WorldWideScience

Sample records for dose in-vitro dosimetry

  1. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  2. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Science.gov (United States)

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell

  3. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Directory of Open Access Journals (Sweden)

    Chrisler William B

    2010-11-01

    Full Text Available Abstract Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL. We have developed a computational model of solution particokinetics (sedimentation, diffusion and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation and the Stokes-Einstein equation (diffusion. Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm, 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a

  4. Biological Dosimetry of In Vitro Irradiation with Radionuclides : Comparison of Whole Blood, Lymphocyte and Buffy Coat Culture

    International Nuclear Information System (INIS)

    Kim, Jong Ho; Lee, Dong Soo; Choi, Chang Woon; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Kim, Chong Soon; Kim, Hee Geun; Kang, Duck Won; Song, Myung Jae

    1995-01-01

    The purpose of this study was to establish mononuclear cell cultures such as lymphocytes or buffy coat for the biological dosimetry of in vitro irradiation of the radionuclide Tc-99m in order to exclude the effect of residual doses seen in the cultures of whole blood. Biological dosimetry of Tc-99m on cultured mononuclear cells at doses ranging from 0.05 to 6.00 Gy, by scoring unstable chromosomal aberrations(Ydr) observed in cultured lymphocytes, were performed using peripheral venous blood of healthy normal person. The results showed that; (1) In vitro irradiation of radioisotope in separated lymphocyte or buffy coat showed trace amount af residual doses of isotope after washing. Residual doses of isotopes are increased in proportion tn exposed time and irradiated dose without difference between I-131 anct Tc-99m. (2) We obtained these linear-quadratic dose response equations in lymphocyte and buffy coat culture after in vitro irradiation of Tc-99m, respectively (Ydr = 0,001949 D 2 +0,006279D+ 0.000185; Ydr= 0.002531 D 2 -0.003274 D+0.003488). In conclusion, the linear quadrstic dose response equation from in vitro irradiation of Tc-99m with lymphocyte and buffy coat culture was thought to be useful for assessing Tc-99m indueed biological effects. And mononuclear cell cultures seem to be the most appropriate experimental model for the assessment of biological dosimetry of internal irradiation of radionuclides.

  5. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  6. An integrated approach for the in vitro dosimetry of engineered nanomaterials

    Science.gov (United States)

    2014-01-01

    Background There is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of exposure time using the ISDD model. The approach is validated against experimentally measured doses, and simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20 ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area (RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time. Results The proposed methodology was used to derive the effective density, agglomerate diameter and RID functions for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured effective density was on average 60% below the material density. We report great variability in delivered dose metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology for a number of ENMs (measured delivered to cell dose within 9% of estimated). Conclusions Our findings confirm and extend experimental and computational evidence that agglomerate characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for effective use of in vitro systems

  7. Dose intercomparison studies for standardization of high-dose dosimetry in Viet Nam

    International Nuclear Information System (INIS)

    Mai Hoang Hoa; Duong Nguyen Dinh; Kojima, T.

    1999-01-01

    The Irradiation Center of the Vietnam Atomic Energy Commission (IC-VAEC) is planning to establish a traceability system for high-dose dosimetry and to provide high-dose standards as a secondary standard dosimetry laboratory (SSDL) level in Vietnam. For countries which do not have a standard dosimetry laboratory, the participation in the International Dose Assurance Service (IDAS) operated by the International Atomic Energy Agency (IAEA) is the most common means to verify own dosimetry performance with a certain uncertainty. This is, however, only one-direction dose intercomparison with evaluation by IAEA including unknown parameter at participant laboratories. The SSDL level laboratory should have traceability as well as compatibility, ability to evaluate uncertainties of its own dosimetry performance by itself In the present paper, we reviewed our dosimetry performance through two-way dose intercomparison studies and self-evaluation of uncertainty in our dosimetry procedure. The performance of silver dichromate dosimeter as reference transfer dosimeter in IC-VAEC was studied through two-way blind dose intercomparison experiments between the IC-VAEC and JAERI. As another channel of dose intercomparison with IAEA, alanine dosimeters issued by IDAS were simultaneously irradiated with the IC-VAEC dichromate dosimeters at IC-VAEC and analyzed by IAEA. Dose intercomparison between IC-VAEC and JAERI results into a good agreement (better than ±2.5%), and IDAS results also show similar agreement within ±3.0%. The uncertainty was self-estimated on the basis of the JAERI alanine dosimetry, and a preliminary value of about 1.86% at a 68% confidence level is established. The results from these intercomparisons and our estimation of the uncertainty are consistent. We hope that our experience is valuable to other countries which do not have dosimetry standard laboratories and/or are planning to establish them. (author)

  8. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    International Nuclear Information System (INIS)

    Bof, E.S.; Smolko, E.

    1999-01-01

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  9. A review of in vitro dose-effect relationships

    International Nuclear Information System (INIS)

    Dolphin, G.W.

    1978-01-01

    One of the principal reasons for investigating the relationship between absorbed dose and the number of chromosome aberrations per cell in lymphocytes taken from samples of human peripheral blood is to obtain a calibration curve for biological dosimetry. Factors affecting the radiation-induced aberration yield in vitro of T lymphocytes are reviewed under the following heads: temperature, oxygen effect, inter-mitotic death, mitotic delay, dose rate background of aberrations in normal humans, mathematical representation. (U.K.)

  10. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    Science.gov (United States)

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  11. Shared dosimetry error in epidemiological dose-response analyses

    International Nuclear Information System (INIS)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of 'possible' dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed

  12. Background dose subtraction in personnel dosimetry

    International Nuclear Information System (INIS)

    Picazo, T.; Llorca, N.; Alabau, J.

    1997-01-01

    In this paper it is proposed to consider the mode of the frequency distribution of the low dose dosemeters from each clinic that uses X rays as the background environmental dose that should be subtracted from the personnel dosimetry to evaluate the doses due to practice. The problems and advantages of this indirect method to estimate the environmental background dose are discussed. The results for 60 towns are presented. (author)

  13. Radiophotoluminescence light scope for high-dose dosimetry

    International Nuclear Information System (INIS)

    Sato, Fuminobu; Zushi, Naoki; Sakiyama, Tomoki; Kato, Yushi; Murata, Isao; Shimizu, Kikuo; Yamamoto, Takayoshi; Iida, Toshiyuki

    2015-01-01

    A radiophotoluminescence (RPL) light scope is a remote-sensing technique for measuring in situ the radiation dose in an RPL detector placed at a distance. The RPL light scope is mainly composed of an ultraviolet (UV) pulse laser, telescopic lenses, a photomultiplier tube, and camera modules. In a performance test, some RPL detectors were placed at distances up to 30 m and were illuminated with a pulsed UV laser beam. The photoluminescence responses of the RPL detectors were analyzed using this scope. Their radiation doses were determined from the amplitude of the given component of the photoluminescence responses. The RPL readout could be repeated without fading, and its amplitude exhibited good linearity at a dose ranging from 0.1 to 60 Gy. Furthermore, a two-dimensional distribution of radiation dose was obtained by laser scanning on an RPL detector. It was confirmed that the RPL light scope was a useful remote-sensing tool for high-dose dosimetry. - Highlights: • A radiophotoluminescence (RPL) light scope was developed for high-dose dosimetry. • The RPL light scope has high sensitivity and accuracy in high-dose dosimetry. • Two-dimensional radiation dose distribution was obtained by the RPL light scope.

  14. The challenge of Ciemat internal dosimetry service for accreditation according to ISO/IEC 17025 standard, for in vivo and in vitro monitoring and dose assessment of internal exposures

    International Nuclear Information System (INIS)

    Lopez, M.A.; Martin, R.; Hernandez, C.; Navarro, J.F.; Navarro, T.; Perez, B.; Sierra, I.

    2016-01-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. CIEMAT Internal Dosimetry Service (IDS) has developed and implemented a quality system based on ISO/IEC 17025 to ensure compliance with the general requirements of this reference standard. The development of documentary support according to this quality system permitted to standardise the systematic activities performed within the whole body counter and in vitro bioassay laboratories as well as the procedures carried out by qualified staff in charge of internal dose assessment. There was no previous experience in the accreditation of other internal dosimetry services in Spain. Then, requirements from the national regulatory body (Nuclear Safety Council, CSN) and national accreditation entity (ENAC) have been considered. The main concerns were to guarantee the traceability in the whole process and to avoid possible charge of interpretation or subjectivity in the methodology of dose assessment due to intakes of radionuclides when calculating from monitoring data. All the related international standards dealing with internal dosimetry were taken into account: ISO 28218 'Performance criteria for radiobioassay', ISO 27048 'Dose Assessment for the

  15. Performance of thermoluminescent materials for high dose dosimetry

    International Nuclear Information System (INIS)

    Texeira, Maria I.; Cecatti, Sonia G.P.; Caldas, Linda V.E.

    2008-01-01

    Cases involving high-doses of ionizing radiation are becoming increasingly common.The objective of this work was to characterize thermoluminescent materials for the dosimetry of workers exposed to high doses. Samples of TLD-200, TLD-400 and TLD-800 pellets from Thermo Electron Corporation were studied in gamma high-doses. Dose-response curves were obtained for doses between 100 mGy and 100 Gy. The reproducibility, the lower detection limits and dose-response curves were obtained for all three materials. The different kinds of detectors show usefulness for dosimetry of workers exposed accidentally to high doses. (author)

  16. Investigation of polymer composite for high dose dosimetry

    International Nuclear Information System (INIS)

    Pereira, E.L.M.; Batista, A.S.M.; Ribeiro, F.A.S.; Santos, A.P.; Faria, L.O.; Oliveira, A.H.

    2017-01-01

    Introduction: This paper presents the efficacy evaluation of PVDF and nanocomposites of the PVDF films for high gamma dosimetry. Our scope in this first part of our studies is the selection of the most promising film for future dosimetry trials, where the proportionality of response of the selected material will be investigated over a large range of doses and dose rates. Methods: Was prepared nanocomposites made by mixing Poly(vinylidene fluoride) (PVDF), zirconium oxide (ZrO 2 ) and multi-walled carbon nanotubes (MWCNTs) aiming to find dosimetric properties for applications in high dose dosimetry. The samples were irradiated with a Co-60 source at constant dose rate (16.7 kGy/h), with doses ranging from 100 to 2750 kGy. The UV-Vis and FTIR spectrophotometry have been used to monitor the appearing of C=C conjugated bonds and radio-oxidation of carbon (C=O). Results: FTIR spectrometry has that the absorbance intensities at 1715 cm -1 and 1730 cm -1 can be used for high dosimetry purposes for gamma doses ranging from 400 to 2750 kGy. In this range, it is possible to observe a linear relationship between Abs & Dose. Fading of signal was evaluated for one month and reproducibility in 2000 kGy dose. Conclusion: FTIR spectroscopic data revealed two optical absorption bands at 1715 cm -1 and 1730 cm -1 whose intensities are unambiguously related to gamma delivered dose ranging from 400 kGy to 2750 kGy. (author)

  17. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  18. High-dose dosimetry using natural silicate minerals

    International Nuclear Information System (INIS)

    Carmo, Lucas S. do; Mendes, Leticia; Watanabe, Shigueo; Rao, Gundu; Lucas, Natasha; Sato, Karina; Barbosa, Renata F.

    2015-01-01

    In the present study, certain natural silicate minerals such as aquamarine (AB), morganite (PB), goshenite (WB), white jadeite (JW), green jadeite (JG), pink tourmaline (PT) and two varieties of jadeite-like quartz, denoted here by JQ1 and JQ2, were investigated using the thermoluminescence technique to evaluate their potential for use as very-high- and high-dose dosimeters. These minerals respond to high doses of γ-rays of up to 1000 kGy and often to very high doses of up to 3000 kGy. The TL response of these minerals may be considered to be satisfactory for applications in high-dose dosimetry. Investigations of electron paramagnetic resonance and optically stimulated luminescence dosimetry are in progress. (author)

  19. High-dose dosimetry using natural silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Lucas S. do; Mendes, Leticia, E-mail: isatiro@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Watanabe, Shigueo; Rao, Gundu; Lucas, Natasha; Sato, Karina, E-mail: lacifid@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica. Departamento de Fisica Nuclear; Barbosa, Renata F., E-mail: profcelta@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), Santos, SP (Brazil). Departamento de Ciencias do Mar

    2015-07-01

    In the present study, certain natural silicate minerals such as aquamarine (AB), morganite (PB), goshenite (WB), white jadeite (JW), green jadeite (JG), pink tourmaline (PT) and two varieties of jadeite-like quartz, denoted here by JQ1 and JQ2, were investigated using the thermoluminescence technique to evaluate their potential for use as very-high- and high-dose dosimeters. These minerals respond to high doses of γ-rays of up to 1000 kGy and often to very high doses of up to 3000 kGy. The TL response of these minerals may be considered to be satisfactory for applications in high-dose dosimetry. Investigations of electron paramagnetic resonance and optically stimulated luminescence dosimetry are in progress. (author)

  20. Investigation of polymer composite for high dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, E.L.M.; Batista, A.S.M., E-mail: adriananuclear@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Ribeiro, F.A.S.; Santos, A.P.; Faria, L.O.; Oliveira, A.H. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Introduction: This paper presents the efficacy evaluation of PVDF and nanocomposites of the PVDF films for high gamma dosimetry. Our scope in this first part of our studies is the selection of the most promising film for future dosimetry trials, where the proportionality of response of the selected material will be investigated over a large range of doses and dose rates. Methods: Was prepared nanocomposites made by mixing Poly(vinylidene fluoride) (PVDF), zirconium oxide (ZrO{sub 2}) and multi-walled carbon nanotubes (MWCNTs) aiming to find dosimetric properties for applications in high dose dosimetry. The samples were irradiated with a Co-60 source at constant dose rate (16.7 kGy/h), with doses ranging from 100 to 2750 kGy. The UV-Vis and FTIR spectrophotometry have been used to monitor the appearing of C=C conjugated bonds and radio-oxidation of carbon (C=O). Results: FTIR spectrometry has that the absorbance intensities at 1715 cm{sup -1} and 1730 cm{sup -1} can be used for high dosimetry purposes for gamma doses ranging from 400 to 2750 kGy. In this range, it is possible to observe a linear relationship between Abs & Dose. Fading of signal was evaluated for one month and reproducibility in 2000 kGy dose. Conclusion: FTIR spectroscopic data revealed two optical absorption bands at 1715 cm{sup -1} and 1730 cm{sup -1} whose intensities are unambiguously related to gamma delivered dose ranging from 400 kGy to 2750 kGy. (author)

  1. In vivo dosimetry: measurement of entrance and exit dose using MOSFET dosimeter

    International Nuclear Information System (INIS)

    Gopiraj, A.; Billimagga, Ramesh S.; Rekha, M.; Ramasubramaniam, V.

    2007-01-01

    Patient dose verification is an essential part of a Quality Assurance (QA) program in a Radiotherapy Department. As the transition is made from the conventional two-dimensional (2D) to three-dimensional (3D) conformal and intensity modulated therapy, it is recommended that new treatment techniques be checked systematically to guarantee accurate dose delivery by means of a comprehensive in vivo dosimetry program (i.e. real-time dosimetry during patient treatment). The authors conducted a study to assess the clinical utility of in vivo dosimetry in the Dept. of Radiation Oncology using MOSFET dosimetry system

  2. Dose Estimation from Daily and Weekly Dosimetry Data

    International Nuclear Information System (INIS)

    Ostrouchov, G.

    2001-01-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the amount of bias also varies

  3. Dose Estimation from Daily and Weekly Dosimetry Data

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, G.

    2001-11-16

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the

  4. Gamma dosimetry of high doses

    International Nuclear Information System (INIS)

    Martinez C, T.; Galvan G, A.; Canizal, G.

    1991-01-01

    The gamma dosimetry of high doses is problematic in almost all the classic dosemeters either based on the thermoluminescence, electric, chemical properties, etc., because they are saturated to very high dose and they are no longer useful. This work carries out an investigation in the interval of high doses. The solid system of heptahydrate ferrous sulfate, can be used as solid dosemeter of routine for high doses of radiation. The proposed method is simple, cheap and it doesn't require sophisticated spectrophotometers or spectrometers but expensive and not common in some laboratories

  5. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  6. Application of RADPOS in Vivo Dosimetry for QA of High Dose Rate Brachytherapy

    DEFF Research Database (Denmark)

    Cherpak, A.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Cygler, J.

    2012-01-01

    cancer, where high dose gradients and movement of the prostate gland can present unique in vivo dosimetry challenges. Financial and technical support has been received from Best Medical Canada and Ascension Technology Corporation. © 2012 American Association of Physicists in Medicine......Purpose: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing for simultaneous online measurements of dose and spatial position. In this work, we assess the potential use of RADPOS for measurements of motion and dose during prostate HDR...

  7. Comparison of traditional low-dose-rate to optimized and nonoptimized high-dose-rate tandem and ovoid dosimetry

    International Nuclear Information System (INIS)

    Decker, William E.; Erickson, Beth; Albano, Katherine; Gillin, Michael

    2001-01-01

    Purpose: Few dose specification guidelines exist when attempting to perform high-dose-rate (HDR) dosimetry. The purpose of this study was to model low-dose-rate (LDR) dosimetry, using parameters common in HDR dosimetry, to achieve the 'pear-shape' dose distribution achieved with LDR tandem and ovoid applications. Methods and Materials: Radiographs of Fletcher-Suit LDR applicators and Nucletron 'Fletcher-like' HDR applicators were taken with the applicators in an idealized geometry. Traditional Fletcher loadings of 3M Cs-137 sources and the Theratronics Planning System were used for LDR dosimetry. HDR dosimetry was performed using the Nucletron Microselectron HDR UPS V11.22 with an Ir-192 source. Dose optimization points were initially located along a line 2 cm lateral to the tandem, beginning at the tandem tip at 0.5-cm intervals, ending at the sail, and optimized to 100% of the point A dose. A single dose optimization point was also placed laterally from the center of each ovoid equal to the radius of the ovoid (ovoid surface dose). For purposes of comparison, dose was also calculated for points A and B, and a point located 1 cm superior to the tandem tip in the plane of the tandem, (point F). Four- and 6-cm tandem lengths and 2.0-, 2.5-, and 3.0-cm ovoid diameters were used for this study. Based on initial findings, dose optimization schemes were developed to best approximate LDR dosimetry. Finally, radiographs were obtained of HDR applications in two patients. These radiographs were used to compare the optimization schemes with 'nonoptimized' treatment plans. Results: Calculated doses for points A and B were similar for LDR, optimized HDR, and nonoptimized HDR. The optimization scheme that used tapered dose points at the tandem tip and optimized a single ovoid surface point on each ovoid to 170% of point A resulted in a good approximation of LDR dosimetry. Nonoptimized HDR resulted in higher doses at point F, the bladder, and at points lateral to the tandem tip

  8. High doses dosimetry in irradiation process in Argentine

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.

    1997-01-01

    These report describes the lung dose dosimetry procedures of the Semi-Industrial Irradiation Plant in Ezeisa Atomic (500,00 Ci of Co 60) and Industrial Picorrad Plant (400,00 Ci of Co 60) using the nitrate dosimeter

  9. Lyoluminescence dosimetry of the radiation in industrial doses

    International Nuclear Information System (INIS)

    Vigna Filho, E. del.

    1984-01-01

    The γ-rays lyoluminescence (LL) dosimetry study is presented. The basic principles involved, both in the method and radiation dosimetry, the equivalence between water and lyoluminescent materials, apparatus, irradiation technique and calibration method are discussed. The LL response dependence with environmental conditions are presented. These were temperature, humidity, storage time and the dependence on dissolved mass. A pre-reading thermal treatment was developed to overcome previous difficulties. The developed technique was applied to dose intercomparisons. (M.A.C.) [pt

  10. Biological dosimetry in radiological protection: dose response curves elaboration for 60Co and 137Cs

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da

    1997-01-01

    Ionizing radiation sources for pacific uses are being extensively utilized by modern society and the applications of these sources have raised the probability of the occurrence of accidents. The accidental exposition to radiation creates a necessity of the development of methods to evaluate dose quantity. This data could be obtained by the measurement of damage caused by radiation in the exposed person. The radiation dose can be estimated in exposed persons through physical methods (physical dosimetry) but the biological methods can't be dispensed, and among them, the cytogenetic one that makes use of chromosome aberrations (dicentric and centric ring) formed in peripheral blood lymphocytes (PBL) exposed to ionizing radiation. This method correlates the frequency of radioinduced aberrations with the estimated absorbed dose, as in vitro as in vivo, which is called cytogenetic dosimetry. By the introduction of improved new techniques in culture, in the interpretation of aberrations in the different analysers of slides and by the adoption of different statistical programs to analyse the data, significant differences are observed among laboratories in dose-response curves (calibration curves). The estimation of absorbed dose utilizing other laboratory calibration curves may introduce some uncertainties, so the International Atomic Energy Agency (IAEA) advises that each laboratory elaborates your own dose-response curve for cytogenetic dosimetry. The results were obtained from peripheral blood lymphocytes of the healthy and no-smoking donors exposed to 60 Co and 137 Cs radiation, with dose rate of 5 cGy.min. -1 . Six points of dose were determined 20,50,100,200,300,400 cGy and the control not irradiated. The analysed aberrations were of chromosomic type, dicentric and centric ring. The dose response curve for dicentrics were obtained by frequencies weighted in liner-quadratic mathematic model and the equation resulted were for 60 Co: Y = (3 46 +- 2.14)10 -4 cGy -1 + (3

  11. In vivo dosimetry with semiconductors in medium dose rate (MDR) brachytherapy for cervical cancer.

    Science.gov (United States)

    Allahverdi, Mahmoud; Jaberi, Ramin; Aghili, Mehdi; Ghahremani, Fatemeh; Geraily, Ghazale

    2013-03-01

    This study was performed to evaluate the role of in vivo dosimetry with semiconductor detectors in gynaecological medium dose rate brachytherapy, and to compare the actual doses delivered to organs at risk (as measured using in vivo dosimetry) with those calculated during treatment planning. Doses to the rectum and bladder were measured in a group of patients with cervical carcinoma using semiconductor detectors and compared to the doses calculated using a treatment planning system. 36 applications of brachytherapy at dose rates of 1.8-2.3 Gy/h were performed in the patients. The mean differences between the measured and calculated doses were 3 % for the rectum and 11 % for the bladder. The main reason for the differences between the measured and calculated doses was patient movement. To reduce the risk of large errors in the dose delivered, in vivo dosimetry should be performed in addition to treatment planning system computations.

  12. Progress in high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.; Chadwick, K.H.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expanded applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Reference systems also include a number of chemical dose meters: ferrous sulphate, ferrous-cupric sulphate, and ceric sulphate acidic aqueous solutions. Requirements for stable and reliable transfer dose meters have led to further developments of several important high-dose systems: amino acids and saccharides analysed by ESR or lyoluminescence, thermoluminescent materials, radiochromic dyes and plastics, ceric-cerous solutions analysed by potentiometry, and ethanol-chlorobenzene solutions analysed by high-frequency oscillometry. A number of other prospective dose meters are also treated in this review. In addition, an IAEA programme of high-dose standardization and intercomparison for industrial radiation processing is described. (author)

  13. Cytogenetic biological dosimetry. Dose estimative in accidental exposure

    International Nuclear Information System (INIS)

    Santos, O.R. dos; Campos, I.M.A. de.

    1988-01-01

    The methodology of cytogenetic biological dosimetry is studied. The application in estimation of dose in five cases of accidental exposure is reported. An hematological study and culture of lymphocytes is presented. (M.A.C.) [pt

  14. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  15. Effective dose to staff from interventional procedures: Estimations from single and double dosimetry

    International Nuclear Information System (INIS)

    Kuipers, G.; Velders, X. L.

    2009-01-01

    The exposure of 11 physicians performing interventional procedures was measured by means of two personal dosemeters. One personal dosemeter was worn outside the lead apron and an additional under the lead apron. The study was set up in order to determine the added value of a dosemeter worn under the lead apron. With the doses measured, the effective doses of the physicians were estimated using an algorithm for single dosimetry and two algorithms for double dosimetry. The effective doses calculated with the single dosimetry algorithm ranged from 0.11 to 0.85 mSv in 4 weeks. With the double dosimetry algorithms, the effective doses ranged from 0.02 mSv to 0.47 mSv. The statistical analysis revealed no significant differences in the accuracy of the effective doses calculated with single or double dosimetry algorithms. It was concluded that the effective dose cannot be considered a more accurate estimate when two dosemeters are used instead of one. (authors)

  16. PTTL Dose Re-estimation Applied to Quality Control in TLD-100 Based Personal Dosimetry

    International Nuclear Information System (INIS)

    Muniz, J.L.; Correcher, V.; Delgado, A.

    1999-01-01

    A new method for quality control of dose performance in Personal Dosimetry using TLD-100 is presented. This method consists of the application of dose reassessment techniques based on phototransferred thermoluminescence (PTTL). Reassessment is achieved through a second TL readout of the dosemeters worn by the controlled workers, after a reproducible UV exposure. Recent refinements in the PTTL technique developed in our laboratory allow reassessing doses as low as 0.2 mSv, thus extending the reassessment capability to the entire dose range that must be monitored in personal dosimetry. After a one month exposure, even purely environmental doses can be reassessed. This method can be applied for either re-estimation of single doses or of the total dose accumulated after a number of exposures and dose measurements. Several tests to reconfirm low doses in normal working conditions for personal dosimetry have been performed. Each test consisted of several cycles of exposure and TL evaluations and a final PTTL re-estimation of the total accumulated dose in those cycles. The results obtained always showed very good agreement between the sum of the partial doses and the total reassessed dose. The simplicity of the method and the possibility of re-evaluating the doses assessed to the workers employing their own dosemeters are advantageous features to be considered in designing systems for the determination of real performance in personal dosimetry. (author)

  17. The use of polymer gel dosimetry to measure dose distribution around metallic implants

    International Nuclear Information System (INIS)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-01-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances. (author)

  18. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    Science.gov (United States)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  19. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  20. Conversion from tooth enamel dose to organ doses for electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Yamaguchi, Yasuhiro; Saito, Kimiaki; Hamada, Tatsuji

    2002-01-01

    Conversion from tooth enamel dose to organ doses was analyzed to establish a method of retrospective individual dose assessment against external photon exposure by electron spin resonance (ESR) dosimetry. Dose to tooth enamel was obtained by Monte Carlo calculations using a modified MIRD-type phantom with a teeth part. The calculated tooth enamel doses were verified by measurements with thermo-luminescence dosimeters inserted in a physical head phantom. Energy and angular dependences of tooth enamel dose were compared with those of other organ doses. Additional Monte Carlo calculations were performed to study the effect of human model on the tooth enamel dose with a voxel-type phantom, which was based on computed tomography images of the physical phantom. The data derived with the modified MIRD-type phantom were applied to convert from tooth enamel dose to organ doses against external photon exposure in a hypothesized field, where scattered radiation was taken into account. The results indicated that energy distribution of photons incident to a human body is required to evaluate precisely an individual dose based on ESR dosimetry for teeth. (author)

  1. Techniques for high dose dosimetry in industry, agriculture and medicine. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In radiation processing, it is important that the irradiated products are reliable and safe. For processes that impact directly on public health, dosimetry provides a formal means of regulation. For other applications, measurements are indispensable for process control to improve quality and the measurements have to be standardized. Thus, dosimetry is an essential part of quality standards for radiation processes. In the developing world, establishment of such quality standards is only in the embryonic stage, and the IAEA should and does play a role in the development and implementation of these standards. The IAEA initiated a programme of high dose dosimetry in 1977 to accomplish dose standardization on an industrial scale, to promote dosimetry as a quality control measure in radiation processing, and to help develop new dosimetry techniques. Since dosimetry has such a key role in these processes, the IAEA organized this international symposium to provide a forum for presentation and discussion of up-to-date developments in this field. Since the International Symposium on High Dose Dosimetry for Radiation Processing held in 1990 the field of dosimetry has deepened and broadened. There is a definite shift towards quality assurance, which calls for dependable dosimetry systems with well established traceability to national or international standards. Also, many new applications of radiation have been developed and for these new and innovative dosimetry methods are needed. This symposium has provided a forum for the discussion of many of these developments and consideration of the outstanding issues in these vital areas Refs, figs, tabs

  2. Techniques for high dose dosimetry in industry, agriculture and medicine. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1999-03-01

    In radiation processing, it is important that the irradiated products are reliable and safe. For processes that impact directly on public health, dosimetry provides a formal means of regulation. For other applications, measurements are indispensable for process control to improve quality and the measurements have to be standardized. Thus, dosimetry is an essential part of quality standards for radiation processes. In the developing world, establishment of such quality standards is only in the embryonic stage, and the IAEA should and does play a role in the development and implementation of these standards. The IAEA initiated a programme of high dose dosimetry in 1977 to accomplish dose standardization on an industrial scale, to promote dosimetry as a quality control measure in radiation processing, and to help develop new dosimetry techniques. Since dosimetry has such a key role in these processes, the IAEA organized this international symposium to provide a forum for presentation and discussion of up-to-date developments in this field. Since the International Symposium on High Dose Dosimetry for Radiation Processing held in 1990 the field of dosimetry has deepened and broadened. There is a definite shift towards quality assurance, which calls for dependable dosimetry systems with well established traceability to national or international standards. Also, many new applications of radiation have been developed and for these new and innovative dosimetry methods are needed. This symposium has provided a forum for the discussion of many of these developments and consideration of the outstanding issues in these vital areas

  3. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  4. The spatial resolution in dosimetry with normoxic polymer-gels investigated with the dose modulation transfer approach

    International Nuclear Information System (INIS)

    Bayreder, Christian; Schoen, Robert; Wieland, M.; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2008-01-01

    The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94x94x1000 μm 3 ) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 μm. Very fine periodic dose modulations of a 60 Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems

  5. Revue of some dosimetry and dose assessment European projects

    International Nuclear Information System (INIS)

    Bolognese-Milsztajn, T.; Frank, D.; Lacoste, V.; Pihet, P.

    2006-01-01

    Full text of publication follows: Within the 5. Framework Programme of the European Commission several project dealing with dosimetry and dose assessment for internal and external exposure have been supported. A revue of the results of some of them is presented in this paper. The EURADOS network which involved 50 dosimetry institutes in EUROPE has coordinated the project DOSIMETRY NETWORK: the main results achieved within this action are the following: - The release on the World Wide Web of the EURADOS Database of Dosimetry Research Facilities; - The realisation of the report 'Harmonization of Individual Monitoring (IM) in Europe'; - The continuation of the intercomparisons programme of environmental radiation monitoring systems; - The realisation of the report Cosmic radiation exposure of aircraft crew. The EVIDOS project aimed at evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This paper summarises the main findings from a practical point of view. Conclusions and recommendations will be given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosimeters results. The IDEA project aimed to improve the assessment of incorporated radionuclides through developments of advanced in-vivo and bioassay monitoring techniques and making use of such enhancements for improvements in routine monitoring. The primary goal was to categorize those new developments regarding their potential and eligibility for the routine monitoring community. The costs of monitoring for internal exposures in the workplace are usually significantly greater than the equivalent costs for external exposures. There is therefore a need to ensure that resources are employed with maximum effectiveness. The EC-funded OMINEX (Optimisation of Monitoring for Internal Exposure) project has developed methods for optimising the design and implementation of

  6. Measurement of absorbed doses near interfaces, and dose mapping using gas chromic dosimetry media. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, F; Said, F I.A.; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Atomic Energy Athority, P.O.Box 29 Nasr City, Cairo (Egypt)

    1996-03-01

    Gas chromic dosimetry media is a thin-coated film which has advantages for high-dose radiation dosimetry, and produces high-resolution radiation image for gamma radiation. Therefore, these films were calibrated for the dose range 0.1-50 kGy in terms of increase in absorbance at 600 nm, 400 nm; increase in the area of the absorption spectra in the ranges 395-405 nm and 320-450 nm wave length as a function of absorbed dose in water. The calibrated films were used for measurement of absorbed doses close to metal interface, and dose mapping of the radiation field inside product box during a run for sterilizing surgical gloves at the mega-gamma irradiation facility.7 figs.

  7. Clinical dosimetry with plastic scintillators - Almost energy independent, direct absorbed dose reading with high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Quast, U; Fluehs, D [Department of Radiotherapy, Essen (Germany). Div. of Clinical Radiation Physics; Fluehs, D; Kolanoski, H [Dortmund Univ. (Germany). Inst. fuer Physik

    1996-08-01

    Clinical dosimetry is still far behind the goal to measure any spatial or temporal distribution of absorbed dose fast and precise without disturbing the physical situation by the dosimetry procedure. NE 102A plastic scintillators overcome this border. These tissue substituting dosemeter probes open a wide range of new clinical applications of dosimetry. This versatile new dosimetry system enables fast measurement of the absorbed dose to water in water also in regions with a steep dose gradient, close to interfaces, or in partly shielded regions. It allows direct reading dosimetry in the energy range of all clinically used external photon and electron beams, or around all branchytherapy sources. Thin detector arrays permit fast and high resolution measurements in quality assurance, such as in-vivo dosimetry or even afterloading dose monitoring. A main field of application is the dosimetric treatment planning, the individual optimization of brachytherapy applicators. Thus, plastic scintillator dosemeters cover optimally all difficult fields of clinical dosimetry. An overview about its characteristics and applications is given here. 20 refs, 1 fig.

  8. Dimethyl sulfoxyde diethyl fumarate solution for high dose dosimetry

    International Nuclear Information System (INIS)

    Al-Kassiri, H.; Kattan, M.; Daher, Y.

    2007-06-01

    Dosimetric characterization of diethyl fumarate DEF in dimethyl sulfoxyde DMSO solution has been studied spectrophotometrically for possible application at high dose radiation dosimetry in the range (0-225 kGy). The absorption spectra of irradiated solution showed broad absorption bands between (325-400 nm) with a shoulder at 332 nm. The absorption increases as the dose is increased. Absorbance at 332 nm were measured and plotted against absorbed dose. Linear relationship and good response were found between absorbed dose and absorbance of 20% DEF concentration in the range (0-225 kGy) at the wave length, and linearity up to 250 kGy of absorbance at 332 nm .Good dose rate independence was observed in the range (14-33 kGy/h). The effect of post irradiation storage in darkness and indirect daylight conditions were not found to influence the absorption up to 700 h after irradiation. The effect of irradiation temperature within the range (0 to 60 centigrade degree) on the dosimetry performance was discussed.(author)

  9. High dose per fraction dosimetry of small fields with Gafchromic EBT2 film

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Basavatia, Amar; Bayliss, Adam; Tome, Wolfgang A.

    2011-01-01

    Purpose: Small field dosimetry is prone to uncertainties due to the lack of electronic equilibrium and the use of the correct detector size relative to the field size measured. It also exhibits higher sensitivity to setup errors as well as large variation in output with field size and shape. Radiochromic film is an attractive method for reference dosimetry in small fields due to its ability to provide 2D dose measurements while having minimal impact on the dose distribution. Gafchromic EBT2 has a dose range of up to 40 Gy; therefore, it could potentially be useful for high dose reference dosimetry with high spatial resolution. This is a requirement in stereotactic radiosurgery deliveries, which deliver high doses per fraction to small targets. Methods: Targets of 4 mm and 12 mm diameters were treated to a minimum peripheral dose of 21 Gy prescribed to 80% of the maximum dose in one fraction. Target doses were measured with EBT2 film (both targets) and an ion chamber (12 mm target only). Measured doses were compared with planned dose distributions using profiles through the target and minimum peripheral dose coverage. Results: The measured target doses and isodose coverage agreed with the planned dose within ±1 standard deviation of three measurements, which were 2.13% and 2.5% for the 4 mm and 12 mm targets, respectively. Conclusions: EBT2 film is a feasible dosimeter for high dose per fraction reference 2D dosimetry.

  10. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  11. Dose measurements in dental radiology using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Chiara, Ana Claudia M. de; Costa, Alessandro M.; Pardini, Luiz Carlos

    2009-01-01

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm 2 , 101.5 +- 9.5 mGy.cm 2 and 116.8 +- 10.4 mGy.cm 2 . The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  12. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  13. Developments in physical dosimetry and radiation protection; Entwicklungen in der physikalischen Dosimetrie im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Fiebich, Martin [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-07-01

    In the frame of physical dosimetry new dose units have been defined: the depth personal dose (equivalent dose in 10 mm depth) and the surface personal dose (equivalent dose in 0.07 mm depth). Physical dosimetry is applied for the determination of occupational radiation exposure, the radiation protected area control, the estimation of radiation exposure of patients during radiotherapy, for quality assurance and in research projects and optimization challenges. Developments have appeared with respect to punctual measuring chambers, eye lens dosimetry, OSL (optically stimulated luminescence) dosimetry, real-time dosimetry and Monte Carlo methods. New detection limits of about 1 micro Gy were reached.

  14. Thermoluminescent dosimetry and assessment of personal dose

    International Nuclear Information System (INIS)

    Boas, J.F.; Martin, L.J.; Young, J.G.

    1982-01-01

    Thermoluminescence is discussed in terms of the energy band structure of a crystalline solid and the trapping of charge carriers by point defects. Some general properties of thermoluminescent materials used for dosimetry are outlined, with thermoluminescence of CaSO 4 :Dy being described in detail. The energy response function and the modification of the energy response of a dosimeter by shielding are discussed. The final section covers the connection between exposure, as recorded by a TLD badge, and the absorbed dose to various organs from gamma radiation in a uranium mine; the conversion from absorbed dose to dose equivalent; and uncertainties in assessment of dose equivalent

  15. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  16. In Vitro Dosimetry of Silver Nanoparticles

    Science.gov (United States)

    An important issue for interpreting in vitro nanomaterial testing is quantifying the dose absorbed by target cells. Considerations include the concentration added to the culture and the proportion of the applied dose that is absorbed by the target cells. Rapid and efficient techn...

  17. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  18. Alanine-EPR dosimetry system for high industrial as well radiotherapeutic dose measurement

    International Nuclear Information System (INIS)

    Dobrovodsky, J.; Bukovjan, J.

    2005-01-01

    Slovak Institute of Metrology is developing new metrology standard for high doses, based on the alanine-EPR as a reference dosimetry system. A Bruker e-scan EPR analyser developed specifically for alanine dosimetry has improved stability of EPR measurement, especially at lower dose range. The standard e-scan system provides sensitivity below 1 Gray. After further improvement of the system and lowering of dose determination expanded uncertainty down below 1 %, its utilisation for radiotherapy field is expected (authors)

  19. Conventional and CT angiography in children: dosimetry and dose comparisons

    International Nuclear Information System (INIS)

    Frush, Donald P.; Yoshizumi, Terry

    2006-01-01

    Tremendous advances have been made in imaging in children with both congenital and acquired heart disease. These include technical advances in cardiac catheterization and conventional angiography, especially with advancements in interventional procedures, as well as noninvasive imaging with MR and CT angiography. With rapid advances in multidetector CT (MDCT) technology, most recently 64-detector array systems (64-slice MDCT), have come a number of advantages over MR. However, both conventional and CT angiography impart radiation dose to children. Although the presence of radiation exposure to children has long been recognized, it is apparent that our ability to assess this dose, particularly in light of the rapid advancements, has been limited. Traditional methods of dosimetry for both conventional and CT angiography are somewhat cumbersome or involve a potential for substantial uncertainty. Recent developments in dosimetry, including metal oxide semiconductor field effect transistors (MOSFET) and the availability of anthropomorphic, tissue-equivalent phantoms have provided new opportunities for dosimetric assessments. Recent work with this technology in state-of-the-art cardiac angiography suites as well as with MDCT have offered direct comparisons of doses in infants and children undergoing diagnostic cardiac evaluation. It is with these dose data that assessment of risks, and ultimately the assessment of risk-benefit, can be better achieved. (orig.)

  20. Dosimetry investigation of MOSFET for clinical IMRT dose verification.

    Science.gov (United States)

    Deshpande, Sudesh; Kumar, Rajesh; Ghadi, Yogesh; Neharu, R M; Kannan, V

    2013-06-01

    In IMRT, patient-specific dose verification is followed regularly at each centre. Simple and efficient dosimetry techniques play a very important role in routine clinical dosimetry QA. The MOSFET dosimeter offers several advantages over the conventional dosimeters such as its small detector size, immediate readout, immediate reuse, multiple point dose measurements. To use the MOSFET as routine clinical dosimetry system for pre-treatment dose verification in IMRT, a comprehensive set of experiments has been conducted, to investigate its linearity, reproducibility, dose rate effect and angular dependence for 6 MV x-ray beam. The MOSFETs shows a linear response with linearity coefficient of 0.992 for a dose range of 35 cGy to 427 cGy. The reproducibility of the MOSFET was measured by irradiating the MOSFET for ten consecutive irradiations in the dose range of 35 cGy to 427 cGy. The measured reproducibility of MOSFET was found to be within 4% up to 70 cGy and within 1.4% above 70 cGy. The dose rate effect on the MOSFET was investigated in the dose rate range 100 MU/min to 600 MU/min. The response of the MOSFET varies from -1.7% to 2.1%. The angular responses of the MOSFETs were measured at 10 degrees intervals from 90 to 270 degrees in an anticlockwise direction and normalized at gantry angle zero and it was found to be in the range of 0.98 ± 0.014 to 1.01 ± 0.014. The MOSFETs were calibrated in a phantom which was later used for IMRT verification. The measured calibration coefficients were found to be 1 mV/cGy and 2.995 mV/cGy in standard and high sensitivity mode respectively. The MOSFETs were used for pre-treatment dose verification in IMRT. Nine dosimeters were used for each patient to measure the dose in different plane. The average variation between calculated and measured dose at any location was within 3%. Dose verification using MOSFET and IMRT phantom was found to quick and efficient and well suited for a busy radiotherapy

  1. Dose survival of G0 lymphocytes irradiated in vitro: A test for a possible population bias in the cohort of atomic-bomb survivors exposed to high doses

    International Nuclear Information System (INIS)

    Nakamura, Nori; Sposto, R.; Akiyama, Mitoshi.

    1993-04-01

    An in-vitro colony assay was employed for X-ray dose-survival studies of peripheral-blood lymphocytes from 117 Adult Health Study participants with Dosimetry System 1986 doses 10 values (the X-ray dose required to kill 90% of cells) for these two groups were 3.40 Gy (7.5%) and 3.34 Gy (7.8%), respectively. No statistically significant differences in their distributions were detected. In addition, neither sex nor age affected the in-vitro radiosensitivity of lymphocytes for either group or for all subjects combined. Therefore it was concluded that, as far as the G 0 -lymphocyte colony assay is concerned, there is no evidence for preferential loss of individuals with higher cellular radiosensitivity among the high-dose atomic bomb survivors. However, it should be noted that the interindividual variations in cellular radiosensitivity were not large compared with the experimental variations. Consequently, the above-mentioned results should be considered due to the small heterogeneity of lymphocyte radiosensitivity among the survivors. (J.P.N.)

  2. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    Science.gov (United States)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  3. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro

    Science.gov (United States)

    Sharma, Gaurav; Kodali, Vamsi; Gaffrey, Matthew; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2014-01-01

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm–1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  4. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  5. Study of a new glass matrix by thermoluminescent technique for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pamela Z.; Carvalho, Gabriel S. Marchiori de; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica; Linda, V.E. Caldas [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carrera, Betzabel N.S.; Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-07-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.30BaO.40B{sub 2}O{sub 3} (mol%), irradiated with different doses in a {sup 60}Co source. The glow curves and the dose-response curve were obtained for radiation doses of 10, 50, 100, 200 e 700 Gy. The results showed that this new glass matrix has potential use in high-dose dosimetry. (author)

  6. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride......, the dyed polychlorostyrenes show essentially the same response to radiation-processing gamma-ray fields and to very high-intensity electron beams, and a relatively stable absorption spectrum at wavelengths for dosimetry analysis in the visible spectral region of ≈430 nm....

  7. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  8. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  9. Polybutadiene and Styrene-Butadiene rubbers for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucas N. [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Goiania, Goiania -GO (Brazil); Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil); Vieira, Silvio L. [Instituto de Fisica, Universidade Federal de Goias-UFG, Campus Samambaia, Goiania-GO (Brazil); Schimidt, Fernando [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Inhumas, Inhumas-GO (Brazil); Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil)

    2015-07-01

    Polybutadiene and Styrene-Butadiene are synthetical rubbers used widely for pneumatic tires manufacturing. In this research, the dosimeter characteristics of those rubbers were studied for application in high-dose dosimetry. The rubber samples were irradiated with doses of 10 Gy up to 10 kGy, using a {sup 60}Co Gamma Cell-220 system (dose rate of 1.089 kGy/h) and their readings were taken on a Fourier Transform Infrared Spectroscopy-FTIR system (model Frontier/Perkin Elmer). The ratios of two absorbance peaks were taken for each kind of rubber spectrum, Polybutadiene (1306/1130 cm{sup -1}) and Styrene-Butadiene (1449/1306 cm{sup -1}). The ratio calculated was used as the response to the irradiation, and is not uniform across the sample. From the results, it can be concluded for both rubbers: a) the dose-response curves may be useful for high-dose dosimetry (greater than 250 Gy); b) their response for reproducibility presented standard deviations lower than 2.5%; c) the relative sensitivity was higher for Styrene-Butadiene (1.86 kGy{sup -1}) than for Polybutadiene (1.81 kGy{sup -1}), d) for doses of 10 kGy to 200 kGy, there was no variation in the dosimetric response. Both types of rubber samples showed usefulness as high-dose dosimeters. (authors)

  10. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  11. Thermoluminescence kinetics in materials exposed to the low doses applicable to dating and dosimetry

    International Nuclear Information System (INIS)

    Levy, P.W.

    1984-11-01

    Thermoluminescence (TL) kinetics have been investigated for low dose situations applicable to dating, dosimetry, and recent geological deposits. Studied were the general one-trap kinetic equation, which reduces to the well known 1st and 2nd order kinetic equations when various assumptions apply, and the interactive kinetic equations, which describes TL in materials exhibiting more than one glow peak. In materials with one glow peak area varies linearly with dose; however, peak height is not linear with dose unless the TL obeys 1st order kinetics at all doses. In materials with two or more glow peaks neither peak height nor peak area varies linearly with dose, except in special situations. In fact, many peak height vs dose curves will be supralinear with the initial low-slope region occurring at relatively low doses. These considerations indicate: (1) Dating and dosimetry technique based on assumed linear peak height vs dose curves will usually underestimate the accumulated dose. (2) Dating techniques can be improved and/or made more reliable by determining the TL kinetics of the glow peaks measured

  12. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  13. Transmission dose estimation algorithm for in vivo dosimetry

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ±0.5%. For elongated radiation field, the errors were limited to ±1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings

  14. Transmission dose estimation algorithm for in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geun; Shin, Kyo Chul [Dankook Univ., Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., Seoul (Korea, Republic of); Lee, Hyoung Koo [Catholic Univ., Seoul (Korea, Republic of)

    2002-07-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within {+-}0.5%. For elongated radiation field, the errors were limited to {+-}1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

  15. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.; Perez, H.E.B.

    1996-01-01

    The personal dosemeter system of IPEN is based on film dosimetry. Personal doses at IPEN are mainly due to X or gamma radiation. The use of personal photographic dosemeters involves two steps: firstly, data acquisition including their evaluation with respect to the calibration quantity and secondly, the interpretation of the data in terms of effective dose. The effective dose was calculated using artificial intelligence techniques by means of neural network. The learning of the neural network was performed by taking the readings of optical density as a function of incident energy and exposure from the calibration curve. The obtained output in the daily grind is the mean effective energy and the effective dose. (author)

  16. Dose evaluation of three-dimensional small animal phantom with film dosimetry

    International Nuclear Information System (INIS)

    Han, Su Chul; Park, Seung Woo

    2017-01-01

    The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom

  17. Dose evaluation of three-dimensional small animal phantom with film dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Chul [Div. of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Seung Woo [Radilogcial and Medico-Oncological Sciences, University of Sciences and Technology, Daejeon (Korea, Republic of)

    2017-03-15

    The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom.

  18. Optimal registration conditions for tooth EPR dosimetry at low accumulated dose

    International Nuclear Information System (INIS)

    Galtsev, V.E.; Galtseva, E.V.; Lebedev, Y.S.

    1997-01-01

    The spectrum registration under rapid passage conditions (the second harmonic phase quadrature of the absorption signal) allows one to enhance substantially the sensitivity of tooth enamel and bone EPR dosimetry at a low accumulated dose. In the present work the dependencies of the radiation and background signals on EPR spectrometer parameters are described and the optimal conditions in RPM for EPR dosimetry are obtained. (Author)

  19. Natural dose level determination at Johor State with thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Ahmad Termizi Ramli; Yusof Jasman

    1995-01-01

    This paperwork presented the results of using thermoluminescence dosimetry (TLD) method in measuring background dose level, which is done at State of Johor, South Malaysia. The problems faced also discussed

  20. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  1. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    Science.gov (United States)

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. In vivo dosimetry with thermoluminescent dosimeters in radiotherapy: entrance and exit doses

    International Nuclear Information System (INIS)

    Alves, C.; Lopes, M.C.

    2000-01-01

    In vivo dosimetry, by entrance and exit dose measurements, is a vital part of a radiotherapy quality assurance program. The uncertainty associated with dose delivery is internationally accepted to be within 5% or inferior depending on the tumor pathology. Thermoluminescent dosimetry is one of the dosimetric techniques used to verify the agreement between delivered and prescribed doses. Nevertheless, it requires a very accurate calibration methodology. We have used LiF chips (4.5 mm diameter and 0.8 mm thick) calibrated towards a PTW ionization chamber of 0.3 cc, in three photon energies: Co-60, 4 and 6 MeV. The TLD reader used was a Rialto 688 from NE Technology and the annealing oven the Eurotherm type 815. The calibration methodology relies on the experimental determination of individual correction factors and on a correction factor derived from a control group of dosimeters. The exit and entrance dose measurements are performed in quite different situations. To be able to achieve those two quantities with TLD, these should be independently calibrated according to the measurement conditions. Alternatively, we can use a single calibration, in entrance dose, and convert the result to the exit dose value by introducing some correction factors. These corrections are related to the different measurement depths and to the different backscattering contributions. We have proved that within an acceptable error we can perform a single calibration and adopt the correction factors which are energy and field size dependent. (author)

  3. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry : A Monte Carlo Study

    NARCIS (Netherlands)

    Moghadam, Maryam Khazaee; Asl, Alireza Kamali; Geramifar, Parham; Zaidi, Habib

    2016-01-01

    Purpose: The aim of this work is to evaluate the application of tissue-specific dose kernels instead of water dose kernels to improve the accuracy of patient-specific dosimetry by taking tissue heterogeneities into consideration. Materials and Methods: Tissue-specific dose point kernels (DPKs) and

  4. Personal Doses Recorded by Service of Personal Dosimetry

    International Nuclear Information System (INIS)

    Mihai, F.; Gheorghiu, A.; Stochioiu, A.; Udup, E.

    2009-01-01

    In this work we present occupational exposure statistics on: number of workers on different dose ranges; average of the mean annual doses (MAD) over the period 2000 - 2007 on all monitored workers as well as on those who have been received doses over the minimum detection limit (MDL). The statistic is made on different types of nuclear laboratories. The data are obtained on almost 1000 workers occupational exposure to different sources of radiations (gamma and X-ray) and monitored by Photo dosimetry Survey Unit, IFIN - HH. These results point out the evolution of the individual doses received during eight years and can be used to analyse the need of radiation protection in different nuclear facilities from Romania

  5. Secondary standard dosimetry system with automatic dose/rate calculation

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Bernhart, J.; Stehno, G.; Klosch, W.

    1980-01-01

    A versatile and automated secondary standard instrument has been designed for quick and accurate dose/rate measurement in a wide range of radiation intensity and quality (between 1 μR and 100 kR; 0.2 nC/kg - 20C/kg) for protection and therapy level dosimetry. The system is based on a series of secondary standard ionization chambers connected to a precision digital current integrator with microprocessor circuitry for data evaluation and control. Input of measurement parameters and calibration factors stored in an exchangeable memory chip provide computation of dose/rate values in the desired units. The ionization chambers provide excellent long-term stability and energy response and can be used with internal check sources to test validity of calibration. The system is a useful tool particularly for daily measurements in a secondary standard dosimetry laboratory or radiation therapy center. (H.K.)

  6. Importance of dosimetry of irradiators for pre-clinical radiobiological experiments

    International Nuclear Information System (INIS)

    Vikram, Bhadrasain

    2014-01-01

    Importance of radiation dose in radiation biology has been increasingly recognized due to translational use of beyond 2Gy dose is in current practice. Hence, accurate dosimetry of biological irradiators is warranted. To address these problems and propose recommendations, the National Cancer Institute (NCI) along with the National Institute of Allergy and Infectious Diseases (NIAID) as well as the National Institute of Standards and Technology (NIST) highlighted a number of recommendations that will be presented in this talk that includes creating dosimetry standard operating procedures (SOPs) for both in-vitro as well as in-vivo experiments. Other recommendations include for journals (as well as to funding agencies) mandating the reporting of dosimetry of biological irradiators. (author)

  7. Radiation processing and high-dose dosimetry at ANSTO

    International Nuclear Information System (INIS)

    Gant, G.J.; Saunders, M.; Banos, C.; Mo, L.; Davies, J.; Evans, O.

    2001-01-01

    The Radiation Technology group at ANSTO is part of the Physics Division and provides services and advice in the areas of gamma irradiation and high-dose dosimetry. ANSTO's irradiation facilities are designed for maximum dose uniformity and provide a precision irradiation service unique in Australia. Radiation Technology makes and sells reference and transfer standard dosimeters which are purchased by users and suppliers of commercial irradiation services in Australia and the Asia-Pacific region. A calibration service is also provided for dosimeters purchased from other suppliers

  8. The sensitivity analysis of tooth enamel to the absorbed dose for the application to EPR dosimetry

    International Nuclear Information System (INIS)

    Hong, Dae Seok; Lee, Kun Jai; Cho, Young Hwan

    2002-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is one of the methods applicable to retrospective dosimetry. The retrospective dosimetry is a process that is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. Many techniques can be used to the retrospective dosimetry. As a physical method, EPR analysis of biological material measures the quantity of free radicals generated in the material from the interaction of radiation and material. Since the later 80s, in many countries, EPR dosimetry with tooth enamel has been studied and applied for the retrospective dosimetry. In the consideration of the biological materials for EPR dosimetry, human fingernail, hair, bone and tooth are generally considered. The tooth can be separated as enamel, dentine and cementum. Among the three parts, enamel shows the best sensitivity to the absorbed dose and is most widely used. In this study, the characteristics of tooth enamel for EPR dosimetry is examined and experimented. At the experiment, for easy separation, tooth was cut into 4 parts and then each part is treated by ultrasonic vibration in NaOH liquid to reduce mechanically induced noise in the corresponding signal. After the separation of the enamel from dentine, background EPR signal is measured and then radiation-induced EPR spectrum is estimated

  9. Evaluation of glasses containing cadmium for high dose dosimetry by the thermoluminescence technique

    International Nuclear Information System (INIS)

    Carvalho, Gabriel Soares Marchiori de; Ferreira, Pamela Zati; Cunha, Diego Merigue da; Dantas, Noelio Oliveira; Silva, Anielle C.A.; Perini, Ana Paula; Neves, Lucio Pereira; Carrera, Betzabel Noemi Silva; Watanabe, Shigueo

    2016-01-01

    New glass matrices were evaluated for high dose dosimetry by the thermoluminescence technique. Their nominal composition are 20Li_2CO_3.10Al_2O_3.15CdO.55B_2O_3 and 20Li_2CO_3.10Al_2O_3.20CdO.50B_2O_3 (mol%). The glass matrices were irradiated with different doses: 50, 100, 200, 500, 700 and 900 Gy, and the thermoluminescence emission curves were obtained for each of these values. The results show a great potential of using these matrices in high dose dosimetry. (author)

  10. Using the OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Solongo, S.; Murray, A.S.; Banerjee, D.; Jungner, H.

    2000-01-01

    We report on the application of the single-aliquot regenerative-dose (SAR) protocol to the optically stimulated luminescence signal from quartz extracted from fired bricks and unfired mortar in retrospective dosimetry. The samples came from a radioactive materials storage facility, with ambient dose rates of about 0.1 mGy/h. A detailed dose-depth profile was analysed from one brick, and compared with dose records from area TL dosemeters. Small-aliquot dose-distributions were analysed from the mortar samples; one associated with the exposed brick, and one from a remote site exposed only to background radiation. We conclude that unfired materials have considerable potential in retrospective dosimetry

  11. TL response of citrine samples for high-dose dosimetry

    International Nuclear Information System (INIS)

    Teixeira, Maria Ines; Caldas, Linda V.E.

    2011-01-01

    The possibility of using samples of Brazilian stones as quartz, amethyst, topaz, etc. for high-dose dosimetry has been studied in recent years at IPEN, using the thermoluminescence technique (TL). In this work, the TL properties of citrine samples were studied. They were exposed to different doses of gamma radiation ( 60 Co). The natural citrine stone was extracted from a mine in Minas Gerais state, Brazil; it is a tectosilicate ranked as one of three-dimensional structure, showing clear yellow to golden brown color. The natural citrine stone is classified as quartz (SiO 2 ), and it has a lower symmetry and more compact reticulum. The citrine stone samples were powdered, and the selected grains were mixed with Teflon in the proportion 2 (Teflon):1 (Citrine). The mixture was pressed and sintered for production of Citrine -Teflon pellets of 50 mg. The TL emission curve showed two peaks at 160 deg C and 220 deg C. To remove the TL peak (160 deg C) of the sintered citrine pellet glow curves, different thermal treatments were tested during several time intervals. The TL dose-response curve between 50 Gy and 100 kGy, the reproducibility of TL response and the lower detection dose were obtained. The preliminary results show that citrine may be useful for high-dose dosimetry. (author)

  12. Teflon pastille use in high dose dosimetry; Utilizacao de pastilhas de teflon em dosimetria de doses altas

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Maria Ines [Associacao Educacional Nove de Julho (UNINOVE), Sao Paulo, SP (Brazil); Caldas, Linda V.E., E-mail: miteixeira@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper study the Teflon, which is used as aglomerant in the confection of dosimetric pastilles, for the viabilization of this material as high dose dosimeter. This paper used the OSL technique for the characterization of dosimetric properties of Teflon. The doses-response curve has been obtained for {sup 60}Co radiation between 100 Gy and 50 kGy, and the OSL answer reproducibility. The preliminary results shown that the Teflon is a material which can be used for high dose dosimetry

  13. Monte Carlo validation and optimisation of detector packaging for spectroscopic dosimetry for in vivo urethral dosimetry during low dose rate brachytherapy

    International Nuclear Information System (INIS)

    Nourbehesht, L.K.; Cutajar, D.L.; Guatelli, S.; Rosenfeld, A.B.

    2015-01-01

    The urethral mini-dosimeter, developed by the Centre for Medical Radiation Physics, University of Wollongong, uses spectroscopic dosimetry to provide real time point dose measurements along the urethra during low dose rate prostate brachytherapy. Spectroscopic dosimetry uses the measured spectrum of the treatment isotope to estimate the dose rate at the point of measurement, however, the silicon mini-detectors employed in the urethral mini-dosimeter require water proof encapsulation which must be capable of providing electromagnetic shielding without greatly increasing the size of the probe. The introduction of non-tissue equivalent materials within the encapsulation can change the spectrum of radiation incident on the detector, which may influence the application of spectroscopic dosimetry within the urethral dosimeter. The Monte Carlo code Geant4 was adopted to study the effect of encapsulation on the operation of the urethral mini-dosimeter, as well as to determine whether an appropriate thickness of aluminium shielding was possible for electromagnetic screening. The depth dose response and angular dependence of the urethral mini-dosimeter with three thicknesses of aluminium shielding (20, 50, 100 µm) was compared with the urethral mini-dosimeter without aluminium shielding. The aluminium shielding had the effect of increasing the depth dose response (up to 3 % within 30 mm and up to 5 % within 50 mm), slightly reduced the azimuth angular dependence and slightly increased the polar angular dependence. The 100 µm thick shielding provided the least azimuth angular dependence (±2 %) and provided a polar angular dependence of ±1.4 % within the angles of −45° to 45°.

  14. Internal dosimetry performing dose assessments via bioassay measurements

    International Nuclear Information System (INIS)

    Bailey, K.M.

    1993-01-01

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected

  15. A tiered approach for integrating exposure and dosimetry with in vitro dose-response data in the modern risk assessment paradigm

    Science.gov (United States)

    High-throughput (HT) risk screening approaches apply in vitro dose-response data to estimate potential health risks that arise from exposure to chemicals. However, much uncertainty is inherent in relating bioactivities observed in an in vitro system to the perturbations of biolog...

  16. Investigation of PBAT dosimetric properties for high gamma dose dosimetry

    International Nuclear Information System (INIS)

    Cunha, Elisete L.; Schimitberger, Thiago

    2017-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) is an aliphatic-aromatic copolyester which is biodegradable. It is a non-photoluminescent copolyester that becomes photoluminescent after previous exposure to gamma doses higher than 100 kGy. After the previous high energy irradiation, the material shows the highest photo-stimulated luminescence emission when excited with a LED source at wavelengths ranging from 370 to 405 nm. In this work we investigated the enhancement of the photoluminescence (PL) and dosimetric properties of PBAT, after exposure to high doses of gamma radiation ranging from 50 to 4,000 kGy. In this investigation we demonstrate that increasing the PBAT film thickness by 100 μm enhances the PL output by 3.5 times, when irradiated with 500 kGy. Also, besides the already known color green brightness, the PL intensity can also be used for high dose dosimetry purposes for doses ranging from 50 to 750 kGy. The FTIR analysis has demonstrated that the there is a linear relationship between peak intensity and dose for doses ranging from 100 and 2,000 kGy for the absorbance peaks at 3,241 cm -1 and 3271 cm -1 , with linear correlation coefficients of 0.9981 and 0.9992, respectively. The results indicate that PBAT has great potential for applications in bio-imaging devices and high gamma dose dosimetry. (author)

  17. Investigation of PBAT dosimetric properties for high gamma dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elisete L.; Schimitberger, Thiago, E-mail: elisete.cunha@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Oliveira, Cristiana M.; Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Poly(butylene adipate-co-terephthalate) (PBAT) is an aliphatic-aromatic copolyester which is biodegradable. It is a non-photoluminescent copolyester that becomes photoluminescent after previous exposure to gamma doses higher than 100 kGy. After the previous high energy irradiation, the material shows the highest photo-stimulated luminescence emission when excited with a LED source at wavelengths ranging from 370 to 405 nm. In this work we investigated the enhancement of the photoluminescence (PL) and dosimetric properties of PBAT, after exposure to high doses of gamma radiation ranging from 50 to 4,000 kGy. In this investigation we demonstrate that increasing the PBAT film thickness by 100 μm enhances the PL output by 3.5 times, when irradiated with 500 kGy. Also, besides the already known color green brightness, the PL intensity can also be used for high dose dosimetry purposes for doses ranging from 50 to 750 kGy. The FTIR analysis has demonstrated that the there is a linear relationship between peak intensity and dose for doses ranging from 100 and 2,000 kGy for the absorbance peaks at 3,241 cm{sup -1} and 3271 cm{sup -1}, with linear correlation coefficients of 0.9981 and 0.9992, respectively. The results indicate that PBAT has great potential for applications in bio-imaging devices and high gamma dose dosimetry. (author)

  18. Recent experience in applying the cytogenetic dosimetry assay

    Energy Technology Data Exchange (ETDEWEB)

    Khvostunov, I.K., E-mail: 726727@mrrc.obninsk.ru [Medical Radiological Research Centre, Koroliov Str. 4, Obninsk, Kaluga Region, 249036 (Russian Federation); Sevan' kaev, A.V. [Medical Radiological Research Centre, Koroliov Str. 4, Obninsk, Kaluga Region, 249036 (Russian Federation); Lloyd, D.C. [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire (United Kingdom); Nugis, V.Yu. [Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Marshala Novikova Str., 23, Moscow (Russian Federation); Voisin, P. [Institute for Radiation Protection and Nuclear Safety, SRBE, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France)

    2011-09-15

    This paper considers how well standard calibration curve for translocations constructed for lymphocyte cultures irradiated in vitro with gamma-rays from {sup 60}Co compares with the translocations yield in lymphocytes taken from people at a long post-exposure time. Data were used from radiation accident victims overexposed to doses ranging from 0.2 to 8.5 Gy and who were cytogenetically followed-up for various times upto 50 y. Their cultured lymphocytes had been scored both by the conventional dicentric method and by FISH for all translocations involving painted chromosomes (2, 3, 8); (2, 3, 5) or (2, 4, 12). The in vivo dose response relationship was derived by fitting translocation frequencies to the contemporary individual doses obtained independently and confirmed by different biological assays and physical dosimetry. A comparison with the conventional in vitro curve indicates reductions of translocation frequencies with increasing time which would prejudice retrospective dose assessment by FISH. This has led to the possibility to amend the in vitro dose response curve for translocations to make it more suitable for use in retrospective biodosimetry. This approach for retrospective biodosimetry therefore uses a dose response relationship based on truly persisting translocations.

  19. True dose from incorporated activities. Models for internal dosimetry

    International Nuclear Information System (INIS)

    Breustedt, B.; Eschner, W.; Nosske, D.

    2012-01-01

    The assessment of doses after incorporation of radionuclides cannot use direct measurements of the doses, as for example dosimetry in external radiation fields. The only observables are activities in the body or in excretions. Models are used to calculate the doses based on the measured activities. The incorporated activities and the resulting doses can vary by more than seven orders of magnitude between occupational and medical exposures. Nevertheless the models and calculations applied in both cases are similar. Since the models for the different applications have been developed independently by ICRP and MIRD different terminologies have been used. A unified terminology is being developed. (orig.)

  20. Evaluation of glasses containing cadmium for high dose dosimetry by the thermoluminescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Gabriel Soares Marchiori de; Ferreira, Pamela Zati; Cunha, Diego Merigue da; Dantas, Noelio Oliveira; Silva, Anielle C.A.; Perini, Ana Paula; Neves, Lucio Pereira, E-mail: lucio.neves@ufu.br [Universidade Federal de Uberlandia (INFIS/UFU), MG (Brazil). Instituto de Fisica; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Carrera, Betzabel Noemi Silva; Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), SP (Brazil). Instituto de Fisica

    2016-07-01

    New glass matrices were evaluated for high dose dosimetry by the thermoluminescence technique. Their nominal composition are 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.15CdO.55B{sub 2}O{sub 3} and 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.20CdO.50B{sub 2}O{sub 3} (mol%). The glass matrices were irradiated with different doses: 50, 100, 200, 500, 700 and 900 Gy, and the thermoluminescence emission curves were obtained for each of these values. The results show a great potential of using these matrices in high dose dosimetry. (author)

  1. Status of radiation dosimetry in Germany using ionization chamber calibrated in terms of absorbed dose to water

    International Nuclear Information System (INIS)

    Hohlfeld, Klaus; Roos, Martin

    1995-01-01

    In 1984 the PTB as PSDL and the DIN Standard Committee on Radiology (NAR) in close co-operation decided that in Germany the measured absorbed dose to water in a water phantom should replace exposure in the dosimetry for radiation therapy. The PTB has established primary standards of water absorbed dose in the whole range of photon and electron radiation, and international comparisons at the BIPM and with other PSDLs proved agreement within 0.5%. Secondary standards are calibrated in a water phantom under reference conditions in a Co-60 gamma radiation beam at the PTB. Thus, the calibration factor in terms of water absorbed dose, N W , is transferred to the manufacturers of dosimeters, the German Calibration Service and the dosimetry laboratories of the verification authorities. The Verification Law subjects each ionization dosimeter used in the treatment of patients with external photon radiation beams under a type-test at PTB and under a verification procedure, where the calibration factor, N W , must be shown to be within given limits. The absorbed dose determination at the users' level follows the foralism prescribed in the Standard DIN 6800-2 (1995) 'Procedures for Absorbed Dose Determination in Radiology by the Ionization Method'. The concept of this DIN Standard uses exclusively one quantity from the primary standard to the user's instrument eliminating uncertainties and sources of mistakes associated with the conversion of a calibration factor. The concept is simple and clear and covers the whole range of photon and electron radiation. As a means of quality assurance in basic dosimetry the PTB runs a calibration service, up to now on a voluntary basis, which allows the user to compare his dosimetry system against PTB standards using mailed Fricke ampoules, with water absorbed dose as measured and used

  2. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  3. Three-dimensional high dose rate dosimetry of electron beams. A combined radiochromic film, EPR and calorimetric dosimetry

    International Nuclear Information System (INIS)

    Secerov, B.; Milosavljevic, B.H.; Bacic, G.; Belgrade Univ.

    2002-01-01

    Complete text of publication follows. Aim. To examine the suitability of radiochromic film (RCF) dosimeters in determining 3D dose distribution from a pulsed electron beam source by comparing their response with alanine EPR dosimetry and calorimetry. Experimental. A FWT-60 radiochromic films (Far West Technology Inc) were used while alanine films were home made. To obtain the dose vs. penetration depth relationship, a stack of 13 films separated by aluminium plates and/or alanine films was placed perpendicular to the electron beam (Febetron, 20 ns, 1.8 MeV, 10 12 Gy/s, dose range up to 100 kGy). RC films were calibrated using 60-Co source and Fricke dosimetry. The absorbance of irradiated films was measured using 2D microdensitometry. Calorimetry was performed with a homemade quasy-adiabatic aluminum calorimeter. Results and Discussion. Microdensitometry of films (5 x 5 cm) enabled the 3D mapping of the entire radiation field with in plane resolution of 0.12 mm. The total dose for each film was obtained by image segmentation to correct for the non-linear response of films. Integrated dose for the entire stack was in good agreement (within 5%) with total absorbed energy as determined with calorimetry. The dose distribution along the beam center was determined using alanine films (1 x 1 cm) and EPR spectroscopy, and again a good agreement with the dose determined by microdensitometry of the central portion of RC films. In conclusion, the results indicate that RC films can be used for determination of 3D dose distribution even at very high dose rates

  4. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.

    1994-01-01

    A new methodology for equivalent dose calculations has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neutral network. The research was orientated towards the optimization of the whole set of parameters involves in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neutral network was performed by taking the readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation. (author)

  5. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.

    1994-01-01

    A new methodology for equivalent dose calculation has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neural network. The research was oriented towards the optimization of the whole set of parameters involved in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neural network was performed by taking readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation

  6. Extremity dosimetry in medical applications within Europe: an overview of doses and monitoring practices

    International Nuclear Information System (INIS)

    Donadille, Laurent; Carinou, E.; Ginjaume, M.; Jankowski, J.; Rimpler, A.; Sans Merce, M.; Vanhavere, F.

    2008-01-01

    Full text: Some activities of the EURADOS Working Group 9 (WG9) related to the radiation protection dosimetry of medical staff were funded by the European Commission in the framework of the CONRAD project, Work Package 7. The objective of WG9 was to promote and co-ordinate research activities for the assessment of occupational exposure to staff at workplaces in therapeutic and diagnostic radiology and nuclear medicine. At these workplaces, from the point of view of the individual monitoring for external radiation, the skin of the fingers is generally the limiting organ. Subgroup 1 of WG9 had as main objective the study of the use of extremity dosemeters in medical radiation fields. The wide variety of radiation field characteristics present in medicine together with the difficulties of measuring a local dose which should be representative for the maximum skin dose using one single detector, makes it difficult to perform extremity dosimetry with an accuracy similar to that of whole-body one. A recent intercomparison organised by WG9 showed that some types of dosemeters significantly underestimate or overestimate skin doses. Subgroup 1 carried out a thorough literature review on extremity dosimetry issues. It covered diagnostic and therapeutic nuclear medicine and PET, interventional radiology and cardiology, and brachytherapy. It has notably pointed out the consensus about the requirement of regular extremity dose monitoring for nuclear medicine and PET, and the great difficulty of measuring extremity doses for procedures in interventional radiology and cardiology, activities for which routine extremity dose monitoring has been found to be poor. Furthermore, information on the status of extremity dosimetry in medical applications and associated monitoring practices was gathered from 7 European countries: France, Germany, Greece, Ireland, Poland, Spain and Switzerland. Interpretation of the data was not easy because of the wide range of procedures involved and also

  7. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  8. Monte Carlo dosimetry of the IRAsource high dose rate 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Sarabiasl, Akbar; Ayoobian, Navid; Jabbari, Iraj; Poorbaygi, Hossein; Javanshir, Mohammad Reza

    2016-01-01

    High-dose-rate (HDR) brachytherapy is a common method for cancer treatment in clinical brachytherapy. Because of the different source designs, there is a need for specific dosimetry data set for each HDR model. The purpose of this study is to obtain detailed dose rate distributions in water phantom for a first prototype HDR 192 Ir brachytherapy source model, IRAsource, and compare with the other published works. In this study, Monte Carlo N-particle (MCNP version 4C) code was used to simulate the dose rate distributions around the HDR source. A full set of dosimetry parameters reported by the American Association of Physicists in Medicine Task Group No. 43U1 was evaluated. Also, the absorbed dose rate distributions in water, were obtained in an along-away look-up table. The dose rate constant, Λ, of the IRAsource was evaluated to be equal to 1.112 ± 0.005 cGy h −1 U −1 . The results of dosimetry parameters are presented in tabulated and graphical formats and compared with those reported from other commercially available HDR 192 Ir sources, which are in good agreement. This justifies the use of specific data sets for this new source. The results obtained in this study can be used as input data in the conventional treatment planning systems.

  9. The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries

    International Nuclear Information System (INIS)

    Izewska, Joanna; Andreo, Pedro; Vatnitsky, Stanislav; Shortt, Ken R.

    2003-01-01

    Background and purpose: The IAEA/WHO TLD postal programme for external audits of the calibration of high-energy photon beams used in radiotherapy has been in operation since 1969. This work presents a survey of the 1317 TLD audits carried out during 1998-2001. The TLD results are discussed from the perspective of the dosimetry practices in hospitals in developing countries, based on the information provided by the participants in their TLD data sheets. Materials and methods: A detailed analysis of the TLD data sheets is systematically performed at the IAEA. It helps to trace the source of any discrepancy between the TLD measured dose and the user stated dose, and also provides information on equipment, dosimetry procedures and the use of codes of practice in the countries participating in the IAEA/WHO TLD audits. Result: The TLD results are within the 5% acceptance limit for 84% of the participants. The results for accelerator beams are typically better than for Co-60 units. Approximately 75% of participants reported dosimetry data, including details on their procedure for dose determination from ionisation chamber measurements. For the remaining 25% of hospitals, who did not submit these data, the results are poorer than the global TLD results. Most hospitals have Farmer type ionisation chambers calibrated in terms of air kerma by a standards laboratory. Less than 10% of the hospitals use new codes of practice based on standards of absorbed dose to water. Conclusion: Despite the differences in dosimetry equipment, traceability to different standards laboratories and uncertainties arising from the use of various dosimetry codes of practice, the determination of absorbed dose to water for photon beams typically agrees within 2% among hospitals. Correct implementation of any of the dosimetry protocols should ensure that significant errors in dosimetry are avoided

  10. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  11. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  12. Dose determination in breast tumor in brachytherapy using Iridium-192

    International Nuclear Information System (INIS)

    Okuno, S.F.

    1984-01-01

    Thermoluminescent dosimetry studies in vivo and in vitro aiming to determing radiation dose in the breast tumor, in brachytherapy using Iridium-192 was done. The correlation between radiation doses in tumor and external surface of the breast was investigated for correcting the time interval of radiation source implantation. (author) [pt

  13. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  14. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  15. Dosimetry for radiation processing. Final report of the co-ordinated research project on characterization and evaluation of high dose dosimetry techniques for quality assurance in radiation processing

    International Nuclear Information System (INIS)

    2000-06-01

    In many Member States the use of large cobalt-60 gamma ray facilities and electron beam accelerators with beam energies from about 0.1 to 10 MeV for industrial processing continues to increase. For these processes, quality assurance relies on the application of well established dosimetry systems and procedures. This is especially the case for health regulated processes, such as the radiation sterilization of health care products, and the irradiation of food to eliminate pathogenic organisms or to control insect pests. A co-ordinated research project (CRP) was initiated by the IAEA in June 1995. Research contracts and research agreements in areas of high dose dosimetry were initiated to meet these challenges. The major goals of this CRP were to investigate the parameters that influence the response of dosimeters and to develop reference and transfer dosimetry techniques, especially for electron beams of energy less than 4 MeV and for high energy X ray sources (up to 5 MV). These will help to unify the radiation measurements performed by different radiation processing facilities and other high dose dosimetry users in Member States and encourage efforts to obtain traceability to primary and secondary standards laboratories. It will also aim to strengthen and expand the present International Dose Assurance Service (IDAS) provided by the IAEA

  16. Internal in vitro dosimetry for fish using hydroxyapatite-based EPR detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.V. [Urals Division of Russian Academy of Sciences, Institute of Metal Physics, Yekaterinburg (Russian Federation); Ural Federal University, Yekaterinburg (Russian Federation); Shishkina, E.A.; Osipov, D.I.; Pryakhin, E.A. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Razumeev, R.A. [Ural Federal University, Yekaterinburg (Russian Federation)

    2015-08-15

    A number of aquatic ecosystems were exposed to ionizing radiation as a result of the activities of the Mayak Production Association in the Southern Urals, former Soviet Union, in the 1950s. Currently, fishes inhabiting contaminated lakes are being actively studied. These investigations need dosimetric support. In the present paper the results of a pilot study for elaborating an EPR dosimeter which can be used for internal dosimetry in vitro are described. Biological hydroxyapatite is proposed here to be used as a detecting substance. More specifically, small hydroxyapatite grains are proposed for use as point detectors fixed in a solid matrix. After having been pelletized, the detectors were covered by Mylar and placed in the body of a fish to be stored in the fridge for several months. Application of the detectors for internal fish dosimetry demonstrated that the enamel sensitivity is sufficient for passive detection of ionizing radiation in fishes inhabiting contaminated lakes in the Southern Urals. (orig.)

  17. Film dosimetry using a smart device camera: a feasibility study for point dose measurements

    Science.gov (United States)

    Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie

    2017-10-01

    In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.

  18. Film dosimetry using a smart device camera: a feasibility study for point dose measurements.

    Science.gov (United States)

    Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie

    2017-10-03

    In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.

  19. FREQUENCY OF CHROMOSOMAL ABERRATIONS AND MICRONUCLEI IN HORSE LYMPHOCYTES FOLLOWING IN VITRO EXPOSURE TO LOW DOSE IONISING RADIATION

    Directory of Open Access Journals (Sweden)

    Dunja Rukavina

    2012-07-01

    Full Text Available Ionising radiation is known to cause chromosomal instability, which is observed as increased frequency of chromosomal aberration and micronuclei. These are listed as reliable criteria in biological dosimetry. Numerous experiments conducted on both animal and plant models demonstrated that increase in radiation dosage is followed by increased mutation frequency, and that mutations occur even at the lowest exposure. We used horse blood in vitro irradiated by low doses of ionizing radiation. Cultivation of peripheral blood lymphocytes and micronucleus test were used as biomarkers of genetic damage. The observed aberrations were recorded and classified in accordance with the International System of Cytogenetic Nomenclature. Micronuclei were identified on the basis of criteria proposed by Fenech et al. (8. Analysis of chromosomal aberration showed increased frequency of aberrations in blood cultures exposed to 0,1 Gy and 0,2 Gy compared to the controls. Microscopic analysis of chromosomal damage in in vitro micronucleus test revealed that the applied radiation dose induced micronuclei while no binucleated cells with micronuclei were found in lymphocytes that were not irradiated. In this paper we analysed the influence of low dose ionising radiation on frequency of chromosomal aberration and micronuclei in horse lymphocytes following in vitro exposure to X-rays (0,1 Gy and 0,2 Gy. Key words: chromosomal aberrations, micronuclei, ionising radiation, horse lymphocytes

  20. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry

    International Nuclear Information System (INIS)

    Baechler, Sebastien; Hobbs, Robert F.; Prideaux, Andrew R.; Wahl, Richard L.; Sgouros, George

    2008-01-01

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high α/β), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the initial

  1. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  2. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    International Nuclear Information System (INIS)

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput

  3. Do we need 3D tube current modulation information for accurate organ dosimetry in chest CT? Protocols dose comparisons.

    Science.gov (United States)

    Lopez-Rendon, Xochitl; Zhang, Guozhi; Coudyzer, Walter; Develter, Wim; Bosmans, Hilde; Zanca, Federica

    2017-11-01

    To compare the lung and breast dose associated with three chest protocols: standard, organ-based tube current modulation (OBTCM) and fast-speed scanning; and to estimate the error associated with organ dose when modelling the longitudinal (z-) TCM versus the 3D-TCM in Monte Carlo simulations (MC) for these three protocols. Five adult and three paediatric cadavers with different BMI were scanned. The CTDI vol of the OBTCM and the fast-speed protocols were matched to the patient-specific CTDI vol of the standard protocol. Lung and breast doses were estimated using MC with both z- and 3D-TCM simulated and compared between protocols. The fast-speed scanning protocol delivered the highest doses. A slight reduction for breast dose (up to 5.1%) was observed for two of the three female cadavers with the OBTCM in comparison to the standard. For both adult and paediatric, the implementation of the z-TCM data only for organ dose estimation resulted in 10.0% accuracy for the standard and fast-speed protocols, while relative dose differences were up to 15.3% for the OBTCM protocol. At identical CTDI vol values, the standard protocol delivered the lowest overall doses. Only for the OBTCM protocol is the 3D-TCM needed if an accurate (<10.0%) organ dosimetry is desired. • The z-TCM information is sufficient for accurate dosimetry for standard protocols. • The z-TCM information is sufficient for accurate dosimetry for fast-speed scanning protocols. • For organ-based TCM schemes, the 3D-TCM information is necessary for accurate dosimetry. • At identical CTDI vol , the fast-speed scanning protocol delivered the highest doses. • Lung dose was higher in XCare than standard protocol at identical CTDI vol .

  4. Development of transmission dose estimation algorithm for in vivo dosimetry in high energy radiation treatment

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2004-01-01

    In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)

  5. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  6. Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurements

    International Nuclear Information System (INIS)

    Boudou, C; Tropres, I; Rousseau, J; Lamalle, L; Adam, J F; Esteve, F; Elleaume, H

    2007-01-01

    Synchrotron stereotactic radiotherapy (SSR) is a radiotherapy technique that makes use of the interactions of monochromatic low energy x-rays with high atomic number (Z) elements. An important dose-enhancement can be obtained if the target volume has been loaded with a sufficient amount of a high-Z element, such as iodine. In this study, we compare experimental dose measurements, obtained with normoxic polymer gel (nPAG), with Monte Carlo computations. Gels were irradiated within an anthropomorphic head phantom and were read out by magnetic resonance imaging. The dose-enhancement due to the presence of iodine in the gel (iodine concentration: 5 and 10 mg ml -1 ) was measured at two radiation energies (35 and 80 keV) and was compared to the calculated factors. nPAG dosimetry was shown to be efficient for measuring the sharp dose gradients produced by SSR. The agreement between 3D gel dosimetry and calculated dose distributions was found to be within 4% of the dose difference criterion and a distance to agreement of 2.1 mm for 80% of the voxels. Polymer gel doped with iodine exhibited higher sensitivity, in good agreement with the calculated iodine-dose enhancement. We demonstrate in this preliminary study that iodine-doped nPAG could be used for measuring in situ dose distributions for iodine-enhanced SSR treatment

  7. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  8. Development and current state of dosimetry in Cuba

    International Nuclear Information System (INIS)

    Prieto Miranda, E.F.; Cuesta Fuente, G.; Chavez Ardanza, A.

    1999-01-01

    In Cuba, the application of the radiation technologies has been growing in the last years, and at present there are several dosimetry systems with different ranges of absorbed dose. Diverse researches were carried out on high dose dosimetry with the following dosimetry systems: Fricke, ceric-cerous sulfate, ethanol-chlorobenzene, cupric sulfate and Perspex (Red 4034 AE and Clear HX). In this paper the development achieved during the last 15 years in the high dose dosimetry for radiation processing in Cuba is presented, as well as, the current state of different dosimetry systems employed for standardization and for process control. The paper also reports the results of dosimetry intercomparison studies that were performed with the Ezeiza Atomic Center of Argentine and the International Dose Assurance Service (IDAS) of IAEA. (author)

  9. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  10. Conventional radiation-biological dosimetry using frequencies of unstable chromosome aberrations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.

    1998-01-01

    Frequency of chromosome aberrations detected by conventional cytogenetics is a very useful parameter in biological radiodosimetry. It can be used for estimating absorbed doses in individuals working with radioactive sources and individuals accidentally exposed to radiation. In the first case subjects wear physical dosimeters as a routine safety habit. The laboratory at the Institute of Radioprotection and Dosimetry (IRD, Brazil) has been using conventional cytogenetic analysis to complement data obtained by physical dosimetry since 1983. Until now, more than one hundred cases were investigated where individual physical dosimeters detected occupational exposure (above the safety limits allowed). In total, only 34% of these cases were confirmed by conventional cytogenetic dosimetry. Also, conventional cytogenetic analysis following the radiation accident of Goiania (Brazil) in 1987 have been used. Peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequencies of unstable chromosomal aberrations (dicentrics, centric rings and acentrics fragments) to estimate absorbed radiation doses. During the emergency period, doses were estimated to help immediate medical treatment using in vitro calibration curves produced before the accident. Later on, doses were assessed once more using new in vitro calibration curves. A drawback of this technique is that unstable aberrations are lost after exposure. To investigate the mean lifespan of lymphocytes containing dicentric and ring aberrations, we have followed 15 victims of the Goiania accident over all these years. Results suggest that the disappearance of unstable aberrations is dose-dependent. This could explain the variation in the results found among studies in this field

  11. Conventional radiation-biological dosimetry using frequencies of unstable chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S. [Institute of Radioprotection and Dosimetry (IRD), National Commission of Nuclear Energy (CNEN), Av. Salvador Allende, Cx. P. 37750, Rio de Janeiro 22.780-160 (Brazil)

    1998-08-03

    Frequency of chromosome aberrations detected by conventional cytogenetics is a very useful parameter in biological radiodosimetry. It can be used for estimating absorbed doses in individuals working with radioactive sources and individuals accidentally exposed to radiation. In the first case subjects wear physical dosimeters as a routine safety habit. The laboratory at the Institute of Radioprotection and Dosimetry (IRD, Brazil) has been using conventional cytogenetic analysis to complement data obtained by physical dosimetry since 1983. Until now, more than one hundred cases were investigated where individual physical dosimeters detected occupational exposure (above the safety limits allowed). In total, only 34% of these cases were confirmed by conventional cytogenetic dosimetry. Also, conventional cytogenetic analysis following the radiation accident of Goiania (Brazil) in 1987 have been used. Peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequencies of unstable chromosomal aberrations (dicentrics, centric rings and acentrics fragments) to estimate absorbed radiation doses. During the emergency period, doses were estimated to help immediate medical treatment using in vitro calibration curves produced before the accident. Later on, doses were assessed once more using new in vitro calibration curves. A drawback of this technique is that unstable aberrations are lost after exposure. To investigate the mean lifespan of lymphocytes containing dicentric and ring aberrations, we have followed 15 victims of the Goiania accident over all these years. Results suggest that the disappearance of unstable aberrations is dose-dependent. This could explain the variation in the results found among studies in this field

  12. Dosimetry in computerized tomography and evaluation of doses in organs in thorax scanning

    International Nuclear Information System (INIS)

    Alonso, Thêssa Cristina

    2016-01-01

    Computed tomography has promoted improvement of the diagnostic process by producing anatomical cut images with high quality and contrast between soft tissues which have very similar absorption of the X-ray beams. The objective of this study is to evaluate the technological park of CT in Brazil correlated with the wide world, and carry out studies of experimental dosimetry to understand the dose distribution feature using phantoms and different methods of measurement of kerma index, as well as perform measures of local doses in sensitive organs. To study the scanner geographic distribution and supply of computed tomography tests in Brazil, a comparison has been made with results found with the specified reference by Brazilian law (Ordinance GM / MS No. 1101, 2002; Resolution RE nº1016, 2006). For dosimetry studies, It was used a standard chest phantom and the anthropomorphic phantom. For image quality evaluation, it was used the CATPHAN-600 phantom. Scans were performed in a GE scanner, Discovery model with 64 channels. Dose measurements have been performed by using a pencil ionization chamber, thermoluminescent dosimeters and radiochromic film strips. Sensitive organ shielding devices were evaluated in order to verify their efficiency in organ dose reduction and its influence in the quality of image. Considering Brazilian population, the scanner park showed a greater amount than the minimum parameter recommended by Brazilian law. Dose measurements using three different methods showed the correct procedure of metrological reliability of the measurement system. The findings and conclusions of this study may contribute to the improvement of local practices in Computed Tomography tests, inserted in context of radiological protection in order to define reference levels for optimized diagnosis, and image quality control. (author)

  13. Overview of double dosimetry procedures for the determination of the effective dose to the interventional radiology staff

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Jansen, J.; Miljanic, S.; Nikodemova, D.; Ranogajec-Komor, M.; D'Errico, F.

    2008-01-01

    In interventional radiology, for an accurate determination of effective dose to the staff, measurements with two dosemeters have been recommended, one located above and one under the protective apron. Such 'double dosimetry' practices and the algorithms used for the determination of effective dose were reviewed in this study by circulating a questionnaire and by an extensive literature search. The results indicated that regulations for double dosimetry almost do not exist and there is no firm consensus on the most suitable calculation algorithms. The calculation of effective dose is mainly based on the single dosemeter measurements, in which either personal dose equivalent, directly, (dosemeter below the apron) or a fraction of personal dose equivalent (dosemeter above the apron) is taken as an assessment of effective dose. The most recent studies suggest that there might not be just one double dosimetry algorithm that would be optimum for all interventional radiology procedures. Further investigations in several critical configurations of interventional radiology procedures are needed to assess the suitability of the proposed algorithms. (authors)

  14. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  15. Optimal dose reduction in computed tomography methodologies predicted from real-time dosimetry

    Science.gov (United States)

    Tien, Christopher Jason

    Over the past two decades, computed tomography (CT) has become an increasingly common and useful medical imaging technique. CT is a noninvasive imaging modality with three-dimensional volumetric viewing abilities, all in sub-millimeter resolution. Recent national scrutiny on radiation dose from medical exams has spearheaded an initiative to reduce dose in CT. This work concentrates on dose reduction of individual exams through two recently-innovated dose reduction techniques: organ dose modulation (ODM) and tube current modulation (TCM). ODM and TCM tailor the phase and amplitude of x-ray current, respectively, used by the CT scanner during the scan. These techniques are unique because they can be used to achieve patient dose reduction without any appreciable loss in image quality. This work details the development of the tools and methods featuring real-time dosimetry which were used to provide pioneering measurements of ODM or TCM in dose reduction for CT.

  16. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  17. Dose measurements in dental radiology using thermoluminescent dosimetry;Medicoes de dose em radiodiagnostico odontologico utilizando dosimetria termoluminescente

    Energy Technology Data Exchange (ETDEWEB)

    Chiara, Ana Claudia M. de; Costa, Alessandro M. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Pardini, Luiz Carlos [Universidade de Sao Paulo (FORP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia

    2009-07-01

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm{sup 2}, 101.5 +- 9.5 mGy.cm{sup 2} and 116.8 +- 10.4 mGy.cm{sup 2}. The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  18. Comparison of dose response functions for EBT3 model GafChromic™ film dosimetry system.

    Science.gov (United States)

    Aldelaijan, Saad; Devic, Slobodan

    2018-05-01

    Different dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation. Pieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis. Response functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy. Although reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  20. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    CERN Document Server

    2002-01-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation pro...

  1. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  2. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment

    International Nuclear Information System (INIS)

    Unger, L.M.; Trubey, D.K.

    1982-05-01

    Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed

  3. In vivo dosimetry in radiation therapy in Sweden; In vivo-dosimetri inom straalbehandling i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Jacob; Blomquist, Michael (Norrlands universitetssjukhus, Umeaa (Sweden))

    2010-07-15

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  4. Fundamentals of x-ray dosimetry

    International Nuclear Information System (INIS)

    Roesch, W.C.

    1976-01-01

    Fundamental information about x-ray dosimetry is presented. Definitions are given and expanded on for dose, absorbed dose including microdosimetry, radiation physics (properties of the radiation that are important to dosimetry), and dosimetry (how the properties are dealt with in determining dose). 5 figs, 12 refs

  5. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  6. Reduced dose uncertainty in MRI-based polymer gel dosimetry using parallel RF transmission with multiple RF sources

    International Nuclear Information System (INIS)

    Sang-Young Kim; Jung-Hoon Lee; Jin-Young Jung; Do-Wan Lee; Seu-Ran Lee; Bo-Young Choe; Hyeon-Man Baek; Korea University of Science and Technology, Daejeon; Dae-Hyun Kim; Jung-Whan Min; Ji-Yeon Park

    2014-01-01

    In this work, we present the feasibility of using a parallel RF transmit with multiple RF sources imaging method (MultiTransmit imaging) in polymer gel dosimetry. Image quality and B 1 field homogeneity was statistically better in the MultiTransmit imaging method than in conventional single source RF transmission imaging method. In particular, the standard uncertainty of R 2 was lower on the MultiTransmit images than on the conventional images. Furthermore, the MultiTransmit measurement showed improved dose resolution. Improved image quality and B 1 homogeneity results in reduced dose uncertainty, thereby suggesting the feasibility of MultiTransmit MR imaging in gel dosimetry. (author)

  7. An improved in vitro micronucleus assay to biological dosimetry

    International Nuclear Information System (INIS)

    Ocampo, Ivette Z.; Okazaki, Kayo; Vieira, Daniel P.

    2013-01-01

    The biological dosimetry is widely used to estimate the absorbed dose in people occupationally or accidentally exposed to the radiation for a better medical treatment, minimizing the harmful effects. Many techniques and methods have been proposed to detect and quantify the radioinduced lesions in genetic material, among them, the micronucleus (MN) assay. In the present study, we proposed an improved in vitro micronucleus technique that is rapid, sensitive and with minor cell manipulations. Assays were carried out with human tumor cells (MCF-7) seeded (3x10 4 cells) in slides placed into Petri dishes. Adherent cells were maintained with RPMI medium, supplemented with fetal calf serum, 1 % antibiotics, cytochalasin B (2 μg/mL), and incubated at 37 deg C in the presence of 5% CO2 for 72h. Cells were pre-treated for 24h with aminoguanidine, a nitric oxide synthase inhibitor. Nitric oxide is an intracellular free-radical, involved in DNA double-strand break repair mechanisms. After incubation, adherent cells on slides were briefly fixed with paraformaldehyde and stained with acridine orange (100 μg/mL) for analysis through fluorescence microscopy. Dye fluorescence permitted accurate discrimination between nuclei and micronuclei (bright green) and cytoplasm (red), and made possible a faster counting of binucleated cells. Aminoguanidine (2 mM) induced significant increase (p< 0.05) in frequencies of binucleated cells with micronuclei and in the number of micronuclei per binucleated cell. Data showed that proposed modifications permit to understand an early aspect of NO inhibition and suggested an improved protocol to MN assays. (author)

  8. OSL signal of IC chips from mobile phones for dose assessment in accidental dosimetry

    International Nuclear Information System (INIS)

    Mrozik, A.; Marczewska, B.; Bilski, P.; Książek, M.

    2017-01-01

    The rapid assessment of the radiation dose is very important for the prediction of biological effects after unintended exposition. The materials for use as dosimeters in accidental dosimetry should be everyday objects which are usually placed near the human body, for example mobile phones. IC (Integrated Circuit) chip is one of several electronic components of mobile phones which give a luminescent signal. The measurements of samples from different mobile phones and smartphones were conducted by optically stimulated luminescence (OSL) and thermoluminescence (TL) methods. The OSL measurement was performed in two ways: with readouts at room temperature and at 100 °C. This work is focused on determination of OSL dose response of IC chips, minimum detectable dose (MDD), OSL signal stability in the time after the exposition, its repeatability and sensitivity to light. Several tests of the assessment of unknown doses were also conducted. The readouts at 100 °C indicate the reducing of the fading of OSL signal in the first hours after irradiation in comparison with room temperature readouts. The obtained results showed relatively good dosimetric properties of IC chips: their high sensitivity to the ionizing radiation, linear dose response up to 10 Gy and a good reproducibility of OSL signal which can allow the dose recovery of doses less than 2 Gy in 14 days after an incident with the accuracy better than 25%. The fading is a drawback of IC chips and the fading factor should be considered when calculating the dose. - Highlights: • IC chips from smartphones demonstrated high potential for accidental dosimetry. • Minimum detectable dose was estimated as a value of 50 mGy. • Samples showed linear dose response for the dose range from 0.05 Gy up to 10 Gy.

  9. The Mayak Worker Dosimetry System (MWDS-2013): implementation of the dose calculations

    International Nuclear Information System (INIS)

    Zhdanov, A.; Vostrotin, V.; Efimov, A.; Birchall, A.; Puncher, M.

    2017-01-01

    The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. (authors)

  10. Cellular dosimetry in nuclear medicine imaging: training

    International Nuclear Information System (INIS)

    Gardin, I.; Faraggi, M.; Stievenart, J.L.; Le Guludec, D.; Bok, B.

    1998-01-01

    The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99m Tc, 123 I, 111 In, 67 Ga, and 201 Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (D cel ) have been compared with those obtained with conventional dosimetry (D conv ), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that D cel /D conv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, D cel /D conv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)

  11. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept.

    Science.gov (United States)

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-21

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product ([Formula: see text]). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60 Co beam, the Monte Carlo calculation of beam quality correction factors-in terms of dose-area product-in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of [Formula: see text] of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields [Formula: see text] values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  12. Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing

    International Nuclear Information System (INIS)

    Feizi, Shazad; Nuclear Science and Technology Research Institute, Tehran; Ziaie, Farhood; Ghandi, Mehdi

    2015-01-01

    In this work characteristics of the polycarbonate films with 20 μm in thickness containing different weight percentage of Benzo-δ-sultam were studied for use as a high dose dosimetry system in radiation processing facilities. The sensitivity of the dosimeters and the linearity of dose-response curves were investigated under 60 Co γ-rays in a dose range of 0-100 kGy, and obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the absorbance at 348 nm depends linearly on the dose in the investigated dose range. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight are also discussed. The results show that the dosimeters characteristics are stable within 1% at 25 C, 3 months after the irradiation.

  13. CT dosimetry computer codes: Their influence on radiation dose estimates and the necessity for their revision under new ICRP radiation protection standards

    International Nuclear Information System (INIS)

    Kim, K. P.; Lee, J.; Bolch, W. E.

    2011-01-01

    Computed tomography (CT) dosimetry computer codes have been most commonly used due to their user friendliness, but with little consideration for potential uncertainty in estimated organ dose and their underlying limitations. Generally, radiation doses calculated with different CT dosimetry computer codes were comparable, although relatively large differences were observed for some specific organs or tissues. The largest difference in radiation doses calculated using different computer codes was observed for Siemens Sensation CT scanners. Radiation doses varied with patient age and sex. Younger patients and adult females receive a higher radiation dose in general than adult males for the same CT technique factors. There are a number of limitations of current CT dosimetry computer codes. These include unrealistic modelling of the human anatomy, a limited number of organs and tissues for dose calculation, inability to alter patient height and weight, and non-applicability to new CT technologies. Therefore, further studies are needed to overcome these limitations and to improve CT dosimetry. (authors)

  14. SU-F-T-325: On the Use of Bolus in Dosimetry and Dose Reduction for Pacemaker and Defibrillator

    International Nuclear Information System (INIS)

    Liu, W; Kenneth, R; Higgins, S; Nath, R; Zhu, D; Trumpore, S; Chen, Z

    2016-01-01

    Purpose: Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is very large among CIEDs. Significant defects have been reported at dose as low as 0.15Gy. Failures causing discomfort have been reported at dose as low as 0.05Gy. Therefore, accurate estimation of dose to CIED and dose reduction are both important even if the dose is expected to be less than the often-used 2Gy limit. We investigate the use of bolus in in vivo dosimetry for CIEDs. Methods: In our clinic, high-energy beams (>10MV) are not used for patients with CIED due to neutron production. Solid water phantom measurements of out-of-field dose for a 6MV beam were performed using parallel plate chamber at different depth with and without 2cm bolus covering the chamber. In vivo dosimetry at skin surface above the pacemaker was performed with and without bolus for 3 patients with pacemaker <5cm from the field edge. Results: Chamber measured dose at depth ∼1 to 1.5cm below the skin surface, where the CIED is normally located, was reduced by ∼6% – 20% with bolus. The dose reduction became smaller at deeper depth. In vivo dosimetry at skin surface also yielded ∼20% – 60% lower dose when using bolus for the 3 patients. In general, TPS calculation underestimated the dose. The dose measured with bolus is closer to the dose at the depth of the pacemaker and less affected by contaminant electrons and linac head leakage. Conclusion: In vivo CIED dose measurements should be performed with 1 to 2cm bolus covering the dosimeter on the skin above the CIED for more accurate CIED dose estimation. The use of bolus also reduces the dose delivered to CIED.

  15. SU-F-T-325: On the Use of Bolus in Dosimetry and Dose Reduction for Pacemaker and Defibrillator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W; Kenneth, R; Higgins, S; Nath, R [Yale University School of Medicine, New Haven, CT (United States); Zhu, D [Saint Thomas Hospital, Murfreesboro, TN (United States); Trumpore, S [Yale-New Haven Hospital, New Haven, CT (United States); Chen, Z [Yale New Haven Hospital, New Haven, CT (United States)

    2016-06-15

    Purpose: Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is very large among CIEDs. Significant defects have been reported at dose as low as 0.15Gy. Failures causing discomfort have been reported at dose as low as 0.05Gy. Therefore, accurate estimation of dose to CIED and dose reduction are both important even if the dose is expected to be less than the often-used 2Gy limit. We investigate the use of bolus in in vivo dosimetry for CIEDs. Methods: In our clinic, high-energy beams (>10MV) are not used for patients with CIED due to neutron production. Solid water phantom measurements of out-of-field dose for a 6MV beam were performed using parallel plate chamber at different depth with and without 2cm bolus covering the chamber. In vivo dosimetry at skin surface above the pacemaker was performed with and without bolus for 3 patients with pacemaker <5cm from the field edge. Results: Chamber measured dose at depth ∼1 to 1.5cm below the skin surface, where the CIED is normally located, was reduced by ∼6% – 20% with bolus. The dose reduction became smaller at deeper depth. In vivo dosimetry at skin surface also yielded ∼20% – 60% lower dose when using bolus for the 3 patients. In general, TPS calculation underestimated the dose. The dose measured with bolus is closer to the dose at the depth of the pacemaker and less affected by contaminant electrons and linac head leakage. Conclusion: In vivo CIED dose measurements should be performed with 1 to 2cm bolus covering the dosimeter on the skin above the CIED for more accurate CIED dose estimation. The use of bolus also reduces the dose delivered to CIED.

  16. Comparison of radiation doses obtained for radiation monitoring of controlled areas with radiation doses obtained for personnel dosimetry in radiodiagnosis centers

    International Nuclear Information System (INIS)

    Lescano, Roberto; Caspani, Carlos; Universidad Nacional del Litoral, Santa Fe

    2001-01-01

    In this paper we propose to search an indicator that shows, at an objective way, the quality of the radioprotection actions. The method is about to determine doses, measured in the work area, connecting them with the workload, and finally get the dose for the center. Them we make a comparison with the personal film dosimetry data. We discuss the final results, evaluating the radioprotection conditions in daily work. (author)

  17. Determination of effective dose for workers hemodynamics service using double dosimetry

    International Nuclear Information System (INIS)

    Ruiz Lopez, M. A.; Lobato Munoz, M.; Jodar Lopez, C. A.; Ramirez Ros, J. C.; Jerez Sainz, M. I.; Pamos Urena, M.; Carrasco Rodriguez, J. L.

    2013-01-01

    The use of an additional dosimeter at the level of the neck above the lead apron we can provide an indication of the dose in the head (the Crystal dose). In addition, it is possible to combine the two readings of the dosimeter to provide an improved estimate of the effective dose. In the hemodynamics service of our Hospital we have maintained a worker for 3 years with the double dosimetry read monthly. With the readings from these dosimeters will do following algorithms, several estimates of the effective dose to see if, with working conditions that occur in this service, it would be necessary to extend this practice to the rest of the workers to get a better estimation of effective dose. (Author)

  18. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103 Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm 3 , respectively, much lower than the 159 Gy and 0.65 cm 3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or

  19. Study of the response reduction of LiF:Mg, Ti dosimeter for high dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Torkzadeh, Falamarz [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Applications Research School; AEOI, Tehran (Iran, Islamic Republic of); Faripour, Heidar [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Laser and Optics Research School; AEOI, Tehran (Iran, Islamic Republic of); Mardashti, Forough; Manouchehri, Farhad [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Applications Research School

    2017-07-15

    A single crystal and 5 polycrystalline samples of LiF:Mg, Ti and their pellets were prepared and investigated so as to apply thermoluminescence high gamma dose dosimetry. Three zones of single crystal with dopant concentrations of 200 ppm of Mg and 20 ppm of Ti were also used to prepare the single crystal samples. For polycrystalline samples, dopant concentrations of 0.062 mol% Mg and Ti concentrations in the range of 0.016 and 0.046 mol% were used. All the samples were exposed to gamma doses of 1 kGy to 700 kGy and their response changes were determined by a gamma dose test of about 60 mGy. According to the results obtained, the use of response reduction by curve-fitting up to about 300 kGy can be performed reliably for high dose gamma dosimetry.

  20. Retrospective Dosimetry: Dose Analysis From Tooth Enamel Using Electron Spin Resonance (ESR)

    International Nuclear Information System (INIS)

    Mohd Rodzi Ali; Rahimah Abdul Rahim; Noraisyah Yusof; Syed Asraf Fahlawi Wafa Syed Mohd Ghazi; Juliana Mahamad Napiah; Yahaya Talib; Rehir Dahalan

    2014-01-01

    The radiation dose should be accurately measured in order to relate its effect to the cells. The assessment of dose usually performed using biological dosimetry techniques. However, the reduction of lymphocytes (white blood cells) after the time period results in inaccuracy of dose measurement. An alternative method used is the application of Electron Spin Resonance (ESR) using tooth enamel. In this study, tooth enamels were evaluated and used to measure the individual absorbed dose from the background. The basic tooth features that would affect dose measurement were discussed. The results show this technique is capable and effective for retrospective dose measurement and useful for the study of radiation effect to human. (author)

  1. Comparative Iron Oxide Nanoparticle Cellular Dosimetry and Response in Mice by the Inhalation and Liquid Cell Culture Exposure Routes

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.; Forsythe, William C.; Wang, Wei; Sharma, Gaurav; Karin, Norman J.; Tilton, Susan C.; Waters, Katrina M.; Asgharian, Bahman; Price, Owen; Pounds, Joel G.; Thrall, Brian D.

    2014-01-01

    testing the rapidly growing number of nanomaterials requires large scale use of in vitro systems under the presumption that these systems are sufficiently predictive or descriptive of responses in in vivo systems for effective use in hazard ranking. We hypothesized that improved relationships between in vitro and in vivo models of experimental toxicology for nanomaterials would result from placing response data in vitro and in vivo on the same dose scale, the amount of material associated with cells (target cell dose). Methods: Balb/c mice were exposed nose-only to an aerosol of 12.8 nm (68.6 nm CMD, 19.9 mg/m3, 4 hours) super paramagnetic iron oxide particles, target cell doses were calculated and biomarkers of response anchored with histological evidence were identified by global transcriptomics. Representative murine epithelial and macrophage cell types were exposed in vitro to the same material in liquid suspension for four hours and levels nanoparticle regulated cytokine transcripts identified in vivo were quantified as a function of measured nanoparticle cellular dose. Results. Target tissue doses of 0.009-0.4 μg SPIO/cm2 lung led to an inflammatory response in the alveolar region characterized by interstitial inflammation and macrophage infiltration. In vitro, higher target tissue doses of ~1.2-4 μg SPIO/ cm2 of cells were required to induce transcriptional regulation of markers of inflammation, CXCL2 CCL3, in C10 lung epithelial cells. Estimated in vivo macrophage SPIO nanoparticle doses ranged from 1-100 pg/cell, and induction of inflammatory markers was observed in vitro in macrophages at doses of 8-35 pg/cell. Conclusions: Application of target tissue dosimetry revealed good correspondence between target cell doses triggering inflammatory processes in vitro and in vivo in the alveolar macrophage population, but not in the epithelial cells of the alveolar region. These findings demonstrate the potential for target tissue dosimetry to enable the more

  2. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service

    International Nuclear Information System (INIS)

    Jangda, A.Q.; Hussein, S.

    2012-01-01

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility. (author)

  3. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service.

    Science.gov (United States)

    Jangda, Abdul Qadir; Hussein, Sherali

    2012-05-01

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility.

  4. High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films.

    Science.gov (United States)

    Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude

    2017-02-01

    The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋ m ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋ p ) of up to 8 × 10 6 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋ m dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋ m between 0.55 and 4.40 Gy/min, while Ḋ p dependence was probed at the prototype machine for Ḋ p ranging from 7 × 10 3 to 8 × 10 6 Gy/s. Ḋ p dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋ m dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋ p

  5. Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shazad [University of Tehran, Tehran (India). School of Chemistry; Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ziaie, Farhood [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ghandi, Mehdi [University of Tehran, Tehran (India). School of Chemistry

    2015-05-01

    In this work characteristics of the polycarbonate films with 20 μm in thickness containing different weight percentage of Benzo-δ-sultam were studied for use as a high dose dosimetry system in radiation processing facilities. The sensitivity of the dosimeters and the linearity of dose-response curves were investigated under {sup 60}Co γ-rays in a dose range of 0-100 kGy, and obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the absorbance at 348 nm depends linearly on the dose in the investigated dose range. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight are also discussed. The results show that the dosimeters characteristics are stable within 1% at 25 C, 3 months after the irradiation.

  6. Human cytogenetic dosimetry: a dose-response relationship for alpha particle radiation from 241Am

    International Nuclear Information System (INIS)

    DuFrain, R.J.; Littlefield, L.G.; Joiner, E.E.; Frome, E.L.

    1979-01-01

    Cytogenetic dosimetry estimates to guide treatment of persons internally contaminated with transuranic elements have not previously been possible because appropriate in vitro dose-response curves specifically for alpha particle irradiation of human lymphocytes do not exist. Using well-controlled cytogenetic methods for human lymphocyte culture, an experimentally derived dose-response curve for 241 Am alpha particle (5.49 and 5.44 MeV) radiation of G 0 lymphocytes was generated. Cells were exposed to 43.8, 87.7, 175.3 or 350.6 nCi/ml 241 Am for 1.7 hr giving doses of 0.85, 1.71, 3.42 or 6.84 rad. Based on dicentric chromosome yield, the linear dose-response equation is Y = 4.90(+-0.42) x 10 -2 X, with Y given as dicentrics per cell and X as dose in rads. The study also shows that the two-break asymmetrical exchanges in cells damaged by alpha particle radiation are overdispersed when compared to a Poisson distribution. An example is presented to show how the derived dose-response equation can be used to estimate the radiation dose for a person internally contaminated with an actinide. An experimentally derived RBE value of 118 at 0.85 rad is calculated for the efficiency of 241 Am alpha particle induction of dicentric chromosomes in human G 0 lymphocytes as compared with the efficiency of 60 Co gamma radiation. The maximum theoretical value for the RBE for cytogenetic damage from alpha irradiation was determined to be 278 at 0.1 rad or less which is in marked contrast to previously reported RBE values of approx. 20. (author)

  7. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry

    International Nuclear Information System (INIS)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre

    2016-01-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  8. Assessment of the feasibility of using transrectal ultrasound for postimplant dosimetry in low-dose-rate prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rhian Siân, E-mail: rhian.s.davies@wales.nhs.uk; Perrett, Teresa; Powell, Jane; Barber, Jim; Tanguay, Jacob; Button, Michael; Cochlin, Dennis; Smith, Christian; Lester, Jason Francis

    2016-01-01

    A study was performed to establish whether transrectal ultrasound (TRUS)-based postimplant dosimetry (PID) is both practically feasible and comparable to computed tomography (CT)-based PID, recommended in current published guidelines. In total, 22 patients treated consecutively at a single cancer center with low-dose-rate (LDR) brachytherapy for early-stage prostate cancer had a transrectal ultrasound performed immediately after implant (d0-TRUS) and computed tomography scan 30 days after implant (d30-CT). Postimplant dosimetry planning was performed on both image sets and the results were compared. The interobserver reproducibility of the transrectal ultrasound postimplant dosimetry planning technique was also assessed. It was noticed that there was no significant difference in mean prostate D{sub 90} (136.5 Gy and 144.4 Gy, p = 0.2197), V{sub 100} (86.4% and 89.1%, p = 0.1480) and V{sub 150} (52.0% and 47.8%, p = 0.1657) for d30-CT and d0-TRUS, respectively. Rectal doses were significantly higher for d0-TRUS than d30-CT. Urethral doses were available with d0-TRUS only. We have shown that d0-TRUS PID is a useful tool for assessing the quality of an implant after low-dose-rate prostate brachytherapy and is comparable to d30-CT PID. There are clear advantages to its use in terms of resource and time efficiency both for the clinical team and the patient.

  9. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Carrier, Jean-Francois; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-01-01

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D 90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  10. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  11. Characterization of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure.

    Science.gov (United States)

    Bassinet, Céline; Huet, Christelle; Baumann, Marion; Etard, Cécile; Réhel, Jean-Luc; Boisserie, Gilbert; Debroas, Jacques; Aubert, Bernard; Clairand, Isabelle

    2013-04-01

    As MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detectors allow dose measurements in real time, the interest in these dosimeters is growing. The aim of this study was to investigate the dosimetric properties of commercially available TN-502RD-H MOSFET silicon detectors (Best Medical Canada, Ottawa, Canada) in order to use them for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure. Reproducibility of the measurements, dose rate dependence, and dose response of the MOSFET detectors have been studied with a Co source. Influence of the dose rate, frequency, and pulse duration on MOSFET responses has also been studied in pulsed x-ray fields. Finally, in order to validate the integrated dose given by MOSFET detectors, MOSFETs and TLDs (LiF:Mg,Cu,P) were fixed on an Alderson-Rando phantom in the conditions of an interventional neuroradiology procedure, and their responses have been compared. The results of this study show the suitability of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of accident, provided a well-corrected energy dependence, a pulse duration equal to or higher than 10 ms, and an optimized contact between the detector and the skin of the patient are achieved.

  12. Occupational dosimetry in real time hemodynamic rooms. utility of the system Dose-aware as a training tool

    International Nuclear Information System (INIS)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J. M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar

    2014-01-01

    This paper presents the results from a study in a real time dosimetry system used in the catheter laboratory room of our center. The objective was to know the occupational doses per procedure, on the one hand, and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. 83 diagnostic and therapeutic procedures were analyzed, and an average dose per procedure of 0,37 μSv and 0,10 μSv for the main cardiologist and nurse were obtained, respectively. 36 of these interventions were also recorded and the images were synchronized with the dosimetric information stored and the dosimetry system. The findings were presented to the interventional cardiology team in a learning session. They showed a high level of satisfaction with this new method of optimizing the occupational doses through a customized learning session. (Author)

  13. A practical and transferable methodology for dose estimation in irradiated spices based on thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    D'Oca, M.C.; Bartolotta, A.; Cammilleri, C.; Giuffrida, S.; Parlato, A.; Di Stefano, V.

    2008-01-01

    Full text: Among the industrial applications of ionizing radiation, the treatment of food for preservation purposes is a worldwide recognized tool, provided that proper and validated identification methods are available and used. The thermoluminescence (TL) dosimetry is the physical method validated by the European Committee for Standardization for food from which silicate minerals can be isolated, such as spices and aromatic herbs. The aim of this work was to set up a reasonably simple procedure, alternative to the recommended one, for the identification of irradiated spices and to estimate at the same time the original dose in the irradiated product, using TL and the additive dose method, even after months storage. We have already shown that the additive dose method can be applied with TL dosimetry, if the TL response of the silicate specimen after extraction is always added to the response after each irradiation; the applied added doses were higher than 1 kGy, that can however give saturation problems. The new proposed methodology makes use of added doses lower than 600 Gy; the entire process can be completed within few hours and a linear fit can be utilized. The method was applied to the silicates extracted from oregano samples soon after the radiation treatment (original dose: 2 - 3 - 5 kGy), and after one year storage at room conditions in the dark (original dose: 1-2 kGy). The procedure allows the identification of irradiated samples, without any false positive, together with an estimation of the dose range

  14. Dose distribution and dosimetry parameters calculation of MED3633 Palladium-103 source in water phantom using MCNP

    International Nuclear Information System (INIS)

    Mowlavi, A. A.; Binesh, A.; Moslehitabar, H.

    2006-01-01

    Palladium-103 ( 103 Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103 Pd source is presented in this work. Materials and Methods: The dose distribution around the 10 3Pd Model MED3633 located in the center of 30*30*30 m 3 water phantom cube was calculated using MCNP code by the Monte Carlo method. The percentage depth dose variation along the different axis parallel and perpendicular to the source was also calculated. Then, the isodose curves for 100%, 75%, 50% and 25% percentage depth dose and dosimetry parameters of TG-43 protocol were determined. Results: The results show that the Monte Carlo Method could calculate dose deposition in high gradient region, near the source, accurately. The isodose curves and dosimetric characteristics obtained for MED3633 103 Pd source are in good agreement with published results. Conclusion: The isodose curves of the MED3633 103 Pd source have been derived form dose calculation by MCNP code. The calculated dosimetry parameters for the source agree quite well with their Monte Carlo calculated and experimental measurement values

  15. Calculation of absorbed dose in water by chemical Fricke dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, Adenilson Paiva; Meireles, Ramiro Conceicao

    2016-01-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  16. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  17. Report on external occupational dosimetry in Canada

    International Nuclear Information System (INIS)

    1995-12-01

    In light of the new recommendations of the ICRP in Report 60 on dose quantities and dose limits, this working group was set up to examine the implications for external dosimetry in Canada. The operational quantities proposed by the ICRU are discussed in detail with regard to their applicability in Canada. The current occupational dosimetry services available in Canada are described as well as the several performance intercomparisons that have been carried out within the country as well as internationally. Recommendations are given with respect to standards for dosimetry, including accuracy and precision. More practical advice is given on the choice of dosimeter to use for external dosimetry, frequency of monitoring, and who should be monitored. Specific advice is given on the monitoring of pregnant workers and problem of non-uniform irradiation. Accident and emergency dosimetry are dealt with briefly. Suggestions are given regarding record keeping both for employers and for the national dose registry. 48 refs., 6 tabs., 1 fig

  18. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    Science.gov (United States)

    Gustafsson, H.; Lund, E.; Olsson, S.

    2008-09-01

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  19. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, H; Lund, E [Department of Medical and Health Sciences, Radiation Physics, Faculty of Health Sciences, Linkoeping University, S-581 85 Linkoeping (Sweden); Olsson, S [Division of Radiation Physics, Linkoeping University Hospital, S-581 85 Linkoeping (Sweden)], E-mail: hakgu@imv.liu.se

    2008-09-07

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  20. Improvement of dose determination using glass display of mobile phones for accident dosimetry

    International Nuclear Information System (INIS)

    Discher, M.; Woda, C.; Fiedler, I.

    2013-01-01

    Previous studies have demonstrated that mobile phones can be used as suitable emergency dosimeters in case of an accidental radiation overexposure. Glass samples extracted from displays of mobile phones are sensitive to ionizing radiation and can be measured using the thermoluminescence (TL) method. A non-radiation induced background signal (so-called zero dose signal) was observed which overlaps with the radiation induced signal and consequently limits the minimum detectable dose. Investigations of several glasses from different displays showed that it is possible to reduce the zero dose signal up to 90% by etching the glass surface with concentrated hydrofluoric acid. With this approach a reduction of the detection limit of a factor of four, corresponding to approximately 80 mGy, was achieved. Dosimetric properties of etched samples are presented and developed protocols validated by dose recovery tests under realistic conditions. With the improvements in sample preparation the proposed method of dose determination is a competitive alternative to OSL/TL measurements of electronic components and chip cards and provides a useful option for retrospective accident dosimetry. -- Highlights: ► Glass displays from mobile phones have good potential for emergency dosimetry. ► The background signal can be reduced by etching glass samples with hydrofluoric acid. ► The minimum detectable dose can be lowered to approximately 80 mGy

  1. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    Science.gov (United States)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  2. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Palmer, Antony L; Bradley, David; Nisbet, Andrew; Lee, Chris; Ratcliffe, Ailsa J

    2013-01-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit. (paper)

  3. Personnel dosimetry methods introduced in the Czechoslovak national laboratories

    International Nuclear Information System (INIS)

    Trousil, J.; Singer, J.; Kokta, L.; Prouza, Z.

    1979-01-01

    Personnel dosimetry methods are described that were developed in the Institute for Research, Production and Application of Radioisotopes and that have been or will be introduced in the national personnel dosimetry service. In Czechoslovakia, workers exposed to a radiation risk are divided into two groups, according to the level of the risk. The criterion is the possibility of exceeding one tenth of the MPD. For the higher risk group, a complex dose meter is usually used for dosimetry of photon and beta radiation; it contains a film dose meter and a radiothermoluminescent (RTL) glass dose meter. The RTL glass dose meter also serves as an accident dose meter. For neutron dosimetry, a dose meter comprising a solid-state track detector in combination with fissionable foils has been introduced. For accident dosimetry, a silicon diode of Czechoslovak production is used. For the lower risk group, only the introduction of an RTL dose meter is foreseen. There will be a three month control period; for neutron dosimetry, the track detector in combination with fissionable foils is retained. For measurements of hand doses, a themoluminescent ring dose meter has been introduced. The dose meters are described, giving information on the types of detectors employed, measurement techniques and descriptions of the basic characteristics of the instruments, their basic dosimetric parameters and the dose and energy ranges which can be measured. The results of international comparisons are presented; these have served to confirm the measurement precision. In conclusion, some questions of dose-meter calibration are summarized, and the problems of dose measurement in mixed fields of neutrons and gamma rays are discussed. (author)

  4. In vivo dose evaluation during gynaecological radiotherapy using L-alanine/ESR dosimetry

    International Nuclear Information System (INIS)

    Burg Rech, Amanda; Baffa, Oswaldo; Barbi, Gustavo Lazzaro; Almeida Ventura, Luiz Henrique; Silva Guimaraes, Flavio; Oliveira, Harley Francisco

    2014-01-01

    The dose delivered by in vivo 3-D external beam radiation therapy (EBRT) was verified with L-alanine/electron spin resonance (ESR) dosimetry for patients diagnosed with gynaecological cancer. Measurements were performed with an X-band ESR spectrometer. Dosemeters were positioned inside the vaginal cavity with the assistance of an apparatus specially designed for this study. Previous phantom studies were performed using the same conditions as in the in vivo treatment. Four patients participated in this study during 20-irradiation sessions, giving 220 dosemeters to be analysed. The doses were determined with the treatment planning system, providing dose confirmation. The phantom study resulted in a deviation between -2.5 and 2.1 %, and for the in vivo study a deviation between -9.2 and 14.2 % was observed. In all cases, the use of alanine with ESR was effective for dose assessment, yielding results consistent with the values set forth in the International Commission on Radiation Units and Measurements (ICRU) reports. (authors)

  5. Dosimetry in dentistry.

    Science.gov (United States)

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  6. Agent-Based Computational Modeling of Cell Culture: Understanding Dosimetry In Vitro as Part of In Vitro to In Vivo Extrapolation

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...

  7. Cytogenetics dosimetry: dose-response curve for low doses of X-ray

    International Nuclear Information System (INIS)

    Lara, Virginia E. Noval; Pineda Bolivar, William R.; Riano, Victor M. Pabon; Ureana, Cecilia Crane

    2013-01-01

    The purpose of this study was to conduct a preliminary study for the standardization in the future, the dose-response curve for low doses of X-rays, through the analysis of in vitro cultures of peripheral blood samples of 3 men and 3 women occupationally not exposed to artificial sources of ionizing radiation, age 18-40 years, where possible nonsmokers

  8. Recent progress in application of JAERI alanine/ESR dosimetry system

    International Nuclear Information System (INIS)

    Kojima, T.

    1995-01-01

    Feasibility studies of application of JAERI alanine/ESR dosimetry system were performed on radiotherapy level dosimetry, low dose-rate dosimetry for residual life estimation of cable insulators used in nuclear power facilities, and dose monitoring for electron processing. (author)

  9. Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain

    International Nuclear Information System (INIS)

    Seppaelae, Tiina; Auterinen, Iiro; Aschan, Carita; Seren, Tom; Benczik, Judit; Snellman, Marjatta; Huiskamp, Rene; Ramadan, Usama Abo; Kankaanranta, Leena; Joensuu, Heikki; Savolainen, Sauli

    2002-01-01

    Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas

  10. Advanced computational modeling for in vitro nanomaterial dosimetry.

    Science.gov (United States)

    DeLoid, Glen M; Cohen, Joel M; Pyrgiotakis, Georgios; Pirela, Sandra V; Pal, Anoop; Liu, Jiying; Srebric, Jelena; Demokritou, Philip

    2015-10-24

    Accurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells "see," during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition. Here we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, K(D), and allows modeling of ENM dissolution over time. Dose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for K(D) values consistent with non-specific binding (> 1 nM), whereas smaller values (≤ 1 nM) typical of specific high

  11. 137Cs source dose distribution using the Fricke Xylenol Gel dosimetry

    International Nuclear Information System (INIS)

    Sato, R.; De Almeida, A.; Moreira, M.V.

    2009-01-01

    Dosimetric measurements close to radioisotope sources, such as those used in brachytherapy, require high spatial resolution to avoid incorrect results in the steep dose gradient region. In this work the Fricke Xylenol Gel dosimeter was used to obtain the spatial dose distribution. The readings from a 137 Cs source were performed using two methods, visible spectrophotometer and CCD camera images. Good agreement with the Sievert summation method was found for the transversal axis dose profile within uncertainties of 4% and 5%, for the spectrophotometer and CCD camera respectively. Our results show that the dosimeter is adequate for brachytherapy dosimetry and, owing to its relatively fast and easy preparation and reading, it is recommended for quality control in brachytherapy applications.

  12. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  13. Dosimetry optimization at COGEMA-La Hague

    International Nuclear Information System (INIS)

    Kalimbadjian, J.

    2000-01-01

    At the present time, the la Hague site strives to apply international recommendations together with national regulations concerning radiation protection, and especially the respect of limitation and optimization principles. The application of these principles is based on the implementation of a passive dosimetry and an active dosimetry. The monthly passive dosimetry is monitored by means of a photographic dosimetry film, completed with lithium fluorine thermoluminescent film badges. This personal dosimetry common to X, β, γ and neutron radiations is carried out in close relationship between the Radiation Protection Department, the Occupational Medical Department and the staff running the Plant. The application or ALARA's principle as well as that of radiation protection optimization implies to implement a complementary active dosimetry enabling to gain in real time, the personal dosimetry of each intervening person, either they be COGEMA's workers or external companies'. This active dosimetry provides with following information: This preventive dosimetry is based on the knowledge of doses integration in real time and is fitted with alarm thresholds according to the total amount of doses and dose rates. Thresholds on the dose rate are also set relatively to the radiological environment. This knowledge of doses and dose rates allows a stricter management of the works, while analyzing them according to the nature of the work, to the location and to the skills of the intervening people. This dosimetry allows to analyze and optimize doses integration according to the works nature for the whole intervening staff. The la Hague Site has developed an active personal dosimetry system, common to every intervening person, COGEMA or external companies. The DOSICARD was thus elaborated, shaped as an electronic dosimeter fitted with an alarm and a smart card. The access to controlled areas is conditioned to information given by the DOSICARD concerning medical aptitudes and

  14. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  15. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  16. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    Science.gov (United States)

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in dose. The capacity and scoring expertise of the various participating laboratories were found to be generally acceptable. The dose estimates generated through triage scoring by this network were acceptable for emergency biological dosimetry. When this network is fully operational, it will be the first of its kind in Canada able to respond to radiological/nuclear emergencies by providing triage quality biological dosimetry for a large number of samples. This network represents an alternate expansion of existing international emergency biological dosimetry cytogenetic networks.

  17. Analysis of various modifications in spectra analysis on accuracy of dose reconstructions in EPR dosimetry in tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, B., E-mail: bciesiel@gumed.edu.pl [Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk (Poland); Kaminska, J. [Department of Oncology and Radiotherapy, Medical University of Gdansk, Debinki 7, 80-211 Gdansk (Poland); Emerich, K. [Department of Paediatric Dentistry, Medical University of Gdansk, Orzeszkowej 18, 80-208 Gdansk (Poland)

    2011-09-15

    The results of EPR measurements performed due to our participation in the 4th International Comparison of EPR Dosimetry using tooth enamel were used to analyze the effects of modifications in numerical analysis of the measured spectra on precision and accuracy of reconstructed doses. The studied modifications included effects of: (1) a use of Mn{sup 2+} standard, (2) variations in experimental native background signals of tooth enamel used for dose reconstructions, (3) signal filtration, (4) subtraction of empty tube spectra, and (5) variations in the spectra ranges used for calculations (fitting windows). It was shown, that the use of a Mn standard, for normalization of intensities of the recorded signals in the spectra processing, strongly increased the dosimetric accuracy. The regression lines of the doses reconstructed using different background spectra against nominal doses, obtained without Mn standard, had slopes about 30% higher and their scatter range was about 2 times higher than the same parameters obtained when Mn standard was applied in the spectra processing. Accuracy of the measured doses characterized by root mean square deviations from the nominal doses was 71 mGy for calculations with Mn standard and 241 mGy without normalization to Mn lines. Despite the large beneficial effect of the use of Mn standard on accuracy (root mean square deviations of the data, slope of the regression lines), it did not significantly improve the dosimetry performance characterized by the critical dose and detection limit. The smoothing of the spectra by 9 point filtration resulted in 1.6% increase of the reconstructed doses. The subtraction of empty tube spectrum had no effect on precision and accuracy of the dose reconstruction. The performance parameters were also practically insensitive to a choice of a width of the spectral window used for the analysis, provided it encompassed the {approx}1.6 mT range covering the main peaks of the radiation induced signal in

  18. Double dosimetry procedures for the determination of occupational effective dose in interventional radiology

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; D'Errico, F.

    2008-01-01

    Full text: In interventional radiology, for an accurate determination of occupational effective dose, measurements with two dosemeters ('double dosimetry', DD) have been recommended, one dosemeter located above and one under the protective apron. In this paper, based on an extensive literature search, the most recent algorithms developed for the determination of effective dose from the dosimeter readings have been compared for a few practical interventional procedures. Recommendations on the practices and algorithms are given on the basis of the results. For the comparison of algorithms, dosemeter readings and the effective dose were obtained both experimentally and by calculation. Further, data from published Monte Carlo calculations have been applied. The literature review has indicated that very few regulations for DD exist and the DD practices have not been harmonized. There is no firm consensus on the most suitable calculation algorithms. Single dosemeter (SD) measurements are still mostly used for the calculation of effective dose. Most DD and SD algorithms overestimate effective dose significantly, sometimes by over ten times. However, SD algorithms can significantly underestimate effective dose in certain interventional radiology conditions. Due to the possibility of underestimating effective dose, DD is generally recommended. The results suggest that there might not be a single DD algorithm which would be optimum for all interventional radiology procedures. However, the selection of a precise DD algorithm for each individual condition is not practical and compromises must be made. For accurate personnel dosimetry, the accuracy of the algorithm selected should be tested for typical local interventional radiology condition. Personnel dosemeters should be used in the recommended positions. The dosemeter above the apron should be on a collar and its reading also used to assess the risk of lens injuries. The dosemeter under the apron can be on the chest or

  19. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  20. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  1. Using the OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Solongo, S.; Murray, A.S.

    2000-01-01

    We report on the application of the single-aliquot regenerative-dose (SAR) protocol to the optically stimulated luminescence signal from quartz extracted from fired bricks acid unfired mortar in retrospective dosimetry. The samples came from a radioactive materials storage facility, with ambient...... dose rates of about 0.1 mGy/h. A detailed dose-depth profile was analysed from one brick, and compared with dose records from area TL dosemeters. Small-aliquot dose-distributions were analysed from the mortar samples; one associated with the exposed brick, and one from a remote site exposed only...

  2. Use of CT or MR dosimetry in high dose rate (HDR) brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Liu, C.; Das, R.; See, A.; Duchesne, G.M.; Van Dyk, S.; Tai, K.H.

    2003-01-01

    Brachytherapy (BT) has, in recent years, become a well-utilised treatment option for prostate cancer. Tumour control probability relies on accurate dosimetry, which in turn relies on the accurate definition of the prostate gland. In external beam radiotherapy and BT, MRI has been shown to be a superior imaging modality when delineating the prostate gland especially at the apex. To date, data on MRI planning in prostate BT has focussed mainly on permanent interstitial implants. No data currently exists comparing MRI vs CT planning in HDR BT and its subsequent impact on prostate dosimetry. To determine the effects of MRI vs CT in HDR BT with respect to prostatic volumes and normal tissue doses, with the evaluations made using dose-volume histograms (DVH). Dosimetry parameters derived using CT and MRI (T2 weighted) scans of 11 patients who had received TRUS guided implants for HDR BT, were compared using the PlatoTM computer planning system. Treatment plans were generated on volumes marked by the same radiation oncologist for each patient. Comparison was made of the treatment plans (dosimetry) between: 1. CT generated plans; 2. CT generated plans assessed using MRI marked volumes and 3. MRI generated plans. We confirm the previously reported results that CT scans can overestimate prostatic volumes compared with MRI. Variations were noted in CT and MRI based plans that may allow improved sparing of the rectum and urethra when using MRI planning. The main disadvantages of using MRI scans are access to facilities as well as identifying a dummy source to adequately define the tips of our catheters. It is feasible to utilise MRI scans for HDR BT planning. The clearer definition of anatomical structures has added advantages when contouring the prostate

  3. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Bera, P.; Vatnitsky, S.

    2002-01-01

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  4. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  5. In vivo dosimetry in radiation therapy in Sweden

    International Nuclear Information System (INIS)

    Eriksson, Jacob; Blomquist, Michael

    2010-07-01

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  6. Alanine dosimetry at NPL - the development of a mailed reference dosimetry service at radiotherapy dose levels

    International Nuclear Information System (INIS)

    Sharpe, P.H.G.; Sephton, J.P.

    1999-01-01

    In this paper we describe the work that has been carried out at National Physical Laboratory (NPL) to develop a mailed alanine reference dosimetry service for radiotherapy dose levels. The service is based on alanine/paraffin wax dosimeters produced at NPL. Using a data analysis technique based on spectrum fitting, it has been possible to achieve a precision of dose measurement better than ±0.05 Gy (1σ). A phantom set has been developed for use in high energy photon beams, which enables simultaneous irradiation of alanine dosimeters and ionisation chambers in a well defined geometry. Studies in photon beams of energies between 60 Co and 20 MeV have shown no significant energy dependence (<1%) for alanine relative to dose determination using a graphite calorimeter. Work is underway to extend the service to electron beams, and preliminary results are presented on the direct calibration of alanine in electron beams using a graphite calorimeter. (author)

  7. Fifth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  8. Integration of external and internal dosimetry in Switzerland

    International Nuclear Information System (INIS)

    Frei, D.; Wernli, C.; Baechler, S.; Fischer, G.; Jossen, H.; Leupin, A.; Lortscher, Y.; Mini, R.; Otto, T.; Schuh, R.; Weidmann, U.

    2007-01-01

    Individual monitoring regulations in Switzerland are based on the ICRP60 recommendations. The annual limit of 20 mSv for the effective dose applies to the sum of external and internal radiation. External radiation is monitored monthly or quarterly with TLD, DIS or CR-39 dosemeters by 10 approved external dosimetry services and reported as H p (10) and H p (0.07). Internal monitoring is done in two steps. At the workplace, simple screening measurements are done frequently in order to recognise a possible incorporation. If a nuclide dependent activity threshold is exceeded then one of the seven approved dosimetry services for internal radiation does an incorporation measurement to assess the committed effective dose E 50 . The dosimetry services report all the measured or assessed dose values to the employer and to the National Dose Registry. The employer records the annually accumulated dose values into the individual dose certificate of the occupationally exposed person, both the external dose H p (10) and the internal dose E 50 as well as the total effective dose E = H p (10) + E 50 . Based on the national dose registry an annual report on the dosimetry in Switzerland is published which contains the statistics for the total effective dose, as well as separate statistics for external and internal exposure. (authors)

  9. MRI gel dosimetry for verification of mono-isocentric junction doses in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Back, S.A.J.; Jayasekera, P.M.; Lepage, M.; Baldock, C.; Menzies, N.; Back, P.

    2000-01-01

    Full text: The use of independent collimators in the abutment of two adjacent treatment volumes, as in head and neck radiation treatments, consists typically of positioning the collimator rotation axis (CRA) at the junction of the volumes, and offsetting each field by its half-field width. This has the effect of positioning one of the collimator jaws at the CRA for each field. However, misalignment of the jaws can lead to variations in dose uniformity in the junction region. We have used gel dosimetry to measure junction doses in three dimensions. PAG gel MRI was used to investigate junction dosimetry for a mono-isocentriic treatment of two orthogonal pairs of opposed (ant/post and lateral) 6 MV x-ray beams. PAG gels in an 11cm diameter cylindrical gel phantom were imaged using a Siemens Vision 1.5 T MRI. The exposures were made using a Philips SL 20 linear accelerator with independent jaws that were known to overlap at the isocentre for sequential abutting offset (within manufacturer's specifications for symmetric fields). X-Omat V films were exposed in mono-directional beams, and optically scanned for comparison. Measurements of off-axis ratios and of relative depth profiles using gel MRI and perpendicular film were in excellent agreement with each other. Measurements through the multi-directional junction at the isocentre are illustrated in the graph, for orthogonal planes centred at the isocentre of the neck phantom. They demonstrate a minimum dose of 75 % of that of the adjacent 'treatment' regions, which agrees closely with the results measured (72%) in the mono-directional case with film. We conclude that this measurement confirms that junction dosimetry at the isocentre measured with perpendicular film for a single direction is a good approximation to the situation in multiple directions. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  10. Accidental and retrospective dosimetry using TL method

    International Nuclear Information System (INIS)

    Mesterházy, D.; Osvay, M.; Kovács, A.; Kelemen, A.

    2012-01-01

    Retrospective dosimetry is one of the most important tools of accidental dosimetry for dose estimation when dose measurement was not planned. In the affected area many objects can be applied as natural dosimeters. The paper discusses our recent investigations on various electronic components and common salt (NaCl) having useful thermoluminescence (TL) properties. Among materials investigated the electronic components of cell phones seem promising for retrospective dosimetry purposes, having high TL responses, proper glow curve peaks and the intensity of TL peaks vs. gamma dose received provided nearly linear response in the dose range of 10 mGy–1.5 Gy. - Highlights: ► Electronic components and common salt were investigated for accidental and retrospective dosimetry. ► SMD resistors seem promising for retrospective dosimetry purposes. ► Table salt can be used effectively for accidental dosimetry purposes, as well.

  11. In-vivo (entrance) dose measurements in external beam radiotherapy with aqueous FBX dosimetry system

    International Nuclear Information System (INIS)

    Semwal, M.K.; Thakur, P.K.; Bansal, A.K.; Vidyasagar, P.B.

    2005-01-01

    FBX aqueous chemical dosimetry system has been found useful in radiotherapy owing to its low dose measuring capability. In the present work, entrance dose measurements in external beam radiotherapy on a telecobalt machine were carried out with the system on 100 patients. Treatments involving simple beam arrangement of open parallel-opposed beams in cranial and pelvic irradiations were selected for this study. In place of a spectrophotometer, a simple and inexpensive colorimeter was used for absorbance measurements. The purpose was to assess the efficacy of the FBX system for in-vivo dose measurements. The results obtained show that the average discrepancy between the measured and expected dose for both categories of patients was 0.2% (standard deviation 3.2%) with a maximum of +1 0.3%. There were 5.5% cases showing more than ± 5% discrepancy. Comparison of the results obtained with published work on entrance dose measurements, with diode detectors, shows that the inexpensive FBX system can be used for in-vivo (entrance) dose measurements for simple beam arrangements in radiotherapy and can thus serve as a useful QA tool. (author)

  12. Tetraploidy in monkey kidney epithelial cells exposed to various doses of radiation in vitro and in vivo. Comm.3

    International Nuclear Information System (INIS)

    Machavariani, M.G.

    1979-01-01

    The tetraploidy phenomenon in three and five day cultures of monkey kidney epithelial cells exposed to various doses of X-rays at Gsub(0) stage has been revealed. The data are presented on simple and complex tetraploidal enclo-reduplicated cells in monkey kidney epithelium after whole-body irradiaiton of animals by 60 Co γ-rays in dosage of 620-660 R. The frequency decrease of endoreduplicated cells at the second month coincides with the frequency increase of simple tetraploidal cells. In the investigated culture of monkey kidney epithelial cells, irradiated in vitro, a trend is observed towards the increase of the number of tetraploidal cells. An assumption is made on the possibility of using the frequency of tetraploidal cells ( including lymphocytes) for the purposes of biological dosimetry

  13. Investigation of the Spatial Resolution of MR-Based Polymer Gel Dosimetry versus Film Densitometry using Dose Modulation Transfer Function

    Directory of Open Access Journals (Sweden)

    Reza Moghadam-Drodkhani

    2011-03-01

    Full Text Available Introduction: The conventional methods of dosimetry are not capable of dosimetry in such a small volume of less than one cubic millimeter. Although the polymer gel dosimetry method based on magnetic resonance imaging (MRI could achieve three dimensional dosimetry with high resolution, a spatial resolution evaluation based on gel dose modulation transfer function has not been investigated yet. Therefore, in this study, the spatial resolution of two systems of film densitometry and polymer gel dosimetry based on MRI has been evaluated by using the dose modulation transfer function (DMTF.   Material and Methods: Kodak therapy verification films and MAGICA polymer gel samples were positioned below a brass absorption grid with different periodic slices (a/2= 280, 525, 1125 μm, which was placed in a water bath container to avoid regions of dose build-up just below the absorption grid and then irradiated with Cobalt-60 photons on a Theratron external-beam treatment unit. Dose variation under the brass grid was determined using a calibration curve, while transverse relaxation time (T2 as the selective parameter in a dose image based on multiple echo MRI with 1.5 Tesla GE Signa Echo Speed system (FOV=10 cm, matrix size=512 ×512, pixel size =0.199×0.199 mm2, TE = 20, 40, 60, 80 ms, TR=4200 ms, NEX = 4, slice thickness=2 mm, gap=1 mm was calculated. DMTF from the modulation depths of T2 and variation in film optical density after calibration would be achieved. The results of polymer gel were compared with film. Results: After deriving the dose distribution profile under the absorption grid, minima and maxima at the smallest period of a = 560 μm could scarcely be resolved, but the modulations due to a=2250 μm and a = 1050 μm grids could be discerned. The modulation depth for a=2250 μm grid was set to 100% and the other modulations were subsequently referred to this maximum modulation. For film densitometry at a = 1050 μm, the modulation depth was

  14. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  15. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  16. Applicability of thermoluminescent dosimeters in X-ray organ dose determination and in the dosimetry of systemic and boron neutron capture radiotherapy

    International Nuclear Information System (INIS)

    Aschan, C.

    1999-01-01

    The main detectors used for clinical dosimetry are ionisation chambers and semiconductors. Thermoluminescent (TL) dosimeters are also of interest because of their following advantages: (i) wide useful dose range, (ii) small physical size, (iii) no need for high voltage or cables, i.e. stand alone character, and (iv) tissue equivalence (LiF) for most radiation types. TL detectors can particularly be used for the absorbed dose measurements performed with the aim to investigate cases where dose prediction is difficult and not as part of a routine verification procedure. In this thesis, the applicability of TL detectors was studied in different clinical applications. Particularly, the major phenomena (e.g. energy dependence, sensitivity to high LET radiation, reproducibility) affecting on the precision and accuracy of TL detectors in the dose estimations were considered in this work. In organ dose determinations of diagnostic X-ray examinations, the TL detectors were found to be accurate within 5% (1 S.D.). For in viva studies using internal irradiation source, i.e. for systemic radiation therapy, a method for determining the absorbed doses to organs was introduced. The TL method developed was found to be able to estimate the absorbed doses to those critical organs near the body surface within 50%. In the mixed neutron-gamma field of boron neutron capture therapy (BNCT), TL detectors were used for gamma dose and neutron fluence measurements. They were found able to measure the neutron dose component with the accuracy of 16%, and therefore to be a useful addition to the activation foils in BNCT neutron dosimetry. The absorbed gamma doses can be measured with TL detectors within 20% in the mixed neutron-gamma field, which enables in viva measurements at BNCT beams with approximately the same accuracy. In this study, the uncertainties of TL dosimeters were found to be high but not essentially greater than those in other measurement techniques used for clinical dosimetry

  17. Patient skin dosimetry in interventional cardiology in the Czech Republic

    International Nuclear Information System (INIS)

    Sukupova, L.; Novak, L.; Kala, P.; Cervinka, P.; Stasek, J.

    2011-01-01

    In this study, skin dosimetry of patients undergoing interventional cardiology procedures is presented. Three hospitals were included. Two methods were used for skin dosimetry-radiochromic dosimetry films and reconstruction of skin dose distribution based on examination protocol. Maximum skin doses (MSD) obtained from both methods were compared for 175 patients. For patients for whom the film MSD was >1 Gy, the reconstruction MSD differed from the film MSD in the range of ± 50 % for 83 % of patients. For remaining patients, the difference was higher and it was caused by longer fluoroscopy time. For 59 patients for whom the cumulative dose was known, the cumulative dose was compared with the film MSD. Skin dosimetry with radiochromic films is more accurate than the reconstruction method, but films do not include X-ray fields from lateral projections whilst reconstructions do. (authors)

  18. Radiographic film dosimetry of proton beams for depth‐dose constancy check and beam profile measurement

    Science.gov (United States)

    Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-01-01

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in‐phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off‐axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread‐out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5 mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the

  19. The 1st Nuclear Test in the former USSR of 29 August 1949: Comparison of individual dose estimates by modeling with EPR retrospective dosimetry and luminescence retrospective dosimetry data for Dolon village, Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, V.F. [Medical Radiological Research Center of RAMS, 4 Korolev Str., Obninsk 249036 (Russian Federation); Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)], E-mail: mrrc@obninsk.ru; Hoshi, M. [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Ivannikov, A.I. [Medical Radiological Research Center of RAMS, 4 Korolev Str., Obninsk 249036 (Russian Federation); Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Bailiff, I.K. [Luminescence Dating and Dosimetry Laboratory, University of Durham, South Road, Durham, DHI 3LE (United Kingdom); Zhumadilov, K. [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Skvortsov, V.G. [Medical Radiological Research Center of RAMS, 4 Korolev Str., Obninsk 249036 (Russian Federation); Argembaeva, R. [Scientifical Research Institute for Radiation Medicine, 258, Gagarina Str., P.B. 49, Semipalatinsk 490026 (Kazakhstan); Tsyb, A.F. [Medical Radiological Research Center of RAMS, 4 Korolev Str., Obninsk 249036 (Russian Federation)

    2007-07-15

    Three methods of individual dose reconstruction, namely dose calculations based on the available archive data and on the individual questioning of inhabitants, EPR dosimetry in human tooth enamel, and retrospective luminescence dosimetry (RLD) with quartz inclusions in the bricks were applied for assessment of accumulated external doses in Dolon village (Kazakhstan), which is one of the most affected settlements as a result of 29.08.1949 nuclear test at Semipalatinsk nuclear test site. Dose values obtained by EPR and RLD methods were compared with computed dose values. The available data on soil contamination with {sup 137}Cs and {sup 239+240}Pu in the vicinity and inside Dolon village were used for interpretation of the results of comparison. Based on a calculated value of 2260 mGy for the dose in the air along the central axis of the trace located NW of Dolon, the doses in the air over whole village and for the south-eastern part of the village containing the RLD sampling points were estimated as 775{+-}40 and 645{+-}70mGy, respectively, the latter correlates well with the RLD dose value of 460{+-}92mGy. The 'upper level' of the mean 'shielding and behavior' factor of dose reduction for inhabitants of Dolon village was estimated as 0.28{+-}0.07; this was performed by comparing the individual EPR tooth enamel doses with the calculated mean dose for the settlement. The individual dose estimates by EPR dosimetry were compared with individual dose values obtained by modeling. Uncertainties of the calculated individual doses were evaluated using Monte Carlo simulations. The individual dose estimates by EPR method are lower in comparison with mean computed doses and with RLD data, but they are in a good consistency with computed individual dose values in Dolon village based on the results of individual questioning with account of individual 'shielding and behavior' factors.

  20. The 1st Nuclear Test in the former USSR of 29 August 1949: Comparison of individual dose estimates by modeling with EPR retrospective dosimetry and luminescence retrospective dosimetry data for Dolon village, Kazakhstan

    International Nuclear Information System (INIS)

    Stepanenko, V.F.; Hoshi, M.; Ivannikov, A.I.; Bailiff, I.K.; Zhumadilov, K.; Skvortsov, V.G.; Argembaeva, R.; Tsyb, A.F.

    2007-01-01

    Three methods of individual dose reconstruction, namely dose calculations based on the available archive data and on the individual questioning of inhabitants, EPR dosimetry in human tooth enamel, and retrospective luminescence dosimetry (RLD) with quartz inclusions in the bricks were applied for assessment of accumulated external doses in Dolon village (Kazakhstan), which is one of the most affected settlements as a result of 29.08.1949 nuclear test at Semipalatinsk nuclear test site. Dose values obtained by EPR and RLD methods were compared with computed dose values. The available data on soil contamination with 137 Cs and 239+240 Pu in the vicinity and inside Dolon village were used for interpretation of the results of comparison. Based on a calculated value of 2260 mGy for the dose in the air along the central axis of the trace located NW of Dolon, the doses in the air over whole village and for the south-eastern part of the village containing the RLD sampling points were estimated as 775±40 and 645±70mGy, respectively, the latter correlates well with the RLD dose value of 460±92mGy. The 'upper level' of the mean 'shielding and behavior' factor of dose reduction for inhabitants of Dolon village was estimated as 0.28±0.07; this was performed by comparing the individual EPR tooth enamel doses with the calculated mean dose for the settlement. The individual dose estimates by EPR dosimetry were compared with individual dose values obtained by modeling. Uncertainties of the calculated individual doses were evaluated using Monte Carlo simulations. The individual dose estimates by EPR method are lower in comparison with mean computed doses and with RLD data, but they are in a good consistency with computed individual dose values in Dolon village based on the results of individual questioning with account of individual 'shielding and behavior' factors

  1. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry

    International Nuclear Information System (INIS)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de

    2014-01-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  2. 11. International conference on solid radiation dosimetry

    International Nuclear Information System (INIS)

    Krylova, I.V.

    1996-01-01

    The main problems discussed during the international conference on solid radiation dosimetry which took place in June 1995 in Budapest are briefly considered. These are the basic physical processes, materials applied for dosimetry, special techniques, personnel monitoring, monitoring of environmental effects, large-dose dosimetry, clinic dosimetry, track detector used for dosimetry, dosimetry in archaeology and geology, equipment and technique for dosimetric measurements. The special attention was paid to superlinearity in the TLD-100 (LiF, Mg, Ti) response function when determining doses of gamma radiation, heavy charged particles, low-energy particle fluxes in particular. New theoretical models were considered

  3. Medical reference dosimetry using EPR measurements of alanine: Development of an improved method for clinical dose levels

    International Nuclear Information System (INIS)

    Helt-Hansen, Jakob; Andersen, Claus Erik; Rosendal, Flemming; Kofoed, Inger Matilde

    2009-01-01

    Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low signal fading, non-destructive measurement and small dosimeter size. Material and Methods. A Bruker EMX-micro EPR spectrometer with a rectangular cavity and a measurement time of two minutes per dosimeter was used for reading of irradiated alanine dosimeters. Under these conditions a new algorithm based on scaling of known spectra was developed to extract the alanine signal. Results. The dose accuracy, including calibration uncertainty, is less than 2% (k=1) above 4 Gy (n=4). The measurement uncertainty is fairly constant in absolute terms (∼30 mGy) and the relative uncertainty therefore rises for dose measurements below 4 Gy. Typical reproducibility is <1% (k=1) above 10 Gy and <2% between 4 and 10 Gy. Below 4 Gy the uncertainty is higher. A depth dose curve measurement was performed in a solid-water phantom irradiated to a dose of 20 Gy at the maximum dose point (dmax) in 6 and 18 MV photon beams. The typical difference between the dose measured with alanine in solid water and the dose measured with an ion chamber in a water tank was about 1%. A difference of 2% between 6 and 18 MV was found, possibly due to non-water equivalence of the applied phantom. Discussion. Compared to previously published methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications

  4. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  5. Analysis of uncertainties in the measurements of absorbed dose to water in a secondary standard dosimetry laboratory (SSDL) 60Cobalt

    International Nuclear Information System (INIS)

    Silva, Cosme Norival Mello da; Rosado, Paulo Henrique Goncalves

    2011-01-01

    The National Metrology Laboratory of Ionizing Radiation (LNMRI) is the laboratory designated by INMETRO in the field of Metrology of ionizing radiation and is a Secondary Standard Dosimetry Laboratory (SSDL). One of its guidelines is to maintain and disseminate LNMRI absorbed dose in water used as a national standard dosimetry in radiotherapy. For this pattern is metrologically acceptable accuracy and uncertainties should be assessed over time. The objective of this study is to analyze the uncertainties involved in determining the absorbed dose rate in water and standard uncertainty of absorbed dose calibration in water from a clinical dosimeter. The largest sources of uncertainty in determining the rate of absorbed dose in water are due to: calibration coefficient of the calibration certificate supplied by the BIPM, electrometer calibration, camber stability over time, variation of pressure and humidity, strong dependence and non-uniformity of the field. The expanded uncertainty is 0.94% for k = 2. For the calibration standard uncertainty of absorbed dose in water of a dosimeter in a clinical a major source of uncertainty is due to the absorbed dose rate in water (0.94%). The value of expanded uncertainty of calibrating a clinical dosimeter is 1.2% for k = 2. (author)

  6. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008

    Energy Technology Data Exchange (ETDEWEB)

    Moseeva, Maria B.; Azizova, Tamara V.; Grigoryeva, Evgenia S. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Haylock, Richard [Public Health of England, London (United Kingdom)

    2014-05-15

    The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure. (orig.)

  7. Dosimetry as an integral part of radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1999-01-01

    Different connections between high-dose dosimetry and radiation processing are discussed. Radiation processing cannot be performed without proper dosimetry. Accurate high dose and high dose rate dosimetry exhibits several aspects: first of all it is the preservation of the quality of the product, then fulfillment of legal aspects and last but not the least the safety of processing. Further, seldom discussed topics are as follow: dosimetric problems occurring with double-side EB irradiations, discussed in connection with the deposition of electric charge during electron beam irradiation. Although dosimetry for basic research and for medical purposes are treated here only shortly, some conclusions reached from these fields are considered in dosimetry for radiation processing. High-dose dosimetry of radiation has become a separate field, with many papers published every year, but applied dosimetric projects are usually initiated by a necessity of particular application. (author)

  8. Personal Dosimetry in UHC Sestre Milosrdnice: 10-Years Review

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.; Suric Mihic, M.

    2013-01-01

    Personal dose monitoring in UHC 'Sestre milosrdnice' is regulary performed for about 300 exposed workers involved in a variety of tasks with different sources of ionizing radiation. Exposed workers are required to wear personal dosimeters which are read on monthly basis and dose records are kept in the hospital. In this paper an overview of personal dosimetry data from year 2003 till 2013 is presented. Film dosimeters were used for personal dosimetry untill 2010 when the thermoluminescent (TL) dosimetry was introduced. Dosimeters are calibrated to measure personal dose equivalent H p (10). Received doses are analyzed for workers in the field of nuclear medicine, radiotherapy (external beam and brachytherapy), general diagnostic radiology and interventional radiology. Analysis of received doses in the whole period resulted with an average individual dose in nuclear medicine of 0.6 mSv/y, which decreased to 0.21 mSv/y in the last three years, caused by more precise dosimetric methods with TL dosimetry and improved conditions of radiation protection. In the same three-year period, in interventional radiology doses were 0.32 mSv/y, compared to 0.29 mSv/y obtained for a previous seven years. This was expected due to the escalation in a number of interventions and new installed equipment. There was no such difference in diagnostic radiology doses, showing that film dosimetry is suitable for x ray energies. Analysis of all the readings showed a significant influence of measurement procedures on personal dosimeter dose and also the importance of continuous monitoring of the dose records in order to improve the conditions of radiation protection and achieving the ALARA goal.(author)

  9. In vivo dosimetry using a linear Mosfet-array dosimeter to determine the urethra dose in 125I permanent prostate implants.

    Science.gov (United States)

    Bloemen-van Gurp, Esther J; Murrer, Lars H P; Haanstra, Björk K C; van Gils, Francis C J M; Dekker, Andre L A J; Mijnheer, Ben J; Lambin, Philippe

    2009-01-01

    In vivo dosimetry during brachytherapy of the prostate with (125)I seeds is challenging because of the high dose gradients and low photon energies involved. We present the results of a study using metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to evaluate the dose in the urethra after a permanent prostate implantation procedure. Phantom measurements were made to validate the measurement technique, determine the measurement accuracy, and define action levels for clinical measurements. Patient measurements were performed with a MOSFET array in the urinary catheter immediately after the implantation procedure. A CT scan was performed, and dose values, calculated by the treatment planning system, were compared to in vivo dose values measured with MOSFET dosimeters. Corrections for temperature dependence of the MOSFET array response and photon attenuation in the catheter on the in vivo dose values are necessary. The overall uncertainty in the measurement procedure, determined in a simulation experiment, is 8.0% (1 SD). In vivo dose values were obtained for 17 patients. In the high-dose region (> 100 Gy), calculated and measured dose values agreed within 1.7% +/- 10.7% (1 SD). In the low-dose region outside the prostate (MOSFET detectors are suitable for in vivo dosimetry during (125)I brachytherapy of prostate cancer. An action level of +/- 16% (2 SD) for detection of errors in the implantation procedure is achievable after validation of the detector system and measurement conditions.

  10. MRI dosimetry using an echo-quotient technique for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Ansbacher, W.

    1996-01-01

    MRI gel dosimetry is a relatively new technique that has many advantages over conventional methods, and is particularly suited to High Dose Rate (HDR) Brachytherapy. The dosimeter has high spatial resolution and a water-equivalent response over a wide range of photon energies. Because it is an integrating dosimeter, it allows for efficient mapping of the dynamically-produced distributions from an HDR source. As an example of this technique, the dose response, which is calibrated in terms of the change in spin-spin relaxation time, has been used to investigate the anisotropy of an HDR source. (author). 1 fig

  11. Report: dosimetry of diagnostic exams in nuclear medicine

    International Nuclear Information System (INIS)

    Touzery, C.; Aubert, B.; Caselles, O.; Gardin, I.; Guilhem, M.Th.; Laffont, S.; Lisbona, A.

    2002-01-01

    A compilation about dosimetry of diagnosis explorations in nuclear medicine is presented in this issue. Dosimetry tables of the different radiopharmaceuticals used in nuclear medicine give indications on absorbed and efficient doses according the patients age from one year to adult age. The doses received by a fetus during a lung scintigraphy realized for the pregnant woman susceptible to suffer of pulmonary emboli is presented. A table of efficient doses for the infants until the age of six months for the principal scintigraphy explorations realized in nuclear medicine are given. A chapter of theoretical headlines is devoted to dosimetry and the calculations methods of absorbed and efficient doses in function of patients age. A short chapter concerns the recommendations to explore nursing mothers by scintigraphy. A last chapter treats the efficient doses received during explorations using ionizing radiations in radiology and their place in annual natural irradiation scale. (N.C.)

  12. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  13. Lung toxicity determination by in vitro exposure at the air liquid interface with an integrated online dose measurement

    International Nuclear Information System (INIS)

    Muelhopt, Sonja; Paur, H-R; Diabate, S; Weiss, C; Krebs, T

    2009-01-01

    Epidemiological studies show an association between the concentration of ultrafine particles in the atmosphere and the rate of mortality or morbidity due to respiratory and cardiovascular diseases. For the quantitative assessment of the toxicity of airborne nanoparticles the dose-response relationship is tested in in vitro test systems using bioassays of cell cultures as sensor. For the air-liquid interface exposure of cell cultures towards aerosols the Karlsruhe exposure system was developed. The human lung cell cultures are exposed in VITROCELL (registered) system modules with a constant flow of the conditioned aerosol. After exposure the cells are analyzed to measure the biological responses such as viability, inflammatory or oxidative stress. For the determination of the dose response relationship the accurate knowledge of the deposited particle mass is essential. A new online method is developed in the Karlsruhe exposure system: the sensor of a quartz crystal microbalance is placed in an exposure chamber instead of the membrane insert and exposed to the aerosol in the same way as the cell cultures. The deposited mass per area unit is monitored as a function of exposure time showing a linear relationship for a constant aerosol flow with defined particle concentration. A comparison of this new dose signal to a dosimetry method using fluorescein sodium particles shows a very good correlation between the sensor signal of the quartz crystal microbalance and the deposited mass on the membranes shown by spectroscopy. This system for the first time provides an online dose measurement for in vitro experiments with nanoparticles.

  14. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    International Nuclear Information System (INIS)

    Vedelago, J.; Valente, M.; Mattea, F.

    2017-10-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  15. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J.; Valente, M. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Mattea, F., E-mail: jvedelago@famaf.unc.edu.ar [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2017-10-15

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  16. Heterogeneity phantoms for visualization of 3D dose distributions by MRI-based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi; Mooij, Rob; Mark Perera, G.; Maryanski, Marek J.

    2004-01-01

    Heterogeneity corrections in dose calculations are necessary for radiation therapy treatment plans. Dosimetric measurements of the heterogeneity effects are hampered if the detectors are large and their radiological characteristics are not equivalent to water. Gel dosimetry can solve these problems. Furthermore, it provides three-dimensional (3D) dose distributions. We used a cylindrical phantom filled with BANG-3 registered polymer gel to measure 3D dose distributions in heterogeneous media. The phantom has a cavity, in which water-equivalent or bone-like solid blocks can be inserted. The irradiated phantom was scanned with an magnetic resonance imaging (MRI) scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance (MR) signal. To study dose distributions we had to analyze MR imaging artifacts. This was done in three ways: comparison of a measured dose distribution in a simulated homogeneous phantom with a reference dose distribution, comparison of a sagittally scanned image with a sagittal image reconstructed from axially scanned data, and coregistration of MR and computed-tomography images. We found that the MRI artifacts cause a geometrical distortion of less than 2 mm and less than 10% change in the dose around solid inserts. With these limitations in mind we could make some qualitative measurements. Particularly we observed clear differences between the measured dose distributions around an air-gap and around bone-like material for a 6 MV photon beam. In conclusion, the gel dosimetry has the potential to qualitatively characterize the dose distributions near heterogeneities in 3D

  17. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  18. Personal dosimetry statistics and specifics of low dose evaluation

    International Nuclear Information System (INIS)

    Avila, R.E.; Gómez Salinas, R.A.; Oyarzún Cortés, C.H.

    2015-01-01

    The dose statistics of a personal dosimetry service, considering 35,000+ readings, display a sharp peak at low dose (below 0.5 mSv) with skewness to higher values. A measure of the dispersion is that approximately 65% of the doses fall below the average plus 2 standard deviations, an observation which may prove helpful to radiation protection agencies. Categorizing the doses by the concomitant use of a finger ring dosimeter, that skewness is larger in the whole body, and ring dosimeters. The use of Harshaw 5500 readers at high gain leads to frequent values of the glow curve that are judged to be spurious, i.e. values not belonging to the roughly normal noise over the curve. A statistical criterion is shown for identifying those anomalous values, and replacing them with the local behavior, as fit by a cubic polynomial. As a result, the doses above 0.05 mSv which are affected by more than 2% comprise over 10% of the data base. The low dose peak of the statistics, above, has focused our attention on the evaluation of LiF(Mg,Ti) dosimeters exposed at low dose, and read with Harshaw 5500 readers. The standard linear procedure, via an overall reader calibration factor, is observed to fail at low dose, in detailed calibrations from 0.02 mSv to 1 Sv. A significant improvement is achieved by a piecewise polynomials calibration curve. A cubic, at low dose is matched, at ∼10 mSv, in value and first derivative, to a linear dependence at higher doses. This improvement is particularly noticeable below 2 mSv, where over 60% of the evaluated dosimeters are found. (author)

  19. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  20. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  1. Dosimetry techniques applied to thermoluminescent age estimation

    International Nuclear Information System (INIS)

    Erramli, H.

    1986-12-01

    The reliability and the ease of the field application of the measuring techniques of natural radioactivity dosimetry are studied. The natural radioactivity in minerals in composed of the internal dose deposited by alpha and beta radiations issued from the sample itself and the external dose deposited by gamma and cosmic radiations issued from the surroundings of the sample. Two technics for external dosimetry are examined in details. TL Dosimetry and field gamma dosimetry. Calibration and experimental conditions are presented. A new integrated dosimetric method for internal and external dose measure is proposed: the TL dosimeter is placed in the soil in exactly the same conditions as the sample ones, during a time long enough for the total dose evaluation [fr

  2. Using thermoluminescence dosimetry (TLD) to determine the gonadal dose of patients under-going chest X-ray examinations at NKST hospital, Mkar

    International Nuclear Information System (INIS)

    Agba, E.H.; Akaagerger, N.B.; Kungur, S.T.

    2011-01-01

    The doses absorbed by the gonads of patients undergoing chest X-ray examinations at NKST Christian Hospital, Mkar was determined using the Thermoluminescence Dosimetry Technique of measurement. Also, the direct X-ray dose to the chest of patients undergoing the routine examinations was also determined using the Thermolumnescence Dosimetry technique of measurement. The mean gonadal dose and the X-ray dose to the patients were found to be 0.03±0.02μSv and 0.04±0.03mSv respectively after exposure. These X-ray doses to the patients is seen to be within the acceptable recommended X -ray dose limits of 1mGy recommended by ICRP.

  3. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe 2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  4. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  5. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  6. Calibration Curves for Biological Dosimetry by Fluorescence In situ Hybridisation

    International Nuclear Information System (INIS)

    Stonati, L.; Durante, M.; Gensabella, G.; Gialanella, G.; Grossi, G.F.; Pugliese, M.; Scampoli, P.; Sgura, A.; Testa, A.; Tanzarella, C.

    2001-01-01

    Dose-response curves were measured for the induction of chromosomal aberrations in peripheral blood lymphocytes after acute exposure in vitro to 60 Co γ rays. Blood was obtained from four different healthy donors, and chromosomes were either observed at metaphase, following colcemid accumulation, or prematurely condensed by calyculin A. Cells were analysed in three different Italian laboratories. Chromosomes 1, 2, and 4 were painted, and simple-type interchanges between painted and non-painted chromosomes were scored in cells exposed in the dose range 0.1-3.0 Gy. The chemical-induced premature chromosome condensation method was also used combined with chromosome painting (chromosome 4 only) to determine calibration curves for high dose exposures (up to 20 Gy X rays). Calibration curves described in this paper will be used in our laboratories for biological dosimetry by fluorescence in situ hybridisation. (author)

  7. Chemical dosimetry system for criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  8. Dosimetry in Diagnostic Radiology for Paediatric Patients

    International Nuclear Information System (INIS)

    2013-01-01

    Concern about the radiation dose to children from diagnostic radiology examinations has recently been popularly expressed, particularly as related to computed tomography (CT) procedures. This involves the observation that children can receive doses far in excess of those delivered to adults, in part due to the digital nature of the image receptors that may give no warning to the operator of the dose to the patient. Concern for CT examinations should be extended to the broad range of paediatric diagnostic radiological procedures responsible for radiation doses in children, especially as factors, such as increased radiosensitivity and the longer life expectancy of children, increase the associated radiation risk. In all cases, owing to the added paediatric radiological examination factor of patient size and its associated impact on equipment selection, clinical examination protocol and dosimetric audit, the determination of paediatric dose requires a distinct approach from adult dosimetry associated with diagnostic radiological examinations. In response to this, there is a need to inform health professionals about standardized methodologies used to determine paediatric dose for all major modalities such as general radiography, fluoroscopy and CT. Methodologies for standardizing the conduct of dose audits and their use for the derivation and application of diagnostic reference levels for patient populations, that vary in size, are also required. In addition, a review is needed of the current knowledge on risks specific to non-adults from radiation, and also an analysis of the management of factors contributing to dose from paediatric radiological examinations. In 2007, the IAEA published a code of practice, Dosimetry in Diagnostic Radiology: An International Code of Practice, as Technical Reports Series No. 457 (TRS 457). TRS 457 recommends procedures for dosimetric measurement and calibration for the attainment of standardized dosimetry, and addresses requirements

  9. Individualised dosimetry in patients with differentiated thyroid cancer based on external dose-rate. Optimisation of the number of measurements.

    Science.gov (United States)

    Bautista-Ballesteros, J A; Torres-Espallardo, I; Borrelli, P; Rivas-Sanchez, A; Bello, P; Martí-Bonmatí, L

    2016-01-01

    To compare the results of individual dosimetry in differentiated thyroid cancer patients treated with (131)I at our centre with the established limits and dosimetry results of published studies. Analysis of the optimal number of measurements necessary to reduce the impact of dosimetry for the comfort of the patient and, secondly, on the workload of health workers. Dosimetry was performed in the Nuclear Medicine Department of the University and Polytechnic Hospital La Fe, on 29 patients suffering from differentiated thyroid cancer and treated with activities between 1.02 and 5.51 GBq (mean 2.68 GBq) of (131)I. The Spanish Society of Medical Physics (SEFM) protocol was used, based on measurements of external dose rate adjusted to a bi-exponential curve according to a two compartment model. Different dosimetries were performed on each patient, taking different selections of the available measurements in order to find the optimal number. Results are well below the dosimetry limits, and are consistent with those obtained in other centres. The number of measurements can be reduced from 5, as proposed in the SEFM protocol, to 4 without significant loss of accuracy. Further reducing measures may be justified in individual cases. The values obtained for the dosimetry quantities are significantly below the established limits. A reduction in measurements can be assumed at the cost of a moderate increase in uncertainty, benefiting the patient. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  10. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    International Nuclear Information System (INIS)

    Persoon, L C G G; Nijsten, S M J J G; Wilbrink, F J; Podesta, M; Snaith, J A D; Lustberg, T; Van Elmpt, W J C; Van Gils, F; Verhaegen, F

    2012-01-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  11. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation protection dose limits, the assurance that these limits will not be exceeded cannot be guaranteed, thus providing new challenges for development of accurate methods of individual dose assessment. To meet some of these challenges, in 1998 the IAEA initiated a co-ordinated research project (CRP) with the objective to review the available methods, current research and development in EPR biodosimetry technology, which may be of practical use. The major goal of this CRP was to investigate the use of EPR biodosimetry for reconstruction of absorbed dose in tooth enamel with the aim of providing Member States with up-to-date, and generally agreed upon advice regarding the most suitable procedures and the best focus for their research. The co-ordinated research project was conducted over four years and this publication presents the results and findings by a group of investigators from different countries. The available cytogenetic methods for radiation dose assessment were

  12. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2002-12-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation protection dose limits, the assurance that these limits will not be exceeded cannot be guaranteed, thus providing new challenges for development of accurate methods of individual dose assessment. To meet some of these challenges, in 1998 the IAEA initiated a co-ordinated research project (CRP) with the objective to review the available methods, current research and development in EPR biodosimetry technology, which may be of practical use. The major goal of this CRP was to investigate the use of EPR biodosimetry for reconstruction of absorbed dose in tooth enamel with the aim of providing Member States with up-to-date, and generally agreed upon advice regarding the most suitable procedures and the best focus for their research. The co-ordinated research project was conducted over four years and this publication presents the results and findings by a group of investigators from different countries. The available cytogenetic methods for radiation dose assessment were

  13. Verification of the absorbed dose values determined with plane parallel ionization chambers in therapeutic electron beams using ferrous sulfate dosimetry

    International Nuclear Information System (INIS)

    Plaetsen, A. van der; Thierens, H.; Palmans, H.

    2000-01-01

    Absolute and relative dosimetry measurements in clinical electron beams using different detectors were performed at a Philips SL18 accelerator. For absolute dosimetry, ionization chamber measurements with the PTW Markus and PTW Roos plane parallel chambers were performed in water following the recommendations of the TRS-381 Code of Practice, using different options for chamber calibration. The dose results obtained with these ionization chambers using the electron beam calibration method were compared with the dose response of the ferrous sulphate (Fricke) chemical dosimeter. The influence of the choice of detector type on the determination of physical quantities necessary for absolute dose determination was investigated and discussed. Results for d max , R 50 and R p were in agreement within statistical uncertainties when using a diode, diamond or plane parallel chamber. The effective point of measurement for the Markus chamber is found to be shifted 0.5 mm from the front surface of the cavity. Fluence correction factors, h m , for dose determination in electron beams using a PMMA phantom were determined experimentally for both plane parallel chamber types. (author)

  14. Non-conventional personal dosimetry techniques

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1984-01-01

    Established dosimetry has achieved a high standard in personnel monitoring. This applies particularly to photon dosimetry. Nevertheless, even in photon dosimetry, improvements and changes are being made. The reason may be technological progress, or the introduction of new tasks on the basis of the recommendations of international bodies (e.g. the new ICRU measurement unit) of national legislation. Since we are restricting ourselves here to technical trends the author would like to draw attention to various activities of current interest, e.g. the computation of receptor-related conversion coefficients from personal dose to organ or body doses, taking into account the conditions of exposure with respect to differential energy and angular distribution of the radiation field. Realistic data on exposure geometry are taken from work place analyses. Furthermore, the data banks of central personal dosimetry services are subject to statistical evaluation and radiation protection trend analysis. Technological progress and developments are considered from the point of view of personal dosimetry, partial body or extremity dosimetry and accidental dosimetry

  15. Biological dosimetry for mixed gamma-neutron field

    International Nuclear Information System (INIS)

    Brandao, J.O.C.; Santos, J.A.L.; Souza, P.L.G.; Lima, F.F.; Vilela, E.C.; Calixto, M.S.; Santos, N.

    2011-01-01

    There is increasing concern about airline crew members (about one million worldwide) exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mitogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to mixed gamma-neutron field. Blood was obtained from one healthy donor and exposed to two mixed gamma-neutron field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemide accumulation and 1000 well-spread metaphases were analyzed for the presence of dicentrics by two experts after painted by giemsa 5%. The preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  16. Experimental 3D dosimetry around a high-dose-rate clinical 192Ir source using a polyacrylamide gel (PAG) dosimeter

    International Nuclear Information System (INIS)

    McJury, M.; Tapper, P.D.; Griffin, S.; Cosgrove, V.P.; Webb, S.; Murphy, P.S.; Leach, M.O.; Oldham, M.

    1999-01-01

    It is well known that the experimental dosimetry of brachytherapy sources presents a challenge. Depending on the particular dosimeter used, measurements can suffer from poor spatial resolution (ion chambers), lack of 3D information (film) or errors due to the presence of the dosimeter itself distorting the radiation flux. To avoid these problems, we have investigated the dosimetry of a clinical 192 Ir source using a polyacrylamide gel (PAG) dosimeter. Experimental measurements of dose versus radial distance from the centre of the source (cross-line plots) were compared with calculations produced with a Nucletron NPS planning system. Good agreement was found between the planning system and gel measurements in planes selected for analysis. Gel dosimeter measurements in a coronal plane through the phantom showed a mean difference between measured absorbed dose and calculated dose of 0.17 Gy with SD=0.13Gy. Spatially, the errors at the reference point remain within one image pixel (1.0 mm). The use of polymer gel dosimetry shows promise for brachytherapy applications, offering complete, three-dimensional dose information, good spatial resolution and small measurement errors. Measurements close to the source, however, are difficult, due to some of the limiting properties of the polyacrylamide gel. (author)

  17. A microcomputer controlled thermoluminescence dosimetry system

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Kicken, P.J.H.

    1980-01-01

    Using a microcomputer, an automatic thermoluminescence dosimetry system for personal dosimetry and thermoluminescence detector (TLD) research was developed. Process automation, statistical computation and dose calculation are provided by this microcomputer. Recording of measurement data, as well as dose record keeping for radiological workers is carried out with floppy disk. The microcomputer also provides a human/system interface by means of a video display and a printer. The main features of this dosimetry system are its low cost, high degree of flexibility, high degree of automation and the feasibility for use in routine dosimetry as well as in TLD research. The system is in use for personal dosimetry, environmental dosimetry and for TL-research work. Because of its modular set-up several components of the system are in use for other applications, too. The system seems suited for medium sized health physics groups. (author)

  18. The experience from operation of electronic personal dosimetry system at Dukovany, Temelin and Mochovce NPPs after repair of Siemens dosemeters eliminating false doses

    International Nuclear Information System (INIS)

    Malysak, J.; Kocvara, S.; Jurochova, B.; Zelenka, Z.; Schacherl, M.; Zrubec, M.; Kaiser, H.

    2003-01-01

    This presentation summarizes the operational experience of the Electronic Personal Dosimetry Systems installed at Dukovany, Temelin and Mochovce NPPs. The system consists of three basic parts: Electronic personal dosemeters (EPD); Physical layer (HW); Logical layer (SW). Number of false doses before and after correction is presented. This presentation has demonstrated the possibilities of SEOD system and the possibility of easy dose comparison between the individual NPPs after introducing this electronic dosimetry system. Basically, the results of film and electronic dosimetry systems are according to our findings nearly identical. Electronic dosemeter sensitivity to interfering electromagnetic fields is a problem which is easily re-movable. In addition, if we know this problem, these false doses in the SEOD system can be easily revealed (e.g. by investigation of histograms) and repaired

  19. Mathematical operations in cytogenetic dosimetry: Dosgen

    International Nuclear Information System (INIS)

    Garcia L, O.; Zequera J, T.

    1996-01-01

    Handling of formulas and mathematical procedures for fitting and using of dose-response relationships in cytogenetic dosimetry is often difficulted by the absence of collaborators specialized in mathematics and computation. DOSGEN program contains the main mathematical operations which are used in cytogenetic dosimetry. It is able to run in IBM compatible Pc's by non-specialized personnel.The program possibilities are: Poisson distribution fitting test for the number of aberration per cell, dose assessment for whole body irradiation, dose assessment for partial irradiation and determination of irradiated fraction. The program allows on screen visualization and printing of results. DOSGEN has been developed in turbo pascal and is 33Kb of size. (authors). 4 refs

  20. Trends of personal dosimetry at atomic power plants

    International Nuclear Information System (INIS)

    Yamamura, Seini

    1998-01-01

    The individual dosimetry at the atomic power station is sorted for monthly dosimetry, daily dosimetry and special job dosimetry in high dose circumstance. Film badge (passive dosimeter) can measure gamma dose, beta dose and neutron dose respectively lower than about 0.1 mSv. While workers are in the radiation controlled area, they have to wear the dosimeters and the individual dose is accumulated for every one month. Recently the Silicon semiconductors detecting beta ray and neutron have been developed. With microcircuit technology and these new sensors, new multiple function dosimeter of the card size had been put to practical use. The result of dose measurement obtained by the electronic dosimeter is consistent well with the measurement of usual film badge and new dosimeter can determine the dose as low as 0.01 mSv. The result is stored in the non-volatile memory in the electronic personal dosimeter and held for more than one year without the power supply. The function to read data directly from the memory improves the reliability of the data protection. The realization of the unified radiation control system that uses the electronic personal dosimeter for monthly dosimetry is expected. (J.P.N.)

  1. MO-B-BRB-00: Three Dimensional Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  2. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina

    International Nuclear Information System (INIS)

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M.

    2013-01-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary

  3. Dosimetry in Radiology

    International Nuclear Information System (INIS)

    Andisco, D.; Blanco, S.; Buzzi, A.E

    2014-01-01

    The steady growth in the use of ionizing radiation in diagnostic imaging requires to maintain a proper management of patient’s dose. Dosimetry in Radiology is a difficult topic to address, but vital for proper estimation of the dose the patient is receiving. The awareness that every day is perceived in our country on these issues is the appropriate response to this problem. This article describes the main dosimetric units used and easily exemplifies doses in radiology through internationally known reference values. (authors) [es

  4. First national intercomparison of personal dosimetry for dosimetry service providers in paec

    International Nuclear Information System (INIS)

    Akhter, J.; Ahmed, S.S.

    2006-12-01

    Health Physics Division, PINSTECH, has conducted an intercomparison exercise for PAEC organizations which are responsible for providing personal dosimetry services for the assessment of occupational doses of radiation workers. The exercise was on voluntary basis and it was designed to harmonize the procedure of individual dose monitoring techniques in terms of new ICRP operational quantities of personal dose equivalent Hp (10) for photons. Cobalt-60 and Cesium-137 protection level sources were used for irradiation. The dosimeters were exposed to radiation in the range of 0.46 to 24.20 mSv. Irradiations were performed in Secondary Standard Dosimetry Laboratory (SSDL) at HPD, PINSTECH according to IAEA/WHO standards. The performance of the participating laboratories was judged by trumpet curve that provides the acceptable limits on overall accuracy for occupational dose monitoring at 95% confidence level according to international standards. The response of measured dose/standard true dose (Hm/Ht lies in the range of 0.66 to 1.11 for 60CO and 0.84 to 1.17 for 137CS. This report describes the procedure and results of the intercomparison exercise. (author)

  5. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  6. In vivo Tl dosimetry for the quality control in Radiotherapy with 60 Co and brachytherapy of low dose rate

    International Nuclear Information System (INIS)

    Velez, G.; Bustos, S.; Balmaceda, O.; Gutierrez, S.; Ferraris, M.

    1998-01-01

    In vivo dosimetry is used every time with more frequency as a valuable tool for the quality control in Radiotherapy. The measurements of input and output doses provide us information about the technique accuracy or the treatment procedure used; likewise the dose measurement which rectum or bladder receive in gynecologic implants contribute to the improving and adjusting the procedures in brachytherapy. Besides, it may be identify systematic errors in particular situations which allow to optimize the treatment and to minimize errors. It was realized a study at the Radiotherapy service in San Roque Hospital (Cordoba) to control the procedures used in the treatment of distinct oncologic pathologies. Its were selected patients, which were realized the routine planning with the planning system of computerized treatments Prowess 3000, that later its were controlled with In vivo thermoluminescent dosimetry using the Ceprocor Services (Cordoba). Its were realized dose skin measurements in treatments of mammary gland, pelvis, thorax, head and neck and it were measured doses in body cavities, as oral cavity, rectum, esophagus, etc. arranging the TLD inside special catheters. In the case of dose skin, the dosemeters were arranged in acrylic porta-dosemeters, at pairs, which later they were enveloped and sealed. It was founded a very good agreement among the In vivo measurements and the predicted by the planner. In some cases, the control allows to modify the treatment for to avoid over or sub dosages of the distinct organs affected by the radiation field. (Author)

  7. Genistein genotoxicity: Critical considerations of in vitro exposure dose

    International Nuclear Information System (INIS)

    Klein, Catherine B.; King, Audrey A.

    2007-01-01

    The potential health benefits of soy-derived phytoestrogens include their reported utility as anticarcinogens, cardioprotectants and as hormone replacement alternatives in menopause. Although there is increasing popularity of dietary phytoestrogen supplementation and of vegetarian and vegan diets among adolescents and adults, concerns about potential detrimental or other genotoxic effects persist. While a variety of genotoxic effects of phytoestrogens have been reported in vitro, the concentrations at which such effects occurred were often much higher than the physiologically relevant doses achievable by dietary or pharmacologic intake of soy foods or supplements. This review focuses on in vitro studies of the most abundant soy phytoestrogen, genistein, critically examining dose as a crucial determinant of cellular effects. In consideration of levels of dietary genistein uptake and bioavailability we have defined in vitro concentrations of genistein > 5 μM as non-physiological, and thus 'high' doses, in contrast to much of the previous literature. In doing so, many of the often-cited genotoxic effects of genistein, including apoptosis, cell growth inhibition, topoisomerase inhibition and others become less obvious. Recent cellular, epigenetic and microarray studies are beginning to decipher genistein effects that occur at dietarily relevant low concentrations. In toxicology, the well accepted principle of 'the dose defines the poison' applies to many toxicants and can be invoked, as herein, to distinguish genotoxic versus potentially beneficial in vitro effects of natural dietary products such as genistein

  8. Comparison of absorbed dose determinations using the IAEA dosimetry protocol and the ferrous sulphate dosimeter

    International Nuclear Information System (INIS)

    Mattsson, Olof

    1988-01-01

    In 1985 a comparison of different revised protocols for the dosimetry of high-energy photon and electron beams was published (Mattsson, 1985). The conclusions were that the agreement in absorbed dose to water determined using the different protocols is very good and that the agreement between ionization chamber and ferrous sulphate dosimetry is generally good. For electron beams the differences obtained with the ionization chamber and ferrous sulphate dosimeters were up to about 2%. The influence of the energy and angular distribution of the electron beams on the ionization chamber dosimetry is not fully considered in the dosimetry protocols. The basis for the ionization chamber dosimetry has recently been changed when the Bureau International des Poids et Mesures (BIPM) in 1986 changed the air-kerma standard. The reason was the adaption of the new stopping-power values reported in the ICRU Report No. 37. To achieve consistency in the ionization chamber dosimetry the interaction coefficients and correction factors given in the dosimetry protocols should also be based on the same set of stopping-power values. This is not the case with the protocols included in the comparison made by Mattsson. However, in the international code of practice by the International Atomic Energy Agency (IAEA, 1987) the new stopping-power values have been used. The formalism is the same as in most of the previous protocols. Mattsson et al. (1989) have shown that the differences in the various steps cancel out for the protocols published by NACP (1980) and by IAEA (1987) for cobalt-60 gamma quality. However, it is also of interest to investigate the influence of the new air-kerma standard and the new values on coefficients and factors given in the IAEA protocol for other beam qualities. Therefore, the data given by Mattsson (1985) have been recalculated using the new air-kerma standard and the IAEA protocol

  9. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  10. In vivo thermoluminescent dosimetry in studies of helicoid computed tomography and excretory urogram

    International Nuclear Information System (INIS)

    Cruz C, D.; Azorin N, J.; Saucedo A, V.M.; Barajas O, J.L.

    2005-01-01

    The dosimetry is the field of measurement of the ionizing radiations. It final objective is to determine the 'absorbed dose' for people. The dosimetry is vital in the radiotherapy, the radiological protection and the treatment technologies by irradiation. Presently work, we develop 'In vivo' dosimetry, in exposed patients to studies of helical computed tomography and excretory urogram. The dosimetry 'in vivo' was carried out in 20 patients selected aleatorily, for each medical study. The absorbed dose was measured in points of interest located in crystalline, thyroid, chest and abdomen of each patient, by means of thermoluminescent dosemeters (TLD) LiF: Mg,Cu,P + Ptfe of national fabrication. Also it was quantified the dose in the working area. (Author)

  11. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  12. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    the new dosimetry. The experience gained by the use of this prototype paved the way for an improved system called Dosimetry System 1986 (DS86), which incorporated further developments in dosimetry and treated a more extensive set of survivors in the RERF data base. The fourth joint US-Japan dosimetry workshop, held in Hiroshima on 16 and 17 March 1986, reviewed the results and findings of the research to assess the A-bomb dose estimates and their incorporation into DS86. As a result, the US-Japan A-bomb radiation dosimetry committees formally approved replacement of T65D with DS86 for use by RERF for computation of doses to A-bomb survivors. The purpose of this chapter is to provide a description of DS86

  13. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  14. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents

    International Nuclear Information System (INIS)

    Khvostunov, I.K.; Ivannikov, A.I.; Skvortsov, V.G.; Golub, E.V.; Nugis, V. Yu.

    2015-01-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation. (authors)

  15. Validation and application of polymer gel dosimetry for the dose verification of an intensity-modulated arc therapy (IMAT) treatment

    International Nuclear Information System (INIS)

    Vergote, K; Deene, Y de; Duthoy, W; Gersem, W de; Neve, W de; Achten, E; Wagter, C de

    2004-01-01

    Polymer gel dosimetry was used to assess an intensity-modulated arc therapy (IMAT) treatment for whole abdominopelvic radiotherapy. Prior to the actual dosimetry experiment, a uniformity study on an unirradiated anthropomorphic phantom was carried out. A correction was performed to minimize deviations in the R2 maps due to radiofrequency non-uniformities. In addition, compensation strategies were implemented to limit R2 deviations caused by temperature drift during scanning. Inter- and intra-slice R2 deviations in the phantom were thereby significantly reduced. This was verified in an investigative study where the same phantom was irradiated with two rectangular superimposed beams: structural deviations between gel measurements and computational results remained below 3% outside high dose gradient regions; the spatial shift in those regions was within 2.5 mm. When comparing gel measurements with computational results for the IMAT treatment, dose deviations were noted in the liver and right kidney, but the dose-volume constraints were met. Root-mean-square differences between both dose distributions were within 5% with spatial deviations not more than 2.5 mm. Dose fluctuations due to gantry angle discretization in the dose computation algorithm were particularly noticeable in the low-dose region

  16. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, David J., E-mail: davideaton@nhs.net [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom); Warry, Alison J. [Department of Radiotherapy Physics, University College London Hospital, London (United Kingdom); Trimble, Rachel E.; Vilarino-Varela, Maria J.; Collis, Christopher H. [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom)

    2014-01-01

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013, with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources.

  17. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    International Nuclear Information System (INIS)

    Eaton, David J.; Warry, Alison J.; Trimble, Rachel E.; Vilarino-Varela, Maria J.; Collis, Christopher H.

    2014-01-01

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013, with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources

  18. Accuracy Requirements in Medical Radiation Dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    2011-01-01

    The need for adopting unambiguous terminology on 'accuracy in medical radiation dosimetry' which is consistent with international recommendations for metrology is emphasized. Uncertainties attainable, or the need for improving their estimates, are analysed for the fields of radiotherapy, diagnostic radiology and nuclear medicine dosimetry. This review centres on uncertainties related to the first step of the dosimetry chain in the three fields, which in all cases involves the use of a detector calibrated by a standards laboratory to determine absorbed dose, air kerma or activity under reference conditions in a clinical environment. (author)

  19. In vivo dosimetry in external beam radiotherapy

    International Nuclear Information System (INIS)

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-01-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors’ opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks

  20. In vivo dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mijnheer, Ben [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX (Netherlands); Beddar, Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Izewska, Joanna [Division of Human Health, International Atomic Energy Agency, Vienna 1400 (Austria); Reft, Chester [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois 60637 (United States)

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  1. On the radiation dosimetry in space

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    2005-01-01

    The radiation dosimetry in space is considerably different from that on the earth surface, because, on the earth surface, the quality factor for radiation is roughly given for its energy but, in space, it is defined as a continuous function of LET. Thus, the contribution to the dose equivalent from heavy charged particles included in galactic cosmic rays is more than 50%, because of their high LET values. To evaluate such dose equivalent within an uncertainty of 30%, we must determine the true LET distribution. This paper describes the essence of such a new radiation dosimetry in space. (author)

  2. Occupational dose assessment and national dose registry system in Iran

    International Nuclear Information System (INIS)

    Jafari-Zadeh, M.; Nazeri, F.; Hosseini-Pooya, S. M.; Taheri, M.; Gheshlaghi, F.; Kardan, M. R.; Babakhani, A.; Rastkhah, N.; Yousefi-Nejad, F.; Darabi, M.; Oruji, T.; Gholamali-Zadeh, Z.; Karimi-Diba, J.; Kazemi-Movahed, A. A.; Dashti-Pour, M. R.; Enferadi, A.; Jahanbakhshian, M. H.; Sadegh-Khani, M. R.

    2011-01-01

    This report presents status of external and internal dose assessment of workers and introducing the structure of National Dose Registry System of Iran (NDRSI). As well as types of individual dosemeters in use, techniques for internal dose assessment are presented. Results obtained from the International Atomic Energy Agency intercomparison programme on measurement of personal dose equivalent H p (10) and consistency of the measured doses with the delivered doses are shown. Also, implementation of dosimetry standards, establishment of quality management system, authorisation and approval procedure of dosimetry service providers are discussed. (authors)

  3. Patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2000-01-01

    Full text: X-ray examinations remain an essential and widely used diagnostic tool in medicine and hence the most significant source of exposure to man-made radiation for populations. Patterns of practice in diagnostic radiology continue to evolve, with overall growth in the numbers of procedures worldwide and, particularly in developed countries, increasing importance for complex procedures such as computed tomography (CT) and interventional techniques. In order to maximise the benefits from x-rays relative to the associated radiation risks, there is a need to ensure the prior justification of all examinations and the optimisation of patient protection such that doses are as low as reasonably practicable to meet specific clinical requirements. Accordingly, patient dosimetry is a fundamental requirement in diagnostic radiology. Detailed measurements for the assessment of risks or comparison of different types of procedure require the estimation of organ and effective doses. Such comprehensive dosimetry necessarily involves the simulation of clinical practice using anthropomorphic phantoms, with either measurements in a physical phantom or calculations utilising a mathematical phantom. Simpler measurements for the routine monitoring of dose in x-ray departments can be based on practical quantities such as entrance surface dose, dose-area product and, for CT, weighted CT dose index and dose-length product. Widescale surveys reveal significant variations between departments in the typical doses for a given type of procedure and potential scope for dose reductions. In order to promote improvements in practice, the results of periodic dose surveys in departments should be compared with appropriate standards, such as diagnostic reference levels for adult and paediatric patients, that are set nationally or locally for the purposes of promoting critical review of the equipment and techniques in use. Patient dosimetry should form an essential element of routine quality

  4. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, Hanno; Rozendaal, Roel; Camargo, Priscilla; Mans, Anton; Wendling, Markus; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; van Herk, Marcel; Mijnheer, Ben

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the

  5. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: [Final report

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs

  6. Clinical application of in vivo dosimetry for external telecobalt machine

    International Nuclear Information System (INIS)

    Mohammed, H. H. M.

    2011-01-01

    In external beam radiotherapy quality assurance is carried out on the individual components of treatment chain. The patient simulating device, planning system and treatment machine are tested regularly according to set protocols developed by national and international organizations. Even thought these individual systems are not tested for errors which can be made in the transfer between the systems. The best quality assurance for the treatment planning chain. In vivo dosimetry is used as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. It is a proven reliable method of checking overall treatment accuracy, allowing verification of dosimetry and dose calculation as well as patient treatment setup. Accurate in vivo dosimetry is carried out if diodes and thermoluminescence dosimeters (TLDs). the main detector types in use for in vivo dosimetry, are carefully calibrated and the factors influencing their sensitivity are taken into account. The aim of this study was to verify the response of TLDs type (LiF: Mg, Cu, p) use in radiotherapy, to establish calibration procedure for TLDs and to evaluate entrance dose obtained by the treatment planning system with measured dose using thermoluminescence detectors. Calibration of TLDs was done using Cobalt-60 teletherapy machine, linearity and calibration factors were determined. Measurements were performed in random phantom for breast irradiation (for the breast irradiation ( For the breast irradiation technique considered, wedge field was used). All TLDs were processed and analyzed at RICK. In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Thermoluminescent dosimeters are considered the gold stander for in vivo dosimetry and do not require cables for measurements which makes them ideal for mail based studies and have no dose rate or temperature dependence

  7. The influence of non-radiation induced ESR background signal from paraffin-alanine probes for dosimetry in the radiotherapy dose range

    International Nuclear Information System (INIS)

    Wieser, A.; Lettau, C.; Fill, U.; Regulla, D.F.

    1993-01-01

    The yield of radicals induced by ionizing radiation in the amino acid alanine and its quantification by ESR spectroscopy has proven excellent reproducibility. Those radicals trapped in the crystal lattice are prevented from recombination providing a thermally very stable system. This allows alanine to be applied as a transfer dosemeter. With paraffin-alanine probes ESR dosimetry can be performed with a standard deviation of ± 0.5% in the dose range from 20 Gy up to 100 kGy. At 1 Gy dose level the error increases to ± 6%. This dose level is three orders of magnitude higher than the calculated detection threshold for alanine with modern X-band ESR spectrometers. It was found that the poor standard deviation at the 1 Gy dose level, is not mainly produced by a bad signal-to-noise ratio but by a variable non-radiation induced ESR background signal from the alanine probes within a batch. In the present study the main sources of error for ESR dosimetry in the dose range below 20 Gy were analyzed. The influences of the production process, UV light and humidity upon the ESR background signal from paraffin-alanine probes were investigated. Measurements are shown indicating a second stable structure of the alanine radical at room temperature. (author)

  8. SU-E-T-620: Planning and Dosimetry for Pulsed Low Dose Rate RT for Recurrent Lung, Spine, GYN and Head and Neck Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Tong, X; Luo, F; Liu, Y; Zhang, W; Xu, Q; Zhang, T; Li, J [3rd Affiliated Hospital of Qiqihar Medical University, Qiqihar (China); Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Extensive in vitro and in vivo studies have shown that pulsed low dose rate (PLDR) radiotherapy has potential to provide significant local tumor control and to reduce normal tissue toxicities. This work investigated the planning and dosimetry of PLDR re-irradiation for recurrent cancers. Methods: We analyzed the treatment plans and dosimetry for 13 recurrent patients who were treated with the PLDR technique in this study. All cases were planned with the 3DCRT technique with optimal beam angle selection. The treatment was performed on a Siemens accelerator using 6MV beams. The target volume ranged between 161 and 703cc. The previous RT dose was 40–60Gy while the re-irradiation dose was 16–60Gy. The interval between previous RT and re-irradiation was 13–336 months, and the follow-up time was up to 27months. The total prescription dose was administered in 2Gy/day fractions with the daily dose delivered in 10 sub-fractions (pulses) of 20cGy with a 3min interval between the pulses to achieve an effective dose rate of 6.7cGy/min. Results: The clinical outcome was analyzed based on the treatment plans. All pulses were kept with Dmax<40cGy. The PLDR treatments were effective (CR: 3 patients, PR: 10 patients). The acute and late toxicities were all acceptable (generally grade II or under). Two patients died three months after the PLDR re-irradiation, one due to massive cerebral infarction and the other due to acute cardiac failure. All others survived more than 8 months. Five patients showed good conditions at the last follow-up. Among them two recurrent lung cancer patients had survived 23 months and one nasopharyngeal cancer patient had survived 27 months. Conclusion: The PLDR technique was effective for the palliative treatment of head and neck, lung, spine and GYN cancers. Further phase II and III studies are warranted to quantify the efficacy of PLDR for recurrent cancers.

  9. Radiographic film orientation in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Suchowerska, N.; Davison, A.; Drew, J.; Metcalfe, P.

    1996-01-01

    Since the discovery of x-rays, film has been used as a detection medium for radiation. More recently radiographic film has become established as a practical tool for the measurement of dose distribution in radiotherapy. The accuracy and reproducibility of film dosimetry depends on photon energy, processing conditions and film plane orientation. The relationship between photon energy, processing conditions and film dosimetry accuracy has been studied. The role of film plane orientation is still controversial. The current work aims to clarify the effects film plane orientation has on film dosimetry. Poster 205. (author)

  10. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    Yoshida, Yuri; Morita, Yasuhiko; Honda, Eiichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2008-01-01

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  11. MOSFET dosimetry: temperature effects in-vivo

    International Nuclear Information System (INIS)

    Yu, P.K.N.; Cheung, T.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: This note investigates temperature effects on dosimetry using a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 deg C up to 40 deg C. Thus standard irradiations performed at room temperature can be directly compared to in-vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependant on the dose history of the MOSFET dosimeter. However the variation can be accounted for in the measurement method. For accurate dosimetry the detector should be placed for approximately 60 seconds on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 seconds after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  12. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  13. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  14. Dosimetry applied to radiology and radiotherapy

    International Nuclear Information System (INIS)

    Yoshimura, Elisabeth Mateus

    2010-01-01

    Full text. The uses of ionizing radiation in medicine are increasing worldwide, and the population doses increase as well. The actual radiation protection philosophy is based on the balance of risks and benefits related to the practices, and patient dosimetry has an important role in the implementation of this point of view. In radiology the goal is to obtain an image with diagnostic quality with the minimum patient dose. In modern Radiotherapy the cure indexes are higher, giving rise to longer survival times to the patients. Dosimetry in radiotherapy helps the treatment planning systems to get a better protection to critical organs, with higher doses to the tumor, with a guarantee of better life quality to the patient. We will talk about the new trends in dosimetry of medical procedures, including experimental techniques and calculation tools developed to increase reliability and precision of dose determination. In radiology the main concerns of dosimetry are: the transition from film- radiography to digital image, the pediatric patient doses, and the choice of dosimetric quantities to quantify fluoroscopy and tomography patient doses. As far as Radiotherapy is concerned, there is a search for good experimental techniques to quantify doses to tissues adjacent to the target volumes in patients treated with new radiotherapy techniques, as IMRT and heavy particle therapy. (author)

  15. Dosimetry of the patient and occupational in interventional procedures

    International Nuclear Information System (INIS)

    Andisco, D.; Bourel, V.; Schmidt, L.; Fernandez, N.

    2014-08-01

    The big necessity to estimate the entrance doses in skin that the patients receive when are exposed to interventional procedures and the personal dosimetry of the professionals that work in these procedures in operating room, has taken to the analysis of different possibilities that allow to carry out these estimates. The objective of this work was to analyze the possibility of using Optically Stimulated Luminescence dosimeters; comparing the results with ionizing cameras and electronic personal dosimeters. To carry out these estimates, we work with a X-ray equipment Phillips Allure, acrylic phantoms, a dosimetry system formed by ionization camera and dosimeter UNIDOS E, OSL (Nano dots) dosimeters and electronic lavalieres Aloka brand, PDM 117 models. To estimate the doses that the patients receive, entrance dose was measured in skin and in personal dosimetry inside places where the medical professionals are habitually located in different situations among 5 and 60 irradiation min. In the case of direct radiation, the OSL (Nano dots) present reliable readings and only were dispersed values for the measurements of secondary radiation. The measured values and the linking among them were also analyzed. The OSL (Nano dot) dosimetry behaves reliable way when is located in the ranges of more dose to 0,1 mGy, according to the maker indications and fundamentally for direct beams of the hemodynamics equipment being ideal for the measurement of entrance dose in skin. For the Nano dots use in personal dosimetry the results should be read carefully for values major to 0,1 mGy and being completely inappropriate for minor values. (Author)

  16. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  17. Chromosome aberrations induced by low doses of X-rays in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Ziemba-Zoltowska, B.; Bocian, E.; Rosiek, O.; Sablinski, J.

    1980-01-01

    Curves derived from the dose-response data for the yield of aberrations in human lymphocytes can be represented by a quadratic equation at all but low dose ranges. A calibration curve has therefore been determined at a low dose range of X-radiation (11.5 to 57.5 rad). The frequencies of dicentrics plus centric rings, and of acentrics were better fitted by linear dose-response models than quadratic. The linearity of the relationship indicated that asymmetrical chromosome exchanges at low doses of radiation are produced predominantly by a single track mechanism. A dose-response curve for dicentrics plus centric rings (5 to 60 rad) has also been derived by pooling published data with the results of this study. This calibration curve is relevant to cytogenetic dosimetry in radiological protection. (UK)

  18. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  19. EPR Dosimetry - Present and Future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  20. Monte Carlo uncertainty analysis of dose estimates in radiochromic film dosimetry with single-channel and multichannel algorithms.

    Science.gov (United States)

    Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio

    2018-03-01

    To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. GafChromic EBT film dosimetry with flatbed CCD scanner: A novel background correction method and full dose uncertainty analysis

    International Nuclear Information System (INIS)

    Saur, Sigrun; Frengen, Jomar

    2008-01-01

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16x16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can

  2. GafChromic EBT film dosimetry with flatbed CCD scanner: a novel background correction method and full dose uncertainty analysis.

    Science.gov (United States)

    Saur, Sigrun; Frengen, Jomar

    2008-07-01

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16 x 16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution

  3. Fourth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose

  4. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E.

    2008-01-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  5. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  6. Internal dosimetry hazard and risk assessments: methods and applications

    International Nuclear Information System (INIS)

    Roberts, G.A.

    2006-01-01

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  7. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy

    CERN Document Server

    Mairani, A; Valente, M; Battistoni, G; Botta, F; Pedroli, G; Ferrari, A; Cremonesi, M; Di Dia, A; Ferrari, M; Fasso, A

    2011-01-01

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic...

  8. Patient dosimetry improvements in longitudinal field MRI linear accelerators

    International Nuclear Information System (INIS)

    Oborn, B.M.; Metcalfe, P.E.; Butson, M.J.; Keall, P.

    2010-01-01

    Full text: Many studies exist of the often undesirable dosimetry changes in transverse field MRI-Linacs. Currently there are plans by different groups around the world to develop longitudinal MRT-Linac systems as dosimetry is potentially superior to transverse field sy tems. The objective of this study is to investigate via Monte Carlo simulations, the potential dosimetry improvements expected in lo gitudinal MRI-Linac designs over transverse field designs for advanced image-guided radiotherapy (IGRT). Geant4 Monte Carlo simulations have been performed of the dosimetry from a Varian 2100c 6 MV photon beam in lo gitudinal magnetic field typical of expected MRI-Linac designs. A 30 x 30 x 20 cm' phantom has been simulated in magnetic fields between 0 and 3 T. Beam profiles and skin dose calculations have been performed and compared with transverse field systems. Results The longitudinal magnetic field acts to reduce lateral dose spread in all locations within a patient. As well as this, the electron return effcct is absent. This equates to reductions in penumbral widths and reductions in skin dose. When compared with transverse field systems the dosimetry is superior. This will also allow for further reductions in trcatment margins as compared to transverse field MRI Linac designs.

  9. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  10. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  11. Dosimetry of {sup 223}Ra-chloride: dose to normal organs and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Michael [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nosske, Dietmar [Federal Office for Radiation Protection (BfS), Department of Radiation and Health, Oberschleissheim (Germany)

    2013-02-15

    {sup 223}Ra-Chloride (also called Alpharadin {sup registered}) targets bone metastases with short range alpha particles. In recent years several clinical trials have been carried out showing, in particular, the safety and efficacy of palliation of painful bone metastases in patients with castration-resistant prostate cancer using {sup 223}Ra-chloride. The purpose of this work was to provide a comprehensive dosimetric calculation of organ doses after intravenous administration of {sup 223}Ra-chloride according to the present International Commission on Radiological Protection (ICRP) model for radium. Absorbed doses were calculated for 25 organs or tissues. Bone endosteum and red bone marrow show the highest dose coefficients followed by liver, colon and intestines. After a treatment schedule of six intravenous injections with 0.05 MBq/kg of {sup 223}Ra-chloride each, corresponding to 21 MBq for a 70 kg patient, the absorbed alpha dose to the bone endosteal cells is about 16 Gy and the corresponding absorbed dose to the red bone marrow is approximately 1.5 Gy. The comprehensive list of dose coefficients presented in this work will assist in comparing and evaluating organ doses from various therapy modalities used in nuclear medicine and will provide a base for further development of patient-specific dosimetry. (orig.)

  12. Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions.

    Science.gov (United States)

    Vergote, Koen; De Deene, Yves; Claus, Filip; De Gersem, Werner; Van Duyse, Bart; Paelinck, Leen; Achten, Eric; De Neve, Wilfried; De Wagter, Carlos

    2003-04-01

    When planning an intensity-modulated radiation therapy (IMRT) treatment in a heterogeneous region (e.g. the thorax), the dose computation algorithm of a treatment planning system may need to account for these inhomogeneities in order to obtain a reliable prediction of the dose distribution. An accurate dose verification technique such as monomer/polymer gel dosimetry is suggested to verify the outcome of the planning system. The effects of low-density structures: (a) on narrow high-energy (18 MV) photon beams; and (b) on a class-solution IMRT treatment delivered to a thorax phantom have been examined using gel dosimetry. The used phantom contained air cavities that could be filled with water to simulate a homogeneous or heterogeneous configuration. The IMRT treatment for centrally located lung tumors was delivered on both cases, and gel derived dose maps were compared with computations by both the GRATIS and Helax-TMS planning system. Dose rebuildup due to electronic disequilibrium in a narrow photon beam is demonstrated. The gel measurements showed good agreement with diamond detector measurements. Agreement between measured IMRT dose maps and dose computations was demonstrated by several quantitative techniques. An underdosage of the planning target volume (PTV) was revealed. The homogeneity of the phantom had only a minor influence on the dose distribution in the PTV. An expansion of low-level isodoses in the lung volume was predicted by collapsed cone computations in the heterogeneous case. For the class-solution described, the dose in centrally located mediastinal tumors can be computed with sufficient accuracy, even when neglecting the lower lung density. Polymer gel dosimetry proved to be a valuable technique to verify dose calculation algorithms for IMRT in 3D in heterogeneous configurations.

  13. Gel dosimetry for conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G [Department of Physics of the University and INFN, Milan (Italy)

    2005-07-01

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  14. Preliminary evaluation of second harmonic direct detection scheme for low-dose range in alanine/EPR dosimetry

    International Nuclear Information System (INIS)

    Chen, Felipe; Graeff, Carlos F.O.; Baffa, Oswaldo

    2002-01-01

    The usefulness of a direct detection scheme of the second harmonic (2h) overmodulated signal from irradiated alanine in EPR dosimetry was studied. For this purpose, a group of DL-alanine/paraffin cylindrical pellets was produced. The dosimeters were irradiated with a 60 Co radiotherapy gamma source with doses of 0.05, 0.1, 0.5, 1 and 5 Gy. The EPR measurements were carried out in a VARIAN-E4 spectrometer operating in X-band with optimized parameters to obtain highest amplitude signals of both harmonics. The 2h signal was detected directly at twice the modulation frequency. In preliminary results, the 2h showed some advantages over the 1h such as better resolution for doses below 1 Gy, better repeatability results and better linear behaviour in the dose range indicated. (author)

  15. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    1990-01-01

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  16. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  17. Energy and entropy in radiation dosimetry and protection

    International Nuclear Information System (INIS)

    Oliveira, A.D.

    2006-01-01

    In this work we present and discuss a proposal to describe the degradation of the energy of photons when they interact with matter, which can be applied in radiation dosimetry and protection. Radiation dosimetry is founded in the well known physical approach of field theory as showed by Roesch and Rossi. Fluence and energy deposited are the most fundamental quantities in radiation dosimetry allowing us to calculate absorbed dose. One of the main characteristics of absorbed dose, sometimes ignored, is that it is an intensive quantity pushing radiation dosimetry into the field of statistical physics. In radiation dosimetry it is often used what we can call collective or macroscopic concepts, such as, for example, effective energy, beam quality or beam hardening and absorbed dose. Some of these concepts are trials to describe macroscopically and with simplicity what happens microscopically with a rather higher degree of complexity. In other words, is a tentative to make a bridge between the non continuous world of atoms and photons to the continuous world of radiation protection dosimetry. In computer simulations, that allow to known accurately the energy deposited in matter, absorbed dose (or fluence) is still a very useful and used quantity; however, some issues are still open problems, source of many discussions in conferences and journals in spite of the development of microdosimetry and nano-dosimetry. In spite of that, macroscopic quantities like absorbed dose are still important quantities. One of the important and controversial open question in biological effects at low doses is the linear no threshold concept (L.N.T.). In our opinion this problem is directly related with the problem mentioned above of the bridge between microscopic and macroscopic concepts. Actually, the extrapolation to low dose region is a good expression of the challenge we have to deal in order to make the connections between both worlds, the discrete micro-world to the continuous macro

  18. Clinical dosimetry in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.; Jovanovska, A.

    2012-01-01

    Full text: Introduction: Diagnostic and interventional procedures involving x-rays are the most significant contributor to total population dose form man made sources of ionizing radiation. Purpose and aim: X-ray imaging generally covers a diverse range of examination types, many of which are increasing in frequency and technical complexity. Materials and methods: The European Directives 96/29 and 97/43 EURATOM stress the importance of accurate dosimetry and require calibration of all measuring equipment related to application of ionizing radiation in medicine. Results: The paper gives and overview of current system of dosimetry of ionizing radiations that is relevant for metrology and clinical applications. It also reflects recently achieved international harmonization in the field promoted by International Atomic Energy Agency (IAEA). Discussion: Objectives of clinical dose measurements in diagnostic and interventional radiology are multiple, as assessment of equipment performance, or assessment of risk emerging from use of ionizing radiation Conclusion: Therefore, from the clinical point of view, the requirements for dosimeters and procedures to assess dose to standard dosimetry phantoms and patients in clinical diverse modalities, as computed tomography are presented

  19. Practical applications of the new ICRP recommendation to external dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.

    1992-01-01

    Focussing on external dosimetry for occupational exposure the consequences of the new quantities equivalent dose (radiation weighting factor), effective dose (tissue weighting factor) and the ICRU operational quantities for individual and area dosimetry are discussed. Despite some arguments against the new quantities they should be introduced as rapidly as possible to keep international uniformity in radiation protection monitoring. It is shown that they provide a conservative estimate of the effective dose for photons and neutrons. In photon dosimetry only minor changes of the conversion factors relating operational quantities to effective dose is observed. In neutron dosimetry the conversion factors change by a factor of up to 2. It is pointed out that there is a urgent need to calculate standardized conversion factors for field quantities -operational quantities- organ and effective dose in a joint effort of ICRP and ICRU. This includes standardization of calibration methods for individual dosimetry using suitable phantoms instead of the sphere. (author)

  20. Electronic personal dosimeter heralds a revolution in legal dosimetry

    International Nuclear Information System (INIS)

    Fletcher, R.

    1991-01-01

    The Electronic Personal Dosimeter (EPD) developed by Siemens Plessey Controls and the UK's national Radiological Protection Board is approaching the pre-production stage. It provides ''legal'' dosimetry and all the features of a personal alarming dosimeter. The EPD uses solid state semiconductor detectors for gamma and beta radiation and has a dose threshold of about 1μ Sv, with a low energy gamma range down to 20 KeV. It has a multi function liquid crystal display for instant readout and audible and visual alarms. Two separates dose stores are maintained. Short term dose for tactical management and long term dose for approved dosimetry service record keeping. The latter can be reset only by an approved dosimetry service and is maintained on a search memory disk which can be read even if the EPD is destroyed. (UK)

  1. Diagnostic radiology dosimetry: status and trends

    International Nuclear Information System (INIS)

    Rivera M, T.

    2015-10-01

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  2. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  3. A model for inverse dose-rate effects - low dose-rate hyper-sensibility in response to targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Murray, I.; Mather, S.J.

    2015-01-01

    Full text of publication follows. The aim of this work was to test the hypothesis that the Linear-Quadratic (LQ) model of cell survival, developed for external beam radiotherapy (EBRT), could be extended to targeted radionuclide therapy (TRT) in order to predict dose-response relationships in a cell line exhibiting low dose hypersensitivity (LDH). Methods: aliquots of the PC-3 cancer cell line were treated with either EBRT or an in-vitro model of TRT (Irradiation of cell culture with Y-90 EDTA over 24, 48, 72 or 96 hours). Dosimetry for the TRT was calculated using radiation transport simulations with the Monte Carlo PENELOPE code. Clonogenic as well as functional biological assays were used to assess cell response. An extension of the LQ model was developed which incorporated a dose-rate threshold for activation of repair mechanisms. Results: accurate dosimetry for in-vitro exposures of cell cultures to radioactivity was established. LQ parameters of cell survival were established for the PC-3 cell line in response to EBRT. The standard LQ model did not predict survival in PC-3 cells exposed to Y 90 irradiation over periods of up to 96 hours. In fact cells were more sensitive to the same dose when irradiation was carried out over 96 hours than 24 hours. I.e. at a lower dose-rate. Deviations from the LQ predictions were most pronounced below a threshold dose-rate of 0.5 Gy/hr. These results led to an extension of the LQ model based upon a dose-rate dependent sigmoid model of single strand DNA repair. This extension to the model resulted in predicted cell survival curves that closely matched the experimental data. Conclusion: the LQ model of cell survival to radiation has been shown to be largely predictive of response to low dose-rate irradiation. However, in cells displaying LDH, further adaptation of the model was required. (authors)

  4. Research and innovation in radiation dosimetry

    International Nuclear Information System (INIS)

    Delgado, A.

    1999-01-01

    In this article some relevant lines of research in radiation dosimetry are presented. In some of them innovative approaches have been recently proposed in recent years. In others innovation is still to come as it is necessary in view of the insufficiency of the actual methods and techniques. mention is made to Thermoluminescence Dosimetry an to the improvement produced by new computational methods for the analysis of the usually complex TL signals. A solid state dosimetric technique recently proposed, Optically Stimulated Luminescence, OSL, is briefly presented. This technique promises advantages over TLD for personal and environmental dosimetry. The necessity of improving the measurement characteristics of neutron personal dosemeters is commented, making reference to some very recent developments. The situation of the dosimetry in connection with radiobiology research is overviewed, commenting the controversy on the adequacy and utility of the quality absorbed dose for these activities. Finally the special problematic of internal dosimetry is discussed. (Author) 25 refs

  5. Quantitative imaging for clinical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bardies, Manuel [INSERM U601, 9 Quai Moncousu, 44093 Nantes (France)]. E-mail: manu@nantes.inserm.fr; Flux, Glenn [Department of Physics, Royal Marsden NHS Trust, Sutton (United Kingdom); Lassmann, Michael [Department of Nuclear Medicine, Julis-Maximilians University, Wuerzburg (Germany); Monsieurs, Myriam [Department of Health Physics, University of Ghent, 9000 Ghent (Belgium); Savolainen, Sauli [Department of Physical Sciences, University of Helsinki and HUS, Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland); Strand, Sven-Erik [Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University (Sweden)

    2006-12-20

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  6. Magnitudes and units in the X-ray dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Tovar M, V. M.; Cejudo A, J.; Vergara M, F.

    2009-10-01

    The dosimetry objective in the radiological image is the quantification from the exposition to the radiation with a commitment of optimizing the image quality to the reason of the absorbed dose. The dosimetry has the meaning of avoiding excessive dose that could imply a significant risk of deterministic effects induction. The dosimetric magnitudes and dosimetry protocols in the radiological image, are those that are related to the risks for the patient. Exist in diagnostic radiology two fundamentals reason to measure or to estimate the patient radiation dose. First, the mensurations are a means to verify the good practices and an aid to the optimization of the patient protection. Second, the absorbed dose estimation to tissues and organs in the patient are necessary to determine the risks, and this way to indicate that the radiological techniques employees can be justified and in investigated cases of over exposition. (Author)

  7. Tissue equivalence in neutron dosimetry

    International Nuclear Information System (INIS)

    Nutton, D.H.; Harris, S.J.

    1980-01-01

    A brief review is presented of the essential features of neutron tissue equivalence for radiotherapy and gives the results of a computation of relative absorbed dose for 14 MeV neutrons, using various tissue models. It is concluded that for the Bragg-Gray equation for ionometric dosimetry it is not sufficient to define the value of W to high accuracy and that it is essential that, for dosimetric measurements to be applicable to real body tissue to an accuracy of better than several per cent, a correction to the total absorbed dose must be made according to the test and tissue atomic composition, although variations in patient anatomy and other radiotherapy parameters will often limit the benefits of such detailed dosimetry. (U.K.)

  8. In-vivo dosimetry - how hard could it be?

    International Nuclear Information System (INIS)

    Tremethick, L.J.

    1996-01-01

    Full text: The radiotherapy community has often assumed that the absorbed dose was identical to the prescribed dose. Knowing what dose was delivered is generally limited to the comparison between measured watertank data and planning system calculations. Only recently has an attempt been made to quantify the uncertainties associated with the entire dosimetry chain. Although the capabilities of some planning systems' algorithms have been documented and provide an indication of the reliability of planning data there are many situations where they will fail to predict correct dose distributions (Metcalfe PE et al Aust Phys Eng Sci Med 16: 155-167; 1993). An incorrect dose distribution may result in a failure to provide the desired effect of the prescription. In vivo dosimetry, where detectors are usually placed on the patients skin near the entrance and exit ports provide a measurement of the dose delivered at these points. Correction factors are required to convert the measured dose to the actual dose at the point of interest, ideally the mid-tumour point. The validity, and an estimate in the overall uncertainty of the process must be determined. In July of 1994 an 18-month project commenced to develop and evaluate the use of in vivo dosimetry as part of the routine Quality Assurance program. Equipment included a Scanditronics DPD510 dosimeter and the older hemispherical type EDP-10 and EDP-20 diodes. All measurements were performed on Varian 2100C linear accelerators. Individual diode, entrance and exit correction factors were determined for energy, field size, SSD, all beam modifiers, incident angle and unique patient thickness. The project was limited to investigating pelvic, head and neck and breast treatments for entrance and exit measurements only as time available did not permit the evaluation of the mid-tumour dose. Approximately 8500 measurements were taken during the course of the project of which some 1200 were for the 46 patients chosen. Correction factors

  9. MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Juang, T. [Stanford Cancer Center (United States)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  10. MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, L. [Cancer Center of Southeastern Ontario (Canada)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  11. MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation

    International Nuclear Information System (INIS)

    Schreiner, L.

    2016-01-01

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  12. MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques

    International Nuclear Information System (INIS)

    Juang, T.

    2016-01-01

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  13. Statistical issues in biological radiation dosimetry for risk assessment using stable chromosome aberrations

    International Nuclear Information System (INIS)

    Cologne, J.B.; Preston, D.L.

    1998-01-01

    Biological dosimeters are useful for epidemiologic risk assessment in populations exposed to catastrophic nuclear events and as a means of validating physical dosimetry in radiation workers. Application requires knowledge of the magnitude of uncertainty in the biological dose estimates and an understanding of potential statistical pitfalls arising from their use. This paper describes the statistical aspects of biological dosimetry in general and presents a detailed analysis in the specific case of dosimetry for risk assessment using stable chromosome aberration frequency. Biological dose estimates may be obtained from a dose-response curve, but negative estimates can result and adjustment must be made for regression bias due to imprecise estimation when the estimates are used in regression analyses. Posterior-mean estimates, derived as the mean of the distribution of true doses compatible with a given value of the biological endpoint, have several desirable properties: they are nonnegative, less sensitive to extreme skewness in the true dose distribution, and implicitly adjusted to avoid regression bias. The methods necessitate approximating the true-dose distribution in the population in which biological dosimetry is being applied, which calls for careful consideration of this distribution through other information. An important question addressed here is to what extent the methods are robust to misspecification of this distribution, because in many applications of biological dosimetry it cannot be characterized well. The findings suggest that dosimetry based solely on stable chromosome aberration frequency may be useful for population-based risk assessment

  14. Reconstruction of absorbed dose by methods biological dosimetry inhabitans living in Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Abildinova, G.

    2010-01-01

    As a result perennial overland and atmospheric test the nucleus weapon on Semipalatinsk nucler test site (NTS) about 1,2 ml person were subjected to frequentative sharp and chronic irradiation in different range of doses. Besides a significant number of battle radioactive matters tests with radionuclei dispersion on soil surface and an atmosphere was realized also. All this activity has caused the significant radioactive contamination and damage to an environment, and the local population has received extra exposure to radiation. These circumstances have essentially complicated the economy development of the given region. Aim: Reconstruction of absorbed dose by modern methods biological dosimetry beside inhabitants living in region of influence Semipalatinsk NTS. The cytogenetically examination of population Semipalatinsk region, living in different zones radiation risk: s. Dolon, s. Sarzhal, s. Mostik. Installed that total frequency of chromosome aberrations forms 4,8/100; 2,1/100; 2,5/100 cells, accordingly. High level of chromosome aberrations is conditioned to account radiations markers - acentric fragments (2,1/100 cells in s. Dolon; 1,09/100 cells in s. Sarzhal; 0,79/100 cells in s. Mostik); dysenteric and ring chromosomes (0,6; 0,2; 0,11) and stable type chromosome aberrations (1,02; 0,3; 1,0, accordingly). Frequency and spectrum of chromosome aberrations are indicative of significant mutation action ionizing radiations on chromosome device of somatic cells. Studied dependency an cytogenetically of effects from dose of irradiation within before 0,5 Gr in vitro for calibrated curve standard when undertaking reconstruction efficient dose at the time of irradiations examined group of population. Dependency is described the model a*cos(x) 1 + sin (x), where x - correlation a dysenteric and ring chromosomes to acentric fragments. Dependence of cytogenetic parameters upon ESR-doses had been studied. Had been received dependences: for the total frequency of

  15. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  16. Modern methods of personnel dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.; Herrmann, D.; Kiesewetter, W.

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  17. The Third International Intercomparison on EPR Tooth Dosimetry: Part 2, final analysis

    International Nuclear Information System (INIS)

    Wieser, A.; Debuyst, R.; Fattibene, P.; Meghzifene, A.; Onori, S.; Bayankin, S. N.; Brik, A.; Bugay, A.; Chumak, V.; Ciesielski, B.; Hoshi, M.; Imata, H.; Ivannikov, A.; Ivanov, D.; Junczewska, M.; Miyazawa, C.; Penkowski, M.; Pivovarov, S.; Romanyukha, A.; Romanyukha, L.; Schauer, D.; Scherbina, O.; Schultka, K.; Sholom, S.; Skvortsov, V.; Stepanenko, V.; Thomas, J. A.; Tielewuhan, E.; Toyoda, S.; Trompier, F.

    2006-01-01

    The objective of the Third International Intercomparison on EPR Tooth Dosimetry was to evaluate laboratories performing tooth enamel dosimetry <300 mGy. Final analysis of results included a correlation analysis between features of laboratory dose reconstruction protocols and dosimetry performance. Applicability of electron paramagnetic resonance (EPR) tooth dosimetry at low dose was shown at two applied dose levels of 79 and 176 mGy. Most (9 of 12) laboratories reported the dose to be within 50 mGy of the delivered dose of 79 mGy, and 10 of 12 laboratories reported the dose to be within 100 mGy of the delivered dose of 176 mGy. At the high-dose tested (704 mGy) agreement within 25% of the delivered dose was found in 10 laboratories. Features of EPR dose reconstruction protocols that affect dosimetry performance were found to be magnetic field modulation amplitude in EPR spectrum recording, EPR signal model in spectrum deconvolution and duration of latency period for tooth enamel samples after preparation. (authors)

  18. Dosimetry study of [I-131] and [I-125]- meta-iodobenz guanidine in a simulating model for neuroblastoma metastasis.

    Science.gov (United States)

    Roa, W H; Yaremko, B; McEwan, A; Amanie, J; Yee, D; Cho, J; McQuarrie, S; Riauka, T; Sloboda, R; Wiebe, L; Loebenberg, R; Janicki, C

    2013-02-01

    The physical properties of I-131 may be suboptimal for the delivery of therapeutic radiation to bone marrow metastases, which are common in the natural history of neuroblastoma. In vitro and preliminary clinical studies have implied improved efficacy of I-125 relative to I-131 in certain clinical situations, although areas of uncertainty remain regarding intratumoral dosimetry. This prompted our study using human neuroblastoma multicellular spheroids as a model of metastasis. 3D dose calculations were made using voxel-based Medical Internal Radiation Dosimetry (MIRD) and dose-point-kernel (DPK) techniques. Dose distributions for I-131 and I-125 labeled mIBG were calculated for spheroids (metastases) of various sizes from 0.01 cm to 3 cm diameter, and the relative dose delivered to the tumors was compared for the same limiting dose to the bone marrow. Based on the same data, arguments were advanced based upon the principles of tumor control probability (TCP) to emphasize the potential theoretical utility of I-125 over I-131 in specific clinical situations. I-125-mIBG can deliver a higher and more uniform dose to tumors compared to I-131 mIBG without increasing the dose to the bone marrow. Depending on the tumor size and biological half-life, the relative dose to tumors of less than 1 mm diameter can increase several-fold. TCP calculations indicate that tumor control increases with increasing administered activity, and that I-125 is more effective than I-131 for tumor diameters of 0.01 cm or less. This study suggests that I-125-mIBG is dosimetrically superior to I-131-mIBG therapy for small bone marrow metastases from neuroblastoma. It is logical to consider adding I-125-mIBG to I-131-mIBG in multi-modality therapy as these two isotopes could be complementary in terms of their cumulative dosimetry.

  19. European protocol for neutron dosimetry for external beam therapy

    International Nuclear Information System (INIS)

    Broerse, J.J.; Mijnheer, B.J.; Williams, J.R.

    1981-01-01

    The paper attempts to serve the needs of European centres participating in the High LET Therapy Project Group set up under the sponsorship of The European Organization for Research on Treatment of Cancer, to promote cooperation between physicists involved in fast neutron therapy and establish a common basis for neutron dosimetry. Differences in dosimetry procedures between European and American Groups are indicated if relevant. The subject is dealt with under the following main headings: principles of dosimetry of neutron fields, dosimetric methods, physical parameters, determination of absorbed dose at a reference point, determination of absorbed dose at any point, check of absorbed dose given to a patient, dosimetry intercomparisons between institutes. There is an ample bibliography. (U.K.)

  20. Retrospective dosimetry of Chernobyl liquidators

    International Nuclear Information System (INIS)

    Chumak, V.V.; Bakhanova, E.V.; Sholom, S.V.; Pasalskaya, L.F.; Bouville, A.; Krjuchkov, V.P.

    2000-01-01

    The numerous cohort of Chernobyl liquidators is a very attractive subject for epidemiological follow up due to high levels of exposure, age-gender distribution and availability of patients for medical examination. However, dosimetric information related to this population is incomplete, in many cases the quality of available dose records is doubtful and uncertainties of all dose values are not determined. Naive attempts to evaluate average doses on the basis of such factors as 'distance from the reactor' obviously fail due to large variation of tasks and workplace contamination. Therefore, prior to any sensible consideration of liquidators as a subject of epidemiological study, their doses should be evaluated (reevaluated) using the methods of retrospective dosimetry. Retrospective dosimetry in general got significant development over the last decade. However, most of the retrospective dosimetry techniques are time consuming, expensive and possess sensitivity threshold. Therefore, application of retrospective dosimetry for the needs of epidemiological follow up studies requires development of certain strategy. This strategy depends, of coarse, on the epidemiological design of the study, availability of resources and dosimetric information related to the time of clean up. One of the strategies of application of retrospective dosimetry may be demonstrated on the example of a cohort study with occasional nested case control consideration. In this case, the tools are needed for validation of existing dose records (of not always known quality), screening of the study cohort with express dosimetric method called to determine possible dose ranges, and 'state-of-the-art' assessment of individual doses for selected subjects (cases and controls). Verification of dose records involves analysis of the statistical regularities of dose distributions and detection of possible extraneous admixtures (presumably falsified dose records). This work is performed on impersonified data

  1. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  2. Design and dosimetry of an eye plaque containing I-125 seeds: An improved dose distribution

    International Nuclear Information System (INIS)

    Detorie, N.A.; Tkacik, M.F.; Neglia, W.J.; Jenkins, D.; Shadday, J.

    1986-01-01

    To treat intraocular tumors, a temporarily implanted eye plaque, containing 24 I-125 seeds (3M model 6711), was fabricated from 0.6-mm-thick lead disk with a 1.5-cm diameter. The I-125 seeds were distributed in a particular geometric pattern to average the dose anisotropy of each individual seed. Water phantom measurements made with TLD chips (LiF) and film over the approximate depth range of 1-25 mm were compared with treatment planning computer calculations (Capintec RT-108). Data indicate that the specified geometry produces a dose distribution delivering a tumor dose of 10,000 rad to the tumor apex (7 mm) without exceeding a sclera dose (1 mm) of 40,000 rad. Information regarding fabrication, dosimetry, and radiation safety is presented

  3. Investigating the feasibility of 3D dosimetry in the RPC IMRT H and N phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H S; Sterling, D [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, NC (United States); Adamovics, J [Department of Chemistry and Biology, Rider University, Lawrenceville, NJ (United States); Ibbott, G [Department of Radiation Physics, M. D. Anderson Cancer Center, Houston, Tx (United States); Oldham, M, E-mail: mark.oldham@duke.edu

    2009-05-01

    An urgent requirement for 3D dosimetry has been recognized because of high failure rate ({approx}25%) in RPC credentialing, which relies on point and 2D dose measurements. Comprehensive 3D dosimetry is likely to resolve more errors and improve IMRT quality assurance. This work presents an investigation of the feasibility of PRESAGE/optical-CT 3D dosimetry in the Radiologic Physics Center (RPC) IMRT H and N phantom. The RPC H and N phantom (with standard and PRESAGE dosimetry inserts alternately) was irradiated with the same IMRT plan. The TLD and EBT film measurement data from standard insert irradiation was provided by RPC. The 3D dose measurement data from PRESAGE insert irradiation was readout using the OCTOPUS{sup TM} 5X optical-CT scanner at Duke. TLD, EBT and PRESAGE dose measurements were inter-compared with Eclipse calculations to evaluate consistency of planning and delivery. Results showed that the TLD point dose measurements agreed with Eclipse calculations to within 5% dose-difference. Relative dose comparison between Eclipse dose, EBT dose and PRESAGE dose was conducted using profiles and gamma comparisons (4% dose-difference and 4 mm distance-to-agreement). Profiles showed good agreement between measurement and calculation except along steep dose gradient regions where Eclipse modelling might be inaccurate. Gamma comparisons showed that the measurement and calculation showed good agreement (>96%) if edge artefacts in measurements are ignored. In conclusion, the PRESAGE/optical-CT dosimetry system was found to be feasible as an independent dosimetry tool in the RPC IMRT H and N phantom.

  4. Investigating the feasibility of 3D dosimetry in the RPC IMRT H and N phantom

    International Nuclear Information System (INIS)

    Sakhalkar, H S; Sterling, D; Adamovics, J; Ibbott, G; Oldham, M

    2009-01-01

    An urgent requirement for 3D dosimetry has been recognized because of high failure rate (∼25%) in RPC credentialing, which relies on point and 2D dose measurements. Comprehensive 3D dosimetry is likely to resolve more errors and improve IMRT quality assurance. This work presents an investigation of the feasibility of PRESAGE/optical-CT 3D dosimetry in the Radiologic Physics Center (RPC) IMRT H and N phantom. The RPC H and N phantom (with standard and PRESAGE dosimetry inserts alternately) was irradiated with the same IMRT plan. The TLD and EBT film measurement data from standard insert irradiation was provided by RPC. The 3D dose measurement data from PRESAGE insert irradiation was readout using the OCTOPUS TM 5X optical-CT scanner at Duke. TLD, EBT and PRESAGE dose measurements were inter-compared with Eclipse calculations to evaluate consistency of planning and delivery. Results showed that the TLD point dose measurements agreed with Eclipse calculations to within 5% dose-difference. Relative dose comparison between Eclipse dose, EBT dose and PRESAGE dose was conducted using profiles and gamma comparisons (4% dose-difference and 4 mm distance-to-agreement). Profiles showed good agreement between measurement and calculation except along steep dose gradient regions where Eclipse modelling might be inaccurate. Gamma comparisons showed that the measurement and calculation showed good agreement (>96%) if edge artefacts in measurements are ignored. In conclusion, the PRESAGE/optical-CT dosimetry system was found to be feasible as an independent dosimetry tool in the RPC IMRT H and N phantom.

  5. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  6. EPR dosimetry - present and future

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1999-01-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)

  7. MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ceberg, S. [Lund University (Sweden)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  8. MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden

    International Nuclear Information System (INIS)

    Ceberg, S.

    2016-01-01

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  9. Required accuracy and dose thresholds in individual monitoring

    DEFF Research Database (Denmark)

    Christensen, P.; Griffith, R.V.

    1994-01-01

    this uncertainty factor, a value of 21% can be evaluated for the allowable maximum overall standard deviation for dose measurements at dose levels near the annual dose limits increasing to 45% for dose levels at the lower end of the dose range required to be monitored. A method is described for evaluating...... the overall standard deviation of the dosimetry system by combining random and systematic uncertainties in quadrature, and procedures are also given for determining each individual uncertainty connected to the dose measurement. In particular, attention is paid to the evaluation of the combined uncertainty due...... to energy and angular dependencies of the dosemeter. In type testing of personal dosimetry systems, the estimated overall standard deviation of the dosimetry system is the main parameter to be tested. An important characteristic of a personal dosimetry system is its capability of measuring low doses...

  10. Biological in vivo dosimetry with an external measuring technique under application of a labelled DNA-precursor (iodine-125-desoxyuridine)

    International Nuclear Information System (INIS)

    Porschen, W.; Zamboglou, N.; Muehlensiepen, H.; Feinendegen, L.E.

    1976-01-01

    The depression of the incorporation rate of IDU in the whole body or in the bone marrow is a sensitive indicator for a whole-body irradiation. It was found that the maximum effect is observed some 4 hours after irradiation. For this reason, bone marrow cells were labelled in vitro with IDU 4 hours after whole-body irradiation. This method proved to be extraordinarily sensitive and resulted in reproducible effects which occurred already at doses below 5 rad. All the other biological methods of dosimetry known so far are less sensitive. Although the theory explaining these results is not yet fully clarified, this method of dosimetry appears to offer practical possibilities of application. (orig.) [de

  11. Implications in dosimetry of the implementation of the revised dose limit to the lens of the eye

    International Nuclear Information System (INIS)

    Broughton, J.; Shah, B.; Cantone, M.C.; Ginjaume, M.; Czarwinski, R.

    2015-01-01

    In 2012, International Radiation Protection Association (IRPA) established a Task Group to provide an assessment of the impact of the implementation of the ICRP-revised dose limit for the lens of the eye for occupational exposure. Associated Societies (ASs) of IRPA were asked to provide views and comments on the basis of a questionnaire addressing three principal topics: (i) implications for dosimetry, (ii) implications for methods of protection and (iii) wider implications of implementing the revised limits. A summary of the collated responses regarding dosimetry is presented and discussed. There is large agreement on the most critical aspects and difficulties in setting up an appropriate monitoring programme for the lens of the eyes. The recent international standards and technical documents provide guidance for some of the concerns but other challenges remain in terms of awareness, acceptance and practicalities. (authors)

  12. Individual monitoring dosimetry in Europe

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1991-01-01

    This report discusses the various types of individual monitoring systems presently in use within the European community and neutron dosimetry research being coordinated by the EURADOS working group. Research is currently being conducted on nuclear track dosimeters, primarily with CR-39 (TM), and TLD-albedo dosimeters. Studies are being conducted on the energy and angular response of each type of dosimeter. Because the response of dosimeters depends on the energy of the neutrons, it is necessary to have spectral information to accurately assess the dose. Neutron energy spectrum measurements are being performed in typical work place environments. Work is also progressing on development of calibration sources which will be representative of the neutron energy spectrum found in typical neutron exposure situations. This work utilizes 14 MeV neutrons incident on a uranium block with various other filters. Research is also continuing on neutron dosimetry using tissue equivalent proportional counters and microdosimetric techniques. The results of intercomparisons between several different instruments are discussed. In addition to personnel dosimetry, these systems are being used to record the dose to passengers and flight crews aboard commercial aircraft

  13. Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source

  14. Improvement of JCDS, a computational dosimetry system in JAEA for neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Matsumura, Akira; Yamamoto, Tetsuya; Nakagawa, Yoshinobu; Kageji, Teruyoshi

    2006-01-01

    JCDS, a computational dosimetry system for neutron capture therapy, was developed by Japan Atomic Energy Agency. The system has been sophisticated to facilitate dose planning so far. In dosimetry with JCDS for BNCT clinical trials at JRR-4, several absorbed doses and the dose distributions are determined by a voxel model consisted of 2x2x2mm 3 voxel cells. By using the detailed voxel model, accuracy of the dosimetry can be improved. Clinical trials for melanoma and head-and-neck cancer as well as brain tumor were started using hot version of JCDS in 2005. JCDS is also being of improved so as to enable a JCDS application to dosimetry by PHITS as well as dosimetry by MCNP. By using PHITS, total doses of a patient by a combined modality therapy, for example a combination of BNCT and proton therapy, can be estimated consistently. Moreover, PET images can be adopted in combination with CT and MRI images as a farsighted approach. JCDS became able to identify target regions by using the PET values. (author)

  15. Internal emitter dosimetry: are patient-specific calculations necessary?

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The question of whether patient-specific calculations are needed in internal emitter dosimetry arises when radionuclides are used for therapy. In diagnostic procedures the absorbed dose delivered to normal tissue is far below hazardous levels. In internal emitter therapy, the need for patient-specific dosimetry may arise if a large variability in biodistribution, normal tissue toxicity or efficacy is anticipated. Patient-specificity may be accomplished at the level of pharmacokinetics, anatomy/tumor-geometry or both. At the first level, information regarding the biodistribution of a particular radiolabeled agent is obtained and used to determine the maximum activity that may be administered for treatment. The classical example of this is radioiodine therapy for thyroid cancer. In radioiodine therapy, the therapy dose is preceded by a tracer dose of I-131-iodide which is used to measure patient kinetics by imaging and whole-body counting. Absorbed dose estimates obtained from these data are used to constrain the therapy dose to meet safety criteria established in a previously performed dose-response study. The most ambitious approach to patient-specific dosimetry, requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of registered images representing anatomy (CT or MRI). The spatial distribution of absorbed dose or dose-rate may then be obtained by convolution of a point-kernel with the radioactivity distribution or by Monte Carlo calculation. The spatial absorbed dose or dose-rate distribution may be represented as a set of images, as isodose contours, or as dose-volume histograms. The 3-D Monte Carlo approach is, in principle, the most patient-specific; it accounts for patient anatomy and tumor geometry as well as for the spatial distribution of radioactivity. It is also, however, the most logistically and technically demanding. Patients are required to undergo CT or MRI and at least one

  16. Calculation of absorbed dose in water by chemical Fricke dosimetry; Calculo de dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Adenilson Paiva, E-mail: adenilson-fisica@hotmail.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Meireles, Ramiro Conceicao [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  17. Radiation protection in medicine (542) comparison of different dosimetry systems for dose measurements in diagnostic radiology

    International Nuclear Information System (INIS)

    Milkovic, D.; Ranogajec-Komor, M.; Miljanic, S.; Knezevic, Z.; Krpan, K.

    2006-01-01

    The dose measurement on patients in X-ray diagnostic is not simple, because low doses with low and various energies have to be measured. The aim of this preliminary study was to compare high sensitivity thermoluminescent dosimeter (T.L.D.) (LiF:Mg,Cu,P) and radio-photoluminescent (R.P.L.) glass dosimeters for dose measurements in routine X-ray diagnostic of chest of children. The energy dependence of the dosimeters was investigated in Secondary Standard Dosimetry Laboratory (SSDL). The energy range was 33- 65 keV mean energy, the dosimeters were placed free in air and on the water phantom. The results were compared to calculated values of Hp(10). The next step was the irradiation in a routine X-ray diagnostic unit. Irradiations were performed by the Shimadzu X-ray unit. The selected irradiation conditions were the same as that most commonly used for baby examinations. Doses were measured with dosimeters placed free-in-air and also with the dosimeters placed on the water phantom and baby phantom. The results show that the R.P.L. glass dosimeters and LiF:Mg,Cu,P based T.L.D. are suitable for low dose measurements in X-ray diagnostic. The uncertainty of dose determination is mainly caused by the energy dependence of dosimeters. (authors)

  18. Thermally stimulated current in PTFE and its application in radiation dosimetry

    International Nuclear Information System (INIS)

    Ozdemir, S.

    1985-01-01

    Thermally Stimulated Current (TSC) measurement was made on PTFE (Polytetrafluoro ethylene) in an attempt to develop an integrating radiation dosimeter material and the system. TSC spectra, dose response, energy response, fading and background charge stability characteristics were used as a measure of suitability of various untreated and heat treated PTFE samples for dosimetry applications. For practical TSC dosimetry system, it was discovered that the PTFE samples should be subjected to a specific heat treatment in order to produce samples with better dosimeter characteristics. A treatment at a temperature of 240 C produces a high dose response and low fading characteristics. It was found that the spurious charges due to storage and low sensitivity to irradiation caused the limitation in the measurement of low doses with PTFE samples for personnel protection. However, a TSC Dosimetry system using PTFE is proposed which is suitable for radiation doses in the radiotherapy range from *approx* 50 to *approx* 800 mGy. (author)

  19. Accreditation and training on internal dosimetry in a laboratory network in Brazil: an increasing demand.

    Science.gov (United States)

    Dantas, B M; Dantas, A L A; Acar, M E D; Cardoso, J C S; Julião, L M Q C; Lima, M F; Taddei, M H T; Arine, D R; Alonso, T; Ramos, M A P; Fajgelj, A

    2011-03-01

    In recent years, Brazilian Nuclear Programme has been reviewed and updated by government authorities in face of the demand for energy supply and its associated environmental constraints. The immediate impact of new national programmes and projects in nuclear field is the increase in the number of exposed personnel and the consequent need for reliable dosimetry services in the country. Several Technical Documents related to internal dosimetry have been released by the International Atomic Energy Agency and International Commission on Radiological Protection. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, both in routine and emergency internal monitoring, procedures can vary from one laboratory to another and responses may differ markedly among Dosimetry Laboratories. Thus, it may be difficult to interpret and use bioassay data generated from different laboratories of a network. The main goal of this work is to implement a National Network of Laboratories aimed to provide reliable internal monitoring services in Brazil. The establishment of harmonised in vivo and in vitro radioanalytical techniques, dose assessment methods and the implementation of the ISO/IEC 17025 requirements will result in the recognition of technical competence of the network.

  20. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  1. [Automatic Extraction and Analysis of Dosimetry Data in Radiotherapy Plans].

    Science.gov (United States)

    Song, Wei; Zhao, Di; Lu, Hong; Zhang, Biyun; Ma, Jun; Yu, Dahai

    To improve the efficiency and accuracy of extraction and analysis of dosimetry data in radiotherapy plans for a batch of patients. With the interface function provided in Matlab platform, a program was written to extract the dosimetry data exported from treatment planning system in DICOM RT format and exported the dose-volume data to an Excel file with the SPSS compatible format. This method was compared with manual operation for 14 gastric carcinoma patients to validate the efficiency and accuracy. The output Excel data were compatible with SPSS in format, the dosimetry data error for PTV dose interval of 90%-98%, PTV dose interval of 99%-106% and all OARs were -3.48E-5 ± 3.01E-5, -1.11E-3 ± 7.68E-4, -7.85E-5 ± 9.91E-5 respectively. Compared with manual operation, the time required was reduced from 5.3 h to 0.19 h and input error was reduced from 0.002 to 0. The automatic extraction of dosimetry data in DICOM RT format for batch patients, the SPSS compatible data exportation, quick analysis were achieved in this paper. The efficiency of clinical researches based on dosimetry data analysis of large number of patients will be improved with this methods.

  2. Dose absorbed in adults and children thyroid due to the I123 using the dosimetry MIRD and Marinelli

    International Nuclear Information System (INIS)

    Vasquez, M.; Castillo, C.; Cabrera, C.; Sarachaga, R.; Castaneda, J.; Diaz, E.

    2014-08-01

    Using the dosimetry MIRD, and representation Cristy-Eckerman in the thyroid gland and organs of their bio-kinetics when I 123 (Iodine) is used, the study demonstrates that the absorbed dose by the gland of an adult, children, and newly born, is their auto-dose, independent of the compartments number of their bio-kinetics. The dosimetric contributions of the organs of their bio-kinetics are insignificant. Their results are not significantly different to those obtained by the formalism MARINELLI (auto-dose) when it uses a sphere like glandular representation. In consequence, the kinetic model corresponding to the glandular representation decreases to a compartment, where the gland can also be represented like a sphere. (Author)

  3. Experience with in vivo diode dosimetry for verifying radiotherapy dose delivery: Practical implementation of cost-effective approaches

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Blyth, C.; Carruthers, L.; Elliott, P.A.; Kidane, G.; Millwater, C.J.; MacLeod, A.S.; Paolucci, M.; Stacey, C.

    2002-01-01

    A systematic programme of in vivo dosimetry using diodes to verify radiotherapy delivered doses began in Edinburgh in 1992. The aims were to investigate the feasibility of routine systematic use of diodes as part of a comprehensive QA programme, to carry out clinical pilot studies to assess the accuracy of dose delivery on each machine and for each site and technique, to identify and rectify systematic deviations, to assess departmental dosimetric precision and to compare to clinical requirements. A further aim was to carry out a cost-benefit evaluation based on the results from the pilot studies to consider how best to use diodes routinely

  4. Introduction to dosimetry and risk estimation of second cancer induction following radiotherapy

    International Nuclear Information System (INIS)

    Harrison, R.M.

    2013-01-01

    This brief review of dosimetry in second cancer dosimetry introduces work carried out by Working Group 9 (Radiation Protection Dosimetry in Medicine) of the European Radiation Dosimetry Group (EURADOS). The work described in the following papers in this edition was presented at a Workshop on Dosimetry for Second Cancer Risk Estimation given at the EURADOS Annual meeting in Vienna on February 8th 2012. The work concentrates on the measurement of out-of-field doses in water tanks and BOMAB-like phantoms using a variety of dosimeters to measure photon and neutron doses. These include optically stimulated luminescence (OSL), radiophotoluminescence (RPL) and thermoluminescence (TLD) dosimeters for photon dosimetry (together with ion chambers for reference measurements traceable to primary standards) and track etch and bubble detectors for neutron measurements. A discussion of the various phantoms available for these measurements is presented together with a brief introduction to a model for the relationship between organ doses and the risk of induction of second cancers. The estimation of second cancer risks is not trivial and involves processes which are currently incompletely understood. However, progress in this field requires a robust foundation and methodology for the measurement or calculation of organ doses following radiotherapy, so that risks can be placed in perspective, algorithms for out-of-field doses can be compared with measured data, and future epidemiological studies may have a reliable foundation of organ dosimetry for retrospective dosimetry studies. -- Highlights: ► Brief review of second cancer induction following radiotherapy. ► Out-of-field doses for estimating risks to remote organs. ► Introduction to dosimetry techniques and dosimeters used. ► Out-of-field dose measurements in phantoms

  5. Retrospective radiation dosimetry using electron paramagnetic resonance in canine dental enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.; Pekar, J.; Rink, W.J.; Boreham, D.R.

    2005-01-01

    Electron paramagnetic resonance (EPR) biodosimetry of human tooth enamel has been widely used for measuring radiation doses in various scenarios. We have now developed EPR dosimetry in tooth enamel extracted from canines. Molars and incisors from canines were cleaned by processing in supersaturated aqueous potassium hydroxide solution. The dosimetric signal in canine tooth enamel was found to increase linearly as a function of laboratory added dose from 0.44±0.02 to 4.42±0.22 Gy. The gamma radiation sensitivity of the canine molar enamel was found to be comparable to that of human tooth enamel. The dosimetric signal in canine enamel has been found to be stable up to at least 6 weeks after in vitro irradiation. A dosimetric signal variation of 10-25% was observed for canines ranging from in age 3 years to 16 year old

  6. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  7. Dosimetry of internal emitters - quo vadis?

    International Nuclear Information System (INIS)

    Reddy, A.R.; Nagaratnam, A.; Jain, S.C.; Gupta, M.M.; Mehta, S.C.

    1999-01-01

    The dosimetry of internally administered radiopharmaceuticals in nuclear medicine procedures using MIRD formalisms and dosimetry in the case of intakes of radionuclides and ICRP methodology for the purpose of radiological protection are well established working practices. It should, however, be remembered that dose or dose coefficients calculated refer to a reference individual, defined in terms of a mathematical phantom established on the basis of certain biokinetic reference parameters. The reference individual represents a typical caucasian adult of West Europe or North American origin. Recently, some attempts have been made to define a Reference Asian and a Reference Indian individual and to assess the effects of anatomical differences and changes in the biokinetics of radiopharmaceuticals and other radionuclides in these different reference individuals on the estimation of dose and dose coefficients in relation to the intake of internal radionuclides. The assessment of doses to the embryo/fetus due to intake of radionuclides by pregnant women, local dose estimates, microdosimetry, radiobiology and radiation protection aspects relating to Auger electron emitters represent other areas of active research in the area of dosimetry of internal emitters. The present review summarises these different aspects of work. (orig.) [de

  8. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    International Nuclear Information System (INIS)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L

    2015-01-01

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator

  9. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  10. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    Vidal, P.E.

    1985-01-01

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  11. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  12. Next decade in external dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1988-01-01

    In recent years, a number of external dosimetry problems have been solved. However, changes in standards and legal concepts relating to the application of dosimetry results will require further enhancements in measurement techniques and philosophy in the next 10 y. The introduction of effective dose equivalent and the legal use of probability of causation will require that much greater attention be given to determination of weighted organ dose from external exposure. An imminent change--an increase in the fast neutron quality factor--will require a new round of technology development in a field that has just received a decade of close scrutiny. For the future, we must take advantage of developments in microelectronics. The use of random access memory (RAM) and metal-on-silicon (MOS) devices as detector elements, particularly for neutron dosimetry, has exciting possibilities that are just beginning to be explored. Advances in microcircuitry are leading, and will continue to lead, in the development of a new generation of small, rugged and smart radiation survey instruments that will make the most of detector data. It has become possible with very compact instruments to obtain energy spectra, linear-energy-transfer (LET) spectra, and quality factors in addition to the usual integrated dosimetric quantities: exposure, absorbed dose, and dose equivalent. These instruments will be reliable and easy to use. The user will be able to select the level of sophistication that is required for any specific application. Moreover, since the processing algorithms can be changed, changes in conversion factors can be accommodated with relative ease. During the next decade, the use of computers will continue to grow in value to the health physicist

  13. Updating the INDAC computer application of internal dosimetry

    International Nuclear Information System (INIS)

    Bravo Perez-Tinao, B.; Marchena Gonzalez, P.; Sollet Sanudo, E.; Serrano Calvo, E.

    2013-01-01

    The initial objective of this project is to expand the application INDAC currently used in internal dosimetry services of the Spanish nuclear power plants and Tecnatom for estimating the effective doses of internal dosimetry of workers in direct action. or in-vivo dosimetry. (Author)

  14. Dose levels of the occupational radiation exposures in Poland based on results from the accredited dosimetry service at the IFJ PAN, Krakow.

    Science.gov (United States)

    Budzanowski, Maciej; Kopeć, Renata; Obryk, Barbara; Olko, Paweł

    2011-03-01

    Individual dosimetry service based on thermoluminescence (TLD) detectors has started its activity at the Institute of Nuclear Physics (IFJ) in Krakow in 1965. In 2002, the new Laboratory of Individual and Environment Dosimetry (Polish acronym LADIS) was established and underwent the accreditation according to the EN-PN-ISO/IEC 17025 standard. Nowadays, the service is based on the worldwide known standard thermoluminescent detectors MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P), developed at IFJ, processed in automatic thermoluminescent DOSACUS or RE2000 (Rados Oy, Finland) readers. Laboratory provides individual monitoring in terms of personal dose equivalent H(p)(10) and H(p)(0.07) in photon and neutron fields, over the range from 0.1 mSv to 1 Sv, and environmental dosimetry in terms of air kerma K(a) over the range from 30 μGy to 1 Gy and also ambient dose equivalent H*(10) over the range from 30 μSv to 1 Sv. Dosimetric service is currently performed for ca. 3200 institutions from Poland and abroad, monitored on quarterly and monthly basis. The goal of this paper is to identify the main activities leading to the highest radiation exposures in Poland. The paper presents the results of statistical evaluation of ∼ 100,000 quarterly H(p)(10) and K(a) measurements performed between 2002 and 2009. Sixty-five per cent up to 90 % of all individual doses in Poland are on the level of natural radiation background. The dose levels between 0.1 and 5 mSv per quarter are the most frequent in nuclear medicine, veterinary and industrial radiography sectors.

  15. Dosimetry. Standard practice for dosimetry in gamma irradiation facilities for food and non-food processing

    International Nuclear Information System (INIS)

    2008-01-01

    This Ghana Standard outlines the installation qualification program for an irradiator and the dosimetry procedures to be followed during operational qualification, performance qualification and routine processing in facilities that process food and non-food with gamma rays. This is to ensure that the product has been treated with predetermined range of absorbed dose. It is not intended for use in X-ray and electron beam facilities and therefore dosimetry systems in such facilities are not covered

  16. Fabrication of a flexible polycarbonate/porphyrin film dosimeter for high dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shahzad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Radiation Application Research School

    2017-10-01

    Dyed polycarbonate (PC) Radiochromic films with 20 μm thickness were prepared by casting of organic solution of PC containing 0.5 wt.% tetrakis (pentafluorophenyl) porphyrin (TPPF{sub 20}) on a glass petri dish. Characterization of the film as a routine dosimeter was studied. On subjecting PC/TPPF{sub 20} film dosimeter to gamma radiation, a gradual decrease in the color of films was observed. The sensitivity of these films and the linearity of dose-response curves were studied under {sup 60}Co γ-rays expose in dose range of 0-100 kGy. The results were compared with the commercial and non-commercial dosimeters. Experimental parameters including humidity, temperature and pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight were examined. The maximum absorbance of soret band of TPPF{sub 20} had a bathochromic shift and appeared at 414 nm which remained intact in the investigated dose range. The dyed films characteristics were found to be stable enough in media with high degrees of temperature and humidity. The results indicate that radiation induced decoloration of PC/TPPF{sub 20} films can be reliably used in high dose dosimetry.

  17. Comparison of the dose-response relationships for chromosome aberration frequencies between the T65D and DS86 dosimetries

    International Nuclear Information System (INIS)

    Preston, D.L.; McConney, M.E.; Awa, A.A.; Ohtaki, Kazuo; Itoh, Masahiro; Honda, Takeo.

    1989-05-01

    Cytogenetic data, derived from cultured lymphocytes of atomic bomb survivors and controls in the ABCC-RERF Adult Health Study cohort, have been analyzed to determine differences in the dose-response relationships for chromosome aberrations between the T65D and DS86 dose estimates and to assess differences between Hiroshima and Nagasaki. For a linear dose-response model, the average percentage of cells with at least one chromosome aberration increases less rapidly with dose in Nagasaki than in Hiroshima. The magnitude of the intercity difference in the percentage of cells with aberrations per gray is less for DS86 than for T65D, though the difference is statistically significant for both kerma and bone marrow dose with either dosimetry. The percentage of cells with aberrations per gray for DS86 kerma estimates is about 60 % greater than the corresponding T65D slope. Analyses to test nonlinearity in the dose-response function indicate significant departures (p<.001) from linearity, using both dosimetries for both kerma and marrow dose. Therefore, comparative results are presented for a range of RBE relationships under various linear (L) and linearquadratic linear (LQ-L) models. As an illustrative result, if one assumes an LQ-L model similar to models reported in the cytogenetic literature, with a limiting RBE of 20 at zero dose, the DS86 slope (the percentage of cells with aberrations per sievert) is 120 % greater than the corresponding T65D value. (J.P.N.)

  18. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  19. Guide for dosimetry in radiation research on food and agricultural products

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the minimum requirements for dosimetry and absorbed-dose validation needed to conduct research on the irradiation of food and agricultural products. Such research includes establishment of the quantitative relationship between the absorbed dose and the relevant effects in these products. This guide also describes the overall need for dosimetry in such research, and in reporting of the results. This guide is intended for use by research scientists in the food and agricultural communities, and not just scientists conducting irradiation research. It, therefore, includes more tutorial information than most other ASTM and ISO/ASTM dosimetry standards for radiation processing. This guide is in no way intended to limit the flexibility of the experimenter in the experimental design. However, the radiation source and experimental set up should be chosen such that the results of the experiment will be beneficial and understandable to other scientists, regulatory agencies, and the food and agricultural communities. The effects produced by ionizing radiation in biological systems depend on a large number of factors which may be physical, physiological, or chemical. Although not treated in detail in this guide, quantitative data of environmental factors that may affect the absorbed-dose response of dosimeters, such as temperature and moisture content in the food or agricultural products should be reported. The overall uncertainty in the absorbed-dose measurement and the inherent absorbed-dose range within the specimen should be taken into account in the design of an experiment. The guide covers research conducted using the following types of ionizing radiation: gamma rays, bremsstrahlung X-rays, and electron beams. This guide does not include other aspects of radiation processing research, such as planning of the experimental design. Dosimetry must be considered as an integral part of the experimental design. The guide does not include dosimetry for irradiator

  20. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    International Nuclear Information System (INIS)

    Bäck, A

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK ® (Sun Nuclear), MatriXX Evolution (IBA Dosimetry) and OCTAVIOUS ® 1500 (PTW), 3D phantoms such as OCTAVIUS ® 4D (PTW), ArcCHECK ® (Sun Nuclear) and Delta 4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDose TM (Sun Nuclear) and Dosimetry Check TM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific

  1. Radiation dosimetry in radiotherapy with internal emitters

    International Nuclear Information System (INIS)

    Stabin, Michael G.

    1997-01-01

    Full text. Radiation dosimetry radionuclides are currently being labeled to various biological agents used in internal emitter radiotherapy. This talk will review the various technologies and types of radiolabel in current use, with focus on the characterization of the radiation dose to the various important tissues of the body. Methods for obtaining data, developing kinetic models, and calculating radiation doses will be reviewed. Monoclonal antibodies are currently being labeled with both alpha and beta emitting radionuclides in attempts to find effective agents against cancer. Several radionuclides are also being used as bone pain palliation agents. These agents must be studied in clinical trials to determine the biokinetics and radiation dosimetry prior to approval for general use. In such studies, it is important to ensure the collection of the appropriate kinds of data and to collect the data at appropriate time intervals. The uptake and retention of activity in all significant source organs and in excreta be measured periodically (with at least 2 data points phase of uptake or clearance). Then, correct dosimetry methods must be applied - the best available methods for characterizing the radionuclide kinetic and for estimating the dosimetry in the various organs of the body especially the marrow, should be used. Attempts are also under way to develop methods for estimating true patient-specific dosimetry. Cellular and animal studies are also. Valuable in evaluating the efficacy of the agents in shrinking or eliminating tumors; some results from such studies will also be discussed. The estimation of radiation doses to patients in therapy with internal emitters involves several complex phases of analysis. Careful attention to detail and the use of the best available methods are essential to the protection of the patient and a successful outcome

  2. Biological dosimetry in cases gives occupational high exposition to ionizing radiations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A.

    1998-01-01

    From 1983 the cytogenetics dosimetry method it has been used as routine in the IRD laboratory in the period 1983 at 1997 but a high exposition occupational case the physical dosimeters happened in Brazil they were investigated through the cytogenetics dosimetry technique. This technique is employ when the dosimetry personal marks a high dose to 100 mSv (0,1 Gy) that is the cut-off minimum detected in the dosimetry cytogenetics

  3. Biological dosimetry study in differentiated thyroid carcinoma patients treated with 131Iodine

    International Nuclear Information System (INIS)

    Vallerga, Maria Belen

    2008-11-01

    Biological Dosimetry allows individual dose assessments based on the effect produced by ionizing radiation on a given biological parameter. The current biological endpoint being scored is chromosomal aberrations, relying on a lymphocytes culture from the patient's blood. The measured yield of chromosome aberrations is referred to a calibration curve obtaining the whole body dose. Different scenarios of overexposure can be taken into account by modifying the calculations leading to the dose estimate. Differentiated Thyroid Carcinoma patients undergo thyroidectomy followed by internal radiotherapy with 131 I. The treatment's success entails the delivery of a lethal dose to the tumour within the maximum tolerable dose to a critical organ (blood doses over 2 Gy could lead to bone marrow depression). Currently, there is no established agreement for the selection of radioiodine dosage. Historically, the empiric approach, based on clinical and biochemical data, has been recommended. Nevertheless, this method may not be associated with optimal outcomes. On the other hand, the dosimetric approach attempts to determine the maximum allowable activity to be administered, establishing its biokinetics by a diagnostic 131 I study. The methodology may be modified to further individualized treatment, however it requires validation. Biological dosimetry provides an independent measure of radiotherapy effect, as such it might aid in the validation process. Nonetheless, biological dosimetry has traditionally been applied in cases of external and accidental overexposure to ionizing radiation. Accordingly, it is mandatory to assess its value in medical internal incorporations (main objective of the present study). The applied treatment strategy comprises whole body dose assessment by biological and internal dosimetry in order to administer a personalized therapeutic activity. Overall, 20 patients with differentiated thyroid carcinoma were included in the study. For biological dosimetry

  4. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry; Analise das incertezas na determinacao da dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre, E-mail: fabiavasco@hotmail.com, E-mail: ederuni01@gmail.com [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2016-07-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  5. Methods for implementation of in vivo dosimetry (entrance dose) using thermoluminescent dosimeters during radiotherapy treatment with photon beam

    International Nuclear Information System (INIS)

    Barsanelli, Cristiane

    2006-01-01

    Selection, calibration procedure to convert TLD signal into absorbed dose and physical characteristics at the thermoluminescent dosimeters, as well as the determination of correction factors and the methodology to determine expected entrance dose, are described in this work. Practical aspects and the utility of entrance dose measures with thermoluminescent dosimeters were investigated, as well as the exactness and the reproducibility of the daily dose release. The entrance dose measures were performed in five patients with diagnosis of breast cancer treated with a 6 MV photon beam. The measured dose and the expected dose values agreed in ± 5%, due to excellent treatment equipment stability, to automatic verification system and the good exactness in the daily treatment adjustment. Good precision can be achieved when the correction factors for each parameter of influence in the dosimeter response are carefully determined and applied to convert the thermoluminescent signal into absorbed dose. The study demonstrates the viability of thermoluminescent dosimeters use for in vivo dosimetry and its utility as part of a quality assurance program in a radiation therapy service. (author)

  6. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    Science.gov (United States)

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  7. Use of the pre-dose technique for environmental dosimetry. [Thermoluminescence from fired bricks or tiles

    Energy Technology Data Exchange (ETDEWEB)

    Bailiff, I K [Durham Univ. (UK). TL Lab.; Haskell, E H [Utah Univ., Salt Lake City (USA). Radiobiology Div.

    1984-01-01

    The pre-dose effect associated with the 110/sup 0/C TL peak of quartz is the basis of a dating technique developed at the Oxford Laboratory, and now in use to date pottery and brick at the Durham Laboratory. Recently its use for the measurement of fallout gamma dose has been initiated at the University of Utah. Using quartz extracted from fired brick, the technique has been shown to be sufficiently sensitive to measure doses in the region of 10 mGy. The complexities of the technique encountered during dating in its upper range (approx. 5 Gy) are equally apparent in its lower range (10 mGy). With a common interest in the pre-dose technique, the research that is being performed to apply the technique through its full range in environmental dosimetry is discussed.

  8. Direct biological dosimetry in Chernobyl clear-up workers

    International Nuclear Information System (INIS)

    Maznik, N.A.; Vinnikov, V.A.; Rozdil'ski, S.I.

    1999-01-01

    Full text: In cases of large-scale radiological accidents like Chernobyl (1986) the estimation of somatic risk to exposed populations became a problem due to lack of direct physical dosimetry data. In such conditions the necessarily information can be obtained from biological dosimetry, firstly by chromosomal aberrations analysis in human peripheral blood lymphocytes. Conventional cytogenetic assay have been carried out in 130 persons recruited as clean-up workers ('liquidators') to the Chernobyl zone in 1986-87 yrs. Blood sampling was performed during 1 year post-irradiation, in 100 persons p to 0.5 year. The aberrations of choice for biological dosimetry were unstable chromosome exchanges (dicentrics and centric rings with accompanying acentric fragments). The dose calculations have been done using the linear term of the dose-response curve built with acute gamma-irradiation of blood in dose range up to 1 Gy. The distributions of biological doses were investigated in groups of liquidators with doses in documents ranging 17-140, 175-230, 250, 260-365, 440-1030 mSv and in the group of non-monitored persons. The weak correlation between monitored individual doses and biological doses was shown; the biological and physical dose distribution peculiarity in monitored groups is discussed. The distribution of individual aberration frequencies and the average yield of chromosomal exchanges in monitored and non-monitored liquidators were identical. The common cohort analysis (monitored and non-monitored persons) showed that the individual aberration yields distribution among liquidators was strictly randomised in accordance with Poissonian statistics. The cytogenetic dose estimations obtained can be of great value for somatic effects risk assessment in post-Chernobyl cohorts

  9. Activity Of EURADOS In Environmental Solid State Dosimetry

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Duch, M. A.; Haninger, T.

    2015-01-01

    Working Group 3 (WG3) of the European Radiation Dosimetry Group (EURADOS) carries out research projects and coordinated activities to advance the scientific understanding of environmental dosimetry and especially to promote the technical development of new methods in environmental monitoring. In this field of dosimetry, the measurement of small additional doses caused by artificial radiation on top of the natural environmental radiation is a challenge. Further, WG3 stimulates the organisation of intercomparison programmes and the definition of standards and recommendations in the field of environmental radiation monitoring (ERM). WG3 has played a significant role in the harmonisation of early warning dosimetry network stations in Europe and has organised 6 EURADOS intercomparison exercises; in which 42 institutions from 19 countries have participated. Today, about 5000 stations provide real-time dose rate data to a database run by the European Commission. Within WG3 a subgroup (S1) on spectrometry system was formed in 2013. Since then, WG3 has been involved in the field of spectrometry systems used both for dosimetric and spectrometric monitoring in the environment. A remarkable result of the WG3 - S1 is that many members contributed to the new European Joint Research Project 'Metrology for radiological early warning networks in Europe' which started in 2014. A second subgroup WG3 - S2 on passive dosimetry in ERM was inaugurated in 2014. To gain an overview of the passive dosimetry practice in ERM, WG3 - S2 decided to collect information by means of a questionnaire which has been send to European dosimetry services. One of the results was the identification of some open questions, problems in ERM (for example terminology, protocol of routine dosimetry, uncertainty assessment) which require clarification for harmonisation of ERM using passive dosimeters. Another result was that there exists a need for intercomparisons. The first intercomparison for passive

  10. Utilisation of OSL from table salt in retrospective dosimetry

    International Nuclear Information System (INIS)

    Fujita, Hiroki; Jain, Mayank; Murray, Andrew S.

    2011-01-01

    Common salt (NaCl) has previously been suggested for use in dose estimation in accident dosimetry. In this study, we investigated the optically stimulated luminescence (OSL) and violet thermoluminescence (VTL) characteristics of 'Aji-Shio' (Ajinomoto), a Japanese commercial salt. A comparison of OSL and TL signals allowed identification of common source traps. The initial OSL signal contained a dominant thermally unstable component, which necessitated prior heat treatment. Based on these luminescence characteristics, a single-aliquot regenerative-dose (SAR) OSL protocol was modified and tested. The protocol worked very well for six types of salt, but not for four other types of salt. A minimum detection limit of ∼15 mGy was estimated using the OSL protocol; this is lower than the value obtained from other forms of OSL retrospective dosimetry and lower than that obtained using electron spin resonance (ESR) dosimetry. It was concluded that the OSL from Japanese commercial salt could be used successfully to derive precise estimates of accident dose. (author)

  11. Dose response of xylitol and sorbitol for epr retrospective dosimetry with applications to chewing gum

    International Nuclear Information System (INIS)

    Israelsson, A.; Gustafsson, H.; Lund, E.

    2013-01-01

    The purpose of this investigation was to study the radiation-induced electron paramagnetic resonance signal in sweeteners xylitol and sorbitol for use in retrospective dosimetry. For both sweeteners and chewing gum, the signal changed at an interval of 1-84 d after irradiation with minimal changes after 4-8 d. A dependence on storage conditions was noticed and the exposure of the samples to light and humidity was therefore minimised. Both the xylitol and sorbitol signals showed linearity with dose in the measured dose interval, 0-20 Gy. The dose-response measurements for the chewing gum resulted in a decision threshold of 0.38 Gy and a detection limit of 0.78 Gy. A blind test illustrated the possibility of using chewing gums as a retrospective dosemeter with an uncertainty in the dose determination of 0.17 Gy (1 SD). (authors)

  12. High-dosage dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    Mehta, K.

    1999-01-01

    The high-dose dosimetry programme was initiated by the International Atomic Energy Agency in 1977. Like any other Agency programme, this one has various activities. These cover: research contracts and research agreements, co-ordinated research projects (CRP), training courses, and laboratory-based activities. The Agency's dose quality audit service (International Dose Assurance Service, IDAS), initiated in 1985, is one of the key elements of the programme. At earlier times, the technical part was operated through a laboratory in Germany. However, after purchasing the Bruker ESR spectrometer, the entire service has been operated from the Agency since 1992. This audit service has served well the needs of various institutes around the world involved with radiation processing. We have had two Co-ordinated Research Projects (the second one is in its last year) over the last several years. Both were/are aimed at standardization of dosimetry for radiation processing. Nine or ten participants of each CRP were about evenly distributed between the developed and developing Member States. In collaboration with the Food and Environmental Protection Section and the Industrial Applications and Chemistry Section, the Dosimetry and Medical Radiation Physics Section has participated in several training courses; these have been mainly regional courses. This collaboration has worked well since such courses combine specific radiation processing applications with the needs of good dosimetry and process control. Also, the Agency has organised several dose intercomparisons in recent time. The activities of the high-dose dosimetry programme since the last symposium (November 1990) are reviewed here. (author)

  13. A-bomb survivor dosimetry update

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact

  14. Fast neutron dosimetry and spectrometry using radioactivation (1963); Dosimetrie et spectrometrie des neutrons rapides par radioactivation (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lamberieux, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The author first recalls rapidly a few generalities concerning induced radioactivity detectors and gives, in an appendix, tables summarizing the properties of detector elements which may be used in radioprotection. The excitation functions found in the literature and also given. The technological characteristics of the detectors used are given, together with the counting methods. The many advantages of activation dosimetry for strong or periodic neutron fluxes and for those in the presence of {gamma}-radiation are stressed. The main problem in activation dosimetry is, however, the calculation of the dose absorbed from the results of the measurements. It is shown how the dose is expressed, fairly accurately, as a function of the radioactivities induced in a series of detectors. As an example, the spectrometry and the dosimetry of the neutron flux emitted by a Po-Be source are presented. (author) [French] L'auteur fait d'abord un bref rappel des generalites sur les detecteurs a radioactivite induite, accompagne, en annexe, des tableaux resumant les proprietes d'elements detecteurs utilisables en radioprotection. Les fonctions d'excitation trouvees dans la litterature y sont egalement annexees. On donne ensuite les caracteristiques technologiques des detecteurs employes ainsi que les methodes de comptage utilisees. On souligne les nombreux avantages de la dosimetrie par activation dans les flux de neutrons intenses ou periodiques et en presence de rayonnement {gamma}. Il reste que le probleme central de la dosimetrie par activation est le calcul de la dose absorbee a partir des resultats de mesure. On montre comment la dose s'exprime, de maniere approchee, en fonction des radioactivites induites dans une serie de detecteurs. A titre d'exemple, la spectrometrie et la dosimetrie du flux de neutrons emis par une source de Po-Be sont presentees. (auteur)

  15. Thermoluminescence dosimetry and its applications in medicine. Part 2: history and applications

    International Nuclear Information System (INIS)

    Kron, T.

    1995-01-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of μ Gy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. TLD is considered to be a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review. 198 refs., 4 tabs., 2 figs

  16. Development of A-bomb survivor dosimetry

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1995-01-01

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring

  17. Development of A-bomb survivor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  18. Biological dosimetry - a Bayesian approach in the presentation of the uncertainty of the estimated dose in cases of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Zaretzky, A.

    2010-01-01

    Biodosimetry laboratory experience has shown that there are limitations in the existing statistical methodology. Statistical difficulties generally occur due to the low number of aberrations leading to large uncertainties for dose estimation. Some problems derived from limitations of the classical statistical methodology, which requires that chromosome aberration yields be considered as something fixed and consequently provides a deterministic dose estimation and associated confidence limits. On the other hand, recipients of biological dosimetry reports, including medical doctors, regulators and the patients themselves may have a limited comprehension of statistics and of informed reports. Thus, the objective of the present paper is to use a Bayesian approach to present the uncertainty on the estimated dose to which a person could be exposed, in the case of low dose (occupational doses) radiation exposure. Such methodology will allow the biodosimetrists to adopt a probabilistic approach for the cytogenetic data analysis. At present, classical statistics allows to produce a confidence interval to report such dose, with a lower limit that could not detach from zero. In this situation it becomes difficult to make decisions as they could impact on the labor activities of the worker if an exposure exceeding the occupational dose limits is inferred. The proposed Bayesian approach is applied to occupational exposure scenario to contribute to take the appropriate radiation protection measures. (authors) [es

  19. Occupational dosimetry in real time hemodynamic rooms. utility of the system Dose-aware as a training tool; Dosimetria ocupacional en tiempo real en salas de hemodinamica. Utilidad del Sistema Dose-Aware como herramienta formativa

    Energy Technology Data Exchange (ETDEWEB)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J. M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar

    2014-02-01

    This paper presents the results from a study in a real time dosimetry system used in the catheter laboratory room of our center. The objective was to know the occupational doses per procedure, on the one hand, and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. 83 diagnostic and therapeutic procedures were analyzed, and an average dose per procedure of 0,37 {mu}Sv and 0,10 {mu}Sv for the main cardiologist and nurse were obtained, respectively. 36 of these interventions were also recorded and the images were synchronized with the dosimetric information stored and the dosimetry system. The findings were presented to the interventional cardiology team in a learning session. They showed a high level of satisfaction with this new method of optimizing the occupational doses through a customized learning session. (Author)

  20. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  1. Diode In-vivo Dosimetry for External Beam Radiotherapy: Patient Data Analysis

    International Nuclear Information System (INIS)

    Mrcela, I.; Bokulic, T.; Budanec, M; Froebe, A.; Soldic, Z.; Kusic, Z.

    2008-01-01

    In-vivo dosimetry is known as simple and reliable method for checking the final accuracy of the dose delivered in external radiotherapy making a supplement to the regular quality control. Entrance dose measurements in the beginning of the treatment assure detection of major errors that can affect the therapy outcome. Silicon diodes are often the detectors of choice for their ability of real time dose measurements and the simplicity of use. There are many publications describing the procedures for the implementation of in-vivo dosimetry. Routine in-vivo dosimetry has been introduced in our department after initial procedures including physical characterization, calibration and determination of correction factors for the detectors in use. This work presents patient data analysis with more than 700 field measurements taken in last 2 years period

  2. The Bad Berka dose protocol: comparative results of dosimetry in peptide receptor radionuclide therapy using (177)Lu-DOTATATE, (177)Lu-DOTANOC, and (177)Lu-DOTATOC.

    Science.gov (United States)

    Schuchardt, Christiane; Kulkarni, Harshad R; Prasad, Vikas; Zachert, Carolin; Müller, Dirk; Baum, Richard P

    2013-01-01

    The objective of this study is to analyze the in vivo behavior of the (177)Lu-labeled peptides DOTATATE, DOTANOC, and DOTATOC used for peptide receptor radionuclide therapy (PRRNT) of neuroendocrine tumors (NETs), by measuring organ and tumor kinetics and by performing dosimetric calculations. Two hundred fifty-three patients (group 1) with metastasized NET who underwent PRRNT were examined. Out of these, 185 patients received (177)Lu-DOTATATE, 9 were treated with (177)Lu-DOTANOC, and 59 with (177)Lu-DOTATOC. Additionally, 25 patients receiving, in consecutive PRRNT cycles, DOTATATE followed by DOTATOC (group 2) and 3 patients receiving DOTATATE and DOTANOC (group 3) were analyzed. Dosimetric calculations (according to MIRD scheme) were performed using OLINDA software. In group 1, DOTATOC exhibited the lowest and DOTANOC the highest uptake and therefore mean absorbed dose in normal organs (whole body, kidney, and spleen). In group 2, there was a significant difference between DOTATATE and DOTATOC concerning kinetics and normal organ doses. (177)Lu-DOTATOC had the lowest uptake/dose delivered to normal organs and highest tumor-to-kidney ratio. There were no significant differences between the three peptides concerning tumor kinetics and mean absorbed tumor dose. The study demonstrates a correlation between high affinity of DOTANOC in vitro and high uptake in normal organs/whole body in vivo, resulting in a higher whole-body dose. DOTATOC exhibited the lowest uptake and dose delivered to normal tissues and the best tumor-to-kidney ratio. Due to large interpatient variability, individual dosimetry should be performed for each therapy cycle.

  3. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  4. Use of data libraries in dosimetry control systems

    International Nuclear Information System (INIS)

    Babenko, V.V.; Babenko, M.I.; Kazimirov, A.S.

    2002-01-01

    Analysis, prediction and planning of dose loads, adequacy in dose management of personnel, evaluation of expediency and sufficiency of existing radiation protection system can be realized with the help of database system of dosimetry control in 'Ukrytie'-shelter

  5. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  6. A fiber-dosimetry method based on OSL from Al2O3:C for radiotherapy applications

    International Nuclear Information System (INIS)

    Gaza, R.; McKeever, S.W.S.; Akselrod, M.S.; Akselrod, A.; Underwood, T.; Yoder, C.; Andersen, C.E.; Aznar, M.C.; Marckmann, C.J.; Boetter-Jensen, L.

    2004-01-01

    We describe a high-sensitivity, fiber-optic dosimetry system based on optically stimulated luminescence (OSL) and radioluminescence from Al 2 O 3 :C single-crystal fibers (detectors). The detectors are coupled to a fiber optic delivery system and OSL from the detector is stimulated via the optical fiber cable using light from a Nd:YAG laser. The OSL is guided back along the same fiber and is detected by a photomultiplier tube. The Al 2 O 3 :C detectors are small and demonstrate high sensitivity with a large signal-to-noise ratio. We describe two modes of operation of the system and discuss algorithms that provide accurate estimation of dose rate and integrated dose in near real time. The system is free from magnetic and electrical interference, and is designed for use in several forms of radiotherapy, including in vitro brachytherapy source calibration, and in vivo dosimetry during patient treatment

  7. INTERCOMPARISON ON THE MEASUREMENT OF THE QUANTITY PERSONAL DOSE EQUIVALENT HP(10) IN PHOTON FIELDS. LINEARITY DEPENDENCE, LOWER LIMIT OF DETECTION AND UNCERTAINTY IN MEASUREMENT OF DOSIMETRY SYSTEMS OF INDIVIDUAL MONITORING SERVICES IN GABON AND GHANA.

    Science.gov (United States)

    Ondo Meye, P; Schandorf, C; Amoako, J K; Manteaw, P O; Amoatey, E A; Adjei, D N

    2017-12-01

    An inter-comparison study was conducted to assess the capability of dosimetry systems of individual monitoring services (IMSs) in Gabon and Ghana to measure personal dose equivalent Hp(10) in photon fields. The performance indicators assessed were the lower limit of detection, linearity and uncertainty in measurement. Monthly and quarterly recording levels were proposed with corresponding values of 0.08 and 0.025 mSv, and 0.05 and 0.15 mSv for the TLD and OSL systems, respectively. The linearity dependence of the dosimetry systems was performed following the requirement given in the Standard IEC 62387 of the International Electrotechnical Commission (IEC). The results obtained for the two systems were satisfactory. The procedure followed for the uncertainty assessment is the one given in the IEC technical report TR62461. The maximum relative overall uncertainties, in absolute value, expressed in terms of Hp(10), for the TL dosimetry system Harshaw 6600, are 44. 35% for true doses below 0.40 mSv and 36.33% for true doses ≥0.40 mSv. For the OSL dosimetry system microStar, the maximum relative overall uncertainties, in absolute value, are 52.17% for true doses below 0.40 mSv and 37.43% for true doses ≥0.40 mSv. These results are in good agreement with the requirements for accuracy of the International Commission on Radiological protection. When expressing the uncertainties in terms of response, comparison with the IAEA requirements for overall accuracy showed that the uncertainty results were also acceptable. The values of Hp(10) directly measured by the two dosimetry systems showed a significant underestimation for the Harshaw 6600 system, and a slight overestimation for the microStar system. After correction for linearity of the measured doses, the two dosimetry systems gave better and comparable results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  9. Clinical proton dosimetry. Part 1: Beam production, beam delivery and measurement of absorbed dose

    International Nuclear Information System (INIS)

    1998-01-01

    The development of accurate and uniform standards for radiation treatment dosimetry has been a continuing effort since the earliest days of radiotherapy. This ICRU Report is intended to promote uniformity of standards that will provide a basis for world-wide comparison of clinical results and allow the development of meaningful clinical trials. This Report describes current practice in proton therapy and recommends standards for the dosimetry of proton treatments. Established proton treatment facilities might use this Report as a source of information for the maintenance of accurate standards. New facilities may build their procedures from recommendations found in this Report and planners of new facilities may examine alternatives within current practice for the production and monitoring of treatment beams. This Report includes a description of the interaction of protons with matter, various methods of beam production, the characteristics of proton beams in clinical use, current methods for beam monitoring and specific recommendations for dose calibration

  10. Dose perturbation due to the presence of a prostatic urethral stent in patients receiving pelvic radiotherapy: an in vitro study.

    Science.gov (United States)

    Gez, E; Cederbaum, M; Yachia, D; Bar-Deroma, R; Kuten, A

    1997-01-01

    Temporary metallic intraprostatic stent is a new alternative treatment for patients with urinary obstructive syndrome caused by prostate cancer. Definitive radiotherapy is a treatment of choice for localized prostate cancer. This study evaluates in vitro the effect of a urethral intraprostatic metallic stent on the dose absorbed by the surrounding tissue. The study was designed to mimic the conditions under which the prostatic stent is placed in the body during pelvic irradiation. A urethral stent composed of a 50% nickel-50% titanium alloy (Uracoil-InStent) was imbedded in material mimicking normal tissue (bolus) at a simulated body depth of 10 cm. The distribution of the absorbed dose of irradiation was determined by film dosimetry using Kodak X-Omat V film. Irradiation was done in a single field at the isocenter of a 6 MV linear accelerator with a field size of 7 x 7 cm. The degree of film blackening was in direct proportion to the absorbed dose. The measurements showed an increase in dose of up to 20% immediately before the stent and a decrease of up to 18% immediately after the stent. These changes occurred within a range of 1-3 mm from both sides of the stent. In practice, irradiation in prostate cancer is given by two pairs of opposed co-axial fields; a total of four fields (Box Technique). The dose perturbations are partly cancelled in a pair of opposed beams resulting in a net variation of +/- 4%; therefore, the presence of the intraprostatic stent should not influence radiotherapy planning for prostate cancer.

  11. Biological dosimetry in radiation accidents. Dose-response curve by chromosomal aberrations analysis

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Hristova, R.; Atanasova, P.; Popova, L.; Stainova, A.; Bulanova, M.; Georgieva, I.; Vukov, M.

    2005-01-01

    The aim of this paper is to obtain a dose-response relationship for chromosomal aberrations induced in human lymphocytes after in vitro irradiation. Peripheral blood samples of 7 different donors were used. The blood irradiation was done with Cs137 gamma-rays at different doses: 0.0, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0 and 3.0 Gy. Lymphocyte cultures were established and maintain for 48 hours at 37 0 C in CO 2 incubator for chromosomal aberration analysis. The dose response relationship has been established based on dysenteric and ring chromosomes yield. The relationship can be described by the following equation: Y = 0.0274D + 0.0251 D 2 , where (Y) = dysenteric and ring chromosomes yield, (D) = radiation dose obtained. EXCEL software was established for calculation of the received dose by using this equation, as a whole body equivalent dose acute irradiation

  12. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  13. Radiation processing dosimetry - past, present and future

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1999-01-01

    Since the two United Nations Conferences were held in Geneva in 1955 and 1958 on the Peaceful Uses of Atomic Energy and the concurrent foundation of the International Atomic Energy Agency in 1957, the IAEA has fostered high-dose dosimetry and its applications. This field is represented in industrial radiation processing, agricultural programmes, and therapeutic and preventative medicine. Such dosimetry is needed specifically for pest and quarantine control and in the processing of medical products, pharmaceuticals, blood products, foodstuffs, solid, liquid and gaseous wastes, and a variety of useful commodities, e.g. polymers, composites, natural rubber and elastomers, packaging, electronic, and automotive components, as well as in radiotherapy. Improvements and innovations of dosimetry materials and analytical systems and software continue to be important goals for these applications. Some of the recent advances in high-dose dosimetry include tetrazolium salts and substituted polydiacetylene as radiochromic media, on-line real-time as well as integrating semiconductor and diamond-detector monitors, quantitative label dosimeters, photofluorescent sensors for broad dose range applications, and improved and simplified parametric and computational codes for imaging and simulating 3D radiation dose distributions in model products. The use of certain solid-state devices, e.g. optical quality LiF, at low (down to 4K) and high (up to 500 K) temperatures, is of interest for materials testing. There have also been notable developments in experimental dose mapping procedures, e.g. 2D and 3D dose distribution analyses by flat-bed optical scanners and software applied to radiochromic and photofluorescent images. In addition, less expensive EPR spectrometers and new EPR dosimetry materials and high-resolution semiconductor diode arrays, charge injection devices, and photostimulated storage phosphors have been introduced. (author)

  14. Dosimetry system of the RB reactor

    International Nuclear Information System (INIS)

    Lolic, B.; Vukadin, D.

    1962-01-01

    Although RB reactor is operated at very low power levels, safety and dosimetry systems have high importance. This paper shows detailed dosimetry system with fundamental typical components. Estimated radiation doses dependent on reactor power are given at some characteristic points in the rooms nearby reactor

  15. WE-EF-BRA-02: A Monte Carlo Study of Macroscopic and Microscopic Dose Descriptors for Kilovoltage Cellular Dosimetry

    International Nuclear Information System (INIS)

    Oliver, P; Thomson, R

    2015-01-01

    Purpose: To investigate how doses to cellular (microscopic) targets depend on cell morphology, and how cellular doses relate to doses to bulk tissues and water for 20 to 370 keV photon sources using Monte Carlo (MC) simulations. Methods: Simulation geometries involve cell clusters, single cells, and single nuclear cavities embedded in various healthy and cancerous bulk tissue phantoms. A variety of nucleus and cytoplasm elemental compositions are investigated. Cell and nucleus radii range from 5 to 10 microns and 2 to 9 microns, respectively. Doses to water and bulk tissue cavities are compared to nucleus and cytoplasm doses. Results: Variations in cell dose with simulation geometry are most pronounced for lower energy sources. Nuclear doses are sensitive to the surrounding geometry: the nuclear dose in a multicell model differs from the dose to a cavity of nuclear medium in an otherwise homogeneous bulk tissue phantom by more than 7% at 20 keV. Nuclear doses vary with cell size by up to 20% at 20 keV, with 10% differences persisting up to 90 keV. Bulk tissue and water cavity doses differ from cellular doses by up to 16%. MC results are compared to cavity theory predictions; large and small cavity theories qualitatively predict nuclear doses for energies below and above 50 keV, respectively. Burlin’s (1969) intermediate cavity theory best predicts MC results with an average discrepancy of 4%. Conclusion: Cellular doses vary as a function of source energy, subcellular compartment size, elemental composition, and tissue morphology. Neither water nor bulk tissue is an appropriate surrogate for subcellular targets in radiation dosimetry. The influence of microscopic inhomogeneities in the surrounding environment on the nuclear dose and the importance of the nucleus as a target for radiation-induced cell death emphasizes the potential importance of cellular dosimetry for understanding radiation effects. Funded by the Natural Sciences and Engineering Research Council

  16. Guide for selection and calibration of dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the basis for selecting and calibrating dosimetry systems used to measure absorbed dose in gamma ray or X-ray fields and in electron beams used for radiation processing. It discusses the types of dosimetry systems that may be employed during calibration or on a routine basis as part of quality assurance in commercial radiation processing of products. This guide also discusses interpretation of absorbed dose and briefly outlines measurements of the uncertainties associated with the dosimetry. The details of the calibration of the analytical instrumentation are addressed in individual dosimetry system standard practices. The absorbed-dose range covered is up to 1 MGy (100 Mrad). Source energies covered are from 0.1 to 50 MeV photons and electrons. This guide should be used along with standard practices and guides for specific dosimetry systems and applications covered in other standards. Dosimetry for radiation processing with neutrons or heavy charged particles is not covered in this guide

  17. Study and characterization of dosimeter LiF:Mg,Cu,P for using in aeronautical dosimetry

    International Nuclear Information System (INIS)

    Flavia, Hanna; Federico, Claudio; Lelis, Odair; Pereira, Heloisa; Pereira, Marlon

    2014-01-01

    The effects of cosmic ionizing radiation incidents in aircraft components and crews has been a source of concern and motivated increasingly studies and improvements in the area. The low dose rates involved in this radiation field in aircraft flight altitudes imply Dosimetric necessity of using materials with high efficiency of detection, to enable studies lower cumulative doses resulting in shorter routes or lower altitude. The choice of thermoluminescent dosimeters LiF: Mg, Cu, P was done by having a detection efficiency of about fifteen times higher than its predecessor (LiF: Mg, Ti), and therefore, applied in very low doses dosimetry, and environmental dosimetry . The implementation of the use of pair dosimetric TLD-600H and 700H-TLD will serve as support for testing and studies on the effects of low doses of cosmic radiation in environmental dosimetry applied in the aviation environment in the usual flight altitudes. In this paper are presented the results of development of a methodology for dosimetry low doses of gamma radiation and neutrons using the pair dosimetric TLD-600H and 700H-TLD. The results demonstrate a sensitivity of dosimeters well above the dosimeters LiF: Mg, Ti confirming its suitability for dosimetry of low doses

  18. Accuracy and precision in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1984-01-01

    The question of accuracy and precision in thermoluminescent dosimetry, particularly in relation to lithium fluoride phosphor, is discussed. The more important sources of error, including those due to the detectors, the reader, annealing and dosemeter design, are identified and methods of reducing their effects on accuracy and precision to a minimum are given. Finally, the accuracy and precision achievable for three quite different applications are discussed, namely, for personal dosimetry, environmental monitoring and for the measurement of photon dose distributions in phantoms. (U.K.)

  19. Argentine intercomparison programme for personal dosimetry

    International Nuclear Information System (INIS)

    Gregori, B.N.; Papadopulos, S.B.; Cruzate, J.; Kunst, J.J.; Saravi, M.

    2005-01-01

    Full text: In 1997 began in Argentine, sponsored by Nuclear Regulatory Authority (ARN) the intercomparison program for personal dosimetry laboratories, on a voluntary basis. Up to know 6 exercises have been done. The program began with a workshop to present the quantities, personal dose equivalent, Hp(10) and extremities dose equivalent, Hs(d). The first aim of this program was to know the true sate of personal dosimetry laboratories in the country, and then introduce the personal dose equivalent, Hp(10) into the dose measurements. The Regional Reference Center for Dosimetry (CCR), belonging to CNEA and the Physical Dosimetry Laboratory of ARN performed the irradiation. Those were done air free and on ICRU phantom, using x-ray, quality ISO: W60, W110 and W200; and 137 Cs and 60 Co gamma rays. The irradiation was made following ISO 4037 (2) recommendations. There are studied the dose, energy and angular response of the different measuring system. The range of the dose analyzed was from 0.2 mSv up to 80 mSv. The beam incidence was normal and also 20 o and 60 o . The dosimeters irradiation's were performed kerma in free in air and in phantom in order to study the availability of the service to evaluate the behavior as a function of kerma free in air or Hp(10). At the same time several items have been asked to each participant referring to the action range, the detectors characteristics, the laboratory procedures, the existence of an algorithm and its use for the dosimeter evaluation and the wish to participate in a quality assurance program. The program worked in writing a standard of personal dosimetry laboratories, that was published in 2001. In this work the results of each laboratory and its performance based on the ICRP-60 and ICRP-35 acceptance criteria are shown. Also the laboratory evolution and inquiry analyses have been included. (author)

  20. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    Energy Technology Data Exchange (ETDEWEB)

    Oesteraas, Bjoern Helge [Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Hole, Eli Olaug [Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Malinen, Eirik [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway)

    2006-12-21

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 {mu}m thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  1. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    International Nuclear Information System (INIS)

    Oesteraas, Bjoern Helge; Hole, Eli Olaug; Olsen, Dag Rune; Malinen, Eirik

    2006-01-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 μm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media

  2. Intracavitary dosimetry: a comparison of MGHR prescription to doses at points A and B in cervical cancer

    International Nuclear Information System (INIS)

    Cunningham, D.E.; Stryker, J.A.; Velkley, D.E.; Chung, C.K.

    1981-01-01

    This study, involving 77 patients with carcinoma of the cervix, compares the doses at points A and B with the milligram-hour (mg-h) prescription for the intracavitary use of the Fletcher-Suit after loading applicators. The doses at points A and B were computer calculated. A linear least-square regression analysis was used to compare the two sets of data. Correlation coefficients between doses at points A and B and the mg-h prescription are 0.84 (p < 0.001) and 0.88 (p < 0.001) respectively. The slope of the point A line is 0.78 and the slope of the point B line is 0.24. Therefore, for purposes of a nominal comparison, the dose at point A is approximately 3/4 the mg-h prescription; the dose at point B is approximately 1/4 the mg-h prescription. The limitations and significance of the comparison of the two approaches to intracavitary dosimetry is discussed

  3. Use of SMT phototransistors for dosimetry in computerized tomography

    International Nuclear Information System (INIS)

    Magalhaes, C.M.S. de; Silva, J.O. da; Antonio Filho, J.; Santos, L.A.P. dos

    2007-01-01

    A dosimetry system using commercially available SMT (Surface-Mount Technology) phototransistors is evaluated for dose measurements in X-ray computed tomography. First, the phototransistors were characterized at the laboratory using a Pantak X-ray in the standard radiation quality RQR9 from IEC61267. The following tests were realized: energy dependence, response with dose rate and repetitiveness. The phototransistors yielded a real-time readout and a 6430 Sub-femto-ammeter Keithley was used to obtain their electrical current. This methodology allowed the correlating of their results with a standard ionisation chamber, a NE2571 ionization chamber coupled to a NE2670 electrometer that measured the applied dose at the detector position. After the characterization of the phototransistors, free-in-air and in head phantom dose measurements were carried out with the dosimetry system at the Hospital. Phototransistors were used to determine the dose profile measurements along the axis of rotation undergoing CT head examination. A Flip-Flop electrometer was used to obtain these measurements. The results indicated that the current values were reliable when compared with the results of doses of CT ionization chamber under the same conditions. The loss of radiation sensitivity, postirradiation, with time is not significant and the SMT phototransistor brings some features to CT dosimetry including high sensitivity, small size, real-time measurements and linearity. (author)

  4. Proton-beam radiation therapy dosimetry standardization

    International Nuclear Information System (INIS)

    Gall, K.P.

    1995-01-01

    Beams of protons have been used for radiation therapy applications for over 40 years. In the last decade the number of facilities treating patients and the total number of patients being treated has begun go grow rapidly. Due to the limited and experimental nature of the early programs, dosimetry protocols tended to be locally defined. With the publication of the AAPM Task Group 20 report open-quotes Protocol for Dosimetry of Heavy Charged Particlesclose quotes and the open-quotes European Code of Practice for Proton-Beam Dosimetryclose quotes the practice of determining dose in proton-beam therapy was somewhat unified. The ICRU has also recently commissioned a report on recommendations for proton-beam dosimetry. There have been three main methods of determining proton dose; the Faraday cup technique, the ionization chamber technique, and the calorimeter technique. For practical reasons the ionization chamber technique has become the most widely used. However, due to large errors in basic parameters (e.g., W-value) is also has a large uncertainty for absolute dose. It has been proposed that the development of water calorimeter absorbed dose standards would reduce the uncertainty in absolute proton dose as well as the relative dose between megavoltage X-ray beams and proton beams. The advantages and disadvantages are discussed

  5. Experimental studies on cytogenetic dosimetry for in vitro simulated and in vivo partial body exposure

    International Nuclear Information System (INIS)

    Han Baoguang; Chen Di; Jin Cuizhen; Liu Xiulin; Luo Yisheng

    1993-01-01

    The feasibility was examined of the contaminated Poisson distribution method as applied to dose estimation of in vitro simulated and in vivo partial body exposure of New Zealand rabbits. For this purpose, the preparatory experiments were conducted. Aberration yields were obtained for mixed cultures prepared from normal and irradiated peripheral lymphocytes with volume ratio 3 to 7 and for pure cultures of irradiated cells. Comparison of the dicentric yields from these two types of cultures indicated that the probability of cultured irradiated cells entering M 1 phase was exponentially decreased as the absorbed dose increased with a D 37 value of 2.41 Gy. Analysis of the dicentric yields obtained from pure cultures demonstrated that the dose-response relationship of dicentric yields was represented by a linear-quadratic model. Partial body exposures with irradiated fractions ranging from 90% to 30% were simulated by irradiating rabbit blood in vitro with 5 Gy 60 Co γ rays. The contaminated Poisson distribution method was utilized to derive the fraction of irradiated blood in the mixed culture and its absorbed dose. The results showed the estimations are in good agreement with true values. Moreover, the same results were arrived at for in vivo partial body irradiation in spite of many complicated factors inhered. Two groups of rabbits were irradiated in vivo on right halves along their backbones at 3.6 Gy and 5.0 Gy respectively. Heart blood was sampled 24 hours later. The result analysed by the same method approximated the true values. Before the in vivo irradiation, heart blood was sampled and irradiated in vitro to simulate half body and whole body exposure, which provided self-control for its in vivo data. These offered further proof for the previous results of in vitro simulated partial body exposure

  6. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  7. Dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    Riccabona, G.

    2001-01-01

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β - emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  8. Usefulness and limits of biological dosimetry based on cytogenetic methods

    International Nuclear Information System (INIS)

    Leonard, A.; Rueff, J.; Gerber, G. B.; Leonard, E. D.

    2005-01-01

    Damage from occupational or accidental exposure to ionising radiation is often assessed by monitoring chromosome aberrations in peripheral blood lymphocytes, and these procedures have, in several cases, assisted physicians in the management of irradiated persons. Thereby, circulating lymphocytes, which are in the G0 stage of the cell cycle are stimulated with a mitogenic agent, usually phytohaemagglutinin, to replicate in vitro their DNA and enter cell division, and are then observed for abnormalities. Comparison with dose response relationships obtained in vitro allows an estimate of exposure based on scoring: - Unstable aberrations by the conventional, well-established analysis of metaphases for chromosome abnormalities or for micronuclei; - So-called stable aberrations by the classical G-banding (Giemsa-Stain-banding) technique or by the more recently developed fluorescent in situ hybridisation (FISH) method using fluorescent-labelled probes for centromeres and chromosomes. Three factors need to be considered in applying such biological dosimetry: (1) Radiation doses in the body are often inhomogeneous. A comparison of the distribution of the observed aberrations among with that expected from a normal poisson distribution can allow conclusions to be made with regard to the inhomogeneity of exposure by means of the so-called contaminated poisson distribution method; however, its application requires a sufficiently large number of aberrations, i.e. an exposure to a rather large dose at a high dose rate. (2) Exposure can occur at a low dose rate (e.g. from spread or lost radioactive sources) rendering a comparison with in vitro exposure hazardous. Dose-effect relationships of most aberrations that were scored, such as translocations, follow a square law. Repair intervening during exposure reduces the quadratic component with decreasing dose rate as exposure is spread over a longer period of time. No valid solution for this problem has yet been developed, although

  9. Dosimetry of ionizing radiation. Fundamentals and applications. Dosimetrie ionisierender Strahlen. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Reich, H [ed.

    1990-01-01

    In the first chapter of the book, a brief description is given of the historical development of dosimetry, of its objectives and special role within the context of general physical metrology, followed by detailed explanations of the physical fundamentals of this science: the sources and fields of radiation, interactions between radiation and matter as well as radiation detectors. The terminology and units of measurement used in dosimetry are explained in a separate chapter. Chapters 7 and 8, which outline the various theoretical and experimental methods of dose determination, are the most essential contributions to this volume. Chapter 9 deals with the ways in which dosimetry is used in special cases in radiotherapy as well as in the measurement of very small or very large doses. Chapter 10 gives a survey of recently introduced units of measurements and methods to calculate the body dose with reference to the particular type of exposure used. Appendix A contains tables of measuring units, physical constants and measuring techniques along with at-a-glance information on the legal regulations concerning the calibration of dosimeters. Appendix B gives practical guidance on the handling of hardware-related inaccuracies of measurement in dose determination procedures and appendix C embraces 22 pages of tables showing data on radiation physics. (orig./HP) With 150 figs., 50 tabs. in the text, and annex with tables.

  10. IAEA advisory group meeting on dosimetry for high doses employed in industrial radiation processing, Vienna, 17-21 November 1980

    International Nuclear Information System (INIS)

    Chadwick, K.H.

    1981-01-01

    In 1977 the IAEA established a programme on High-Dose Standardization and Intercomparison with the aim of developing a world-wide service for dosimetry assurance in Industrial and Research Radiation Processing Facilities. The complete proceedings of the first Advisory Group meeting held within this programme have recently been published in the IAEA Technical Reports Series (No. 205) under the title ''High-Dose Measurement in Industrial Radiation Processing''. This report of the second Advisory Group meeting provides a brief review of the state of the programme at the present time. (The full proceedings of the meeting will not be published)

  11. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    International Nuclear Information System (INIS)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun; Ye, Sung Joon

    2011-01-01

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality

  12. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2011-03-15

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality.

  13. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  14. Chernobyl Experience in the Field of Retrospective Dosimetry

    International Nuclear Information System (INIS)

    Chumak, V.; Bakhanova, E.

    2011-01-01

    Chernobyl accident, which occurred on April 26, 1986 at NPP located less than 150 km north of Kiev, is the largest nuclear accident ever. Unprecedented scale of the accident was determined not only by the amount of released activity, but also by a number of population and workers involved and, therefore, exposed to enhanced doses of ionizing radiation. Population of the 30-km exclusion zone numbering about 116,000 persons of all ages and both genders was evacuated within days and weeks after the accident, emergency workers called ''liquidators of the accident'' (males age 20-50) were involved into clean-up and recovery for 5 years and their number is estimated as 600,000, about 300,000 are Ukrainian citizens. Due to unexpected and excessively large scale accident, none of residents had personal dosimeters, personal dosimetry of liquidators was not total, dosimetry techniques and practices were far from the optimum. As a result, an acute need for retrospective dose assessment was dictated by radiation protection and research considerations. This need was responded by implementation of wide scale dose reconstruction efforts, which covered main exposed cohorts and encompassed broad variety of newly developed methods: analytical (time-and-motion), modeling, biological and physical (EPR spectroscopy of teeth, TL of quartz). The presentation summarizes vast experience accumulated by RCRM in the field of retrospective dosimetry of large cohorts of exposed population and professionals. These dose reconstruction projects were implemented, in particular, in the framework of epidemiological studies, designed to follow-up medical consequences of Chernobyl accident and study health effects of ionizing radiation, in particular, Ukrainian-American studies of cataracts and leukemia among liquidators. Over 25 years passed after Chernobyl accident a broad variety of retrospective dosimetry problems was addressed by the team of Research Center for Radiation Medicine AMS Ukraine. In

  15. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    Science.gov (United States)

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  16. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  17. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  18. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  19. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  20. Use of national metrological references of dose absorbed in water and application of the IAEA TRS nr 398 dosimetry protocol to high energy photon beams. BNM-LNHB-LCIE-SFPM working group

    International Nuclear Information System (INIS)

    Chauvenet, B.; Delaunay, F.; Dolo, J.M.; Le Roy, G.; Bridier, A.; Francois, P.; Sabattier, R.

    2003-01-01

    Metrological references of dose absorbed in water for high energy photon beams used in radiotherapy have been elaborated during the past years by national calibration laboratories, and these new references are the basis of recent dosimetry protocols. However, the passage from metrological references of air kerma to dose absorbed in water, as well as the practical application of new calibration opportunities for dosemeters in high energy X ray beams requires a specific attention to maintain the consistency of dose measurement references over the hospital site. In this respect, this guide aims at the application of these metrological references. It proposes recommendations for the application of metrological references in terms of dose absorbed in water on the hospital site with reference to their determination conditions and to the implementation of the new IAEA dosimetry protocol (TRS nr 398). Thus, this guide proposes an overview of metrological references in French calibration laboratories, presents calibration methods (air kerma in a cobalt 60 gamma photon beam, dose absorbed in water) and a comparison with the IAEA TRS 277 dosimetry protocol. It addresses various practical aspects, and discusses uncertainties

  1. Contralateral breast doses measured by film dosimetry: tangential techniques and an optimized IMRT technique

    International Nuclear Information System (INIS)

    Saur, S; Frengen, J; Fjellsboe, L M B; Lindmo, T

    2009-01-01

    The contralateral breast (CLB) doses for three tangential techniques were characterized by using a female thorax phantom and GafChromic EBT film. Dose calculations by the pencil beam and collapsed cone algorithms were included for comparison. The film dosimetry reveals a highly inhomogeneous dose distribution within the CLB, and skin doses due to the medial fields that are several times higher than the interior dose. These phenomena are not correctly reproduced by the calculation algorithms. All tangential techniques were found to give a mean CLB dose of approximately 0.5 Gy. All wedged fields resulted in higher CLB doses than the corresponding open fields, and the lateral open fields resulted in higher CLB doses than the medial open fields. More than a twofold increase in the mean CLB dose from the medial open field was observed for a 90 deg. change of the collimator orientation. Replacing the physical wedge with a virtual wedge reduced the mean dose to the CLB by 35% and 16% for the medial and lateral fields, respectively. Lead shielding reduced the skin dose for a tangential technique by approximately 50%, but the mean CLB dose was only reduced by approximately 11%. Finally, a technique based on open medial fields in combination with several IMRT fields is proposed as a technique for minimizing the CLB dose. With and without lead shielding, the mean CLB dose using this technique was found to be 0.20 and 0.27 Gy, respectively.

  2. The 4th international comparison on EPR dosimetry with tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Fattibene, P., E-mail: paola.fattibene@iss.it [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00162 Rome (Italy); Wieser, A. [Helmholtz Zentrum Muenchen, Neuherberg D-85764 (Germany); Adolfsson, E. [Linkoeping University, SE-58185 Linkoeping (Sweden); Benevides, L.A. [Naval Dosimetry Center, Bethesda MD 20889-5600 (United States); Brai, M. [University of Palermo, I-90128 Palermo (Italy); Callens, F. [Ghent University, B-9000 Gent (Belgium); Chumak, V. [Research Center for Radiation Medicine AMS, 04050 Kiev (Ukraine); Ciesielski, B. [Medical University of Gdansk, 80-211 Gdansk (Poland); Della Monaca, S. [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00162 Rome (Italy); Regina Elena Institute, I-00144 Rome (Italy); Emerich, K. [Medical University of Gdansk, 80-211 Gdansk (Poland); Department of Paediatric Dentistry, 80-208 Gdansk (Poland); Gustafsson, H. [Linkoeping University, SE-58185 Linkoeping (Sweden); Hirai, Y. [Radiation Effects Research Foundation, Minami-ku, Hiroshima 732-0815 (Japan); Hoshi, M. [Hiroshima University, Minami-ku, Hiroshima 734-8553 (Japan); Israelsson, A. [Linkoeping University, SE-58185 Linkoeping (Sweden); Ivannikov, A. [Medical Radiological Research Center, Obninsk, Kaluga region (Russian Federation); Ivanov, D. [Institute of Metal Physics, Yekaterinburg 620041 (Russian Federation); Kaminska, J. [Medical University of Gdansk, 80-211 Gdansk (Poland); Ke, Wu [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Lund, E. [Linkoeping University, SE-58185 Linkoeping (Sweden); Marrale, M. [University of Palermo, I-90128 Palermo (Italy)

    2011-09-15

    This paper presents the results of the 4th International Comparison of in vitro electron paramagnetic resonance dosimetry with tooth enamel, where the performance parameters of tooth enamel dosimetry methods were compared among sixteen laboratories from all over the world. The participating laboratories were asked to determine a calibration curve with a set of tooth enamel powder samples provided by the organizers. Nine molar teeth extracted following medical indication from German donors and collected between 1997 and 2007 were prepared and irradiated at the Helmholtz Zentrum Muenchen. Five out of six samples were irradiated at 0.1, 0.2, 0.5, 1.0 and 1.5 Gy air kerma; and one unirradiated sample was kept as control. The doses delivered to the individual samples were unknown to the participants, who were asked to measure each sample nine times, and to report the EPR signal response, the mass of aliquots measured, and the parameters of EPR signal acquisition and signal evaluation. Critical dose and detection limit were calculated by the organizers on the basis of the calibration-curve parameters obtained at every laboratory. For calibration curves obtained by measuring every calibration sample three times, the mean value of the detection limit was 205 mGy, ranging from 56 to 649 mGy. The participants were also invited to provide the signal response and the nominal dose of their current dose calibration curve (wherever available), the critical dose and detection limit of which were also calculated by the organizers.

  3. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Jirasek, A; Hilts, M; McAuley, K B

    2010-01-01

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  4. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684

    International Nuclear Information System (INIS)

    2009-01-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  5. Development and clinical application of In Vivo dosimetry for radiotherapy

    International Nuclear Information System (INIS)

    Honda, Hirofumi; Oita, Masataka; Tominaga, Masahide; Oto, Yoshihiro

    2016-01-01

    In practical radiotherapy, it is important to deliver radiation to the target correctly and safely according to the treatment planning. The control of radiation dose delivered to each patient in radiotherapy mainly relies on the prediction based on the result of pre-treatment verification and irradiation accuracy of treatment machines. In Vivo dosimetry in radiotherapy is the procedure of quality assurance by the way of direct measurement for the patient whether the calculated prescribed dose in the treatment planning is delivered precisely. The history of In Vivo dosimetry is relatively long, and the TLD dosimetry for clinical radiotherapy started in early 1970's. After 1980's, owing to the development of semiconductor devices such as diode detectors, semiconductor arrays, the clinical applications for the dosimetry and diagnostic radiation imaging devices which contributed to the development of electric portal imaging devices and 2D semiconductor detectors were introduced. In recent years, these radiation measurement devices and non-invasive methods have been developed, they are becoming widespread as clinical practice. In this paper, we reviewed the In Vivo dosimetry devices and their characteristics, and technical application for radiotherapy. (author)

  6. Application of an alanine dosimetry system for industrial irradiation and radiation protection

    International Nuclear Information System (INIS)

    Gohs, U.

    1996-01-01

    This paper reports the application of alanine dosimetry in radiation processing. Continuous checks of the EPR measuring conditions as well as using high-quality alanine dosimeters and consistent technique for dose determination guarantee an accuracy of about ± 3% intermediate dose levels. The alanine dosimetry system was applied for dose mapping measurements during irradiator qualification and performance qualification of different products, routine dosimetry, and special radiation protection applications within the gamma irradiator. (author)

  7. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  8. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  9. Establishment of the Dosicard operational dosimetry system in a nuclear studies center

    International Nuclear Information System (INIS)

    Banchetry, C.

    2001-01-01

    Since the decree of March 1999, each employer of the French nuclear industry must set an operational dosimetry in its company. The method is based on electronic dosimeters equipped with alarms and worn by all the employees. The dosimeters are linked to a computer network. The operational dosimetry is recommended, to optimize the protection of workers and limit the doses received, to respect the principle of equity between the workers, to preserve a ''margin of dose'' in case of any unexpected event. The CEA executives have decided to use the EURISYS MESURES DOSICARD as an operational and complementary dosimetry tool. (author)

  10. Field dosimetry on sterilization area of medical-hospitable materials

    International Nuclear Information System (INIS)

    Mariano, C.S.T.P.; Campos, L.L.

    1992-01-01

    The calcium sulfate doped with dysprosium, used in high dose dosimetry by electron paramagnetic resonance (EPR), is studied on field dosimetry for medical-hospitable materials sterilization. The calibration curves of EPR signal in function of absorbed dose in air and the thermal decay of EPR signal at room temperature are also presented. (C.G.C)

  11. Low Dose Suppression of Neoplastic Transformation in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  12. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment

    International Nuclear Information System (INIS)

    Wetmore, Barbara A.

    2015-01-01

    High-throughput in vitro toxicity screening provides an efficient way to identify potential biological targets for environmental and industrial chemicals while conserving limited testing resources. However, reliance on the nominal chemical concentrations in these in vitro assays as an indicator of bioactivity may misrepresent potential in vivo effects of these chemicals due to differences in clearance, protein binding, bioavailability, and other pharmacokinetic factors. Development of high-throughput in vitro hepatic clearance and protein binding assays and refinement of quantitative in vitro-to-in vivo extrapolation (QIVIVE) methods have provided key tools to predict xenobiotic steady state pharmacokinetics. Using a process known as reverse dosimetry, knowledge of the chemical steady state behavior can be incorporated with HTS data to determine the external in vivo oral exposure needed to achieve internal blood concentrations equivalent to those eliciting bioactivity in the assays. These daily oral doses, known as oral equivalents, can be compared to chronic human exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. This review will describe the use of QIVIVE methods in a high-throughput environment and the promise they hold in shaping chemical testing priorities and, potentially, high-throughput risk assessment strategies

  13. Special workshop on lung dosimetry

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1983-01-01

    A Special Workshop on Lung Dosimetry was convened in Salt Lake City, Utah, on April 21-22, 1982, to stimulate the use of improved radiation dosimetry and to formulate a stronger basis for dose-response relationships for inhaled radionuclides. The two-day workshop was held in conjunction with the 30th Annual Meeting of the Radiation Research Society. Publication is planned

  14. Development of 3D Slicer based film dosimetry analysis

    International Nuclear Information System (INIS)

    Alexander, K M; Schreiner, L J; Robinson, A; Pinter, C; Fichtinger, G

    2017-01-01

    Radiochromic film dosimetry has been widely adopted in the clinic as it is a convenient option for dose measurement and verification. Film dosimetry analysis is typically performed using expensive commercial software, or custom made scripts in Matlab. However, common clinical film analysis software is not transparent regarding what corrections/optimizations are running behind the scenes. In this work, an extension to the open-source medical imaging platform 3D Slicer was developed and implemented in our centre for film dosimetry analysis. This extension streamlines importing treatment planning system dose and film imaging data, film calibration, registration, and comparison of 2D dose distributions, enabling greater accessibility to film analysis and higher reliability. (paper)

  15. Dose assessment of SiC nanoparticle dispersions during in vitro assays

    International Nuclear Information System (INIS)

    Mejia, Jorge; Piret, Jean-Pascal; Noël, Florence; Masereel, Bernard; Toussaint, Olivier; Lucas, Stéphane

    2013-01-01

    Here, we show that key physicochemical parameters of commercial Silicon Carbide nanoparticles, such as the primary particles of about 53 nm in size, the agglomerates size, and the surface composition, are considerably modified with respect to the pristine conditions, during in vitro assessment. The use of sample conditioning stages, such as the pre-dispersion in aqueous media and the subsequent dispersion in a culture medium specific to the in vitro assay, produce modifications as the absorption of N, C, and O, from the culture medium, in the nanoparticles surface. Our results show that the sedimented dose, fraction of sedimented NPs during incubation and consequently in contact with cells seeded at the bottom, of Silicon Carbide nanoparticles can be measured from the particle size distribution obtained using a centrifugal liquid sedimentation technique. It is underlined that the variations observed in the physicochemical properties are related to the in vitro assay conditions. Culture medium and incubation time are found to influence the most the sedimented dose and consequently the cells dose uptake

  16. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications.......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...

  17. Uranium Dispersion and Dosimetry (UDAD) Code

    International Nuclear Information System (INIS)

    Momeni, M.H.; Yuan, Y.; Zielen, A.J.

    1979-05-01

    The Uranium Dispersion and Dosimetry (UDAD) Code provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility. The UDAD Code incorporates the radiation dose from the airborne release of radioactive materials, and includes dosimetry of inhalation, ingestion, and external exposures. The removal of raioactive particles from a contaminated area by wind action is estimated, atmospheric concentrations of radioactivity from specific sources are calculated, and source depletion as a result of deposition, fallout, and ingrowth of radon daughters are included in a sector-averaged Gaussian plume dispersion model. The average air concentration at any given receptor location is assumed to be constant during each annual release period, but to increase from year to year because of resuspension. Surface contamination and deposition velocity are estimated. Calculation of the inhalation dose and dose rate to an individual is based on the ICRP Task Group Lung Model. Estimates of the dose to the bronchial epithelium of the lung from inhalation of radon and its short-lived daughters are calculated based on a dose conversion factor from the BEIR report. External radiation exposure includes radiation from airborne radionuclides and exposure to radiation from contaminated ground. Terrestrial food pathways include vegetation, meat, milk, poultry, and eggs. Internal dosimetry is based on ICRP recommendations. In addition, individual dose commitments, population dose commitments, and environmental dose commitments are computed. This code also may be applied to dispersion of any other pollutant

  18. Radiation dose estimation by tooth enamel EPR dosimetry for residents of Dolon and Bodene

    International Nuclear Information System (INIS)

    Zhumadilov, Kassym; Ivannikov, Alexander; Apsalikov, Kazbek N.

    2006-01-01

    The method of electron paramagnetic resonance (EPR) dosimetry was applied to the enamel of the teeth extracted from the residents of the Dolon and Bodene settlements of the Beskaragay district, which is the area adjacent to the radioactive fallout of the most contaminating nuclear test of 1949. The individual accidental radiation doses due to the fallout were obtained from the amplitude of the radiation induced EPR signal from the CO 2- radical using the calibration method, after determining the parameters of EPR measurements to obtain the best reproducibility of the signal intensities. It was shown that after subtracting the natural background dose from the total absorbed dose obtained by EPR the residents of Dolon and Bodene received accidental radiation doses up to 356 mGy with an average value of 74.1 ± 45.5 mGy before 1949 while the younger population received up to about 100 mGy with an average value of 11.5 ± 37.7 mGy. (author)

  19. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories

    International Nuclear Information System (INIS)

    Bhavani, M.; Tamizh Selvan, G.; Kaur, Harpreet; Adhikari, J.S.; Vijayalakshmi, J.; Venkatachalam, P.; Chaudhury, N.K.

    2014-01-01

    To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to 60 Co γ-radiation for ten different doses (0–5 Gy) at a dose rate of 0.7 and 2 Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5 Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications. - Highlights: • This is the first report from India on Networking for Biological Dosimetry preparedness using dicentric chromosomal (DC) aberration assay. • There is no significant difference in the in vitro dose response curve (Slope, Intercept, Curvature) constructed among the two labs. • No significant variation in the scoring of DC aberrations between the scorers irrespective of labs. • The DC results obtained by the labs from the Giemsa stained metaphase preparations were confirmed with centromere specific-FISH for further reliability and validity

  20. Retrospective dosimetry: Dose evaluation using unheated and heated quartz from a radioactive waste storage building

    DEFF Research Database (Denmark)

    Jain, M.; Bøtter-Jensen, L.; Murray, A.S.

    2002-01-01

    In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites......-137 has been investigated. Dose-depth profiles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose...... and particularly in nuclear installations. These materials contain natural dosemeters Such as quartz. which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar in a wall of a low-level radioactive-waste storage facility containing distributed sources of Co-60 and Cs...

  1. Theoretical modelling of experimental diagnostic procedures employed during pre-dose dosimetry of quartz

    International Nuclear Information System (INIS)

    Pagonis, V.; Chen, R.; Kitis, G.

    2006-01-01

    The pre-dose technique in thermoluminescence (TL) is used for dating archaeological ceramics and for accident dosimetry. During routine applications of this technique, the sensitisation of the quartz samples is measured as a function of the annealing temperature, yielding the so-called thermal activation characteristic (TAC). The measurement of multiple TACs and the study of the effect of UV-radiation on the TL sensitivity of quartz are important analytical and diagnostic tools. In this paper, it is shown that a modified Zimmerman model for quartz can successfully model the experimental steps undertaken during a measurement of multiple TACs. (authors)

  2. Dosimetry applications in GATE Monte Carlo toolkit.

    Science.gov (United States)

    Papadimitroulas, Panagiotis

    2017-09-01

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Retrospective dosimetry: dose evaluation using unheated and heated quartz from a radioactive waste storage building

    International Nuclear Information System (INIS)

    Jain, M.; Boetter-Jensen, L.; Murray, A.S.; Jungner, H.

    2002-01-01

    In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites and particularly in nuclear installations. These materials contain natural dosemeters such as quartz, which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar is a wall of a low-level radioactive-waste storage facility containing distributed sources of 60 Co and 13C s has been investigated. Dose-depth profiles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose recorded by environmental TLDs. (author)

  4. Manual of food irradiation dosimetry

    International Nuclear Information System (INIS)

    1977-01-01

    Following items are discussed: Fundamentals of dosimetry; description of irradiators; dose distribution in the product and commissioning the process; plant operation and process control; detailed instructions on using various dose-meter systems; references; glossary of some basic terms and concepts

  5. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Hilts, M [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria BC V6R 2B6 (Canada); McAuley, K B, E-mail: jirasek@uvic.c [Department of Chemical Engineering, Queens University, Kingston, ON K7 L 3N6 (Canada)

    2010-09-21

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  6. Criticality accident dosimetry with ESR spectroscopy.

    Science.gov (United States)

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  7. On multichannel film dosimetry with channel-independent perturbations

    International Nuclear Information System (INIS)

    Méndez, I.; Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B.

    2014-01-01

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  8. On multichannel film dosimetry with channel-independent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, I., E-mail: nmendez@onko-i.si; Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B. [Department of Medical Physics, Institute of Oncology Ljubljana, Zaloška cesta 2, Ljubljana 1000 (Slovenia)

    2014-01-15

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  9. Calorimetric dosimetry of reactor radiation

    International Nuclear Information System (INIS)

    Radak, B.; Markovic, V.; Draganic, I.

    1961-01-01

    Calorimetric dosimetry of reactor radiation is relatively new reactor dosimetry method and the number of relevant papers is rather small. Some difficulties in applying standard methods (chemical dosemeters, ionization chambers) exist because of the complexity of radiation. In general application of calorimetric dosemeters for measuring absorbed doses is most precise. In addition to adequate choice of calorimetric bodies there is a possibility of determining the yields of each component of the radiation mixture in the total absorbed dose. This paper contains a short review of the basic calorimetry methods and some results of measurements at the RA reactor in Vinca performed by isothermal calorimeter [sr

  10. An analysis of the distribution and dose response of chromosome aberrations in human lymphocytes after in vitro exposure to 137cesium gamma radiation

    International Nuclear Information System (INIS)

    Doggett, N.A.; McKenzie, W.H.

    1983-01-01

    The chromosome aberration yield for human lymphocytes exposed in vitro to various doses of 137 Cesium has been studied. Dicentric, total acentric, and excess acentric data were seen to follow a Possion distribution. Calculated total hits demonstrated over-dispersion which could possibly be accounted for by a greater occurrence of single-hit phenomena being repaired than two-hit exchange processes. The resulting distribution generally contained an under-representation of cells with odd numbers of hits and an over-representation of zero-and even-hit classes as compared with Poisson predicted values. The relationship between dicentric yield and dose received in rads was fitted to the linear-quadratic formula Y=αD+βD 2 for dicentrics, yielding values of (20.1+-3.8)x10 -4 (aberrations/cell)/rad and (1.89+-0.75)x10 -6 (aberrations/cell)/rad 2 for α and β respectively. A plot of percent ''normal'' cells versus the dose in rads resembled cell survival curves and was fitted to the relation P(D)=100 esup(-Y) where Y=αD+αD 2 with α=(23+-11)x10 -4 rad -1 and β=(8.3+-2.5)x10 -6 rad -2 . A possible use of scoring ''normal'' cells for purposes of biological dosimetry is presented. (orig.)

  11. Why is a high accuracy needed in dosimetry

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of γ and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control

  12. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  13. Measurements of integrated components' parameters versus irradiation doses gamma radiation (60Co) dosimetry-methodology-tests

    International Nuclear Information System (INIS)

    Fuan, J.

    1991-01-01

    This paper describes the methodology used for the irradiation of the integrated components and the measurements of their parameters, using Quality Insurance of dosimetry: - Measurement of the integrated dose using the competences of the Laboratoire Central des Industries Electriques (LCIE): - Measurement of irradiation dose versus source/component distance, using a calibrated equipment. - Use of ALANINE dosimeters, placed on the support of the irradiated components. - Assembly and polarization of components during the irradiations. Selection of the irradiator. - Measurement of the irradiated components's parameters, using the competences of the societies: - GenRad: GR130 tests equipement placed in the DEIN/SIR-CEN SACLAY. - Laboratoire Central des Industries Electriques (LCIE): GR125 tests equipment and this associated programmes test [fr

  14. Fundamentals of Dosimetry. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, E. M. [Universidade de São Paulo, São Paulo (Brazil)

    2014-09-15

    Determination of the energy imparted to matter by radiation is the subject of dosimetry. The energy deposited as radiation interacts with atoms of the material, as seen in the previous chapter. The imparted energy is responsible for the effects that radiation causes in matter, for instance, a rise in temperature, or chemical or physical changes in the material properties. Several of the changes produced in matter by radiation are proportional to the absorbed dose, giving rise to the possibility of using the material as the sensitive part of a dosimeter. Also, the biological effects of radiation depend on the absorbed dose. A set of quantities related to the radiation field is also defined within the scope of dosimetry. It will be shown in this chapter that, under special conditions, there are simple relations between dosimetric and field description quantities. Thus, the framework of dosimetry is the set of physical and operational quantities that are studied in this chapter.

  15. Demonstration of relatively new electron dosimetry measurement techniques on the Mevatron 80

    International Nuclear Information System (INIS)

    Meyer, J.A.; Palta, J.R.; Hogstrom, K.R.

    1984-01-01

    A comprehensive set of electron dosimetry measurements at 7, 10, 12, 15, and 18 MeV was made on a Mevatron 80. Dosimetry measurements presented include percentage depth dose, dose in the buildup region, field size dependence of output, output at extended distances, lead transmission measurements, and isodose curves. These beam measurements are presented to document the electron beam characteristics of this linear accelerator. Three relatively new dosimetry techniques, which have not been standardly used in the past, are illustrated. One technique determines the depth dose of fields too small to measure. A second technique accurately converts depth dose measured in polystyrene to depth dose in water. A third technique calculates the output at extended distances

  16. Recent developments in polymer gel dosimetry

    International Nuclear Information System (INIS)

    John Schreiner, L.; Olding, Tim; Holmes, Oliver; McAuley, Kim

    2008-01-01

    Modern radiation therapy particularly with intensity modulation techniques (IMRT) offers the potential to improve patient outcomes by better limiting high doses to the tumour alone. In this presentation we report our progress in developing gel dosimetry with new less toxic dosimeters using a fast commercial optical computed tomography (OCT) scanner. We will demonstrate that these adjustments in the approach to gel dosimetry help facilitate its introduction into clinical use. We will review practical advances in system quality assurance and scatter correction to improve optical CT quantification, and show an example of a clinical implementation of an IGRT treatment validation

  17. Radiation chemistry of anionic disazo dyes in Cellophane films applications for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W.L.William L

    2003-06-01

    Thin transparent Cellophane films containing anionic disazo 'Direct' dyes, e.g. blue Cellophanes, have long been used as monitors of large absorbed doses of ionizing radiation (10-300 kGy) and especially for mapping electron-beam dose profiles. Examples of dyes for such purposes are variations on forms of the disazo dyes, Direct Orange, Direct Violet or Direct Blue. The films have a thickness of 25.6 {mu}m (+0.1 {mu}m) and are available in rolls of either 30 mx0.51 m or 60 mx0.76 m. Such dyed Cellophanes are typically lightfast but can readily be bleached irreversibly by ionizing radiation, as a means of dosimetry using spectrophotometry as the analytical tool. The radiation response is markedly dependent on temperature and relative humidity during irradiation. The reaction is initiated mainly by dehydrogenation and nitrosation upon electrophilic reductive attack on the dye molecule by the thermal electrons, at initial reaction rate constants in the range 10{sup 5}-10{sup 6} s{sup -1}.

  18. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  19. IAEA/ WHO TLD postal dose intercomparison results in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.; Bhuiyan, N.U.; Rahman, S.

    2001-01-01

    Full text: For the accurate delivery of prescribed dose to the patients, high precision and accuracy in radiation dosimetry is required. The hospital/medical physicist is responsible for the accurate delivery of whole planned radiation doses to the patients prescribed by the radio therapist. The proper delivery of radiation doses depends upon the accurate output measurements of doses from the therapy machines. In Bangladesh, only six 60 Co units and five deep therapy machines are in use. Some more are expected to be installed soon. Still in 2001, none of the Government radiotherapy centers in Bangladesh was properly equipped with medical physicists as well as radiotherapy dosimetry equipment. Bangladesh Atomic Energy Commission (BAEC) is responsible for radiation safety in Bangladesh and BAEC has assigned Secondary Standard Dosimetry Laboratory (SSDL) of Bangladesh for providing dosimetry calibration to all radiotherapy centers in Bangladesh. The output measurements of therapy machines are performed once in a year by SSDL and the results are compared by participating in the annual TLD postal dose intercomparison program organized by IAEA/WHO SSDL Network. The absorbed dose to water is determined using IAEA dosimetry protocol (TRS 277 and 381) and water phantom of size 30 x 30 x 30 cm 3 , The measurements of SSDL are traceable to NPL of UK. The accuracy achieved in SSDL, Bangladesh has been found better than ± 3.5%, which is within the prescribed limit of dosimetry standard of IAEA. The methodology of output dose measurements in different radiotherapy centers in Bangladesh is described along with the IAEA/WHO intercomparison results

  20. Characterization of internal dosimetry practices

    International Nuclear Information System (INIS)

    Traub, R.J.; Heid, K.R.; Mann, J.C.

    1983-01-01

    Current practices in internal dosimetry at DOE facilities were evaluated with respect to consistency among DOE Contractors. All aspects of an internal dosimetry program were addressed. Items considered include, but are not necessarily limited to, record systems and ease of information retrieval; ease of integrating internal dose and external dose; modeling systems employed, including ability to modify models depending on excretion data, and verification of computer codes utilized; bioassay procedures, including quality control; and ability to relate air concentration data to individual workers and bioassay data. Feasibility of uranium analysis in solution by laser fluorescence excitation at uranium concentrations of one part per billion was demonstrated

  1. Application of TL dosimetry in epidemiological studies in HBRAs

    International Nuclear Information System (INIS)

    Chougaonkar, M.P.

    2006-01-01

    Luminescence as a phenomenon has been extensively used in radiation dosimetry, using thermoluminescence. The nuclear industry all over the world over uses TL dosimetry in radiation protection since they have to ensure that the radiation workers and workers involved in industrial applications of radiation sources are not exposed beyond limits set by international monitoring bodies. They have also to ensure that the nuclear applications do not give rise to elevated radiation levels in the environs. In addition, epidemiologists and radiobiologists world over have been working over the past few decades, to study health effects of chronic radiation exposures in populations living in the elevated natural radiation environment. This paper discusses the importance of dosimetric studies, in the normal as well as high background radiation areas (HBRAs), due to the radiation effects on the humans. The application of thermoluminescent dosimeters (TLDs) in population dosimetry with the end point of epidemiological studies is then discussed. The paper outlines the construction of TLDs, methodology of deployment and retrieval and analysis to arrive the dose. To obtain total dose, dosimetric techniques suitable for external gamma radiation, inhalation dose due to radon, thoron and their progenies and radiological analysis of the food items is required. The techniques arriving at the effective dose are outlined. Basics of epidemiological analysis, particularly using case-control methodology and its advantages/ disadvantages are also discussed. Using the previous work by the author, the paper also reviews various analyses that can be carried out the dosimetric data. (author)

  2. Clinical dosimetry using mosfets

    International Nuclear Information System (INIS)

    Ramani, Ramaseshan; Russell, Stephen; O'Brien, Peter

    1997-01-01

    Purpose: The use of metal oxide-silicon field effect transistors (MOSFETs) as clinical dosimeters is demonstrated for a number of patients with targets at different clinical sites. Methods and Materials: Commercially available MOSFETs were characterized for energy response, angular dependency of response, and effect of accumulated dose on sensitivity and some inherent properties of MOSFETs. The doses determined both by thermoluminescence dosimetry (TLD) and MOSFETs in clinical situation were evaluated and compared to expected doses determined by calculation. Results: It was observed that a standard calibration of 0.01 Gy/mV gave MOSFET determined doses which agreed with expected doses to within 5% at the 95% confidence limit for photon beams from 6 to 25 MV and electron beams from 5 to 14 MeV. An energy-dependent variation in response of up to 28% was observed between two orientations of a MOSFET. The MOSFET doses compared very well with the doses estimated by TLDs, and the patients tolerated MOSFETs very well. A standard deviation of 3.9% between expected dose and MOSFET determined dose was observed, while for TLDs the standard deviation was 5.1%. The advantages and disadvantages of using MOSFETs for clinical dosimetry are discussed in detail. Conclusion: It was concluded that MOSFETs can be used as clinical dosimeters and can be a good alternative to TLDs. However, they have limitations under certain clinical situations

  3. Reassessment of the RERF dosimetry system - overview of the new dosimetry system DS02

    International Nuclear Information System (INIS)

    Young, R.W.

    2003-01-01

    This paper describes a major reassessment of the system used at the Radiation Effects Research Foundation (RERF) to determine radiation doses for atomic-bomb survivors. This effort has resolved the neutron discrepancy in RERF dosimetry, and has defined the parameters for a replacement system for survivor dose calculation. A Joint US-Japan Working Group undertook a comprehensive evaluation of the calculations that comprise the RERF dosimetry system and the measurements used to verify those calculations. During the course of this reassessment, the working groups, with members from American, German and Japanese universities and national laboratories, have recomputed all of the Hiroshima and Nagasaki radiation calculations, made fast-neutron and low-background thermal-neutron measurements, upgraded the calculation of the radiation shielding provided by terrain and large buildings, and conducted a comprehensive reassessment of all radiation measurements. The new calculations produced during this reassessment agree with both gamma and neutron measurements out to distances from the detonations at which in-situ measurements become indistinguishable from background, effectively resolving the long-standing neutron dose discrepancy. The calculations that produce this agreement are the basis for the new DS02 dosimetry system. New calculations and measurements confirmed the yield and epicenter for the Nagasaki detonation while refining both these values for Hiroshima. Current measurements and calculations confirm a 21-kiloton-yield for the Nagasaki bomb and a burst point to within two meters of previous assessments. In Hiroshima, the estimated yield has been increased from 15 kt to 16 kt and the epicenter has been repositioned 20 meters higher and 15 meters to the west. While these refined parameters make the dosimetry system more accurate and users of the system more confident in the results, the calculated dose to survivors will change only about ten percent

  4. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    Science.gov (United States)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  5. Software for evaluation of EPR-dosimetry performance

    International Nuclear Information System (INIS)

    Shishkina, E.A.; Timofeev, Yu.S.; Ivanov, D.V.

    2014-01-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  6. Automated personal dosimetry monitoring system for NPP

    International Nuclear Information System (INIS)

    Chanyshev, E.; Chechyotkin, N.; Kondratev, A.; Plyshevskaya, D.

    2006-01-01

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using thermoluminescent

  7. Concept and computation of radiation dose at high energies

    International Nuclear Information System (INIS)

    Sarkar, P.K.

    2010-01-01

    Computational dosimetry, a subdiscipline of computational physics devoted to radiation metrology, is determination of absorbed dose and other dose related quantities by numbers. Computations are done separately both for external and internal dosimetry. The methodology used in external beam dosimetry is necessarily a combination of experimental radiation dosimetry and theoretical dose computation since it is not feasible to plan any physical dose measurements from inside a living human body

  8. Monte Carlo and experimental internal radionuclide dosimetry in RANDO head phantom

    International Nuclear Information System (INIS)

    Ghahraman Asl, Ruhollah; Nasseri, Shahrokh; Parach, Ali Asghar; Zakavi, Seyed Rasoul; Momennezhad Mehdi; Davenport, David

    2015-01-01

    Monte Carlo techniques are widely employed in internal dosimetry to obtain better estimates of absorbed dose distributions from irradiation sources in medicine. Accurate 3D absorbed dosimetry would be useful for risk assessment of inducing deterministic and stochastic biological effects for both therapeutic and diagnostic radiopharmaceuticals in nuclear medicine. The goal of this study was to experimentally evaluate the use of Geant4 application for tomographic emission (GATE) Monte Carlo package for 3D internal dosimetry using the head portion of the RANDO phantom. GATE package (version 6.1) was used to create a voxel model of a human head phantom from computed tomography (CT) images. Matrix dimensions consisted of 319 × 216 × 30 voxels (0.7871 × 0.7871 × 5 mm 3 ). Measurements were made using thermoluminescent dosimeters (TLD-100). One rod-shaped source with 94 MBq activity of 99m Tc was positioned in the brain tissue of the posterior part of the human head phantom in slice number 2. The results of the simulation were compared with measured mean absorbed dose per cumulative activity (S value). Absorbed dose was also calculated for each slice of the digital model of the head phantom and dose volume histograms (DVHs) were computed to analyze the absolute and relative doses in each slice from the simulation data. The S-values calculated by GATE and TLD methods showed a significant correlation (correlation coefficient, r 2 ≥ 0.99, p < 0.05) with each other. The maximum relative percentage differences were ≤14 % for most cases. DVHs demonstrated dose decrease along the direction of movement toward the lower slices of the head phantom. Based on the results obtained from GATE Monte Carlopackage it can be deduced that a complete dosimetry simulation study, from imaging to absorbed dose map calculation, is possible to execute in a single framework.

  9. Dose - Response Curves for Dicentrics and PCC Rings: Preparedness for Radiological Emergency in Thailand

    International Nuclear Information System (INIS)

    Rungsimaphorn, B.; Rerkamnuaychoke, B.; Sudprasert, W.

    2014-01-01

    Establishing in-vitro dose calibration curves is important for reconstruction of radiation dose in the exposed individuals. The aim of this pioneering work in Thailand was to generate dose-response curves using conventional biological dosimetry: dicentric chromosome assay (DCA) and premature chromosome condensation (PCC) assay. The peripheral blood lymphocytes were irradiated with 137 Cs at a dose rate of 0.652 Gy/min to doses of 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4 and 5 Gy for DCA technique, and 5, 10, 15, 20 and 25 Gy for PCC technique. The blood samples were cultured and processed following the standard procedure given by the IAEA with slight modifications. At least 500-1,000 metaphases or 100 dicentrics/ PCC rings were analyzed using an automated metaphase finder system. The yield of dicentrics with dose was fitted to a linear quadratic model using Chromosome Aberration Calculation Software (CABAS, version 2.0), whereas the dose-response curve of PCC rings was fitted to a linear relationship. These curves will be useful for in-vitro dose reconstruction and can support the preparedness for radiological emergency in the country.

  10. Experimental IMRT breast dosimetry in a thorax phantom

    International Nuclear Information System (INIS)

    Pimenta, Elsa B.; Campos, Tarcisio P.R.; Nogueira, Luciana B.; Lima, Andre C.S.

    2017-01-01

    Radiation therapy (RT) is an essential therapeutic method. RT is often used as adjuvant therapy in the treatment of breast cancer. The dose-volume restrictions of the organs at risk limit the prescribed dose to the target volume and biological and clinical effects may influence the final treatment outcome. The breast RT provides large risks to the adjacent organs and consequently the recommended dosimetry to the prescribed dose volume (PTV) is 50 Gy, lower than the most prescribed dose in other treatments (70-85 Gy). Such values implies in less tumor control compared to other sites. The present research proposal aimed to measure absorbed dose in a thorax phantom with synthetic breasts provided by an Intensity-Modulate Radiation Therapy (IMRT) protocol in a RT center. On the methodology, IMRT protocol was selected following recommendations from the Radiation Therapy Oncology Group (RTOG). Radiochromic films and a thorax simulator were prepared by the Ionizing Radiation Research Group (NRI). Dosimeters were calibrated on a selected linear accelerator (LINAC). The comparison of the dosimetry from treatment planning system (TPS), Xio (Elekta) and from experimental data was performed. The spatial distribution of the breast internal dose and in the adjacent organs was depicted by the experimental data. In the film's calibration, the quadratic polynomial fit presented a satisfactory coefficient. Two-dimensional dose profiles were obtained in the breast suggesting that films can supply details and information that TPS does not provide. At the phantom's dosimetry, the internal mean doses taken at the synthetic breast presented usual values above the prescribed dose, besides overall values were within the dosimetric MSKCC criterion. The non full reproduction of the build-up region in the films had occurred due to the asymmetrical positioning of the films in the inner breast, in addition to their non constant distance from the skin. The hot regions were present may be due to

  11. Characterization of commercial MOSFETS electron dosimetry

    International Nuclear Information System (INIS)

    Carvajal, M. A.; Simancas, F.; Guirado, D.; Banqueri, J.; Vilches, M.; Lallena, A. M.; Palma, A. J.

    2011-01-01

    In recent years there have been commercial dosimetry devices based on transistors Metal-Oxide-Semiconductor (MOSFET) having a number of advantages over traditional systems for dosimetry in medical applications. These include the portability of the sensor element and a reading process quick and relatively simple dose, linearity, and so on. The use of electron beams is important in modern radiotherapy include its use in intra-operative radiotherapy (RIO). This paper presents an initial characterization of different business models MOSFET, not specific for radiation detection, to demonstrate their potential as sensors for electron beam dosimetry. (Author)

  12. Tenth DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this workshop is to promote the international exchange of information on neutron dosimetry. The development of an accurate real-time dosemeter is an immediate need which must be met. Assessment of the neutron dose equivalent at low doses with a reasonable degree of accuracy must be accomplished to provide validity to exposure records. These and other aspects of personal neutron dosimetry are discussed. Separate abstracts have been prepared for each paper for inclusion in the Energy Data Base

  13. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  14. Proceedings of the recent developments in radiation dosimetry

    International Nuclear Information System (INIS)

    Bhat, Nagesh; Palani Selvan, T.

    2016-01-01

    Whilst 'Dosimetry' in its original sense deals with methods for a quantitative determination of energy deposited in a given medium by directly or indirectly ionizing radiations, the term is better known as a scientific sub-specialty in the fields of health physics and medical physics, where it is the calculation and assessment of the radiation dose received by the human body. Dosimetry is used extensively for radiation protection and is routinely applied to ensure radiological safety of occupational radiation workers. Internal dosimetry due to the ingestion or inhalation of radioactive materials relies on a variety of physiological or imaging techniques. External dosimetry, due to irradiation from an external source is based on measurements with a dosimeter, or inferred from other radiological protection instruments. Radiation dosimetry is one of the important research areas of Department of Atomic Energy (DAE). This research work is centered on the facilities such as nuclear reactors, reprocessing plants, high energy accelerators (research/industry/medical), radiation standards, food processing, radiation technology development, etc. In each of these facilities, radiation field environment is different and the associated dosimetry concepts are different. Papers relevant to INIS are indexed separately

  15. Comparison of intraoperative dosimetric implant representation with postimplant dosimetry in patients receiving prostate brachytherapy.

    Science.gov (United States)

    Stone, Nelson N; Hong, Suzanne; Lo, Yeh-Chi; Howard, Victor; Stock, Richard G

    2003-01-01

    To compare the results of intraoperative dosimetry with those of CT-based postimplant dosimetry in patients undergoing prostate seed implantation. Seventy-seven patients with T1-T3 prostate cancer received an ultrasound-guided permanent seed implant (36 received (125)I, 7 (103)Pd, and 34 a partial (103)Pd implant plus external beam radiation therapy). The implantation was augmented with an intraoperative dosimetric planning system. After the peripheral needles were placed, 5-mm axial images were acquired into the treatment planning system. Soft tissue structures (prostate, urethra, and rectum) were contoured, and exact needle positions were registered. Seeds were placed with an applicator, and their positions were entered into the planning system. The dose distributions for the implant were calculated after interior needle and seed placement. Postimplant dosimetry was performed 1 month later on the basis of CT imaging. Prostate and urethral doses were compared, by using paired t tests, for the real-time dosimetry in the operating room (OR) and the postimplant dosimetry. The mean preimplant prostate volume was 39.8 cm(3), the postneedle planning volume was 41.5 cm(3) (psystem provides a close match to the actual delivered doses. These data support the use of this system to modify the implant during surgery to achieve more consistent dosimetry results.

  16. Endocavitary in vivo Dosimetry for IMRT Treatments of Gynecologic Tumors

    International Nuclear Information System (INIS)

    Cilla, Savino; Macchia, Gabriella; Digesù, Cinzia; Deodato, Francesco; Sabatino, Domenico; Morganti, Alessio G.; Piermattei, Angelo

    2011-01-01

    The accuracy and reproducibility of endometrial carcinoma treatment with intensity-modulated radiotherapy (IMRT) was assessed by means of in vivo dosimetry. Six patients who had previously undergone radical hysterectomy for endometrial carcinoma were treated with IMRT using a vaginal applicator with radio-opaque fiducial markers. An ion-chamber inserted into the applicator supplied an endocavitary in vivo dosimetry for quality assurance purposes. The ratio R = D/D TPS between the in vivo measured dose D and the predicted dose by the treatment planning system D TPS was determined for every fraction of the treatment. Results showed that 90% and 100% of the ratios resulted equal to 1 within 5% and 10%, respectively. The mean value of the ratios distribution for the 6 patients was R = 0.995 and the SD = 0.034. The ratio R* between the measured and predicted total doses for each patient was near to 1, within 2%. The dosimetric results suggest that the use of a vaginal applicator in an image-guided approach could make the interfractions target position stable and reproducible, allowing a safe use of the IMRT technique in the treatment of postoperative vaginal vault. In vivo dosimetry may supply useful information about the discrimination of random vs. systematic errors. The workload is minimum and this in vivo dosimetry can be applied also in the clinical routine.

  17. Patient dosimetry quality assurance program with a commerical diode system

    International Nuclear Information System (INIS)

    Lee, P.C.; Sawicka, J.M.; Glasgow, G.P.

    1994-01-01

    The purpose was to evaluate a commercial silicone diode dosimeter for a patient dosimetry quality assurance program. The diode dosimeter was calibrated against an ion chamber, and percentage depth dose, linearity, anisotrophy, virtual source position, and field size factor studies were performed. Correction factors for lack of full scatter medium in the diode entrance and exit dose measurements were acquired. Dosimetry equations were proposed for calculation of dose delivered at isocenter. Diode dose accuracy and reproducibility were tested on phantom and on four patients. A patient dosimetry quality assurance program based on diode-measured dose was instituted and patient dose data were collected. Diode measured percentage depth dose and field factors agreed to within 3% with those measured with an ion chamber. The diode exhibited less than 1.7% angular dose anisotrophy and less than 0.5% nonlinearity up to 4 Gy. Diode dose measurements in phantom showed that the calculated doses differed from the prescribed dose by less than 1.%; the diode exhibited a daily dose reproducibility of better than 0.2%. On four selected patients, the measured dose reproducibility was 1.5%; the average calculated doses were all within ± 7% of the prescribed doses. For 33 of 40 patients treated with a 6 MW beam, measured doses were within ± 7% of the prescribed doses. For 11 out of 12 patients, a second repeat measurements yielded doses within ± 7% of the prescribed doses. The proposed diode-based patient dosimetry quality assurance program with dose tolerance at ± 7% is simple and feasible. It is capable of detecting certain serious treatment errors such as incorrect daily dose greater than 7%, incorrect wedge use, incorrect photon energy and patient setup errors involving some incorrect source-to-surface-distance vs. source-to-axis-distance treatments. 13 refs., 5 figs., 5 tabs

  18. Reference dosimetry and small-field dosimetry in external beam radiotherapy: Results from a Danish intercomparison study

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, Claus F.; Sibolt, Patrik

    methods was performed by DTU Nutech at six Danish clinics. The first part of the intercompa-rison regarded the consistency of reference dosimetry. Absorbed dose to water under reference conditions was measured using a Farmer ionization chamber, and was found to agree within 1 % with the daily dose checks......-specific correction factors for non-reference fields....

  19. Dosimetry during mango irradiation using Gafchromic HD-810 film

    International Nuclear Information System (INIS)

    Sharma, S. D.; Chilkulwar, R. H.; Kumar, R.

    2009-01-01

    The dosimetric characteristics of Gafchromic HD-810 film were evaluated for its possible use as a high-dose dosemeter for routine dosimetry during mango irradiation. The film dosemeter sample of size 2 x 2 cm 2 was used throughout the course of this work. The irradiation of the film dosemeter for characterisation and calibration purposes was carried out in a gamma irradiator. The dose-response of the Gafchromic HD-810 film dosemeter at 550 nm was found to be linear in the dose range 50-1000 Gy, which indicates the feasibility of using this film for dosimetry up to 1000 Gy. The mean inter-dosemeter variation was within 2%, which gives better dose-response consistency of the HD-810 film. The radiation absorbed dose measured by the Gafchromic HD-810 film dosemeter during mango irradiation was compared with that measured by a standard Ceric-cerous dosemeter. This study establishes the Gafchromic HD-810 film as a convenient and technically suitable dosemeter for high-dose dosimetry up to 1.0 kGy during mango irradiation. (authors)

  20. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies

    International Nuclear Information System (INIS)

    2011-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade.