauna and flora, and describes some of the factors and constraints necessary to develop the associated dosimetry models. It also describes some of the most basic environmental geometrics within which the dose models could be set in order to make comparisons amongst different radiation sources.

  3. A system for protecting the environment from ionising radiation. Selecting reference fauna and flora, and the possible dose models and environmental geometries that could be applied to them

    International Nuclear Information System (INIS)

    Pentreath, R.J.; Woodhead, D.S.

    2001-01-01

    In order to demonstrate, explicitly, that the environment can be protected with respect to controlled sources of ionising radiation, it is essential to have a systematic framework within which dosimetry models for fauna and flora can be used. And because of the practical limitations on what could reasonably be modelled and the amount of information that could reasonably be obtained, it is also necessary to limit the application of such models to a 'set' of fauna and flora within a 'reference' context. This paper, therefore, outlines the factors that will need to be considered to select such 'reference' fauna and flora, and describes some of the factors and constraints necessary to develop the associated dosimetry models. It also describes some of the most basic environmental geometries within which the dose models could be set in order to make comparisons amongst different radiation sources

  4. Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Lemosquet, A.; Carlan, L. de; Clairand, I.

    2003-01-01

    Computational anthropomorphic phantoms have been used since the 1970's for dosimetric calculations. Realistic geometries are required for this operation, resulting in the development of ever more accurate phantoms. Voxel phantoms, consisting of a set of small-volume elements, appeared towards the end of the 1980's, and significantly improved on the original mathematical models. Voxel phantoms are models of the human body, obtained using computed tomography (CT) or magnetic resonance images (MRI). These phantoms are an extremely accurate representation of the human anatomy. This article provides a review of the literature available on the development of these phantoms and their applications in ionising radiation dosimetry. The bibliographical study has shown that there is a wide range of phantoms, covering various characteristics of the general population in terms of sex, age or morphology, and that they are used in applications relating to all aspects of ionising radiation. (author)

  5. Radiation doses to the unborn child at diagnostic examinations in Sweden

    International Nuclear Information System (INIS)

    Helmrot, E.; Pettersson, H.; Sandborg, M.; Olsson, S.; Nilsson, J.; Cederlund, T.

    2003-01-01

    The use of ionising radiation in a medical examination of a woman caring a child is not always possible to avoid. The following situations can occur: (1) The pregnancy of the patient is known and the examination has to be performed due to medical reason, (2) The pregnancy of the patient is unknown at the time of examination. Methods to identify pregnant women at radiological departments in Sweden are already in use, but national rules and methods to calculate the individual dose to the unborn child for different examinations are less evaluated. There is a need of standards for the calculations, estimations and documentation of the radiation dose to the unborn child. According to directives from the European Commission, every X-ray examination has to be justified and optimised. The aim of this study is to determine the absorbed dose to the unborn child for common radiation diagnostic examinations used in Sweden and to find a standardised method for dose calculations. (orig.)

  6. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry; Proprietes thermoluminescentes du diamant CVD: applications a la dosimetrie des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Petitfils, A

    2007-09-15

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  7. The Radman Guide to the Ionising Radiations Regulations 1985

    International Nuclear Information System (INIS)

    Hughes, D.

    1986-01-01

    The guidance given in the handbook is of general nature for the assistance of senior managers and administrators (rather than scientific or technical staff), involved in or responsible for work with ionising radiations. The subject is dealt with under the following headings: 1) Digest of the Regulations. 2) Application of Regulations (division of responsibility between employer, employee, supervisors, medical personnel etc., role of the Health and Safety Executive.) 3) Designation of work areas and persons 4) Radiation Protection Supervisors and Local Rules 5) Hazard assessments and contingency plans 6) Notifications and Record Keeping 7) Routines in source control. (UK)

  8. Germany (Federal Republic). Ministry of the Interior. Order on protection against damage due to ionising radiation. Radiation Protectin Order. StrlSchV 20 Oct. 1976

    International Nuclear Information System (INIS)

    1977-02-01

    The order is arranged in parts, entitled: introductory provisions; control provisions (handling radioactive matter, the carriage of radioactive matter, the import and export of radioactive matter, the construction and operation of installation for generating ionising radiation, employees and other persons working under supervision, design approval); safety regulations (general regulations, protection of the population and the environment against the hazards of ionising radiation, occupational exposure to radiation, radiation protection areas, physical protection and control, medical supervision, instruments for measuring radiation, other safety regulations); fines; and final provisions. (U.K.)

  9. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  10. Current estimates of radiation risks and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    The publication of the 1988 report of UNSCEAR represents a major step forward in that there is an international consensus on the estimation of risk from exposure to ionising radiation. The estimates of fatal cancers in the UNSCEAR report are up to 4 times the values in the 1977 review. This paper will describe the reasons for the increase, the remaining uncertainties and the implications for dose limits in occupational and public exposure. (author)

  11. Use of ionising radiation

    International Nuclear Information System (INIS)

    1988-11-01

    The Committee has inquired into and reported on the use of ionising radiation for commercial sterilisation, disinfestation, food preservation and other purposes with particular reference to human health and safety; environmental impacts, and adequacy of assessment and regulatory procedures. While food irradiation is apparently commercially successful overseas the application to Australia seems extremely limited - it would be used primarily for disinfestation of insect pests and perhaps to reduce levels of harmful bacteria in a limited range of foods. For other applications there are effective and more economic alternatives. The report reviews other studies of food irradiation and the policies and practices governing its use in other countries. The safety of irradiated food, the radiological safety issues and the regulations which would be required in Australia are dealt with in detail. The Committee recommends, inter alia, that the Australian Government should not approve the irradiation of food in Australia until such time as a routine commercial method of detection has been developed and that the import of caesium 137 for use as an irradiation source in commercial irradiation facilities be prohibited

  12. International responsability of state by the deleterius effects of ionising radiation

    International Nuclear Information System (INIS)

    Faria, N.M. de.

    1988-01-01

    International Responsability of State, considering the deleterius effects of ionising radiation on the human being, property, territory and environment which are under other jurisdiction, is focused. Conventional rules, costumary rules, the evolution of ''opinion juris'' as well as the decisions of tribunals related to the subject are analysed. (author) [pt

  13. Properties of an electret ionisation chamber for individual dosimetry in photon radiation fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1985-01-01

    The main properties of individual photon dosemeters are their energy and angular dependence and their measuring range and measurement accuracy. The determination of radiation exposure from the dosemeter readout is based on the choice of appropriate conversion factors, taking into account the influence of body backscatter on the dosemeter readout. The measurement range and accuracy of an electret ionisation chamber primarily depend on the electret stability and charge state measurement as well as on the chamber geometry. Dosimetric properties are described for an electret ionisation chamber designed for personnel monitoring. (author)

  14. Exposure to low dose ionising radiation: Molecular and clinical consequences.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2014-07-10

    This review article provides a comprehensive overview of the experimental data detailing the incidence, mechanism and significance of low dose hyper-radiosensitivity (HRS). Important discoveries gained from past and present studies are mapped and highlighted to illustrate the pathway to our current understanding of HRS and the impact of HRS on the cellular response to radiation in mammalian cells. Particular attention is paid to the balance of evidence suggesting a role for DNA repair processes in the response, evidence suggesting a role for the cell cycle checkpoint processes, and evidence investigating the clinical implications\\/relevance of the effect.

  15. Low dose effects - is the fear more dangerous than the radiation?

    International Nuclear Information System (INIS)

    Malaxos, M.

    1996-01-01

    The use of hypothesis which assumes a dose / harmful effect relationship without a limit allows the calculation of risks attributable to doses too small to produce detectable, harmful biological effects. The daughter product of this hypothesis is ALARA concept which requires that the dose received is kept as low as reasonably achievable. This concept of prudent avoidance is generally accepted by international radiation protection organisations and universally applied by radiation health professionals. The acceptance of a hypothesis which assumes that a single nuclear event can cause carcinogenesis, has generated levels of anxiety which may have resulted in significant detriment to those possibly exposed to ionising radiation. The anxiety generated may have caused more detriment and a higher death rate than the worst case ' theoretical' value calculated using the Linear or Quadratic Linear Hypothesis. Information selected from reports and comments in relevant publications indicating that this possibility has become a realty is presented. 24 refs

  16. Food ionisation. Realities and perspectives

    International Nuclear Information System (INIS)

    Bonnet, G.

    1994-06-01

    The ionisation of food is a treatment using a certain type of energy. the radiations used in the industrial treatments are limited to three sources. The gamma radiations, the x radiations and the electrons beams emitted with accelerators. The physical treatments by ionizing radiations have for aim to cleanse and to increase the conservation time of food. Now, the applications in agriculture and food industry, are still marginal. The industrial using ionisation are these ones that did not find any alternative decontamination method. The barriers are more scientific or technical or economical than a question of regulation or behaviour. (N.C.)

  17. Radiation in the workplace-a review of studies of the risks of occupational exposure to ionising radiation

    International Nuclear Information System (INIS)

    Wakeford, Richard

    2009-01-01

    Many individuals are, or have been, exposed to ionising radiation in the course of their work and the epidemiological study of occupationally irradiated groups offers an important opportunity to complement the estimates of risks to health resulting from exposure to radiation that are obtained from other populations, such as the Japanese survivors of the atomic bombings of Hiroshima and Nagasaki in 1945. Moreover, workplace exposure to radiation usually involves irradiation conditions that are of direct relevance to the principal concern of radiological protection: protracted exposure to low level radiation. Further, some workers have been exposed to radioactive material that has been inadvertently taken into the body, and the study of these groups leads to risk estimates derived directly from the experience of those irradiated by these 'internal emitters', intakes of α-particle-emitters being of particular interest. Workforces that have been the subject of epidemiological study include medical staff, aircrews, radium dial luminisers, underground hard-rock miners, Chernobyl clean-up workers, nuclear weapons test participants and nuclear industry workers. The first solid epidemiological evidence of the stochastic effects of irradiation came from a study of occupational exposure to medical x-rays that was reported in 1944, which demonstrated a large excess risk of leukaemia among US radiologists; but the general lack of dose records for early medical staff who tended to experience the highest exposures hampers the derivation of risks per unit dose received by medical workers. The instrument dial luminisers who inadvertently ingested large amounts of radium-based paint and underground hard-rock miners who inhaled large quantities of radon and its decay products suffered markedly raised excess risks of, respectively, bone and lung cancers; the miner studies have provided standard risk estimates for radon-induced lung cancer. The large numbers of nuclear industry

  18. First Glossary of Modern Physics and Ionising Radiation Protection in Croatian

    International Nuclear Information System (INIS)

    Nodilo, M.; Petkovic, T.

    2011-01-01

    Motivation and encouragement for the Glossary were given as the research theme for the joint seminar between the Faculty of Electrical Engineering and Computing and Rudjer Boskovic Institute, within a postgraduate course subject ''Detectors and electronic instrumentation for particle physics''. A basic motivation is due to a lack of specialized literature in Croatian language in the field of protection of ionising radiation as well as the incompleteness of Croatian terminology in the same field. That is a general problem all over the World because the most glossaries are usually connected either with nuclear power plants or with an application of ionising radiation in medicine. On the other hand, a necessity for the specialized literature for radiation protection which follows a development of modern particle physics and its detection technique is rapidly growing up. A work and development on the Glossary were faced with serious difficulties, since various translations of foreign words and acronyms have already been used by various authors in Croatian literature. Different interpretations of the same term or concept, from diverse sources, had to be very often reconciled. However, the biggest challenge was finding proper Croatian words for the foreign terms, concepts, properties, and quantities which have not yet been commonly used so far in Croatian papers or/and Croatian legislative acts. According to our knowledge this seems to be the first comprehensive Glossary, describing the field of ionising radiation protection and bringing of 300 related entries (terms and guidelines). That is, certainly, the first characteristic Thesaurus in Croatian which includes background of modern physics and chemistry, particle phenomenology and its measurement, all dedicated to the radiological protection of workers, environment and people of the World. A Glossary brings a wide spectrum of terms of broad area of chemistry, radiation protection, nuclear and particle physics. A

  19. An overview of measuring and modelling dose and risk from ionising radiation for medical exposures

    International Nuclear Information System (INIS)

    Tootell, Andrew; Szczepura, Katy; Hogg, Peter

    2014-01-01

    Purpose: This paper gives an overview of the methods that are used to calculate dose and risk from exposure to ionizing radiation as a support to other papers in this special issue. Background: The optimization of radiation dose is a legal requirement in medical exposures. This review paper aims to provide the reader with knowledge of dose by providing definitions and concepts of absorbed, effective and equivalent dose. Criticisms of the use of effective dose to infer the risk of an exposure to an individual will be discussed and an alternative approach considering the lifetime risks of cancer incidence will be considered. Prior to any dose or risk calculation, data concerning the dose absorbed by the patient needs to be collected. This paper will describe and discuss the main concepts and methods that can be utilised by a researcher in dose assessments. Concepts behind figures generated by imaging equipment such as dose-area-product, computed tomography dose index, dose length product and their use in effective dose calculations will be discussed. Processes, advantages and disadvantages in the simulation of exposures using the Monte Carlo method and direct measurement using digital dosimeters or thermoluminescent dosimeters will be considered. Beyond this special issue, it is proposed that this paper could serve as a teaching or CPD tool for personnel working or studying medical imaging

  20. Protection of the environment from ionising radiation: ethical issues

    International Nuclear Information System (INIS)

    Oughton, D.

    2002-01-01

    The paper identifies some of the main ethical issues concerning the protection of the environment from radiation and suggests ways in which ethics can aid in developing a system of protection. After a presentation of background on ethical theory and environmental ethics, three main issues related to practical environmental protection are discussed: First, the question of who or what has moral standing; second the appropriate level of protection; and third compatibility with other environmental stressors. In summary, the paper argues that there are strong ethical grounds for efforts to provide for the protection of the environment and that, all other things being equal, there is no reason to treat ionising radiation differently to other environmental stressors. (author)

  1. Rule concerning sanitary protection against ionizing radiations: novelties

    International Nuclear Information System (INIS)

    Bercedo, A.; Carmena, P.; Prieto, J. A.; Rubio, G.; Sollet, E.; Sustacha, D.

    2002-01-01

    Last July the a new legal Rule concerning Sanitary Protection against Ionising Radiation was published, as a transposition of the EU Directive about the Basic Norms related to the sanitary protection of workers and population against the risks resultant of the ionising radiation. The origin of this legislation goes back to the revision of the protection doctrine by the International Commission of Radiation Protection (ICRP) en the year 1990. El scope of the revised Rule is the regulation of the protection of population and workers against ionising radiation, the establishment of the national protection system with its exposition and dose limits and the correspondent penalty regime. It also modifies the maximum radiation dose limits and reinforces the application of the optimisation principle in the use of ionising radiation. In this article, the novelties introduced by the new Rule are commented in detail, ordered by the Titles I to IX in which the Rule is divided. (Author)

  2. Biomarkers specific to densely-ionising (high LET) radiations

    International Nuclear Information System (INIS)

    Brenner, D.J.; Okladnikova, N.; Hande, P.; Burak, L.; Geard, C.R.; Azizova, T.

    2001-01-01

    There have been several suggestions of biomarkers that are specific to high LET radiation. Such a biomarker could significantly increase the power of epidemiological studies of individuals exposed to densely-ionising radiations such as alpha particles (e.g. radon, plutonium workers, individuals exposed to depleted uranium) or neutrons (e.g. radiation workers, airline personnel). We discuss here a potentially powerful high LET biomarker (the H value) which is the ratio of induced inter-chromosomal aberrations to intra-arm aberrations. Both theoretical and experimental studies have suggested that this ratio should differ by a factor of about three between high LET radiation and any other likely clastogen, and will yield more discrimination than the previously suggested F value (ratio of inter-chromosomal aberrations to intra-chromosomal inter-arm aberrations). Evidence of the long-term stability of such chromosomal biomarkers has also been generated. Because these stable intra-arm and inter-chromosomal aberrations are (1) frequent and (2) measurable at long times after exposure, this H value appears to be a practical biomarker of high LET exposure, and several in vitro studies have confirmed the approach for unstable aberrations. The approach is currently being tested in a population of Russian radiation workers exposed several decades ago to high- or low LET radiation. (author)

  3. Roentgen's heritage and radiation phobia, a challenge to radiation research and radiation protection

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1996-01-01

    Present practice of applying linearity to assessing risk even from very low dose exposure of complex tissues to ionising radiation has been evaluated in terms of microdosimetric approach to energy deposition in tissues, nature of radiation and also the magnitudes of conditioning and challenging doses. This paper discusses the probability of radiation risk at quite low doses on the tissues in terms of simple mathematical terms. (author). 13 refs., 2 figs., 1 tab

  4. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos

    International Nuclear Information System (INIS)

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Yu, K N; Cheng, S H

    2013-01-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ∼4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. (paper)

  5. Forward-scattered radiation from the compression paddle should be considered in glandular dose estimations

    International Nuclear Information System (INIS)

    Hemdal, B.

    2011-01-01

    From major protocols on dosimetry in mammography, there is no doubt that the incident air kerma should be evaluated without backscattered radiation to the dosemeter. However, forward-scattered radiation from the compression paddle is neglected. The aim of this work was to analyse the contribution of forward-scattered radiation for typical air kerma measurements. Measurements of forward-scatter were performed with a plane-parallel ionisation chamber on four mammography units. The forward-scatter contribution to the air kerma was 2-10 % and increased with the compression paddle thickness, but also with the half-value layer value. For incident air kerma in mammography, it can be as important to consider forward scattered as backscattered radiation. If an ionisation chamber is used, the compression paddle should be in contact with the chamber; otherwise the air kerma and absorbed dose will be underestimated. If a dosemeter based on semiconductors with much less sensitivity to scattered radiation is used, it is suggested that a forward-scatter factor (FSF) is applied. Based on the results of this work, FSF=1.06 will lead to a maximum error of ∼4 %. (authors)

  6. Nailfold Capillaroscopic Monitoring as Preventive Medicine in Subjects Exposed to Ionising Radiation

    International Nuclear Information System (INIS)

    Pennarola, R.; Perdereau, B.; Trenta, G.; Cosset, J. M.

    2004-01-01

    Capillaroscopy consists of in vivo observation of microvessels using special microscopes with a short focal length. Normally, when looking at the nail fold, where capillaroscopy is commonly used, the capillaries ares arranged like hairpins, lined up in parallel or obliquely to the field of vision in three or four layers above the subpapillary venous network, approximately 20 loops per mm''2. Ionising radiation can badly damage the skin and underlying tissues. The capillary network is among the first structures to show an effect. Moderate doses of radiation cause damage endothelial cells with hypertrophy or hyperplasia of endothelial cells, which can block capillaries while having little effect on larger vessels. Occlusion of capillaries impedes blood flow no only in nearby tissue but also in areas farther away. Capillaroscopic examination of the nail fold is irreplaceable in the field of radioprotection especially in cases of exposure of the hands. Nailfold capillaroscopic monitoring lets us observe the degree to which qualitative and quantitative alterations of the capillaries are a function of the evolution of the lesion. Therefore, for biological monitoring of subjects exposed to radiation the authors propose to use this microvascular quantitative analysis of the nailfold region. Experience, matured over many years by our team, highlights the relation between the sum of repeated exposure and the importance of tissue alterations evidenced by microcirculation. (Author) 9 refs

  7. Improved communication, understanding of risk perception and ethics related to ionising radiation.

    Science.gov (United States)

    Perko, Tanja; Raskob, Wolfgang; Jourdain, Jean-Rene

    2016-06-06

    In Europe today, institutions, media and the general public exchange information about ionizing radiation and associated risks. However, communication about ionising radiation with the general public has to be further improved, as has been previously highlighted by international responses to the 2011 accident in Japan. This article reports the main activities and findings in this field from the following three FP7 projects: EAGLE, PREPARE and OPERRA and discussed by a broad spectrum of stakeholders at the conference RICOMET 2015. These projects, among other aims, also investigate how communication about ionising radiation in different fields could be improved and harmonised, how radiological risks are perceived, how to encourage ethical considerations in all fields of nuclear applications and what kind of transdisciplinary research is needed. The projects relate to several domains; the first relates to education, training and communication, the second to nuclear emergency preparedness and response, and the third to research and development in the radiation protection field. Incorporation of stakeholder engagement activities such as the RICOMET conference broadens social and ethical aspects and takes them into account during coordination activities as well as during core scientific and nuclear research and development performed in the projects. These activities offered opportunities for moving closer to a citizen-centred ideal of risk communication in particular and nuclear research and development in general.

  8. Response of radiation monitors for ambient dose equivalent, H*(10)

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos

    2001-01-01

    Radiation monitors are used all over the world to evaluate if places with presence of ionising radiation present safe conditions for people. Radiation monitors should be tested according to international or national standards in order to be qualified for use. This work describes a methodology and procedures to evaluate the energy and angular responses of any radiation monitor for ambient dose equivalent, H*(10), according to the recommendations of ISO and IEC standards. The methodology and the procedures were applied to the Monitor Inteligente de Radiacao MIR 7026, developed by the Instituto em Engenharia Nuclear (IEN), to evaluate and to adjust its response for H*(10), characterizing it as an ambient dose equivalent meter. The tests were performed at the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), at Instituto de Radioprotecao e Dosimetria (IRD), and results showed that the Monitor Inteligente de Radiacao MIR 7026 can be used as an EI*(10) meter, in accordance to the IEC 60846 standard requirements. The overall estimated uncertainty for the determination of the MIR 7026 response, in all radiation qualities used in this work, was 4,5 % to a 95 % confidence limit. (author)

  9. EPR spectroscopy for the detection of foods treated with ionising radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.; Dziedzic-Goclawska, A.; Ostrowski, K.

    1996-01-01

    The advantage of electron paramagnetic resonance spectroscopy (EPR or ESR) as a tool for the control of irradiated food lies in its sensitivity and accuracy. Ionising radiation produces, in irradiated materials, paramagnetic species of different kinds, i.e. radicals, radical-ions and paramagnetic centres, which can be measured by EPR but most of them are not stable enough to be used for the detection of irradiation. It is because radiation-induced paramagnetic species are thermodynamically less stable than surrounding molecules and take part in fast radiolytic reactions leading to the formation of final diamagnetic products that they are not detectable by the EPR method. Most of organic radicals produced by radiation in the liquid phase ae unstable but if the unpaired electron is incorporated into the complex polymeric system as in peptides and polysaccharides and is structurally isolated from the water, its stability is markedly increased. Since 1954 it is known that ionising radiation produces paramagnetic entities in biological materials, cells and tissues and some are stable enough to be observed by EPR spectroscopy at room temperature. The present paper describes and discusses that part of results obtained by this group during the period of ADMIT activity (1989-94) which are original and may be useful to those who will be working in the near future on the development of uniform control systems for the detection of irradiated food. The intention was to focus attention on these facts and data which influence the certainty of the detection in both positive and negative manner. (author)

  10. Nanodosimetry: The missing link between radiobiology and radiation physics?

    International Nuclear Information System (INIS)

    Nettelbeck, H.; Rabus, H.

    2011-01-01

    It has long been assumed that the initiation of radiation induced damage to biological cells is dominated by inelastic interactions occurring at the location of the DNA or within its vicinity. The subcellular distribution of such interactions therefore plays a key role in the biological effectiveness of ionising radiation, where appropriate definitions of concepts such as radiation quality, which cannot be described by macroscopic quantities like absorbed dose, demand a study of particle track structure on the nanometre scale. This has presented an ongoing challenge in the metrology of ionising radiation to either supplement or replace the concept of absorbed dose with another quantity that accounts for the particle track structure within radiosensitive biological targets. A potential means for characterising radiation quality in this way may be that of nanodosimetry, a concept based on the frequency distribution of ionisation cluster sizes induced by single ionising particles interacting in nanometric volumes. This work gives a brief overview of nanodosimetric concepts and recent developments in the field of nanodosimetry.

  11. Open-air ionisation chambers with walls of soft-tissue equivalent material for measuring photon doses

    International Nuclear Information System (INIS)

    Vialettes, H.; Anceau, J.C.; Grand, M.; Petit, G.

    1968-01-01

    The ionisation chambers presented in this report constitute a contribution to research into methods of carrying out correct determinations in the field of health physics. The use of a mixture of teflon containing 42.5 per cent by weight of carbon for the chamber walls makes it possible to measure directly the dose absorbed in air through 300 mg/cm 2 of soft tissue and, consequently, the dose absorbed in the soft tissues with a maximum error of 10 per cent for photon energies of between 10 keV and 10 MeV. Furthermore since this material does not contain hydrogen, the chamber has a sensitivity to neutrons which is much less than other chambers in current use. Finally the shape of these chambers has been studied with a view to obtaining a satisfactory measurement from the isotropy point of view; for example for gamma radiation of 27 keV, the 3 litre chamber is isotropic to within 10 per cent over 270 degrees, and the 12 litre chamber is isotropic to within 10 per cent over 300 degrees; for 1.25 MeV gamma radiation this range is extended over 330 degrees for the 3 litre chamber, and 360 degrees for the 12 litre chamber. This report presents the measurements carried out with these chambers as well as the results obtained. These results are then compared to those obtained with other chambers currently used in the field of health physics. (authors) [fr

  12. Staff radiation doses associated with nuclear medicine procedures - a review of some recent measurements

    International Nuclear Information System (INIS)

    Harding, L.K.; Mostafa, A.B.; Thomson, W.H.

    1990-01-01

    Despite publication of the Approved Code of Practice and the Notes for Guidance, implementation of the UK Ionising Radiation Regulations has required local interpretation by nuclear medicine departments. One problem has been the lack of data upon which decisions can be based. In the last five years we and others have made a number of measurements of radiation doses to staff relating to nuclear medicine practice. This paper collates, summarizes and comments on this information. Where possible, results have been expressed in relation to the workload of an average nuclear medicine department. (author)

  13. Characterisation of a novel immunophilin-like gene, repressed by low doses of ionising radiation; identification of interacting proteins

    International Nuclear Information System (INIS)

    Moore, Stephen

    2002-01-01

    The effects of low dose ionising radiation on the DIR1 gene and subsequent cellular effects have been well established (Robson et al., 1997, 1999, 2000). In this study, we aimed to further characterise the DIR1 gene and protein, using bioinformatic and experimental approaches. Analysis of the 5' upstream region of the DIR1 gene, revealed a promising putative promoter-containing region of 309bp, located 1034bp upstream of the open reading frame. The analysis also revealed 88 transcription factor binding sites (TFBS), some of which have been shown to have their activity modulated following exposure to both ionising and UV radiation. The original transcription start site (TSS), was demonstrated to be incorrect by using primer extension analysis, which located the start site at 229bp upstream of the DIR1 gene. However, subsequent bioinformatic analysis revealed two TSS sites at 86 and 220bp respectively, which correlated with the true TSS. The DIR1 protein was shown to differ from the immunophilin proteins in terms of structure and active sites, with the exception of the highly conserved TPR domains. The protein was shown to contain putative protein kinase C (PKC) and caesin kinase II (CKII) sites. However, no band was observed for the DIR1 protein with a PKC assay and the CKII assay demonstrated a 21409.5 count per minute (cpm) for DIR1 in comparison to a 617384.07 cpm for the positive control, therefore demonstrating that the DIR1 protein is not phosphorylated by either enzyme. The expressed His-tagged DIR1 protein was shown by western blot to be insoluble and also demonstrated a 21.9KDa increase in molecular weight at 60KDa in comparison to the predicted size of 38.2KDa. Expression of a HA-tagged DIR1 protein in mammalian L132 cells revealed that the protein was localised to the cytoplasm with aggregation around the nuclear membrane. Subsequent immunocytochemistry results following 0.2 Gray (Gy) irradiation demonstrated that the protein translocated to the nucleus

  14. Radiation dose assessment for occupationally exposed workers in ...

    African Journals Online (AJOL)

    2017-01-31

    Jan 31, 2017 ... with the legislation and safety requirements, has not yet been established. ... occupational exposure to ionising radiation such as X-rays. This study was hence ..... ionizing radiation), conventional X-ray machines or mobile.

  15. Radiation dose to workers due to the inhalation of dust during granite fabrication

    International Nuclear Information System (INIS)

    Zwack, L M; Stewart, J H; McCarthy, J F; Allen, J G; McCarthy, W B

    2014-01-01

    There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr −1 ) and limits applicable to the general public (1 mSv yr −1 ). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m −3 over a full year had an estimated radiation dose of 0.062 mSv yr −1 . Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr −1 and 0.002 mSv yr −1 , respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr −1 . (paper)

  16. Publication of new results from the INWORKS epidemiological study about the risk of cancer among nuclear industry workers chronically exposed to low ionizing radiation doses

    International Nuclear Information System (INIS)

    2015-01-01

    In this cohort study, 308297 workers in the nuclear industry from France, the United Kingdom, and the United States with detailed monitoring data for external exposure to ionising radiation were linked to death registries. Excess relative rate per Gy of radiation dose for mortality from cancer was estimated. Follow-up encompassed 8.2 million person years. Of 66632 known deaths by the end of follow-up, 17?957 were due to solid cancers. Results suggest a linear increase in the rate of cancer with increasing radiation exposure. The average cumulative colon dose estimated among exposed workers was 20.9 mGy (median 4.1 mGy). The estimated rate of mortality from all cancers excluding leukaemia increased with cumulative dose by 48% per Gy (90% confidence interval 20% to 79%), lagged by 10 years. Similar associations were seen for mortality from all solid cancers (47% (18% to 79%)), and within each country. The estimated association over the dose range of 0-100 mGy was similar in magnitude to that obtained over the entire dose range but less precise. Smoking and occupational asbestos exposure are potential confounders; however, exclusion of deaths from lung cancer and pleural cancer did not affect the estimated association. Despite substantial efforts to characterise the performance of the radiation dosimeters used, the possibility of measurement error remains. The study provides a direct estimate of the association between protracted low dose exposure to ionising radiation and solid cancer mortality. Although high dose rate exposures are thought to be more dangerous than low dose rate exposures, the risk per unit of radiation dose for cancer among radiation workers was similar to estimates derived from studies of Japanese atomic bomb survivors. Quantifying the cancer risks associated with protracted radiation exposures can help strengthen the foundation for radiation protection standards

  17. Using ionising radiation against terrorism and contrabandage determination of the occurring dose values

    International Nuclear Information System (INIS)

    Hupe, O.; Ankerhold, U.

    2006-01-01

    Full text of publication follows: Presently the combat against terrorism and contrabandage is gaining in importance. This leads to a growing need for human inspections for weapons or chemical substances like drugs or explosives at e.g. airports and federal buildings. Up to now, this has been done mainly by pat search or the use of metal detectors. But the installed metal detection systems can have a high rate of false alerts, caused e.g. by belt buckles, leading to a high rate of time consuming manual follow-up checks. Also, it is not possible to detect chemical substances or modern plastic weapons. Therefore, a lot of efforts have been made to develop reliable technologies for passenger and cargo controls. Up to now, the demands placed on control systems for the use in routine are fulfilled only by X-ray screening systems. X-ray scanners have been used successfully for several years for personnel controls (checks) at diamond mines and prisons or as cargo scanner. So far, however, these systems have not been used frequently for human inspections, e.g. at airports. In general, two aspects must be considered wit h regard to the use of X-ray personnel scanners: the privacy aspect, because the body shape is seen, and the radiation protection aspect. For radiation protection purposes, and to observe the prescribed dose limits, it is extremely important to know the dose a person gets knowingly when passing a personnel scanner or, as a stowaway, a cargo scanner. Within the scope of a research project measurements were performed on different types of personnel and cargo scanners, using the transmission and backscattering method. All scanners investigated work with a high dose rate and use a short irradiation time. Because of this technique, reliable values of the personal and ambient dose equivalent, H p (10) and H * (10), could be determined only with a specially developed measuring system (presented in a poster at this conference). The scanner systems and dose values

  18. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  19. Protection of the environment from ionising radiation: ethical issues

    International Nuclear Information System (INIS)

    Oughton, Deborah

    2003-01-01

    The paper identifies some of the main ethical issues concerning the protection of the environment from radiation and suggests ways in which ethics can aid in developing a system of protection. After a presentation of background on ethical theory and environmental ethics, three main issues related to environmental protection are discussed: First, the question of valuing the environment and implications for the definition of harm and monetary valuation of environmental goods; second, difficulties with scientific uncertainty and applications of the precautionary principle; and third, issues concerned with the distribution of risk and its relevance fo participation in decision-making. In summary, the paper argues that there are strong ethical grounds to provide for the protection of the environment and that, all other things being equal, there is no reason to treat ionising radiation differently to other environmental stressors

  20. Protection of the environment from ionising radiation: ethical issues.

    Science.gov (United States)

    Oughton, Deborah

    2003-01-01

    The paper identifies some of the main ethical issues concerning the protection of the environment from radiation and suggests ways in which ethics can aid in developing a system of protection. After a presentation of background on ethical theory and environmental ethics, three main issues related to environmental protection are discussed: First, the question of valuing the environment and implications for the definition of harm and monetary valuation of environmental goods; second, difficulties with scientific uncertainty and applications of the precautionary principle; and third, issues concerned with the distribution of risk and its relevance for participation in decision-making. In summary, the paper argues that there are strong ethical grounds to provide for the protection of the environment and that, all other things being equal, there is no reason to treat ionising radiation differently to other environmental stressors. Copyright 2002 Elsevier Science Ltd.

  1. Transcription-based model for the induction of chromosomal exchange events by ionising radiation

    International Nuclear Information System (INIS)

    Radford, I.A.

    2003-01-01

    The mechanistic basis for chromosomal aberration formation, following exposure of mammalian cells to ionising radiation, has long been debated. Although chromosomal aberrations are probably initiated by DNA double-strand breaks (DSB), little is understood about the mechanisms that generate and modulate DNA rearrangement. Based on results from our laboratory and data from the literature, a novel model of chromosomal aberration formation has been suggested (Radford 2002). The basic postulates of this model are that: (1) DSB, primarily those involving multiple individual damage sites (i.e. complex DSB), are the critical initiating lesion; (2) only those DSB occurring in transcription units that are associated with transcription 'factories' (complexes containing multiple transcription units) induce chromosomal exchange events; (3) such DSB are brought into contact with a DNA topoisomerase I molecule through RNA polymerase II catalysed transcription and give rise to trapped DNA-topo I cleavage complexes; and (4) trapped complexes interact with another topo I molecule on a temporarily inactive transcription unit at the same transcription factory leading to DNA cleavage and subsequent strand exchange between the cleavage complexes. We have developed a method using inverse PCR that allows the detection and sequencing of putative ionising radiation-induced DNA rearrangements involving different regions of the human genome (Forrester and Radford 1998). The sequences detected by inverse PCR can provide a test of the prediction of the transcription-based model that ionising radiation-induced DNA rearrangements occur between sequences in active transcription units. Accordingly, reverse transcriptase PCR was used to determine if sequences involved in rearrangements were transcribed in the test cells. Consistent with the transcription-based model, nearly all of the sequences examined gave a positive result to reverse transcriptase PCR (Forrester and Radford unpublished)

  2. Epidemiological methods of assessing risks from low level occupational exposure to ionising radiation

    International Nuclear Information System (INIS)

    Reissland, J.A.

    1982-01-01

    The resolution of radiation-attributable malignancies from the background of malignancies which are responsible for about 20% of all deaths in the Western world, presents a formidable challenge to epidemiological methods. Some of the major difficulties facing those with the task of estimating the risks associated with exposure to low level ionising radiation are discussed, particularly in the context of radiological protection. Some of the studies currently in progress are summarised and suggestions are made for other work which may help to contribute to a better understanding of the quantitative aspects of radiation risk assessment. (author)

  3. A framework for assessing the impact of ionising radiation on non-human species ICRP Publication 91

    International Nuclear Information System (INIS)

    Valentin, J.

    2003-01-01

    In its 1990 Recommendations, the ICRP indicated that it believed that the standards of environmental control needed to protect man to the degree currently thought desirable would ensure that other species are not put at risk. The ICRP considers that its system of radiological protection has provided a fairly good indirect protection of the human habitat. However, no internationally agreed criteria or policies explicitly address protection of the environment from ionising radiation, and it is difficult to determine or demonstrate whether or not the environment is adequately protected from potential impacts of radiation under different circumstances. The present report suggests a framework, based on scientific and ethical-philosophical principles, by which a policy for the protection of non-human species could be achieved. The primary purpose of developing such a framework is to fill a conceptual gap in radiological protection; it does not reflect any particular concern over environmental radiation hazards. The proposed framework is designed to harmonise with the ICRP's approach to the protection of human beings, but does not intend to set regulatory standards. Instead, the proposed framework is intended to be a practical tool to provide high-level advice and guidance for regulators and operators. An agreed set of quantities and units, a set of reference dose models, reference dose-per-unit-intake (or unit exposure), and reference fauna and flora are required to serve as a basis for the more fundamental understanding and interpretation of the relationships between exposure and dose and between dose and certain categories of effect, for a few, clearly defined types of animals and plants. As a first step, a small set of reference fauna and flora with supporting databases will be developed by the ICRP. Others can then develop more area- and situation-specific approaches to assess and manage risks to non-human species

  4. Nucleation in an ultra low ionisation environment

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    in aerosol nucleation. By exposing a controlled volume of air to varying levels of ionising radiation, and with the minimum ionisation level vastly reduced compared to normal surface laboratory conditions, we have provided both a validation of earlier studies of ion-induced nucleation and extended...

  5. Education and training issues in individual monitoring of ionising radiation

    International Nuclear Information System (INIS)

    Dimitriou, P.; Kamenopoulou, V.

    2011-01-01

    The present article deals with the education and training (E and T) issues of individual monitoring (IM) of ionising radiation, based on the requirements provided by the Basic Safety Standards EURATOM Directive and the European Commission Technical Recommendations for IM of external radiation. The structure and the objectives of E and T programmes addressed to the staff of dosimetry services, in order to allow the recognition and ensure the continuity of expertise are discussed. The necessity for the establishment of a national strategy for building competence in IM through information, education, training and retraining programmes, addressed to the individually monitored personnel is underlined. The train the trainers' concept is recognised as being an important tool for optimising resources and transferring the skills necessary for building competence. The conditions under which an efficient train the trainers' approach can be established are discussed. Examples of curricula concerning the key persons involved in the provision of E and T in occupational radiation protection are also given. (authors)

  6. Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.

    Science.gov (United States)

    Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A

    2004-12-01

    Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.

  7. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    This textbook is addressed to all those concerned with the protection of radiation workers. It provides full coverage of the implications of radiation in exposed workers, and, after a chapter outlining, in simple terms, the basic facts about radiation, deals with measurement of ionising radiation; radiation dosimetry; effectiveness of absorbed dose; general biological effects of ionising radiation; somatic effects of radiation; the acute radiation syndrome; other somatic effects; hereditary effects; radiation protection standards and regulations; radiation protection; medical supervision of radiation workers; general methods of diagnosis and treatment; metabolism and health problems of some radioisotopes; plutonium and other transuranium elements; radiation accidents; emergency plans and medical care; atomic power plants; medico-legal problems

  8. Nuclear and cytoplasmic signalling in the cellular response to ionising radiation

    International Nuclear Information System (INIS)

    Szumiel, Irena

    2001-01-01

    DNA is the universal primary target for ionising radiation; however, the cellular response is highly diversified not only by differential DNA repair ability. The monitoring system for the ionising radiation-inflicted DNA damage consists of 3 apparently independently acting enzymes which are activated by DNA breaks: two protein kinases, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase) and a poly(ADP-ribose) polymerase, PARP-1. These 3 enzymes are the source of alarm signals, which affect to various extents DNA repair, progression through the cell cycle and eventually the pathway to cell death. Their functions probably are partly overlapping. On the side of DNA repair their role consists in recruiting and/or activating the repair enzymes, as well as preventing illegitimate recombination of the damaged sites. A large part of the nuclear signalling pathway, including the integrating role of TP53 has been revealed. Two main signalling pathways start at the plasma membrane: the MAPK/ERK (mitogen and extracellular signal regulated protein kinase family) 'survival pathway' and the SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) 'cell death pathway'. The balance between them is likely to determine the cell's fate. An additional important 'survival pathway' starts at the insulin-like growth factor type I receptor (IGF-IR), involves phosphoinositide- 3 kinase and Akt kinase and is targeted at inactivation of the pro-apoptotic BAD protein. Interestingly, over-expression of IGF-IR almost entirely abrogates the extreme radiation sensitivity of ataxia telangiectasia cells. When DNA break rejoining is impaired, the cell is unconditionally radiation sensitive. The fate of a repair-competent cell is determined by the time factor: the cell cycle arrest should be long enough to ensure the completion of repair. Incomplete repair or misrepair may be tolerated, when generation of the death signal is prevented. So, the character and timing

  9. International conference on individual monitoring of ionising radiation

    International Nuclear Information System (INIS)

    Vanhavere, Filip

    2016-01-01

    This special issue of the journal Radiation Protection Dosimetry is dedicated to the Proceedings of the International Conference on Individual Monitoring of Ionising Radiation (IM2015), which is the fifth of a series of conferences dealing with individual monitoring. This conference series is initiated by EURADOS, the European Radiation Dosimetry Group, and is organised every 5 years. In 2015, the conference was jointly organised by the Belgian Nuclear Research Centre (SCK.CEN), AV Controlatom, and the Vrije Universiteit Brussel. It brought together scientists from regulatory authorities, individual monitoring services (IMS), research bodies, European networks and companies, for the purpose of facilitating the dissemination of knowledge, exchanging experiences and promoting new ideas in the field of individual monitoring. After the conference, 124 papers were submitted for publication in these peer-reviewed proceedings. From these, 103 were finally accepted for publication. The help of the numerous referees and the guest editors is very much appreciated. These proceedings provide a full image of the IM2015 conference. The high-level publications will be useful to improve the state of individual monitoring all over the world and aim to inspire many scientists to continue their work on a better monitoring of radiologically exposed workers

  10. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    International Nuclear Information System (INIS)

    Johnsen, Boel; Fasmer, Kristine Eldevik; Boye, Kjetil; Rosendahl, Karen; Aukland, Stein Magnus; Trovik, Clement; Biermann, Martin

    2017-01-01

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether 18 F-fluorodeoxyglucose positron emission tomography - computed tomography ( 18 F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  11. An isotope view on ionising radiation as a source of sulphuric acid

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Bork, Nicolai Christian; Hattori, S.

    2012-01-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a miss...... yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion....

  12. An isotopic analysis of ionising radiation as a source of sulphuric acid

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Bork, Nicolai Christian; Hattori, S.

    2012-01-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a miss...... of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion....

  13. Molecular alterations in thyroid tumors induced after exposure to ionising radiation in infancy

    Energy Technology Data Exchange (ETDEWEB)

    Bounacer, A.; Wicker, R.; Sarasin, A.; Suarez, H.G. [Institut Gustave Roussy, 94 - Villejuif (France); Schlumberger, M.; Caillou, B. [Institut de Recherches sur le Cancer, 94 - Villejuif (France)

    1997-03-01

    We investigated the presence of molecular lesions in the ras, gsp and ret genes, in epithelial thyroid tumors developed in patients who had received ionising radiation therapy in infancy for benign or malignant conditions. Our data showed: a similar frequency of ras and gsp activating mutations in radiation-associated and `spontaneous` tumors. However, while the mutations are only transversions in the radiation-associated tumors, they are transversions as well as transitions in the `spontaneous` ones and a mutation in codon 691 giving rise to a polymorphism in the ret gene, and frequently associated to a C-cell hyperplasia in radiation-associated tumors. The frequency of this mutation was significantly higher (60%) in these tumors, than in normal controls (21%) or `spontaneous` epithelial thyroid tumors (23%). (author)

  14. Molecular alterations in thyroid tumors induced after exposure to ionising radiation in infancy

    International Nuclear Information System (INIS)

    Bounacer, A.; Wicker, R.; Sarasin, A.; Suarez, H.G.; Schlumberger, M.; Caillou, B.

    1997-01-01

    We investigated the presence of molecular lesions in the ras, gsp and ret genes, in epithelial thyroid tumors developed in patients who had received ionising radiation therapy in infancy for benign or malignant conditions. Our data showed: a similar frequency of ras and gsp activating mutations in radiation-associated and 'spontaneous' tumors. However, while the mutations are only transversions in the radiation-associated tumors, they are transversions as well as transitions in the 'spontaneous' ones and a mutation in codon 691 giving rise to a polymorphism in the ret gene, and frequently associated to a C-cell hyperplasia in radiation-associated tumors. The frequency of this mutation was significantly higher (60%) in these tumors, than in normal controls (21%) or 'spontaneous' epithelial thyroid tumors (23%). (author)

  15. Applying the ionising radiation regulations to radon in the UK workplace

    International Nuclear Information System (INIS)

    Denman, A. R.

    2008-01-01

    As a response to the identification of a health risk from workplace radon in the UK, the Ionising Radiations Regulations include the protection of workers from excessive levels of radon. Employers are required to make risk assessments, and the interpretation of the Health and Safety Executive is that the regulations apply to workplace premises in locations already designated as Radon Affected Areas for domestic purposes, with the difference that in workplaces, it is the maximum winter radon concentration rather than the annual average which is the parameter of interest. This paper discusses the rationale behind the current regulatory environment, outlines the role and duties of Accredited Radiation Protection Advisers and summarises the strategies necessary to conform to the regulations. (authors)

  16. Mutation to ouabain-resistance in Chinese hamster cells: induction by ethyl methanesulphonate and lack of induction by ionising radiation

    International Nuclear Information System (INIS)

    Thacker, J.; Stephens, M.A.; Stretch, A.

    1978-01-01

    The spontaneous frequency of mutants resistant to growth inhibition by ouabian (OUAsup(R) mutants) was found to be about 5.10 -5 per viable cell in uncloned cultures of Chinese hamster V79-4 cells. In freshly-isolated clones or cultures started from a few cells this frequency was initially reduced to about 1.10 -6 in 1 mM ouabain. No increase in the frequency of OUAsup(R) mutants was found in cultures treated with γ-rays despite exploration of such variables as radiation dose, ouabain concentration, post-treatment interval before selection, cell density in selective medium, and clonal state of the cells at the time of adding ouabain (in situ vs. respreading method). A similar negative result was found for accelerated helium ions, for which the mutagenic effectiveness per unit dose has been shown to be about 10 times higher than γ-rays for the induction of thioguanine-resistant mutants in these cells. Recent evidence is reviewed in support of the suggestion that ionising radiation is unable to induce OUAsup(R) mutants because of the severity of the genetic damage it causes. (Auth.)

  17. An investigation of the interactions of low doses of ionising radiation and chemical pollutants on Artemia Salina

    International Nuclear Information System (INIS)

    Danova, D.; Benova, K.; Hromada, R.; Falis, M.; Dvorak, P.

    2004-01-01

    Nuclear reactor failures present a risk of global contamination which can be affected by other environmental factors, such as chemicals. The present study has investigated the effect of low doses of gamma radiation in relation to the presence of low doses of Cr and Cd. (authors)

  18. The development of the international and national radiation protection law

    International Nuclear Information System (INIS)

    Bischof, W.

    1978-01-01

    The author reports in detail about the development of the international radiation protection law, gives a general survey of domestic legislation in the FRG and abroad and presents the individual problems of the radiation protection laws in a comparative way, such as radiation protection principles/dose limit values, licensing and monitoring regulations disposal of radioactive wastes, application of ionising rays and radioactive substances to men as well as protection from non-ionising radiation. (UN) [de

  19. The bovine tuberculosis burden in cattle herds in zones with low dose radiation pollution in Ukraine

    Directory of Open Access Journals (Sweden)

    Svitlana Pozmogova

    2009-06-01

    Full Text Available The authors describe a study of the tuberculosis (TB incidence in cattle exposed to low doses of radiation resulting from the Chernobyl (pronounced ‘Chornobyl’ in Ukrainian nuclear plant catastrophe in 1986. The purpose of the study was to determine if ionising radiation influences the number of outbreaks of bovine TB and their severity on farms in the Kyiv, Cherkasy and Chernigiv regions of Ukraine. These farms are all located within a 200 km radius of Chernobyl and have had low-dose radiation pollution. Pathological and blood samples were taken from cattle in those regions that had positive TB skin tests. Mycobacterium spp. were isolated, differentiated by PCR, analysed and tested in guinea-pigs and rabbits. Species differentiation showed a significant percentage of atypical mycobacteria, which resulted in the allergic reactions to tuberculin antigen in the skin test. Mixed infection of M. bovis and M. avium subsp. hominissuis was found in three cases. The results concluded that low-dose radiation plays a major role in the occurrence of bovine TB in regions affected by the Chernobyl nuclear disaster.

  20. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Sisko Salomaa

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  1. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  2. A simplified model for predicting skin dose received by patients from ...

    African Journals Online (AJOL)

    Use of ionising radiation in any sector requires doses to be kept as low as reasonable achievable (ARALA). Thus, in keeping radiation dose to skin from diagnostic X-rays, as low as is required by this philosophy, it is useful to obtain an estimate of skin dose before the actual dose is administered. The aim of this paper is to ...

  3. The Swedish radiation protection institute's regulations on general obligations in medical and dental practices using ionising radiation; issued on April 28, 2000

    International Nuclear Information System (INIS)

    2000-04-01

    These regulations are applicable to medical and dental practices with ionising radiation used for medical exposures. The regulations are also applicable to exposures of persons who knowingly and willingly, other than as part of their occupation, support and comfort patients undergoing medical exposure

  4. Does a little radiation do you good?

    International Nuclear Information System (INIS)

    Brown, J.K.

    1987-01-01

    The effects of ionising radiation may not always be harmful. Numerous experiments in plants and animals have shown that low doses of radiation delivered slowly over a certain dose range, can increase the rate of growth and development, prolong lifespan and reduce the incidence of chronic diseases

  5. The natural radiation background

    International Nuclear Information System (INIS)

    Duggleby, J.C.

    1982-01-01

    The components of the natural background radiation and their variations are described. Cosmic radiation is a major contributor to the external dose to the human body whilst naturally-occurring radionuclides of primordial and cosmogenic origin contribute to both the external and internal doses, with the primordial radionuclides being the major contributor in both cases. Man has continually modified the radiation dose to which he has been subjected. The two traditional methods of measuring background radiation, ionisation chamber measurements and scintillation counting, are looked at and the prospect of using thermoluminescent dosimetry is considered

  6. The physical principles of radiation protection

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1990-01-01

    This lecture reviews the production of ionising radiation from the naturally occurring radioactive decay chains and introduces the mathematical expressions relating to secular equilibrium and the calculation of the activity of daughter products. The absorption of α, β and γ radiation is discussed from the point of view of the physical processes which occur, e.g. the photoelectric, Compton and pair production processes for γ-rays. Linear energy transfer and range-energy relationships are discussed for α and β particles. Units of measurement for ionising radiation, relative biological effectiveness, dose equivalence and quality factors for each type of radiation are reviewed. the behaviour and properties of radon, thoron and their daughter products are described, and units used in the assessments of effective dose from radon daughters are discussed. 16 refs., 1 tab., 15 figs

  7. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Boel [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); Fasmer, Kristine Eldevik [Haukeland University Hospital, Department of Oncology, Medical Physics Section, Bergen (Norway); Boye, Kjetil [Norwegian Radium Hospital, Oslo University Hospital, Department of Oncology, Oslo (Norway); Rosendahl, Karen; Aukland, Stein Magnus [Haukeland University Hospital, Department of Radiology, Paediatric Section, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway); Trovik, Clement [University of Bergen, Department of Clinical Medicine, Bergen (Norway); Haukeland University Hospital, Department of Surgery, Orthopaedic Section, Bergen (Norway); Biermann, Martin [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway)

    2017-01-15

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether {sup 18}F-fluorodeoxyglucose positron emission tomography - computed tomography ({sup 18}F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  8. An important step forward in continuous spectroscopic imaging of ionising radiations using ASICs

    Energy Technology Data Exchange (ETDEWEB)

    Fessler, P. [11 rue Rabelais, 92170 Vanves (France); Coffin, J. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Eberle, H. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Raad Iseli, C. de [Smart Silicon Systems SA, Ch. de la Graviere 6, CH-1007 Lausanne (Switzerland); Hilt, B. [Universite de Haute-Alsace, GRPHE, 61, rue Albert Camus, 68093 Mulhouse (France); Huss, D. [Universite de Haute-Alsace, GRPHE, 61, rue Albert Camus, 68093 Mulhouse (France); Krummenacher, F. [Smart Silicon Systems SA, Ch. de la Graviere 6, CH-1007 Lausanne (Switzerland); Lutz, J.R. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Prevot, G. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Renouprez, A. [Institut de Recherche sur la Catalyse, 2 Avenue Albert Einstein, 69626 Villeurbanne (France); Sigward, M.H. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Schwaller, B. [Universite de Haute-Alsace, GRPHE, 61, rue Albert Camus, 68093 Mulhouse (France); Voltolini, C. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France)

    1999-01-21

    Characterization results are given for an original ASIC allowing continuous acquisition of ionising radiation images in spectroscopic mode. Ionising radiation imaging in general and spectroscopic imaging in particular must primarily be guided by the attempt to decrease statistical noise, which requires detection systems designed to allow very high counting rates. Any source of dead time must therefore be avoided. Thus, the use of on-line corrections of the inevitable dispersion of characteristics between the large number of electronic channels of the detection system, shall be precluded. Without claiming to achieve ultimate noise levels, the work described is focused on how to prevent good individual acquisition channel noise performance from being totally destroyed by the dispersion between channels without introducing dead times. With this goal, we developed an automatic charge amplifier output voltage offset compensation system which operates regardless of the cause of the offset (detector or electronic). The main performances of the system are the following: the input equivalent noise charge is 190 e rms (input non connected, peaking time 500 ns), the highest gain is 255 mV/fC, the peaking time is adjustable between 200 ns and 2 {mu}s and the power consumption is 10 mW per channel. The agreement between experimental data and theoretical simulation results is excellent.

  9. An important step forward in continuous spectroscopic imaging of ionising radiations using ASICs

    International Nuclear Information System (INIS)

    Fessler, P.; Coffin, J.; Eberle, H.; Raad Iseli, C. de; Hilt, B.; Huss, D.; Krummenacher, F.; Lutz, J.R.; Prevot, G.; Renouprez, A.; Sigward, M.H.; Schwaller, B.; Voltolini, C.

    1999-01-01

    Characterization results are given for an original ASIC allowing continuous acquisition of ionising radiation images in spectroscopic mode. Ionising radiation imaging in general and spectroscopic imaging in particular must primarily be guided by the attempt to decrease statistical noise, which requires detection systems designed to allow very high counting rates. Any source of dead time must therefore be avoided. Thus, the use of on-line corrections of the inevitable dispersion of characteristics between the large number of electronic channels of the detection system, shall be precluded. Without claiming to achieve ultimate noise levels, the work described is focused on how to prevent good individual acquisition channel noise performance from being totally destroyed by the dispersion between channels without introducing dead times. With this goal, we developed an automatic charge amplifier output voltage offset compensation system which operates regardless of the cause of the offset (detector or electronic). The main performances of the system are the following: the input equivalent noise charge is 190 e rms (input non connected, peaking time 500 ns), the highest gain is 255 mV/fC, the peaking time is adjustable between 200 ns and 2 μs and the power consumption is 10 mW per channel. The agreement between experimental data and theoretical simulation results is excellent

  10. The ionisation balance of C0 to C+4

    International Nuclear Information System (INIS)

    Nussbaumer, H.; Storey, P.J.

    1975-01-01

    The ionisation balance for the ions C 0 -C +4 has been calculated for 10 8 -3 ] 12 and 2 x 10 4 K 5 K. The presence of metastable terms is included in the calculation of the collisional dielectronic recombination and ionisation coefficients. The influence of the observed solar radiation field on the ionisation balance is investigated. Changes in that field do strongly influence the results. (orig.) [de

  11. Effect of ionising radiation exposure on structure and permeability of epithelial junctions in rat ileum

    International Nuclear Information System (INIS)

    Lebrum, F.; Dublineau, I.; Grison, S.; Strup, C.; Griffiths, N.M.

    2002-01-01

    Exposure of the digestive tract to ionising radiation results in both morphological and functional alterations of the small intestine. However little is known about the effect of irradiation on the junctions playing a major role in the maintenance of epithelial barrier integrity. Thus the aim of this study was to investigate, in rat ileum, the effect of radiation exposure on the permeability of the epithelial barrier in parallel with the localization of certain inter- and intra-cellular proteins of tight and adherent junctions

  12. Radiation Act, promulgated on May 8,1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Radiation Act was passed by the Estonian Parliament on 23 Apr 1997 and promulgated by the President on 8 May 1997. It is the principal legal instrument in the field of radiation protection for workers, the public and the environment. The Act is based on the concepts, principles, terminology and dose limits stipulated in the Basic Safety Standards (IAEA Safety Series No. 115-1) and the EC Directive 96/29/EURATOM. The Radiation Act defines the institutional framework for, and establishes the rules applicable to, the use of ionising radiation, the detention of radiation sources, the transport of radioactive materials, radioactive waste disposal and other activities which cause or may cause harm to health or to the environment. It also contains some general provisions on radioactive waste management, import and export of such wastes and the prohibition against importing radioactive waste for disposal purposes. The Act deals solely with radiation protection; all other nuclear activities are to be covered by other specific laws. The Estonian Radiation Protection Centre is empowered under the Act to inspect sources of radiation exposure and to register dose and source data. It is generally responsible for enforcing the provisions of the Act, although the details of the medical checks for radiation workers are governed by rules established by the Minister for Social Affairs. Chapter 3 of the Radiation Act contains detailed provisions on dose limits for the following categories of exposure to ionising radiation. The Act provides that Government and nominated Ministers be empowered to enact implementing regulations on exemption levels, requirements to ensure observance of the stipulated dose limits, qualification procedures for radiation workers, medical checks of radiation workers, medical applications of ionising radiation, packaging and safety procedures for radiation sources and rules for handling radioactive waste

  13. Occupational radiation injuries from ionising rays recorded in the Federal Republic of Germany during the period between 1953 and 1979

    International Nuclear Information System (INIS)

    Soffke, R.

    1986-01-01

    An evaluation of 218 occupational diseases, which were reported between 1953 and 1979 and officially recognised as being caused by ionising rays, showed these to be made up chiefly by skin disorders (61%, equally distributed over acute and chronic forms), even though considerable percentage shares were also calculated for haematological ailments (15%) and bronchial carcinomas developed by uranium miners. There was a total of 42 deaths, 32 of which were ascribed to uranium mining and 10 to haematological diseases. In all, the annual rate of occupational diseases attributed to ionising rays shows a tendency to decline, even though the number of individuals exposed to radiation is increasing. The incidence of radiation injuries was calculated to be in the order of 0.01% for persons at risk of occupational radiation exposure. (orig./EDB) [de

  14. Statutory Instruments No 144 of 1994. European Communities (Protection of outside workers from ionising radiation) Regulations, 1994

    International Nuclear Information System (INIS)

    1994-04-01

    These Regulations implement Council Directive 90/641 EURATOM of 4 December, 1990 on the operational protection of outside workers exposed to the risk of ionising radiation during their activities in controlled areas. The Regulations provide for the radiation protection of workers liable to receive an exposure of high radiation levels while working away from their employers' premises. The Regulations also apply to workers who come from, or who go to work in, another Member State of the European Community

  15. Predicting the effect of ionising radiation on biological populations: testing of a non-linear Leslie model applied to a small mammal population

    International Nuclear Information System (INIS)

    Monte, Luigi

    2013-01-01

    The present work describes the application of a non-linear Leslie model for predicting the effects of ionising radiation on wild populations. The model assumes that, for protracted chronic irradiation, the effect-dose relationship is linear. In particular, the effects of radiation are modelled by relating the increase in the mortality rates of the individuals to the dose rates through a proportionality factor C. The model was tested using independent data and information from a series of experiments that were aimed at assessing the response to radiation of wild populations of meadow voles and whose results were described in the international literature. The comparison of the model results with the data selected from the above mentioned experiments showed that the model overestimated the detrimental effects of radiation on the size of irradiated populations when the values of C were within the range derived from the median lethal dose (L 50 ) for small mammals. The described non-linear model suggests that the non-expressed biotic potential of the species whose growth is limited by processes of environmental resistance, such as the competition among the individuals of the same or of different species for the exploitation of the available resources, can be a factor that determines a more effective response of population to the radiation effects. -- Highlights: • A model to assess the radiation effects on wild population is described. • The model is based on non-linear Leslie matrix. • The model is applied to small mammals living in an irradiated meadow. • Model output is conservative if effect-dose factor estimated from L 50 is used. • Systemic response to stress of populations in competitive conditions may be more effective

  16. Dosimetry with tissue-equivalent ionisation chambers in fast neutron fields for biomedical applications

    International Nuclear Information System (INIS)

    Zoetelief, J.; Broerse, J.J.

    1983-01-01

    The use of calibrated tissue-equivalent (TE) ionisation chambers is commonly considered to be the most practical method for total absorbed dose determinations in mixed neutron-photon fields for biomedical applications. The total absorbed dose can be derived from the charge produced within the cavity of an ionisation chamber employing a number of physical parameters. To arrive at the charge produced in the cavity several correction factors have to be introduced which are related to the operational characteristics of the chambers. Information on the operational characteristics of four TE ionisation chambers is presented in relation to ion collection, density and composition of gas in the cavity, wall thickness and effective point of measurement. In addition, some recent results from an ionisation chamber operated at high gas pressures are presented. The total absorbed doses derived from TE ionisation chambers show agreement within the uncertainty limits with results from other independent dosimetry methods, i.e., differential fluence measurements and a TE calorimeter. Conscientious experimentation and a common data base can provide dosimetry results with TE ionisation chambers with variations of less than +-2%. (author)

  17. Ionising radiations. Joint consultative document. Supplementary proposals for provision on radiological protection and draft advice from the National Radiological Protection Board to the Health and Safety Commission

    International Nuclear Information System (INIS)

    1979-01-01

    The consultative document is in two parts. Part 1 indicates the amendments to the first consultative document which would be required in order to implement (in the United Kingdom) the 1978 Draft Euratom Directive (on Basic Safety Standards for the health protection of the general public and workers against the dangers of ionising radiations). Part 2 deals with the system of dose limitation contained within the Euratom Directive. This aspect is discussed, in relation to the Articles of the Directive, under the following headings: limitation of doses for controllable exposures, limits of doses for exposed workers, limitation of doses for apprentices and students, planned special exposures, dose limits for members of the public. The Commission of the European Communities proposals for a draft Directive on Radiological Protection are reproduced as an Appendix, without Annexes. (U.K.)

  18. The bovine tuberculosis burden in cattle herds in zones with low dose radiation pollution in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Weller, Richard E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skrypnyk, Artem [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zavgorodniy, Andriy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stegniy, Borys [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gerilovych, Anton [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kutsan, Oleksandr [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pozmogova, Svitlana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sapko, Svitlana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-01

    The authors describe a study of the tuberculosis (TB) incidence in cattle exposed to low doses of radiation resulting from the Chernobyl (pronounced ‘Chornobyl’ in Ukrainian) nuclear plant catastrophe in 1986. The purpose of the study was to determine if ionising radiation influences the number of outbreaks of bovine TB and their severity on farms in the Kyiv, Cherkasy and Chernigiv regions of the Ukraine. These farms are all located within a 200 km radius of Chernobyl and have had low-dose radiation pollution. Pathological and blood samples were taken from cattle in those regions that had positive TB skin tests. Mycobacterium spp. were isolated, differentiated by PCR, analysed and tested in guinea pigs and rabbits. Species differentiation showed a significant percentage of atypical mycobacteria, which resulted in the allergic reactions to tuberculin antigen in the skin test. Mixed infection of M. bovis and M. avium subsp. hominissuis was found in three cases. The results concluded that low-dose radiation plays a major role in the occurrence of bovine TB in regions affected by the Chernobyl nuclear disaster.

  19. Risk of ionising radiation to trainee orthopaedic surgeons.

    Science.gov (United States)

    Khan, Ishrat A; Kamalasekaran, Senthil; Fazal, M Ali

    2012-02-01

    We undertook this study to determine the amount of scattered radiation received by the primary surgeon, assistant and patient during dynamic hip screw fixation for proximal femoral fractures. Data was collected from fifty patients. Five registrars were included as operating surgeon and four senior house officers as assistant surgeon. Radiation was monitored by thermo luminescent dosimeters placed on the surgeon and assistant. The approximate distance of surgeon and assistant from the operative site was measured. A dosimeter on the unaffected hip of patients measured the radiation to the patient. The results show that the surgeon's dominant hand receives the highest dose of radiation and radiation exposure is dependent on the experience of the operator. Our study concludes that exposure to radiation during this procedure is well below the toxic levels; however greater awareness is needed for harmful effects of exposure to long term low dose radiation.

  20. Not to confuse 'contaminated' food and 'irradiated' or 'ionised' food

    International Nuclear Information System (INIS)

    2005-01-01

    Food contamination corresponds to the undesired presence of radioactive products in food, while irradiation is a process to which food can be deliberately submitted to improve its preservation or hygiene. This publication explains this difference. It describes the process, physical effects and health impacts of radioactive contamination of food. It briefly describes irradiation or ionisation processes, their objectives, doses of ionising radiations used on food products, undesired and harmful effects. It also indicates food products concerned by these irradiation processes, and the associated legal framework, evokes the lack of information of consumers regarding such practices, briefly evokes risks associated with irradiation installations, and indicates where these installations are located in France

  1. Genetic and epigenetic features in radiation sensitivity. Part II: implications for clinical practice and radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, Michel H.; Gisone, Pablo A.; Perez, Maria R.; Michelin, Severino; Dubner, Diana; Giorgio, Marina di; Carosella, Edgardo D.

    2005-01-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to the genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation, offering a better likelihood of cure for malignant tumours. Although only a small percentage of individuals are ''hypersensitive'' to radiation effects, all medical specialists using ionising radiation should be aware of the aforementioned progress in medical knowledge. The present paper, the second of two parts, reviews human disorders known or strongly suspected to be associated with hypersensitivity to ionising radiation. The main tests capable of detecting such pathologies in advance are analysed, and ethical issues regarding genetic testing are considered. The implications for radiation protection of possible hypersensitivity to radiation in a part of the population are discussed, and some guidelines for nuclear medicine professionals are proposed. (orig.)

  2. Radiosensitivity of Arabidopsis thaliana L. in condition of influence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Shershunova, V.I.

    2000-01-01

    Arabidopsis thaliana is a convenient genetic object. This work represents the date of laboratory experiments concerning research of influence of chronic γ-irradiation on plants of arabidopsis at rosette stage (short stemmed mutant Lansberg Erecta). The findings contribute to the high sensitivity of rosette stage of arabidopsis to irradiation by γ-rays in low doses (0.67-10.0 cGy). It is shown in depressing effects of ionising radiation on growth, development, vitality and bearing of plants, but also in hightened output morphological anomalies of plants and embryonic lethalities in pods. (authors)

  3. A front-end ASIC for ionising radiation monitoring with femto-amp capabilities

    International Nuclear Information System (INIS)

    Voulgari, E.; Noy, M.; Anghinolfi, F.; Perrin, D.; Krummenacher, F.; Kayal, M.

    2016-01-01

    An ultra-low leakage current Application Specific Integrated Circuit (ASIC) called Utopia (Ultralow Picoammeter) has been designed and fabricated in AMS 0.35 μm CMOS, in order to be used as the front-end for ionising radiation monitoring at CERN. It is based on the topology of a Current to Frequency Converter (CFC) through charge balancing and demonstrates a wide dynamic range of 8.5 decades without range changing. Due to a design aimed at minimising input leakage currents, input currents as low as 01 fA can be measured

  4. Ionizing radiations in Italian health care structures

    International Nuclear Information System (INIS)

    Fizzano, M.R.; Frusteri, L.

    2006-01-01

    The Council of the European Union has completely renewed the framework regarding radiation protection by adopting some directives: Directive 97/43 EURATOM lays down the general principles of the radiation protection of individuals undergoing exposure to ionising radiations related to medical exposures, as a supplement of Directive 96/29 EURATOM laying down the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiations.The incorporation into Italian legislation of the European Community directives on the improvement of health and safety at work has promoted a vast effort in order to revise the surveillance approach in many facilities, including hospitals. In Italy, safety law is referred to every workplace; anyway the use of ionising radiations is ruled by specific laws. So in the health care structures it is necessary integrating both the laws and this process is often difficult to carry on. The Italian Legislative Decree 230/95, one the main laws that aim to protect workers against ionising radiations, introduced Directive 96/29/EURATOM. This Decree asks that a doctor and a technical expert analyse the workplace and classify area and workers in according to dose of ionising radiation established by law. The Italian Legislative Decree 626/94 asks that risk analysis in general is made by doctor and specialist in risk. So, in case of risk from ionising radiation, all these figures have to cooperate in order to make an evaluation risk document. (N.C.)

  5. Ionizing radiations in Italian health care structures

    Energy Technology Data Exchange (ETDEWEB)

    Fizzano, M.R.; Frusteri, L. [Technical Advisory Dept. for Risk Assessment and Prevention, Italian Workers Compensation Authority, Rome (Italy)

    2006-07-01

    The Council of the European Union has completely renewed the framework regarding radiation protection by adopting some directives: Directive 97/43 EURATOM lays down the general principles of the radiation protection of individuals undergoing exposure to ionising radiations related to medical exposures, as a supplement of Directive 96/29 EURATOM laying down the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiations.The incorporation into Italian legislation of the European Community directives on the improvement of health and safety at work has promoted a vast effort in order to revise the surveillance approach in many facilities, including hospitals. In Italy, safety law is referred to every workplace; anyway the use of ionising radiations is ruled by specific laws. So in the health care structures it is necessary integrating both the laws and this process is often difficult to carry on. The Italian Legislative Decree 230/95, one the main laws that aim to protect workers against ionising radiations, introduced Directive 96/29/EURATOM. This Decree asks that a doctor and a technical expert analyse the workplace and classify area and workers in according to dose of ionising radiation established by law. The Italian Legislative Decree 626/94 asks that risk analysis in general is made by doctor and specialist in risk. So, in case of risk from ionising radiation, all these figures have to cooperate in order to make an evaluation risk document. (N.C.)

  6. Radiation dose assessment for occupationally exposed workers in ...

    African Journals Online (AJOL)

    2017-01-31

    Jan 31, 2017 ... with the legislation and safety requirements, has not yet ... occupational exposure to ionising radiation such as X-rays. This study was hence ... of health care service delivery in Malawi (i.e. regional level, district level and ...

  7. The multiple stressor effect in zebrafish embryos from simultaneous exposure to ionising radiation and cadmium

    International Nuclear Information System (INIS)

    Ng, C Y P; Choi, V W Y; Lam, A C L; Yu, K N; Cheng, S H

    2013-01-01

    Living organisms are exposed to a mixture of environmental stressors, and the resultant effects are referred to as multiple stressor effects. In the present work, we studied the multiple stressor effect in embryos of the zebrafish (Danio rerio) from simultaneous exposure to ionising radiation (alpha particles) and cadmium through quantification of apoptotic signals at 24 h postfertilisation (hpf) revealed by vital dye acridine orange staining. For each set of experiments, 32–40 dechorionated embryos were deployed, which were divided into four groups each having 8–10 embryos. The four groups of embryos were referred to as (1) the control group (C), which received no further treatments after dechorionation; (2) the Cd-dosed and irradiated group (CdIr), which was exposed to 100 μM Cd from 5 to 24 hpf, and also received about 4.4 mGy from alpha particles at 5 hpf; (3) the irradiated group (Ir), which received about 4.4 mGy from alpha particles at 5 hpf; and (4) the Cd-dosed group (Cd), which was exposed to 100 μM Cd from 5 to 24 hpf. In general, the CdIr, Ir and Cd groups had more apoptotic signals than the C group. Within the 12 sets of experimental results, two showed significant synergistic effects, one showed a weakly synergistic effect and nine showed additive effects. The multiple stressor effect of 100 μM Cd with ∼4.4 mGy alpha-particle radiation resulted in an additive or synergistic effect, but no antagonistic effect. The failure to identify significant synergistic effects for some sets of data, and thus their subsequent classification as additive effects, might be a result of the relatively small magnitude of the synergistic effects. The results showed that the radiation risk could be perturbed by another environmental stressor such as a heavy metal, and as such a realistic human radiation risk assessment should in general take into account the multiple stressor effects. (paper)

  8. The Swedish radiation protection institute's regulations on general obligations in medical and dental practices using ionising radiation; issued on April 28, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    These regulations are applicable to medical and dental practices with ionising radiation used for medical exposures. The regulations are also applicable to exposures of persons who knowingly and willingly, other than as part of their occupation, support and comfort patients undergoing medical exposure.

  9. Law on protection against ionising radiation and nuclear safety in Slovenia

    International Nuclear Information System (INIS)

    Breznik, B.; Krizman, M.; Skrk, D.; Tavzes, R.

    2003-01-01

    The existing legislation related to nuclear and radiation safety in Slovenia was introduced in 80's. The necessity for the new law is based on the new radiation safety standards (ICRP 60) and the intention of Slovenia to harmonize the legislation with the European Union. The harmonization means adoption of the basic safety standards and other relevant directives and regulations of Euratom. The nuclear safety section of this law is based on the legally binding international conventions ratified by Slovenia. The general approach is similar to that of some members of Nuclear Energy Agency (OECD). The guidelines of the law were set by the Ministry of the Environment and Spatial Planning, Nuclear Safety Administration, and Ministry of Health. The expert group of the Ministry of Environment and Spatial Planning and the Ministry of Health together with the representatives of the users of the ionising sources and representatives of the nuclear sector, prepared the draft of the subject law. The emphasis in this paper is given to main topics and solutions related to the control of the occupationally exposed workers, radiation safety, licensing, nuclear and waste safety, and radiation protection of people and patients. (authors)

  10. Report on radiation protection calibration activities in Australia

    International Nuclear Information System (INIS)

    Hargrave, N.J.

    1995-01-01

    Australia is a federation of eight autonomous States or Territories. Each of these is responsible for many matters including radiation safety within their borders. National matters are the responsibility of the Federal Government. The Australian Radiation Laboratory (ARL) is a part of the Federal Government Department of Human Services and Health and undertakes research and service activities related to radiation health. Work related to both ionising and non ionising radiation and regulatory matters is performed. Some of the research activities relate to radiation measurement standards, environmental radioactivity (e.g. radon in air, radioactivity in drinking water), effects of electro-magnetic fields on health (ELF), ultra violet radiation (UV) and laser safety, radiochemistry, medical applications of radiation (and doses to the population as a result), general health physics, thermoluminescent dosimetry (TLD) and electron spin resonance (ESR) dosimetry. The calibration of protection instruments are undertaken by the Ionising Radiation Standards Group within the Laboratory and by State Health Laboratories. (J.P.N.)

  11. The ionising radiations: a daily reality Las radiaciones ionizantes: una realidad cotidiana

    Directory of Open Access Journals (Sweden)

    Eduardo Gallego Díaz

    2010-12-01

    Full Text Available This paper introduce the nature of the radioactive substances and of the ionising radiation, the effects that they cause on the matter and the available media for their detection and measure, as well as the sources of natural radiation, to which the human being are exposed. Next, in the more detailed part of this paper, it is described the wide range of ionising radiations uses in: medicine, agriculture, earth sciences, biology and in some other scientific fields, that allow to pose its impact in the perspective of facing the ones from natural sources. The article concludes that for avoiding damages it is necessary proper protection against the radioactive substances, but avoiding limitation their beneficial uses in the various ranges described. For finishing this paper, the basic principles of radiation protection are described, due to they are the its principal aim.Este trabajo introduce la naturaleza de las sustancias radiactivas y de la radiación ionizante, los efectos que causa sobre la materia y los medios disponibles para su detección y medida, así como las fuentes de radiación naturales a las que los seres humanos estamos expuestos. Seguidamente, en el apartado más amplio del trabajo, se describen las múltiples aplicaciones de las radiaciones ionizantes en la medicina, la agricultura, la industria, las ciencias de la tierra, la biología y otras ramas, lo que permite poder poner su impacto en perspectiva frente al de las fuentes naturales. La tesis final del artículo es que para evitar sufrir daños resulta necesario protegerse adecuadamente de los efectos nocivos de la radiación y las sustancias radiactivas, pero sin limitar innecesariamente su utilización beneficiosa en los numerosos ámbitos descritos. Ese es el objetivo fundamental de la protección radiológica, cuyos principios básicos se presentan para terminar.

  12. Fluorescence in situ hybridisation in chromosome aberration detection in subjects occupationally exposed to ionising radiation

    International Nuclear Information System (INIS)

    Zeljezic, D.; Garaj-Vrhovac, V.

    2005-01-01

    For more than two decades, chromosomal aberration analysis has been used to detect structural chromosomal aberrations as sensitive biodosimeters of occupational exposure to ionising radiation. Its use is also recommended by the World Health Organisation. Changes in chromosome structure detected by that method are considered to be early biomarkers of a possible malignant disease. Aberrations detected by the method are unstable and can be found in the lymphocytes of irradiated personnel only within a limited time after exposure. To detect stable chromosomal aberrations, which persist after exposure, multicolour fluorescent in situ hybridisation has to be used. Using DNA probes labelled with different fluorochromes, it dyes each pair of chromosomes with different colour. Due to the dynamic of unstable aberration formation, chromosomal aberration analysis is more suitable in genome damage assessment of recent exposures. On the other hand, fluorescence in situ hybridisation gives the information on chromosome instability caused by long-term occupational exposure to ionising radiation. Considering the high costs of fluorescence in situ hybridisation and the uncertainty of the result, it should be used in biodosimetry only when it is absolutely necessary.(author)

  13. Genetic radiation risks: a neglected topic in the low dose debate

    Directory of Open Access Journals (Sweden)

    Inge Schmitz-Feuerhake

    2016-01-01

    Full Text Available Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (Abomb survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down’s syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and

  14. Comparative evaluation of different approaches to environmental protection against ionising radiation in view of practicability and consistency

    International Nuclear Information System (INIS)

    Steiner, M.; Hornung, L.; Mundigl, S.; Kirchner, G.

    2006-01-01

    International organisations, including ICRP, IAEA and UNSCEAR, and the international scientific community are currently engaged in work on the protection of non-human species against ionising radiation as a complement to the existing framework centred on humans. The basic ideas and conceptual approaches developed during the last decade substantially agree with each other. The EC funded FASSET project (Framework for Assessment of Environmental Impact) summarizes and reviews the current knowledge of radiation effects on biota, provides basic dosimetric models for fauna and flora and suggests an assessment framework. Protection of the environment against ionising radiation, on the one hand, aims to close a conceptual gap in radiation protection. Therefore, current frameworks for environmental protection conceptually follow radiation protection of man. On the other hand, preservation of natural resources, habitats and the biological diversity are common objectives of environmental protection against radioactive as well as chemical pollutants, suggesting an integrated approach based on the fundamental ideas of conventional environmental protection. In essence, a conceptual framework encompassing protection of man as well as of fauna and flora against chemical and radioactive pollutants would be highly desirable in view of coherence, consistency and transparency. Such an umbrella concept communicates the positive message that similar issues are treated in a conceptually similar manner, thus facilitating scientific justification and public communication and increasing acceptance. This paper discusses different concepts and approaches to radiation protection of man, radiation protection of non-human biota and environmental protection against chemical pollutants, identifies common principles and differences, addresses conflicting requirements and evaluates the feasibility and limitations of such an encompassing framework. (authors)

  15. Occupational radiation hazards during pregnancy

    International Nuclear Information System (INIS)

    Devik, F.

    1979-01-01

    The general principles in teratology are discussed and it is pointed out that ionising radiation is only one of many agents with teratogenic effects. Human experience with radiation induced congenital malformations is insufficient to warrant conclusions about dose and effect. The teratogenic effects are then discussed in more detail and indications of radiation doses said to produce these are given. The question of a threshold dose is briefly discussed, as is the possibility of carcinogenesis. Finally precautions to be taken and the recommendations of the ICRP and the CEC are presented. (JIW)

  16. Effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1981-01-01

    The available evidence on the effects of radiation on man and the predictions that have been made of possible low level effects are reviewed. Data from United Nations Scientific Committee of the Effects of Atomic Radiation (UNSCEAR) and the committee on the Biological Effects of Ionising Radiation (BEIR) is used to illustrate the acute, delayed and hereditary effects of high dose levels. The effects of low dose levels are discussed on the assumption that both somatic and hereditary effects can be predicted on the basis of linear extrapolation from high dose effects. (U.K.)

  17. UNCERTAINTY ON RADIATION DOSES ESTIMATED BY BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Samaga, Daniel; Della Monaca, Sara; Marrale, Maurizio; Bassinet, Celine; Burbidge, Christopher I; Correcher, Virgilio; Discher, Michael; Eakins, Jon; Fattibene, Paola; Güçlü, Inci; Higueras, Manuel; Lund, Eva; Maltar-Strmecki, Nadica; McKeever, Stephen; Rääf, Christopher L; Sholom, Sergey; Veronese, Ivan; Wieser, Albrecht; Woda, Clemens; Trompier, Francois

    2018-03-01

    Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.

  18. Testing of the effect of the entry beam tube windows of the silicon detectors of the ionisation radiation

    International Nuclear Information System (INIS)

    Kopestansky, J.; Tykva, R.; Stanek, S.

    1995-01-01

    This paper deals with testing of the entry beam tube windows of the silicon detectors of the ionisation radiation with surface barrier.The influence of the parameters of basic material and modified technologic preparation on the size and homogeneity of the windows was tested

  19. Understanding and characterisation of the risks to human health from exposure to low levels of radiation

    International Nuclear Information System (INIS)

    Goodhead, D. T.

    2009-01-01

    Exposure to ionising radiation can lead to a wide variety of health effects. Cancer is judged to be the main risk from radiation at low doses and low dose rates, and controlling this risk has been the main factor in developing radiation protection practice. Conventional paradigms of radiobiology and radiation carcinogenesis have served to guide extrapolations of epidemiological data on exposed human populations, so as to estimate risks at low doses and low dose rates, to other types of ionising radiation and to non-uniform exposures. These paradigms are founded on a century of experimental and theoretical studies, but nevertheless there remain many uncertainties. Major assumptions and simplifications have been introduced to achieve a practical system of additive doses (and implied risks) for radiation protection. Advancing epidemiological studies and experimental research continue to reduce uncertainties in some areas while, in others, they raise new challenges to the generality and applicability of the conventional paradigms. (authors)

  20. Biological effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Osmak, M.

    1998-01-01

    A study was performed with the aim to examine whether the progeny of cells that had been repeatedly irradiated with low doses of gamma rays will change their sensitivity to cytotoxic agents. Four mammalian cell lines were used in the experiment. It was found that the progeny of cells irradiated in this way do not change their sensitivity to gamma rays but would change their sensitivity to various cytostatics drugs. (A.K.)

  1. A cascade method of training for the revised CEGB Radiological Safety Rules and the Ionising Radiations Regulations 1985

    International Nuclear Information System (INIS)

    Jackson, J.R.; John, P.G.L.

    1986-01-01

    In order to achieve compliance with the Ionising Radiations Regulations 1985 the CEGB has introduced a revised set of Radiological Safety Rule. These Rules are for implementation at all sites under the Board's control where ionising radiations are used. It was a requirement that the new Safety Rules be brought into operation on a common date and to a consistent standard of performance throughout the industry; this necessitated a considerable training programme to familiarise and inform some 8,000 staff working at a large number of locations. The training week of identified groups of staff varied widely, according to their different levels of authority and responsibility. The paper sets out the means by which the chosen cascade method of training was selected and developed, and gives details of the modular package of training material which was produced. It also relates how the management objectives were met within the constraints of an uncompromising time schedule. (author)

  2. Population exposure to ionising radiation in India

    International Nuclear Information System (INIS)

    Narayanan, K.K.; Krishnan, D.; Subba Ramu, M.C.

    1991-01-01

    Estimates of exposure from various radiation sources to Indian population are given. The per caput dose from all the identifiable sources, both natural and man-made is estimated to be 2490 μSv per year to the present population of India. 97.9% of this dose is contributed by natural sources which include cosmic and terrestrial radiations, 1.93% by medical sources used for diagnostic and treatment purpose, 0.3% by exposures due to activities related nuclear fuel cycle, nuclear tests and nuclear accidents, and 0.07% by miscellaneous sources such as industrial applications, consumer products, research activities, air travel etc. The monograph is written for the use of the common man. (M.G.B.). 25 refs., 7 tabs., 7 figs

  3. Chronic low-dose-rate ionising radiation affects the hippocampal phosphoproteome in the ApoE-/- Alzheimer's mouse model

    DEFF Research Database (Denmark)

    Kempf, S. J.; Janik, Dirk; Barjaktarovic, Zarko

    2016-01-01

    Accruing data indicate that radiation-induced consequences resemble pathologies of neurodegenerative diseases such as Alzheimer's. The aim of this study was to elucidate the effect on hippocampus of chronic low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) given over 300 days with cumula...

  4. On ionising radiation and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Anders

    1999-05-01

    A cohort of 3,090 women with clinical diagnosis of benign breast disease (BBD) was studied. Of these, 1,216 were treated with radiation therapy during 1925-54 (median age 40 years). The mean dose to the breasts was 5.8 Gy (range 0-50 Gy). Among other organs the lung received the highest scattered dose (0.75 Gy; range 0.004-8.98 Gy) and the rectum the lowest (0.008 Gy; range 0-0.06 Gy). A pooled analysis of eight breast cancer incidence cohorts was done, including: tumour registry data on breast cancer incidence among women in the Life Span Study cohort of atomic bomb survivors; women in Massachusetts who received repeated chest fluoroscopic during lung collapse treatment for tuberculosis; women who received x-ray therapy for acute post-partum mastitis; women who were irradiated in infancy for enlarged thymus glands ; two Swedish cohorts of women who received radiation treatments during infancy for skin hemangioma; and the BBD cohort. Together the cohorts included almost 78,000 women (-35,000 were exposed), around 1.8 million woman-years and 1500 cases. The breast cancer incidence rate as a function of breast dose was analysed using linear-quadratic Poisson regression models. Cell-killing effects and other modifying effects were incorporated through additional log-linear terms. Additive (EAR) and multiplicative (ERR) models were compared in estimating the age-at-exposure patterns and time related excess. The carcinogenic risks associated with radiation in mammographic mass screening is evaluated. Assessment was made in terms of breast cancer mortality and years of life. Effects were related to rates not influenced by a mammographic mass screening program and based on a hypothetical cohort of 100,000 40-year old women with no history of breast cancer being followed to 100 years of age. Two radiation risk assumptions were compared. The dose-response relationship is linear with little support in data for an upward curvature at low to medium doses. The competing effect

  5. On ionising radiation and breast cancer risk

    International Nuclear Information System (INIS)

    Mattson, Anders

    1999-01-01

    A cohort of 3,090 women with clinical diagnosis of benign breast disease (BBD) was studied. Of these, 1,216 were treated with radiation therapy during 1925-54 (median age 40 years). The mean dose to the breasts was 5.8 Gy (range 0-50 Gy). Among other organs the lung received the highest scattered dose (0.75 Gy; range 0.004-8.98 Gy) and the rectum the lowest (0.008 Gy; range 0-0.06 Gy). A pooled analysis of eight breast cancer incidence cohorts was done, including: tumour registry data on breast cancer incidence among women in the Life Span Study cohort of atomic bomb survivors; women in Massachusetts who received repeated chest fluoroscopic during lung collapse treatment for tuberculosis; women who received x-ray therapy for acute post-partum mastitis; women who were irradiated in infancy for enlarged thymus glands ; two Swedish cohorts of women who received radiation treatments during infancy for skin hemangioma; and the BBD) cohort. Together the cohorts included almost 78,000 women (-35,000 were exposed), around 1.8 million woman-years and 1500 cases. The breast cancer incidence rate as a function of breast dose was analysed using linear-quadratic Poisson regression models. Cell-killing effects and other modifying effects were incorporated through additional log-linear terms. Additive (EAR) and multiplicative (ERR) models were compared in estimating the age-at-exposure patterns and time related excess. The carcinogenic risks associated with radiation in mammographic mass screening is evaluated. Assessment was made in terms of breast cancer mortality and years of life. Effects were related to rates not influenced by a mammographic mass screening program and based on a hypothetical cohort of 100,000 40-year old women with no history of breast cancer being followed to 100 years of age. Two radiation risk assumptions were compared. The dose-response relationship is linear with little support in data for an upward curvature at low to medium doses. The competing effect

  6. Occupational radiation exposures in Cyprus

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, Prodromos A; Christofides, Stelios [Medical Physics Department, Nicosia General Hospital, 1450 Nicosia (Cyprus)

    1999-12-31

    For the first time ever the occupational radiation exposure data of all the radiation workers of Cyprus, as obtained by the personnel monitoring service of the Dosimetry Laboratory of the Medical Physics Department of the Ministry of Health, is published and compared with that of other countries. The presented data shows a systematic trend of improvement both with regards to the methodology of monitoring and data recording. The efforts of the past few years in educating and training the users of ionising radiation with regards to the importance of the personnel monitoring service and the hazards of ionising radiation, has paid off and this is evident from the doses recorded in the past three years which are compared favourably with those of other countries, as given by the UNSCEAR 1993 report. The introduction of extremity monitoring, promises even better improvement in the methodology of monitoring the doses received by personnel working in Interventional Radiology, as well as other groups whose hands, unavoidably, come close to radiation sources. (authors) 3 refs., 12 tabs.

  7. Genetic and epigenetic features in radiation sensitivity. Part I: Cell signalling in radiation response

    International Nuclear Information System (INIS)

    Bourguignon, Michel H.; Gisone, Pablo A.; Perez, Maria R.; Michelin, Severino; Dubner, Diana; Giorgio, Marina di; Carosella, Edgardo D.

    2005-01-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. It has been proposed that the occurrence and severity of the adverse reactions to radiation therapy are also influenced by such genetic susceptibility. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation offering a better likelihood of cure for malignant tumours. This paper, the first of two parts, reviews the main mechanisms involved in cell response to ionising radiation. DNA repair machinery and cell signalling pathways are considered and their role in radiosensitivity is analysed. The implication of non-targeted and delayed effects in radiosensitivity is also discussed. (orig.)

  8. Multi-detector computed tomography radiation doses in the follow ...

    African Journals Online (AJOL)

    2014-05-09

    May 9, 2014 ... The associated ionising radiation has raised concern as it is the dominant ... more radiosensitive because of a higher rate of cell division in the former and ... South Africa has not yet developed DRLs with which we could.

  9. Non-stochastic effects of ionising radiations on gonads

    International Nuclear Information System (INIS)

    Ash, P.J.N.D.

    1986-01-01

    Fractionated gonad doses of 0.35 Gy cause marked temporary reduction in sperm count; fractionated ovarian doses up to 1.5 Gy have no apparent effect in women aged 20 to 30. Single testicular doses of 0.5 to 3 Gy cause aspermia; return to pre-irradiation sperm counts occurs about 30 months after single doses of 2 and 3 Gy. The ovary also has a recovery capacity, particularly in women under 40. Type B spermatogonia are the most radiosensitive germ cells for cell killing. Later stages are more radioresistant, forming a transient population in the total male reproductive life. Following radiation-induced sterilisation, fertility is restored if enough spermatogonia survive to repopulate the seminiferous tubules. Radiation effects on female fertility are explained on the basis of reduction in a fixed oocyte pool. Doses needed to induce artificial menopause are higher in younger women because their ovaries contain larger oocyte numbers. Particular fractionation regimes decrease the threshold dose for permanent male sterility. It has been inferred that human testes could tolerate 1 mGy per day indefinitely without fertility impairment. In female experimental mammals, fractionation reduces fertility damage. Fractionation may also have a protective effect on the human ovary, depending on age and total dose. (U.K.)

  10. Dose limits cause unacceptable risk

    International Nuclear Information System (INIS)

    Collier, Sylvia.

    1985-01-01

    This paper on radiation dose limits for workers and the public discusses the following: Medical Research Council report; safety standards; risk assessment; deaths from cancers; biological radiation effects; UK legislation; low-level radiation; public concern; UKAEA staff survey; Ionising Radiations Regulations; United Nations Scientific Committee on Effects of Atomic Radiation; US studies on work force in nuclear establishments; problems of extrapolation; Japanese data from Hiroshima and Nagasaki; International Commission on Radiological Protection recommendations; studies on uranium miners; UK Health and Safety Executive; UK National Radiological Protection Board. (U.K.)

  11. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  12. Radiation dose dependent risk of liver cancer mortality in the German uranium miners cohort 1946–2003

    International Nuclear Information System (INIS)

    Dufey, F; Walsh, L; Sogl, M; Tschense, A; Schnelzer, M; Kreuzer, M

    2013-01-01

    An increased risk of mortality from primary liver cancers among uranium miners has been observed in various studies. An analysis of the data from a German uranium miner cohort (the ‘Wismut cohort’) was used to assess the relationship with ionising radiation. To that end the absorbed organ dose due to high and low linear energy transfer radiation was calculated for 58 987 miners with complete information on radiation exposure from a detailed job–exposure matrix. 159 deaths from liver cancer were observed in the follow-up period from 1946 to 2003. Relative risk models with either linear or categorical dependence on high and low linear energy transfer radiation liver doses were fitted by Poisson regression, stratified on age and calendar year. The linear trend of excess relative risk in a model with both low and high linear transfer radiation is −0.8 (95% confidence interval (CI): −3.7, 2.1) Gy −1 and 48.3 (95% CI: −32.0, 128.6) Gy −1 for low and high linear energy transfer radiation, respectively, and thus not statistically significant for either dose. The increase of excess relative risk with equivalent liver dose is 0.57 (95% CI: −0.69, 1.82) Sv −1 . Adjustment for arsenic only had a negligible effect on the radiation risk. In conclusion, there is only weak evidence for an increase of liver cancer mortality with increasing radiation dose in the German uranium miners cohort considered. However, both a lack of statistical power and potential misclassification of primary liver cancer are issues. (paper)

  13. Natural background radiation induces cytogenetic radioadaptive response more effectively than occupational exposure in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Monfared, A.S.; Mozdarani, H.; Amiri, M.

    2003-01-01

    Ramsar, a city in the northern Iran, has the highest level of natural background radiation in the world. It has been clearly shown that low doses of ionising radiation can induce resistance to subsequent higher exposures. This phenomenon is termed radioadaptive response. We have compared induction of cytogenetic radioadaptive response by High Natural Background Radiation (HNBR) in Ramsar and X-ray occupational exposure as conditioning doses in human peripheral blood lymphocytes. 30 healthy control individuals, living in Ramsar but in normal background radiation areas, 15 healthy individuals from Talesh Mahalleh, a region with extraordinary high level of background radiation, and 7 X-ray radiographers working in Ramsar hospital located in normal natural background ionising radiation area were evaluated. Peripheral blood samples were prepared and exposed to challenge dose of 0 and 2 Gy. Lymphocytes were scored using analysis of metaphase, for the presence of chromosomal aberrations. An adaptive response was observed in HNBR and radiation workers groups in comparison with sham controls. A significant increase in adaptive response was observed in the HNBR group if compared with the occupationally exposed group. These findings indicate that both natural background radiation and occupational exposure could induce cytogenetic radioadaptive response and it is more significant regarding to natural background ionising radiation. (author)

  14. The ionising radiation (medical exposure) regulations - IR (ME) R, Malta

    International Nuclear Information System (INIS)

    Desai, R.; Brejza, P.; Cremona, J.

    2004-01-01

    Full text: The regulations in Malta at present are in draft stage. These regulations partially implement European Council Directive 97/43/Euratom. This Directive lays down the basic measurements for the health and protection of individuals against dangers of ionising radiation in relation to medical exposure. The regulations impose duties on persons administering radiations, to protect people from unnecessary exposure whether as part of their own medical diagnosis, treatment or as part of occupational health worker for health screening, medico-legal procedures, voluntary participation in research etc. These regulations also apply to individuals who help other individuals undergoing medical exposure. Main provisions 1. Regulation 2 contains the definitions of 28 terms used in these regulations. 2. Regulation 3.1 and 3.2 sets out the medical exposures to which the regulations apply. 3. Regulation 4 requires approval of medical exposures due to medical research, from radiation protection board of Malta. 4. Regulation 5 prohibits new procedures involving medical exposure unless it has been justified in advance. 5. Regulation 6 provides conditions justifying medical exposures. It prohibits any medical exposure from being carried out which has not been justified and authorized and sets out matters to be taken into account for justification. 6. Regulation 7 requires that practitioner justifies the exposure, shall pay special attention towards (a) exposure from medical research procedures where there is no direct health benefit to the individual undergoing exposure, (b) exposures for medico-legal purposes; (c) exposures to pregnant or possible pregnant women and (d) exposures to breast-feeding women. 7. Regulation 8.1 to 8.3 prohibit any medical exposure from being carried out which has not been justified and sets out matters to be taken for justification 8. Regulation 8.4 prohibits an exposure if it cannot be justified. 9. Regulation 9 requires the employer to provide a

  15. The Ionising Radiations Advisory Committee Open Meeting 10 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    Full text: The Ionising Radiations Advisory Committee (IRAC) held its first open meeting on 10 October 2001 in response to a request from the Health and Safety Commission (HSC) that all its advisory committees should follow the Commission's example and hold such meetings. Some of the other advisory committees have already held open meetings and others are planning to do so shortly. The aim of the meeting was to enable members of the public to meet IRAC members and to find out more about the Committee - how it worked and the type of issues it dealt with. The first two sessions were devoted to short presentations describing IRAC's work and influences, now and in the future, on radiation protection generally. The third session was a discussion forum. The agenda for the meeting and the presentations are posted on the web at: www.hse.gov.uk/foi/iracopen.htm. Each session of presentations was followed by questions of clarification and the third session of the meeting comprised an open forum. Many of the questions raised were not directly relevant to IRAC but, nevertheless, members provided brief responses and referred questions on to others as appropriate. One question had been notified in advance, asking whether members of IRAC agreed that it is now (regrettably) reasonably foreseeable that a loss of containment of radioactive material may occur at a nuclear facility as a result of impact by an aeroplane or by other hostile acts, and that this should be made clear in published guidance on REPPIR. This question was not within IRAC's remit. The Chairman of the Nuclear Safety Advisory Committee offered to take the question to the Committee's next meeting. Issues discussed included: Concerns that exposure to ionising radiation at low levels is more dangerous than is currently reflected in risk estimates. The European Parliament has adopted a resolution calling on the main international bodies, including the International Commission on Radiological

  16. Open-air ionisation chambers with walls of soft-tissue equivalent material for measuring photon doses; Chambres d'ionisation d'ambiance a parois en materiau equivalent aux tissus mous pour la mesure des doses absorbees dues aux photons

    Energy Technology Data Exchange (ETDEWEB)

    Vialettes, H.; Anceau, J.C.; Grand, M.; Petit, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The ionisation chambers presented in this report constitute a contribution to research into methods of carrying out correct determinations in the field of health physics. The use of a mixture of teflon containing 42.5 per cent by weight of carbon for the chamber walls makes it possible to measure directly the dose absorbed in air through 300 mg/cm{sup 2} of soft tissue and, consequently, the dose absorbed in the soft tissues with a maximum error of 10 per cent for photon energies of between 10 keV and 10 MeV. Furthermore since this material does not contain hydrogen, the chamber has a sensitivity to neutrons which is much less than other chambers in current use. Finally the shape of these chambers has been studied with a view to obtaining a satisfactory measurement from the isotropy point of view; for example for gamma radiation of 27 keV, the 3 litre chamber is isotropic to within 10 per cent over 270 degrees, and the 12 litre chamber is isotropic to within 10 per cent over 300 degrees; for 1.25 MeV gamma radiation this range is extended over 330 degrees for the 3 litre chamber, and 360 degrees for the 12 litre chamber. This report presents the measurements carried out with these chambers as well as the results obtained. These results are then compared to those obtained with other chambers currently used in the field of health physics. (authors) [French] Les chambres d'ionisation presentees dans ce rapport apportent une contribution a la recherche de moyens dosimetriques adaptes aux mesures a effectuer pour assurer une dosimetrie correcte dans le domaine de la radioprotection. L'utilisation d'un melange de teflon charge a 42.5 pour cent en masse de carbone comme materiau constituant les parois de la chambre permet de realiser un dosimetre mesurant directement la dose absorbee dans l'air sous 3OO mg/cm{sup 2} de tissu mou et, par consequent, la dose absorbee dans les tissus mous avec une erreur maximale de 10 pour cent, pour des photons d

  17. Exposure to low-dose radiation and the risk of breast cancer among women with a familial or genetic predisposition: a meta-analysis

    International Nuclear Information System (INIS)

    Jansen-van der Weide, Marijke C.; Greuter, Marcel J.W.; Pijnappel, Ruud M.; Jansen, Liesbeth; Oosterwijk, Jan C.; Bock, Geertruida H. de

    2010-01-01

    Women with familial or genetic aggregation of breast cancer are offered screening outside the population screening programme. However, the possible benefit of mammography screening could be reduced due to the risk of radiation-induced tumours. A systematic search was conducted addressing the question of how low-dose radiation exposure affects breast cancer risk among high-risk women. A systematic search was conducted for articles addressing breast cancer, mammography screening, radiation and high-risk women. Effects of low-dose radiation on breast cancer risk were presented in terms of pooled odds ratios (OR). Of 127 articles found, 7 were selected for the meta-analysis. Pooled OR revealed an increased risk of breast cancer among high-risk women due to low-dose radiation exposure (OR = 1.3, 95% CI: 0.9- 1.8). Exposure before age 20 (OR = 2.0, 95% CI: 1.3-3.1) or a mean of ≥5 exposures (OR = 1.8, 95% CI: 1.1-3.0) was significantly associated with a higher radiation-induced breast cancer risk. Low-dose radiation increases breast cancer risk among high-risk women. When using low-dose radiation among high-risk women, a careful approach is needed, by means of reducing repeated exposure, avoidance of exposure at a younger age and using non-ionising screening techniques. (orig.)

  18. Theory of thermoluminescence gamma dose response: The unified interaction model

    International Nuclear Information System (INIS)

    Horowitz, Y.S.

    2001-01-01

    We describe the development of a comprehensive theory of thermoluminescence (TL) dose response, the unified interaction model (UNIM). The UNIM is based on both radiation absorption stage and recombination stage mechanisms and can describe dose response for heavy charged particles (in the framework of the extended track interaction model - ETIM) as well as for isotropically ionising gamma rays and electrons (in the framework of the TC/LC geminate recombination model) in a unified and self-consistent conceptual and mathematical formalism. A theory of optical absorption dose response is also incorporated in the UNIM to describe the radiation absorption stage. The UNIM is applied to the dose response supralinearity characteristics of LiF:Mg,Ti and is especially and uniquely successful in explaining the ionisation density dependence of the supralinearity of composite peak 5 in TLD-100. The UNIM is demonstrated to be capable of explaining either qualitatively or quantitatively all of the major features of TL dose response with many of the variable parameters of the model strongly constrained by ancilliary optical absorption and sensitisation measurements

  19. Radiation and Reason Why radiation at modest dose rates is quite harmless and current radiation safety regulations are flawed

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Data on the impact of ionising radiation on life are examined in the light of evolutionary biology. This comparison confirms that fear of nuclear radiation is not justified by science itself; rather it originates in a failure of public trust in nuclear science, a relic of the international politics of the Cold War era. Current ionisation safety regulations appease this fear but without scientific support and they need fundamental reformulation. This should change the reaction to accidents like Fukushima, the cost of nuclear energy and the application of nuclear technology to the supply of food and fresh water. Such a boost to the world economy would require that more citizens study and appreciate the science involved – and then tell others -- not as much fun as the Higgs, perhaps, but no less important! www.radiationandreason.com

  20. The physical principles of radiation protection

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1982-01-01

    The production of ionising radiation from the naturally occurring radioactive decay chains is reviewed and mathematical expressions relating to secular equilibrium and the calculation of the activity of daughter products are introduced. The absorption of α, β and γ radiation is discussed from the point of view of the physical processes which occur, e.g. the photoelectric, Compton and pair production processes for γ-rays. Linear energy transfer (LET) and range-energy relationships are discussed for α and β particles. Units of measurement for ionising radiation, relative biological effectiveness, dose equivalence and quality factors for each type of radiation are reviewed. The behaviour and properties of radon, thoron and their daughter products are described, and the definition of the Working Level introduced

  1. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  2. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers.

    Science.gov (United States)

    Paolicchi, F; Miniati, F; Bastiani, L; Faggioni, L; Ciaramella, A; Creonti, I; Sottocornola, C; Dionisi, C; Caramella, D

    2016-04-01

    To evaluate radiation protection basic knowledge and dose assessment for radiological procedures among Italian radiographers A validated questionnaire was distributed to 780 participants with balanced demographic characteristics and geographic distribution. Only 12.1 % of participants attended radiation protection courses on a regular basis. Despite 90 % of radiographers stating to have sufficient awareness of radiation protection issues, most of them underestimated the radiation dose of almost all radiological procedures. About 5 % and 4 % of the participants, respectively, claimed that pelvis magnetic resonance imaging and abdominal ultrasound exposed patients to radiation. On the contrary, 7.0 % of the radiographers stated that mammography does not use ionising radiation. About half of participants believed that radiation-induced cancer is not dependent on age or gender and were not able to differentiate between deterministic and stochastic effects. Young radiographers (with less than 3 years of experience) showed a higher level of knowledge compared with the more experienced radiographers. There is a substantial need for radiographers to improve their awareness of radiation protection issues and their knowledge of radiological procedures. Specific actions such as regular training courses for both undergraduate and postgraduate students as well as for working radiographers must be considered in order to assure patient safety during radiological examinations. • Radiographers should improve their knowledge on radiation protection issues. • Only 12.1 % of participants attended radiation protection courses on a regular basis. • Specific actions must be considered in order to increase knowledge and awareness.

  3. Decontamination of hospital wastes by the combined action of ionising radiation and heat - the thermorad process

    International Nuclear Information System (INIS)

    Icre, P.; Rocquigny, H. de

    1995-01-01

    The Thermorad process is used for decontaminating hospital wastes at the hospital as they are collected from the different departments. The process utilises the combined microbiological effects of ionising radiation (5 kGy) and dry heat (60 o C). The treatment unit, which is compact and of small size, contains a cobalt 60 source of under 100,000 curies and has an annual treatment capacity of 5000 m 3 . (author)

  4. Orthopaedic surgeries - assessment of ionising radiations exposure in health care workers

    International Nuclear Information System (INIS)

    Leite, E.S.; Uva, A.S.

    2006-01-01

    Full text of publication follows: 1. Objectives: The health care workers are exposed to ionizing radiations during their activities. In the operating rooms, the ionizing radiations are used in orthopaedic surgery and the dose depends on some factors, like the characteristics of the equipment. This study aims to: Estimate the occupational dose of ionizing radiations exposure of the orthopaedic doctors and nurses during the orthopaedic surgeries, in a Portuguese operating room; Sensitize the health care workers to use the individual dosimeter and to adopt radiation preventive measures. 2. Population and methods The study was conducted on nine Orthopaedic doctors and two nurses of an operating room of a hospital in Lisbon neighborhoods. We made a risk evaluating concerning: the radiations dose in different points, corresponding to gonads, hands and crystalline lens levels of all the professionals, during the surgeries; the average period of radiation in the orthopaedic surgeries; the number of annual orthopaedic surgeries, looking for that in the surgeries registers, to estimate the annual ionizing radiations dose of each orthopaedic doctor and nurse. 3. Results The annual doses estimated at different levels for orthopaedic doctors were the following: gonads: between 20,63 and 68,75 mGy; hands: 4,95 16,50 mGy; crystalline lens: 8,25 27,50 mGy). For the orthopaedic nurses: gonads: 130,63 151,25 mGy; hands: 31,35 36,30 mGy; crystalline lens 52,25 60,25 mGy. 4. Conclusions Although the location and positions of health care workers are not the same during the different surgeries and the equipment has an automatic control of the X ray emission, the annual ionizing radiations dose exposure for health care workers is an important one. The risk rating justifies the use of individual dosimeters for better individual dose assessment as part of an ionizing radiations prevention program. As a matter of fact preventive measures begin with a good quantitative risk assessment of

  5. Personal dose monitoring in hospitals: Global assessment, critical applications and future needs

    International Nuclear Information System (INIS)

    Covens, P.; Berus, D.; Buls, N.; Clerinx, P.; Vanhavere, F.

    2007-01-01

    It is known that medical applications using ionising radiation are wide spread and still increasing. Physicians, technicians, nurses and others constitute the largest group of workers occupationally exposed to man-made sources of radiation. Many hospital workers are consequently subjected to routine monitoring of professional radiation exposures. in the university hospital, UZ Brussel, 600 out of 4000 staff members are daily monitored for external radiation exposures. The most obvious applications of ionising radiation are diagnostic radiology, diagnostic or therapeutic use of radionuclides in nuclear medicine and external radiation therapy or brachytherapy in radiotherapy departments. Other important applications also include various procedures in interventional radiology (IR), in vitro biomedical research and radiopharmaceutical production around cyclotrons. Besides the fact that many of the staff members, involved in these applications, are not measurably exposed, detailed studies were carried out at workplaces where routine dose monitoring encounters difficulties and for some applications where relatively high occupational exposures can be found. most of the studies are concentrated around nuclear medicine applications and IR. They contain assessments of both effective dose and doses at different parts of the body. The results contribute to better characterisation of the different workplaces in a way that critical applications can be identified. Moreover, conclusions point out future needs for practical routine dose monitoring and optimisation of radiation protection. (authors)

  6. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    CERN Document Server

    2002-01-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation pro...

  7. Optically Stimulated Luminescence for Retrospective Radiation Dosimetry. The Use of Materials Close to Man in Emergency Situations

    OpenAIRE

    Geber-Bergstrand, Therése

    2017-01-01

    If an accident or attack involving radiological or nuclear material were to happen, people from the general public would be at risk of exposure to ionising radiation. Unlike people working with ionising radiation, for whom level of exposure to radiation is constantly monitored with dosemeters, people from the general population do not wear dosemeters; thus, the dose estimations for these individuals must be performed using alternative methods. This field of research is called retrospective do...

  8. Lactobacilli and ionising radiation: an example of the application to meat and meat products

    International Nuclear Information System (INIS)

    Holzapfel, W.H.

    1992-01-01

    Ionising radiation provides a practical pasteurisation method for the terminal treatment of refrigerated vacuum-packaged meat products with the aim of shelf life extension. However, the relatively high radiation resistance (γ-D 10 = 0.70-1.2 kGy) of typical meat Lactobacilli, especially Lb. sake, selectively favours their total domination after treatments with 5 kGy. Typical meat strains show higher resistance (in term of γ-D 10 values the decimal reduction value due to irradiation) in the log (exponential) than in the stationary phase. This phenomenon was observed both in semi-synthetic broth and in meat, and may be explained in terms of a DNA repair mechanism operative during the exponential phase. Packaging under different gas atmospheres resulted in increased resistance to radiation in presence of N 2 , whilst the highest death rate was observed in presence of CO 2 . (orig.) [de

  9. A survey of radiation safety training among South African interventionalists

    Directory of Open Access Journals (Sweden)

    A Rose

    2018-04-01

    Full Text Available Background. Ionising radiation is increasingly being used in modern medicine for diagnostic, interventional and therapeutic purposes. There has been an improvement in technology, resulting in lower doses being emitted. However, an increase in the number of procedures has led to a greater cumulative dose for patients and operators, which places them at increased risk of the effects of ionising radiation. Radiation safety training is key to optimising medical practice.Objective. To present the perceptions of South African interventionalists on the radiation safety training they received and to offer insights into the importance of developing and promoting such training programmes for all interventionalists.Methods. In this cross-sectional study, we collected data from interventionalists (N=108 using a structured questionnaire.Results. All groups indicated that radiation exposure in the workplace is important (97.2%. Of the participants, the radiologists received the most training (65.7%. Some participants (44.1% thought that their radiation safety training was adequate. Most participants (95.4% indicated that radiation safety should be part of their training curriculum. Few (34.3% had received instruction on radiation safety when they commenced work. Only 62% had been trained on how to protect patients from ionising radiation exposure.Conclusion. Radiation safety training should be formalised in the curriculum of interventionalists’ training programmes, as this will assist in stimulating a culture of radiation protection, which in turn will improve patient safety and improve quality of care.

  10. Effect of the ionizing radiation on alanine solution for a dosimeter application

    International Nuclear Information System (INIS)

    Abdessamad, Nour El Houda

    2007-01-01

    The amino acid alanine is well known as a dosimetric detector material for high level dosimetry. Its application is based on the formation of radicals by ionising radiation. In this study the effect of several parameters such as: the ionising radiation, the concentration, the dose on the pH, conductivity and the oscillotitrometric answer of L a lanine solution was investigated. The results show that there is a significant production of new species. The formation of these species increases upon increasing dose. The comparison between the repeatability of the used techniques led us to choose of the system alanine/pH and the alanine/conductivity as the most adapted. (Author)

  11. Measurement of radiotherapy CBCT dose in a phantom using different methods

    International Nuclear Information System (INIS)

    Hu, Naonori; McLean, Donald

    2014-01-01

    Cone beam computed tomography (CBCT) is used widely for the precise and accurate patient set up needed during radiation therapy, notably for hypo fractionated treatments, such as intensity modulated radiation therapy and stereotactic radiation therapy. Reported doses associated with CBCT indicate the potential to approach radiation tolerance levels for some critical organs. However while some manufacturers state the CBCT dose for each standard protocol, currently there are no standard or recognised protocols for CBCT dosimetry. This study has applied wide beam computed tomography dosimetry approaches as reported by the International Atomic Energy Agency and the American Association of Physicists in Medicine to investigate dosimetry for the Varian Trilogy linear accelerator with on-board imager v1.5. Three detection methods were used including (i) the use of both 100 mm and 300 mm pencil ionisation chambers, (ii) a 0.6 cm 3 ionisation chamber and (iii) gafchromic film. Measurements were performed using custom built 45 cm long PMMA phantoms as well as standard 15 cm long phantoms for both head and body simulation. The results showed good agreement between each other detector system (within 3 %). The measured CBCT dose for the above methods showed a large difference to the dose stated by Varian, with the measured dose being 40 % over the stated dose for the standard head protocol. This shows the importance of independently verifying the stated dose given by the vendor for standard procedures.

  12. Non-Linearity of dose-effect relationship on the example of cytogenetic effects in plant cells at low level exposure to ionising radiation

    International Nuclear Information System (INIS)

    Oudalova, Alla; Geras'kin, Stanislav; Dikarev, Vladimir; Dikareva, Nina; Chernonog, Elena; Copplestone, David; Evseeva, Tatyana

    2006-01-01

    Over several decades, modelling the effects of ionizing radiation on biological system has relied on the target principle [Timofeeff-Ressovsky et al., 1935], which assumes that cell damage or modification to genes appear as a direct consequence of the exposure of biological macromolecules to charged particles. Furthermore, it is assumed that there is no threshold for the induction of biological damage and that the effects observed are proportional to the energy absorbed. Following this principle, the average number of hits per target should increase linearly with dose, and the yield of mutations per unit of dose is assumed to be the same at both low and high doses (linearity of response). This principle has served as the scientific background for the linear no-threshold (LNT) concept that forms the basis for the radiological protection for the public and the environment [ICRP, 1990]. It follows from the LNT that there is an additional risk for human health from exposure to any radiation level, even below natural background. Since the mid 50's, however, the scientific basis for the LNT concept has been challenged as experimental data have shown that, at low doses, there was a non linear relationship in the dose response. Luchnik and Timofeeff-Ressovsky were the first who showed a non-linear response to a low dose exposure [Luchnik, 1957; Timofeeff-Ressovsky and Luchnik, 1960]. Since then, many data have been accumulated which contradict the LNT model at low doses and dose rates. However, the hit-effect paradigm has become such a strong and indissoluble fact that it has persisted even under the growing pressure of scientific evidence for phenomena at low dose exposure that can not be successfully accounted for by the LNT concept. In recent years, additional information on non-targeted effects of radiation has been accumulated following the first reports of an adaptive response in human lymphocytes [Olivieri et al., 1984] as well as bystander mutagenic effect of alpha

  13. Non-Linearity of dose-effect relationship on the example of cytogenetic effects in plant cells at low level exposure to ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, Alla; Geras' kin, Stanislav; Dikarev, Vladimir; Dikareva, Nina; Chernonog, Elena [Russian Institute of Agricultural Radiology and Agroecology, RIARAE, 249032 Obninsk (Russian Federation); Copplestone, David [Environment Agency, Millbank Tower, 25th. Floor, 21/24 Millbank, London, SW1P 4XL (United Kingdom); Evseeva, Tatyana [Institute of Biology, Kommunisticheskaya st., 28 Syktyvkar 167610, Komi Republic (Russian Federation)

    2006-07-01

    Over several decades, modelling the effects of ionizing radiation on biological system has relied on the target principle [Timofeeff-Ressovsky et al., 1935], which assumes that cell damage or modification to genes appear as a direct consequence of the exposure of biological macromolecules to charged particles. Furthermore, it is assumed that there is no threshold for the induction of biological damage and that the effects observed are proportional to the energy absorbed. Following this principle, the average number of hits per target should increase linearly with dose, and the yield of mutations per unit of dose is assumed to be the same at both low and high doses (linearity of response). This principle has served as the scientific background for the linear no-threshold (LNT) concept that forms the basis for the radiological protection for the public and the environment [ICRP, 1990]. It follows from the LNT that there is an additional risk for human health from exposure to any radiation level, even below natural background. Since the mid 50's, however, the scientific basis for the LNT concept has been challenged as experimental data have shown that, at low doses, there was a non linear relationship in the dose response. Luchnik and Timofeeff-Ressovsky were the first who showed a non-linear response to a low dose exposure [Luchnik, 1957; Timofeeff-Ressovsky and Luchnik, 1960]. Since then, many data have been accumulated which contradict the LNT model at low doses and dose rates. However, the hit-effect paradigm has become such a strong and indissoluble fact that it has persisted even under the growing pressure of scientific evidence for phenomena at low dose exposure that can not be successfully accounted for by the LNT concept. In recent years, additional information on non-targeted effects of radiation has been accumulated following the first reports of an adaptive response in human lymphocytes [Olivieri et al., 1984] as well as bystander mutagenic effect of

  14. About the contribution of occupational health's services for risk factors evaluation, medical and dosimetric follow-up in the workers monitoring exposed to ionising radiations in France

    International Nuclear Information System (INIS)

    Bailloeuil, C.; Gonin, M.; Gerondal, M.

    2006-01-01

    Full text of publication follows: French national regulation (31/03/2003) indicates principles of a global approach about the medical and dosimetric follow-up in the workers monitoring. Legislator insists on risks and expositions trace ability along all professional career and after. The aim of this French specific system is to institute medical clinic aspects in accordance with dosimetry and professional risks. The occupational practitioners are approved practitioners who have followed a specific training. The organisation guarantees that a worker will be followed by one specific practitioner in order to reinforce the quality and the traceability of follow up. Medical supervision is done at taking on and at least once a year. It means to identify and take care of risks and expositions at work stations. If necessary, biological measurements and recommendations about collective and individual protection equipments complete the estimation of risks. On the subject of emergency, first aid is delivered on sites by occupational health personnel, either for classic medical problem or for radiological accident. Furthermore, occupational health personnel assist outside emergency services with whom we have specific conventions. External dosimetric follow-up is done with radiation protection qualified expert of the company. The internal contamination supervision and internal dose evaluation are done by the occupational health services. Measurements either whole body counts or radio-toxicologic analysis are submitted to technical quality process. Beyond the respect of regulatory dose limits, the aim of the dosimetric follow-up is the contribution to the preparation of work places with strong dosimetric focus. Informations at workers are dispensed about every risks and every kinds of risks: ionising radiation health effects, ionising radiation and pregnancy, high exposition, chemical risks, work at heat, asbestos. All data are conserved 50 years after the exposure These data

  15. The FASSET Framework for assessment of environmental impact of ionising radiation in European ecosystems-an overview

    International Nuclear Information System (INIS)

    Larsson, C-M

    2004-01-01

    The FASSET project was launched in November 2000 under the EC 5th Framework Programme to develop a framework for the assessment of environmental impact of ionising radiation in European ecosystems. It involved 15 organisations in seven European countries and delivered its final report in spring 2004. The project set out to organise radioecological and radiobiological data into a logical structure that would facilitate the assessment of likely effects on non-human biota resulting from known or postulated depositions of radionuclides in the environment. The project included an overview of 20 pathway-based environmental assessment systems targeted at radioactive substances, or at hazardous substances in general. The resulting framework includes the following fundamental elements: source characterisation; description of seven major European ecosystems; selection of a number of reference organisms on the basis of prior ecosystem and exposure analysis; environmental transfer analysis; dosimetric considerations; effects analysis; and general guidance on interpretation including consideration of uncertainties. The project has used existing information supplemented with development in some areas, e.g. Monte Carlo calculations to derive dose conversion coefficients, model development, and the building of an effects database (FRED, the FASSET Radiation Effects Database). On the basis of experience from FASSET and other recent programmes, it can be concluded that (i) there is substantial agreement in terms of conceptual approaches between different frameworks currently in use or proposed, (ii) differences in technical approaches can be largely attributed to differences in ecosystems of concern or in national regulatory requirements, (iii) sufficient knowledge is available to scientifically justify assessments following the Framework structure, but (iv) significant data gaps exist for environmental transfer of key nuclides as well as for effects data for key wildlife groups at

  16. Protection of the environment from ionising radiation. The development and application of a system of radiation protection for the environment. Proceedings of the third international symposium on the protection of the environment from ionising radiation (SPEIR 3). Unedited papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    In recent years, awareness of the vulnerability of the environment has increased, as evidenced by new and developing international policies for environmental protection, starting with the Rio Declaration of 1992. In the context of ionizing radiation, the existing international approach is largely based on providing for the protection of humans, but this is being critically reviewed in several international fora. It is in this context that the Third International Symposium on Protection of the Environment from Ionising Radiation (SPEIR 3) was held between 22 and 26 July 2002, in Darwin, Australia. The symposium focused on issues related to the development and application of a system of radiation protection for the environment. The symposium programme included sessions dedicated to: ongoing research on the effects, responses and mechanisms of the interactions of ionizing radiation with biota; policy and ethical dimensions of the development of a framework for environmental radiation protection; and the development and use of methods and models for evaluating radiation as a stressor to the environment. Three workshops were held to allow for detailed discussion of each of these subjects. This symposium was the third in a series. The first International Symposium on Ionising Radiation: Protection of the Natural Environment, was held in Stockholm, Sweden, 20-24 May 1996. This symposium was organized jointly by the Swedish Radiation Protection Institute (SSI) and the Atomic Energy Control Board (AECB) of Canada, and the proceedings were published by the Akademitryck AB, Edsbruk, Sweden in 1996. The second International Symposium on Ionizing Radiation: Environmental Protection Approaches for Nuclear Facilities, was held in Ottawa, Canada, 10-14 May 1999, and was organized by the Canadian Nuclear Safety Commission (CNSC), the Supervising Scientists Group of Environment Australia, and the Swedish Radiation Protection Institute (SSI). The proceedings were published in April

  17. Protection of the environment from ionising radiation. The development and application of a system of radiation protection for the environment. Proceedings of the third international symposium on the protection of the environment from ionising radiation (SPEIR 3). Unedited papers

    International Nuclear Information System (INIS)

    2003-01-01

    In recent years, awareness of the vulnerability of the environment has increased, as evidenced by new and developing international policies for environmental protection, starting with the Rio Declaration of 1992. In the context of ionizing radiation, the existing international approach is largely based on providing for the protection of humans, but this is being critically reviewed in several international fora. It is in this context that the Third International Symposium on Protection of the Environment from Ionising Radiation (SPEIR 3) was held between 22 and 26 July 2002, in Darwin, Australia. The symposium focused on issues related to the development and application of a system of radiation protection for the environment. The symposium programme included sessions dedicated to: ongoing research on the effects, responses and mechanisms of the interactions of ionizing radiation with biota; policy and ethical dimensions of the development of a framework for environmental radiation protection; and the development and use of methods and models for evaluating radiation as a stressor to the environment. Three workshops were held to allow for detailed discussion of each of these subjects. This symposium was the third in a series. The first International Symposium on Ionising Radiation: Protection of the Natural Environment, was held in Stockholm, Sweden, 20-24 May 1996. This symposium was organized jointly by the Swedish Radiation Protection Institute (SSI) and the Atomic Energy Control Board (AECB) of Canada, and the proceedings were published by the Akademitryck AB, Edsbruk, Sweden in 1996. The second International Symposium on Ionizing Radiation: Environmental Protection Approaches for Nuclear Facilities, was held in Ottawa, Canada, 10-14 May 1999, and was organized by the Canadian Nuclear Safety Commission (CNSC), the Supervising Scientists Group of Environment Australia, and the Swedish Radiation Protection Institute (SSI). The proceedings were published in April

  18. A survey of radiation safety training among South African ...

    African Journals Online (AJOL)

    Background. Ionising radiation is increasingly being used in modern medicine for diagnostic, interventional and therapeutic purposes. There has been an improvement in technology, resulting in lower doses being emitted. However, an increase in the number of procedures has led to a greater cumulative dose for patients ...

  19. Synthetic diamond devices for radiotherapy applications: Thermoluminescent dosimeter and ionisation chamber

    International Nuclear Information System (INIS)

    Descamps, C.; Tromson, D.; Mer, C.; Nesladek, M.; Bergonzo, P.

    2006-01-01

    In radiotherapy field, the major usage of dosimeters is in the measurement of the dose received by the patient during radiotherapy (in-vivo measurements) and in beam calibration and uniformity checks. Diamond exhibits several interesting characteristics that make it a good candidate for radiation detection. It is indeed soft-tissue equivalent (Z=6 compared to Z=7.42 for human tissue), mechanically robust and relatively insensitive to radiation damage, chemically stable and non toxic. Moreover, the recent availability of synthetic samples, grown under controlled conditions using the chemical vapour deposition (C.V.D.) technique, allowed decreasing the high cost and the long delivery time of diamond devices. Diamond can be use for off-line dosimetry as thermoluminescent dosimeters or for on-line dosimetry as ionisation chamber [2,3]. These both applications are reported here. For this study, samples were grown in the laboratory and devices were then tested under X-ray irradiations and in clinical environment under medical cobalt source. The work described in this paper was performed in the framework of the European Integrated Project M.A.E.S.T.R.O., Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology, (6. FP) which is granted by the European Commission.The first results of this study clearly show that C.V.D. diamond detectors are suitable for dosimetry in radiotherapy applications. Moreover, for both T.L. dosimeters and ionisation chambers applications, and even though the sensitivity is subsequently reduced, nitrogen incorporation in films seems to significantly improve the dosimetric characteristics of the devices. Therefore, the optimisation of the material quality appears as a very important issue in order to increase the dosimetric characteristics of devices and more particularly, for use as thermoluminescent dosimeters, other impurities (Nickel, Phosphorus) will be tested. For ionisation chamber applications, experiments with

  20. The Bland-Altman analysis: Does it have a role in assessing radiation dosimeter performance relative to an established standard?

    International Nuclear Information System (INIS)

    Hill, R.F.; Tofts, P.S.; Baldock, C.

    2010-01-01

    Bland-Altman analysis is used to compare two different methods of measurement and to determine whether a new method of measurement may replace an existing accepted 'gold standard' method. In this work, Bland-Altman analysis has been applied to radiation dosimetry to compare the PTW Markus and Roos parallel plate ionisation chambers and a PTW PinPoint chamber against a Farmer type ionisation chamber which is accepted as the gold standard for radiation dosimetry in the clinic. Depth doses for low energy x-rays beams with energies of 50, 75 and 100 kVp were measured using each of the ionisation chambers. Depth doses were also calculated by interpolation of the data in the British Journal of Radiology (BJR) Report 25. From the Bland-Altman analysis, the mean dose difference between the two parallel plate chambers and the Farmer chambers was 1% over the range of depths measured. The PinPoint chamber gave significant dose differences compared to the Farmer chamber. There were also differences of up to 12% between the BJR Report 25 depth doses and the measured data. For the Bland-Altman plots, the lines representing the limits of agreement were selected to be a particular percentage agreement e.g. 1 or 2%, instead of being based on the standard deviation (σ) of the differences. The Bland-Altman statistical analysis is a powerful tool for making comparisons of ionisation chambers with an ionisation chamber that has been accepted as a 'gold standard'. Therefore we conclude that Bland-Altman analysis does have a role in assessing radiation dosimeter performance relative to an established standard.

  1. The causes and consequences of human exposure to ionising radiation

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1991-01-01

    Few phenomena cause as much concern in developed countries as human exposure to artificial sources of radiation, and yet there are more potent threats to health: natural radiation is more pervasive and exposures more substantial; common practices such as smoking and drinking are more detrimental. Developing countries may be more anxious to establish radiological procedures than radiological protection. This paper gives the ranges of exposure to which people are subjected from natural and artificial sources which should help to put all doses in perspective. The relationship between dose and risk is established and used to show that exposures to radiation leak to low levels of risk. Finally, the new recommendations of ICRP for the control of radiation risk are presented. (Author)

  2. Dose reduction - the radiologist's view

    International Nuclear Information System (INIS)

    Russell, J.G.B.

    1984-01-01

    The magnitude of the exposure to ionising radiation dominates radiological practice in only three fields, i.e. foetal radiography, mammography and computed tomography. The balance between risk and benefit are briefly examined. The types of hazard considered are carcinogenesis, genetic injury and organogenesis. Ways of achieving a reduction of the dose to the patient are also briefly discussed. (U.K.)

  3. Registration of radiation doses

    International Nuclear Information System (INIS)

    2000-02-01

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  4. Dose rate constants for the quantity H{sub p}(3) for frequently used radionuclides in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Szermerski, Bastian; Bruchmann, Iris; Geworski, Lilli [Medical School Hannover (Germany). Dept. for Radiation Protection and Medical Physics; Behrens, Rolf [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2016-07-01

    According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H{sub p}(3), which is supposed to estimate the dose to the lens of the eye. For this, H{sub p}(3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely.

  5. Cellular responses in primary epidermal cultures from oncorhynchus mykiss following the combined exposure of ionising radiation and a heavy metal

    International Nuclear Information System (INIS)

    Lyng, F.M.; Ni Shuilleabhain, S.; Davoren, M.

    2004-01-01

    Mechanisms of toxicant action on biological systems are difficult to identify when more than one contaminant is involved due to potential synergistic and antagonistic effects. There is a general paucity of research into the effect of radiation exposure in tandem with common environmental contaminants due to the inherent difficulties involved. In vitro cell cultures are particularly suited to the study of toxic mechanisms due to their proximity to toxic modes of action and the absence of the multiple defence mechanisms present in intact organisms. Primary cell cultures are particularly beneficial in this area of research as they still maintain many of their tissue specific functions. The objective of this study was to distinguish different mechanisms of cell death (growth arrest, apoptosis, primary and secondary necrosis and proliferation), following combination exposure to ionising radiation and a heavy metal (ZnCl 2 ). The model system employed was a primary cell culture of rainbow trout (Oncorhynchus mykiss) epidermal tissue which has been previously used to study the effects of various environmental agents in this laboratory. Apoptosis and necrosis were quantified morphologically while proliferation was assessed immuno-cyto-chemically using an anti PCNA (proliferating cell nuclear antigen) antibody. While radiation doses up to and including 10 Gy had no effect on growth, exposure to ZnCl 2 produced a significant dose dependent reduction in growth (10, 50, 75, 100 and 200 ppm ZnCl 2 ). Preliminary results indicate no significant effect on growth following a combined exposure of 5 Gy + 50 ppm ZnCl 2 . These results may have important implications for understanding the mechanisms underlying cellular responses to multiple contaminant exposures. (author)

  6. Draft guidance notes for the protection of persons against ionising radiations arising from veterinary use

    International Nuclear Information System (INIS)

    1983-01-01

    These guidance notes have been prepared for those who use ionising radiation for diagnostic purposes in veterinary practice, either in private practices or in larger institutions. Ancillary activities such as the testing and calibration of equipment are also covered by these notes so far as they are carried out on the same premises. The guidance notes indicate procedures for the protection of all persons who may be exposed as a result of these practices, that is to say all employed and self-employed persons, apprentices and students, and members of the public. (author)

  7. The ionising radiation effect on physico-chemical properties of organosilicon oils

    International Nuclear Information System (INIS)

    Krasnopyorova, A.P.

    1998-01-01

    The physico-chemical characteristics of organosilicon oils, as dielectric constant, viscosity, and refractive index, have been measured before and after the gamma irradiation with the doses of 10 3 to 10 6 Gray. The organosilicons studied were PMS-1, PMS-5, PMS-VV, and PMFS. All the measurements were performed with 60 Co in open test tubes as a source of gamma radiation. The structure modifications in oil molecules depending on irradiation dose have been studied with IR spectrometry. When comparing the main characteristics of the studied organosilicons before and after the irradiation one may arrange them into the following sequence with the increasing of their resistance to the gamma radiation: PMS-VV 6 GRay. For the liquids PMS-1 and PMS-VV it is found that the increasing of their viscosity with the dose absorbed obeys exponential law: ν ν 0 exp (K γ .D), where ν 0 and ν are the viscosities of the sample before and after the irradiation, respectively; D is the absorbed radiation dose; K γ is the radiation damage factor. (author)

  8. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  9. Post-radiation analgesia at rats and function of endogenous opiates

    International Nuclear Information System (INIS)

    Slivkova, E.; Smajda, B.; Paulikova, E.; Lackova, M.

    2002-01-01

    In this work post-radiation analgesia at rats as well as the function of endogenous opiates were tested. Males of rats were irradiated all-body dose 6 Gy. Hot-plate test was used. Dose of 8 mg of naloxone per kg of animal blocked perception of ache. This dose blocked analgetic effect of ionising radiation. Activity of phagocyte activity and phagocyte index were enhanced at rats which obtained naloxone. Authors stated that opiate system play a significant role at analgesia induced by radiation at rats and can modify response of immunity system on the stress

  10. Review of surface dose detectors in radiotherapy

    LENUS (Irish Health Repository)

    O'Shea, E.

    2006-11-20

    Several instruments have been used to measure absorbed radiation dose under non-electronic equilibrium conditions, such as in the build-up region or near the interface between two different media, including the surface. Many of these detectors are discussed in this paper. A common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate ionisation chambers. Thermoluminescent dosimeters (TLDs), diodes and radiographic film have also been used to obtain surface dose measurements. The diamond detector was used recently by the author in an investigation on the effects of beam-modifying devices on skin dose and it is also described in this report

  11. Effect of Low Dose Gamma Radiation on Some Biochemical Indicators in the Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Simpraga, M.; Vilic, M.; Miljanic, S.

    2001-01-01

    Full text: An attempt was made to determine the effect of irradiation of eggs by low dose ionising radiation before incubation on concentration of total protein, glucose and cholesterol in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens were irradiated by dose of 0.15 Gy gamma radiation ( 60 Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was the control group of chickens hatched from nonirradiated eggs. All other conditions were the same for the both groups. After hatching, blood samples were taken from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of all three parameters was determined spectrophotometrically using Boehringer Mannheim GmbH optimized kits. The concentration of total protein was significantly decreased in the blood plasma of chickens hatched from irradiated eggs on days 3, 7 and 30 and increased only on day 5. The concentration of glucose in the blood plasma was increased in the same chickens on days 1 and 30. The concentration of the cholesterol was decreased in the same chickens on day 7, and increased on day 10. Obtained results indicate that low-dose of gamma radiation has effects on some metabolic processes in the chickens hatched from eggs irradiated before incubation. (author)

  12. Unjustified prenatal radiation exposure in medical applications

    International Nuclear Information System (INIS)

    Cardenas Herrera, J.; Lamadrid, A.I.; Garcia Lima, O.; Diaz Bernal, E.; Freixas, V.; Lopez Bejerano, G.; Sanchez, R.

    2001-01-01

    The exposure to the radiation ionising of pregnant women, frequently constitutes motive of preoccupation for the expectant mother and the medical professionals taken the responsibility with its attention. The protection of the embryo-fetus against the ionising radiation is of singular importance due to its special vulnerability to this agent. On the other hand the diagnosis or treatment with radiations ionising beneficial for the expectant mother, are only indirectly for the embryo-fetus that is exposed to a hazard without perceiving anything. The present paper presents the experience obtained in the clinical and dosimetric evaluation from twenty-one pregnant patients subjected to diverse radiodiagnostic procedures or nuclear medicine during the years 1999-2000. The obtained results evidence that 24% of the patients was subjected to procedures of nuclear medicine with diagnostic purposes. While the period of pregnancy of the patients ranged between 4 and 12 weeks, it could be concluded that in all the cases the doses received by the patients in the whole body did not exceed 2 mSv. When conjugating the period of pregnancy of the patients with the doses received, there is no evidence of significant risk for the embryo-fetus. Paradoxically the physicians of assistance suggested to their patients in all the cases to carry out the interruption of the pregnancy, demonstrating with this decision ignorance on the biological effects of the ionizing radiations during the prenatal exposures. (author)

  13. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna

    International Nuclear Information System (INIS)

    Sarapultseva, Elena I.; Dubrova, Yuri E.

    2016-01-01

    The results of recent studies have provided strong evidence for the transgenerational effects of parental exposure to ionising radiation and chemical mutagens. However, the transgenerational effects of parental exposure on survival and fertility remain poorly understood. To establish whether parental irradiation can affect the survival and fertility of directly exposed organisms and their offspring, crustacean Daphnia magna were given 10, 100, 1000 and 10,000 mGy of acute γ-rays. Exposure to 1000 and 10,000 mGy significantly compromised the viability of irradiated Daphnia and their first-generation progeny, but did not affect the second-generation progeny. The fertility of F 0 and F 1 Daphnia gradually declined with the dose of parental exposure and significantly decreased at dose of 100 mGy and at higher doses. The effects of parental irradiation on the number of broods were only observed among the F 0 Daphnia exposed to 1000 and 10,000 mGy, whereas the brood size was equally affected in the two consecutive generations. In contrast, the F 2 total fertility was compromised only among progeny of parents that received the highest dose of 10,000 mGy. We propose that the decreased fertility observed among the F 2 progeny of parents exposed to 10,000 mGy is attributed to transgenerational effects of parental irradiation. Our results also indicate a substantial recovery of the F 2 progeny of irradiated F 0 Daphnia exposed to the lower doses of acute γ-rays. - Highlights: • Viability of irradiated daphnids and their F 1 progeny is compromised. • Viability of the F 2 progeny of irradiated parents is not affected. • Total fertility of irradiated daphnids and their F 1 progeny declines with the dose. • Total fertility of the F 2 progeny of parents exposed to 10,000 mGy is compromised. • The decreased fertility among the F 2 progeny is transgenerational phenomenon.

  14. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Sarapultseva, Elena I. [Department of Biology, Institute of Nuclear Power Engineering NRNU MEPhI, Studgorodok,1, Obninsk, Kaluga Region 249040 (Russian Federation); National Research Nuclear University “MEPhI”, Kashirskoe Highway, 31, Moscow 115409 (Russian Federation); Dubrova, Yuri E., E-mail: yed2@le.ac.uk [Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 11933 Moscow (Russian Federation)

    2016-10-15

    The results of recent studies have provided strong evidence for the transgenerational effects of parental exposure to ionising radiation and chemical mutagens. However, the transgenerational effects of parental exposure on survival and fertility remain poorly understood. To establish whether parental irradiation can affect the survival and fertility of directly exposed organisms and their offspring, crustacean Daphnia magna were given 10, 100, 1000 and 10,000 mGy of acute γ-rays. Exposure to 1000 and 10,000 mGy significantly compromised the viability of irradiated Daphnia and their first-generation progeny, but did not affect the second-generation progeny. The fertility of F{sub 0} and F{sub 1}Daphnia gradually declined with the dose of parental exposure and significantly decreased at dose of 100 mGy and at higher doses. The effects of parental irradiation on the number of broods were only observed among the F{sub 0}Daphnia exposed to 1000 and 10,000 mGy, whereas the brood size was equally affected in the two consecutive generations. In contrast, the F{sub 2} total fertility was compromised only among progeny of parents that received the highest dose of 10,000 mGy. We propose that the decreased fertility observed among the F{sub 2} progeny of parents exposed to 10,000 mGy is attributed to transgenerational effects of parental irradiation. Our results also indicate a substantial recovery of the F{sub 2} progeny of irradiated F{sub 0}Daphnia exposed to the lower doses of acute γ-rays. - Highlights: • Viability of irradiated daphnids and their F{sub 1} progeny is compromised. • Viability of the F{sub 2} progeny of irradiated parents is not affected. • Total fertility of irradiated daphnids and their F{sub 1} progeny declines with the dose. • Total fertility of the F{sub 2} progeny of parents exposed to 10,000 mGy is compromised. • The decreased fertility among the F{sub 2} progeny is transgenerational phenomenon.

  15. Pharmacological doses of daily ascorbate protect tumours from radiation damage after a single dose of radiation in an intracranial mouse glioma model

    Directory of Open Access Journals (Sweden)

    Carole eGrasso

    2014-12-01

    Full Text Available Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumour environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionising radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumour, glioblastoma multiforme (GBM, is very resistant to radiation; radiosensitising GBM cells will improve survival of GBM patients. Here we demonstrate that a single fraction (6 Gy of radiation combined with a one hour exposure to ascorbate (5 mM sensitised murine glioma GL261cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy of whole brain radiation combined with daily intra-peritoneal injections of ascorbate (1 mg/kg in an intra-cranial GL261 glioma mouse model. Tumour-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain eight days after tumour implantation, a second group received daily intra-peritoneal injections of ascorbate (day 8-45 after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumour progression, intra-peritoneal ascorbate alone had no effect on tumour progression. Tumour progression was faster in tumour-bearing mice treated with radiation and daily ascorbate than those treated with radiation alone. Histological analysis showed less necrosis in tumours treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumour micro-environment which determines whether ascorbate remains outside the cell, acting as a pro-oxidant or whether it enters the cells and acts as an anti-oxidant.

  16. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  17. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  18. The National Registry for Radiation Workers

    International Nuclear Information System (INIS)

    Reissland, J.A.

    1982-01-01

    This article gives a brief description of a study which is designed as a long-term follow-up of workers occupationally exposed to ionising radiation. The prime objective is to look for any differences in the causes and ages of death of workers which may be related to the radiation doses they had received during their working life. Some of the difficulties are outlined together with the steps that are necessary to minimise their effect on the study. In particular, attention is drawn to the need for the inclusion of as many radiation workers as possible. It is hoped that within the next few years sufficient data will have been compiled to test the claims being made by some that ICRP values for the risk of induced somatic effects at low levels of exposure to ionising radiation underestimate the effects by as much as an order of magnitude. (author)

  19. Guidance notes for the protection of persons against ionising radiations arising from medical and dental use

    International Nuclear Information System (INIS)

    1988-01-01

    Guidance notes have been prepared by the NRPB, the Health Departments and the Health and Safety Executive for the protection of all persons against ionising radiations arising from medical and dental use. The guidance notes are a guide to good radiation protection practice consistent with regulatory requirements. The areas covered include medical and dental radiology, diagnostic X-ray equipment for medical and dental radiography, beam therapy and remotely controlled after-loading, brachytherapy, diagnostic and therapeutic uses of unsealed radioactive substances, diagnostic uses of sealed or other solid radioactive sources, patients leaving hospital after administration of radioactive substances, precautions after death of a patient whom radioactive substances have been administered, storage and movement of radioactive substances, disposal of radioactive waste and contingency planning and emergency procedures. (U.K.)

  20. Radiation doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Theodorakou, C.; Butler, P.; Horrocks, J.A.

    2001-01-01

    Patient radiation doses during interventional radiology (IR) procedures may reach the thresholds for radiation-induced skin and eye lens injuries. This study investigates the radiation doses received by patients undergoing cerebral embolization. Measurements were conducted using thermoluminescent dosimeters. Radiotherapy verification films were used in order to visualise the radiation field. For each procedure the fluoroscopic and digital dose-area product, the fluoroscopic time, the total number of acquired images and entrance-skin dose calculated by the angiographic unit were recorded. In this paper, the skin, eye and thyroid glands doses on a sample of patients are presented. From a preliminary study of 13 patients having undergone cerebral embolization, it was deduced that six of them have received a dose above 1 Gy. Detailed dose data from patients undergoing IR procedures will be collected in the future with the aim of developing a model to allow estimation of the dose prior to the procedure as well as to look at techniques of dose reduction. (author)

  1. Labour cost of radiation dose

    International Nuclear Information System (INIS)

    Cook, A.; Lockett, L.E.

    1978-01-01

    In order to optimise capital expenditure on measures to protect workers against radiation it would be useful to have a means to measure radiation dose in money terms. Because labour has to be employed to perform radiation work there must be some relationship between the wages paid and the doses received. Where the next increment of radiation dose requires additional labour to be recruited the cost will at least equal the cost of the extra labour employed. This paper examines some of the factors which affect the variability of the labour cost of radiation dose and notes that for 'in-plant' exposures the current cost per rem appears to be significantly higher than values quoted in ICRP Publication 22. An example is given showing how this concept may be used to determine the capital it is worth spending on installed plant to prevent regular increments of radiation dose to workers. (author)

  2. Radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Cohnen, M.; Kemper, J.; Moedder, U.; Moebes, O.; Pawelzik, J.

    2002-01-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology. (orig.)

  3. Instrument evaluation no. 8. Nuclear Enterprises beta/gamma dose rate meter type 0500

    International Nuclear Information System (INIS)

    Iles, W.J.; Burgess, P.H.; Callowhill, K.

    1977-04-01

    This instrument is a portable, battery powered survey meter covering the dose rate range from 0 to 10,000 mrad h -1 and the dose range 0 to 1000 mrad. The instrument was designed to measure X and γ-radiation dose and dose rate over a wide energy range, and also β-radiation dose and dose rate. An unsealed ionisation chamber is used as the detector. The aluminised melinex thin end window of the chamber is provided with a detachable plastic end cap. The calibration plane of the chamber is indicated by a cross on the side of the instrument. The information is given under the following headings: facilities and controls; radiation characteristics; electrical characteristics; environmental characteristics; mechanical characteristics; summary of performance; conclusions. (U.K.)

  4. The Design of Diagnostic Medical Facilities where Ionising Radiation is used

    International Nuclear Information System (INIS)

    Malone, J.; O'Reilly, G.; O'Connor, U.; Gallagher, A.; Sheahan, N.; Fennell, S.

    2009-06-01

    The original Code of Practice on The Design of Diagnostic Medical Facilities Using Ionising Radiation was first published by the Nuclear Energy Board in 1988. In the intervening years the 'Blue Book' as it became known has served the medical community well as the sector has expanded and modernised and the late Dr Noel Nowlan, then Chief Executive of the Nuclear Energy Board, deserves much credit for initiating this pioneering contribution to radiation safety in Ireland. There have been significant developments since its publication in terms of the underlying radiation protection legislation, regulatory practice as well as developments in new technologies that have given rise to the need for a revision of the Code. This revised Code is based on a comprehensive draft document produced by the Haughton Institute under contract to the RPII and was finalised following extensive consultations with the relevant stakeholders. The revised Code includes a brief review of the current legislative framework and its specific impact on the management of building projects (Chapters 1 and 2), a presentation of the main types of radiological (Chapter 3) and nuclear medicine (Chapter 4) facilities, a treatment of the technical aspects of shielding calculations (Chapter 5) and a discussion of the practical aspects of implementing shielding solutions in a building context (Chapter 6). The primary purpose of the Code is to assist in the design of diagnostic facilities to the highest radiation protection standards in order to ensure the safety of workers and members of the public and the delivery of a safe service to patients. Diagnostic radiology is a dynamic environment and the Code is intended to be used in consultation with the current literature, an experienced Radiation Protection Advisor and a multidisciplinary project team

  5. Atmospheric ionisation in Snowdonia

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH UK (United Kingdom); Williams, J H, E-mail: k.aplin1@physics.ox.ac.uk [Envirodata-Eyri, Bryn Goleu, Penmaen Park, Llanfairfechan, Gwynedd LL33 0RL (United Kingdom)

    2011-06-23

    Atmospheric ionisation from natural radioactivity and cosmic rays has been measured at several sites in Snowdonia from 2005-present. The motivation for this project was a combination of public engagement with science, and research into the effects of ionisation on climate. A four-component atmospheric radiometer instrument is co-located with the ionisation detectors and the data is remotely logged and displayed on the Web. Atmospheric ionisation from natural radioactivity varies with local geology, and the cosmic ray ionisation component is modulated by solar activity and altitude. Variations due to all these effects have been identified and are described.

  6. National congress of radiation protection - Book of presentations (slides)

    International Nuclear Information System (INIS)

    2013-06-01

    This document brings together all the available presentations (slides) of the 9. French national congress of radiation protection. The congress comprised 9 tutorial sessions and 13 ordinary sessions. The tutorial sessions covered the following topics: T1 - Fukushima accident's consequences on terrestrial environment; T2 - The efficient dose: use and limitations in the industrial and medical domains; T3 - Revision of the NFC 15-160 standard relative to radiological facilities; T4 - Medical implants and low frequency electromagnetic fields; T5 - Report from the working group on radiological zoning; T6 - Incidents in medical environment; T7 - ADR: European agreement about the international road transport of dangerous goods; T8 - Cigeo project: industrial geologic disposal facility; T9 - Dose control in medical imaging: what progress since 2010? The ordinary sessions gathered fifty-nine presentations dealing with the following subjects: 1 - effects of ionising radiations on man and ecosystems; 2 - radiation protection regulation and standards; 3 - radiation protection in incident, accident and post-accident situation; 4 - radiation protection of populations and ecosystems; 5 - Radiation protection and society; 6/11 - Radiation protection of patients; 7/8 - Eye lens irradiation and dosimetry; 9 - Non-ionising radiations; 10/12 - Radiation protection in professional environments; 13 - advances in dosimetry and metrology

  7. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    International Nuclear Information System (INIS)

    Ruehm, W.; Woda, C.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Neumaier, S.; Vanhavere, F.; Alves, J.; Bottollier Depois, J.F.; Fattibene, P.; Knezevic, Z.; Miljanic, S.; Lopez, M. A.; Mayer, S.; Olko, P.; Stadtmann, H.; Tanner, R.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS web site (www.eurados.org). (authors)

  8. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  9. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  10. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  11. The ENEA calibration service for ionising radiations; Il centro di taratura per le radiazioni ionizzanti di Bologna. Parte 1: Fotoni

    Energy Technology Data Exchange (ETDEWEB)

    Monteventi, F.; Sermenghi, I. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1999-07-01

    The report describes all the facilities available at the the service of the ENEA Calibration Service for Ionising Radiations at Bologna (Italy). It gives a detailed description of all equipment qualified for photon fields metrology including the secondary standards and the calibration procedures performed for radiation monitoring devices and dosemeters. [Italian] Il presente lavoro descrive i servizi e le attivita' del Centro di Taratura dell'ENEA di Bologna, in particolare delle attrezzature qualificate per la metrologia fotonica, dei campioni di misura e delle procedure adottate per la taratura degli strumenti e dei dosimetri.

  12. First Year of the Development of the central State Dose Register in Slovenia

    International Nuclear Information System (INIS)

    Janzekovic, H.; Breznik, B.; Jovanovic, P.; Zdesar, U.; Rojc, J.; Stuhec, M.; Vaupotic, J.

    2001-01-01

    Full text: In order to improve the registration of doses received by around 4500 workers who annually work with the ionising radiation sources in Slovenia the Health Inspectorate started to build a Central State Dose Register in 1999. Today the register includes data concerning all workers including outside workers and is filled by six laboratories from four institutions. The doses are measured in around 500 enterprises. The register built in Access 97 accepts data in electronic forms periodically from the dosimetry services. The external doses are reported monthly and the internal doses are reported usually once per year. The identification of a person is based on personal data which are not a subject of changes generally. The received doses are related to the time period during which the doses were received, licensee, employer, type of the work, type of the source and also to the cumulative dose received in the current year. The reported doses are always related to the dosimetry service so that a revaluation of the dose is always possible if necessary. As a rule the part of health surveillance data and the education of workers related to the radiation protection are also given. The cumulative doses of workers received before January 1, 2000 are reported as well. The developmental problems of the register related to extensiveness of the use of the ionising radiation sources in Slovenia will be discussed and the applied solutions based on ICRP 60 and 96/29/Euratom will be given. (author)

  13. Intercomparison exercise on external gamma dose rate under field conditions at the laboratory of natural radiation (Saelices el Chico, Spain)

    International Nuclear Information System (INIS)

    Gutierrez-Villanueva, J. L.; Sainz-Fernandez, C.; Fuente-Merino, I.; Saez-Vergara, J. C.; Correa-Garce, E.; Quindos-Poncela, L. S.

    2013-01-01

    The last nuclear accident in Fukushima nuclear power plant has increased the necessity for measuring radiation in the environment. Therefore, radiation monitors providing results traceable throughout the country become essential and it is very important to test them under the same environmental conditions. The first intercomparison of natural radioactivity under field conditions was held in Saelices el Chico (Salamanca, Spain) in May 2011, including an exercise on environmental dose rate. This article presents the results achieved by 19 instruments belonging to 12 institutions from 7 different countries. The tested detectors are proportional counters, ionisation chambers, Geiger-Mueller and scintillators measuring dose rate in three stations with reference values from 110 to 1800 nGy h -1 All the results were given in terms of air kerma (nGy h -1 ) and the measurements show agreement within 25 % in all the sites. Evaluation criteria based on accuracy and statistical uncertainty were also carried out and 25 % of participants passed the test in all sites. (authors)

  14. Radiation protection in a multi-disciplinary research laboratory

    International Nuclear Information System (INIS)

    O'Donovan, E.J.B.; Jenks, G.J.; Brighton, D.R.

    1993-01-01

    This paper describes the measures for the protection of personnel against the hazards of ionising and non-ionising radiation at the Materials Research Laboratory (MRL) in Victoria. The paper describes MRL safety and protection policy and management, and gives brief details of procedures and problems at the working level. A comparison of MRL average annual photon doses with all Governmental Research Institutions and industry is given. The good safety record of MRL is evident and shows that the radioactive protection issues are well handled. 4 figs

  15. Ante-natal ionising radiation and cancer

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This editorial comments on the latest reports of the Oxford Survey of Childhood Cancer (now based on Birmingham). With 14759 pairs, the latest survey is over 10-fold larger than the 1958 report and the calculation of fatal childhood cancer rate at one case in 990 ante-natal radiographic examinations is rather larger than the early estimates, in spite of the fetal radiation dose having been halved and the cure rate for childhood leukemia being much improved. Comments are made on the comparisons with bomb survivors, and on the much increased fatal cancer incidence after first trimester radiography. (UK)

  16. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  17. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  18. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  19. The use of mobile computed tomography in intensive care: regulatory compliance and radiation protection

    International Nuclear Information System (INIS)

    Stevens, G C; Rowles, N P; Loader, R; Foy, R T; Barua, N; Williams, A; Palmer, J D

    2009-01-01

    The use of mobile head computed tomography (CT) equipment in intensive care is of benefit to unstable patients with brain injury. However, ionising radiation in a ward environment presents difficulties due to the necessity to restrict the exposure to staff and members of the public according to regulation 8(1-2) of the Ionising Radiation Regulations 1999. The methodology for enabling the use of a mobile head CT unit in an open ward area is discussed and a practical solution given. This required the reduction in scatter doses through the installation of extra internal and external shielding, and a further reduction in annual scatter dose by restricting the use of the equipment based on a simulation of the annual ward workload.

  20. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Massiot, Philippe; Ammerich, Marc; Viguier, Herve; Jimonet, Christine; Bruchet, Hugues; Vivier, Alain; Bodineau, Jean-Christophe; Etard, Cecile; Metivier, Henri; Moreau, Jean-Claude; Nourredine, Abdel-Mijd

    2014-01-01

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  1. Regulation and inspection support radiation protection in nuclear and other installations

    International Nuclear Information System (INIS)

    Williams, M.K.; Potter, C.; Harbison, S.A.

    1996-01-01

    Over the past fifty years, radiation protection legislation in the UK has developed from a narrow industry-specific base to a comprehensive package of regulations and supporting Approved Code of Practice, with additional provisions for nuclear installations. Development of this legislation mirrors progress in international understanding about the risks from exposure to ionising radiation. The current Ionising Radiations Regulations 1985 largely implement the Euratom 1980 Basic Safety Standards Directive and place particular emphasis on the need to keep exposure as low as reasonably practicable. The regulations have been underpinned by the development of the concept of the Tolerability of Risk and the application of the ALARP/ALARA principle, particularly at nuclear installations. Analysis of dose data on HSE's Central Index of Dose Information has shown the general success of this approach in the UK; the data have also allowed targeting of inspection effort. Currently, the Health and Safety Commission and Executive are developing plans for implementing the revised EU Basic Safety Standards Directive. (author)

  2. An overview of the ERICA Integrated Approach to the assessment and management of environmental risks from ionising contaminants

    International Nuclear Information System (INIS)

    Larsson, Carl-Magnus

    2008-01-01

    The ERICA project (environmental risks from ionising contaminants: assessment and management, EC contract no. FI6R-CT-2004-508847) concluded with the publication of two main outputs: the ERICA Integrated Approach to the assessment and management of environmental risks from ionising radiation, of which also introduces the user to the second main output, the ERICA Tool, which is a software programme with supporting databases, that together with its associated help will guide users through the assessment process. More than 60 European scientists contributed to the ERICA Integrated Approach. In addition, a large number of experts, policy makers, and decision-makers in different areas have contributed views on the ERICA Integrated Approach and its associated Tool from the user's perspective, through participation in the End-Users Group set up under the ERICA project. Databases on transfer, dose conversion coefficients and radiation effects on biota have been developed specifically for the purpose of the Integrated Approach, and incorporated into, or interacting with, the Tool. Species sensitivity distributions of biological effects data have been performed and did not reveal, for chronic exposure, any statistical grounds for separation between terrestrial, marine and freshwater ecosystems in terms of species sensitivity to radiation; on the basis of such analysis a universal screening dose rate criterion of 10 μGy h -1 incremental dose rate is suggested for exiting the assessment procedure while being confident that environmental risks are negligible. This criterion is used for the two first tiers (conservative assessment with limited data requirement and various possibilities of incorporating user-defined parameter values, including the screening dose rate criterion) of the assessment methodology. Exposure situations of concern are carried through a third tier, making use of all relevant databases and with a number of issues and options listed to support and guide

  3. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    Science.gov (United States)

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Guideline for radiation protection in veterinary medicine. Guideline relating to the Ordinance for Protection Against Damage Through Ionising Radiation (Radiation Protection Ordinance - StrlSchV) and the Ordinance for Protection Against X-Ray Radiation (X-Ray Ordinance - RoeV)

    International Nuclear Information System (INIS)

    Michalczak, H.

    2005-05-01

    The Guideline on ''Radiation Protection in Veterinary Medicine'' primarily addresses the supreme Land authorities that are responsible for radiation protection. Its purpose is to harmonise the radiation protection procedures employed by the Laender, thus establishing a nationwide uniform system for monitoring the handling of radioactive substances and ionising radiation applications in veterinary medicine on the basis of the legal regulations in force. In addition the guideline is intended to serve veterinary staff as a source of practical information which explains the radiation protection requirements stipulated by the legal regulations and technical rules. This concerns in particular the rules for the acquisition of the necessary radiation protection skills or the necessary knowledge of radiation protection by the veterinary surgeon performing the application or the staff cooperation in the application

  5. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams; Conception et realisation d'un dosimetre a scintillation adapte a la dosimetrie de faisceaux de rayonnements ionisants en faisceaux de rayonnements ionisants en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Fontbonne, J.M

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than {+-} 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  6. Proceedings of the third international congress of the International Radiation Protection Association, Washington, D. C. , September 9--14, 1973. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1974-02-01

    Complete texts of 123 communications to the Congress (in the original language; the majority in English, some in Russian, French), on the following topics; radiation perspective in the U.S., radiation and man, non-ionising radiation, radiation effects on animals, radiation quantities, radioecology, reactor experience, late radiation effects, dose calculations and radiation accidents.

  7. General aspects of nuclear power, radiation and environmental effects. Chapter 3

    International Nuclear Information System (INIS)

    1978-01-01

    A general introduction to the principles of the functioning of a nuclear reactor and of power plants based on the reactor types at present in use, and likely to be used in the near future (PWR,BWR,FBR,HTGR and CANDU) is given. The general principles of a thermonuclear power plant are also briefly presented, and general safety aspects discussed. The physics of ionising radiations is briefly presented and natural and artificial sources of radiation are discussed. The fuel cycle, from mining to reprocessing and waste disposal and transport, is presented. The behaviour and effects of radioactive substances in the biosphere, radiation doses, and biological effects of ionising radiation are discussed. In conclusion there is an appendix in which the main characteristics of a number of elements which have important radioactive isotopes are presented. (JIW)

  8. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    Science.gov (United States)

    Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.

    2017-05-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.

  9. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    International Nuclear Information System (INIS)

    Osman, N D; Shamsuri, S B M; Razali, M A S M; Isa, S M; Tan, Y W

    2017-01-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDI vol and CTDI w ) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDI w ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients. (paper)

  10. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  11. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  12. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  13. Factories Act 1961, Ionizing Radiations (Unsealed Radioactive Substances) Regulations 1968, Certificate of Approval No.1 (General)

    International Nuclear Information System (INIS)

    1969-01-01

    Under the Ionising Radiations (Unsealed Radioactive Substances) Regulations No. 780 of 1968, the Chief Inspector of Factories has wide powers to ensure the protection of workers. By this Certificate he approved, for the purpose of measuring radiation doses, any radiation dosemeter, based on the phenomenon of radiation-induced thermoluminescence, supplied by an approved laboratory. (NEA) [fr

  14. Genetic effects of ionising radiation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1991-01-01

    A review is given of genetic risk estimation in man. Topics covered include the methods used, the germ cell stages and radiation conditions relevant for genetic risk estimation, doubling dose estimates, the classification and prevalence of naturally-occurring genetic disorders, the source of data used in the direct method of risk estimation, the genetic risk estimates from the mid-1970s to the present, the estimates of genetic risk used in ICRP 26 in 1977 and ICRP's current assessment of genetic risks. (UK)

  15. Application of ionising radiation to the pharmaceutical industry

    International Nuclear Information System (INIS)

    Dittmar, E.

    1975-01-01

    Pharmacons, commonly called 'Drugs', are subject to a many-sided procedure of development before they are released on the market and reach the patient. Again and again they are submitted to controls for safety reasons and at least seven (sometimes nine or ten) years pass before the active substance has made its way from chemistry through many trials with animals in experimental pathology and through the laboratories of the biochemistry department. Ionising radiation is used in each field of drug research as an additional method for obtaining information. In chemistry the structure of molecules can be detected by X-ray diffraction, and the active component elucidated. In the teratology section of experimental pathology the foetus just before delivery and newborn animals are X-rayed. This is in order to find out skeletal malformations that might have occurred during feeding of the substance in question during gestation. In biochemistry the pharmacon is labelled with a suitable radioactive isotope. Its way through the body can then be followed by measuring absorption rate, distribution, binding and elimination. It is also important to explore the influence of the drug on the organism and the reverse - how the pharmacon is influenced by the organism. This means examining the metabolites of the drug and the mechanism of action by means of serial auto-radiography and clearance or excretion studies. Gamma rays are employed for sterilisation of ointment tubes and vials just before filling. Sterilisation of the pharmacon is discussed. (author)

  16. Radiation risk statement in the participant information for a research protocol that involves exposure to ionising radiation

    International Nuclear Information System (INIS)

    Caon, Martin

    2005-01-01

    A Human Research Ethics Committee (HREC) is required to scrutinise the protocols of clinical drug trials that recruit patients as participants. If the study involves exposing the participants to ionizing radiation the information provided to the participant should contain a radiation risk statement that is understandable by the Committee and the participant. The information that should be included in the risk statement is available from a variety of published sources and is discussed. The ARPANSA Code of Practice Exposure of Humans to Ionizing Radiation for Research Purposes (2005) states explicitly what the responsibilities of the researcher and the HREC are. Some research protocols do not provide the information required by good radiation protection practice and explicitly called for by the Code. Nine points (including: state that ionizing radiation is involved; that the radiation is additional to standard care; the effective dose to be received; the dose compared to natural background; the dose to the most exposed organs; a statement of risk; the benefits accruing from the exposure; ask the participant about previous exposures; name a contact person from whom information may be sought) that should be considered for inclusion in the participant information are presented and discussed. An example of a radiation risk statement is provided

  17. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    International Nuclear Information System (INIS)

    Bero, M A; Abukassem, I

    2009-01-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  18. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    Science.gov (United States)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  19. Regulatory control and challenges in Medical facilities using ionising radiation sources

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Medical facilities utilising ionising radiation sources for diagnostic and treatment of cancer are regulated under the provisions of Atomic Energy (Radiation Protection) Rules, 2004 promulgated under the Atomic Energy Act 1962. The Competent Authority for the enforcement of the rules is Chairman, Atomic Energy Regulatory Board (AERB). Practice specific codes are issued by AERB for medical facilities such as Radiotherapy, Nuclear Medicine and Radiology. Regulatory process for control of medical facilities covers the entire life cycle of the radiation sources in three stages viz pre-Iicensing, during useful life and decommissioning and disposal. Pre-Iicensing requirements include use of type approved sources and equipment, approval of design layout of the facility and installation, exclusive (safe and secure) source storage facility when the equipment is not in use, radiation (area/individual) monitoring devices, qualified, trained and certified manpower, emergency response plans and commitment from the licensee for the safe disposal of disused/decayed sources. Compliance to these requirements makes the applicant eligible to obtain license from AERB for the operation of the medical facility. During the use of radiation sources, specific prior approval of the Competent Authority is required in respect of every source replacement, sale, transfer, transport, import and export. Further, all licensees are required to send the periodic safety Status reports to AERB as well as reporting of any off normal events. AERB conducts inspection of the facilities to ensure compliance with the safety requirements during operation of the facility. Violation of safety norms by licensee attracts enforcement action which includes suspension, modification or withdrawal of licensee for operation of the facility. Upon completion of the useful life of the source, the licensee decommissions the facility and returns the source to the original supplier. For returning the source, prior

  20. Influence of ionizing radiation on gastrointestinal peptide levels

    Energy Technology Data Exchange (ETDEWEB)

    Wysocki, J.; Esposito, V.; Linard, C. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1997-03-01

    Exposure of the gut to ionising radiation may induce gastrointestinal damage and dysfunction. Early effects such as nausea, vomiting and diarrhea, anorexia may be observed within the first 24 h after irradiation. Such symptoms are seen even with doses as low as 1 Gy. later effects and the onset of the gastrointestinal syndrome are seen at higher doses (10 Gy) and include gastric emptying inhibition, intestinal hemorrhages, disturbances in water and electrolytes balance and septicemia. The severity of which depends on the nature, dose and dose rate received. The mechanism underlying these changes was unclear; it has long been known that exposure to ionising radiation affects intestinal morphology usually because of inhibition of mitotic activity at the level of the crypt enterocyst. The various physiological functions of the gastrointestinal tract are controlled by a wide variety of agents as neurotransmitters, neuropeptides. Radiation induces alterations in hormonal release and response. The present study carried out in the rat focuses on Gastrin Releasing Peptide (GRP), a gastrointestinal neuropeptide present in the central nervous system and in the gut endocrine cells were released into blood. The GRP controls food intake, pancreatic enzyme secretions, gastric emptying, intestinal motility and cellular proliferation. The aim was to investigate the effects of gamma and neutron/gamma on plasma and gastrointestinal tissue levels of GRP

  1. Assay of micronuclei in peripheral blood lymphocytes as a biological indicator of radiation dose

    International Nuclear Information System (INIS)

    Sreedevi, B.; Rao, B.S.

    1994-01-01

    Chromosomal aberration analysis (CA) has regularly been used as a biological dosemeter to evaluate suspected overexposures to ionising radiations. Recently, the micronucleus (MN) assay has been suggested as an alternative method. An attempt has been made to explore the dose response parameters of MN assay in cytokinesis-blocked lymphocytes. Whole blood was irradiated with 60 Co gamma rays or 250 kV p X rays. A dose-dependent increase in micronuclei yield was observed. The dose response could be best described by a linear-quadratic relationship for both gamma rays and X rays. The α and β coefficients were found to be 1.9 x 10 -2 Gy -1 and 5.7 x 10 -2 Gy -2 for gamma rays and 6.3 x 10 -2 Gy -1 and 4.3 x 10 -2 Gy -2 for X rays, respectively. In the low dose region X rays were three times more efficient in inducing micronuclei. The background value derived for 25 samples from healthy individuals ranged from 6-18 micronuclei per 1000 cells, with a mean value of 12 ± 4 x 10 -3 . Biological dose estimates for individuals exposed in the range 0.1-1 Gy made by MN and CA methods yielded similar results for doses ≥ 0.5 Gy. Due to the uncertainties in the background incidence of MN, at present this technique cannot provide reliable estimates at low doses. (author)

  2. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  3. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    Lavoie, Ch.; Rasuli, P.

    2001-01-01

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  4. The assessment of ionising radiation impact on the cooling pond freshwater ecosystem non-human biota from the Ignalina NPP operation beginning to shut down and initial decommissioning.

    Science.gov (United States)

    Mazeika, J; Marciulioniene, D; Nedveckaite, T; Jefanova, O

    2016-01-01

    The radiological doses to non-human biota of freshwater ecosystem in the Ignalina NPP cooling pond - Lake Druksiai were evaluated for several cases including the plant's operation period and initial decommissioning activities, using the ERICA 1.2 code with IAEA SRS-19 models integrated approach and tool. Among the Lake Druksiai freshwater ecosystem reference organisms investigated the highest exposure dose rate was determined for bottom fauna - benthic organisms (mollusc-bivalves, crustaceans, mollusc-gastropods, insect larvae), and among the other reference organisms - for vascular plants. The mean and maximum total dose rate values due to anthropogenic radionuclide ionising radiation impact in all investigated cases were lower than the ERICA screening dose rate value of 10 μGy/h. The main exposure of reference organisms as a result of Ignalina NPP former effluent to Lake Druksiai is due to ionizing radiation of radionuclides (60)Co and (137)Cs, of predicted releases to Lake Druksiai during initial decommissioning period - due to radionuclides (60)Co, (134)Cs and (137)Cs, and as a result of predicted releases to Lake Druksiai from low- and intermediate-level short-lived radioactive waste disposal site in 30-100 year period - due to radionuclides (99)Tc and (3)H. The risk quotient expected values in all investigated cases were <1, and therefore the risk to non-human biota can be considered negligible with the exception of a conservative risk quotient for insect larvae. Radiological protection of non-human biota in Lake Druksiai, the Ignalina NPP cooling pond, is both feasible and acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    International Nuclear Information System (INIS)

    Fehringer, F.; Seitz, G.; Hammer, G.P.; Blettner, M.

    2006-01-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  6. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Fehringer, F.; Seitz, G. [Berufsgenossenschaft der Feinmechanik und Elektrotechnik, Koln (Germany); Hammer, G.P.; Blettner, M. [Johannes Gutenberg-Universitat Mainz, Institut fur Medizinische Biometrie, Epidemiologie und Informatik des Klinikums (Germany)

    2006-07-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  7. The risk of childhood cancer from low doses of ionizing radiation received in utero

    International Nuclear Information System (INIS)

    Wakeford, R.; Doll, R.; Bithell, J.F.

    1997-01-01

    Radiological protection is based upon the assumption that any additional exposure to ionising radiation leads to an increased risk of stochastic adverse health effects. The validity of this assumption is supported by the epidemiological association between childhood cancer and X-ray exposure of the fetus in utero for diagnostic purposes. Evidence for a direct causal interpretation of this association is compelling: the association has high statistical significance, it is consistent across many case-control studies carried out worldwide, and an appropriate dose-response relationship is indicated. Evidence against bias and confounding as alternative explanations is strong. Nonetheless, objections to causality have been raised. Four grounds for controversy are examined in detail, with the conclusion that they do not provide persuasive evidence against a cause and effect relationship. We conclude that acute doses of the order of 10 mGy received by the fetus in utero cause a subsequent increase in the risk of cancer in childhood, and that, in these circumstances, the excess absolute risk coefficient for childhood cancer incidence is 6-12% per Gy. (author)

  8. Doses in radiation accidents investigated by chromosome aberration analysis XVI: A review of cases investigated, 1985

    International Nuclear Information System (INIS)

    Lloyd, D.C.; Edwards, A.A.; Prosser, J.S.; Moquet, J.E.; Finnon, P.

    1986-04-01

    During 1985, 28 cases of suspected overexposure to ionising radiation were referred to NRPB for investigation by cytogenetic analysis, and the results are presented in this report. Of the 28 cases, 17 were associated with industrial radiography, 9 from major nuclear organisations and 2 from research, education and health institutions. In 20 cases, no biological indication of overexposure was found. The remaining 8 cases all arose from industrial uses of radiation. The highest overexposure to a sealed source in 1985 ws about 0.4 Gy from an 192 Ir source that became detached from its winding mechanism. Two serious incidents involving unsealed sources are also described; an accidental ingestion of 125 I, for which cytogenetic analysis is of limited relevance, and an inhalation of droplets of tritiated water. The latter also produced a committed dose equivalent of about 0.4 Sv, the estimates from cytogenetic analysis and urine analysis being in good agreement. (author)

  9. Radiation dose in vertebroplasty

    International Nuclear Information System (INIS)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A.

    2004-01-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  10. A value-critical assessment of the policy construction of hazard and risk for the safe use of ionising radiation

    International Nuclear Information System (INIS)

    Wallace, A.B.

    1993-01-01

    This paper presents a critique of the concept of ionising radiation safety policy from value perspectives that differ from those of the rationalist scientific. It attempts to present a social interpretation of the constitution of the present methods of policy composition that are primarily based on a conservative, orthodox, scientific paradigm. A modification of this process is then offered to integrate social discourse into the policy construction without compromising the value of the scientific input. 6 refs

  11. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level.

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-12-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions

  12. The use of ionising radiation from 60CO gamma source in controlling mouldiness in dried cocoa beans

    International Nuclear Information System (INIS)

    Appiah, Victoria

    2001-01-01

    Mouldiness in stored cocoa beans in Ghana and the production of aflatoxin have been studied. Based on actual weight of discarded beans, mouldy beans have been estimated to constitute 0.13 % and 0.00002 % of marketable beans at the farmers' level and the buying agents' depots respectively in the Tafo District. This is contrasted with an estimated value of 0.16 % obtained in a questionnaire type study involving farmers. Estimated mouldy beans at the Tema port was 0.69 % per year (based on the cut test) representing a financial loss of $1,688,637.19 per year at $989/T should the mouldy beans be discarded. Fifty-eight (58) internally- and externally- borne fungal species were isolated from dried cocoa beans. Of these, forty-eight (48) were internally- borne and ten (10) were superficial. Twenty-nine (29) of the internally occurring fungi have been recorded for the first time on cocoa beans in Ghana. Twenty-six (26) of the fungi isolated belong to Aspergillus group. They included A. parasiticus and A. flavus, which can produce aflatoxins. Five (5) belong to Penicillium, eight (8) to Fusarium and nineteen (19) to other species. Ionising radiation effectively controlled fungi associated with mouldiness in cocoa beans in a dose - dependent manner. A radiation dose of 6 kGy completely inactivated the moulds. A. flavus and A. tamarii were the most radiation - resistant moulds encountered. The moisture content of the beans before, during and after irradiation influenced the effect of radiation. The relative humidity during storage and the type of packaging also influenced the radiation effect. Conidia of A. flavus subjected to moist heat at temperatures 20 0 C to 60 0 C for 2.5, 5 and 10 min respectively were not significantly affected by heating up to 50 0 C. Heating an aqueous conidial suspension at 60 0 C for at least 2.5 min reduced the number of fungal colonies by at least 5 log cycles when the suspension was assayed on agar plate media. Heating at 59 0 C for 10 min

  13. Self-indicating radiation alert dosemeter (SIRAD)

    International Nuclear Information System (INIS)

    Riel, G. K.; Winters, P.; Patel, G.; Patel, P.

    2006-01-01

    In an event of a nuclear or dirty bomb explosion and a radiological accident, there is a need for self-indicating instant radiation dosemeter for monitoring radiation exposure. The self-indicating instant radiation alert dosemeter (SIRAD) is a credit card size radiation dosemeter for monitoring ionising radiation from a few hundredths of a Gray to a few Gray. It is always active and is ready to use. It needs no battery. The dosemeter develops colour instantly upon exposure, and the colour intensifies with dose. It has a colour chart so that the dose on the active element may be read by matching its colour with the chart that is printed next to it on the card. However, in this work, the dose is measured by the optical density of the element. The dosemeter cannot be reset. The response changes by 3 y at room temperature. It contains no hazardous materials. The dosemeter would meet the requirements of instantly monitoring high dose in an event of a nuclear or dirty bomb explosion or a radiation accident. (authors)

  14. Self-indicating radiation alert dosemeter (SIRAD).

    Science.gov (United States)

    Riel, Gordon K; Winters, Patrick; Patel, Gordhan; Patel, Paresh

    2006-01-01

    In an event of a nuclear or dirty bomb explosion and a radiological accident, there is a need for self-indicating instant radiation dosemeter for monitoring radiation exposure. The self-indicating instant radiation alert dosemeter (SIRAD) is a credit card size radiation dosemeter for monitoring ionising radiation from a few hundredths of a Gray to a few Gray. It is always active and is ready to use. It needs no battery. The dosemeter develops colour instantly upon exposure, and the colour intensifies with dose. It has a colour chart so that the dose on the active element may be read by matching its colour with the chart that is printed next to it on the card. However, in this work, the dose is measured by the optical density of the element. The dosemeter cannot be reset. The response changes by 3 y at room temperature. It contains no hazardous materials. The dosemeter would meet the requirements of instantly monitoring high dose in an event of a nuclear or dirty bomb explosion or a radiation accident.

  15. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  16. Multi-directional radiation detector using photographic film

    International Nuclear Information System (INIS)

    Junet, L K; Majid, Z A Abdul; Sapuan, A H; Sayed, I S; Pauzi, N F

    2014-01-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation

  17. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  18. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  19. Medical standards for radiation workers

    International Nuclear Information System (INIS)

    Rae, S.

    1977-01-01

    The Council of the European Communities in its Directive of June 1, 1976 has laid down revised basic safety standards for the health protection of the general public and workers against the danger of ionising radiation. The Directive requires each Member State of the Community 'for the guidance of medical practitioners.....to draw up a list, which need not be exhaustive, of the criteria which should be taken into account when judging a worker's fitness to be exposed to ionising radiation'. Medical officers with current responsibility for radiation workers in the U.K. therefore met recently for informal exploratory discussion at the National Radiological Protection Board's headquarters, and an account is given of the views expressed there about the composition of the required 'list', and the possibility of standardizing the procedure adopted. Consideration was given to the objectives of medical examinations, the form of examination, and specific conditions which may give rise to difficulty in making a fitness assessment. These conditions are skin abnormalities, blood abnormalities, cataract, pregnancy, and psychological and psychiatric conditions. It was concluded that the medical examination of radiation workers, including blood examinations, are of value to the extent that they form part of any good general occupational health practice. The promulgation of the Euratom Directive has provided an opportunity for reviewing and standardising procedures for medical surveillance in the light of current knowledge concerning average occupational radiation doses and dose-response relationships. (U.K.)

  20. Concentration of total proteins in blood plasma of chickens hatched from irradiated eggs with low dose gamma radiation

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Miljanic, S.; Simpraga, M.

    2005-01-01

    It is known that low-dose ionising radiation may have stimulating effects on chickens. Low doses may also cause changes in the concentration of blood plasma total proteins, glucose and cholesterol in chickens. This study investigates the effects of low dose gamma-radiation on the concentration of total proteins in the blood plasma of chickens hatched from eggs irradiated with a dose of 0.15 Gy on incubation days 7 and 19. Results were compared with the control group (chickens hatched from non-irradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from the heart, and later from the wing vein on days 1, 3, 5, 7,10, 20, 30 and 42. The concentration of total proteins was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 7 showed a statistically significant decrease on the sampling day 3 (P less than 0.05) and 7 (P less than 0.01). The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 19 showed a statistically significant increase only on sampling day 1 (P less than 0.05). These results suggest that exposure of eggs to 0.15 Gy of gamma-radiation on the 7th and 19th day of incubation could produce different effects on the protein metabolism in chickens.(author)

  1. The contribution of interventional cardiology procedures to the population radiation dose in a ‘health-care level I’ representative region

    Science.gov (United States)

    Peruzzo Cornetto, Andrea; Aimonetto, Stefania; Pisano, Francesco; Giudice, Marcello; Sicuro, Marco; Meloni, Teodoro; Tofani, Santi

    2016-01-01

    This study evaluates per-procedure, collective and per capita effective dose to the population by interventional cardiology (IC) procedures performed during 2002–11 at the main hospital of Aosta Valley Region that can be considered as representative of the health-care level I countries, as defined by the UNSCEAR, based on its socio-demographic characteristics. IC procedures investigated were often multiple procedures in patients older than 60 y. The median extreme dose-area product values of 300 and 22 908 cGycm2 were found for standard pacemaker implantation and coronary angioplasty, respectively, while the relative mean per-procedure effective dose ranged from 0.7 to 47 mSv. A 3-fold increase in frequency has been observed together with a correlated increase in the delivered per capita dose (0.05–0.27 mSv y−1) and the collective dose (5.8–35 man Sv y−1). Doses increased particularly from 2008 onwards mainly because of the introduction of coronary angioplasty procedures in the authors’ institution. IC practice contributed remarkably in terms of effective dose to the population, delivering ∼10 % of the total dose by medical ionising radiation examination categories. PMID:26012484

  2. A comparison of patient dose levels between 3/4 vessel conventional angiography and computed tomography angiography during examinations to investigate subarachnoid haemorrhage

    International Nuclear Information System (INIS)

    Spanton, David; Strudwick, Ruth M.

    2007-01-01

    The aim of this study was to investigate and compare the levels of ionising radiation dose received by patients whilst undergoing radiological examination for Subarachnoid haemorrhage by conventional angiography (single and bi plane) and computed tomography angiography. The results obtained from previous examinations have been compared to consider which method of investigation delivers the lowest ionising radiation dose to the patient. Consideration was also given to comparing single plane angiography to bi plane angiography as empirical evidence suggested that radiologists received no formal training and only a small amount of informal training on newly installed equipment at the hospital in which the research was carried out. Would this lead to patients being inadvertently exposed to increased radiation as radiologists familiarised themselves with the equipment? The dose received by 30 patients examined for SAH by each modality was converted to effective dose (mSv) for comparison. These results were then further compared by removing the lowest and highest recorded doses to eliminate any bias that may have been caused by skewed data. The results showed that CTA consistently delivered a lower dose to patients than single or bi plane angiography and that bi plane delivered a lower mean average dose than single plane angiography, with or without any skewed data

  3. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  4. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  5. Radio-oxidation of an EPDM elastomer under weak or strong ionising radiations: measurement and modelling of dioxygen consumption

    International Nuclear Information System (INIS)

    Dely, N.

    2005-10-01

    Usually, the irradiation of polymers under ionising radiations occurs in air that is in the presence of oxygen. This leads to a radio oxidation process and to oxygen consumption. Our material is an EPDM elastomer (ethylene propylene 1,4 hexadiene) used as insulator in control-command cables in nuclear plants (Pressurised Water Reactor). A specific device has been conceived and built up during this PhD work for measuring very small oxygen consumptions with an accuracy of around 10%. Ionising radiations used are electrons at 1 MeV and carbon ions at 11 MeV per nucleon. Under both electron and ion irradiations, the influence of oxygen pressure on oxygen consumption has been studied in a very large range: between 1 and 200 mbar. In both cases, the yield of oxygen consumption is constant in-between 200 and 5 mbar. Then, at lower pressures, it decreases appreciably. On the other hand, the oxygen consumption during ion irradiation is four times smaller than during electron irradiation. This emphasizes the role of the heterogeneity of the energy deposition at a nano-metric scale. The adjustment of the experimental results obtained during electron irradiation with the general homogeneous steady-state kinetic model has allowed extracting all the values of the kinetic parameters for the chosen mechanism of radio oxidation. The knowledge of these numbers will allow us to face our results obtained during ion irradiation with a heterogeneous kinetic model under development. (author)

  6. How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter

    International Nuclear Information System (INIS)

    Kozicki, Marek

    2011-01-01

    Ionising radiation-induced reactions of aqueous single monomer solutions and mixtures of poly(ethylene glycol) diacrylate (PEGDA) and N,N'-methylenebisacrylamide (Bis) in a steady-state condition are presented below and above gelation doses in order to highlight reactions in irradiated 3D polymer gel dosimeters, which are assigned for radiotherapy dosimetry. Both monomers are shown to undergo radical polymerisation and cross-linking, which result in the measured increase in molecular weight and radius of gyration of the formed polydisperse polymer coils. The formation of nanogels was also observed for Bis solutions at a low concentration. In the case of PEGDA-Bis mixtures, co-polymerisation is suggested as well. At a sufficiently high radiation dose, the formation of a polymer network was observed for both monomers and their mixture. For this reason a sol-gel analysis for PEGDA and Bis was performed gravimetrically and a proposition of an alternative to this method employing a nuclear magnetic resonance technique is made. The two monomers were used for preparation of 3D polymer gel dosimeters having the acronyms PABIG and PABIG nx . The latter is presented for the first time in this work and is a type of the formerly established PABIG polymer gel dosimeter. The elementary characteristics of the new composition are presented, underlining the ease of its preparation, low dose threshold, and slightly increased sensitivity but lower quasi-linear range of dose response in comparison to PABIG. - Highlights: → Steady-state radiolysis of Bis, PEGDA and Bis-PEGDA is examined. → High Mw products are formed at low absorbed doses. → Formation of Bis nanogels is likely; PEGDA solutions form hydrogels. → NMR technique can be used for sol-gel analysis. → Features of 3D polymer gel dosimeters made from PEGDA and Bis are shown.

  7. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  8. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Salomaa, S.

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  9. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  10. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    Li Huhou

    1988-01-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  11. Annual radiation dose in thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Huhou, Li [Chinese Academy of Social Sciences, Beijing, BJ (China). Inst. of Archaeology

    1988-11-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned.

  12. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  13. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  14. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  15. Surveillance of health care workers exposed to ionising radiation: Rimed pilot study

    International Nuclear Information System (INIS)

    2008-01-01

    The project so-called RIMED aimed to set up epidemiological surveillance of health care workers exposed to ionizing radiation. A pilot study was conducted in a sample of hospital personnel to examine the possibility of identifying exposed subjects in order to analyse mortality patterns according to occupational characteristics such as medical departments or occupations in a historical cohort. Seven hospitals participated in this pilot study. Health-care workers who had worn a dosimeter up to December 2003 were to be included in this cohort. The subjects' identification data were obtained from the SISERI (Systeme d'information de la surveillance de l'exposition aux rayonnements ionisants - Ionizing Radiation Exposure Monitoring Information System) database managed by the Institut de radioprotection et de surete nucleaire - Radiation Protection and Nuclear Safety Institute (IRSN). The SISERI system was in a 'pilot' phase in 2004. According to SISERI database, a total of 5126 subjects were found to have worn a dosimeter up to December 2003. The subjects' identification data were completed by the administrative services of the hospitals and occupational physicians searched for subjects' occupational data. Information required for the vital status search was satisfactorily completed only for 38% of the cohort subjects. This pilot study showed that obtaining data from SISERI database completed by hospital administrative data in 2004 led to a database of insufficient quality for epidemiological surveillance. The Institut de veille sanitaire (French Institute of Public Health Surveillance) recommends that transmission by the employers of some specific personal or occupational data of the exposed subjects should be made compulsory. In this way, SISERI system should be able to constitute any database with required quality for epidemiological surveillance of ionizing radiation exposed subjects. (authors)

  16. Health effects of low-level ionising radiation: biological basis for risk assessment

    International Nuclear Information System (INIS)

    Upton, A.C.

    1987-01-01

    The biological basis for risk assessment is discussed. The risks of carcinogenic effects, teratogenic effects, and genetic (heritable) effects are estimated to vary in proportion with the dose of radiation in the low-dose domain; however, the risks also appear to vary with the LET of the radiation, age at the time of irradiation, and other variables. Although the data suffice to place the risks in perspective with other hazards of modern life, further research to refine the reliability of the risk assessment is called for. (author)

  17. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  18. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  19. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  20. Radiation sterilization of ephedrine in the solid state

    International Nuclear Information System (INIS)

    Dettlaff, K.; Marciniec, B.; Bednarek, B.; Tezyk, A.; Wachowiak, R.; Naskrent, M.

    2008-01-01

    The effects of the e-beam ionising radiation of energy 9.96 MeV in doses 25-800 kGy on the stability of solid ephedrine hydrochloride (1R,2S)-(-)-2-methylamino -1 -phenyl -1 -propanol hydrochloride) have been studied. These effects have been observed using the following analytical methods: organoleptic (form, colour, smell, clarity of solution), scanning electron microscope SEM, pH measurement, chirality and water content measurement (Karl Fischer method), spectrometric methods (UV, FT-IR, EPR), chromatography (TLC), and combined chromatography (TLC-UV, GC-MS). Even the standard sterilisation dose of 25 kGy has been found to cause a change in colour from white to pale yellow, the appearance of free radicals in the concentration of 3.05 x 10 15 spin g -1 , and about 1% loss of the content. The effects of higher doses 50-800 kGy have shown that radiodegradation degree of the compound is proportional to the dose applied. The main product of radiodegradation, formed at a yield of G = 17.17 x 10 -7 mol J -1 , has been identified as 2-methylamino -1 phenyl -1 -propanone (methcathinone, ephedrone), a psychoactive compound of the activity similar to that of amphetamine. For the above reasons ephedrine hydrochloride can not be subjected to radiative sterilisation with a dose of 25 kGy, however, assuming sufficiently low microbiological contamination of the initial substance, lower doses could be probably used for sterilisation purposes. Our results have not confirmed the earlier reports from 1970s on the resistance of ephedrine to ionising radiation in doses up to 60 kGy. (authors)

  1. Doses from radiation exposure

    International Nuclear Information System (INIS)

    Menzel, H-G.; Harrison, J.D.

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection’s (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP’s 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  2. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  3. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level

    International Nuclear Information System (INIS)

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h"−"1 up to 1.5 Gy h"−"1. Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h"−"1. A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR_1_0) was estimated at 95 ± 7 mGy h"−"1, followed by 153 ± 13 mGy h"−"1 and 169 ± 12 mGy h"−"1 on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h"−"1, antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h"−"1 which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic

  4. Calculs de doses générées par les rayonnements ionisants principes physiques et codes de calcul

    CERN Document Server

    Vivier, Alain

    2016-01-01

    Cet ouvrage et les codes associés s’adressent aux utilisateurs de sources de rayonnements ionisants : techniciens, ingénieurs de sécurité, personnes compétentes en radioprotection, mais aussi médecins, chercheurs, concepteurs, décideurs… Les contraintes croissantes liées à la radioprotection rendent indispensables l’utilisation de codes de calcul permettant d’évaluer les débits de doses générées par ces sources et la façon dont on peut s’en protéger au mieux. De nombreux codes existent, dont certains restent des références incontournables, mais ils sont relativement complexes à mettre en oeuvre et restent en général réservés aux bureaux d’études. En outre, ces codes sont souvent des « boîtes noires » qui ne permettent pas de comprendre la physique sous-jacente. L’objectif de cet ouvrage est double : - Exposer les principes physiques permettant de comprendre les phénomènes à l’oeuvre lorsque la matière est irradiée par des rayonnements ionisants. Il devient al...

  5. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  6. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  7. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  8. A test of the IAEA code of practice for absorbed dose determination in photon and electron beams

    International Nuclear Information System (INIS)

    Leitner, A.; Tiefenboeck, W.; Witzani, J.; Strachotinsky, C.

    1990-12-01

    The IAEA Code of Practice TRS 277 gives recommendations for absorbed dose determination in high energy photon and electron beams based on the use of ionisation chambers calibrated in terms of exposure or air kerma. The scope of the present work was to test the Code for 60 Co gamma radiation and for several radiation qualities at four different types of electron accelerators and to compare the ionisation chamber dosimetry with ferrous sulphate dosimetry. The results show agreement between the two methods within about one per cent for all the investigated qualities. In addition the response of the TLD capsules of the IAEA/WHO TL dosimetry service has been determined. (Authors) 5 refs., 9 tabs., 3 figs

  9. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  10. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  11. Determination of the absorbed dose and dose-distribution in water for low- and medium-energetic photons

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1990-05-01

    The methods to determine the absorbed dose to water for low and medium energy photons were studied. Large differences between the results of these methods exists. So, a research proposition has been made to explain these differences. The goal of this research will be the development of a method to determine the absorbed dose below approximately 400 keV with an ionization chamber calibrated at 60 Co gamma radiation. To explain the differences between the set of methods, some causes were proposed, like the influence of the ionisation chamber on the measurement in water. Also, some methods to determine the factors are proposed. (author). 29 refs

  12. Radiation Levels around the LHC

    CERN Document Server

    Mala, P; Calviani, M; Nordt, A

    2013-01-01

    This work discuss on the radiation levels measured around the LHC machine during the 2012 operational year. The doses and particle fluences are measured primarily by RadMon detectors – about 300 RadMons are installed around the accelerator – and by thermoluminescent detectors. In addition, BLMs, IG5/PMI ionisation chambers as well as FGCs can be used for corresponding cumulated dose evaluations. The probability of SEE depends directly on the high-energy hadron (HEH) fluence, so this is the main parameter that is calculated based on RadMons counts.

  13. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  14. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  15. Occupational radiation doses during interventional procedures

    International Nuclear Information System (INIS)

    Nuraeni, N; Hiswara, E; Kartikasari, D; Waris, A; Haryanto, F

    2016-01-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits. (paper)

  16. Cancer in the offspring of radiation workers - a record linkage study

    Energy Technology Data Exchange (ETDEWEB)

    Draper, G.J. [Childhood Cancer Research Group, University of Oxford (United Kingdom); Little, M.P. [National Radiological Protection Board, Chilton (United Kingdom); Sorahan, T. [Institute of Occupational Health, University of Birmingham (United Kingdom)] [and others

    1997-12-31

    The objectives of this study were to test the `Gardner hypothesis` that childhood leukaemia and non-Hodgkin lymphoma can be caused by paternal exposure to ionising radiation before the conception of the child, and more generally, to investigate whether such radiation exposure of either parent is a cause of childhood cancer. This was a case-control study, conducted in Great Britain, that involved 35,949 children diagnosed as having cancer, together with matched controls. Examination was made of: parental employment as radiation worker as defined by inclusion in the National Registry for Radiation Workers and being monitored for external radiation before conception of child; cumulative dose of external ionising radiation for various periods of employment before conception; pregnancy dose. It is concluded that the results do not support the hypothesis that paternal preconception irradiation is a cause of childhood leukaemia and non-Hodgkin lymphoma; the observed associations may be chance or result from exposure to infective or other agents. If there is any increased risk for the children of fathers who are radiation workers it is small in absolute terms: in Britain the average risk by age 15 years is 6.5 per 10,000; our best estimate, using all available data, is that the increase is 5.4 per 10,000. For mothers, the numbers are too small for reliable estimates of the risk, if any, to be made. (author).

  17. Cancer in the offspring of radiation workers - a record linkage study

    International Nuclear Information System (INIS)

    Draper, G.J.; Little, M.P.; Sorahan, T.

    1997-01-01

    The objectives of this study were to test the 'Gardner hypothesis' that childhood leukaemia and non-Hodgkin lymphoma can be caused by paternal exposure to ionising radiation before the conception of the child, and more generally, to investigate whether such radiation exposure of either parent is a cause of childhood cancer. This was a case-control study, conducted in Great Britain, that involved 35,949 children diagnosed as having cancer, together with matched controls. Examination was made of: parental employment as radiation worker as defined by inclusion in the National Registry for Radiation Workers and being monitored for external radiation before conception of child; cumulative dose of external ionising radiation for various periods of employment before conception; pregnancy dose. It is concluded that the results do not support the hypothesis that paternal preconception irradiation is a cause of childhood leukaemia and non-Hodgkin lymphoma; the observed associations may be chance or result from exposure to infective or other agents. If there is any increased risk for the children of fathers who are radiation workers it is small in absolute terms: in Britain the average risk by age 15 years is 6.5 per 10,000; our best estimate, using all available data, is that the increase is 5.4 per 10,000. For mothers, the numbers are too small for reliable estimates of the risk, if any, to be made. (author)

  18. Fundamentals of risk/benefit analysis in radiation uses in preventive medicine

    International Nuclear Information System (INIS)

    Stieve, F.E.

    1977-01-01

    The term 'risk' stems from the insurance branch. It serves to estimate the probability of making statements about future events on the basis of events which have taken place. Risk estimations are increasingly being made in medicine, especially for determining the advantages and dangers brought to the population by preventive measures. The international radiation protection commission has, for some time, been expressing the dangers of ionising radiation in terms of risk and using these terms as basis for the dose limit values it determined for the professional and general population. This paper deals with possibilities of determining risks in preventive medicine. For doing this, acceptable risk values must be determined and risks resulting from diseases, esp. from those which were not recognized in time, must be compared with those resulting from the application of ionising radiation. (orig.) [de

  19. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  20. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  1. Effects of intense stratospheric ionisation events

    International Nuclear Information System (INIS)

    Reid, G.C.; McAfee, J.R.; Crutzen, P.J.

    1978-01-01

    High levels of ionising radiation in the Earth's stratosphere will lead to increased concentrations of nitrogen oxides and decreased concentrations of ozone. Changes in the surface environment will include an increased level, of biologically harmful UV radiation, caused by the ozone depletion, and a decreased level of visible solar radiation, due to the presence of major enhancements in the stratospheric concentration of nitrogen dioxide. These changes have been studied quantitatively, using the passage of the Solar System through a supernova remnant shell as an example. Some of the potential environmental changes are a substantial global cooling, abnormally dry conditions, a reduction in global photosynthesis and a large increase in the flux of atmospheric fixed nitrogen to the surface of the Earth. Such events might have been the cause of mass extinctions in the distant past. (Author)

  2. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  3. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  4. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  5. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  6. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  7. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  9. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  10. Radiation exposure and the protection of the community

    International Nuclear Information System (INIS)

    Gloag, D.

    1980-01-01

    A general editorial discussion is presented concerning the difficulties of making decisions about the use of nuclear power, and the importance of considering hazards in the wider context of radiation exposure from all sources, controversy over the theoretical aspects, and the dangers of extrapolating from animal work. It is pointed out that the experimental evidence does not show clearly how we should extrapolate from the long-term effect of high or moderate doses to low doses of varying LET. Particular attention is drawn to the findings of the Biological Effects of Ionising Radiations Committee (BEIR III) and the fact that most of the data on animals exposed to low-LET radiation indicates that linear extrapolation gives an overestimation of risk for low doses or dose rates. However, the dissenting views of the chairman of the carcinogenic effects subcommittee (Radford) point out the dangers of being influenced by animal studies and adopting the intermediate linear-quadratic dose-response model. (U.K.)

  11. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    2002-01-01

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  12. Energies, health, medicine. Low radiation doses

    International Nuclear Information System (INIS)

    2004-01-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  13. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Mohiuddin, M.; Marks, G.

    1993-01-01

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  14. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  15. Measurement of radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Helmrot, E.; Carlsson, G. A.

    2005-01-01

    Patient dose audit is an important tool for quality control and it is important to have a well-defined and easy to use method for dose measurements. In dental radiology, the most commonly used dose parameters for the setting of diagnostic reference levels (DRLs) are the entrance surface air kerma (ESAK) for intraoral examinations and dose width product (DWP) for panoramic examinations. DWP is the air kerma at the front side of the secondary collimator integrated over the collimator width and an exposure cycle. ESAK or DWP is usually measured in the absence of the patient but with the same settings of tube voltage (kV), tube current (mA) and exposure time as with the patient present. Neither of these methods is easy to use, and, in addition, DWP is not a risk related quantity. A better method of monitoring patient dose would be to use a dose area product (DAP) meter for all types of dental examinations. In this study, measurements with a DAP meter are reported for intraoral and panoramic examinations. The DWP is also measured with a pencil ionisation chamber and the product of DWP and the height H (DWP x H) of the secondary collimator (measured using film) was compared to DAP. The results show that it is feasible to measure DAP using a DAP meter for both intraoral and panoramic examinations. The DAP is therefore recommended for the setting of DRLs. (authors)

  16. Basic radiation chemistry for the ionising energy treatment of food

    International Nuclear Information System (INIS)

    Moore, P.W.

    1985-01-01

    Before we can understand the chemistry involved in the irradiation of complex substances such as food we need to have some appreciation of the reactions involved and the products formed when ionising energy interacts with the simple substances such as water and dilute solutions. Reactions involving hydrated electrons, hydrogen atoms and hydroxyl radicals are examined and methods for minimising radiolytic effects in foods are discussed

  17. Assessment of concomitant testicular dose with radiochromic film

    International Nuclear Information System (INIS)

    Fricker, Katherine; Thompson, Christine; Meyer, Juergen

    2013-01-01

    To assess the suitability of EBT2 and XRQA2 Gafchromic film for measuring low doses in the periphery of treatment fields, and to measure the accumulative concomitant dose to the contralateral testis resulting from CT imaging, pre-treatment imaging (CBCT) and seminoma radiotherapy with and without gonadal shielding. Superficial peripheral dose measurements made using EBT2 Gafchromic film on the surface of water equivalent material were compared to measurements made with an ionisation chamber in a water phantom to evaluate the suitability and accuracy of the film dosimeter for such measurements. Similarly, XRQA2 was used to measure surface doses within a kilovoltage beam and compared with ionisation chamber measurements. Gafchromic film was used to measure CT, CBCT and seminoma treatment related testicular doses on an anthropomorphic phantom. Doses were assessed for two clinical plans, both with and without gonadal shielding. Testicular doses resulting from the treatment of up to 0.83 ± 0.17 Gy were measured per treatment. Additional doses of up to 0.49 ± 0.01 and 2.35 ± 0.05 cGy were measured per CBCT and CT image, respectively. Reductions in the testicular dose in the order of 10, 36 and 78 % were observed when gonadal shielding was fitted for treatment, CT and CBCT imaging, respectively. Gafchromic film was found to be suitable for measuring dose in the periphery of treatment fields. The dose to the testis should be limited to minimise the risk of radiation related side effects. This can be achieved by using appropriate gonadal shielding, irrespective of the treatment fields employed.

  18. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Webster, C.M.; Horrocks, J.; Hayes, D.

    2001-01-01

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm 2 and 22.5 mSv for RFCA, and 32 Gycm 2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  19. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  20. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  1. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  2. Patient and staff dose during hysterosalpinography

    International Nuclear Information System (INIS)

    Buls, N.; Osteaux, M.

    2001-01-01

    Hysterosalpingography (HSG) is a useful and widely employed technique which uses X-ray fluoroscopy to investigate the female genital tract. Fluoroscopy is assessed by a gynaecologist, a physician who is not always trained to work with ionising radiation. Dose-area product measurements in a group of 34 patients allowed an estimation of the median effective dose (0,83 mSv) and the median dose to the ovaries (1,63 mGy) of the patient per procedure. The dose to the staff was estimated using thermoluminescent dosimetry. The following median entrance surface doses were estimated per procedure: 0,22 mGy to the lens of the eye, 0,15 mGy to the neck at thyroid level and 0,19 mGy to the back of the hand. The annual eye dose limit could be exceeded if the gynaecologist is a member of the public. (author)

  3. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  4. Multidetector CT in children: current concepts and dose reduction strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nievelstein, Rutger A.J.; Dam, Ingrid M. van [University Medical Centre Utrecht, Department of Pediatric Radiology, Wilhelmina Children' s Hospital, E01.132, P.O. Box 85500, Utrecht (Netherlands); Molen, Aart J. van der [Leiden University Medical Centre, Department of Radiology, C-2S, Leiden (Netherlands)

    2010-08-15

    The recent technical development of multidetector CT (MDCT) has contributed to a substantial increase in its diagnostic applications and accuracy in children. A major drawback of MDCT is the use of ionising radiation with the risk of inducing secondary cancer. Therefore, justification and optimisation of paediatric MDCT is of great importance in order to minimise these risks (''as low as reasonably achievable'' principle). This review will focus on all technical and non-technical aspects relevant for paediatric MDCT optimisation and includes guidelines for radiation dose level-based CT protocols. (orig.)

  5. Multidetector CT in children: current concepts and dose reduction strategies

    International Nuclear Information System (INIS)

    Nievelstein, Rutger A.J.; Dam, Ingrid M. van; Molen, Aart J. van der

    2010-01-01

    The recent technical development of multidetector CT (MDCT) has contributed to a substantial increase in its diagnostic applications and accuracy in children. A major drawback of MDCT is the use of ionising radiation with the risk of inducing secondary cancer. Therefore, justification and optimisation of paediatric MDCT is of great importance in order to minimise these risks (''as low as reasonably achievable'' principle). This review will focus on all technical and non-technical aspects relevant for paediatric MDCT optimisation and includes guidelines for radiation dose level-based CT protocols. (orig.)

  6. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  7. Biological evidence of low ionizing radiation doses; Biologischer Nachweis niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mirsch, Johanna

    2017-03-17

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  8. Changes in amino transferases and muscle proteins when treating pigmeat with ionising rays

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, R; Hofmann, K; Gruenewald, T; Partmann, W [Bundesanstalt fuer Fleischforschung, Kulmbach (F.R. Germany). Inst. fuer Chemie und Physik; Bundesforschungsanstalt fuer Ernaehrung, Karlsruhe [F.R. Germany

    1975-01-01

    Slices of lean pigmeat were treated with electron beams doses of 0.2, 1.0 and 5.0 Mrad. Low irradiation doses led to an increase in the activity of aspartate amino transferase (GOT) and alanin amino transferase (GPT) in the tissue generally and in the sarcoplasm (juice expressed from the muscle). 5 Mrad caused a great reduction in the activity of GOT and GPT in the tissue and the sarcoplasm. It seems doubtful whether this inactivation is due to a destruction of enzyme sulphhydryl groups. Irradiating with 5 Mrad resulted in partial release of the mitochondrial GOT isozyme (GOTsub(M)) into the sarcoplasm. This indicates damage to the mitochondrial membranes by ionising radiation. Irradiating the pigmeat increased the pH of the tissue and lowered its water binding ability (increase in drip). Up to a dose of 1 Mrad the solubility of the sarcoplasmic proteins was not definitely affected, but 5 Mrad caused a considerable drop in protein solubility. Surprisingly a dose of even 5 Mrad did not change the total number of sulphhydryl groups present in the tissue. Sephadex thin layer electrophoresis showed that at 0.2 Mrad there was a drastic decrease in the myosin band and an increase in peptide fragments of low molecular weight, whilst actin was little changed.

  9. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  10. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1992-06-01

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  11. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  12. For the development of therapy with ionising radiation in tooth, mouth and jaw medicine. An historical summary

    International Nuclear Information System (INIS)

    Halbleib, T.

    1983-01-01

    Based on the corresponding literature study, the development of therapy with ionising radiation, especially in the areas of tooth, mouth and jaw medicine, is reported from the discovery of X-rays up till the present. First from 1915 on did the X-ray antiphlogistic irradiation with in importance, from 1925 to about 1940 it played a domineering role, after the war was hardly still in use and since 1970 is considered in the stomatological sector obsolete. In comparison, already in 1905 there were individual successes in tumor therapy using X radiation. After many failures and competition with the method of radium therapy in the following years, a new upswing in X-radiation came starting in around 1930 with the introduction of the Chaoul contact therapy. The high point of this development is the introduction of supervolt therapy starting around 1965. It is the result of comprehensive research in the area of radiation physics. As a result of further developed techniques there were soon combined and competing procedures available, whose results, however, have not been adequately compared and documented. From 1970 on electronic data processing has primarily taken over individual irradiation planning (cobalt 60 and electron irradiation), predictions about clinically relevant therapy successes are not present at this time. (TRV) [de

  13. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  14. Analysis of T101 outage radiation dose

    International Nuclear Information System (INIS)

    Li, Zhonghua

    2008-01-01

    Full text: Collective radiation dose during outage is about 80% of annual collective radiation dose at nuclear power plants (NPPs). T 101 Outage is the first four-year outage of Unit 1 at Tianwan Nuclear Power Station (TNPS) and thorough overhaul was undergone for the 105-day's duration. Therefore, T 101 Outage has significant reference meaning to reducing collective radiation dose at TNPS. This paper collects the radiation dose statistics during T 101 Outage and analyses the radiation dose distribution according to tasks, work kinds and varying trend of the collective radiation dose etc., comparing with other similar PWRs in the world. Based on the analysis this paper attempts to find out the major factors in collective radiation dose during T 101 Outage. The major positive factor is low radiation level at workplace, which profits from low content of Co in reactor construction materials, optimised high-temperature p H value of the primary circuit coolant within the tight range and reactor operation without trips within the first fuel cycle. One of the most negative factors is long outage duration and many person-hours spent in the radiological controlled zone, caused by too many tasks and inefficient work. So besides keeping good performance of reducing radioactive sources, it should be focused on how to improve implementation of work management including work selection, planning and scheduling, work preparation, work implementation, work assessment and feedback, which can lead to reduced numbers of workers needed to perform a task, of person-hours spent in the radiological controlled zone. Moreover, this leads to reduce occupational exposures in an ALARA fashion. (author)

  15. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  16. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  17. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  18. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  19. Dose evaluation for digital X-ray imaging of premature neonates

    International Nuclear Information System (INIS)

    Minkels, T.J.M.; Jeukens, C.R.L.P.N.; Andriessen, P.; Van der Linden, A.N.; Dam, A.J.; Van Straaten, H.L.M.; Cottaar, E.J.E.; Van Pul, C.

    2017-01-01

    X-ray radiography is a commonly used diagnostic method for premature neonates. However, because of higher radiosensitivity and young age, premature neonates are more sensitive to the detrimental effects of ionising radiation. Therefore, it is important to monitor and optimise radiation doses at the neonatal intensive care unit (NICU). The number of X-ray examinations, dose area product (DAP) and effective doses are evaluated for three Dutch NICUs using digital flat panel detectors. Thorax, thorax abdomen and abdomen protocols are included in this study. Median number of examinations is equal to 1 for all three hospitals. Median DAP ranges between 0.05 and 1.02 μGy m2 for different examination types and different weight categories. These examinations result in mean effective doses between 4 ± 4 and 30 ± 10 μSv per examination. Substantial differences in protocols and doses can be observed between hospitals. This emphasises the need for up-to-date reference levels formulated specifically for premature neonates. (authors)

  20. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  1. Non-Targeted effects of ionising radiation and radiotherapy

    International Nuclear Information System (INIS)

    Sjostedt, Svetlana; Bezak, Eva

    2010-01-01

    Full text: Modern radiobiology is undergoing rapid change due to new discoveries contradicting the target concept which is currently used to predict dose-response relationships. Thus relatively recently discovered radiation induced bystander effects (RlBEs), that include additional death, mutation and radio-adaptation in non-irradiated cells, change our understanding of the target concept and broadens its boundaries. This can be significant from a radioprotection point of view and also has the potential to reassess radiation damage models currently used in radiotherapy. This article reviews briefly the general concepts of RlBEs such as the proposed underlying mechanisms of signal induction and propagation, experimental approaches and biological end points used to investigate these phenomena. It also summ rises several mathematical models currently proposed in an attempt to quantify RlBE. The main emphasis of this al1icle is to review and highlight the potential impact of the bystander phenomena in radiotherapy.

  2. The ionising radiation effect on reactivation of antibiotics

    International Nuclear Information System (INIS)

    Dikij, I.L.; Manskij, A.A.; Krasnopyorova, A.P.

    2002-01-01

    The effect of gamma-radiation on the molecular structure of antibiotics was studied with a view to extending their useful life beyond the current expiration period. The following antibiotics were examined: penicillin, bicillin-3,5, streptomycine, and ampioxe. The samples were irradiated by Co-60 gamma-radiation from a research irradiator. Doses of 0.1, 1, 5, 7, and 10 Gy were applied. The processes were elucidated using the classical method of 2-divisible serial dilutions and IR-spectroscopy. All the measurements were carried out at 300 K. The IR-spectra revealed that the chemical structure of new and old antibiotics is identical; the change in the antibiotic activity is generally a result of deformation of the molecule or change in its conformation; the reactivation process returns the molecule to its previous state and the activity of antibiotic after reactivation meets established standards. Hence, this method can be used for the reactivation of expired antibiotics

  3. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  4. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  5. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  6. Effects of radiation scatter exposure on electrometer dose assessment in orthovoltage radiotherapy

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Cheung, Tsang; Oborn, B.M.

    2011-01-01

    During orthovoltage x-ray radiotherapy dosimetry, normal practice requires the use of a standard ionisation chamber and dedicated electrometer for dosimetry. In ideal conditions, the electrometer is positioned outside the treatment room to eliminate any effects from scatter radiation on dose measurement. However in some older designed rooms, there is no access portal for the chamber cable to run to an 'outside' position for the electrometer. As such the electrometer is positioned within the treatment room. This work quantifies the effects on measured charge when this occurs. Results have shown that with the electrometer positioned next to a solid water dosimetry stack and using a large 15 x 15 cm field at 250 kVp x-ray beam energy, charge results can deviate by up to ±17.2% depending on the polarity applied to the chamber compared to readings when the electrometer is outside the treatment room. It is assumed to be due to scatter radiation producing electrons in the amplifying circuit of the electrometer. Results are also shown when the electrometer is shielded by a 4 mm thick lead casing whilst inside the room which removes the scattering effect, providing the best case scenario when the electrometer must remain in the treatment room. Whilst it is well known that an electrometer should not be irradiated (even to scattered radiation), often small kilovoltage or orthovoltage rooms do not have a portal access for an electrometer to go outside. As such it would be recommended for a lead shield to be placed around the electrometer during irradiation if this was to occur to minimize dosimetric inaccuracies which may occur due to scattered radiation effects.

  7. Radiation Dose to Post-Chernobyl Cleanup Workers

    Science.gov (United States)

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  8. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  9. Environmental radioactivity and radiation exposure in Switzerland 1994

    International Nuclear Information System (INIS)

    Voelkle, H.; Gobet, M.

    1995-01-01

    Systematic monitoring of radioactivity in the environment and food has been going on in Switzerland since the mid 1950s. This report contains a summary of the values measured in 1994, along with the interpretation of the data and the resultant radiation doses for the population. The monitoring programme deals with radioactivity in the atmosphere, precipitation, aquatic systems, grass, foodstuffs and the human body, but also includes natural radiation, doses due to radon inside dwellings, emissions from nuclear power stations and other installations using radionuclides and also miscellaneous radiation sources. With only one exception, the nuclear power plants and other facilities licensed to handle radioactive substances remained within their annual emission limits in 1994, and measurements carried out in the environment revealed no inadmissible immission or dose values. The population's mean annual radiation dose totals 4 mSv. Some 40% of this is due to radon in the home, with extreme values as high as 100 mSr; 30% may be ascribed to natural radiation, roughly 25% to medical applications of ionising radiation, leaving less than 5% ascribable to man-made sources. (author) figs., tabs., refs

  10. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  11. Malignant pleural mesothelioma risk among nuclear workers: a review

    International Nuclear Information System (INIS)

    Metz-Flamant, C; Guseva Canu, I; Laurier, D

    2011-01-01

    Exposure to ionising radiation has been suggested as a causal risk factor for malignant pleural mesothelioma (MPM). Studies of patients treated by radiotherapy for primary cancers have suggested that radiation contributes to the development of secondary MPM. Here we examined the risk to nuclear workers of MPM related to exposure to low doses of occupational radiation at low dose rates. All results concerning MPM risk in published studies of nuclear workers were examined for their association with radiation exposure and potential confounders. We found 19 relevant studies. Elevated risks of pleural cancer were reported in most (15/17) of these studies. Eight reported risks higher for radiation monitored workers than for other workers. However, of 12 studies that looked at associations with ionising radiation, only one reported a significant dose-risk association. Asbestos was an important confounder in most studies. We conclude that studies of nuclear workers have not detected an association between ionising radiation exposure and MPM. Further investigations should improve the consideration of asbestos exposure at the same time as they address the risk of MPM related to occupational exposure of nuclear workers to low doses of ionising radiation at low dose rates. (review)

  12. Malignant pleural mesothelioma risk among nuclear workers: a review

    Energy Technology Data Exchange (ETDEWEB)

    Metz-Flamant, C; Guseva Canu, I; Laurier, D, E-mail: camille.metz@irsn.fr [Laboratory of Epidemiology, Institute of Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France)

    2011-03-01

    Exposure to ionising radiation has been suggested as a causal risk factor for malignant pleural mesothelioma (MPM). Studies of patients treated by radiotherapy for primary cancers have suggested that radiation contributes to the development of secondary MPM. Here we examined the risk to nuclear workers of MPM related to exposure to low doses of occupational radiation at low dose rates. All results concerning MPM risk in published studies of nuclear workers were examined for their association with radiation exposure and potential confounders. We found 19 relevant studies. Elevated risks of pleural cancer were reported in most (15/17) of these studies. Eight reported risks higher for radiation monitored workers than for other workers. However, of 12 studies that looked at associations with ionising radiation, only one reported a significant dose-risk association. Asbestos was an important confounder in most studies. We conclude that studies of nuclear workers have not detected an association between ionising radiation exposure and MPM. Further investigations should improve the consideration of asbestos exposure at the same time as they address the risk of MPM related to occupational exposure of nuclear workers to low doses of ionising radiation at low dose rates. (review)

  13. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  14. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    Lee, W. J.; Cha, E. S.; Ha, M.; Jin, Y. W.; Hwang, S. S.; Kong, K. A.; Lee, S. W.; Lee, H. K.; Lee, K. Y.; Kim, H. J.

    2009-01-01

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  15. Radiation decontamination of dry food ingredients and processing aids

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J

    1984-01-01

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives and is highly efficient. Its dose requirement is moderate. Radiation doses of 3-10 kGy (0.3-1 mrad) have proved sufficient to reduce the viable counts to a satisfactory level. Ionising radiations do not cause any significant rise in temperature. The flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for satisfactory decontamination, and radiation obviates the chemical residue problem. The microflora surviving radiation decontamination of dry ingredients are more susceptible to subsequent antimicrobial treatments. Recontamination can be prevented as the product can be irradiated in its final packaging. Irradiation could be carried out in commercial containers and would result in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of these commodities is an established technology in several countries and more clearances on irradiated foods are expected to be granted in the near future.

  16. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  17. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  18. Occupational radiation exposure in Germany in 2011. Report of the radiation protection register

    International Nuclear Information System (INIS)

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Mordek, Else; Schlosser, Andrea; Spiesl, Josef

    2013-04-01

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetry services that transmit the dose records about individual radiation monitoring to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2011, about 350,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased during the past five years continuously by 10 %. Only 19 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.58 mSv corresponding to 3 % of the annual dose limit of 20 mSv for radiation workers. In total, 7 persons exceeded the annual dose limit of 20 mSv, i.e. two cases per 100,000 monitored persons. The collective dose of the monitored persons decreased to 38.5 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. In 2010, 45 airlines calculated the route doses of 39,000 members of the aircraft crew personnel by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 83 person-Sv, and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters (38.5 person-Sv). The annual average dose of aircraft crew personnel was 2.12 mSv and decreased compared to 2010 (2,30 mSv). In 2011, about 70,000 outside-workers were in

  19. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  20. Urinary excretion and external radiation dose from patients administered with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Konishi, E.; Abe, K.; Kusama, T.

    1994-01-01

    Patients who have received radiopharmaceuticals become a source of exposure to those near them, such as nursing staff or visiting relatives. In order to provide quantitative information to propose protective measures for carers attending patients administered diagnostic amounts of 99 Tc, 67 Ga or 201 Tl (the most frequently used radiopharmaceuticals) the dose rate at various distances from 84 patients was measured using an ionising chamber, and the radioactivity of these compounds in urine collected from some patients was also measured. (author)

  1. The critical examination of X-ray generating equipment in diagnostic radiology. Guidance on the interpretation of the Ionising Radiation Regulations 1985, Regulation 32(2)a

    International Nuclear Information System (INIS)

    1998-01-01

    Regulation 32(2)a requires an examination, where appropriate, of X-ray equipment and its operating environment, following its installation, repair or modification. In this context 'appropriate' means - 'if there are possible radiation protection implications'. The examination should be carried out before the equipment is brought into use. The intent of the Regulation is to ensure that the installation process does not compromise the radiation safety of the equipment as provided for by its original design and manufacture, and that any persons who might be exposed are adequately protected. However, the scope of the Regulation does not directly cover features controlling the optimisation of dose for a medical exposure. An examination of the equipment relating to the radiation protection consequences of the way it was installed is required. This is termed 'critical', emphasising the need to review the installation to a greater degree than the simple fulfilment of a preconceived test procedure. The involvement of a radiation protection adviser is required as an expert in radiation safety. This document provides guidance on when it is necessary to carry out a critical examination, and on its content. The Ionising Radiations Regulations 1985 firmly place the responsibility for ensuring that a critical examination is carried out, on the installer of the equipment. However, knowledge of various aspects of the critical examination is also relevant to employers who manage health related facilities, as well as their RPAs, and physicists who carry out equipment tests. Aside from the actual examination itself, there are issues pertaining to purchase contracts, and a knowledge of the satisfactory completion of a critical examination will be relevant to an employer in fulfilling his duties under Regulations 6 and 33. (author)

  2. The critical examination of X-ray generating equipment in diagnostic radiology. Guidance on the interpretation of the Ionising Radiation Regulations 1985, Regulation 32(2)a

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Regulation 32(2)a requires an examination, where appropriate, of X-ray equipment and its operating environment, following its installation, repair or modification. In this context 'appropriate' means - 'if there are possible radiation protection implications'. The examination should be carried out before the equipment is brought into use. The intent of the Regulation is to ensure that the installation process does not compromise the radiation safety of the equipment as provided for by its original design and manufacture, and that any persons who might be exposed are adequately protected. However, the scope of the Regulation does not directly cover features controlling the optimisation of dose for a medical exposure. An examination of the equipment relating to the radiation protection consequences of the way it was installed is required. This is termed 'critical', emphasising the need to review the installation to a greater degree than the simple fulfilment of a preconceived test procedure. The involvement of a radiation protection adviser is required as an expert in radiation safety. This document provides guidance on when it is necessary to carry out a critical examination, and on its content. The Ionising Radiations Regulations 1985 firmly place the responsibility for ensuring that a critical examination is carried out, on the installer of the equipment. However, knowledge of various aspects of the critical examination is also relevant to employers who manage health related facilities, as well as their RPAs, and physicists who carry out equipment tests. Aside from the actual examination itself, there are issues pertaining to purchase contracts, and a knowledge of the satisfactory completion of a critical examination will be relevant to an employer in fulfilling his duties under Regulations 6 and 33. (author)

  3. In vivo variation of micronuclei in BALB/c mice after low and high doses of gamma radiation

    International Nuclear Information System (INIS)

    Strain, D.; Allen, B.J.

    1996-01-01

    Full text: An adaptive response to ionising radiation exists if a low level or priming dose reduces the effect of a subsequent high or challenge dose. This has been demonstrated in vitro using the frequency of micronuclei formation as a measure of radiation-induced DNA damage. The objective of this project was to use the same approach with an animal model to investigate the existence of an in vivo adaptive response. The experimental design involved priming doses of 0.005 or 0.01 Gy and a challenge dose of 4 Gy administered 1, 2, 4, 8 or 16 hours after the priming dose. Ten mice at a time were housed in a perspex animal cage and irradiated using Co-60 gamma radiation. For every time point (1, 2, 4, 8 or 16 hours), there were four treatment groups of 5 mice for statistical analysis. The first group acted as a non-irradiated control (0 Gy). The second group of mice received only the priming dose (0.005 Gy), while the third group of mice received only the challenge dose (4 Gy). The fourth group of mice received both the priming and challenge doses 0.005 Gy + 4 Gy). The process was repeated for the second priming dose of 0.01 Gy. A total of 200 mice were used. The animals were sacrificed by cervical dislocation 24 hours after receiving the challenge dose. Both femora were removed and cleared of adhering muscle tissue. The bone marrow cells of five mice were collected and the nucleated cells removed using filtration through a mixed cellulose column incorporating a self-locking filter. The cell suspension was placed onto microscope slides using a cytocentrifuge, air-dried and then stained for the micronuclei. Then the slides were coded, and reticulocytes were scored for the presence or absence of micronuclei. Approximately 2500 cells were scored for each treatment point, and the number of micronuclei counted ranged from 3 to 125 in this sample size. While it appears that the adaptive response may be present in 2 of 9 groups of mice pre-exposed to 0.005 or 0.01 Gy, this

  4. Predictive assays and their role in selection of radiation as the therapeutic modality

    International Nuclear Information System (INIS)

    2002-07-01

    Radiation therapy is a modality to treat cancer patients using ionising radiation. Ionising radiation kills cancer (or malignant tumour) cells and hopefully cures the patient. If some cancer cells survive the treatment, those cells would ultimately multiply again and eventually kill the patient. Although radiation is intended to focus on the cancer, irradiation of the normal tissues is unavoidable. The higher the radiation dose given to the cancer, the greater the chance of eradicating it. On the other hand, the greater the radiation dose, the greater the probability of severe morbidity or side effects. Thus, optimising the dose for the patients is crucial. Human cancers have variable radiation sensitivities. Many factors influence the sensitivity. These factors include simple parameters such as tumour size, cellular sensitivity, such as repair capacity, and tumour environment, such as oxygen content. If we can predict the radiation sensitivity of the individual tumours prior to radiation therapy, or even during the radiation therapy, it would give us valuable information with regard to determining the optimal dose. Such an approach has led to the search for predictive assays. Recent advances in molecular technology and equipment have facilitated progress in this field. Some of the studies relied on tumour tissues taken by biopsy, while others focused on cell cycle parameters, which could suggest optimal fractionation schedules. The IAEA's sub-programme on Applied Radiation Biology and Radiotherapy aims to assist Member States in establishing or upgrading radiotherapy facilities to contribute effectively to cancer treatment for palliative or curative purposes and to provide assistance towards the enhancement of radiation-induced therapeutic gain. The Co-ordinated Research Project (CRP) on Radiation Responsiveness Criteria for Human Tumours as Determinant for Therapeutic Modality Planning was initiated in 1992 to address this problem. This publication was assembled

  5. Some characteristics and effects of natural radiation

    International Nuclear Information System (INIS)

    Mc Laughlin, J.P.

    2015-01-01

    Since life first appeared on the Earth, it has, in all its subsequent evolved forms including human, been exposed to natural radiation in the environment both from terrestrial and extra-terrestrial sources. Being an environmental mutagen, ionising natural radiation may have played a role of some significance in the evolution of early life forms on Earth. It has been estimated by United Nations Scientific Committee on the Effects of Atomic Radiation that at the present time, exposure to natural radiation globally results in an annual average individual effective dose of about 2.4 mSv. This represents about 80 % of the total dose from all sources. The three most important components of natural radiation exposure are cosmic radiation, terrestrial radioactivity and indoor radon. Each of these components exhibits both geographical and temporal variabilities with indoor radon exposure being the most variable and also the largest contributor to dose for most people. In this account, an overview is given of the characteristics of the main components of the natural radiation environment and some of their effects on humans. In the case of cosmic radiation, these range from radiation doses to aircrew and astronauts to the controversial topic of its possible effect on climate change. In the case of terrestrial natural radiation, accounts are given of a number of human exposure scenarios. (author)

  6. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  7. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-01-01

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  8. Radiation 2006. In association with the Polymer Division, Royal Australian Chemical Institute. Incorporating the 21st AINSE Radiation Chemistry Conference and the 18th Radiation Biology Conference, conference handbook

    International Nuclear Information System (INIS)

    Cornelius, I; Wroe, A.; Kwan, I.; Painuly, N.; Perera, L.; Lerch, M.; Takacs, G.; Rosenfeld, A.; Siegbahn, E.; Reinhard, M.; Marchetto, F.; Cirio, R.; Prokopovich, D.

    2006-01-01

    Full text: The Centre for Medical Radiation Physics (CMRP) and it's collaborative partners are actively involved with the development of semiconductor detectors and dosimeters for radiation protection, radiation oncology, and nuclear medicine applications. The GEANT4 Monte Carlo toolkit is used extensively in our current research projects. This poster will give an overview of our experience with the toolkit, including: the use of GEANT4 to calculate the dose distribution of HDR brachytherapy sources for comparison with TLD, ionisation chamber, and MOSFET measurements; the simulation of silicon microdosimetry measurements of an isotopic neutron source; the simulation of MOSFET dosimetry of synchrotron microbeams to understand lateral dose enhancement effects (see figure); estimating the effectiveness of various space shielding configurations using microdosimetry based calculations of biological dose; simulating small animal PET scanners using GATE; and the macroscopic verification of light ion fragmentation models via comparison with experimental data for energies and targets relevant to carbon ion therapy. Figures: Simulation of the response of an 'edge-on' MOSFET to a synchrotron microbeam. Dose profile obtained using GEANT4 and PENELOPE the lateral dose enhancement from the silicon substrate of the MOSFET is illustrated by the skewness of the dose profile

  9. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  10. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  11. Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts

    International Nuclear Information System (INIS)

    Matsumoto, Yoshitaka; Hamada, Nobuyuki; Aoki-Nakano, Mizuho; Furusawa, Yoshiya; Funayama, Tomoo; Sakashita, Tetsuya; Kobayashi, Yasuhiko; Wada, Seiichi; Kakizaki, Takehiko

    2015-01-01

    Ionising radiation-induced bystander effects are well recognised, but its dependence on dose or linear energy transfer (LET) is still a matter of debate. To test this, 49 sites in confluent cultures of AG01522D normal human fibroblasts were targeted with microbeams of carbon (103 keV μm -1 ), neon (375 keV μm -1 ) and argon ions (1260 keV μm -1 ) and evaluated for the bystander-induced formation of micronucleus that is a kind of a chromosome aberration. Targeted exposure to neon and argon ions significantly increased the micronucleus frequency in bystander cells to the similar extent irrespective of the particle numbers per site of 1- 6. In contrast, the bystander micronucleus frequency increased with increasing the number of carbon-ion particles in a range between 1 and 3 particles per site and was similar in a range between 3 and 8 particles per site. These results suggest that the bystander effect of heavy ions for micronucleus formation depends on dose. (authors)

  12. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  13. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  14. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  15. A review of the scientific basis for radiation protection of the patient

    International Nuclear Information System (INIS)

    Moores, B. M.; Regulla, D.

    2011-01-01

    The use of ionising radiation in medicine is the single largest man-made source of population exposure. Individual and collective doses to patients arising from the medical use of ionising radiations continue to rise significantly year on year. This is due to the increasing use of medical imaging procedures in modern health care systems as well as the continued development of new high dose techniques. This paper reviews the scientific basis for the principles of radiation protection as defined by the International Commission on Radiological Protection. These principles attempt to include exposures arising from both medical and non-medical applications within a common framework and have evolved over many years and changing socioeconomic considerations. In particular, the concepts of justification and ALARA (doses should be as low as reasonably achievable), which underpin the principles for medical exposures are assessed in terms of their applicability to the scientific process and relevance to a rapidly changing technologically-led health care system. Radiation protection is an integral component of patient safety in medical practices and needs to be evidence based and amenable to the scientific process. The limitations imposed by the existing philosophy of radiation protection to the development of a quantitative framework for adequately assessing the performance of medical imaging systems are highlighted. In particular, medical practitioners will require quantitative guidance as to the risk-benefits arising from modern X-ray imaging methods if they are to make rational judgements as to the applicability of modern high-dose techniques to particular diagnostic and therapeutic tasks. At present such guidance is variable due to the lack of a rational framework for assessing the clinical impact of medical imaging techniques. The possible integration of radiation protection concepts into fundamental bio-medical imaging research activities is discussed. (authors)

  16. Cytogenetic monitoring of nuclear workers occupationally exposed to ionising radiation

    International Nuclear Information System (INIS)

    Griciene, B.; Slapsyte, G.; Mierauskiene, J.

    2014-01-01

    Chromosome aberration (CA) analysis using Giemsa techniques was performed in blood lymphocytes of 84 nuclear workers with cumulative doses of 1-632 mSv during employment periods of 1-25 y. The control group comprised 82 healthy male donors. An estimated CA frequency in the total radiation-exposed group was significantly higher when compared with the controls (2.27 vs. 1.76 CA/100 cells, p 0.05). However, significant increase in the total CA frequency was determined in workers with additional internal exposure (2.54 CA/100 cells, p < 0.05) and those with registered neutron doses (2.95 CA/100 cells, p < 0.01). No correlation was found between CA frequency and occupational exposure dose. Borderline significant correlation was found between duration of employment and total CA (r = 0.218, p = 0.046, Fig. 2) and chromosome-type aberration (r = 0.265, p = 0.015) frequency. (authors)

  17. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  18. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  19. Conversion of electromagnetic waves at the ionisation front

    International Nuclear Information System (INIS)

    Chegotov, M V

    2001-01-01

    It is shown that a weak electromagnetic pulse interacting with a copropagating ionisation front is converted in the general case into three electromagnetic pulses with higher and lower frequencies, which propagate in different directions. The coefficients of conversion to these pulses (for intensities) were found as functions of the frequency. The electromagnetic energy is shown to decrease during this conversion because of the losses for the residual electron energy. (interaction of laser radiation with matter. laser plasma)

  20. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus