WorldWideScience

Sample records for dose guided radiotherapy

  1. Concept for quantifying the dose from image guided radiotherapy

    International Nuclear Information System (INIS)

    Schneider, Uwe; Hälg, Roger; Besserer, Jürgen

    2015-01-01

    Radiographic image guidance is routinely used for patient positioning in radiotherapy. All radiographic guidance techniques can give a significant radiation dose to the patient. The dose from diagnostic imaging is usually managed by using effective dose minimization. In contrast, image-guided radiotherapy adds the imaging dose to an already high level of therapeutic radiation which cannot be easily managed using effective dose. The purpose of this work is the development of a concept of IGRT dose quantification which allows a comparison of imaging dose with commonly accepted variations of therapeutic dose. It is assumed that dose variations of the treatment beam which are accepted in the spirit of the ALARA convention can also be applied to the additional imaging dose. Therefore we propose three dose categories: Category I: The imaging dose is lower than a 2 % variation of the therapy dose. Category II: The imaging dose is larger than in category I, but lower than the therapy dose variations between different treatment techniques. Category III: The imaging dose is larger than in Category II. For various treatment techniques dose measurements are used to define the dose categories. The imaging devices were categorized according to the measured dose. Planar kV-kV imaging is a category I imaging procedure. kV-MV imaging is located at the edge between category I and II and is for increasing fraction size safely a category I imaging technique. MV-MV imaging is for all imaging technologies a category II procedure. MV fan beam CT for localization is a category I technology. Low dose protocols for kV CBCT are located between category I and II and are for increasing fraction size a category I imaging technique. All other investigated Pelvis-CBCT protocols are category II procedures. Fan beam CT scout views are category I technology. Live imaging modalities are category III for conventional fractionation, but category II for stereotactic treatments. Dose from radiotherapy

  2. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Deng Jun; Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior–inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT–contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  3. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  4. Magneto-radiotherapy: using magnetic fields to guide dose deposition

    International Nuclear Information System (INIS)

    Nettelbeck, H.; Lerch, M.; Takacs, G.; Rosenfeld, A.

    2006-01-01

    Full text: Magneto-radiotherapy is the application of magnetic fields during radiotherapy procedures. It aims to improve the quality of cancer treatment by using magnetic fields to 1 g uide the dose-deposition of electrons in tissue. Monte Carlo (MC) studies have investigated magneto-radiotherapy applied to conventional photon and electron linac beams. In this study, a combination of MC PENELOPE simulations and physical experiments were done to investigate magneto-radiotherapy applied to MRT (Microbeam Radiation Therapy) and conventional linac radiotherapy.

  5. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    OpenAIRE

    Leotta, Salvatore; Amato, Ernesto; Settineri, Nicola; Basile, Emilia; Italiano, Antonio; Auditore, Lucrezia; Santacaterina, Anna; Pergolizzi, Stefano

    2018-01-01

    Image Guided RadioTherapy (IGRT) is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT) scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS ...

  6. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    Directory of Open Access Journals (Sweden)

    Salvatore Leotta

    2018-02-01

    Full Text Available Image Guided RadioTherapy (IGRT is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations, reproducing an Elekta Synergy medical linac operating at 6 and 10 MV photon energy, and we set up a scalable anthropomorphic model. After a validation by comparison with the experimental quality indexes, we evaluated the average doses to all organs and tissues belonging to the model for the three cases of irradiated district. Scattered radiation in therapy is larger than that diffused by CBCT by one to two orders of magnitude.

  7. Realization of 3D evaluation algorithm in dose-guided radiotherapy

    International Nuclear Information System (INIS)

    Wang Yu; Li Gui; Wang Dong; Wu Yican; FDS Team

    2012-01-01

    3D evaluation algorithm instead of 2D evaluation method of clinical dose verification is highly needed for dose evaluation in Dose-guided Radiotherapy. 3D evaluation algorithm of three evaluation methods, including Dose Difference, Distance-To-Agreement and 7 Analysis, was realized by the tool of Visual C++ according to the formula. Two plans were designed to test the algorithm, plan 1 was radiation on equivalent water using square field for the verification of the algorithm's correctness; plan 2 was radiation on the emulation head phantom using conformal field for the verification of the algorithm's practicality. For plan 1, the dose difference, in the tolerance range has a pass rate of 100%, the Distance-To-Agreement and 7 analysis was of a pass rate of 100% in the tolerance range, and a pass rate of 99±1% at the boundary of range. For plan 2, the pass rate of algorithm were 88.35%, 100%, 95.07% for the three evaluation methods, respectively. It can be concluded that the 3D evaluation algorithm is feasible and could be used to evaluate 3D dose distributions in Dose-guided Radiotherapy. (authors)

  8. Clinical Outcome of Dose-Escalated Image-Guided Radiotherapy for Spinal Metastases

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Goebel, Joachim; Wilbert, Juergen; Baier, Kurt; Richter, Anne; Sweeney, Reinhart A.; Bratengeier, Klaus; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the outcomes after dose-escalated radiotherapy (RT) for spinal metastases and paraspinal tumors. Methods and Materials: A total of 14 patients, 12 with spinal metastases and a long life expectancy and 2 with paraspinal tumors, were treated for 16 lesions with intensity-modulated, image-guided RT. A median biologic effective dose of 74 Gy 10 (range, 55-86) in a median of 20 fractions (range, 3-34) was prescribed to the target volume. The spinal canal was treated to 40 Gy in 20 fractions using a second intensity-modulated RT dose level in the case of epidural involvement. Results: After median follow-up of 17 months, one local recurrence was observed, for an actuarial local control rate of 88% after 2 years. Local control was associated with rapid and long-term pain relief. Of 11 patients treated for a solitary spinal metastasis, 6 developed systemic disease progression. The actuarial overall survival rate for metastatic patients was 85% and 63% after 1 and 2 years, respectively. Acute Grade 2-3 skin toxicity was seen in 2 patients with no late toxicity greater than Grade 2. No radiation-induced myelopathy was observed. Conclusion: Dose-escalated irradiation of spinal metastases was safe and resulted in excellent local control. Oligometastatic patients with a long life expectancy and epidural involvement are considered to benefit the most from fractionated RT.

  9. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    Science.gov (United States)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  10. Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

    Science.gov (United States)

    Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel

    2018-03-12

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  11. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    Science.gov (United States)

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  12. Nanoparticle-guided radiotherapy

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a method and nano-sized particles for image guided radiotherapy (IGRT) of a target tissue. More specifically, the invention relates to nano-sized particles comprising X-ray-imaging contrast agents in solid form with the ability to block x-rays, allowing for simult...... for simultaneous or integrated external beam radiotherapy and imaging, e.g., using computed tomography (CT)....

  13. Dosimetric evaluation of the OneDoseTM MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures.

    Science.gov (United States)

    Ding, George X; Coffey, Charles W

    2010-09-01

    The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  14. SU-E-J-198: Out-Of-Field Dose and Surface Dose Measurements of MRI-Guided Cobalt-60 Radiotherapy

    International Nuclear Information System (INIS)

    Lamb, J; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-01-01

    Purpose: To measure quantities of dosimetric interest in an MRI-guided cobalt radiotherapy machine that was recently introduced to clinical use. Methods: Out-of-field dose due to photon scatter and leakage was measured using an ion chamber and solid water slabs mimicking a human body. Surface dose was measured by irradiating stacks of radiochromic film and extrapolating to zero thickness. Electron out-of-field dose was characterized using solid water slabs and radiochromic film. Results: For some phantom geometries, up to 50% of Dmax was observed up to 10 cm laterally from the edge of the beam. The maximum penetration was between 1 and 2 mm in solid water, indicating an electron energy not greater than approximately 0.4 MeV. Out-of-field dose from photon scatter measured at 1 cm depth in solid water was found to fall to less than 10% of Dmax at a distance of 1.2 cm from the edge of a 10.5 × 10.5 cm field, and less that 1% of Dmax at a distance of 10 cm from field edge. Surface dose was measured to be 8% of Dmax. Conclusion: Surface dose and out-of-field dose from the MRIguided cobalt radiotherapy machine was measured and found to be within acceptable limits. Electron out-of-field dose, an effect unique to MRI-guided radiotherapy and presumed to arise from low-energy electrons trapped by the Lorentz force, was quantified. Dr. Low is a member of the scientific advisory board of ViewRay, Inc

  15. Imaging and concomitant dose in radiotherapy

    International Nuclear Information System (INIS)

    Negi, P.S.

    2008-01-01

    Image guidance in radiotherapy now involves multiple imaging procedures for planning, simulation, set-up inter and intrafraction monitoring. Presently ALARA (i.e. as low as reasonable achievable) is the principle of management of dose to radiation workers and patients in any diagnostic imaging procedures including image guided surgery. The situation is different in repeated radiographic/fluoroscopic imaging performed for simulation, dose planning, patient positioning and set-up corrections during preparation/execution of Image guided radiotherapy (IGRT) as well as for Intensity Modulated Radiotherapy (IMRT). Reported imaging and concomitant doses will be highlighted and discussed for the management and optimization of imaging techniques in IMRT and IGRT

  16. Different styles of image-guided radiotherapy

    NARCIS (Netherlands)

    van Herk, Marcel

    2007-01-01

    To account for geometric uncertainties during radiotherapy, safety margins are applied. In many cases, these margins overlap organs at risk, thereby limiting dose escalation. The aim of image-guided radiotherapy is to improve the accuracy by imaging tumors and critical structures on the machine just

  17. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  18. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    Science.gov (United States)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  19. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    International Nuclear Information System (INIS)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-01-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems

  20. Personalized Assessment of kV Cone Beam Computed Tomography Doses in Image-guided Radiotherapy of Pediatric Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yibao [Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing (China); Yan Yulong [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Bao Shanglian [Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing (China); Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States)

    2012-08-01

    Purpose: To develop a quantitative method for the estimation of kV cone beam computed tomography (kVCBCT) doses in pediatric patients undergoing image-guided radiotherapy. Methods and Materials: Forty-two children were retrospectively analyzed in subgroups of different scanned regions: one group in the head-and-neck and the other group in the pelvis. Critical structures in planning CT images were delineated on an Eclipse treatment planning system before being converted into CT phantoms for Monte Carlo simulations. A benchmarked EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions of kVCBCT scans with full-fan high-quality head or half-fan pelvis protocols predefined by the manufacturer. Based on planning CT images and structures exported in DICOM RT format, occipital-frontal circumferences (OFC) were calculated for head-and-neck patients using DICOMan software. Similarly, hip circumferences (HIP) were acquired for the pelvic group. Correlations between mean organ doses and age, weight, OFC, and HIP values were analyzed with SigmaPlot software suite, where regression performances were analyzed with relative dose differences (RDD) and coefficients of determination (R{sup 2}). Results: kVCBCT-contributed mean doses to all critical structures decreased monotonically with studied parameters, with a steeper decrease in the pelvis than in the head. Empirical functions have been developed for a dose estimation of the major organs at risk in the head and pelvis, respectively. If evaluated with physical parameters other than age, a mean RDD of up to 7.9% was observed for all the structures in our population of 42 patients. Conclusions: kVCBCT doses are highly correlated with patient size. According to this study, weight can be used as a primary index for dose assessment in both head and pelvis scans, while OFC and HIP may serve as secondary indices for dose estimation in corresponding regions. With the proposed empirical functions, it is possible

  1. SU-E-J-10: Imaging Dose and Cancer Risk in Image-Guided Radiotherapy of Cancers

    International Nuclear Information System (INIS)

    Zhou, L; Bai, S; Zhang, Y; Deng, J

    2015-01-01

    Purpose: To systematically evaluate imaging doses and cancer risks to organs-at-risk as a Result of cumulative doses from various radiological imaging procedures in image-guided radiotherapy (IGRT) in a large cohort of cancer patients. Methods: With IRB approval, imaging procedures (computed tomography, kilo-voltage portal imaging, megavoltage portal imaging and kilo-voltage cone-beam computed tomography) of 4832 cancer patients treated during 4.5 years were collected with their gender, age and circumference. Correlations between patient’s circumference and Monte Carlo simulated-organ dose were applied to estimate organ doses while the cancer risks were reported as 1+ERR using BEIR VII models. Results: 80 cGy or more doses were deposited to brain, lungs and RBM in 273 patients (maximum 136, 278 and 267 cGy, respectively), due largely to repetitive imaging procedures and non-personalized imaging settings. Regardless of gender, relative cancer risk estimates for brain, lungs, and RBM were 3.4 (n = 55), 2.6 (n = 49), 1.8 (n = 25) for age group of 0–19; 1.2 (n = 87), 1.4 (n = 98), 1.3 (n = 51) for age group of 20–39; 1.0 (n = 457), 1.1 (n = 880), 1.8 (n=360) for age group of 40–59; 1.0 (n = 646), 1.1 (n = 1400), 2.3 (n = 716) for age group of 60–79 and 1.0 (n = 108),1.1 (n = 305),1.6 (n = 147) for age group of 80–99. Conclusion: The cumulative imaging doses and associated cancer risks from multi-imaging procedures were patient-specific and site-dependent, with up to 2.7 Gy imaging dose deposited to critical structures in some pediatric patients. The associated cancer risks in brain and lungs for children of age 0 to 19 were 2–3 times larger than those for adults. This study indicated a pressing need for personalized imaging protocol to maximize its clinical benefits while reducing associated cancer risks. Sichuan University Scholarship

  2. Guide for External Beam Radiotherapy. Procedures 2007

    International Nuclear Information System (INIS)

    Ardiet, Jean-Michel; Bourhis, Jean; Eschwege, Francois; Gerard, Jean-Pierre; Martin, Philippe; Mazeron, Jean-Jacques; Barillot, Isabelle; Bey, Pierre; Cosset, Jean-Marc; Thomas, Olivier; Bolla, Michel; Bourguignon, Michel; Godet, Jean-Luc; Krembel, David; Valero, Marc; Bara, Christine; Beauvais-March, Helene; Derreumaux, Sylvie; Vidal, Jean-Pierre; Drouard, Jean; Sarrazin, Thierry; Lindecker-Cournil, Valerie; Robin, Sun Hee Lee; Thevenet, Nicolas; Depenweiller, Christian; Le Tallec, Philippe; Ortholan, Cecile; Aimone, Nicole; Baldeschi, Carine; Cantelli, Andree; Estivalet, Stephane; Le Prince, Cyrille; QUERO, Laurent; Costa, Andre; Gerard, Jean-Pierre; Ardiet, Jean-Michel; Bensadoun, Rene-Jean; Bourhis, Jean; Calais, Gilles; Lartigau, Eric; Ginot, Aurelie; Girard, Nicolas; Mornex, Francoise; Bolla, Michel; Chauvet, Bruno; Maingon, Philippe; Martin, Etienne; Azria, David; Gerard, Jean-Pierre; Grehange, Gilles; Hennequin, Christophe; Peiffert, Didier; Toledano, Alain; Belkacemi, Yazid; Courdi, Adel; Belliere, Aurelie; Peignaux, Karine; Mahe, Marc; Bondiau, Pierre-Yves; Kantor, Guy; Lepechoux, Cecile; Carrie, Christian; Claude, Line

    2007-01-01

    In order to optimize quality and security in the delivery of radiation treatment, the French SFRO (Societe francaise de radiotherapie oncologique) is publishing a Guide for Radiotherapy. This guide is realized according to the HAS (Haute Autorite de sante) methodology of 'structured experts consensus'. This document is made of two parts: a general description of external beam radiation therapy and chapters describing the technical procedures of the main tumors to be irradiated (24). For each procedure, a special attention is given to dose constraints in the organs at risk. This guide will be regularly updated

  3. Late toxicity and biochemical control in 554 prostate cancer patients treated with and without dose escalated image guided radiotherapy

    International Nuclear Information System (INIS)

    Kok, David; Gill, Suki; Bressel, Mathias; Byrne, Keelan; Kron, Tomas; Fox, Chris; Duchesne, Gillian; Tai, Keen Hun; Foroudi, Farshad

    2013-01-01

    Background and purpose: To compare rates of late gastrointestinal toxicity, late genitourinary toxicity and biochemical failure between patients treated for prostate cancer with implanted fiducial marker image guided radiotherapy (FMIGRT), and those treated without FMIGRT. Methods and materials: We performed a single institution retrospective study comparing all 311 patients who received 74 Gy without fiducial markers in 2006 versus all 243 patients who received our updated regimen of 78 Gy with FMIGRT in 2008. Patient records were reviewed 27 months after completing radiotherapy. Biochemical failure was defined using the Phoenix definition. Details of late gastrointestinal and genitourinary toxicities were graded according to CTCAEv4. Moderate/severe toxicity was defined as a grade 2 or higher toxicity. Cumulative incidence and prevalence curves for moderate/severe toxicity were constructed and compared using multistate modeling while biochemical failure free survival was compared using the log rank test. A Cox regression model was developed to correct for confounding factors. Results: Median follow-up time for both groups was 22 months. The hazard ratio for moderate/severe late gastrointestinal toxicity in the non-FMIGRT group was 3.66 [95% CI (1.63–8.23), p = 0.003] compared to patients in the FMIGRT group. There was no difference in the hazard ratio of moderate/severe late genitourinary toxicity between the two groups (0.44 [95% CI (0.19–1.00)]), but patients treated with FMIGRT did have a quicker recovery from their genitourinary toxicities HR = 0.24 [95% CI (0.10–0.59)]. We were unable to detect any differences in biochemical failure free survival between the cohorts HR = 0.60 [95% CI (0.30–1.20), p = 0.143]. Conclusion: Despite dose escalation, the use of FMIGRT in radical radiotherapy for prostate cancer significantly reduces the incidence of gastrointestinal toxicity and the duration of late genitourinary toxicity when compared to conventional non

  4. Image guided multibeam radiotherapy

    International Nuclear Information System (INIS)

    Freijo, J.L.

    2008-01-01

    This paper provides an outlook of the status of the first development stages for an updated design of radiotherapy conformal system based on tumor 3D images obtained as an output the last generation imaging machines as PET, CT and MR which offer a very valuable output in cancer diagnosis. Prospective evaluation of current software codes and acquisition of useful experience in surgical planning involves a multidisciplinary process as an initial and unavoidable stage to develop an expert software and user skills which assures the delivery of the radiation dose is done correctly in geometry and value in each voxel as a radiation protection basic condition. The validation of the images obtained has been done by the production of anatomical models of interest regions by rapid proto typing of the 3D segmented images and its evaluation by contrasting with the real regions during surgical procedures. (author)

  5. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  6. Quality assurance for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Marinello, Ginette

    2008-01-01

    The topics discussed include, among others, the following: Quality assurance program; Image guided radiotherapy; Commissioning and quality assurance; Check of agreement between visual and displayed scales; quality controls: electronic portal imaging device (EPID), MV-kV and kV-kV, cone-beam CT (CBCT), patient doses. (P.A.)

  7. Guide of external radiotherapy procedures 2007

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This work aims at participating in the permanent optimization of the returned medical service and the ratio profit-risk. This first version of the guide of external radiotherapy procedures 2007 processes only techniques of external radiotherapy, by opposition to the techniques of brachytherapy which use radioactive sources (iridium 192 , iodine 125 , cesium 137 ) placed in the contact of the tumor to be irradiated. Only, also, will be considered the irradiations of the most frequent cunning(malignant) tumors with the exception of the radiotherapy of the mild pathologies and the re-irradiations after a first radiotherapy. The first part is shared in eight chapters as follow: introduction, the steps of a treatment by radiotherapy, infrastructure, equipment and human resources, radiobiology mechanism of action of ionising radiations in radiotherapy, dose in radiotherapy, quality of treatment and radiation protection of patients in radiotherapy, prevention and risk management in radiotherapy, quality assurance and radiation protection for the pediatrics cancers and the case of pregnant women. The second part gives the tumoral localizations and the procedures; the third part is a glossary and different annexes such regulations and legislative texts. (N.C.)

  8. Image-guided and adaptive radiotherapy

    International Nuclear Information System (INIS)

    Louvel, G.; Chajon, E.; Henry, O.; Cazoulat, G.; Le Maitre, A.; Simon, A.; Bensadoun, R.J.; Crevoisier, R. de

    2012-01-01

    Image-guided radiotherapy (IGRT) aims to take into account anatomical variations occurring during irradiation by visualization of anatomical structures. It may consist of a rigid registration of the tumour by moving the patient, in case of prostatic irradiation for example. IGRT associated with intensity-modulated radiotherapy (IMRT) is strongly recommended when high-dose is delivered in the prostate, where it seems to reduce rectal and bladder toxicity. In case of significant anatomical deformations, as in head and neck tumours (tumour shrinking and decrease in volume of the salivary glands), re-planning appears to be necessary, corresponding to the adaptive radiotherapy. This should ideally be 'monitored' and possibly triggered based on a calculation of cumulative dose, session after session, compared to the initial planning dose, corresponding to the concept of dose-guided adaptive radiotherapy. The creation of 'planning libraries' based on predictable organ positions (as in cervical cancer) is another way of adaptive radiotherapy. All of these strategies still appear very complex and expensive and therefore require stringent validation before being routinely applied. (authors)

  9. Dose constraints in paediatric radiotherapy; Contraintes de dose en radiotherapie pediatrique

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, V. [Groupe de radiotherapie pediatrique SFCE, Centre Alexis-Vautrin, 54 - Nancy (France)

    2010-10-15

    The author discusses the issue of dose constraints for organs at risk when performing paediatric radiotherapy, and outlines that this issue is only partially resolved by the QUANTEC publication (quantitative estimates of normal tissue effects in the clinic). Then, he presents a guide elaborated by the French group of paediatric radiotherapists. This guide reviews organs at risk, imagery delineation requirements, dose constraints and short-, medium- and long-term consequences of organ irradiation. Short communication

  10. A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging

    International Nuclear Information System (INIS)

    Sykes, Jonathan R.; Amer, Ali; Czajka, Jadwiga; Moore, Christopher J.

    2005-01-01

    Background and purpose: Image Guidance of patient set-up for radiotherapy can be achieved by acquiring X-ray volumetric images (XVI) with Elekta Synergy and registering these to the planning CT scan. This enables full 3D registration of structures from similar 3D imaging modalities and offers superior image quality, rotational set-up information and a large field of view. This study uses the head section of the Rando phantom to demonstrate a new paradigm of faster, lower dose XVI that still allows registration to high precision. Materials and methods: One high exposure XVI scan and one low exposure XVI scan were performed with a Rando Head Phantom. The second scan was used to simulate ultra low dose, fast acquisition, full and half scans by discarding a large number of projections before reconstruction. Dose measurements were performed using Thermo Luminescent Dosimeters (TLD) and an ion chamber. The reconstructed XVI scans were automatically registered with a helical CT scan of the Rando Head using the volumetric, grey-level, cross-correlation algorithm implemented in the Syntegra software package (Philips Medical Systems). Reproducibility of the registration process was investigated. Results: In both XVI scans the body surface, bone-tissue and tissue air interfaces were clearly visible. Although the subjective image quality of the low dose cone beam scan was reduced, registration of both cone beam scans with the planning CT scan agreed within 0.1 mm and 0.1 deg. Dose to the patient was reduced from 28 mGy to less than 1 mGy and the equivalent scan speed reduced to one minute or less. Conclusions: Automatic 3D registration of high speed, ultra low dose XVI scans with the planning CT scan can be used for precision 3D patient set-up verification/image guidance on a daily basis with out loss of accuracy when compared to higher dose XVI scans

  11. Stereotactic intracranial radiotherapy: Dose prescription

    International Nuclear Information System (INIS)

    Schlienger, M.; Lartigau, E.; Nataf, F.; Mornex, F.; Latorzeff, I.; Lisbona, A.; Mahe, M.

    2012-01-01

    The aim of this article was the study of the successive steps permitting the prescription of dose in stereotactic intracranial radiotherapy, which includes radiosurgery and fractionated stereotactic radiotherapy. The successive steps studied are: the choice of stereotactic intracranial radiotherapy among the therapeutic options, based on curative or palliative treatment intent, then the selection of lesions according to size/volume, pathological type and their number permitting the choice between radiosurgery or fractionated stereotactic radiotherapy, which have the same methodological basis. Clinical experience has determined the level of dose to treat the lesions and limit the irradiation of healthy adjacent tissues and organs at risk structures. The last step is the optimization of the different parameters to obtain a safe compromise between the lesion dose and healthy adjacent structures. Study of dose-volume histograms, coverage indices and 3D imaging permit the optimization of irradiation. For lesions close to or included in a critical area, the prescribed dose is planned using the inverse planing method. Implementation of the successively described steps is mandatory to insure the prescription of an optimized dose. The whole procedure is based on the delineation of the lesion and adjacent healthy tissues. There are sometimes difficulties to assess the delineation and the volume of the target, however improvement of local control rates and reduction of secondary effects are the proof that the totality of the successive procedures are progressively improved. In practice, stereotactic intracranial radiotherapy is a continually improved treatment method, which constantly benefits from improvements in the choice of indications, imaging, techniques of irradiation, planing/optimization methodology and irradiation technique and from data collected from prolonged follow-up. (authors)

  12. Gonadal doses from radiotherapy

    International Nuclear Information System (INIS)

    Solomon, S.B.; Morris, N.D.

    1980-06-01

    The method of calculation of gonadal doses arising from different radiotherapeutic procedures is described. The measurement of scatter factors to the gonads from superficial and deep therapy is detailed and the analytic fits to the experimental data, as a function of field position, field size and beam energy are given. The data used to calculate the gonadal doses from treatments using linear accelerators, teletherapy and sealed sources are described and the analytic fits to the data given

  13. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer.

    Science.gov (United States)

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for

  14. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Wilcox SW

    2014-08-01

    Full Text Available Shea W Wilcox,1,4 Noel J Aherne,2,4 Linus C Benjamin,1 Bosco Wu,1 Thomaz de Campos Silva,3 Craig S McLachlan,4 Michael J McKay,3,5 Andrew J Last,1 Thomas P Shakespeare1–4 1North Coast Cancer Institute, Port Macquarie, NSW, Australia; 2North Coast Cancer Institute, Coffs Harbour, NSW, Australia; 3North Coast Cancer Institute, Lismore, NSW, Australia; 4The University of New South Wales, Rural Clinical School, Sydney, NSW, Australia; 5The University of Sydney, Sydney, NSW, Australia Purpose: Dose-escalated (DE radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS in several studies. In the same group of patients, androgen deprivation therapy (ADT has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT and ADT. Methods and materials: Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results: Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2

  15. Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xinfeng; Prior, Phil; Chen, Guang-Pei; Schultz, Christopher J.; Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226 (United States)

    2016-08-15

    dose effects of the TMF at tissue interfaces (e.g., air-cavity wall, lung-tissue interfaces, skin) are significantly reduced in most cases. Conclusions: The doses on tissue interfaces can be significantly changed by the presence of a TMF during MR-guided RT when the magnetic field is not included in plan optimization. These changes can be substantially reduced or even eliminated during VMAT/IMRT optimization that specifically considers the TMF, without deteriorating overall plan quality.

  16. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Jennifer L., E-mail: peterson.jennifer2@mayo.edu [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Buskirk, Steven J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Heckman, Michael G.; Diehl, Nancy N. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Bernard, Johnny R. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Department of Radiation Oncology, Southern Ohio Medical Center, Portsmouth, OH (United States); Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States)

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.

  17. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    International Nuclear Information System (INIS)

    Peterson, Jennifer L.; Buskirk, Steven J.; Heckman, Michael G.; Diehl, Nancy N.; Bernard, Johnny R.; Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J.

    2014-01-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm 3 of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications

  18. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Martinez, Alvaro; Kestin, Larry L.; Yan Di; Grills, Inga; Brabbins, Donald S.; Lockman, David M.; Liang Jian; Gustafson, Gary S.; Chen, Peter Y.; Vicini, Frank A.; Wong, John W.

    2005-01-01

    Purpose We analyzed our experience treating localized prostate cancer with image-guided off-line correction with adaptive high-dose radiotherapy (ART) in our Phase II dose escalation study to identify factors predictive of chronic rectal toxicity. Materials and Methods From 1999-2002, 331 patients with clinical stage T1-T3N0M0 prostate cancer were prospectively treated in our Phase II 3D conformal dose escalation ART study to a median dose of 75.6 Gy (range, 63.0-79.2 Gy), minimum dose to confidence limited-planning target volume (cl-PTV) in 1.8 Gy fractions (median isocenter dose = 79.7 Gy). Seventy-four patients (22%) also received neoadjuvant/adjuvant androgen deprivation therapy. A patient-specific cl-PTV was constructed using 5 computed tomography scans and 4 sets of electronic portal images by applying an adaptive process to assure target accuracy and minimize PTV margin. For each case, the rectum (rectal solid) was contoured from the sacroiliac joints or rectosigmoid junction (whichever was higher) to the anal verge or ischial tuberosities (whichever was lower), with a median volume of 81.2 cc. The rectal wall was defined using the rectal solid with an individualized 3-mm wall thickness (median volume = 29.8 cc). Rectal wall dose-volume histogram was used to determine the prescribed dose. Toxicity was quantified using the National Cancer Institute Common Toxicity Criteria 2.0. Multiple dose-volume endpoints were evaluated for their association with chronic rectal toxicity. Results Median follow-up was 1.6 years. Thirty-four patients (crude rate 10.3%) experienced Grade 2 chronic rectal toxicity at a median interval of 1.1 years. Nine patients (crude rate = 2.7%) experienced Grade ≥3 chronic rectal toxicity (1 was Grade 4) at a median interval of 1.2 years. The 3-year rates of Grade ≥2 and Grade ≥3 chronic rectal toxicity were 20% and 4%, respectively. Acute toxicity predicted for chronic: Acute Grade 2-3 rectal toxicity (p 40% respectively. The volume

  19. Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers

    Energy Technology Data Exchange (ETDEWEB)

    Henriques de Figueiredo, B. [Institut Bergonie, Department of Radiotherapy, Bordeaux (France); INCIA UMR-CNRS 5287, Bordeaux (France); Zacharatou, C. [Institut Bergonie, Department of Radiotherapy, Bordeaux (France); Galland-Girodet, S.; Benech, J. [Hospital Haut-Leveque, Department of Radiotherapy, CHRU Bordeaux (France); Clermont-Gallerande, H. de [Hospital Pellegrin, Department of Nuclear Medicine, CHRU Bordeaux (France); Lamare, F. [INCIA UMR-CNRS 5287, Bordeaux (France); Hospital Haut-Leveque, Department of Radiotherapy, CHRU Bordeaux (France); Hatt, M. [LaTIM INSERM U1101, Brest (France); Digue, L. [Hospital Saint-Andre, Department of Clinical Oncology, CHRU Bordeaux (France); Mones del Pujol, E. de [Department of Oto-rhino-laryngology, CHRU Bordeaux (France); Fernandez, P. [INCIA UMR-CNRS 5287, Bordeaux (France); Hospital Pellegrin, Department of Nuclear Medicine, CHRU Bordeaux (France); University Bordeaux 2, Bordeaux (France)

    2014-09-23

    Positron emission tomography (PET) with [{sup 18}F]-fluoromisonidazole ([{sup 18}F]-FMISO) provides a non-invasive assessment of hypoxia. The aim of this study is to assess the feasibility of a dose escalation with volumetric modulated arc therapy (VMAT) guided by [{sup 18}F]-FMISO-PET for head-and-neck cancers (HNC). Ten patients with inoperable stages III-IV HNC underwent [{sup 18}F]-FMISO-PET before radiotherapy. Hypoxic target volumes (HTV) were segmented automatically by using the fuzzy locally adaptive Bayesian method. Retrospectively, two VMAT plans were generated delivering 70 Gy to the gross tumour volume (GTV) defined on computed tomography simulation or 79.8 Gy to the HTV. A dosimetric comparison was performed, based on calculations of tumour control probability (TCP), normal tissue complication probability (NTCP) for the parotid glands and uncomplicated tumour control probability (UTCP). The mean hypoxic fraction, defined as the ratio between the HTV and the GTV, was 0.18. The mean average dose for both parotids was 22.7 Gy and 25.5 Gy without and with dose escalation respectively. FMISO-guided dose escalation led to a mean increase of TCP, NTCP for both parotids and UTCP by 18.1, 4.6 and 8 % respectively. A dose escalation up to 79.8 Gy guided by [{sup 18}F]-FMISO-PET with VMAT seems feasible with improvement of TCP and without excessive increase of NTCP for parotids. (orig.) [German] Die Positronenemissionstomographie (PET) mit [{sup 18}F]-Fluoromisonidazol ([{sup 18}F]-FMISO) ermoeglicht eine nichtinvasive Beurteilung der Hypoxie. Ziel dieser Studie ist es, die Durchfuehrbarkeit einer [{sup 18}F]-FMISO-PET-gefuehrten Dosissteigerung bei volumetrisch modulierter Arc-Therapie (VMAT) von Kopf-Hals-Tumoren (KHT) zu bewerten. Zehn Patienten mit inoperablen KHT der Stadien III-IV erhielten vor der Strahlentherapie eine [{sup 18}F]-FMISO-PET. Hypoxische Zielvolumina (HV) wurden automatisch mit Hilfe des FLAB(Fuzzy Locally Adaptive Bayesian

  20. SYSTEMS-2: A randomised phase II study of radiotherapy dose escalation for pain control in malignant pleural mesothelioma

    Directory of Open Access Journals (Sweden)

    M. Ashton

    2018-01-01

    Full Text Available SYSTEMS-2 is a randomised study of radiotherapy dose escalation for pain control in 112 patients with malignant pleural mesothelioma (MPM. Standard palliative (20 Gy/5# or dose escalated treatment (36 Gy/6# will be delivered using advanced radiotherapy techniques and pain responses will be compared at week 5. Data will guide optimal palliative radiotherapy in MPM.

  1. Calibration of dose meters used in radiotherapy

    International Nuclear Information System (INIS)

    1979-01-01

    This manual is a practical guide, not a comprehensive textbook, to the instrumentation and procedures necessary to calibrate a radiation dose meter used in clinical practice against a secondary standard dose meter

  2. Integral dose conservation in radiotherapy

    International Nuclear Information System (INIS)

    Reese, Adam S.; Das, Shiva K.; Curle, Charles; Marks, Lawrence B.

    2009-01-01

    Treatment planners frequently modify beam arrangements and use IMRT to improve target dose coverage while satisfying dose constraints on normal tissues. The authors herein analyze the limitations of these strategies and quantitatively assess the extent to which dose can be redistributed within the patient volume. Specifically, the authors hypothesize that (1) the normalized integral dose is constant across concentric shells of normal tissue surrounding the target (normalized to the average integral shell dose), (2) the normalized integral shell dose is constant across plans with different numbers and orientations of beams, and (3) the normalized integral shell dose is constant across plans when reducing the dose to a critical structure. Using the images of seven patients previously irradiated for cancer of brain or prostate cancer and one idealized scenario, competing three-dimensional conformal and IMRT plans were generated using different beam configurations. Within a given plan and for competing plans with a constant mean target dose, the normalized integral doses within concentric ''shells'' of surrounding normal tissue were quantitatively compared. Within each patient, the normalized integral dose to shells of normal tissue surrounding the target was relatively constant (1). Similarly, for each clinical scenario, the normalized integral dose for a given shell was also relatively constant regardless of the number and orientation of beams (2) or degree of sparing of a critical structure (3). 3D and IMRT planning tools can redistribute, rather than eliminate dose to the surrounding normal tissues (intuitively known by planners). More specifically, dose cannot be moved between shells surrounding the target but only within a shell. This implies that there are limitations in the extent to which a critical structure can be spared based on the location and geometry of the critical structure relative to the target.

  3. Entrance and peripheral dose measurements during radiotherapy

    International Nuclear Information System (INIS)

    Sulieman, A.; Kappas, K.; Theodorou, K.

    2008-01-01

    In vivo dosimetry of entrance dose was performed using thermoluminescent dosimeters (TLD) in order to evaluate the clinical application of the build up caps in patient dose measurements and for different treatment techniques. Peripheral dose (thyroid and skin) was measured for patients during breast radiotherapy to evaluate the probability of secondary cancer induction. TLD-100 chips were used with different Copper build up caps (for 6 MV and 15 MV photon beams from two linear accelerators. Entrance doses were measured for patients during radiotherapy course for breast, head and neck, abdomen and pelvis malignancies. The measured entrance dose for the different patients for 6 MV beams is found to be within the ±2.6% compared to the dose derived from theoretical estimation (normalized dose at D max ). The same measurements for 15 MV beams are found to be ±3 %. The perturbation value can reach up to 20% of the D max , which acts as a limitation for entrance dose measurements. An average thyroid skin dose of 3.7% of the prescribed dose was measured per treatment session while the mean skin dose breast treatment session is estimated to be 42% of D max , for both internal and external fields. These results are comparable in those of the in vivo of reported in literature. The risk of fatality due to thyroid cancer per treatment course is 3x10 -3

  4. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  5. Dose escalation by image-guided intensity-modulated radiotherapy leads to an increase in pain relief for spinal metastases: a comparison study with a regimen of 30 Gy in 10 fractions.

    Science.gov (United States)

    He, Jinlan; Xiao, Jianghong; Peng, Xingchen; Duan, Baofeng; Li, Yan; Ai, Ping; Yao, Min; Chen, Nianyong

    2017-12-22

    Under the existing condition that the optimum radiotherapy regimen for spinal metastases is controversial, this study investigates the benefits of dose escalation by image-guided intensity-modulated radiotherapy (IG-IMRT) with 60-66 Gy in 20-30 fractions for spinal metastases. In the dose-escalation group, each D50 of planning gross tumor volume (PGTV) was above 60 Gy and each Dmax of spinal cord planning organ at risk volume (PRV) was below 48 Gy. The median biological effective dose (BED) of Dmax of spinal cord was lower in the dose-escalation group compared with that in the 30-Gy group (69.70 Gy vs. 83.16 Gy, p pain responses were better in the dose-escalation group than those in the 30-Gy group ( p = 0.005 and p = 0.024), and the complete pain relief rates were respectively 73.69% and 34.29% ( p = 0.006), 73.69% and 41.38% ( p = 0.028) in two compared groups. In the dose-escalation group, there is a trend of a longer duration of pain relief, a longer overall survival and a lower incidence of acute radiation toxicities. No late radiation toxicities were observed in both groups. Dosimetric parameters and clinical outcomes, including pain response, duration of pain relief, radiation toxicities and overall survival, were compared among twenty-five metastatic spinal lesions irradiated with the dose-escalation regimen and among forty-four lesions treated with the 30-Gy regimen. Conventionally-fractionated IG-IMRT for spinal metastases could escalate dose to the vertebral lesions while sparing the spinal cord, achieving a better pain relief without increasing radiation complications.

  6. Dose calculation system for remotely supporting radiotherapy

    International Nuclear Information System (INIS)

    Saito, K.; Kunieda, E.; Narita, Y.; Kimura, H.; Hirai, M.; Deloar, H. M.; Kaneko, K.; Ozaki, M.; Fujisaki, T.; Myojoyama, A.; Saitoh, H.

    2005-01-01

    The dose calculation system IMAGINE is being developed keeping in mind remotely supporting external radiation therapy using photon beams. The system is expected to provide an accurate picture of the dose distribution in a patient body, using a Monte Carlo calculation that employs precise models of the patient body and irradiation head. The dose calculation will be performed utilising super-parallel computing at the dose calculation centre, which is equipped with the ITBL computer, and the calculated results will be transferred through a network. The system is intended to support the quality assurance of current, widely carried out radiotherapy and, further, to promote the prevalence of advanced radiotherapy. Prototypes of the modules constituting the system have already been constructed and used to obtain basic data that are necessary in order to decide on the concrete design of the system. The final system will be completed in 2007. (authors)

  7. Cranial radiotherapy guided by computed tomography with or without fields conformation in pediatric

    International Nuclear Information System (INIS)

    Fernandez, Diego; Caussa, Lucas; Murina, Patricia; Zunino, Silvia

    2007-01-01

    Many malignancies in children can be cured by radiotherapy, acute toxicity and the significant effect of delayed treatment are worrying for the patient, family and society. Therefore, the end of the pediatric radiotherapy is to maintain or improve the cure rate of cancer, diminishing the aftermath of treatment. The goal of this study is to measure differences in doses to the healthy tissue of the central nervous system with two radiotherapy techniques, both guided by computed tomography [es

  8. Effects of low dose mitomycin C on experimental tumor radiotherapy

    International Nuclear Information System (INIS)

    Yang Jianzheng; Liang Shuo; Qu Yaqin; Pu Chunji; Zhang Haiying; Wu Zhenfeng; Wang Xianli

    2001-01-01

    Objective: To evaluate the possibility of low dose mitomycin C(MMC) as an adjunct therapy for radiotherapy. Methods: Change in tumor size tumor-bearing mice was measured. Radioimmunoassay was used to determine immune function of mice. Results: Low dose Mac's pretreatment reduced tumor size more markedly than did radiotherapy only. The immune function in mice given with low dose MMC 12h before radiotherapy was obviously higher than that in mice subjected to radiotherapy only (P<0.05), and was close to that in the tumor-bearing mice before radiotherapy. Conclusion: Low dose MMC could improve the radiotherapy effect. Pretreatment with low dose MMC could obviously improve the immune suppression state in mice caused by radiotherapy. The mechanism of its improvement of radiotherapeutic effect by low dose of MMC might be due to its enhancement of immune function and induction of adaptive response in tumor-bearing mice

  9. CT-guided intracavitary radiotherapy for cervical cancer: Comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose-volume parameters

    International Nuclear Information System (INIS)

    Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Jung Keun; Kim, Joo-Young; Park, Sung Yong; Park, Sang-Yoon; Kim, Dae Yong; Chie, Eui Kyu; Pyo, Hong Ryull; Cho, Kwan Ho

    2006-01-01

    Purpose: To perform an intracavitary radiotherapy (ICR) plan comparison between the conventional point A plan (conventional plan) and computed tomography (CT)-guided clinical target volume-based plan (CTV plan) by analysis of the quantitative dose-volume parameters and irradiated volumes of organs at risk in patients with cervical cancer. Methods and Materials: Thirty plans for 192 Ir high-dose-rate ICR after 30-40-Gy external beam radiotherapy were investigated. CT images were acquired at the first ICR session with artifact-free applicators in place. The gross tumor volume, clinical target volume (CTV), point A, and International Commission on Radiation Units and Measurements Report 38 rectal and bladder points were defined on reconstructed CT images. A fractional 100% dose was prescribed to point A in the conventional plan and to the outermost point to cover all CTVs in the CTV plan. The reference volume receiving 100% of the prescribed dose (V ref ), and the dose-volume parameters of the coverage index, conformal index, and external volume index were calculated from the dose-volume histogram. The bladder, rectal point doses, and percentage of volumes receiving 50%, 80%, and 100% of the prescribed dose were also analyzed. Results: Conventional plans were performed, and patients were categorized on the basis of whether the 100% isodose line of point A prescription dose fully encompassed the CTV (Group 1, n = 20) or not (Group 2, n = 10). The mean gross tumor volume (11.6 cm 3 ) and CTV (24.9 cm 3 ) of Group 1 were smaller than the corresponding values (23.7 and 44.7 cm 3 , respectively) for Group 2 (p = 0.003). The mean V ref for all patients was 129.6 cm 3 for the conventional plan and 97.0 cm 3 for the CTV plan (p = 0.003). The mean V ref in Group 1 decreased markedly with the CTV plan (p < 0.001). For the conventional and CTV plans in all patients, the mean coverage index, conformal index, and external volume index were 0.98 and 1.0, 0.23 and 0.34, and 3.86 and

  10. Evaluation of lens dose in medulloblastoma radiotherapy

    International Nuclear Information System (INIS)

    Oliveira, F.L.; Vilela, E.C.; Sousa, S.A; Lima, F.F. de

    2007-01-01

    The improvement of the applied radiotherapy techniques in the cranial-spinal therapy, which is used in the cases of medulloblastoma, aims the reduction of the risks of future damages in enclosed critical agencies in the irradiation fields. This work aims to evaluate the lens doses due two common techniques used in medulloblastoma radiotherapy. For this, thermoluminescent dosimeters, previously calibrated, were located in an anthropomorphic phantom (ALDERSON - RANDON Laboratory), in the tumor and lens positions. The employed techniques were as following: (1) angled fields technique and (2) half-beam block technique. The phantom was irradiated five times in each technique with two lateral opposed fields in the brain with a total prescribed dose of 1.5 Gy, followed of two posterior spinal fields with the same prescribed dose, using a 6MV accelerator. The results showed that the doses in the first technique were 0.10 +- 0,04 Gy and, in second one, 0.09 +- 0,02 Gy. It was observed that, independent of the employed technique, the lens doses practically are the same. (author)

  11. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  12. Radiotherapy Dose Fractionation under Parameter Uncertainty

    International Nuclear Information System (INIS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-01-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  13. Prostate cancer: Doses and volumes of radiotherapy

    International Nuclear Information System (INIS)

    Hennequin, C.; Rivera, S.; Quero, L.; Latorzeff, I.

    2010-01-01

    Radiotherapy is nowadays a major therapeutic option in prostate cancer. Technological improvements allowed dose escalation without increasing late toxicity. Some randomized trials have shown that dose escalation decreases the biochemical failure rate, without any benefit in survival with the present follow-up. However, some studies indicate that the distant metastases rate is also decreased. Most of these studies have been done without hormonal treatment, and the role of dose escalation in case of long-term androgen deprivation is unknown. The target volume encompassed the whole gland: however, complete or partial focal treatment of the prostate can be done with sophisticated IMRT technique and must be evaluated. Proximal part of the seminal vesicles must be included in the target volumes. The role of nodal irradiation is another debate, but it could be logically proposed for the unfavourable group. (authors)

  14. Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan

    International Nuclear Information System (INIS)

    Takeda, Ken; Shimizu, Eiji; Abe, Keiko; Shirata, Yuko; Ishikawa, Yohjiro

    2012-01-01

    Several studies have confirmed the advantages of delivering high doses of external beam radiotherapy to achieve optimal tumor-control outcomes in patients with localized prostate cancer. We evaluated the medium-term treatment outcome after high-dose, image-guided intensity-modulated radiotherapy (IMRT) using intra-prostate fiducial markers for clinically localized prostate cancer. In total, 141 patients with localized prostate cancer treated with image-guided IMRT (76 Gy in 13 patients and 80 Gy in 128 patients) between 2003 and 2008 were enrolled in this study. The patients were classified according to the National Comprehensive Cancer Network-defined risk groups. Thirty-six intermediate-risk patients and 105 high-risk patients were included. Androgen-deprivation therapy was performed in 124 patients (88%) for a median of 11 months (range: 2–88 months). Prostate-specific antigen (PSA) relapse was defined according to the Phoenix-definition (i.e., an absolute nadir plus 2 ng/ml dated at the call). The 5-year actuarial PSA relapse-free survival, the 5-year distant metastasis-free survival, the 5-year cause-specific survival (CSS), the 5-year overall survival (OS) outcomes and the acute and late toxicities were analyzed. The toxicity data were scored according to the Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up was 60 months. The 5-year PSA relapse-free survival rates were 100% for the intermediate-risk patients and 82.2% for the high-risk patients; the 5-year actuarial distant metastasis-free survival rates were 100% and 95% for the intermediate- and high-risk patients, respectively; the 5-year CSS rates were 100% for both patient subsets; and the 5-year OS rates were 100% and 91.7% for the intermediate- and high-risk patients, respectively. The Gleason score (<8 vs. ≥8) was significant for the 5-year PSA relapse-free survival on multivariate analysis (p = 0.044). There was no grade 3 or 4 acute toxicity. The incidence of

  15. Experimental evaluation of neutron dose in radiotherapy patients: Which dose?

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Expósito, M., E-mail: mariateresa.romero@uab.cat; Domingo, C.; Ortega-Gelabert, O.; Gallego, S. [Grup de Recerca en Radiacions Ionizants (GRRI), Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Sánchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009 (Spain); Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41009 (Spain)

    2016-01-15

    Purpose: The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter “immeasurable” by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor w{sub R}, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with w{sub R}. Methods: Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. Results: The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. Conclusions: Quality factor can be replaced by the radiation weighting factor in the evaluation of dose

  16. Radiotherapy dose compensation for lung patients

    International Nuclear Information System (INIS)

    Piyaratna, N.; Arnold, A.; Metcalfe, P.

    1999-01-01

    The purpose of the present paper is to provide a more homogeneous dose distribution in the target volume from compensated anterior and posterior fields while the healthy lung is spared by de-weighting the lateral fields. A compensation computation which used linear iterations to compute the most homogeneous dose distribution across the target volume was applied to produce optimum compensator designs. The equivalent tissue-air ratio (E-TAR) inhomogeneity correction was applied for the computations using a GE target series 11 planning computer. The compensators designed were tested for accuracy in a modified water/lung phantom using a scanning diode and an anthropomorphic phantom using thermoluminescent dosimeters. A comparison has been made between the compensated and uncompensated plans for the first nine patients who we have treated with this technique. The dose profiles produced by the computation agreed with the prediction of the computed isodose plans to within ± 2% at the target depth. The thermoluminescent dosimeter (TLD)-measured results in the anthropomorphic phantom agreed with the planning computer within ± 3%. A comparison of nine compensated plans of radiotherapy patients for large-volume targets in the lung region showed a maximum variation in the target to be 19% uncompensated versus 10% compensated. By providing compensated treatment fields from anterior and posterior treatment portals, a homogeneous dose that conforms well to the target volume is provided. As an added bonus, this enables the lateral lung fields to be significantly de-weighted and the healthy lung is spared considerable dose. Copyright (1999) Blackwell Science Pty Ltd

  17. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    Directory of Open Access Journals (Sweden)

    Murray JR

    2015-11-01

    Full Text Available Julia R Murray,1,2 Helen A McNair,2 David P Dearnaley1,2 1Academic Urology Unit, Institute of Cancer Research, London, 2Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK Abstract: The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. Keywords: radiotherapy, prostate cancer, post-prostatectomy, image-guided radiation therapy

  18. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  19. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment.

    Science.gov (United States)

    Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J

    2016-06-01

    Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within  ±21% for the stomach and liver in thorax scans and 2  ×  CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff.

  20. Predicted allowable doses to normal organs for biologically targeted radiotherapy

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; Wheldon, T.E.; Western Regional Hospital Board, Glasgow

    1988-01-01

    The authors have used Dale's extension to the ''linear quadratic'' (LQ) model (Dale, 1985) to evaluate ''equivalent doses'' in cases involving exponentially decaying dose rates. This analysis indicates that the dose-rate effect will be a significant determinant of allowable doses to organs such as liver, kidney and lung. These organ tolerance doses constitute independent constraints on the therapeutic intensity of biologically targeted radiotherapy in exactly the same way as for conventional external beam radiotherapy. In the context of marrow rescue they will in all likelihood constitute the dose-limiting side-effects and thus be especially important. (author)

  1. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  2. Reduced lung dose and improved inspiration level reproducibility in visually guided DIBH compared to audio coached EIG radiotherapy for breast cancer patients

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Aznar, Marianne Camille; Pedersen, Anders Navrsted

    2013-01-01

    Patients with left-sided breast cancer with lymph node involvement have routinely been treated with enhanced inspiration gating (EIG) for a decade at our institution. In a transition from EIG to deep inspiration breath hold (DIBH) we compared the two techniques with focus on target coverage, dose...... to organs at risk and reproducibility of the inspiration level (IL)....

  3. Incidence of Secondary Cancer Development After High-Dose Intensity-Modulated Radiotherapy and Image-Guided Brachytherapy for the Treatment of Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Zelefsky, Michael J.; Housman, Douglas M.; Pei Xin; Alicikus, Zumre; Magsanoc, Juan Martin; Dauer, Lawrence T.; St Germain, Jean; Yamada, Yoshiya; Kollmeier, Marisa; Cox, Brett; Zhang Zhigang

    2012-01-01

    Purpose: To report the incidence and excess risk of second malignancy (SM) development compared with the general population after external beam radiotherapy (EBRT) and brachytherapy to treat prostate cancer. Methods and Materials: Between 1998 and 2001, 1,310 patients with localized prostate cancer were treated with EBRT (n = 897) or brachytherapy (n = 413). We compared the incidence of SMs in our patients with that of the general population extracted from the National Cancer Institute’s Surveillance, Epidemiology, and End Results data set combined with the 2000 census data. Results: The 10-year likelihood of SM development was 25% after EBRT and 15% after brachytherapy (p = .02). The corresponding 10-year likelihood for in-field SM development in these groups was 4.9% and 1.6% (p = .24). Multivariate analysis showed that EBRT vs. brachytherapy and older age were the only significant predictors for the development of all SMs (p = .037 and p = .030), with a trend for older patients to develop a SM. The increased incidence of SM for EBRT patients was explained by the greater incidence of skin cancer outside the radiation field compared with that after brachytherapy (10.6% and 3.3%, respectively, p = .004). For the EBRT group, the 5- and 10-year mortality rate was 1.96% and 5.1% from out-of field cancer, respectively; for in-field SM, the corresponding mortality rates were 0.1% and 0.7%. Among the brachytherapy group, the 5- and 10-year mortality rate related to out-of field SM was 0.8% and 2.7%, respectively. Our observed SM rates after prostate RT were not significantly different from the cancer incidence rates in the general population. Conclusions: Using modern sophisticated treatment techniques, we report low rates of in-field bladder and rectal SM risks after prostate cancer RT. Furthermore, the likelihood of mortality secondary to a SM was unusual. The greater rate of SM observed with EBRT vs. brachytherapy was related to a small, but significantly increased

  4. Effect of image-guided hypofractionated stereotactic radiotherapy on peripheral non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Wang SW

    2016-08-01

    Full Text Available Shu-wen Wang,1 Juan Ren,1 Yan-li Yan,2 Chao-fan Xue,2 Li Tan,2 Xiao-wei Ma2 1Department of Radiotherapy, First Affiliated Hospital of Xian Jiaotong University, 2Medical School of Xian Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: The objective of this study was to compare the effects of image-guided hypofractionated radiotherapy and conventional fractionated radiotherapy on non-small-cell lung cancer (NSCLC. Fifty stage- and age-matched cases with NSCLC were randomly divided into two groups (A and B. There were 23 cases in group A and 27 cases in group B. Image-guided radiotherapy (IGRT and stereotactic radiotherapy were conjugately applied to the patients in group A. Group A patients underwent hypofractionated radiotherapy (6–8 Gy/time three times per week, with a total dose of 64–66 Gy; group B received conventional fractionated radiotherapy, with a total dose of 68–70 Gy five times per week. In group A, 1-year and 2-year local failure survival rate and 1-year local failure-free survival rate were significantly higher than in group B (P<0.05. The local failure rate (P<0.05 and distant metastasis rate (P>0.05 were lower in group A than in group B. The overall survival rate of group A was significantly higher than that of group B (P=0.03, and the survival rate at 1 year was 87% vs 63%, (P<0.05. The median survival time of group A was longer than that of group B. There was no significant difference in the incidence of complications between the two groups (P>0.05. Compared with conventional fractionated radiation therapy, image-guided hypofractionated stereotactic radiotherapy in NSCLC received better treatment efficacy and showed good tolerability. Keywords: non-small-cell lung cancer, hypofractionated radiotherapy, stereotactic radiotherapy, segmentation, intensity-modulated radiotherapy, image-guided radiation therapy technology

  5. The efficacy of Elekta Synergy image-guided radiotherapy

    International Nuclear Information System (INIS)

    Takamatsu, Shigeyuki; Takanaka, Tsuyoshi; Kumano, Tomoyasu

    2008-01-01

    We evaluated the efficacy of Elekta Synergy image-guided radiotherapy (IGRT) system equipped with cone beam CT (CBCT) for high accuracy radiation therapy. In cases set up with body marking who had large set up error could be adjusted by this system within 1 mm error. IGRT with CBCT correction provided precise set up. Elekta Synergy IGRT system is useful for high accuracy set up and will facilitate novel precise radiotherapy techniques. (author)

  6. Stereotactic body radiotherapy a practical guide

    CERN Document Server

    Gaya, Andrew

    2015-01-01

    Collecting the key information in this burgeoning field into a single volume, this handbook for clinical oncology trainees and consultants covers all of the basic aspects of stereotactic radiotherapy systems and treatment and includes plenty of case studies.

  7. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    International Nuclear Information System (INIS)

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-01-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  8. Strategies for Biologic Image-Guided Dose Escalation: A Review

    International Nuclear Information System (INIS)

    Sovik, Aste; Malinen, Eirik; Olsen, Dag Rune

    2009-01-01

    There is increasing interest in how to incorporate functional and molecular information obtained by noninvasive, three-dimensional tumor imaging into radiotherapy. The key issues are to identify radioresistant regions that can be targeted for dose escalation, and to develop radiation dose prescription and delivery strategies providing optimal treatment for the individual patient. In the present work, we review the proposed strategies for biologic image-guided dose escalation with intensity-modulated radiation therapy. Biologic imaging modalities and the derived images are discussed, as are methods for target volume delineation. Different dose escalation strategies and techniques for treatment delivery and treatment plan evaluation are also addressed. Furthermore, we consider the need for response monitoring during treatment. We conclude with a summary of the current status of biologic image-based dose escalation and of areas where further work is needed for this strategy to become incorporated into clinical practice

  9. Commissioning an image-guided localization system for radiotherapy

    International Nuclear Information System (INIS)

    Phillips, Mark H.; Singer, Karen; Miller, Elizabeth; Stelzer, Keith

    2000-01-01

    Purpose: To describe the design and commissioning of a system for the treatment of classes of tumors that require highly accurate target localization during a course of fractionated external-beam therapy. This system uses image-guided localization techniques in the linac vault to position patients being treated for cranial tumors using stereotactic radiotherapy, conformal radiotherapy, and intensity-modulated radiation therapy techniques. Design constraints included flexibility in the use of treatment-planning software, accuracy and precision of repeat localization, limits on the time and human resources needed to use the system, and ease of use. Methods and Materials: A commercially marketed, stereotactic radiotherapy system, based on a system designed at the University of Florida, Gainesville, was adapted for use at the University of Washington Medical Center. A stereo pair of cameras in the linac vault were used to detect the position and orientation of an array of fiducial markers that are attached to a patient's biteblock. The system was modified to allow the use of either a treatment-planning system designed for stereotactic treatments, or a general, three-dimensional radiation therapy planning program. Measurements of the precision and accuracy of the target localization, dose delivery, and patient positioning were made using a number of different jigs and devices. Procedures were developed for the safe and accurate clinical use of the system. Results: The accuracy of the target localization is comparable to that of other treatment-planning systems. Gantry sag, which cannot be improved, was measured to be 1.7 mm, which had the effect of broadening the dose distribution, as confirmed by a comparison of measurement and calculation. The accuracy of positioning a target point in the radiation field was 1.0 ± 0.2 mm. The calibration procedure using the room-based lasers had an accuracy of 0.76 mm, and using a floor-based radiosurgery system it was 0.73 mm

  10. Dose response relationship in local radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Park, Hee Chul; Seong, Jin Sil; Han, Kwang Hyub; Chon, Chae Yoon; Moon, Young Myoung; Song, Jae Seok; Suh, Chang Ok

    2001-01-01

    In this study, it was investigated whether dose response relation existed or not in local radiotherapy for primary hepatocellular carcinoma. From January 1992 to March 2000, 158 patients were included in present study. Exclusion criteria included the presence of extrahepatic metastasis, liver cirrhosis of Child's class C, tumors occupying more than two thirds of the entire liver, and performance status on the ECOG scale of more than 3. Radiotherapy was given to the field including tumor with generous margin using 6, 10-MV X-ray. Mean tumor dose was 48.2±7.9 Gy in daily 1.8 Gy fractions. Tumor response was based on diagnostic radiologic examinations such as CT scan, MR imaging, hepatic artery angiography at 4-8 weeks following completion of treatment. Statistical analysis was done to investigate the existence of dose response relationship of local radiotherapy when it was applied to the treatment of primary hepatocellular carcinoma. An objective response was observed in 106 of 158 patients, giving a response rate of 67. 1%. Statistical analysis revealed that total dose was the most significant factor in relation to tumor response when local radiotherapy was applied to the treatment of primary hepatocellular carcinoma. Only 29.2% showed objective response in patients treated with dose less than 40 Gy, while 68.6% and 77.1 % showed major response in patients with 40-50 Gy and more than 50 Gy, respectively. Child-Pugh classification was significant factor in the development of ascites, overt radiation induced liver disease and gastroenteritis. Radiation dose was an important factor for development of radiation induced gastroduodenal ulcer. Present study showed the existence of dose response relationship in local radiotherapy for primary hepatocellular carcinoma. Only radiotherapy dose was a significant factor to predict the objective response. Further study is required to predict the maximal tolerance dose in consideration of liver function and non-irradiated liver

  11. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  12. High-dose rate fractionated interstitial radiotherapy for oropharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Takayuki; Inoue, Toshihiko; Inoue, Takehiro; Teshima, Teruki; Murayama, Shigeyuki [Osaka Univ. (Japan). Faculty of Medicine

    1995-03-01

    The limitations of treating oropharyngeal cancer patients with definitive external radiotherapy are the complications of salivary glands, taste buds, mandible and temporomandibular joints. To avoid these complications we started interstitial radiotherapy as boost after 46 Gy of external radiotherapy. Ten cases (retromolar trigone; 1, soft palate; 1, base of tongue; 3, lateral wall; 5) were treated with this method and seven cases were controlled locally. With short follow-up period, xerostomia and dysgeusia are less than definitive external radiotherapy as clinical impression and no in-field recurrences have been experienced. With markedly increased tumor dose, the local control rate can be improved. This treatment method will be an alternative to definitive external radiotherapy to gain better QOL and higher control rate. (author).

  13. Low dose preoperative radiotherapy for carcinoma of the oesophagus

    International Nuclear Information System (INIS)

    Arnott, S.J.; Duncan, W.; Kerr, G.R.; Jack, W.J.L.; Mackillop, W.J.; Walbaum, P.R.; Cameron, E.

    1992-01-01

    Patients (176) with potentially operable squamous cell carcinoma or adenocarcinoma of middle or lower thirds of oesophagus were randomly assigned to preoperative radiotherapy or surgery alone. Patients assigned to the radiotherapy arm received 20 Gy in 10 treatments over 2 weeks, using parallel opposed 4 MV beams. The preoperative radiotherapy was not associated with any significant acute morbidity or any increase in operative complications. The median survival of the overall group of 176 patients was 8 moths, and the 5-year survival was 13%. There was no significant difference in the survival of the 90 patients who received preoperative radiotherapy and the 86 who were managed by surgery alone. Proportional hazards analysis identified lymph node involvement, high tumor grade and male sex as significant adverse prognostic features, but the treatment option assigned had no prognostic significance. It was concluded that low dose preoperative radiotherapy offered no advantage over surgery alone. (author). 9 refs.; 3 figs.; 6 tabs

  14. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  15. Spinal Cord Doses in Palliative Lung Radiotherapy Schedules

    International Nuclear Information System (INIS)

    Ffrrcsi, F.H.; Parton, C.

    2006-01-01

    Aim: We aim to check the safety of the standard palliative radiotherapy techniques by using the Linear quadratic model for a careful estimation of the doses received by the spinal cord, in all standard palliative lung radiotherapy fields and fractionation. Material and Methods: All patients surveyed at this prospective audit were treated with palliative chest radio-therapy for lung cancer over a period from January to June 2005 by different clinical oncology specialists within the department. Radiotherapy field criteria were recorded and compared with the recommended limits of the MRC trial protocols for the dose and fractionation prescribed. Doses delivered to structures off the field central axis were estimated using a standard CT scan of the chest. Dose estimates were made using an SLPLAN planning system. As unexpected spinal cord toxicity has been reported after hypo fractionated chest radiotherapy, a sagittal view was used to calculate the isodoses along the length of the spinal cord that could lie within the RT field. Equivalent dose estimates are made using the Linear Quadratic Equivalent Dose formula (LQED). The relative radiation sensitivity of spinal cord for myelopathy (the a/b dose) cord has been estimated as a/b = 1 Gy. Results: 17 Gy in 2 fraction and 39 Gy in 13 fraction protocols have spinal cord equivalent doses (using the linear-quadratic model) that lie within the conventional safe limits of 50 Gy in 25 fractions for the 100% isodose. However when the dosimetry is modelled for a 6 MV 100 cm isocentric linac in 3 dimensions, and altered separations and air space inhomogeneity are considered, the D-Max doses consistently fall above this limit on our 3 model patients. Conclusion: The 17 Gy in 2 fraction and 39 Gy in 13 fraction protocol would risk spinal cord damage if the radio therapist was unaware of the potential spinal cord doses. Alterative doses are suggested below 15.5 Gy/ 2 fractions (7 days apart) would be most acceptable

  16. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-01-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element

  17. Development of dose audits for complex treatment techniques in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Stefanic, A. M.; Molina, L.; Vallejos, M.; Montano, G.; Zaretzky, A.; Saravi, M., E-mail: stefanic@cae.cnea.gov.ar [Centro Regional de Referencia con Patrones Secundarios para Dosimetria - CNEA, Presbitero Juan Gonzalez y Aragon 15, B1802AYA Ezeiza (Argentina)

    2014-08-15

    This work was performed in the frame of a Coordinated Research Project (CRP) with IAEA whose objective was to extend the scope of activities carried out by national TLD-based networks from dosimetry audit for rectangular radiation fields to irregular and small fields relevant to modern radiotherapy. External audit is a crucial element in QA programmes for clinical dosimetry in radiotherapy, therefore a methodology and procedures were developed and were made available for dose measurement of complex radiotherapy parameters used for cancer treatment. There were three audit steps involved in this CRP: TLD based dosimetry for irregular MLC fields for conformal radiotherapy, dosimetry in the presence of heterogeneities and 2D MLC shaped fields relevant to stereotactic radiotherapy and applicable to dosimetry for IMRT. In addition, a new development of film-based 2D dosimetry for testing dose distributions in small field geometry was included. The plan for each audit step involved a pilot study and a trial audit run with a few local hospitals. The pilot study focused on conducting and evaluation of the audit procedures with all participants. The trial audit run was the running of the audit procedures by the participants to test them with a few local radiotherapy hospitals. This work intends to provide audits which are much nearer clinical practice than previous audits as they involve significant testing of Tps methods, as well as verifications to determinate whether hospitals can correctly calculate dose delivery in radiation treatments. (author)

  18. Development of dose audits for complex treatment techniques in radiotherapy

    International Nuclear Information System (INIS)

    Stefanic, A. M.; Molina, L.; Vallejos, M.; Montano, G.; Zaretzky, A.; Saravi, M.

    2014-08-01

    This work was performed in the frame of a Coordinated Research Project (CRP) with IAEA whose objective was to extend the scope of activities carried out by national TLD-based networks from dosimetry audit for rectangular radiation fields to irregular and small fields relevant to modern radiotherapy. External audit is a crucial element in QA programmes for clinical dosimetry in radiotherapy, therefore a methodology and procedures were developed and were made available for dose measurement of complex radiotherapy parameters used for cancer treatment. There were three audit steps involved in this CRP: TLD based dosimetry for irregular MLC fields for conformal radiotherapy, dosimetry in the presence of heterogeneities and 2D MLC shaped fields relevant to stereotactic radiotherapy and applicable to dosimetry for IMRT. In addition, a new development of film-based 2D dosimetry for testing dose distributions in small field geometry was included. The plan for each audit step involved a pilot study and a trial audit run with a few local hospitals. The pilot study focused on conducting and evaluation of the audit procedures with all participants. The trial audit run was the running of the audit procedures by the participants to test them with a few local radiotherapy hospitals. This work intends to provide audits which are much nearer clinical practice than previous audits as they involve significant testing of Tps methods, as well as verifications to determinate whether hospitals can correctly calculate dose delivery in radiation treatments. (author)

  19. Relationship of bone marrow dose to eosinophilia following radiotherapy

    International Nuclear Information System (INIS)

    Murohashi, Ikuo; Gomi, Hiromichi; Nakano, Takashi; Morita, Shinroku; Arai, Tatsuo; Jinnai, Itsuro; Nara, Nobuo; Bessho, Masami; Hirashima, Kunitake.

    1986-01-01

    Absolute blood eosinophils were counted prior to and during radiotherapy in a total of 380 patients with carcinoma in the chest, pelvis, or abdomen. The patients were divided into 5 groups by types of cancer, and these groups differed in the irradiation sites or the sizes of radiation field. Accumulated bone marrow dose from the start of radiotherapy to the time when eosinophil count during radiotherapy reached its peak was simultaneously determined. In each group, maximum eosinophil count during radiotherapy was significantly increased compared with the value before radiotherapy. In all groups except one, the increase in eosinophil count following radiotherapy was directly proportional to the bone marrow dose. However, in the most heavily irradiated ovarian cancer group, the increase in eosinophil count was markedly lower. In contrast, neutrophils were reduced in numbers in all groups. These results suggest that bone marrow (red marrow) damage by irradiation results in eosinophilia, and that unimpaired hemopoiesis is also indispensable for such an eosinophil response. Accumulated bone marrow doses of 800 - 900 rad given during 4 weeks fractionated irradiation caused the most prominent eosinophilia. (author)

  20. Testicular dose and hormonal changes after radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Hermann, Robert M.; Henkel, Karsten; Christiansen, Hans; Vorwerk, Hilke; Hille, Andrea; Hess, Clemens F.; Schmidberger, Heinz

    2005-01-01

    Background and purpose: To measure the dose received by the testicles during radiotherapy for rectal cancer and to determine the contribution of each field of the pelvic box and the relevance for hormonal status. Materials and methods: In 11 patients (mean age 55.2 years) testicular doses were measured with an ionisation chamber between 7 and 10 times during the course of pelvic radiotherapy (50 Gy) for rectal carcinoma. Before and several months after radiotherapy luteinizing hormone, follicle stimulating hormone and total testosterone serum levels were determined. Results: The mean cumulative radiation exposure to the testicles was 3.56 Gy (0.7-8.4 Gy; 7.1% of the prescribed dose). Seventy-three percent received more than 2 Gy to the testicles. Fifty-eight percent of the measured dose was contributed by the p.a. field, 30% by the a.p. field and 12% by the lateral fields. Mean LH and FSH levels were significantly increased after therapy (350%/185% of the pre-treatment values), testosterone levels decreased to 78%. No correlation could be found between changes of hormones and doses to the testis, probably due to the low number of evaluated patients. Conclusions: Radiotherapy of rectal carcinoma causes significant damage to the testis, as shown by increased levels of gonadotropins after radiotherapy. Most of the gonadal dose is delivered by the p.a. field, due to the divergence of the p.a. beam towards the testicles. The reduction in testosterone level may be of clinical concern. Patients who will receive radiotherapy for rectal carcinoma must be instructed about a high risk of permanent infertility, and the risk of endocrine failure (hypogonadism). Larger studies are needed to establish the correlation between testicular radiation dose and hormonal changes in this group of patients

  1. Determination of Absorbed Dose in Large 60-Co Fields Radiotherapy

    International Nuclear Information System (INIS)

    Hrsak, H.

    2003-01-01

    Radiation in radiotherapy has selective impact on ill and healthy tissue. During the therapy the healthy tissue receives certain amount of dose. Therefore dose calculations in outer radiotherapy must be accurate because too high doses produce damage in healthy tissue and too low doses cannot ensure efficient treatment of cancer cells. A requirement on accuracy in the dose calculations has lead to improvement of detectors, and development of absolute and relative dosimetry. Determination of the dose distribution with use of computer is based on data provided by the relative dosimetry. This paper compares the percentage depth doses in cubic water phantoms of various dimensions with percentage depth doses calculated with use of Mayneord factor from the experimental depth doses measured in water phantom of large dimension. Depth doses in water phantoms were calculated by the model of empirical dosimetrical functions. The calculations were based on the assumption that large 6 0C o photon field exceeds the phantom's limits. The experimental basis for dose calculations by the model of empirical dosimetrical functions were exposure doses measured in air and dose reduction factors because of finite phantom dimensions. Calculations were performed by fortran 90 software. It was found that the deviation of dosimetric model was small in comparison to the experimental data. (author)

  2. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Shah, Chirag; Badiyan, Shahed; Berry, Sameer; Khan, Atif J.; Goyal, Sharad; Schulte, Kevin; Nanavati, Anish; Lynch, Melanie; Vicini, Frank A.

    2014-01-01

    Breast cancer radiotherapy represents an essential component in the overall management of both early stage and locally advanced breast cancer. As the number of breast cancer survivors has increased, chronic sequelae of breast cancer radiotherapy become more important. While recently published data suggest a potential for an increase in cardiac events with radiotherapy, these studies do not consider the impact of newer radiotherapy techniques commonly utilized. Therefore, the purpose of this review is to evaluate cardiac dose sparing techniques in breast cancer radiotherapy. Current options for cardiac protection/avoidance include (1) maneuvers that displace the heart from the field such as coordinating the breathing cycle or through prone patient positioning, (2) technological advances such as intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT), and (3) techniques that treat a smaller volume around the lumpectomy cavity such as accelerated partial breast irradiation (APBI), or intraoperative radiotherapy (IORT). While these techniques have shown promise dosimetrically, limited data on late cardiac events exist due to the difficulties of long-term follow up. Future studies are required to validate the efficacy of cardiac dose sparing techniques and may use surrogates for cardiac events such as biomarkers or perfusion imaging

  3. Usefulness of a guide book for patients to self-help during radiotherapy for anxiety before radiotherapy

    International Nuclear Information System (INIS)

    Hoshino, Naoko; Yamada, Nami; Morita, Kozo.

    1995-01-01

    From May through August 1993, 'a guide book for patients to self-help during radiotherapy' prepared at our department was given 80 patients before radiotherapy and the usefulness of this book for understanding of radiotherapy and reduction of anxiety for radiotherapy was investigated. In 83% of patients could read it through, and in 67% of these patients anxiety for treatment reduced. It is necessary that medical staffs make it clear more often, to let them understand this book more correctly. (author)

  4. Actual Dose Variation of Parotid Glands and Spinal Cord for Nasopharyngeal Cancer Patients During Radiotherapy

    International Nuclear Information System (INIS)

    Han Chunhui; Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: For intensity-modulated radiotherapy of nasopharyngeal cancer, accurate dose delivery is crucial to the success of treatment. This study aimed to evaluate the significance of daily image-guided patient setup corrections and to quantify the parotid gland volume and dose variations for nasopharyngeal cancer patients using helical tomotherapy megavoltage computed tomography (CT). Methods and Materials: Five nasopharyngeal cancer patients who underwent helical tomotherapy were selected retrospectively. Each patient had received 70 Gy in 35 fractions. Daily megavoltage CT scans were registered with the planning CT images to correct the patient setup errors. Contours of the spinal cord and parotid glands were drawn on the megavoltage CT images at fixed treatment intervals. The actual doses delivered to the critical structures were calculated using the helical tomotherapy Planned Adaptive application. Results: The maximal dose to the spinal cord showed a significant increase and greater variation without daily setup corrections. The significant decrease in the parotid gland volume led to a greater median dose in the later phase of treatment. The average parotid gland volume had decreased from 20.5 to 13.2 cm 3 by the end of treatment. On average, the median dose to the parotid glands was 83 cGy and 145 cGy for the first and the last treatment fractions, respectively. Conclusions: Daily image-guided setup corrections can eliminate significant dose variations to critical structures. Constant monitoring of patient anatomic changes and selective replanning should be used during radiotherapy to avoid critical structure complications

  5. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification.

    Science.gov (United States)

    Harrison, R M

    2008-12-01

    The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.

  6. Dose optimization in radiotherapy patients for IMRT based on 4D-CBCT

    International Nuclear Information System (INIS)

    Alfonso, R.; Castillo, D.; Ascensión, Y.; Linares, H.; García, F.; Argota, R.

    2015-01-01

    The use of tomographic systems based on conical photon beams kVp (kV-CBCT) to verify the accuracy of the positioning of patients in external radiotherapy treatments has expanded in recent years, with increasing availability of linear accelerators systems for image guided radiation therapy (IGRT) based kV-CBCT systems, incorporated into the gantry of the equipment. Several studies have evaluated the collateral doses received by patients using these positioning systems for radiotherapy (RT). Recently, the firm Elekta has developed a solution to manage the effects of respiratory movements and reduce internal margins that affect the planning target volume (Symmetry TM ), which is based on the acquisition of dynamic tomographic studies (4D- CBCT), making it possible to estimate the average white temporal position in each treatment, without using methods triggered or ‘tracking’. These 4D studies however require a greater number of images per gantry angle, potentially involves a higher dose administered to patients, besides the actual dose treatment beam. The present study investigated a methodology to assess dose rates 4DCBCT (4D-CBDI) using dosimetric instrumentation and phantoms as those typically available in radiotherapy departments. The doses received by different techniques are compared using as criteria of merit image quality and overall geometric accuracy achieved in positioning and internal margins. The results show that it is possible to reduce the administered to patients in studies of CBCT static and dynamic, without significantly affecting the objectives of the same in terms of geometric accuracy dose. [es

  7. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  8. PET-guided dose escalation tomotherapy in malignant pleural mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, Andrei; Dell' Oca, Italo; Pasetti, Marcella; Di Muzio, Nadia Gisella [San Raffaele Scientific Institute, Milan (Italy). Dept. of Radiotherapy; Fiorino, Claudio; Broggi, Sara; Cattaneo, Giovanni Mauro; Calandrino, Riccardo [San Raffaele Scientific Institute, Milan (Italy). Medical Physics; Gianolli, Luigi [San Raffaele Scientific Institute, Milan (Italy). Dept. of Nuclear Medicine

    2011-11-15

    To test the feasibility of salvage radiotherapy using PET-guided helical tomotherapy in patients with progressive malignant pleural mesothelioma (MPM). A group of 12 consecutive MPM patients was treated with 56 Gy/25 fractions to the planning target volume (PTV); FDG-PET/CT simulation was always performed to include all positive lymph nodes and MPM infiltrations. Subsequently, a second group of 12 consecutive patients was treated with the same dose to the whole pleura adding a simultaneous integrated boost of 62.5 Gy to the FDG-PET/CT positive areas (BTV). Good dosimetric results were obtained in both groups. No grade 3 (RTOG/EORTC) acute or late toxicities were reported in the first group, while 3 cases of grade 3 late pneumonitis were registered in the second group: the duration of symptoms was 2-10 weeks. Median overall survival was 8 months (1.2-50.5 months) and 20 months (4.3-33.8 months) from the beginning of radiotherapy, for groups I and II, respectively (p = 0.19). A significant impact on local relapse from radiotherapy was seen (median time to local relapse: 8 vs 17 months; 1-year local relapse-free rate: 16% vs 81%, p = 0.003). The results of this pilot study support the planning of a phase III study of combined sequential chemoradiotherapy with dose escalation to BTV in patients not able to undergo resection. (orig.)

  9. Fetal dose evaluation during breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Antypas, Christos; Sandilos, Panagiotis; Kouvaris, John; Balafouta, Ersi; Karinou, Eleftheria; Kollaros, Nikos; Vlahos, Lambros

    1998-01-01

    Purpose: The aim of the work was to estimate the radiation dose delivered to the fetus in a pregnant patient irradiated for breast cancer. Methods and Materials: A 45-year woman was treated for left breast cancer using a 6 MV photon beam with two isocentric opposing tangential unwedged fields. Daily dose was 2.3 Gy at 95% isodose line given by two fields/day, 5 days/week. A total dose of 46 Gy was given in 20 fractions over a 4-week period. Pregnancy confirmed during the second therapeutic week. Treatment lasted between the second and sixth gestation week. Radiation dose to fetus was estimated from in vivo and phantom measurements using thermoluminescence dosimeters and an ionization chamber. In vivo measurements were performed by inserting either a catheter with TL dosimeters or ionization chamber into the patient's rectum. Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. Results: TLD measurements (in vivo and phantom) revealed fetal dose to be 0.085% of the tumor dose, corresponding to a cumulative fetal dose of 3.9 cGy for the entire treatment of 46 Gy. Chamber measurements (in vivo and phantom) revealed a fetal dose less than the TLD result: 0.079 and 0.083% of the tumor dose corresponding to cumulative fetal dose of 3.6 cGy and 3.8 cGy for in vivo and phantom measurement, respectively. Conclusions: It was concluded that the cumulative dose delivered to the unshielded fetus was 3.9 cGy for a 46 Gy total tumor dose. The estimated fetal dose is low compared to the total tumor dose given due to the early stage of pregnancy, the large distance between fundus-radiation field, and the fact that no wedges and/or lead blocks were used. No deterministic biological effects of radiation on the live-born embryo are expected. The lifetime risk for radiation-induced fatal cancer is higher than the normal incidence, but is considered as inconsequential

  10. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Homann, Kenneth; Howell, Rebecca [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Schneider, Christopher [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Durante, Marco; Bert, Christoph [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany)

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  11. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  12. Review of surface dose detectors in radiotherapy

    LENUS (Irish Health Repository)

    O'Shea, E.

    2006-11-20

    Several instruments have been used to measure absorbed radiation dose under non-electronic equilibrium conditions, such as in the build-up region or near the interface between two different media, including the surface. Many of these detectors are discussed in this paper. A common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate ionisation chambers. Thermoluminescent dosimeters (TLDs), diodes and radiographic film have also been used to obtain surface dose measurements. The diamond detector was used recently by the author in an investigation on the effects of beam-modifying devices on skin dose and it is also described in this report

  13. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  14. High dose radiotherapy for pituitary tumours

    International Nuclear Information System (INIS)

    Mead, K.W.

    1981-01-01

    The results of treatment of 120 pituitary tumours are presented. Based on this experience operable chromophobe adenomas are now treated with 5,000 rads in 4 weeks and inoperable ones receive an additional central dose to 7,500 rads. Pituitary Cushing's tumours are given 10,000 rads in 5 weeks using small fields and acromegalics 5,000 rads to the whole sella and 7,500 to its lower half. The absence of complications at these dose levels is attributed to the use of small fields and the precise application of treatment

  15. High dose radiotherapy for pituitary tumours

    Energy Technology Data Exchange (ETDEWEB)

    Mead, K.W. (Queensland Radium Inst., Herston (Australia))

    1981-11-01

    The results of treatment of 120 pituitary tumours are presented. Based on this experience operable chromophobe adenomas are now treated with 5,000 rads in 4 weeks and inoperable ones receive an additional central dose to 7,500 rads. Pituitary Cushing's tumours are given 10,000 rads in 5 weeks using small fields and acromegalics 5,000 rads to the whole sella and 7,500 to its lower half. The absence of complications at these dose levels is attributed to the use of small fields and the precise application of treatment.

  16. Dose-response relationship in local radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Park, Hee Chul; Seong, Jinsil; Han, Kwang Hyub; Chon, Chae Yoon; Moon, Young Myoung; Suh, Chang Ok

    2002-01-01

    Purpose: Dose escalation using three-dimensional conformal radiotherapy (3D-CRT) is based on the hypothesis that increasing the dose can enhance tumor control. This study aimed to determine whether a dose-response relationship exists in local radiotherapy for primary hepatocellular carcinoma (HCC). Methods and Materials: One hundred fifty-eight patients were enrolled in the present study between January 1992 and March 2000. The exclusion criteria included the presence of an extrahepatic metastasis, liver cirrhosis of Child class C, tumors occupying more than two-thirds of the entire liver, and a performance status on the Eastern Cooperative Oncology Group scale of more than 3. Radiotherapy was given to the field, including the tumor, with generous margin using 6- or 10-MV X-rays. The mean radiation dose was 48.2 ± 7.9 Gy in daily 1.8-Gy fractions. The tumor response was assessed based on diagnostic radiologic examinations, including a computed tomography scan, magnetic resonance imaging, and hepatic artery angiography 4-8 weeks after the completion of treatment. Liver toxicity and gastrointestinal complications were evaluated. Results: An objective response was observed in 106 of 158 (67.1%) patients. Statistical analysis revealed that the total dose was the most significant factor associated with the tumor response. The response rates in patients treated with doses 50 Gy were 29.2%, 68.6%, and 77.1%, respectively. Survivals at 1 and 2 years after radiotherapy were 41.8% and 19.9%, respectively, with a median survival time of 10 months. The rate of liver toxicity according to the doses 50 Gy was 4.2%, 5.9%, and 8.4%, respectively, and the rate of gastrointestinal complications was 4.2%, 9.9%, and 13.2%, respectively. Conclusions: The present study showed the existence of a dose-response relationship in local radiotherapy for primary HCC. Only the radiation dose was a significant factor for predicting an objective response. The results of this study showed that 3D

  17. Radiochromic film as a radiotherapy surface-dose detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; Wollongong Univ., NSW; Mathur, J.N.

    1996-01-01

    Radiochromic film is shown to be a useful surface-dose detector for radiotherapy x-ray beams. Central-axis percentage surface-dose results as measured by Gafchromic film for a 6 MVp x-ray beam produced by a Varian 2100C Linac at 100 cm SSD are 16%, 25%, 35%, 41% for 10, 20, 30 and 40 cm square field sizes, respectively. Using a simple, uniform light source and a CCD camera connected to an image analysis system, quantitative 3D surface doses are accurately attainable in real time as either numerical data, a black-and-white image or a colour-enhanced image. (Author)

  18. Control of absorbed dose in radiotherapy with 60 Co units

    International Nuclear Information System (INIS)

    Penchev, V.; Constantinov, B.; Buchakliev, Z.

    2000-01-01

    A Network for External Quality Audit has been developed and established in Bulgaria by the Secondary Standard Dosimetry Laboratory (SSDL) - Sofia. The results prove the usefulness of the TL Postal Dose programme in helping Bulgarian radiotherapy departments improve and maintain the consistency of patient doses in clinically acceptable level. The participation of the SSDL-Sofia in the IAEA Quality Audit Programme confirms the quite satisfactory accuracy of the therapy level dose measurements and determination achieved. The role of the SSDL is critical in providing traceable calibration to hospitals

  19. Dose concentration and dose verification for radiotherapy of cancer

    International Nuclear Information System (INIS)

    Maruyama, Koichi

    2005-01-01

    The number of cancer treatments using radiation therapy is increasing. The background of this increase is the accumulated fact that the number of successful cases is comparative to or even better than surgery for some types of cancer due to the improvement in irradiation technology and radiation planning technology. This review describes the principles and technology of radiation therapy, its characteristics, particle therapy that improves the dose concentration, its historical background, the importance of dose concentration, present situation and future possibilities. There are serious problems that hinder the superior dose concentration of particle therapy. Recent programs and our efforts to solve these problems are described. A new concept is required to satisfy the notion of evidence based medicine, i.e., one has to develop a method of dose verification, which is not yet available. This review is for researchers, medical doctors and radiation technologists who are developing this field. (author)

  20. Reference Dose Rates for Fluoroscopy Guided Interventions

    International Nuclear Information System (INIS)

    Geleijns, J.; Broerse, J.J.; Hummel, W.A.; Schalij, M.J.; Schultze Kool, L.J.; Teeuwisse, W.; Zoetelief, J.

    1998-01-01

    The wide diversity of fluoroscopy guided interventions which have become available in recent years has improved patient care. They are being performed in increasing numbers, particularly at departments of cardiology and radiology. Some procedures are very complex and require extended fluoroscopy times, i.e. longer than 30 min, and radiation exposure of patient and medical staff is in some cases rather high. The occurrence of radiation-induced skin injuries on patients has shown that radiation protection for fluoroscopy guided interventions should not only be focused on stochastic effects, i.e. tumour induction and hereditary risks, but also on potential deterministic effects. Reference dose levels are introduced by the Council of the European Communities as an instrument to achieve optimisation of radiation protection in radiology. Reference levels in conventional diagnostic radiology are usually expressed as entrance skin dose or dose-area product. It is not possible to define a standard procedure for complex interventions due to the large inter-patient variations with regard to the complexity of specific interventional procedures. Consequently, it is not realistic to establish a reference skin dose or dose-area product for complex fluoroscopy guided interventions. As an alternative, reference values for fluoroscopy guided interventions can be expressed as the entrance dose rates on a homogeneous phantom and on the image intensifier. A protocol has been developed and applied during a nationwide survey of fluoroscopic dose rate during catheter ablations. From this survey reference entrance dose rates of respectively 30 mGy.min -1 on a polymethylmethacrylate (PMMA) phantom with a thickness of 21 cm, and of 0.8 μGy.s -1 on the image intensifier have been derived. (author)

  1. Dose dependence of complication rates in cervix cancer radiotherapy

    International Nuclear Information System (INIS)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder

  2. Dose dependence of complication rates in cervix cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder.

  3. Radiation dose in radiotherapy from prescription to delivery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Cancer incidence is increasing in developed as well as in developing countries. Cancer may be expected to become a prominent problem and this will result in public pressure for higher priorities on cancer care. In some relatively advanced developing countries radiation therapy is applied in about 50% of all detected cancer cases. Approximately half of these treatments have curative intent. Surgery and radiotherapy applied individually or combined result in the cure of about 40% of all patients. The application of chemotherapy alone has curative effects only on a small percentage of cancer patients. It is encouraging to note that the results achieved by radiation therapy show continuous improvement. This can be traced back to a number of developments: increased knowledge regarding tumour and normal tissue response to radiation, early diagnosis with improved tumour localisation, improved dosimetry and dose planning. The introduction of modern equipment has been crucial in these developments and makes possible a more accurate target delineation, better treatment planning resulting in irradiation of the Planning Target Volume (PTV) with a highly uniform dose and, simultaneously, a reduction in dose to healthy tissues outside the PTV. Experience shows that high quality radiotherapy can only be achieved if its conducted by a skilled team working closely together with good communication between various categories of staff. Therefore, seminars and training courses covering all aspects of radiotherapy and dosimetry are of great importance and should be held regionally or nationally on a regular basis. Refs, figs, tabs.

  4. Radiation dose in radiotherapy from prescription to delivery

    International Nuclear Information System (INIS)

    1996-08-01

    Cancer incidence is increasing in developed as well as in developing countries. Cancer may be expected to become a prominent problem and this will result in public pressure for higher priorities on cancer care. In some relatively advanced developing countries radiation therapy is applied in about 50% of all detected cancer cases. Approximately half of these treatments have curative intent. Surgery and radiotherapy applied individually or combined result in the cure of about 40% of all patients. The application of chemotherapy alone has curative effects only on a small percentage of cancer patients. It is encouraging to note that the results achieved by radiation therapy show continuous improvement. This can be traced back to a number of developments: increased knowledge regarding tumour and normal tissue response to radiation, early diagnosis with improved tumour localisation, improved dosimetry and dose planning. The introduction of modern equipment has been crucial in these developments and makes possible a more accurate target delineation, better treatment planning resulting in irradiation of the Planning Target Volume (PTV) with a highly uniform dose and, simultaneously, a reduction in dose to healthy tissues outside the PTV. Experience shows that high quality radiotherapy can only be achieved if its conducted by a skilled team working closely together with good communication between various categories of staff. Therefore, seminars and training courses covering all aspects of radiotherapy and dosimetry are of great importance and should be held regionally or nationally on a regular basis. Refs, figs, tabs

  5. Application of biological dose concept in dose optimization for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Li Yunhai; Liao Yuan; Zhou Lijun; Pan Ziqiang; Feng Yan

    2003-01-01

    Objective: On basis of physical dose optimization, LQ model was used to investigate the difference between the curves of biological effective dose and physical isodose. The influence of applying the biological dose concept on three dimensional conformal radiotherapy of prostate carcinoma was discussed. Methods: Four treatment plannings were designed for physical dose optimization: three fields, four-box fields, five fields and six fields. Target dose uniformity and protection of the critical tissue-rectum were used as the principal standard for designing the treatment planning. Biological effective dose (BED) was calculated by LQ model. The difference between the BED curve drawn in the central layer and the physical isodose curve was studied. The difference between the adjusted physical dose (APD) and the physical dose was also studied. Results: Five field planning was the best in target dose uniformity and protection of the critical tissue-rectum. The physical dose was uniform in the target, but the biological effective doses revealed great discrepancy in the biological model. Adjusted physical dose distribution also displayed larger discrepancy than the physical dose unadjusted. Conclusions: Intensified Modulated Radiotherapy (IMRT) technique with inversion planning using biological dose concept may be much more advantageous to reach a high tumor control probability and low normal tissue complication probability

  6. Dose-response relationship with radiotherapy: an evidence?

    International Nuclear Information System (INIS)

    Chauvet, B.; Rauglaudre, G. de; Mineur, L.; Alfonsi, M.; Reboul, F.

    2003-01-01

    The dose-response relationship is a fundamental basis of radiobiology. Despite many clinical data, difficulties remain to demonstrate a relation between dose and local control: relative role of treatment associated with radiation therapy (surgery, chemotherapy, hormonal therapy), tumor heterogeneity, few prospective randomized studies, uncertainty of local control assessment. Three different situations are discussed: tumors with high local control probabilities for which dose effect is demonstrated by randomized studies (breast cancer) or sound retrospective data (soft tissues sarcomas), tumors with intermediate local control probabilities for which dose effect seems to be important according to retrospective studies and ongoing or published phase III trials (prostate cancer), tumors with low local control probabilities for which dose effect appears to be modest beyond standard doses, and inferior to the benefit of concurrent chemotherapy (lung and oesophageal cancer). For head and neck tumors, the dose-response relationship has been explored through hyperfractionation and accelerated radiation therapy and a dose effect has been demonstrated but must be compared to the benefit of concurrent chemotherapy. Last but not least, the development of conformal radiotherapy allow the exploration of the dose response relationship for tumors such as hepatocellular carcinomas traditionally excluded from the field of conventional radiation therapy. In conclusion, the dose-response relationship remains a sound basis of radiation therapy for many tumors and is a parameter to take into account for further randomized studies. (author)

  7. Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Nguyen, Nam P; Desai, Anand; Smith-Raymond, Lexie; Jang, Siyoung; Vock, Jacqueline; Vinh-Hung, Vincent; Chi, Alexander; Vos, Paul; Pugh, Judith; Vo, Richard A; Ceizyk, Misty

    2014-01-01

    In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed. A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70 Gy (62.4-75 Gy). At a median follow-up of 14 months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications. IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications

  8. Tomotherapy – a different way of dose delivery in radiotherapy

    Science.gov (United States)

    Skórska, Małgorzata; Jodda, Agata; Ryczkowski, Adam; Kaźmierska, Joanna; Adamska, Krystyna; Karczewska-Dzionk, Aldona; Żmijewska-Tomczak, Małgorzata; Włodarczyk, Hanna

    2012-01-01

    Aim of the study Helical tomotherapy is one of the methods of radiotherapy. This method enables treatment implementation for a wide spectrum of clinical cases. The vast array of therapeutic uses of helical tomotherapy results directly from the method of dose delivery, which is significantly different from the classic method developed for conventional linear accelerators. The paper discusses the method of dose delivery by a tomotherapy machine. Moreover, an analysis and presentation of treatment plans was performed in order to show the therapeutic possibilities of the applied technology. Dose distributions were obtained for anaplastic medulloblastoma, multifocal metastases to brain, vulva cancer, tongue cancer, metastases to bones, and advanced skin cancer. Tomotherapy treatment plans were compared with conventional linear accelerator plans. Results Following the comparative analysis of tomotherapy and conventional linear accelerator plans, in each case we obtained the increase in dose distribution conformity manifested in greater homogeneity of doses in the radiation target area for anaplastic medulloblastoma, multifocal metastases to brain, vulva cancer, metastases to bones, and advanced skin cancer, and the reduction of doses in organs at risk (OAR) for anaplastic medulloblastoma, vulva cancer, tongue cancer, and advanced skin cancer. The time of treatment delivery in the case of a tomotherapy machine is comparable to the implementation of the plan prepared in intensity-modulated radiotherapy (IMRT) technique for a conventional linear accelerator. In the case of tomotherapy the application of a fractional dose was carried out in each case during one working period of the machine. For a conventional linear accelerator the total value of the fractional dose in the case of anaplastic medulloblastoma and metastases to bones was delivered using several treatment plans, for which a change of set-up was necessary during a fraction. Conclusion The obtained results

  9. ORANGE: a Monte Carlo dose engine for radiotherapy

    International Nuclear Information System (INIS)

    Zee, W van der; Hogenbirk, A; Marck, S C van der

    2005-01-01

    This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning

  10. Fast Neutron Dose Distribution in a Linac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Al-Othmany, D.Sh.; Abdul-Majid, S.; Kadi, M.W.

    2011-01-01

    CR-39 plastic detectors were used for fast neutron dose mapping in the radiotherapy facility at King AbdulAziz University Hospital (KAUH). Detectors were calibrated using a 252 Cf neutron source and a neutron dosimeter. After exposure chemical etching was performed using 6N NaOH solution at 70 degree C. Tracks were counted using an optical microscope and the number of tracks/cm 2 was converted to a neutron dose. 15 track detectors were distributed inside and outside the therapy room and were left for 32 days. The average neutron doses were 142.3 mSv on the accelerator head, 28.5 mSv on inside walls, 1.4 mSv beyond the beam shield, and 1 mSv in the control room

  11. Hyperfractionated conformal radiotherapy in locally advanced prostate cancer: results of a dose escalation study

    International Nuclear Information System (INIS)

    Forman, Jeffrey D.; Duclos, Marie; Shamsa, Falah; Porter, Arthur T.; Orton, Colin

    1996-01-01

    Purpose: This study was initiated to assess the incidence of chronic complications and histologic and biochemical control following hyperfractionated conformal radiotherapy in patients with locally advanced prostate cancer. Methods and Materials: Between October 1991 and October 1994, 49 patients with locally advanced prostate cancer were entered on the first two dose levels of a prospective dose-escalation study using hyperfractionated three dimensional conformal radiotherapy. The first 25 patients received a minimum tumor dose of 78 Gy to the prostate and seminal vesicles in 6 weeks at 1.3 Gy, b.i.d. No increase in chronic toxicity compared with conventional radiotherapy was noted; therefore, an additional 24 patients were treated to a minimum tumor dose of 82.8 Gy to the prostate and seminal vesicles in 7 weeks at 1.15 Gy, b.i.d. Toxicity was scored according to the Radiation Therapy Oncology Group morbidity grading scale. Efficacy was assessed through scheduled postradiation prostate specific antigen values and ultrasound-guided biopsies. The median follow-up for the entire group was 20 months. Results: The hyperfractionated external radiation was well tolerated with minimal acute morbidity. At 30 months, the actuarial probability of Grade 2 gastrointestinal toxicity was 17%. At 30 months, the actuarial probability of Grade 2 genitourinary toxicity was 16%. There was no statistically significant difference between the two dose levels. No Grade 3 or 4 gastrointestinal or genitourinary toxicity was noted. At 12 months, 84% of patients had a prostate specific antigen ≤ 4; and 53%; ≤ 1 ng/ml. At 12 months, 71% of patients had post radiation biopsies that were either negative (55%) or showed a marked therapeutic effect (16%). Conclusion: The use of hyperfractionated conformal radiotherapy facilitated dose escalation with no increase in chronic toxicity compared to standard doses. The initial tumor response based on prostate specific antigen measurements and

  12. Rectal dose during radiotherapy: how much is too much?

    International Nuclear Information System (INIS)

    Booth, J.; Adelaide University,

    2002-01-01

    Full text: The clinical intent of radiotherapy for prostate cancer is to deposit high radiation dose to the prostate and as low as possible to healthy tissue. The rectum is one adjacent structure that is very sensitive to side effects including rectal bleeding, stricture, and ulceration. The dose that the rectum receives is often difficult to predict because its position and size will differ on each treatment day from the original planning CT images. The aim of this work is to use current measured values from the literature on rectal wall motion to mathematically model the dynamic rectal wall. The model is used with a pre calculated dose distribution to evaluate the difference between planned anticipated and actually delivered rectal radiation doses. The dose delivered will depend on the status of the rectum in the preliminary planning CT scan. Deviations from the planned dose were larger if the rectum was empty in the planning CT scan (ΔD = ± 25%) than if it was full (ΔD = ± 15%). If the planning CT scan demonstrated the rectum in the mean treatment position the dose variation is reduced (ΔD = ± 10%). These results support the conclusion that care should be taken to plan treatments using CT images that contain reproducible information

  13. Deformable image registration for image guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Cassetta, Roberto; Riboldi, Marco; Baroni, Guido; Leandro, Kleber; Novaes, Paulo Eduardo; Goncalves, Vinicius; Sakuraba, Roberto; Fattori, Giovanni

    2016-01-01

    In this study, we present a CT to CBCT deformable registration method based on the ITK library. An algorithm was developed in order to explore the soft tissue information of the CT-CBCT images to perform deformable image registration (DIR), making efforts to overcome the poor signal-to-noise ratio and HU calibration issues that limits CBCT use for treatment planning purposes. Warped CT images and contours were generated and their impact in adaptive radiotherapy was evaluated by DVH analysis for photon and proton treatments. Considerable discrepancies, related to the treatment planning dose distribution, might be found due to changes in patient’s anatomy. (author)

  14. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  15. Extracranial stereotactic radiotherapy: Evaluation of PTV coverage and dose conformity

    International Nuclear Information System (INIS)

    Haedinger, U.; Thiele, W.; Wulf, J.

    2002-01-01

    During the past few years the concept of cranial sterotactic radiotherapy has been successfully extended to extracranial tumoral targets. In our department, hypofractionated treatment of tumours in lung, liver, abdomen, and pelvis is performed in the Stereotactic Body Frame (ELEKTA Instrument AB) since 1997. We present the evaluation of 63 consecutively treated targets (22 lung, 21 liver, 20 abdomen/pelvis) in 58 patients with respect to dose coverage of the planning target volume (PTV) as well as conformity of the dose distribution. The mean PTV coverage was found to be 96.3%±2.3% (lung), 95.0%±4.5% (liver), and 92.1%±5.2% (abdomen/pelvis). For the so-called conformation number we obtained values of 0.73±0.09 (lung), 0.77±0.10 (liver), and 0.70±0.08 (abdomen/pelvis). The results show that highly conformal treatment techniques can be applied also in extracranial stereotactic radiotherapy. This is primarily due to the relatively simple geometrical shape of most of the targets. Especially lung and liver targets turned out to be approximately spherically/cylindrically shaped, so that the dose distribution can be easily tailored by rotational fields. (orig.) [de

  16. Single-dose radiotherapy for painful bone metastases

    International Nuclear Information System (INIS)

    Kal, H.B.

    1999-01-01

    Background: External beam radiotherapy is frequently applied for palliative treatment of painful bone lesions with a variety of fractionation schemes. There is a continuous interest to administer only 1 or a few dose fractions for inducing pain relief. Methods: A review of the literature was made with the aim to determine whether a treatment can be deduced that is simple and effective. The linear-quadratic (L-Q) concept was applied to compare reported therapy schemes which each other for the iso-effect pain relief. Results: Single-dose and fractionated radiotherapy resulted in partial or complete pain relief in about 80% of the patients. Complete responses have been observed in about 43% of the patients. For patients responding to treatment, the duration of pain relief is at least 3 to 4 months with reported duration of up to 1 year or even longer. Conclusion: Based on this review of literature data concerning randomized trials a treatment with a single dose of 8 Gy is effective for inducing pain relief. (orig.) [de

  17. Dose profile analysis of small fields in intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Medel B, E. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G.; Romero S, K., E-mail: romsakaren@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue.(Mexico)

    2015-10-15

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  18. DOSE-ESCALATED EXTERNAL BEAM RADIOTHERAPY DURING HORMONO-RADIOTHERAPY FOR PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2016-01-01

    Full Text Available Introduction. The introduction of modern technologies of conformal external beam radiotherapy (EBRT into clinical practice for the treatment of prostate cancer requires proper quality assurance measures as well as a careful analysis of both the efficacy and toxicity data of treatments. The purpose of this study was to inves- tigate tolerance and the immediate efficacy of conformal dose-escalated EBRT during hormono-radiotherapy for prostate cancer. material and methods. The study involved 156 prostate cancer patients treated with EBRT. Among them, 30 patients received a total dose of 70 Gy, and in 126 patients the total dose was esca- lated to 72-76 Gy (median total dose - 74.0 Gy. Fifty-nine patients received intensity modulated radiation therapy. Results. The prescribed course of treatment was completed in all the patients with prostate cancer. Acute radiation-induced bladder reactions (RTOG were observed in 50 (32.1 % patients, of whom 48 (30.8 % experienced grade I reactions, and 2 (1.3 % experienced grade II reactions. Eighteen (11.5 % patients had radiation-induced rectum reactions, not above grade I. The development of grade II dysuric phenomena necessitated treatment interruption only in two patients. Of 9 (5.8 % patients who had late bladder complica- tions (RTOG/EORTC, 8 (5.1 % patients developed grade I complications, and one (0.6 % patient developed grade II complications. Of 11 (7.1 % patients who had rectum complications, 8 (5.1 % patients developed grade I complications, and 3 (1.9 % patients developed grade II complications. No patients experienced the increase in toxicity of treatment during dose escalation up to a total dose exceeding 70 Gy. During the follow-up period, only one patient developed recurrent disease. Conclusion. The results of our study suggest acceptable levels of toxicity following a continuous course of dose-escalated EBRT given in conjunction with hormono-radiotherapy to prostate cancer patients. Further

  19. Dose to the uterus from radiotherapy procedures for breast carcinoma

    International Nuclear Information System (INIS)

    Martin Rincon, C.; Jerez Sainz, I.; Modolell Farre, I.; Espana Lopez, M.L.; Lopez Franco, P.

    2001-01-01

    In the early period of the pregnancy, the radiological protection of the unborn child is of particular concern. In several reports dose thresholds for deterministic effects as well as dose values that increase the probability of stochastic effects have been established. The aim of this article was to estimate the peripheral dose (PD) in order to evaluate the absorbed dose in utero for breast carcinoma treatment related to the radiotherapy procedures established in our hospital. The treatment was simulated using an anthropomorphic phantom Alderson-Rando, and two similar treatment planning with and without wedges were performed, taken into account the average field parameters used in 300 treatment planning patients. The PD values were determined with a NE 2571 ionization chamber in a General Electric linac for the treatments considered. Experimental measures provided dose in utero values slightly higher than 5 cGy, dose threshold established in some articles for radioinduced effects in the fetus. The planning system underestimated the PD values and no significant influence with the use of wedges was found. (author)

  20. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Science.gov (United States)

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  1. Radiotherapy.

    Science.gov (United States)

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  2. Fractionated stereotactically guided radiotherapy for pharmacoresistant epilepsy; Fraktionierte, stereotaktisch gefuehrte Radiotherapie der pharmakoresistenten Epilepsie

    Energy Technology Data Exchange (ETDEWEB)

    Grabenbauer, G.G.; Reinhold, C.; Lambrecht, U.; Sauer, R. [Klinik und Poliklinik fuer Strahlentherapie, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Kerling, F.; Pauli, E.; Stefan, H. [Neurologische Klinik, Abt. Epileptologie, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Mueller, R.G. [Inst. fuer Medizinische Physik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Ganslandt, O. [Neurochirurgische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany)

    2003-01-01

    Aim: This prospective study evaluated the efficiency of fractionated stereotactically guided radiotherapy as a treatment of pharmacoresistant temporal lobe epilepsy. Patients and Methods: Inclusion criteria were patients aged between 17 and 65 years with one-sided temporally located focus, without sufficient epilepsy control by, antiepileptic drugs or neurosurgery. Between 1997 and 1999, two groups of six patients each were treated with 21 Gy (7 times 3 Gy) and 30 Gy (15 times 2 Gy). Study end points were seizure frequency, intensity, seizure length and neuropsychological parameters. Results: All patients experienced a marked reduction in seizure frequency. The mean reduction of seizures was 37% (range 9-77%, i.e. seizures reduced from a monthly mean number of 11.75 to 7.52) at 18 months following radiation treatment and 46% (23-94%, i.e. 0.2-23 seizures per month) during the whole follow-up time. Seizure length was reduced in five out of eleven patients and intensity of seizures in seven out of eleven patients. Conclusion: Radiotherapy was identified as safe and effective for pharmacoresistant epilepsy since a very good reduction of seizure frequency was observed. It is no substitute for regular use of antiepileptic drugs, but means an appropriate alternative for patients with contraindication against neurosurgery or insufficient seizure reduction after neurosurgery. (orig.) [German] Ziel: Diese prospektive Studie untersuchte die Effizienz einer fraktionierten stereotaktischen Radiotherapie (RT) bei therapieresistenter Temporallappenepilepsie. Patienten und Methoden: Einschlusskriterien waren Patienten im Alter von 17 bis 65 Jahren, die weder medikamentoes noch epilepsiechirurgisch anfallsfrei wurden und einen einseitigen Fokus aufwiesen. Zwei Patientenkohorten zu je sechs Patienten wurden zwischen 1997 und 1999 einer fraktionierten, stereotaktisch gefuehrten Radiotherapie mit 21 Gy (7 x 3 Gy) bzw. 30 Gy (15 x 2 Gy) unterzogen. Endpunkte der Untersuchung waren

  3. Doses to organs at cerebral risks: optimization by robotized stereotaxic radiotherapy and automatic segmentation atlas versus three dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.; Thariat, J.; Benezery, K.; Herault, J.; Dalmasso, C.; Marcie, S.; Malandain, G.

    2007-01-01

    The stereotaxic radiotherapy robotized by 'Cyberknife fourth generation' allows a dosimetric optimization with a high conformity index on the tumor and radiation doses limited on organs at risk. A cerebral automatic anatomic segmentation atlas of organs at risk are used in routine in three dimensions. This study evaluated the superiority of the stereotaxic radiotherapy in comparison with the three dimensional conformal radiotherapy on the preservation of organs at risk in regard of the delivered dose to tumors justifying an accelerated hypo fractionation and a dose escalation. This automatic segmentation atlas should allow to establish correlations between anatomy and cerebral dosimetry; This atlas allows to underline the dosimetry optimization by stereotaxic radiotherapy robotized for organs at risk. (N.C.)

  4. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: A preliminary report

    International Nuclear Information System (INIS)

    Yamada, Yoshiya; Lovelock, D. Michael; Yenice, Kamil M.; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan; Leibel, Steven A.

    2005-01-01

    Purpose: The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. Methods and Materials: The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Results: Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never

  5. Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Jones, Bleddyn; Cominos, Matilda; Dale, Roger G.

    2003-01-01

    Purpose: To investigate the potential for mathematic modeling in the assessment of symptom relief in palliative radiotherapy and cytotoxic chemotherapy. Methods: The linear quadratic model of radiation effect with the overall treatment time and the daily dose equivalent of repopulation is modified to include the regrowth time after completion of therapy. Results: The predicted times to restore the original tumor volumes after treatment are dependent on the biological effective dose (BED) delivered and the repopulation parameter (K); it is also possible to estimate K values from analysis of palliative treatment response durations. Hypofractionated radiotherapy given at a low total dose may produce long symptom relief in slow-growing tumors because of their low α/β ratios (which confer high fraction sensitivity) and their slow regrowth rates. Cancers that have high α/β ratios (which confer low fraction sensitivity), and that are expected to repopulate rapidly during therapy, are predicted to have short durations of symptom control. The BED concept can be used to estimate the equivalent dose of radiotherapy that will achieve the same duration of symptom relief as palliative chemotherapy. Conclusion: Relatively simple radiobiologic modeling can be used to guide decision-making regarding the choice of the most appropriate palliative schedules and has important implications in the design of radiotherapy or chemotherapy clinical trials. The methods described provide a rationalization for treatment selection in a wide variety of tumors

  6. Dose calibrator user and quality control guide

    International Nuclear Information System (INIS)

    Blanchis, Philippe; Amiot, Marie-Noelle; Moune, Muriel; Bellanger, Anne-Christine; Chauvenet, Bruno; Verdeau, Eric; Gardin, Isabelle; Martineau, Antoine; Ricard, Marcel; Caselles, Olivier; Guilhem, Marie-Therese; Hapdey, Sebastien; Lisbona, Albert; Bonnot-Lours, Sophie; Dumont, Agnes; Lemercier, Valerie; Rizzo-Padoin, Nathalie

    2006-06-01

    This document is a practical guide for the use and control of dose calibrators which are instruments used for radioactivity measurements. After a recall of the calibrator operation principle, the authors describe all the operations performed on this apparatus all along its lifetime: controls to be performed for device acceptance, aspects to be addressed during installation, controls to be performed before any use, daily controls, more detailed controls, and operations to be performed for maintenance, in case of dysfunctions or for re-calibration

  7. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  8. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    International Nuclear Information System (INIS)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.

    1985-01-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons

  9. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Roberts, Kenneth B.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-04-01

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes, liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.

  10. On-line MR imaging for dose validation of abdominal radiotherapy

    NARCIS (Netherlands)

    Glitzner, M; Crijns, S P M; de Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static

  11. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  12. First online real-time evaluation of motion-induced 4D dose errors during radiotherapy delivery

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Skouboe, Simon; Hansen, Rune

    2018-01-01

    PURPOSE: In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real......-time motion-including 4D dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS: Five volumetric modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying...... a Delta4 dosimeter. The VMAT plans have previously been used for (non-tracking) liver SBRT with intra-treatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in 3D while optical monitoring guided the MLC tracking. Linac...

  13. Prostate cancer: variables to keep in mind at the moment to decide the external radiotherapy dose

    International Nuclear Information System (INIS)

    Donato, H.; Barros, J.M.; Fernandez Bibiloni, C.; Barrios, E.; Martinez, A.; Broda, E.; Cardiello, C.; Alva, R.; Chiozza, J.; Filomia, M.L.; Rafailovici, L.; Dosoretz, B.

    2007-01-01

    The objective of this work is to evaluate forecast factors and other variables in the decision of the final dose for prostate cancer treatment with 3D conformal radiotherapy techniques of modulated intensity. To determine the optimal dose, direct and indirect variables related to the disease should be considered. Also the equipment and the radiotherapy technique will impact on this decision [es

  14. The effects of low-dose radiotherapy on fresh osteochondral allografts: An experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Uğur Gönç

    2016-10-01

    Conclusion: In osteochondral massive allograft transplantations, the immune reaction of the host could be precluded with radiotherapy, and the side-effects can be prevented by low-dose fractionated regimen. The total dose of fractionated radiotherapy for an immune suppression should be adjusted not to damage the cartilage tissue, but to avoid articular degeneration in the long term.

  15. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    Science.gov (United States)

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  16. Acute Toxicity in Definitive Versus Postprostatectomy Image-Guided Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Nguyen, Khanh H.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To assess the incidence of acute gastrointestinal (GI) and genitourinary (GU) injury and the dose-volume response in patients with clinically localized prostate cancer treated with image-guided radiotherapy using helical tomotherapy. Methods and Materials: Between November 2004 and March 2007, 146 consecutive patients with localized prostate cancer were treated with helical tomotherapy at the City of Hope Medical Center. Of the 146 patients, 70 had undergone prostatectomy. Acute GI and GU toxicities were evaluated using the Radiation Therapy Oncology Group/European Organization for Research and Cancer of Medical scoring system. Events were scored for patients developing Grade 2 or greater morbidity within 90 days after the end of radiotherapy (RT). The dosimetric parameters included the minimal dose received by the highest 10%, 20%, 50%, 80%, and 90% of the target volume, the mean rectal dose, minimal rectal dose, maximal rectal dose, and the volume receiving ≥45, ≥65, and ≥70 Gy. These variables, plus the status of radical prostatectomy, hormonal therapy, RT techniques, and medical conditions, were included in a multivariate logistic regression analysis. A goodness-of-fit evaluation was done using the Hosmer-Lemeshow statistic. Results: A dose-response function for acute GI toxicity was elicited. The acute GI Grade 2 or greater toxicity was lower in the definitive RT group than in the postoperative RT group (25% vs. 41%, p <0.05). Acute GU Grade 2 or greater toxicity was comparable between the two groups. No grade 3 or greater complications were observed. No dosimetric variable was significant for GU toxicity. For acute GI toxicity, the significant dosimetric parameters were the minimal dose received by 10%, 20%, and 50% of the target volume and the mean rectal dose; the most predictive parameter was the minimal dose received by 10% of the target volume. The dose-modifying factor was 1.2 for radical prostatectomy. Conclusion: The results of our

  17. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    International Nuclear Information System (INIS)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C.; Muenscher, A.; Blessmann, M.; Todorovic, M.; Tennstedt, P.

    2013-01-01

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  18. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    Energy Technology Data Exchange (ETDEWEB)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Radiation Oncology; Muenscher, A. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Otorhinolaryngology and Head and Neck Surgery; Blessmann, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Oral and Maxillofacial Surgery; Todorovic, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Medical Physics; Tennstedt, P. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Martini-Clinic, Prostate Cancer Center

    2013-03-15

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  19. Analysis of the testicular dose in patients undergoing radiotherapy for carcinoma of the prostate

    International Nuclear Information System (INIS)

    Bejar Navarro, M. J.; Ordonez Marquez, J.; Hervas Moron, A.; Alvarez Rodriguez, S.; Garcia-Galloway, E.; Sanchez Casanueva, R.; Polo Rubio, A.; Rodriguez-Patron, R.; Yanowsky, K.; Gomez Dos Santos, V.

    2013-01-01

    The objectives of this work are: -Studying comparatively the doses received in testes in patients undergoing radiotherapy of prostate carcinoma with external beam radiation and brachytherapy of low rate using I-125 seeds. -Compare doses due to images of verification using Cone Beam CT (CBCT), with doses of radiotherapy treatment itself. -Determine the seminal alterations and cytogenetic after treatment with ionizing radiation (RTE or BQT) in patients diagnosed with prostate cancer and its relation with testicular dose. (Author)

  20. Dose-response relationship for breast cancer induction at radiotherapy dose

    Directory of Open Access Journals (Sweden)

    Gruber Günther

    2011-06-01

    Full Text Available Abstract Purpose Cancer induction after radiation therapy is known as a severe side effect. It is therefore of interest to predict the probability of second cancer appearance for the patient to be treated including breast cancer. Materials and methods In this work a dose-response relationship for breast cancer is derived based on (i the analysis of breast cancer induction after Hodgkin's disease, (ii a cancer risk model developed for high doses including fractionation based on the linear quadratic model, and (iii the reconstruction of treatment plans for Hodgkin's patients treated with radiotherapy, (iv the breast cancer induction of the A-bomb survivor data. Results The fitted model parameters for an α/β = 3 Gy were α = 0.067Gy-1 and R = 0.62. The risk for breast cancer is according to this model for small doses consistent with the finding of the A-bomb survivors, has a maximum at doses of around 20 Gy and drops off only slightly at larger doses. The predicted EAR for breast cancer after radiotherapy of Hodgkin's disease is 11.7/10000PY which can be compared to the findings of several epidemiological studies where EAR for breast cancer varies between 10.5 and 29.4/10000PY. The model was used to predict the impact of the reduction of radiation volume on breast cancer risk. It was estimated that mantle field irradiation is associated with a 3.2-fold increased risk compared with mediastinal irradiation alone, which is in agreement with a published value of 2.7. It was also shown that the modelled age dependency of breast cancer risk is in satisfying agreement with published data. Conclusions The dose-response relationship obtained in this report can be used for the prediction of radiation induced secondary breast cancer of radiotherapy patients.

  1. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  2. Proposed Rectal Dose Constraints for Patients Undergoing Definitive Whole Pelvic Radiotherapy for Clinically Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Chan, Linda W.; Xia Ping; Gottschalk, Alexander R.; Akazawa, Michelle; Scala, Matthew; Pickett, Barby M.S.; Hsu, I-C.; Speight, Joycelyn; Roach, Mack

    2008-01-01

    Purpose: Although several institutions have reported rectal dose constraints according to threshold toxicity, the plethora of trials has resulted in multiple, confusing dose-volume histogram recommendations. A set of standardized, literature-based constraints for patients undergoing whole pelvic radiotherapy (RT) for prostate cancer would help guide the practice of prostate RT. The purpose of this study was to develop these constraints, demonstrate that they are achievable, and assess the corresponding rectal toxicity. Methods and Materials: An extensive literature search identified eight key studies relating dose-volume histogram data to rectal toxicity. A correction factor was developed to address differences in the anatomic definition of the rectum across studies. The dose-volume histogram constraints recommended by each study were combined to generate the constraints. The data from all patients treated with definitive intensity-modulated RT were then compared against these constraints. Acute rectal toxicity was assessed. Results: A continuous, proposed rectal dose-constraint curve was generated. Intensity-modulated RT not only met this constraint curve, but also was able to achieve at least 30-40% lower dose to the rectum. The preliminary clinical results were also positive: 50% of patients reported no acute bowel toxicity, 33% reported Grade 1 toxicity, and 17% reported Grade 2 toxicity. No patients reported Grade 3-4 acute rectal toxicity. Conclusions: In this study, we developed a set of proposed rectal dose constraints. This allowed for volumetric assessment of the dose-volume relationship compared with single dose-volume histogram points. Additional research will be performed to validate this threshold as a class solution for rectal dose constraints

  3. Vaginal dose de-escalation in image guided adaptive brachytherapy for locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Mohamed, Sandy; Lindegaard, Jacob Christian; de Leeuw, Astrid A C

    2016-01-01

    Purpose Vaginal stenosis is a major problem following radiotherapy in cervical cancer. We investigated a new dose planning strategy for vaginal dose de-escalation (VDD). Materials and methods Fifty consecutive locally advanced cervical cancer patients without lower or middle vaginal involvement...... at diagnosis from 3 institutions were analysed. External beam radiotherapy was combined with MRI-guided brachytherapy. VDD was obtained by decreasing dwell times in ovoid/ring and increasing dwell times in tandem/needles. The aim was to maintain the target dose (D90 of HR-CTV ⩾ 85 Gy EQD2) while reducing...... bladder and rectum (D2cm3) were reduced by 2 ± 2 Gy and 3 ± 2 Gy, respectively (p

  4. Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging.

    Science.gov (United States)

    Mao, Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing, Lei; Solberg, Timothy

    2009-10-01

    To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  5. Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging

    International Nuclear Information System (INIS)

    Mao Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing Lei; Solberg, Timothy

    2009-01-01

    Purpose: To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Methods and Materials: Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Results: Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. Conclusions: This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  6. Evaluation of volume change in rectum and bladder during application of image-guided radiotherapy for prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Luna, J. A., E-mail: yosimoon13@hotmail.com [Departamento de Física, Universidad Nacional de Costa Rica, Heredia (Costa Rica); Rojas, J. I., E-mail: isaac.rojas@siglo21.cr [Centro Médico Radioterapia Siglo XX1, La Uruca (Costa Rica); PROXTRONICS CR, Ltda, Heredia (Costa Rica)

    2016-07-07

    All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.

  7. Quality audit for dose determination in the field of radiotherapy using TLD

    International Nuclear Information System (INIS)

    Kharita, M. H.; Anjak, O.

    2010-08-01

    Quality audit is one of the important procedures in radiotherapy centers in order to verify the accuracy of the delivered radiation doses. The aim of this work is to establish a procedure for dose audit using TL dosimeters and to apply this procedure in radiotherapy centers. TL Dosimeters were distributed to several radiotherapy centers in Syria and Lebanon (4 with Co-60 and 14 with high energy photon beam radiotherapy units). They were exposed to 2 Gy in order to make an intercomparison study of the absorbed dose in water determined under reference conditions. The results show that only two beams were outside the accepted range, which is ±3.5%. and the were within the accepted range. External Quality audit is one of the important procedures in field of radiotherapy dosimeter in order to verify the accuracy of the radiation doses delivered to patients. (Author)

  8. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  9. Computer calculation of dose distributions in radiotherapy. Report of a panel

    International Nuclear Information System (INIS)

    1966-01-01

    As in most areas of scientific endeavour, the advent of electronic computers has made a significant impact on the investigation of the physical aspects of radiotherapy. Since the first paper on the subject was published in 1955 the literature has rapidly expanded to include the application of computer techniques to problems of external beam, and intracavitary and interstitial dosimetry. By removing the tedium of lengthy repetitive calculations, the availability of automatic computers has encouraged physicists and radiotherapists to take a fresh look at many fundamental physical problems of radiotherapy. The most important result of the automation of dosage calculations is not simply an increase in the quantity of data but an improvement in the quality of data available as a treatment guide for the therapist. In October 1965 the International Atomic Energy Agency convened a panel in Vienna on the 'Use of Computers for Calculation of Dose Distributions in Radiotherapy' to assess the current status of work, provide guidelines for future research, explore the possibility of international cooperation and make recommendations to the Agency. The panel meeting was attended by 15 participants from seven countries, one observer, and two representatives of the World Health Organization. Participants contributed 20 working papers which served as the bases of discussion. By the nature of the work, computer techniques have been developed by a few advanced centres with access to large computer installations. However, several computer methods are now becoming 'routine' and can be used by institutions without facilities for research. It is hoped that the report of the Panel will provide a comprehensive view of the automatic computation of radiotherapeutic dose distributions and serve as a means of communication between present and potential users of computers

  10. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Flentje, Michael; Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-01-01

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade ≥ 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade ≥ 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade ≥ 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  11. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flentje, Michael [Dept. of Radiotherapy, Univ. Hospital Wuerzburg (Germany); Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-10-15

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade {>=} 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade {>=} 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade {>=} 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  12. An assessment of effective dose to staff in external beam radiotherapy

    International Nuclear Information System (INIS)

    Rawlings, D.J.; Nicholson, L.

    1997-01-01

    Radiation safety in external beam radiotherapy is governed by national legislation. Annual doses recorded by radiographers and others associated with external beam radiotherapy are typically much lower than the relevant dose limit. However, it is possible that larger doses might be received as a result of an accidental irradiation. In the event of a significant exposure resulting in a dose at or near a relevant dose limit, an accurate conversion has to be made from the dose meter reading to the limiting quantity. A method was devised to demonstrate ratios of effective dose to personal dose equivalent which might be anticipated in the even of an individual other than the patient being irradiated within a radiotherapy treatment room consisting of a linear accelerator. The variation of ratios obtained under different conditions is discussed. (author)

  13. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  14. The Role of Seminal Vesicle Motion in Target Margin Assessment for Online Image-Guided Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Liang Jian; Wu Qiuwen; Yan Di

    2009-01-01

    Purpose: For patients with intermediate- and high-risk prostate cancer, the seminal vesicles (SVs) are included in the clinical target volume (CTV). The purposes of this study are to investigate interfraction motion characteristics of the SVs and determine proper margins for online computed tomography image guidance. Methods and Materials: Twenty-four patients, each with 16 daily helical computed tomography scans, were included in this study. A binary image mask was used for image registration to determine daily organ motion. Two online image-guided radiotherapy strategies (prostate only and prostate + SVs) were simulated in a hypofractionated scheme. Three margin designs were studied for both three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT). In prostate-only guidance, Margin A was uniformly applied to the whole CTV, and Margin B was applied to the SVs with a fixed 3-mm prostate margin. In prostate plus SV guidance, Margin C was uniformly applied to the CTV. The minimum margins were sought to satisfy the criterion that minimum cumulative CTV dose be more than those of the planning target volume in the plan for greater than 95% of patients. Results: The prostate and SVs move significantly more in the anterior-posterior and superior-inferior than right-left directions. The anterior-posterior motion of the prostate and SVs correlated (R 2 = 0.7). The SVs move significantly more than the prostate. The minimum margins found were 2.5 mm for three-dimensional conformal radiotherapy and 4.5, 4.5, and 3.0 mm for Margins A, B, and C for IMRT, respectively. Margins for IMRT were larger, but the irradiated volume and doses to critical structures were smaller. Minimum margins of 4.5 mm to the SVs and 3 mm to the prostate are recommended for IMRT with prostate-only guidance. Conclusions: The SVs move independently from the prostate gland, and additional margins are necessary for image-guided radiotherapy

  15. Time and dose-related changes in lung perfusion after definitive radiotherapy for NSCLC

    DEFF Research Database (Denmark)

    Farr, Katherina P; Khalil, Azza A; Møller, Ditte S

    2018-01-01

    BACKGROUND AND PURPOSE: To examine radiation-induced changes in regional lung perfusion per dose level in 58 non-small-cell lung cancer (NSCLC) patients treated with intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS: NSCLC patients receiving chemo-radiotherapy (RT) of minimum 60 Gy we...

  16. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180.

    Science.gov (United States)

    Ding, George X; Alaei, Parham; Curran, Bruce; Flynn, Ryan; Gossman, Michael; Mackie, T Rock; Miften, Moyed; Morin, Richard; Xu, X George; Zhu, Timothy C

    2018-05-01

    With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient. © 2018 American Association of Physicists in Medicine.

  17. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Langen, Katja M.; Zeidan, Omar A.; Meeks, Sanford L.; Willoughby, Twyla R.; Wagner, Thomas H.; Jeswani, Sam; Ruchala, Kenneth J.; Haimerl, Jason; Olivera, Gustavo H.

    2006-01-01

    Purpose: The aim of this work was to study the variations in delivered doses to the prostate, rectum, and bladder during a full course of image-guided external beam radiotherapy. Methods and Materials: Ten patients with localized prostate cancer were treated with helical tomotherapy to 78 Gy at 2 Gy per fraction in 39 fractions. Daily target localization was performed using intraprostatic fiducials and daily megavoltage pelvic computed tomography (CT) scans, resulting in a total of 390 CT scans. The prostate, rectum, and bladder were manually contoured on each CT by a single physician. Daily dosimetric analysis was performed with dose recalculation. The study endpoints were D95 (dose to 95% of the prostate), rV2 (absolute rectal volume receiving 2 Gy), and bV2 (absolute bladder volume receiving 2 Gy). Results: For the entire cohort, the average D95 (±SD) was 2.02 ± 0.04 Gy (range, 1.79-2.20 Gy). The average rV2 (±SD) was 7.0 ± 8.1 cc (range, 0.1-67.3 cc). The average bV2 (±SD) was 8.7 ± 6.8 cc (range, 0.3-36.8 cc). Unlike doses for the prostate, there was significant daily variation in rectal and bladder doses, mostly because of variations in volume and shape of these organs. Conclusion: Large variations in delivered doses to the rectum and bladder can be documented with daily megavoltage CT scans. Image guidance for the targeting of the prostate, even with intraprostatic fiducials, does not take into account the variation in actual rectal and bladder doses. The clinical impact of techniques that take into account such dosimetric parameters in daily patient set-ups should be investigated

  18. External beam abdominal radiotherapy in patients with seminoma stage I: field type, testicular dose, and spermatogenesis

    International Nuclear Information System (INIS)

    Jacobsen, Kari Dolven; Olsen, Dag Rune; Fossaa, Kristian; Fossaa, Sophie Dorothea

    1997-01-01

    Purpose: To establish a predictive model for the estimation of the gonadal dose during adjuvant para-aortic (PA) or dog leg (DL: PA plus ipsilateral iliac) field radiotherapy in patients with testicular seminoma. Methods and Materials: The surface gonadal dose was measured in patients with seminoma Stage I receiving PA or DL radiotherapy. Sperm cell analysis was performed before and 1 year after irradiation. PA and DL radiotherapy were simulated in the Alderson phantom while we measured the dose to the surface and middle of an artificial testicle, varying its position within realistic anatomical constraints. The symphysis-to-testicle distance (STD), field length, and thickness of the patient were experimental variables. The developed mathematical model was validated in subsequent patients. Results: The mean gonadal dose in patients was 0.09 and 0.32 Gy after PA and DL irradiation, respectively (p < 0.001). DL radiotherapy, but not PA irradiation led to significant reduction of the sperm count 1 year after irradiation. The gonadal dose-reducing effect of PA irradiation was confirmed in the Alderson phantom. A significant correlation was found between the STD and the gonadal dose during DL irradiation. A mathematical model was established for calculation of the gonadal dose and confirmed by measurements in patients. Conclusions: During radiotherapy of seminoma, the gonadal dose decreases with increasing STD. It is possible to predict the individual gonadal dose based on delivered midplane dose and STD

  19. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  20. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    Directory of Open Access Journals (Sweden)

    Korevaar Erik W

    2008-01-01

    Full Text Available Abstract Background The shift from conventional two-dimensional (2D to three-dimensional (3D-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT-based breast and boost planning target volumes (PTV, absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Methods Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. Results With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. Conclusion The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on

  1. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Langendijk, Johannes A

    2008-01-01

    The shift from conventional two-dimensional (2D) to three-dimensional (3D)-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT)-based breast and boost planning target volumes (PTV), absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on clinical data confirming tumour control probability and normal

  2. Estimating dose painting effects in radiotherapy: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Juan Carlos López Alfonso

    Full Text Available Tumor heterogeneity is widely considered to be a determinant factor in tumor progression and in particular in its recurrence after therapy. Unfortunately, current medical techniques are unable to deduce clinically relevant information about tumor heterogeneity by means of non-invasive methods. As a consequence, when radiotherapy is used as a treatment of choice, radiation dosimetries are prescribed under the assumption that the malignancy targeted is of a homogeneous nature. In this work we discuss the effects of different radiation dose distributions on heterogeneous tumors by means of an individual cell-based model. To that end, a case is considered where two tumor cell phenotypes are present, which we assume to strongly differ in their respective cell cycle duration and radiosensitivity properties. We show herein that, as a result of such differences, the spatial distribution of the corresponding phenotypes, whence the resulting tumor heterogeneity can be predicted as growth proceeds. In particular, we show that if we start from a situation where a majority of ordinary cancer cells (CCs and a minority of cancer stem cells (CSCs are randomly distributed, and we assume that the length of CSC cycle is significantly longer than that of CCs, then CSCs become concentrated at an inner region as tumor grows. As a consequence we obtain that if CSCs are assumed to be more resistant to radiation than CCs, heterogeneous dosimetries can be selected to enhance tumor control by boosting radiation in the region occupied by the more radioresistant tumor cell phenotype. It is also shown that, when compared with homogeneous dose distributions as those being currently delivered in clinical practice, such heterogeneous radiation dosimetries fare always better than their homogeneous counterparts. Finally, limitations to our assumptions and their resulting clinical implications will be discussed.

  3. Nonrandomized study comparing the effects of preoperative radiotherapy and daily administration of low-dose cisplatin with those radiotherapy alone for oral cancer

    International Nuclear Information System (INIS)

    Kurita, Hiroshi; Azegami, Takuya; Kobayashi, Hirokazu; Kurashina, Kenji; Tanaka, Kouichi; Kotani, Akira; Oguchi, Masahiko; Tamura, Minoru.

    1997-01-01

    The purpose of this study was to compare the effect of preoperative radiotherapy and daily administration of low-dose cisplatin with those of radiotherapy alone for oral cancer. Ten patients underwent preoperative radiotherapy of 30 to 40 Gy with concomitant daily administration of low-dose cisplatin (5 mg/body or 5 mg/m 2 ). Ten patients received external radiotherapy alone. The locoregional response rates (complete response and partial response) did not differ significantly between the two groups (80% for combined therapy and 60% for radiotherapy alone). On histopathologic evaluation of surgical specimens, however, the combined-therapy group (80%) had a higher response rate than did the radiotherapy-alone group (10%; p<0.01). We conclude that daily administration of low-dose cisplatin enhances the efficacy of radiotherapy against primary tumors. We also suggested that combined therapy may be beneficial as an initial treatment for oral cancer before a planned operation. (author)

  4. Investigation of dose modifications related to dental cares in an ORL radiotherapy treatment

    International Nuclear Information System (INIS)

    De Conto, C.; Gschwind, R.; Makovicka, L.; De Conto, C.; Martin, E.

    2010-01-01

    The authors report the investigation of the influence of dental implants on the dose received during an ORL radiotherapy treatment in order to optimize both the dosimetric planning and the patient radioprotection. They report experimental measurements performed on a phantom representing a lower jaw in irradiation conventional conditions. Then, they report the Monte Carlo simulation of the dose distribution in the phantom using the BEAMnrc code designed for radiotherapy

  5. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Deng Jun; Fan Yaohua; Yue Baorong; Wei Kedao; Ren Fuli

    2012-01-01

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  6. Two cases of acute radio-esophagitis induced by a relatively low dose of radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mikuni, Morio; Ohtani, Tsuyoshi; Ono, Kouichi [Nihon Univ., Tokyo (Japan). School of Medicine] [and others

    1998-06-01

    Case 1 was a female, 48 years of age. After a diagnosis of lung cancer, radiotherapy (2 Gy/day) was started. On the sixth day, when radiotherapy reached a total dose of 12 Gy, swallowing became difficult and painful. Upper gastrointestinal endoscopy was performed, and redness, erosion, and easy bleeding of the mucosa in the chest, mid-esophagus, were demonstrated. Sodium alginate was administered to treat the symptoms and there was an improvement in both the symptoms and endoscopic findings. Case 2 was a male, 75 years of age. After a diagnosis of lung cancer, radiotherapy (2 Gy/day) was started. On the 12th day, when radiotherapy reached a total dose of 20 Gy, painful swallowing occurred. Upper gastrointestinal endoscopy revealed, redness and mild hemorrhage in the mucosal epithelium of the chest, mid-esophagus. Radiotherapy was suspended, and sodium alginate was administered. Symptoms improved, based on the findings of upper gastrointestinal endoscopy as well as subjective symptoms. (author)

  7. Low-dose radiotherapy as treatment for benign lymphoepitelial lesion in HIV-patients

    International Nuclear Information System (INIS)

    Gonzalez Patino, E.; Lopez Vazquez, M.D.; Cascallar Caneda, L.; Antinez Lopez, J.; Victoria Fernandez, C.; Salvador Garrido, N.; Ares Banobre, M.; Porto vazquez, M.C.

    1995-01-01

    Standard treatments for benign lymphoepitelial lesion of the parotid gland in patients infected with the human immunodeficiency virus (HIV) are unsatisfactory. Recently, low-dose radiotherapy has been proposed as a noninvasive treatment option. We describe a case of bilateral benign lymphoepitelial lesion parotid gland in a HIV-positive paint, treated by radiotherapy. Low-dose radiotherapy, appears as a alternative in the treatment for benign lymphoepitelial lesion in HIV-patients, and preliminary evaluations have indicated that this treatment is effective from both the clinical and cosmetic points of view

  8. Audit on dose delivery by using TLD in Radiotherapy Centers in Malaysia

    International Nuclear Information System (INIS)

    Md Saion Salikin; Taiman Kadni; Husaini Salleh; Asmaliza Hashim; Hasrul Husham Hussain

    2004-01-01

    The External Audit Group (EAQ) is established and supported by IAEA. Its main objective is to audit the accuracy of dose delivery to patients in radiotherapy centres or hospitals in developing countries in IAEA member states. At MINT the operation of EAG is managed by Medical Physics Group and supported by Secondary Standard Dosimetry Laboratory (SSDL), MINT. The selected radiotherapy centers are supplied with TLD powder in capsule form, to be irradiated with the required radiation doses, by their physicists. The irradiated TLD is analysed at SSDL. The result of the audit for a few radiotherapy centres in Malaysia, is presented in brief in this paper. (Author)

  9. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    International Nuclear Information System (INIS)

    Katsoulakis, Evangelia; Thornton, Raymond H; Yamada, Yoshiya; Solomon, Stephen B; Maybody, Majid; Housman, Douglas; Niyazov, Greg; Riaz, Nadeem; Lovelock, Michael; Spratt, Daniel E; Erinjeri, Joseph P

    2013-01-01

    To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV D min and PTV D min pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel D max (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and D max by 25% (0.022). TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while

  10. Volumes and doses for external radiotherapy - Definitions and recommendations; Volum og doser i ekstern straaleterapi - Definisjoner og anbefalinger

    Energy Technology Data Exchange (ETDEWEB)

    Levernes, Sverre (ed.)

    2012-07-01

    The report contains definitions of volume and dose parameters for external radiotherapy. In addition the report contains recommendations for use, documentation and minimum reporting for radiotherapy of the individual patient.(Author)

  11. Parotid Gland Dose in Intensity-Modulated Radiotherapy for Head and Neck Cancer: Is What You Plan What You Get?

    International Nuclear Information System (INIS)

    O'Daniel, Jennifer C.; Garden, Adam S.; Schwartz, David L.; Wang He; Ang, Kian K.; Ahamad, Anesa; Rosenthal, David I.; Morrison, William H.; Asper, Joshua A.; Zhang Lifei; Tung Shihming; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To quantify the differences between planned and delivered parotid gland and target doses, and to assess the benefits of daily bone alignment for head and neck cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eleven head and neck cancer patients received two CT scans per week with an in-room CT scanner over the course of their radiotherapy. The clinical IMRT plans, designed with 3-mm to 4-mm planning margins, were recalculated on the repeat CT images. The plans were aligned using the actual treatment isocenter marked with radiopaque markers (BB) and bone alignment to the cervical vertebrae to simulate image-guided setup. In-house deformable image registration software was used to map daily dose distributions to the original treatment plan and to calculate a cumulative delivered dose distribution for each patient. Results: Using conventional BB alignment led to increases in the parotid gland mean dose above the planned dose by 5 to 7 Gy in 45% of the patients (median, 3.0 Gy ipsilateral, p = 0.026; median, 1.0 Gy contralateral, p = 0.016). Use of bone alignment led to reductions relative to BB alignment in 91% of patients (median, 2 Gy; range, 0.3-8.3 Gy; 15 of 22 parotids improved). However, the parotid dose from bone alignment was still greater than planned (median, 1.0 Gy, p = 0.007). Neither approach affected tumor dose coverage. Conclusions: With conventional BB alignment, the parotid gland mean dose was significantly increased above the planned mean dose. Using daily bone alignment reduced the parotid dose compared with BB alignment in almost all patients. A 3- to 4-mm planning margin was adequate for tumor dose coverage

  12. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    International Nuclear Information System (INIS)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda; DeWyngaert, J. Keith; Narayana, Ashwatha; Formenti, Silvia C.; Shah, Jinesh N.

    2010-01-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV) = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving ≥25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p -7 for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.

  13. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.; Ballesteros-Zebadua, P.; Larraga-Gutierrez, J. M.

    2008-01-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed

  14. Cardiac dose estimates from Danish and Swedish breast cancer radiotherapy during 1977-2001

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Bronnum, Dorthe; Darby, Sarah C.; Gagliardi, Giovanna; Hall, Per; Jensen, Maj-Britt; McGale, Paul; Nisbet, Andrew; Ewertz, Marianne

    2011-01-01

    Background and purpose: To estimate target and cardiac doses from breast cancer radiotherapy in Denmark and in the Stockholm and Umea areas of Sweden during 1977-2001. Methods: Representative samples of irradiated women were identified from the databases of the Danish Breast Cancer Cooperative Group and the Swedish Nationwide Cancer Registry. Virtual simulation, computed tomography planning and manual planning were used to reconstruct radiotherapy regimens on a typical woman. Estimates of target dose and various measures of cardiac dose were derived from individual radiotherapy charts. Results: Doses were estimated in 681 Danish and 130 Swedish women. Mean heart dose for individual women varied from 1.6 to 14.9 Gray in Denmark and from 1.2 to 22.1 Gray in Sweden. In Denmark, mean target doses averaged across women increased from 40.6 to 53.8 Gray during 1977-2001 but, despite this, mean heart dose averaged across women remained around 6 Gy for left-sided and 2-3 Gray for right-sided radiotherapy. In Sweden mean target dose averaged across women increased from 38.7 to 46.6 Gray during 1977-2001, while mean heart dose averaged across women decreased from 12.0 to 7.3 Gray for left-sided and from 3.6 to 3.2 Gray for right-sided radiotherapy. Temporal trends for mean biologically effective dose [BED] to the heart, mean dose to the left anterior descending coronary artery, the right coronary artery and the circumflex coronary artery were broadly similar. Conclusions: Cardiac doses in Denmark were low relative to those in Sweden. In both countries, target dose increased during 1977-2001. Despite this, cardiac doses remained constant in Denmark and decreased in Sweden.

  15. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    International Nuclear Information System (INIS)

    Sveistrup, Joen; Rosenschöld, Per Munck af; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-01-01

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction

  16. Acute toxicity in prostate cancer patients treated with and without image-guided radiotherapy

    Directory of Open Access Journals (Sweden)

    Williams Scott

    2011-10-01

    Full Text Available Abstract Background Image-guided radiotherapy (IGRT increases the accuracy of treatment delivery through daily target localisation. We report on toxicity symptoms experienced during radiotherapy treatment, with and without IGRT in prostate cancer patients treated radically. Methods Between 2006 and 2009, acute toxicity data for ten symptoms were collected prospectively onto standardized assessment forms. Toxicity was scored during radiotherapy, according to the Common Terminology Criteria Adverse Events V3.0, for 275 prostate cancer patients before and after the implementation of a fiducial marker IGRT program and dose escalation from 74Gy in 37 fractions, to 78Gy in 39 fractions. Margins and planning constraints were maintained the same during the study period. The symptoms scored were urinary frequency, cystitis, bladder spasm, urinary incontinence, urinary retention, diarrhoea, haemorrhoids, proctitis, anal skin discomfort and fatigue. Analysis was conducted for the maximum grade of toxicity and the median number of days from the onset of that toxicity to the end of treatment. Results In the IGRT group, 14228 toxicity scores were analysed from 249 patients. In the non-IGRT group, 1893 toxicity scores were analysed from 26 patients. Urinary frequency ≥G3 affected 23% and 7% in the non-IGRT and IGRT group respectively (p = 0.0188. Diarrhoea ≥G2 affected 15% and 3% of patients in the non-IGRT and IGRT groups (p = 0.0174. Fatigue ≥G2 affected 23% and 8% of patients in the non-IGRT and IGRT groups (p = 0.0271. The median number of days with a toxicity was higher for ≥G2 (p = 0.0179 and ≥G3 frequency (p = 0.0027, ≥G2 diarrhoea (p = 0.0033 and ≥G2 fatigue (p = 0.0088 in the non-IGRT group compared to the IGRT group. Other toxicities were not of significant statistical difference. Conclusions In this study, prostate cancer patients treated radically with IGRT had less severe urinary frequency, diarrhoea and fatigue during treatment

  17. Guide for the self-assessment of risks brought upon patients in external radiotherapy - ASN guide nr 4, Index 0, Release of the 15/01/2009

    International Nuclear Information System (INIS)

    2009-01-01

    This document contains a user's guide for radiotherapy centres which is to be read before completing the form of analysis of failure modes, their effects and criticality (AMDEC), this form which must be completed by each radiotherapy centre, and a report explaining the methodology which has been adopted to elaborate this guide

  18. Fractionated stereotactically guided radiotherapy and radiosurgery in the treatment of functional and nonfunctional adenomas of the pituitary gland

    International Nuclear Information System (INIS)

    Milker-Zabel, Stefanie; Debus, Juergen; Thilmann, Christoph; Schlegel, Wolfgang; Wannenmacher, Michael

    2001-01-01

    Purpose: We evaluated survival rates and side effects after fractionated stereotactically guided radiotherapy (SCRT) and radiosurgery in patients with pituitary adenoma. Methods and Materials: Between 1989 and 1998, 68 patients were treated with FSRT (n=63) or radiosurgery (n=5) for pituitary adenomas. Twenty-six had functional and 42 had nonfunctional adenomas. Follow-up included CT/MRI, endocrinologic, and ophthalmologic examinations. Mean follow-up was 38.7 months. Seven patients received radiotherapy as primary treatment and 39 patients received it postoperatively for residual disease. Twenty-two patients were treated for recurrent disease after surgery. Mean total dose was 52.2 Gy for SCRT, and 15 Gy for radiosurgery. Results: Overall local tumor control was 93% (60/65 patients). Forty-three patients had stable disease based on CT/MRI, while 15 had a reduction of tumor volume. After FSRT, 26% with a functional adenoma had a complete remission and 19% had a reduction of hormonal overproduction after 34 months' mean. Two patients with STH-secreting adenomas had an endocrinologic recurrence, one with an ACTH-secreting adenoma radiologic recurrence, within 54 months. Reduction of visual acuity was seen in 4 patients and partial hypopituitarism in 3 patients. None of the patients developed brain radionecrosis or radiation-induced gliomas. Conclusion: Stereotactically guided radiotherapy is effective and safe in the treatment of pituitary adenomas to improve local control and reduce hormonal overproduction

  19. Management of hilar bile duct carcinoma with high-dose radiotherapy and expandable metallic stent placement

    International Nuclear Information System (INIS)

    Saito, Hiroya; Takamura, Akio

    2000-01-01

    This article describes our experience with high-dose radiotherapy in combination with the placement of expandable metallic stents (EMS) in the management of hilar bile duct carcinoma. Between 1988 and 1999, 107 consecutive patients with hilar bile duct carcinoma were treated with EMS placement either alone or in combination with high-dose radiotherapy. External beam radiotherapy (EBRT) was indicated in 101 patients, and in 86 this was combined with intraluminal 192 Ir irradiation (ILRT, 59-98 Gy) EMS were placed after the completion of radiotherapy. The 1-, 2-, 3-, and 5-year actuarial survival rates for the radiotherapy group were 66.4%, 23.4%, 15.6%, 7.8%, respectively, and the 1- and 2-year actuarial survival rates for the nonradiotherapy group were 66.4% and 0%, respectively. The placement of EMS was useful for the early establishment of an internal bile passage in radically irradiated patients and the 1-, 2-, 3-, and 5-year actuarial patency rates for the radiotherapy group were 56.3%, 45.3%, 35.2%, and 23.4%, respectively, and the 1- and 2-year actuarial patency rates for the non radiotherapy group were 50.0% and 0% respectively. High-dose radiotherapy, consisting of ILRT and EBRT, appears to be feasible in the management of hilar bile duct carcinoma, and it offers a survival advantage for patients no suited for surgical resection. The placement of EMS assists the internal bile flow and lengthens survival after high-dose radiotherapy. (author)

  20. Class solution to decrease rectal dose in prostate radiotherapy treatments 3D-CRT

    International Nuclear Information System (INIS)

    Andres Rodriguez, C.; Tortosa Oliver, R.; Alonso Hernandez, D.; Mari Palacios, A.; Castillo Belmonte, A. del

    2011-01-01

    This paper contains a method developed in our center with conventional 3D radiotherapy techniques to increase the dose conformation around the target volume in prostate cancer treatments significantly reduced the doses to the rectum. To evaluate the goodness of the method, the results are compared with two classical techniques of treatment.

  1. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    Science.gov (United States)

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-01-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within ±1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient ≥1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  3. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy.

    Science.gov (United States)

    Létourneau, Daniel; Keller, Harald; Sharpe, Michael B; Jaffray, David A

    2007-05-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 degrees of gantry (usually within +/-1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient > or = 1% /mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance

  4. Radiotherapy in addition to radical surgery in rectal cancer: evidence for a dose-response effect favoring preoperative treatment

    International Nuclear Information System (INIS)

    Glimelius, Bengt; Isacsson, Ulf; Jung, Bo; Paahlman, Lars

    1997-01-01

    Purpose: This study explored the relationship between radiation dose and reduction in local recurrence rate after preoperative and postoperative radiotherapy in rectal cancer. Methods and Materials: All randomized trials initiated prior to 1988 comparing preoperative and postoperative radiotherapy with surgery alone or with each other were included. Local failure rates were available in 5626 randomized patients. The linear quadratic formula was used to compensate for different radiotherapy schedules. Results: For preoperative radiotherapy, a clear dose-response relationship could be established. For postoperative radiotherapy, the range of doses was narrow, and a dose-response relationship could not be demonstrated. At similar doses, preoperative radiotherapy appeared to be more efficient in reducing local failure rate than postoperative. The only trial comparing preoperative with postoperative radiotherapy confirms this notion. A 15-20 Gy higher dose may be required postoperatively than preoperatively to reach similar efficacy. Neither approach alone significantly influences survival, although it is likely that a small survival benefit may be seen after preoperative radiotherapy. Conclusions: The information from the entire randomized experience suggests that preoperative radiotherapy may be more dose efficient than postoperative radiotherapy

  5. Radiation therapy technology innovations applied to the treatment of head and neck patients: - Clinical results of Intensity Modulated Radiotherapy (IMRT), - Contribution of Image Guided Radiotherapy (IGRT) in the management of head and neck patients treated with IMRT

    International Nuclear Information System (INIS)

    Graff-Cailleaud, Pierre

    2011-01-01

    Numerous and exciting technological innovations were recently developed in radiotherapy. We aimed to assess benefits in two specific fields. 1) Clinical results of Intensity Modulated Radiotherapy (IMRT) applied to the treatment of Head and Neck (H and N) patients. The first study was a long-term mono-centric prospective registration of all H and N patients treated with IMRT in our institution. Locoregional control was excellent and toxicities limited. Recurrences were in-field. Dosimetric recommendations (parotids mean dose) were established. The second study assessed the impact of IMRT on health-related quality of life for H and N patients through a multicentric matched-pair comparison with conventional radiotherapy. Outstanding benefits were observed particularly in the fields of salivary dysfunction and oral discomfort. 2) Contribution of Image Guided Radiotherapy (IGRT) in the management of H and N patients treated with IMRT. The first study was a monitoring of delivered dose, using 3D dose recalculation from Megavoltage Cone-Beam CT (CBCT), as a quality assurance measure of a panel of H and N IMRT patients aligned with IGRT. Dosimetric consequences of anatomical changes were assessed. Contribution of color-coded MVCBCT dose-difference maps was studied. The aim of the second study was to quantify the inherent relative mobility between anatomic regions of the H and N area and to assess the dosimetric impact of several different matching procedures. Recommendations for the use of CBCT images in a daily practice were established. (author) [fr

  6. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    Science.gov (United States)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  7. Image-guided radiotherapy and motion management in lung cancer

    DEFF Research Database (Denmark)

    Korreman, Stine

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps...

  8. Pharmacokinetically guided dosing of (high-dose) chemotherapeutic agents

    NARCIS (Netherlands)

    Attema-de Jonge, M.E. (Milly Ellen)

    2004-01-01

    Due to variation in drug distribution, metabolism and elimination processes between patients, systemic exposure to chemotherapeutic agents may be highly variable from patient to patient after administration of similar doses. This pharmacokinetic variability may explain in part the large variability

  9. The relationship between external beam radiotherapy dose and chronic urinary dysfunction - A methodological critique

    International Nuclear Information System (INIS)

    Rosewall, Tara; Catton, Charles; Currie, Geoffrey; Bayley, Andrew; Chung, Peter; Wheat, Janelle; Milosevic, Michael

    2010-01-01

    Purpose: To perform a methodological critique of the literature evaluating the relationship between external beam radiotherapy dose/volume parameters and chronic urinary dysfunction to determine why consistent associations between dose and dysfunction have not been found. Methods and materials: The radiotherapy literature was reviewed using various electronic medical search engines with appropriate keywords and MeSH headings. Inclusion criteria comprised of; English language articles, published between 1999 and June 2009, incorporating megavoltage external beam photons in standard-sized daily fraction. A methodological critique was then performed, evaluating the factors affected in the quantification of radiotherapy dose and chronic urinary dysfunction. Results: Nine of 22 eligible studies successfully identified a clinically and statistically significant relationship between dose and dysfunction. Accurate estimations of external beam radiotherapy dose were compromised by the frequent use of dosimetric variables which are poor surrogates for the dose received by the lower urinary tract tissue and do not incorporate the effect of daily variations in isocentre and bladder position. The precise categorization of chronic urinary dysfunction was obscured by reliance on subjective and aggregated toxicity metrics which vary over time. Conclusions: A high-level evidence-base for the relationship between external beam radiotherapy dose and chronic urinary dysfunction does not currently exist. The quantification of the actual external beam dose delivered to the functionally important tissues using dose accumulation strategies and the use of objective measures of individual manifestations of urinary dysfunction will assist in the identification of robust relationships between dose and urinary dysfunction for application in widespread clinical practice.

  10. Testicular dose in prostate cancer radiotherapy. Impact on impairment of fertility and hormonal function

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, D.; Badakhshi, H.; Budach, V. [Dept. of Radiation Oncology, Charite - Univ. Clinic - Campus Mitte, Berlin (Germany); Kuschke, W.; Bohsung, J. [Dept. of Medical Physics, Charite - Univ. Clinic - Campus Mitte, Berlin (Germany)

    2005-03-01

    Purpose: to determine the dose received by the unshielded testicles during a course of 20-MV conventional external-beam radiotherapy for patients with localized prostate cancer. Critical evaluation of the potential impact on fertility and hormonal impairment in these patients according to the literature. Patients and methods: the absolute dose received by the testicles of 20 randomly selected patients undergoing radiotherapy of prostate cancer was measured by on-line thermoluminescence dosimetry. Patients were treated in supine position with an immobilization cushion under their knees. A flexible tube, containing three calibrated thermoluminescence dosimeters (TLDs) was placed on top or underneath the testicle closest to the perineal region with a day-to-day alternation. The single dose to the planning target volume was 1.8 Gy. Ten subsequent testicle measurements were performed on each patient. The individual TLDs were then read out and the total absorbed dose was calculated. Results: the mean total dose ({+-} standard deviation) measured in a series of 10 subsequent treatment days in all patients was 49 cGy ({+-} 36 cGy). The calculated projected doses made on a standard series of 40 fractions of external-beam radiotherapy were 196 cGy ({+-} 145 cGy). The results of this study are appraised with the available data in the literature. Conclusion: the dose received by the unshielded testes can be assessed as a risk for permanent infertility and impairment of hormonal function in prostate cancer patients treated with external-beam radiotherapy. (orig.)

  11. Dose-volumetric parameters for predicting hypothyroidism after radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Kim, Mi Young; Yu, Tosol; Wu, Hong-Gyun

    2014-01-01

    To investigate predictors affecting the development of hypothyroidism after radiotherapy for head and neck cancer, focusing on radiation dose-volumetric parameters, and to determine the appropriate radiation dose-volumetric threshold of radiation-induced hypothyroidism. A total of 114 patients with head and neck cancer whose radiotherapy fields included the thyroid gland were analysed. The purpose of the radiotherapy was either definitive (n=81) or post-operative (n=33). Thyroid function was monitored before starting radiotherapy and after completion of radiotherapy at 1 month, 6 months, 1 year and 2 years. A diagnosis of hypothyroidism was based on a thyroid stimulating hormone value greater than the maximum value of laboratory range, regardless of symptoms. In all patients, dose volumetric parameters were analysed. Median follow-up duration was 25 months (range; 6-38). Forty-six percent of the patients were diagnosed as hypothyroidism after a median time of 8 months (range; 1-24). There were no significant differences in the distribution of age, gender, surgery, radiotherapy technique and chemotherapy between the euthyroid group and the hypothyroid group. In univariate analysis, the mean dose and V35-V50 results were significantly associated with hypothyroidism. The V45 is the only variable that independently contributes to the prediction of hypothyroidism in multivariate analysis and V45 of 50% was a threshold value. If V45 was <50%, the cumulative incidence of hypothyroidism at 1 year was 22.8%, whereas the incidence was 56.1% if V45 was ≥50%. (P=0.034). The V45 may predict risk of developing hypothyroidism after radiotherapy for head and neck cancer, and a V45 of 50% can be a useful dose-volumetric threshold of radiation-induced hypothyroidism. (author)

  12. Specific recommendations for accurate and direct use of PET-CT in PET guided radiotherapy for head and neck sites

    International Nuclear Information System (INIS)

    Thomas, C. M.; Convery, D. J.; Greener, A. G.; Pike, L. C.; Baker, S.; Woods, E.; Hartill, C. E.

    2014-01-01

    Purpose: To provide specific experience-based guidance and recommendations for centers wishing to develop, validate, and implement an accurate and efficient process for directly using positron emission tomography-computed tomography (PET-CT) for the radiotherapy planning of head and neck cancer patients. Methods: A PET-CT system was modified with hard-top couch, external lasers and radiotherapy immobilization and indexing devices and was subject to a commissioning and quality assurance program. PET-CT imaging protocols were developed specifically for radiotherapy planning and the image quality and pathway tested using phantoms and five patients recruited into an in-house study. Security and accuracy of data transfer was tested throughout the whole data pathway. The patient pathway was fully established and tested ready for implementation in a PET-guided dose-escalation trial for head and neck cancer patients. Results: Couch deflection was greater than for departmental CT simulator machines. An area of high attenuation in the couch generated image artifacts and adjustments were made accordingly. Using newly developed protocols CT image quality was suitable to maintain delineation and treatment accuracy. Upon transfer of data to the treatment planning system a half pixel offset between PET and CT was observed and corrected. By taking this into account, PET to CT alignment accuracy was maintained below 1 mm in all systems in the data pathway. Transfer of structures delineated in the PET fusion software to the radiotherapy treatment planning system was validated. Conclusions: A method to perform direct PET-guided radiotherapy planning was successfully validated and specific recommendations were developed to assist other centers. Of major concern is ensuring that the quality of PET and CT data is appropriate for radiotherapy treatment planning and on-treatment verification. Couch movements can be compromised, bore-size can be a limitation for certain immobilization

  13. Specific recommendations for accurate and direct use of PET-CT in PET guided radiotherapy for head and neck sites

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C. M., E-mail: christopher.thomas@gstt.nhs.uk; Convery, D. J.; Greener, A. G. [Guy' s and St. Thomas’ NHS Foundation Trust, Medical Physics Department, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Pike, L. C.; Baker, S.; Woods, E. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, King' s Health Partners, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Hartill, C. E. [Guy' s and St. Thomas’ NHS Foundation Trust, Radiotherapy, Clinical Outpatients Clinic, St. Thomas’ Hospital, London SE1 7EH (United Kingdom)

    2014-04-15

    Purpose: To provide specific experience-based guidance and recommendations for centers wishing to develop, validate, and implement an accurate and efficient process for directly using positron emission tomography-computed tomography (PET-CT) for the radiotherapy planning of head and neck cancer patients. Methods: A PET-CT system was modified with hard-top couch, external lasers and radiotherapy immobilization and indexing devices and was subject to a commissioning and quality assurance program. PET-CT imaging protocols were developed specifically for radiotherapy planning and the image quality and pathway tested using phantoms and five patients recruited into an in-house study. Security and accuracy of data transfer was tested throughout the whole data pathway. The patient pathway was fully established and tested ready for implementation in a PET-guided dose-escalation trial for head and neck cancer patients. Results: Couch deflection was greater than for departmental CT simulator machines. An area of high attenuation in the couch generated image artifacts and adjustments were made accordingly. Using newly developed protocols CT image quality was suitable to maintain delineation and treatment accuracy. Upon transfer of data to the treatment planning system a half pixel offset between PET and CT was observed and corrected. By taking this into account, PET to CT alignment accuracy was maintained below 1 mm in all systems in the data pathway. Transfer of structures delineated in the PET fusion software to the radiotherapy treatment planning system was validated. Conclusions: A method to perform direct PET-guided radiotherapy planning was successfully validated and specific recommendations were developed to assist other centers. Of major concern is ensuring that the quality of PET and CT data is appropriate for radiotherapy treatment planning and on-treatment verification. Couch movements can be compromised, bore-size can be a limitation for certain immobilization

  14. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    NARCIS (Netherlands)

    Smitsmans, Monique H. P.; de Bois, Josien; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; van Herk, Marcel

    2005-01-01

    PURPOSE: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the

  15. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy.

    Directory of Open Access Journals (Sweden)

    Qinquan Gao

    Full Text Available The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg, which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency.

  16. Not traditional regimes of radiotherapeutic dose fractionation as modifier of radiotherapy for carcinoma of lungs

    International Nuclear Information System (INIS)

    Artemova, N.A.

    2008-01-01

    The efficiency of applying various of radiotherapeutic dose fractionation was analyzed. The results of the own studies performed at the Scientific and Research Institute of Oncology and Medical Radiology for elaborating not traditional regimes of radiotherapeutic dose fractionation (a dynamic fractionation applying enlarged regimes at the first stage and the classic ones at the second stage) were presented. Appliance of the modified radiotherapy for the epidermoid carcinoma of the lungs allowed to increase the objective response from 45,3+-3% to 80+-5% the tumor disappearing completely in 40+-6% of patients as compared with 10+-2%. Appliance of the intensive not traditional variant of the radiotherapy dynamic fractionation in case of a small cell carcinoma of the lungs resulted in the therapy duration reduction from 6 to 4 weeks. Thus the not traditional dose fractionation might become a mechanism for the improving the radiotherapy of persons suffering from the carcinoma of the lungs. (authors)

  17. Skin dose mapping for fluoroscopically guided interventions.

    Science.gov (United States)

    Johnson, Perry B; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E

    2011-10-01

    To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional

  18. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy

    International Nuclear Information System (INIS)

    Nguyen, Dan; Rwigema, Jean-Claude M; Yu, Victoria Y; Kaprealian, Tania; Kupelian, Patrick; Selch, Michael; Lee, Percy; Low, Daniel A; Sheng, Ke

    2014-01-01

    Glioblastoma multiforme (GBM) frequently recurs at the same location after radiotherapy. Further dose escalation using conventional methods is limited by normal tissue tolerance. 4π non-coplanar radiotherapy has recently emerged as a new potential method to deliver highly conformal radiation dose using the C-arm linacs. We aim to study the feasibility of very substantial GBM dose escalation while maintaining normal tissue tolerance using 4π. 11 GBM patients previously treated with volumetric modulated arc therapy (VMAT/RapidArc) on the NovalisTx™ platform to a prescription dose of either 59.4 Gy or 60 Gy were included. All patients were replanned with 30 non-coplanar beams using a 4π radiotherapy platform, which inverse optimizes both beam angles and fluence maps. Four different prescriptions were used including original prescription dose and PTV (4πPTV PD ), 100 Gy to the PTV and GTV (4πPTV 100Gy ), 100 Gy to the GTV only while maintaining prescription dose to the rest of the PTV (4πGTV 100Gy ), and a 5 mm margin expansion plan (4πPTV PD+5mm ). OARs included in the study are the normal brain (brain – PTV), brainstem, chiasm, spinal cord, eyes, lenses, optical nerves, and cochleae. The 4π plans resulted in superior dose gradient indices, as indicated by >20% reduction in the R50, compared to the clinical plans. Among all of the 4π cases, when compared to the clinical plans, the maximum and mean doses were significantly reduced (p < 0.05) by a range of 47.01-98.82% and 51.87-99.47%, respectively, or unchanged (p > 0.05) for all of the non-brain OARs. Both the 4πPTV PD and 4π GTV 100GY plans reduced the mean normal brain mean doses. 4π non-coplanar radiotherapy substantially increases the dose gradient outside of the PTV and better spares critical organs. Dose escalation to 100 Gy to the GTV or additional margin expansion while meeting clinical critical organ dose constraints is feasible. 100 Gy to the PTV result in higher normal brain doses but may

  19. Determination of subcellular compartment sizes for estimating dose variations in radiotherapy

    International Nuclear Information System (INIS)

    Poole, Christopher M.; Ahnesjo, Anders; Enger, Shirin A.

    2015-01-01

    The variation in specific energy absorbed to different cell compartments caused by variations in size and chemical composition is poorly investigated in radiotherapy. The aim of this study was to develop an algorithm to derive cell and cell nuclei size distributions from 2D histology samples, and build 3D cellular geometries to provide Monte Carlo (MC)-based dose calculation engines with a morphologically relevant input geometry. Stained and unstained regions of the histology samples are segmented using a Gaussian mixture model, and individual cell nuclei are identified via thresholding. Delaunay triangulation is applied to determine the distribution of distances between the centroids of nearest neighbour cells. A pouring simulation is used to build a 3D virtual tissue sample, with cell radii randomised according to the cell size distribution determined from the histology samples. A slice with the same thickness as the histology sample is cut through the 3D data and characterised in the same way as the measured histology. The comparison between this virtual slice and the measured histology is used to adjust the initial cell size distribution into the pouring simulation. This iterative approach of a pouring simulation with adjustments guided by comparison is continued until an input cell size distribution is found that yields a distribution in the sliced geometry that agrees with the measured histology samples. The thus obtained morphologically realistic 3D cellular geometry can be used as input to MC-based dose calculation programs for studies of dose response due to variations in morphology and size of tumour/healthy tissue cells/nuclei, and extracellular material. (authors)

  20. Hypofractionated stereotactic radiotherapy to the rat hippocampus. Determination of dose response and tolerance

    International Nuclear Information System (INIS)

    Ernst-Stecken, A.; Roedel, F.; Grabenbauer, G.; Sauer, R.; Jeske, I.; Bluemcke, I.; Hess, A.; Ganslandt, O.; Brune, K.

    2007-01-01

    Purpose: To determine the effect of hypofractionated stereotactic radiotherapy (hfSRT) on adult rat brain tissue (necrosis, impact on blood-brain barrier, signal changes on high-field magnetic resonance imaging [MRI]). Material and Methods: Adult male Wistar rats underwent MRI and CT scanning of the brain and respective images were introduced into the Novalis trademark radiosurgery device (BrainLab, Feldkirchen, Germany). All animals (body weight 350 g) were irradiated weekly with doses of 2 x 10 Gy (n = 3 animals), 3 x 10 Gy (n = 3 animals) and 4 x 10 Gy (n = 3 animals), targeted to the left hippocampus after image-guided positioning. 4.7-T T2-weighted MRI scanning was performed in each animal. Animals were sacrificed 8, 12, and 16 weeks after hfSRT and brains were immersion-fixed in 4% paraformaldehyde for subsequent histopathologic analysis. Results: In concordance with isodose distributions, pathologic signal hyperintensities in MRI were recorded from 4 x 10 Gy after 8 weeks, 3 x 10 Gy after 12 weeks, while 2 x 10 Gy induced slight detectable alterations only after 16 weeks. Subsequent histopathologic analysis revealed hippocampal cell necrosis with significantly earlier and stronger occurrence for higher doses (40 Gy > 30 Gy > 20 Gy). Pial microvessel permeability also increased after 40 Gy, whereas 30 Gy induced moderate changes. Conclusion: Conclusion: Partial-brain irradiation with hfSRT (Novalis trademark System) was successfully adopted for small animals and histopathologic analysis confirmed its repositioning accuracy. The neuropathologic effects correlated with dose and observation time. The approach will be further developed for quality assurance in hfSRT of normal brain tissue, as well as novel treatment modalities in epileptic rats and orthotopic tumor models. (orig.)

  1. Feasibility of optimizing the dose distribution in lung tumors using fluorine-18-fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

    International Nuclear Information System (INIS)

    Das, S.K.; Miften, M.M.; Zhou, S.; Bell, M.; Munley, M.T.; Whiddon, C.S.; Craciunescu, O.; Baydush, A.H.; Wong, T.; Rosenman, J.G.; Dewhirst, M.W.; Marks, L.B.

    2004-01-01

    The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits

  2. Radiotherapy for calcaneodynia. Results of a single center prospective randomized dose optimization trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, O.J.; Jeremias, C.; Gaipl, U.S.; Frey, B.; Schmidt, M.; Fietkau, R. [University Hospital Erlangen (Germany). Dept. of Radiation Oncology

    2013-04-15

    The aim of this work was to compare the efficacy of two different dose fractionation schedules for radiotherapy of patients with calcaneodynia. Between February 2006 and April 2010, 457 consecutive evaluable patients were recruited for this prospective randomized trial. All patients received radiotherapy using the orthovoltage technique. One radiotherapy series consisted of 6 single fractions/3 weeks. In case of insufficient remission of pain after 6 weeks a second radiation series was performed. Patients were randomly assigned to receive either single doses of 0.5 or 1.0 Gy. Endpoint was pain reduction. Pain was measured before, immediately after, and 6 weeks after radiotherapy using a visual analogue scale (VAS) and a comprehensive pain score (CPS). The overall response rate for all patients was 87 % directly after and 88 % 6 weeks after radiotherapy. The mean VAS values before, immediately after, and 6 weeks after treatment for the 0.5 and 1.0 Gy groups were 65.5 {+-} 22.1 and 64.0 {+-} 20.5 (p = 0.188), 34.8 {+-} 24.7 and 39.0 {+-} 26.3 (p = 0.122), and 25.1 {+-} 26.8 and 28.9 {+-} 26.8 (p = 0.156), respectively. The mean CPS before, immediately after, and 6 weeks after treatment was 10.1 {+-} 2.7 and 10.0 {+-} 3.0 (p = 0.783), 5.6 {+-} 3.7 and 6.0 {+-} 3.9 (p = 0.336), 4.0 {+-} 4.1 and 4.3 {+-} 3.6 (p = 0.257), respectively. No statistically significant differences between the two single dose trial arms for early (p = 0.216) and delayed response (p = 0.080) were found. Radiotherapy is an effective treatment option for the management of calcaneodynia. For radiation protection reasons, the dose for a radiotherapy series is recommended not to exceed 3-6 Gy. (orig.)

  3. Relationship between radiation dose and lung function in patients with lung cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Harsaker, V.; Dale, E.; Bruland, O.S.; Olsen, D.R.

    2003-01-01

    In patients with inoperable non-small cell lung cancer (NSCLC), radical radiotherapy is the treatment of choice. The dose is limited by consequential pneumonitis and lung fibrosis. Hence, a better understanding of the relationship between the dose-volume distributions and normal tissue side effects is needed. CT is a non-invasive method to monitor the development of fibrosis and pneumonitis, and spirometry is an established tool to measure lung function. NSCLC patients were included in a multicenter trial and treated with megavoltage conformal radiotherapy. In a subgroup comprising 16 patients, a total dose of 59-63 Gy with 1.8-1.9 Gy per fraction was given. Dose-volume histograms were calculated and corrected according to the linear-quadratic formula using alpha/beta=3 Gy. The patients underwent repetitive CT examinations (mean follow-up, 133 days) following radiotherapy, and pre and post treatment spirometry (mean follow-up, 240 days). A significant correlation was demonstrated between local lung dose and changes in CT numbers >30 days after treatment (p 40 Gy Gy there was a sudden increase in CT numbers at 70-90 days. Somewhat unexpectedly, the highest mean lung doses were found in patients with the least reductions in lung function (peak expiratory flow; p<0.001). The correlation between CT numbers, radiation dose and time after treatment show that CT may be used to monitor development of lung fibrosis/pneumonitis after radiotherapy for lung cancer. Paradoxically, the patients with the highest mean lung doses experienced the minimum deterioration of lung function. This may be explained by reduction in the volume of existing tumour masses obstructing the airways, leading to relief of symptoms. This finding stresses the role of radiotherapy for lung cancer, especially where the treatment aim is palliative

  4. Radiation dose to testes and risk of infertility from radiotherapy for rectal cancer.

    Science.gov (United States)

    Mazonakis, Michalis; Damilakis, John; Varveris, Haris; Gourtsouiannis, Nicholas

    2006-03-01

    This study aims to provide the means for testicular dose estimation from radiotherapy for rectal cancer. Rectal irradiation was simulated on a humanoid phantom using a 6 MV photon beam. The effect of field size, distance from irradiated area, wedge introduction into lateral beams, tissue thickness along the beam axis and use of gonad shields on the testicular dose was examined. Testicular dose was measured in five patients undergoing radiotherapy for rectal carcinoma. For a 4500 cGy tumour dose, testicular dose was 32-216 cGy depending upon the field dimensions and the distance from the field isocenter. The presence of wedges increased the testicular dose by a factor up to 2.2. The increase of irradiated tissue thickness increased the gonadal dose up to 40% whereas the use of the appropriate gonad shield reduced the dose by >66%. A simple method was developed to estimate testicular dose. The mean difference between the in vivo gonadal doses and the doses calculated using the proposed method was 5.8%. Testicular dose can exceed the value of 100 cGy, which permits a complete recovery of spermatogenesis. The presented data can be used to estimate the gonadal dose and the associated risk of infertility attributable to rectal irradiation.

  5. A quantitative image quality comparison of four different image guided radiotherapy devices

    International Nuclear Information System (INIS)

    Stuetzel, Julia; Oelfke, Uwe; Nill, Simeon

    2008-01-01

    Purpose: A study to quantitatively compare the image quality of four different image guided radiotherapy (IGRT) devices based on phantom measurements with respect to the additional dose delivered to the patient. Methods: Images of three different head-sized phantoms (diameter 16-18 cm) were acquired with the following four IGRT-CT solutions: (i) the Siemens Primatom single slice fan beam computed tomography (CT) scanner with an acceleration voltage of 130 kV, (ii) a Tomotherapy HI-ART II unit using a fan beam scanner with an energy of 3.5 MeV and (iii) the Siemens Artiste prototype, providing the possibility to perform kV (121 kV) and MV (6 MV) cone beam (CB) CTs. For each device three scan protocols (named low, normal, high) were selected to yield the same weighted computed tomography dose index (CTDI w ). Based on the individual inserts of the different phantoms the image quality achieved with each device at a certain dose level was characterized in terms of homogeneity, spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and electron density-to-CT-number conversion. Results: Based on the current findings for head-sized phantoms all devices show an electron density-to-CT-number conversion almost independent of the imaging parameters and hence can be suited for treatment planning purposes. The evaluation of the image quality, however, points out clear differences due to the different energies and geometries. The Primatom standard CT scanner shows throughout the best performance, especially for soft tissue contrast and spatial resolution with low imaging doses. Reasonable soft tissue contrast can be obtained with slightly higher doses compared to the CT scanner with the kVCB and the Tomotherapy unit. In order to get similar results with the MVCB system a much higher dose needs to be applied to the patient. Conclusion: Considering the entire investigations, especially in terms of contrast and spatial resolution, a rough tendency for

  6. Dose escalated radiotherapy for T1 and T2 nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lu, J. J.; Zhang, Q.; Lee, K. M.; Loh, K. S.; Tan, K. S.

    2008-01-01

    Nasopharyngeal carcinoma (NPC) is most prevalent in the Guangzhou province in southern China, in Hong Kong and in Singapore. It also occurs in Europe and North America, partly due to its epidemiological association with the woodworking and shoe manufacturing industry. Because of its anatomical location, i.e. so close to vital organs at risk, such as the brain stem and eyes, the technique of radiotherapy and dose/fractionation prescription is of extreme importance. This communication describes our experience with dose escalation radiotherapy for stages T1 and T2 of NPC. (author)

  7. Image-Guided Hypofractionated Radiotherapy in Low-Risk Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Maurizio Valeriani

    2014-01-01

    Full Text Available Aim. To evaluate efficacy and toxicity of image-guided hypofractionated radiotherapy (HFRT in the treatment of low-risk prostate cancer. Outcomes and toxicities of this series of patients were compared to another group of 32 low-risk patients treated with conventional fractionation (CFRT. Methods. Fifty-nine patients with low-risk prostate cancer were analysed. Total dose for the prostate and proximal seminal vesicles was 60 Gy delivered in 20 fractions. Results. The median follow-up was 30 months. The actuarial 4-year overall survival, biochemical free survival, and disease specific survival were 100%, 97.4%, and 97.4%, respectively. Acute grade 1-2 gastrointestinal (GI and genitourinary (GU toxicity rates were 11.9% and 40.7%, respectively. Grade 1 GI and GU late toxicity rates were 8.5% and 13.6%, respectively. No grade ≥2 late toxicities were recorded. Acute grade 2-3 GU toxicity resulted significantly lower (P=0.04 in HFRT group compared to the CFRT group. The cumulative 4-year incidence of grade 1-2 GU toxicity was significantly higher (P<0.001 for HFRT patients. Conclusions. Our study demonstrated that hypofractionated regimen provided excellent biochemical control in favorable risk prostate cancer patients. The incidence of GI and GU toxicity was low. However, HFRT presented higher cumulative incidence of low-grade late GU toxicity than CFRT.

  8. The first clinical implementation of real-time image-guided adaptive radiotherapy using a standard linear accelerator.

    Science.gov (United States)

    Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Caillet, Vincent; Hewson, Emily; Poulsen, Per Rugaard; Bromley, Regina; Bell, Linda; Eade, Thomas; Kneebone, Andrew; Martin, Jarad; Booth, Jeremy T

    2018-04-01

    Until now, real-time image guided adaptive radiation therapy (IGART) has been the domain of dedicated cancer radiotherapy systems. The purpose of this study was to clinically implement and investigate real-time IGART using a standard linear accelerator. We developed and implemented two real-time technologies for standard linear accelerators: (1) Kilovoltage Intrafraction Monitoring (KIM) that finds the target and (2) multileaf collimator (MLC) tracking that aligns the radiation beam to the target. Eight prostate SABR patients were treated with this real-time IGART technology. The feasibility, geometric accuracy and the dosimetric fidelity were measured. Thirty-nine out of forty fractions with real-time IGART were successful (95% confidence interval 87-100%). The geometric accuracy of the KIM system was -0.1 ± 0.4, 0.2 ± 0.2 and -0.1 ± 0.6 mm in the LR, SI and AP directions, respectively. The dose reconstruction showed that real-time IGART more closely reproduced the planned dose than that without IGART. For the largest motion fraction, with real-time IGART 100% of the CTV received the prescribed dose; without real-time IGART only 95% of the CTV would have received the prescribed dose. The clinical implementation of real-time image-guided adaptive radiotherapy on a standard linear accelerator using KIM and MLC tracking is feasible. This achievement paves the way for real-time IGART to be a mainstream treatment option. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fetal dose from radiotherapy photon beams: Physical basis, techniques to estimate radiation dose outside of the treatment field, biological effects and professional considerations

    International Nuclear Information System (INIS)

    Stovell, Marilyn; Blackwell, C. Robert

    1997-01-01

    Purpose/Objective: The presentation will review: 1. The physical basis of radiation dose outside of the treatment field. 2. Techniques to estimate and reduce fetal dose. 3. Clinical examples of fetal dose estimation and reduction. 4. Biological effects of fetal irradiation. 5. Professional considerations. Approximately 4000 women per year in the United States require radiotherapy during pregnancy. This report presents data and techniques that allow the medical physicist to estimate the radiation dose the fetus will receive and to reduce this dose with appropriate shielding. Out-of-beam data are presented for a variety of photon beams, including cobalt-60 gamma rays and x rays from 4 to 18 MV. Designs for simple and inexpensive to more complex and expensive types of shielding equipment are described. Clinical examples show that proper shielding can reduce the radiation dose to the fetus by 50%. In addition, a review of the biological aspects of irradiation enables estimates of the risks of lethality, growth retardation, mental retardation, malformation, sterility, cancer induction, and genetic defects to the fetus. A summary of professional considerations/recommendations is also provided as a guide for the radiation oncologist and medical physicist

  10. MR-guided radiotherapy: magnetic field dose effects

    NARCIS (Netherlands)

    Raaijmakers, A.J.E.

    2008-01-01

    At the UMC Utrecht, together with Elekta Oncology and Philips Research, we are developing a combined system of a 1.5 Tesla MRI scanner and a 6 MV linear accelerator for cancer treatment. In contrast to present online imaging methods, superior soft-tissue contrast will be achieved. The system will

  11. Threshold dose for peripheral neuropathy following intraoperative radiotherapy (IORT) in a large animal model

    International Nuclear Information System (INIS)

    Kinsella, T.J.; DeLuca, A.M.; Barnes, M.; Anderson, W.; Terrill, R.; Sindelar, W.F.

    1991-01-01

    Radiation injury to peripheral nerve is a dose-limiting toxicity in the clinical application of intraoperative radiotherapy, particularly for pelvic and retroperitoneal tumors. Intraoperative radiotherapy-related peripheral neuropathy in humans receiving doses of 20-25 Gy is manifested as a mixed motor-sensory deficit beginning 6-9 months following treatment. In a previous experimental study of intraoperative radiotherapy-related neuropathy of the lumbro-sacral plexus, an approximate inverse linear relationship was reported between the intraoperative dose (20-75 Gy range) and the time to onset of hind limb paresis (1-12 mos following intraoperative radiotherapy). The principal histological lesion in irradiated nerve was loss of large nerve fibers and perineural fibrosis without significant vascular injury. Similar histological changes in irradiated nerves were found in humans. To assess peripheral nerve injury to lower doses of intraoperative radiotherapy in this same large animal model, groups of four adult American Foxhounds received doses of 10, 15, or 20 Gy to the right lumbro-sacral plexus and sciatic nerve using 9 MeV electrons. The left lumbro-sacral plexus and sciatic nerve were excluded from the intraoperative field to allow each animal to serve as its own control. Following treatment, a complete neurological exam, electromyogram, and nerve conduction studies were performed monthly for 1 year. Monthly neurological exams were performed in years 2 and 3 whereas electromyogram and nerve conduction studies were performed every 3 months during this follow-up period. With follow-up of greater than or equal to 42 months, no dog receiving 10 or 15 Gy IORT shows any clinical or laboratory evidence of peripheral nerve injury. However, all four dogs receiving 20 Gy developed right hind limb paresis at 8, 9, 9, and 12 mos following intraoperative radiotherapy

  12. Whole brain radiotherapy for brain metastases: The technique of irradiation influences the dose to parotid glands

    International Nuclear Information System (INIS)

    Loos, G.; Paulon, R.; Verrelle, P.; Lapeyre, M.

    2012-01-01

    In the treatment of brain metastases, whole brain radiotherapy can be carried out according two distinct methods: one using multi-leaf collimator for field shaping and protection of organs at risk, and a second one is to make a rotation of the field to avoid the eyes. The aim of the study was to compare for 10 patients the dose distributions at organs at risk for each method. Patients received 30 Gy in 10 fractions. Except for parotid glands, the dose received by organs at risk and the planning target volume was the same with each method. For whole brain radiotherapy, excluding the cisterna cerebellomedullaris, the mean parotid dose was 9.63 Gy using the multi-leaf collimator versus 12.32 Gy using the field rotation (P = 0.04). For whole brain radiotherapy including the cisterna cerebellomedullaris, the mean parotid dose was 11.12 Gy using the multi-leaf collimator versus 20.06 Gy using field rotation (P < 0.001). Using the multi-leaf collimator seems recommended for whole brain radiotherapy, to reduce the dose to the parotids. (authors)

  13. High Radiation Doses from Radiotherapy Measured by Electron Spin Resonance in Dental Enamel

    International Nuclear Information System (INIS)

    Pass, B.; Wood, R.E.; Liu, F.; McLean, M.; Aldrich, J.E.

    1998-01-01

    For radiotherapy, an error in the complicated treatment planning or treatment procedure is a possibility, however remote. Thus, in the present study electron spin resonance (ESR) in dental enamel was investigated for the first time as a means of retrospective dosimetry for validating applied radiotherapy doses to the head and neck regions. Total absorbed radiation doses measured by ESR in dental enamel were compared to the doses determined by treatment planning for 19 patients who received radiotherapy for intra-oral, pharyngeal or laryngeal malignancies, or total-body irradiation prior to bone marrow transplants (BMT). For the 15 tumour irradiations there was, within the framework of the tooth positions as presented, general agreement between the treatment planned and ESR dose determinations. There were, however, both significant and minor discrepancies. For the BMT patients there were major discrepancies for two of the four patients investigated. This study indicates that ESR in dental enamel may be useful as the only means of retrospective dosimetry for validating applied radiotherapy doses after treatment. However, further research must be carried out before this technique can be accepted as accurate and reliable. (author)

  14. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes

    International Nuclear Information System (INIS)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J.; Shakespeare, Thomas P.

    2013-01-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64Gy (19%) or 66Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy<60% and V60Gy<40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy<35% and V65Gy<17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy<50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastrointestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy.

  15. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes.

    Science.gov (United States)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J; Shakespeare, Thomas P

    2013-08-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64 Gy (19%) or 66 Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy < 60% and V60Gy < 40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy < 35% and V65Gy < 17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy < 50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastroinestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  16. A strategy to objectively evaluate the necessity of correcting detected target deviations in image guided radiotherapy

    International Nuclear Information System (INIS)

    Yue, Ning J.; Kim, Sung; Jabbour, Salma; Narra, Venkat; Haffty, Bruce G.

    2007-01-01

    Image guided radiotherapy technologies are being increasingly utilized in the treatment of various cancers. These technologies have enhanced the ability to detect temporal and spatial deviations of the target volume relative to planned radiation beams. Correcting these detected deviations may, in principle, improve the accuracy of dose delivery to the target. However, in many situations, a clinical decision has to be made as to whether it is necessary to correct some of the deviations since the relevant dosimetric impact may or may not be significant, and the corresponding corrective action may be either impractical or time consuming. Ideally this decision should be based on objective and reproducible criteria rather than subjective judgment. In this study, a strategy is proposed for the objective evaluation of the necessity of deviation correction during the treatment verification process. At the treatment stage, without any alteration from the planned beams, the treatment beams should provide the desired dose coverage to the geometric volume identical to the planning target volume (PTV). Given this fact, the planned dose distribution and PTV geometry were used to compute the dose coverage and PTV enclosure of the clinical target volume (CTV) that was detected from imaging during the treatment setup verification. The spatial differences between the detected CTV and the planning CTV are essentially the target deviations. The extent of the PTV enclosure of the detected CTV as well as its dose coverage were used as criteria to evaluate the necessity of correcting any of the target deviations. This strategy, in principle, should be applicable to any type of target deviations, including both target deformable and positional changes and should be independent of how the deviations are detected. The proposed strategy was used on two clinical prostate cancer cases. In both cases, gold markers were implanted inside the prostate for the purpose of treatment setup

  17. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    Science.gov (United States)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  18. Radiotherapy

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Kapp, D.S.; Weissberg, J.B.

    1983-01-01

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  19. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.

    Science.gov (United States)

    Andreozzi, Jacqueline M; Mooney, Karen E; Brůža, Petr; Curcuru, Austen; Gladstone, David J; Pogue, Brian W; Green, Olga

    2018-06-01

    Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. A 40 × 30.5 × 37.5 cm 3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm 2 , 10.5 × 10.5 cm 2 , and 14.7 × 14.7 cm 2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to p

  20. Characterization of the first RF coil dedicated to 1.5 T MR guided radiotherapy

    Science.gov (United States)

    Hoogcarspel, Stan J.; Zijlema, Stefan E.; Tijssen, Rob H. N.; Kerkmeijer, Linda G. W.; Jürgenliemk-Schulz, Ina M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2018-01-01

    The purpose of this study is to investigate the attenuation characteristics of a novel radiofrequency (RF) coil, which is the first coil that is solely dedicated to MR guided radiotherapy with a 1.5 T MR-linac. Additionally, we investigated the impact of the treatment beam on the MRI performance of this RF coil. First, the attenuation characteristics of the RF coil were characterized. Second, we investigated the impact of the treatment beam on the MRI performance of the RF coil. We additionally demonstrated the ability of the anterior coil to attenuate returning electrons and thereby reducing the dose to the skin at the distal side of the treatment beam. Intensity modulated radiation therapy simulation of a clinically viable treatment plan for spinal bone metastasis shows a decrease of the dose to the planned tumor volume of 1.8% as a result of the MR coil around the patient. Ionization chamber and film measurements show that the anterior and posterior coil attenuate the beam homogeneously by 0.4% and 2.2%, respectively. The impact of the radiation resulted in a slight drop of the time-course signal-to-noise ratio and was dependent on imaging parameters. However, we could not observe any image artifacts resulting from this irradiation in any situation. In conclusion, the investigated MR-coil can be utilized for treatments with the 1.5 T-linac system. However, there is still room for improvement when considering both the dosimetric and imaging performance of the coil.

  1. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe; Wu Lili; Lin Zhixiong

    2012-01-01

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volume histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.

  2. Isocentric integration of intensity-modulated radiotherapy with electron fields improves field junction dose uniformity in postmastectomy radiotherapy.

    Science.gov (United States)

    Wright, Pauliina; Suilamo, Sami; Lindholm, Paula; Kulmala, Jarmo

    2014-08-01

    In postmastectomy radiotherapy (PMRT), the dose coverage of the planning target volume (PTV) with additional margins, including the chest wall, supraclavicular, interpectoral, internal mammary and axillar level I-III lymph nodes, is often compromised. Electron fields may improve the medial dose coverage while maintaining organ at risk (OAR) doses at an acceptable level, but at the cost of hot and cold spots at the electron and photon field junction. To improve PMRT dose coverage and uniformity, an isocentric technique combining tangential intensity-modulated (IM)RT fields with one medial electron field was implemented. For 10 postmastectomy patients isocentric IMRT with electron plans were created and compared with a standard electron/photon mix and a standard tangent technique. PTV dose uniformity was evaluated based on the tolerance range (TR), i.e. the ratio of the standard deviation to the mean dose, a dice similarity coefficient (DSC) and the 90% isodose coverage and the hot spot volumes. OAR and contralateral breast doses were also recorded. IMRT with electrons significantly improved the PTV dose homogeneity and conformity based on the TR and DSC values when compared with the standard electron/photon and tangent technique (p < 0.02). The 90% isodose coverage improved to 86% compared with 82% and 80% for the standard techniques (p < 0.02). Compared with the standard electron/photon mix, IMRT smoothed the dose gradient in the electron and photon field junction and the volumes receiving a dose of 110% or more were reduced by a third. For all three strategies, the OAR and contralateral breast doses were within clinically tolerable limits. Based on these results two-field IMRT combined with an electron field is a suitable strategy for PMRT.

  3. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    International Nuclear Information System (INIS)

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  4. Prospective phase II trial of image-guided radiotherapy in Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Petersen, Peter M; Aznar, Marianne C; Berthelsen, Anne K

    2015-01-01

    BACKGROUND: Long-term Hodgkin lymphoma (HL) survivors have an increased risk of late cardiac morbidity and secondary lung cancer after chemotherapy and mediastinal radiotherapy. In this prospective study we investigate whether radiotherapy with deep inspiration breath-hold (DIBH) can reduce...... radiation doses to the lungs, heart, and cardiac structures without compromising the target dose. PATIENTS AND METHODS: Twenty-two patients (14 female, 8 male), median age 30 years (18-65 years), with supra-diaphragmatic HL were enrolled and had a thoracic PET/CT with DIBH in addition to staging FDG...... retrospectively. Patients were treated with the technique yielding the lowest doses to normal structures. RESULTS: Nineteen patients were treated with DIBH and three with FB. DIBH reduced the mean estimated lung dose by 2.0 Gy (median: 8.5 Gy vs. 7.2 Gy) (p 4 Gy (6.0 Gy vs. 3...

  5. Image-guided stereotactic radiotherapy for patients with vestibular schwannoma. A clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Badakhshi, H.; Muellner, S.; Budach, V. [Charite School of Medicine and University Hospital of Berlin, Departments for Radiation Oncology, Berlin (Germany); Wiener, E. [School of Medicine and University Hospital of Berlin, Institute for Neuroradiology, Berlin (Germany)

    2014-06-15

    Local tumor control and functional outcome after linac-based stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) for vestibular schwannoma (VS) were assessed. In all, 250 patients with VS were treated: 190 patients with tumors < 2 cm diameter underwent SRS and 60 patients with tumors >2 to 3.5 cm underwent FSRT. Dose prescription for all cases with SRS (n = 190, 76 %) was 13.5 Gy. For FSRT, mainly two hypofractionated schedules (n = 60, 24 %) with either 7 fractions of 5 Gy (total dose: 35 Gy; n = 35) or 11 fractions of 3.8 Gy (total dose: 41.8 Gy; n = 16) were used. The primary endpoint was local tumor control. Secondary endpoints were symptomatic control and morbidity. The median follow-up was 33.8 months. The 3-year local tumor control was 88.9 %. Local control for SRS and FSRT was 88 and 92 %, respectively. For FSRT with 35 and 41.8 Gy, local control was 90 and 100 %, respectively. There were no acute reactions exceeding grade I. In 61 cases (24.4 % of the entire cohort), trigeminal neuralgia was reported prior to treatment. At last follow-up, 16.3 % (10/61) of those patients reported relief of pain. Regarding facial nerve dysfunction, 45 patients (18 %) presented with symptoms prior to RT. At the last follow-up, 13.3% (6/45) of those patients reported a relief of dysesthesia. Using SRS to treat small VS results in good local control rates. FSRT for larger lesions also seems effective. Severe treatment-related complications are not frequent. Therefore, image-guided stereotactic radiotherapy is an appropriate alternative to microsurgery for patients with VS. (orig.) [German] Wir analysierten die lokale Kontrolle und die funktionellen Verlaeufe bei Patienten mit einem Vestibularisschwannom (VS), die sich einer linacbasierten stereotaktischen Radiochirurgie (SRS) oder einer fraktionierten stereotaktischen Radiotherapie (FSRT) unterzogen. Zwischen 1998 und 2008 wurden 250 Patienten mit einem VS behandelt. In dieser Kohorte wurden 190

  6. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    Science.gov (United States)

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    International Nuclear Information System (INIS)

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-01-01

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  8. Systematic review of dose-volume parameters in the prediction of esophagitis in thoracic radiotherapy

    International Nuclear Information System (INIS)

    Rose, Jim; Rodrigues, George; Yaremko, Brian; Lock, Michael; D'Souza, David

    2009-01-01

    Purpose: With dose escalation and increasing use of concurrent chemoradiotherapy, radiation esophagitis (RE) remains a common treatment-limiting acute side effect in the treatment of thoracic malignancies. The advent of 3DCT planning has enabled investigators to study esophageal dose-volume histogram (DVH) parameters as predictors of RE. The purpose of this study was to assess published dosimetric parameters and toxicity data systematically in order to define reproducible predictors of RE, both for potential clinical use, and to provide recommendations for future research in the field. Materials and methods: We performed a systematic literature review of published studies addressing RE in the treatment of lung cancer and thymoma. Our search strategy included a variety of electronic medical databases, textbooks and bibliographies. Both prospective and retrospective clinical studies were included. Information relating to the relationship among measured dosimetric parameters, patient demographics, tumor characteristics, chemotherapy and RE was extracted and analyzed. Results: Eighteen published studies were suitable for analysis. Eleven of these assessed acute RE, while the remainder assessed both acute and chronic RE together. Heterogeneity of esophageal contouring practices, individual differences in information reporting and variability of RE outcome definitions were assessed. Well-described clinical and logistic modeling directly related V 35Gy , V 60Gy and SA 55Gy to clinically significant RE. Conclusions: Several reproducible dosimetric parameters exist in the literature, and these may be potentially relevant in the prediction of RE in the radiotherapy of thoracic malignancies. Further clarification of the predictive relationship between such standardized dosimetric parameters and observed RE outcomes is essential to develop efficient radiation treatment planning in locally advanced NSCLC in the modern concurrent chemotherapy and image-guided IMRT era.

  9. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    Science.gov (United States)

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  10. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Hälg, Roger A.; Besserer, Jürgen; Schneider, Uwe

    2012-01-01

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  11. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    International Nuclear Information System (INIS)

    Jong, W L; Ung, N M; Wong, J H D; Ng, K H

    2016-01-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved. (paper)

  12. A reference dosimetric system for dose interval of radiotherapy based on alanine/RPE

    International Nuclear Information System (INIS)

    Rodrigues Junior, Orlando; Galante, Ocimar L.; Campos, Leticia L.

    2001-01-01

    This work describes the development of a reference dosimetric system based on alanine/EPR for radiotherapy dose levels. Currently the IPEN is concluding a similar system for the dose range used for irradiation of products, 10-10 5 Gy. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The system uses alanine as detector and electronic paramagnetic resonance - EPR as measure technique. To reach accuracy better than 5% mathematical studies on the best optimization of the EPR spectrometer parameters and methods for the handling of the EPR sign are discussed. (author)

  13. Radiation dose in radiotherapy from prescription to delivery

    International Nuclear Information System (INIS)

    1994-02-01

    It is a known fact that an increasing percentage of the population in developed as well as developing countries contract cancer. However, in some advanced countries the cancer mortality rate is no longer increasing, which can be attributed to an improvement in therapy. In some developing countries radiation therapy is currently applied in 50-60% of all cancer cases. About half of these treatments are with curative aims. Surgery and radiotherapy applied individually or concurrently result in the cure of about 40-50% of all patients. In addition, the application of chemotherapy has curative effects on small percentage of cancer cases. Radiotherapy is also an excellent palliative agent and often prolongs and enhances the quality of life of a patient. In some countries, resources are too scarce to secure adequate treatments. When this happens, it is of great importance that they learn to utilize the available resources in the most effective way. One of the aims of this seminar is to deal with this issue. Refs, figs and tabs

  14. Side effects of radiotherapy in regime of dynamic dose multifractioning for local larynx cancer forms

    International Nuclear Information System (INIS)

    Slobina, E.L.

    2000-01-01

    A regime for dynamic multifractioning of radiotherapy dose used for treating larynx cancer was developed. The method favored reducing the side effects frequency as compared with the conventional fractioning in larynx mucosa from 70% to 46%, in neck skin being irradiated - from 60% to 48%

  15. Dose-effect relationships for individual pelvic floor muscles and anorectal complaints after prostate radiotherapy.

    NARCIS (Netherlands)

    Smeenk, R.J.; Hoffmann, A.L.; Hopman, W.P.M.; Lin, E.N.J.T. van; Kaanders, J.H.A.M.

    2012-01-01

    PURPOSE: To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). METHODS AND MATERIALS: In 48 patients treated for localized prostate

  16. Feasibility of dose planning using CBCT images combined with MSCT images for adaptive radiotherapy

    International Nuclear Information System (INIS)

    Usui, Keisuke; Kunieda, Etsuo; Ogawa, Koichi

    2013-01-01

    If a kilo-voltage cone-beam computed tomography (CBCT) system mounted on a linear accelerator becomes available for dose calculation, we can confirm the dose distribution of treatment in each day by referring it to the initially planned dose distribution. In this paper, we verified the validity of the calculation method using CBCT images combined with multi-slice CT images. To evaluate the accuracy of calculated dose distribution, γ analysis, distance-to-agreement analysis and dose-volume-histogram analysis were used as the conventional dose calculation methods using CBCT images. The results showed that the dose distribution calculated by our proposed method agreed with the initial treatment plan better compared with the other methods. In addition, our method was so stable that the calculated dose distribution was insensitive to variations in clinical conditions. We demonstrated the feasibility of our proposed method for adaptive radiotherapy. (author)

  17. Radiation dose to laterally transposed ovaries during external beam radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Varveris, Haris; Gourtsoyiannis, Nicholas

    2006-01-01

    The purpose of this study was to estimate the radiation dose to laterally transposed ovaries from external beam radiotherapy for cervical cancer. Dose measurements were performed in a modified humanoid phantom using a 6 MV photon beam. The dependence of the ovarian dose upon the field size, the distance from the primary irradiation field and the presence of wedges or gonadal shielding was determined. For a tumor dose of 45 Gy, ovarian dose was 0.88-8.51 Gy depending on the field size employed and the location of the transposed ovary in respect to the treatment field. Positioning of 7 cm thick shielding reduced the dose to ovary by less than 19%. The use of wedges increased the ovarian dose by a factor up to 1.5. Accurate radiographic localization of the ovaries allows the use of the presented dosimetric results to obtain a reasonable prediction of the ovarian dose

  18. Application of a Novel Dose-Uncertainty Model for Dose-Uncertainty Analysis in Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong

    2010-01-01

    Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.

  19. Rectal dose variation during the course of image-guided radiation therapy of prostate cancer

    International Nuclear Information System (INIS)

    Chen Lili; Paskalev, Kamen; Xu Xiu; Zhu, Jennifer; Wang Lu; Price, Robert A.; Hu Wei; Feigenberg, Steven J.; Horwitz, Eric M.; Pollack, Alan; Charlie Ma, C.M.

    2010-01-01

    Background and purpose: To investigate the change in rectal dose during the treatment course for intensity-modulated radiotherapy (IMRT) of prostate cancer with image-guidance. Materials and methods: Twenty prostate cancer patients were recruited for this retrospective study. All patients have been treated with IMRT. For each patient, MR and CT images were fused for target and critical structure delineation. IMRT treatment planning was performed on the simulation CT images. Inter-fractional motion during the course of treatment was corrected using a CT-on-rails system. The rectum was outlined on both the original treatment plan and the subsequent daily CT images from the CT-on-rails by the same investigator. Dose distributions on these daily CT images were recalculated with the isocenter shifts relative to the simulation CT images using the leaf sequences/MUs based on the original treatment plan. The rectal doses from the subsequent daily CTs were compared with the original doses planned on the simulation CT using our clinical acceptance criteria. Results: Based on 20 patients with 139 daily CT sets, 28% of the subsequent treatment dose distributions did not meet our criterion of V 40 65 < 17%. The inter-fractional rectal volume variation is significant for some patients. Conclusions: Due to the large inter-fractional variation of the rectal volume, it is more favorable to plan prostate IMRT based on an empty rectum and deliver treatment to patients with an empty rectum. Over 70% of actual treatments showed better rectal doses than our clinical acceptance criteria. A significant fraction (27%) of the actual treatments would benefit from adaptive image-guided radiotherapy based on daily CT images.

  20. The effects of radiotherapy treatment uncertainties on the delivered dose distribution and tumour control probability

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2001-01-01

    Uncertainty in the precise quantity of radiation dose delivered to tumours in external beam radiotherapy is present due to many factors, and can result in either spatially uniform (Gaussian) or spatially non-uniform dose errors. These dose errors are incorporated into the calculation of tumour control probability (TCP) and produce a distribution of possible TCP values over a population. We also study the effect of inter-patient cell sensitivity heterogeneity on the population distribution of patient TCPs. This study aims to investigate the relative importance of these three uncertainties (spatially uniform dose uncertainty, spatially non-uniform dose uncertainty, and inter-patient cell sensitivity heterogeneity) on the delivered dose and TCP distribution following a typical course of fractionated external beam radiotherapy. The dose distributions used for patient treatments are modelled in one dimension. Geometric positioning uncertainties during and before treatment are considered as shifts of a pre-calculated dose distribution. Following the simulation of a population of patients, distributions of dose across the patient population are used to calculate mean treatment dose, standard deviation in mean treatment dose, mean TCP, standard deviation in TCP, and TCP mode. These parameters are calculated with each of the three uncertainties included separately. The calculations show that the dose errors in the tumour volume are dominated by the spatially uniform component of dose uncertainty. This could be related to machine specific parameters, such as linear accelerator calibration. TCP calculation is affected dramatically by inter-patient variation in the cell sensitivity and to a lesser extent by the spatially uniform dose errors. The positioning errors with the 1.5 cm margins used cause dose uncertainty outside the tumour volume and have a small effect on mean treatment dose (in the tumour volume) and tumour control. Copyright (2001) Australasian College of

  1. Cardiac Dose From Tangential Breast Cancer Radiotherapy in the Year 2006

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Povall, Julie M.; McGale, Paul; Nisbet, Andrew; Dodwell, David; Smith, Jonathan T.; Darby, Sarah C.

    2008-01-01

    Purpose: To quantify the radiation doses received by the heart and coronary arteries from contemporary tangential breast or chest wall radiotherapy. Methods and Materials: Fifty consecutive patients with left-sided breast cancer and 5 consecutive patients with right-sided breast cancer treated at a large United Kingdom radiotherapy center during the year 2006 were selected. All patients were irradiated with 6- or 8-MV tangential beams to the breast or chest wall. For each dose plan, dose-volume histograms for the heart and left anterior descending (LAD) coronary artery were calculated. For 5 of the left-sided and all 5 right-sided patients, dose-volume histograms for the right and circumflex coronary arteries were also calculated. Detailed spatial assessment of dose to the LAD coronary artery was performed for 3 left-sided patients. Results: For the 50 patients given left-sided irradiation, the average mean (SD) dose was 2.3 (0.7) Gy to the heart and 7.6 (4.5) Gy to the LAD coronary artery, with the distal LAD receiving the highest doses. The right and circumflex coronary arteries received approximately 2 Gy mean dose. Part of the heart received >20 Gy in 22 left-sided patients (44%). For the 5 patients given right-sided irradiation, average mean doses to all cardiac structures were in the range 1.2 to 2 Gy. Conclusions: Heart dose from left-tangential radiotherapy has decreased considerably over the past 40 years, but part of the heart still receives >20 Gy for approximately half of left-sided patients. Cardiac dose for right-sided patients was generally from scattered irradiation alone

  2. Assessment of leakage dose in vivo in patients undergoing radiotherapy for breast cancer

    Directory of Open Access Journals (Sweden)

    Peta Lonski

    2018-01-01

    Full Text Available Background and purpose: Accurate quantification of the relatively small radiation doses delivered to untargeted regions during breast irradiation in patients with breast cancer is of increasing clinical interest for the purpose of estimating long-term radiation-related risks. Out-of-field dose calculations from commercial planning systems however may be inaccurate which can impact estimates for long-term risks associated with treatment. This work compares calculated and measured dose out-of-field and explores the application of a correction for leakage radiation. Materials and methods: Dose calculations of a Boltzmann transport equation solver, pencil beam-type, and superposition-type algorithms from a commercial treatment planning system (TPS were compared with in vivo thermoluminescent dosimetry (TLD measurements conducted out-of-field on the contralateral chest at points corresponding to the thyroid, axilla and contralateral breast of eleven patients undergoing tangential beam radiotherapy for breast cancer. Results: Overall, the TPS was found to under-estimate doses at points distal to the radiation field edge with a modern linear Boltzmann transport equation solver providing the best estimates. Application of an additive correction for leakage (0.04% of central axis dose improved correlation between the measured and calculated doses at points greater than 15 cm from the field edge. Conclusions: Application of a correction for leakage doses within peripheral regions is feasible and could improve accuracy of TPS in estimating out-of-field doses in breast radiotherapy. Keywords: Breast radiotherapy, TLD, Leakage dose, Dose calculation algorithm

  3. In-vivo (entrance) dose measurements in external beam radiotherapy with aqueous FBX dosimetry system

    International Nuclear Information System (INIS)

    Semwal, M.K.; Thakur, P.K.; Bansal, A.K.; Vidyasagar, P.B.

    2005-01-01

    FBX aqueous chemical dosimetry system has been found useful in radiotherapy owing to its low dose measuring capability. In the present work, entrance dose measurements in external beam radiotherapy on a telecobalt machine were carried out with the system on 100 patients. Treatments involving simple beam arrangement of open parallel-opposed beams in cranial and pelvic irradiations were selected for this study. In place of a spectrophotometer, a simple and inexpensive colorimeter was used for absorbance measurements. The purpose was to assess the efficacy of the FBX system for in-vivo dose measurements. The results obtained show that the average discrepancy between the measured and expected dose for both categories of patients was 0.2% (standard deviation 3.2%) with a maximum of +1 0.3%. There were 5.5% cases showing more than ± 5% discrepancy. Comparison of the results obtained with published work on entrance dose measurements, with diode detectors, shows that the inexpensive FBX system can be used for in-vivo (entrance) dose measurements for simple beam arrangements in radiotherapy and can thus serve as a useful QA tool. (author)

  4. Design and implementation of a system for treating paediatric patients with stereotactically-guided conformal radiotherapy

    International Nuclear Information System (INIS)

    Adams, Elizabeth J.; Suter, Bridget L.; Warrington, Alan P.; Black, Peter; Saran, Frank; Brada, Michael

    2001-01-01

    Background and purpose: Stereotactically-guided conformal radiotherapy (SCRT) allows the delivery of highly conformal dose distributions to localised brain tumours. This is of particular importance for children, whose often excellent long-term prognosis should be accompanied by low toxicity. The commercial immobilisation system in use at our hospital for adults was felt to be too heavy for children, and precluded the use of anaesthesia, which is sometimes required for paediatric patients. This paper therefore describes the design and implementation of a system for treating children with SCRT. This system needed to be well tolerated by patients, with good access for treating typical childhood malignancies. Materials and methods: A lightweight frame was developed for immobilisation, with a shell-based alternative for patients requiring general anaesthetic. Procedures were set up to introduce the patients to the frame system in order to maximise patient co-operation and comfort. Film measurements were made to assess the impact of the frame on transmission and surface dose. The reproducibility of the systems was assessed using electronic portal images. Results: Both frame and shell systems are in clinical use. The frame weighs 0.6 kg and is well tolerated. It has a transmission of 92-96%, and fields which pass through it deliver surface doses of 58-82% of the dose at d max , compared to 18% when no frame is present. However, the frame is constructed to maximise the availability of unobstructed beam directions. Reproducibility measurements for the frame showed a mean random error of 1.0±0.2 mm in two dimensions (2D) and 1.4±0.7 mm in 3D. The mean systematic error in 3D was 2.2 mm, and 90% of all overall 3D errors were less than 3.4 mm. For the shell system, the mean 2D random error was 1.5±0.2 mm. Conclusions: Two well-tolerated immobilisation devices have been developed for fractionated SCRT treatment of paediatric patients. A lightweight frame system gives a wide

  5. Design and implementation of a system for treating paediatric patients with stereotactically-guided conformal radiotherapy.

    Science.gov (United States)

    Adams, E J; Suter, B L; Warrington, A P; Black, P; Saran, F; Brada, M

    2001-09-01

    Stereotactically-guided conformal radiotherapy (SCRT) allows the delivery of highly conformal dose distributions to localised brain tumours. This is of particular importance for children, whose often excellent long-term prognosis should be accompanied by low toxicity. The commercial immobilisation system in use at our hospital for adults was felt to be too heavy for children, and precluded the use of anaesthesia, which is sometimes required for paediatric patients. This paper therefore describes the design and implementation of a system for treating children with SCRT. This system needed to be well tolerated by patients, with good access for treating typical childhood malignancies. A lightweight frame was developed for immobilisation, with a shell-based alternative for patients requiring general anaesthetic. Procedures were set up to introduce the patients to the frame system in order to maximise patient co-operation and comfort. Film measurements were made to assess the impact of the frame on transmission and surface dose. The reproducibility of the systems was assessed using electronic portal images. Both frame and shell systems are in clinical use. The frame weighs 0.6 kg and is well tolerated. It has a transmission of 92-96%, and fields which pass through it deliver surface doses of 58-82% of the dose at d(max), compared to 18% when no frame is present. However, the frame is constructed to maximise the availability of unobstructed beam directions. Reproducibility measurements for the frame showed a mean random error of 1.0+/-0.2mm in two dimensions (2D) and 1.4+/-0.7 mm in 3D. The mean systematic error in 3D was 2.2mm, and 90% of all overall 3D errors were less than 3.4mm. For the shell system, the mean 2D random error was 1.5+/-0.2mm. Two well-tolerated immobilisation devices have been developed for fractionated SCRT treatment of paediatric patients. A lightweight frame system gives a wide range of possible unobstructed beam directions, although beams that

  6. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan); Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan)

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  7. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Science.gov (United States)

    Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja

    2018-01-01

    Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol

  8. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  9. Device for simulation of integral dose distribution in multifield radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, E K; Voronin, V V; Kolosova, V F; Moskalev, A I; Marova, Yu M; Stavitskii, R V; Yarovoi, V S

    1974-11-15

    Described is a device for simulation of the sum dose distribution at multifield radiation therapy; the device comprises a mechanical unit on which the emission sources and detectors are mounted, an electromechanical scanning equipment, amplifiers, an adder, a position sensor and a recording instrument. The device suggested raises an accuracy of a sick man radiation program elaboration at a remote multifield radiation therapy, permits to estimate the irradiated medium heterogeneity and beam shaper influence on the sum dose distribution and also ensured the information on the sum dose distribution of the relative or absolute units. Additional filters simulating heterogeneity and beam shaping conditions of ionizing radiation may be mounted between the quantum emission sources and detectors, and an amplifier with a variable amplification factor may be placed between the adders and printers. Thus it is possible to obtain a sum dose distribution at static methods of the remote radiation therapy at a high degree of accuracy (up to +-10%).

  10. Impact of hip prosthesis on dose distribution of pelvic radiotherapy

    International Nuclear Information System (INIS)

    Ren Jiangping; Zhang Songfang; Zhu Qibao; Guo Jianxin; Zha Yuanzi

    2011-01-01

    Objective: To study the scattering effect of Co-Cr-Mo hip prosthesis which was high Z material for patients undergoing pelvic irradiation. Methods: The hip prosthesis was set in water phantom (30 cm x 30 cm x 30 cm), determining points were chosen on the entrance side of both 6 MV and 10 MV beams at the distance of 0.5 cm, 1.0 cm, 2.0 cm to the hip prosthesis, and also on the exit side of both 6 MV and 10 MV beams at the distance of 3.0 cm, 5.0 cm, 7.0 cm to the hip prostheses. Dose behind the hip prosthesis at depths of 5.0 cm and 10.0 cm for 6 MV and 10 MV beams are also measured. Results: The dose deviation on the beams' entrance side is between 0 to 5.0%, the backscatter effect was more obviously with the higher energy beam. The dose deviation on the beams' exit side was between 21.6%-30.8%. With the same field size and depth, dose deviation becomes smaller when the beam energy was higher; while with the same energy and depth, dose deviation becomes smaller when the field size was bigger. Dose profiles behind the head of the hip prosthesis indicate obvious attenuation of the beam. Conclusions: Beam arrangements that avoid the prosthesis should be considered first or we should at least reduce the weight of the beam that pass through the prosthesis. (authors)

  11. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); University Cairo (Egypt); Mora, G [de Lisboa, Codex, Lisboa (Portugal)

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  12. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kan, M W K; Cheung, J Y C; Leung, L H T; Lau, B M F; Yu, P K N

    2011-01-01

    Nasopharyngeal tumors are commonly treated with intensity-modulated radiotherapy techniques. For photon dose calculations, problems related to loss of lateral electronic equilibrium exist when small fields are used. The anisotropic analytical algorithm (AAA) implemented in Varian Eclipse was developed to replace the pencil beam convolution (PBC) algorithm for more accurate dose prediction in an inhomogeneous medium. The purpose of this study was to investigate the accuracy of the AAA for predicting interface doses for intensity-modulated stereotactic radiotherapy boost of nasopharyngeal tumors. The central axis depth dose data and dose profiles of phantoms with rectangular air cavities for small fields were measured using a 6 MV beam. In addition, the air-tissue interface doses from six different intensity-modulated stereotactic radiotherapy plans were measured in an anthropomorphic phantom. The nasopharyngeal region of the phantom was especially modified to simulate the air cavities of a typical patient. The measured data were compared to the data calculated by both the AAA and the PBC algorithm. When using single small fields in rectangular air cavity phantoms, both AAA and PBC overestimated the central axis dose at and beyond the first few millimeters of the air-water interface. Although the AAA performs better than the PBC algorithm, its calculated interface dose could still be more than three times that of the measured dose when a 2 x 2 cm 2 field was used. Testing of the algorithms using the anthropomorphic phantom showed that the maximum overestimation by the PBC algorithm was 20.7%, while that by the AAA was 8.3%. When multiple fields were used in a patient geometry, the dose prediction errors of the AAA would be substantially reduced compared with those from a single field. However, overestimation of more than 3% could still be found at some points at the air-tissue interface.

  13. Testicular shield for para-aortic radiotherapy and estimation of gonad doses

    OpenAIRE

    Ravichandran, R.; Binukumar, J. P.; Kannadhasan, S.; Shariff, M. H.; Ghamrawy, Kamal El

    2008-01-01

    For radiotherapy of para-aortic and abdominal regions in male patients, gonads are to be protected to receive less than 2% of the prescribed dose. A testicular shield was fabricated for abdominal radiotherapy with 15 MV X-rays ((Clinac 2300 CD, Varian AG) with low melting point alloy (Cerroband). The dimensions of the testicular shield were 6.5 cm diameter and 3.5 cm depth with 1.5 cm wall thickness. During treatment, this shield was held in position by a rectangular sponge and Styrofo...

  14. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  15. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  16. Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study

    DEFF Research Database (Denmark)

    Farr, Katherina P; Kallehauge, Jesper F; Møller, Ditte S

    2015-01-01

    for corresponding standard parameters, but they were not significantly different from each other. CONCLUSION: SPECT-based functional parameters were better to predict the risk of RP compared to standard CT-based dose-volume parameters. Functional parameters may be useful to guide radiotherapy planning in order...

  17. Optimum radiotherapy schedule for uterine cervical cancer based-on the detailed information of dose fractionation and radiotherapy technique

    International Nuclear Information System (INIS)

    Cho, Jae Ho; Kim, Hyun Chang; Suh, Chang Ok

    2005-01-01

    The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of 23.4 ∼ 59.4 Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-ICBT) was also performed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of 14.4∼ 43.2 Gy (Median 36.0) of EBRT in 495 patients, while in the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder and rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor (α / β = 10) and late-responding tissues (α /β = 3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED Gy 3 and the risk of complication was assessed using serial multiple logistic regressions models. The associations between R-BED Gy 3 and rectal complications

  18. Radiotherapy in differentiated thyroid cancer: Optimal dose distribution using a wax bolus

    International Nuclear Information System (INIS)

    Mayer, R.; Stucklschweiger, G.; Oechs, A.; Pakish, B.; Hackl, A.; Preidler, K.; Szola, D.

    1994-01-01

    The study includes 53 patients with differentiated thyroid cancer, who underwent surgical and radioiodine therapy as well as hormone therapy. Postoperative radiotherapy was performed in all patients in 'mini-mantle-technique' with parallel opposed fields, followed by an anterior boost-field with electrons up to 60-64 Gy, using a wax bolus for optimal dose distribution in the target volume sparing out the spinal cord as much as possible. The dose to the spinal cord did not exceed 44 Gy in any case. The study shows that radiotherapy with doses up to 60-64 Gy plays an important role in postsurgical therapeutic management. Therefore nonradical surgery is a less important prognostic factor for survival and local recurrence in patients with differentiated thyroid cancer than histological diagnosis in combination with age and lymph node involvement

  19. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy

    DEFF Research Database (Denmark)

    Laugaard Lorenzen, Ebbe; Brink, Carsten; Taylor, Carolyn W.

    2016-01-01

    BACKGROUND AND PURPOSE: We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. MATERIAL AND METHODS: Three tangential radiotherapy regimens were reconstructed using CT......-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. RESULTS: For left-sided breast cancer, mean...... to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always

  20. Effects of low dose radiation on antioxidant enzymes after radiotherapy of tumor-bearing mice

    International Nuclear Information System (INIS)

    Li Jin; Gao Gang; Wang Qin; Tang Weisheng; Liu Xiaoqiu; Wang Zhiquan

    2005-01-01

    Objective: To search for effects of low dose radiation on the activities of antioxidant enzymes after radiotherapy of tumor-bearing mice. Methods: Superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) were all determined by chemical colorimetry. Results: Low dose radiation increase the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in serum of tumor-bearing mice more markedly than those in the unirradiated controls. The activities of antioxidant enzymes SOD, GST, CAT in serum of tumor-bearing mice (d 5 , d 3 ) irradiated with 5cGy 6h before 2.0 Gy radiation are obviously higher than those of the group (c 3 , c 5 ) given with radiotherapy only. Conclusion: The increase in the activities of antioxidant enzymes in serum of tumor-bearing mice triggered by low dose radiation could partly contribute to the protective mechanism. (authors)

  1. Fetal dose reduction in head and neck radiotherapy of a pregnant woman

    International Nuclear Information System (INIS)

    Moeckli, R.; Pache, G.; Valley, J.F.; Ozsahin, M.; Mirimanoff, R.O.; Azria, D.

    2004-01-01

    Background and purpose: a pregnant woman was referred for post-operative radiotherapy of a malignant schwannoma in the head and neck region. A best-treatment plan was devised in order to minimize the fetal dose. Material and methods: the fetal dose resulting from radiological examinations was determined according to international protocols, that resulting from radiotherapy was calculated according to recommendation 36 of the American Association of Physicists in Medicine (AAPM) Task Group. Pre-treatment dosimetry was performed with an anthropomorphic phantom. Several alternative treatment plans were evaluated. The use of a multileaf collimator (MLC) and a virtual wedge (VW) was compared to cerrobend blocks (CB) and physical wedge (PW). In-vivo dosimetry was performed using a vaginal probe containing thermoluminescent dosimeters (TLD). Results: the total fetal dose resulting from diagnostic and radiotherapy procedures was estimated to be 36 mGy. The technique based on MLC and VW was elected for patient treatment. Measurements for this configuration resulted in a fetal dose reduction of 82%. The shielding of the patient's abdomen further reduced the fetal dose by 42%. Conclusion: the use of VW and MLC for the treatment of a pregnant woman is highly recommended. Each case should be individually studied with pre-treatment and in-vivo dosimetry. (orig.)

  2. PET/CT-guided Interventions: Personnel Radiation Dose

    International Nuclear Information System (INIS)

    Ryan, E. Ronan; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-01-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0–0.13) mSv for the primary operator, 0.01 (range 0–0.05) mSv for the nurse anesthetist, and 0.02 (range 0–0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0–0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient

  3. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  4. Radiotherapy

    Directory of Open Access Journals (Sweden)

    Rema Jyothirmayi

    1999-01-01

    Full Text Available Purpose. Conservative treatment in the form of limited surgery and post-operative radiotherapy is controversial in hand and foot sarcomas, both due to poor radiation tolerance of the palm and sole, and due to technical difficulties in achieving adequate margins.This paper describes the local control and survival of 41 patients with soft tissue sarcoma of the hand or foot treated with conservative surgery and radiotherapy. The acute and late toxicity of megavoltage radiotherapy to the hand and foot are described. The technical issues and details of treatment delivery are discussed. The factors influencing local control after radiotherapy are analysed.

  5. Universal Survival Curve and Single Fraction Equivalent Dose: Useful Tools in Understanding Potency of Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Park, Clint; Papiez, Lech; Zhang Shichuan; Story, Michael; Timmerman, Robert D.

    2008-01-01

    Purpose: Overprediction of the potency and toxicity of high-dose ablative radiotherapy such as stereotactic body radiotherapy (SBRT) by the linear quadratic (LQ) model led to many clinicians' hesitating to adopt this efficacious and well-tolerated therapeutic option. The aim of this study was to offer an alternative method of analyzing the effect of SBRT by constructing a universal survival curve (USC) that provides superior approximation of the experimentally measured survival curves in the ablative, high-dose range without losing the strengths of the LQ model around the shoulder. Methods and Materials: The USC was constructed by hybridizing two classic radiobiologic models: the LQ model and the multitarget model. We have assumed that the LQ model gives a good description for conventionally fractionated radiotherapy (CFRT) for the dose to the shoulder. For ablative doses beyond the shoulder, the survival curve is better described as a straight line as predicted by the multitarget model. The USC smoothly interpolates from a parabola predicted by the LQ model to the terminal asymptote of the multitarget model in the high-dose region. From the USC, we derived two equivalence functions, the biologically effective dose and the single fraction equivalent dose for both CFRT and SBRT. Results: The validity of the USC was tested by using previously published parameters of the LQ and multitarget models for non-small-cell lung cancer cell lines. A comparison of the goodness-of-fit of the LQ and USC models was made to a high-dose survival curve of the H460 non-small-cell lung cancer cell line. Conclusion: The USC can be used to compare the dose fractionation schemes of both CFRT and SBRT. The USC provides an empirically and a clinically well-justified rationale for SBRT while preserving the strengths of the LQ model for CFRT

  6. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  7. Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurements

    International Nuclear Information System (INIS)

    Boudou, C; Tropres, I; Rousseau, J; Lamalle, L; Adam, J F; Esteve, F; Elleaume, H

    2007-01-01

    Synchrotron stereotactic radiotherapy (SSR) is a radiotherapy technique that makes use of the interactions of monochromatic low energy x-rays with high atomic number (Z) elements. An important dose-enhancement can be obtained if the target volume has been loaded with a sufficient amount of a high-Z element, such as iodine. In this study, we compare experimental dose measurements, obtained with normoxic polymer gel (nPAG), with Monte Carlo computations. Gels were irradiated within an anthropomorphic head phantom and were read out by magnetic resonance imaging. The dose-enhancement due to the presence of iodine in the gel (iodine concentration: 5 and 10 mg ml -1 ) was measured at two radiation energies (35 and 80 keV) and was compared to the calculated factors. nPAG dosimetry was shown to be efficient for measuring the sharp dose gradients produced by SSR. The agreement between 3D gel dosimetry and calculated dose distributions was found to be within 4% of the dose difference criterion and a distance to agreement of 2.1 mm for 80% of the voxels. Polymer gel doped with iodine exhibited higher sensitivity, in good agreement with the calculated iodine-dose enhancement. We demonstrate in this preliminary study that iodine-doped nPAG could be used for measuring in situ dose distributions for iodine-enhanced SSR treatment

  8. Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy.

    Science.gov (United States)

    Choi, Youngmin; Kwak, Dong-Won; Lee, Hyung-Sik; Hur, Won-Joo; Cho, Won-Yeol; Sung, Gyung Tak; Kim, Tae-Hyo; Kim, Soo-Dong; Yun, Seong-Guk

    2015-04-01

    Rectal volume and movement are major factors that influence prostate location. The aim of this study was to assess the effect of a rectal enema on intrafraction prostate motion. The data from 12 patients with localised prostate cancer were analysed. Each patient underwent image-guided radiotherapy (RT), receiving a total dose of 70 Gy in 28 fractions. Rectal enemas were administered to all of the patients before each RT fraction. The location of the prostate was determined by implanting three fiducial markers under the guidance of transrectal ultrasound. Each patient underwent preparation for IGRT twice before an RT fraction and in the middle of the fraction. The intrafraction displacement of the prostate was calculated by comparing fiducial marker locations before and in the middle of an RT fraction. The rectal enemas were well tolerated by patients. The mean intrafraction prostate movement in 336 RT fractions was 1.11 ± 0.77 mm (range 0.08-7.20 mm). Intrafraction motions of 1, 2 and 3 mm were observed in 56.0%, 89.0% and 97.6% of all RT fractions, respectively. The intrafraction movements on supero-inferior and anteroposterior axes were larger than on the right-to-left axes (P movement, calculated using the van Herk formula (2.5Σ + 0.7σ), was 1.50 mm. A daily rectal enema before each RT fraction was tolerable and yielded little intrafraction prostate displacement. We think the use of rectal enemas is a feasible method to reduce prostate movement during RT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  9. Image-guided radiotherapy for fifty-eight patients with lung cancer

    International Nuclear Information System (INIS)

    Liang Jun; Zhang Tao; Wang Wenqin

    2009-01-01

    Objective: To study the value of image-guided radiotherapy (IGRT) in lung cancer. Methods: From Mar. 2007 to Dec. 2007,58 patients with lung cancer were treated with IGRT. Set-up errors in each axial direction was calculated based on IGRT images of each patient. The change of GTV was evaluated on both cone-beam CT and CT simulator images. Results: Twenty-two patients with left lung cancer,30 with right lung cancer, 5 with mediastinal lymphanode metastasis and one with vertebra metastasis were included. The set-up error in x, y and z axes was (0.02±0.26) cm, (0.14±0.49) cm and ( -0.13± 0.27) cm, respectively,while the rotary set-up error in each axis was -0.15 degree ± 1.59 degree, -0.01 degree ± 1.50 degree and 0.12 degree ±1.08 degree, respectively. The set-up errors were significantly decreased by using of IGRT. GTV movement was observed in 15 patients (25.9%) ,including 5 with left upper lung cancer. GTV moving to the anterior direction was observed in 9 patients,including 4 with]eft upper lung cancer. GTV reduced in 23 (44.2%) patients during treatment. Asymmetric GTV reduction of 22 lesions was observed,with a mean reductive volume of 4.9 cm 3 . When GTV began to shrink,the irradiation dose was 4 -46 Gy, with 20 -30 Gy in 9 patients. Conclusions: The use of IGRT can significantly reduce set-up errors. GTV movement and reduction are observed in some cases. The time to modify the target volume needs to be further studied. (authors)

  10. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-01-01

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  11. Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kwak, Dong-Won; Lee, Hyung-Sik; Hur, Won-Jooh; Cho, Won-Yeol; Sung, Gyung Tak; Kim, Tae-Hyo; Kim, Soo-Dong; Yun, Seong-Guk

    2015-01-01

    Rectal volume and movement are major factors that influence prostate location. The aim of this study was to assess the effect of a rectal enema on intrafraction prostate motion. The data from 12 patients with localised prostate cancer were analysed. Each patient underwent image-guided radiotherapy (RT), receiving a total dose of 70 Gy in 28 fractions. Rectal enemas were administered to all of the patients before each RT fraction. The location of the prostate was determined by implanting three fiducial markers under the guidance of transrectal ultrasound. Each patient underwent preparation for IGRT twice before an RT fraction and in the middle of the fraction. The intrafraction displacement of the prostate was calculated by comparing fiducial marker locations before and in the middle of an RT fraction. The rectal enemas were well tolerated by patients. The mean intrafraction prostate movement in 336 RT fractions was 1.11 ± 0.77 mm (range 0.08–7.20 mm). Intrafraction motions of 1, 2 and 3 mm were observed in 56.0%, 89.0% and 97.6% of all RT fractions, respectively. The intrafraction movements on supero-inferior and anteroposterior axes were larger than on the right-to-left axes (P < 0.05). The CTV-to-PTV margin necessary to allow for movement, calculated using the van Herk formula (2.5Σ + 0.7σ), was 1.50 mm. A daily rectal enema before each RT fraction was tolerable and yielded little intrafraction prostate displacement. We think the use of rectal enemas is a feasible method to reduce prostate movement during RT.

  12. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  13. Image-Guided Stereotactic Radiosurgery Using a Specially Designed High-Dose-Rate Linac

    International Nuclear Information System (INIS)

    Bayouth, John E.; Kaiser, Heather S.; Smith, Mark C.; Pennington, Edward C.; Anderson, Kathleen M. C.; Ryken, Timothy C.; Buatti, John M.

    2007-01-01

    Stereotactic radiosurgery and image-guided radiotherapy (IGRT) place enhanced demands on treatment delivery machines. In this study, we describe a high-dose-rate output accelerator as a part of our stereotactic IGRT delivery system. The linac is a Siemens Oncor without a flattening filter, and enables dose rates to reach 1000 monitor units (MUs) per minute. Even at this high-dose-rate, the linac dosimetry system remains robust; constancy, linearity, and beam energy remain within 1% for 3 to 1000 MU. Dose profiles for larger field sizes are not flat, but they are radially symmetric and, as such, able to be modeled by a treatment planning system. Target localization is performed via optical guidance utilizing a 3-dimensional (3D) ultrasound probe coupled to an array of 4 infrared light-emitting diodes. These diodes are identified by a fixed infrared camera system that determines diode position and, by extension, all objects imaged in the room coordinate system. This system provides sub-millimeter localization accuracy for cranial applications and better than 1.5 mm for extracranial applications. Because stereotactic IGRT can require significantly longer times for treatment delivery, the advantages of the high-dose-rate design and its direct impact on IGRT are discussed

  14. Surface dose measurements in and out of field. Implications for breast radiotherapy with megavoltage photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Lonski, Peta; Kron, Tomas [Peter MacCallum Cancer Centre, Melbourne (Australia); RMIT Univ., Melbourne (Australia); Ramachandran, Prabhakar; Franich, Rick [Peter MacCallum Cancer Centre, Melbourne (Australia)

    2017-07-01

    This study examines the difference in surface dose between flat and flattening filter free (FFF) photon beams in the context of breast radiotherapy. The surface dose was measured for 6 MV, 6 MV FFF, 10 MV, 10 MV FFF and 18 MV photon beams using a thin window ionisation chamber for various field sizes. Profiles were acquired to ascertain the change in surface dose off-axis. Out-of-field measurements were included in a clinically representative half beam block tangential breast field. In the field centres of FFF beams the surface dose was found to be increased for small fields and decreased for large fields compared to flat beams. For FFF beams, surface dose was found to decrease off-axis and resulted in lower surface dose out-of-field compared to flat beams.

  15. Assessment of eye, hand and male gonadal skin dose in radiotherapy

    International Nuclear Information System (INIS)

    Pushap, M.P.S.

    1979-01-01

    An attempt has been made to gauge the dose to (1) the eye, (2) the skin of the hands and (3) the gonads from radiotherapy of other parts of the body. The study has been done on actual male patients at the Jorjani Medical Centre, Tehran. The study, indicated high dose to the eye lid i.e. about 3% of the tumour dose in the case of head irradiation. The eyes and gonads lie at unequal distances from thorax, so are their doses. It is further emphasised that a minimum dose of 400 rad in three weeks to one month has been reported to be cataractogenic in man. A 50% incidence of progressive loss of vision with a dose of 750 rad to 1000 rad in three weeks to three months time has been observed. If appropriate techniques are not employed to shield the eye, even from stray radiation, such limits may easily be reached. (K.B.)

  16. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer.

    Science.gov (United States)

    Hoeben, Bianca A W; Bussink, Johan; Troost, Esther G C; Oyen, Wim J G; Kaanders, Johannes H A M

    2013-10-01

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.

  17. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  18. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study

    Science.gov (United States)

    2013-01-01

    Purpose To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. Methods We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of the response to irradiation as graded immediately or up to two months after the completion of a radiotherapy series was evaluated and correlated with age, gender, radiological grading and the duration of symptoms before radiotherapy. Moreover, we performed a mail survey to obtain additional long-term follow-up information and received one hundred and six evaluable questionnaires. Results We assessed 1659 series of radiotherapy in 1037 patients. In 79.3% of the cases the patients experienced a slight, marked or complete pain relief immediately or up to two months after the completion of radiotherapy. Gender, age and the duration of pain before radiotherapy did not have a significant influence on the response to irradiation. In contrast, severe signs of osteoarthritis were associated with more effective pain relief. In more than 50% of the patients who reported a positive response to irradiation a sustained period of symptomatic improvement was observed. Conclusions Our results confirm that low-dose radiotherapy is an effective treatment for painful osteoarthritis of the knee. In contrast to an earlier retrospective study, severe signs of osteoarthritis constituted a positive prognostic factor for the response to irradiation. A randomized trial is urgently required to compare radiotherapy with other treatment modalities. PMID:23369282

  19. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study

    International Nuclear Information System (INIS)

    Keller, Stephanie; Müller, Klaus; Kortmann, Rolf-Dieter; Wolf, Ulrich; Hildebrandt, Guido; Liebmann, André; Micke, Oliver; Flemming, Gert; Baaske, Dieter

    2013-01-01

    To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of the response to irradiation as graded immediately or up to two months after the completion of a radiotherapy series was evaluated and correlated with age, gender, radiological grading and the duration of symptoms before radiotherapy. Moreover, we performed a mail survey to obtain additional long-term follow-up information and received one hundred and six evaluable questionnaires. We assessed 1659 series of radiotherapy in 1037 patients. In 79.3% of the cases the patients experienced a slight, marked or complete pain relief immediately or up to two months after the completion of radiotherapy. Gender, age and the duration of pain before radiotherapy did not have a significant influence on the response to irradiation. In contrast, severe signs of osteoarthritis were associated with more effective pain relief. In more than 50% of the patients who reported a positive response to irradiation a sustained period of symptomatic improvement was observed. Our results confirm that low-dose radiotherapy is an effective treatment for painful osteoarthritis of the knee. In contrast to an earlier retrospective study, severe signs of osteoarthritis constituted a positive prognostic factor for the response to irradiation. A randomized trial is urgently required to compare radiotherapy with other treatment modalities

  20. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study

    Directory of Open Access Journals (Sweden)

    Keller Stephanie

    2013-01-01

    Full Text Available Abstract Purpose To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. Methods We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of the response to irradiation as graded immediately or up to two months after the completion of a radiotherapy series was evaluated and correlated with age, gender, radiological grading and the duration of symptoms before radiotherapy. Moreover, we performed a mail survey to obtain additional long-term follow-up information and received one hundred and six evaluable questionnaires. Results We assessed 1659 series of radiotherapy in 1037 patients. In 79.3% of the cases the patients experienced a slight, marked or complete pain relief immediately or up to two months after the completion of radiotherapy. Gender, age and the duration of pain before radiotherapy did not have a significant influence on the response to irradiation. In contrast, severe signs of osteoarthritis were associated with more effective pain relief. In more than 50% of the patients who reported a positive response to irradiation a sustained period of symptomatic improvement was observed. Conclusions Our results confirm that low-dose radiotherapy is an effective treatment for painful osteoarthritis of the knee. In contrast to an earlier retrospective study, severe signs of osteoarthritis constituted a positive prognostic factor for the response to irradiation. A randomized trial is urgently required to compare radiotherapy with other treatment modalities.

  1. Early and late effects of local high dose radiotherapy of the brain on memory and attention

    International Nuclear Information System (INIS)

    Duchstein, S.; Gademann, G.; Peters, B.

    2003-01-01

    Early and Late Effects of Local High Dose Radiotherapy of the Brain on Memory and Attention Background: Stereotactic radiotherapy of benign tumors of the base of skull shows excellent tumor control and long survival. Aim is to study the impact of high dose radiation therapy on functions of memory and attention over time. Patients and Methods: 21 patients (age 42 ± 11 years) with tumors of the base of skull (meningiomas, pituitary gland adenomas) were treated by fractionated stereotactic radiotherapy (mean total dose 56,6 Gy/1,8 Gy). Comprehensive neuropsychological tests and MRI brain scans were performed before, 3, 9 and 21 months after therapy. 14 healthy volunteers were tested in parallel at baseline. In the follow-ups patients were their own controls. Results: In pretreatment tests there were significantly worse test results in comparison to the control group in ten of 32 tests. In postradiation tests only few changes were found in the early-delayed period and not much difference was seen in comparison to the baseline tests. In MRI scans tumor recurrences or radiation induced changes were not found. Conclusion: Radiation with high local doses in target volume extremely close to sensitive brain structures like temporal lobes did not induce significant decline of cognitive functions. (orig.) [de

  2. Radical radiotherapy for invasive bladder cancer: What dose and fractionation schedule to choose?

    International Nuclear Information System (INIS)

    Pos, Floris J.; Hart, Guus; Schneider, Christoph; Sminia, Peter

    2006-01-01

    Purpose: To establish the α/β ratio of bladder cancer from different radiotherapy schedules reported in the literature and provide guidelines for the design of new treatment schemes. Methods and Materials: Ten external beam radiotherapy (EBRT) and five brachytherapy schedules were selected. The biologically effective dose (BED) of each schedule was calculated. Logistic modeling was used to describe the relationship between 3-year local control (LC3y) and BED. Results: The estimated α/β ratio was 13 Gy (95% confidence interval [CI], 2.5-69 Gy) for EBRT and 24 Gy (95% CI, 1.3-460 Gy) for EBRT and brachytherapy combined. There is evidence for an overall dose-response relationship. After an increase in total dose of 10 Gy, the odds of LC3y increase by a factor of 1.44 (95% CI, 1.23-1.70) for EBRT and 1.47 (95% CI, 1.25-1.72) for the data sets of EBRT and brachytherapy combined. Conclusion: With the clinical data currently available, a reliable estimation of the α/β ratio for bladder cancer is not feasible. It seems reasonable to use a conventional α/β ratio of 10-15 Gy. Dose escalation could significantly increase local control. There is no evidence to support short overall treatment times or large fraction sizes in radiotherapy for bladder cancer

  3. An automatic dose verification system for adaptive radiotherapy for helical tomotherapy

    International Nuclear Information System (INIS)

    Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo

    2014-01-01

    Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic

  4. A simplified approach for exit dose in vivo measurements in radiotherapy and its clinical application

    International Nuclear Information System (INIS)

    Banjade, D.P.; Shukri, A.; Tajuddin, A.A.; Shrestha, S.L.; Bhat, M.

    2002-01-01

    This is a study using LiF:Mg;Ti thermoluminescent dosimeter (TLD) rods in phantoms to investigate the effect of lack of backscatter on exit dose. Comparing the measured dose with anticipated dose calculated using tissue maximum ratio (TMR) or percentage depth dose (PDD) gives rise to a correction factor. This correction factor may be applied to in-vivo dosimetry results to derive true dose to a point within the patient. Measurements in a specially designed humanoid breast phantom as well as patients undergoing radiotherapy treatment were also been done. TLDs with reproducibility of within ±3% (1 SD) are irradiated in a series of measurements for 6 and 10 MV photon beams from a medical linear accelerator. The measured exit doses for the different phantom thickness for 6 MV beams are found to be lowered by 10.9 to 14.0% compared to the dose derived from theoretical estimation (normalized dose at d max ). The same measurements for 10 MV beams are lowered by 9.0 to 13.5%. The variations of measured exit dose for different field sizes are found to be within 2.5%. The exit doses with added backscatter material from 2 mm up to 15 cm, shows gradual increase and the saturated values agreed within 1.5% with the expected results for both beams. The measured exit doses in humanoid breast phantom as well as in the clinical trial on patients undergoing radiotherapy also agreed with the predicted results based on phantom measurements. The authors' viewpoint is that this technique provides sufficient information to design exit surface bolus to restore build down effect in cases where part of the exit surface is being considered as a target volume. It indicates that the technique could be translated for in vivo dose measurements, which may be a conspicuous step of quality assurance in clinical practice. Copyright (2002) Australasian College of Physical Scientists and Engineers in Medicine

  5. TU-AB-BRA-11: Indications for Online Adaptive Radiotherapy Based On Dosimetric Consequences of Interfractional Pancreas-To-Duodenum Motion in MRI-Guided Pancreatic Radiotherapy

    International Nuclear Information System (INIS)

    Mittauer, K; Rosenberg, S; Geurts, M; Bassetti, M; Wojcieszynski, A; Harari, P; Labby, Z; Hill, P; Paliwal, B; Bayouth, J; Chen, I; Henke, L; Kashani, R; Parikh, P; Olsen, J

    2016-01-01

    Purpose: Dose limiting structures, such as the duodenum, render the treatment of pancreatic cancer challenging. In this multi-institutional study, we assess dosimetric differences caused by interfraction pancreas-to-duodenum motion using MR-IGRT to determine the potential impact of adaptive replanning. Methods: Ten patients from two institutions undergoing MRI-guided radiotherapy with conventional fractionation (n=5) or SBRT (n=5) for pancreatic cancer were included. Initial plans were limited by duodenal dose constraints of 50 Gy (0.5 cc)/31 Gy (0.1 cc) for conventional/SBRT with prescriptions of 30 Gy/5 fractions (SBRT) and 40–50 Gy/25 fractions (conventional). Daily volumetric MR images were acquired under treatment conditions on a clinical MR-IGRT system. The correlation was assessed between interfractional GTV-to-duodenum positional variation and daily recalculations of duodenal dose metrics. Positional variation was quantified as the interfraction difference in Hausdorff distance from simulation baseline (ΔHD) between the GTV and proximal duodenal surface, or volume overlap between GTV and duodenum for cases with HD_0=0 (GTV abutting duodenum). Adaptation was considered indicated when daily positional variations enabled dose escalation to the target while maintaining duodenal constraints. Results: For fractions with ΔHD>0 (n=14, SBRT only), the mean interfraction duodenum dose decrease from simulation to treatment was 44±53 cGy (maximum 136 cGy). A correlation was found between ΔHD and dosimetric difference (R"2=0.82). No correlation was found between volume of overlap and dosimetric difference (R"2=0.31). For 89% of fractions, the duodenum remained overlapped with the target and the duodenal dose difference was negligible. The maximum observed indication for adaptation was for interfraction ΔHD=11.6 mm with potential for adaptive dose escalation of 136 cGy. Conclusion: This assessment showed that Hausdorff distance was a reasonable metric to use to

  6. TU-AB-BRA-11: Indications for Online Adaptive Radiotherapy Based On Dosimetric Consequences of Interfractional Pancreas-To-Duodenum Motion in MRI-Guided Pancreatic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mittauer, K; Rosenberg, S; Geurts, M; Bassetti, M; Wojcieszynski, A; Harari, P; Labby, Z; Hill, P; Paliwal, B; Bayouth, J [University of Wisconsin, School of Medicine and Public Health, Madison, WI (United States); Chen, I; Henke, L; Kashani, R; Parikh, P [Washington University School of Medicine, St. Louis, MO (United States); Olsen, J [University of Colorado- Denver, Aurora, CO (United States)

    2016-06-15

    Purpose: Dose limiting structures, such as the duodenum, render the treatment of pancreatic cancer challenging. In this multi-institutional study, we assess dosimetric differences caused by interfraction pancreas-to-duodenum motion using MR-IGRT to determine the potential impact of adaptive replanning. Methods: Ten patients from two institutions undergoing MRI-guided radiotherapy with conventional fractionation (n=5) or SBRT (n=5) for pancreatic cancer were included. Initial plans were limited by duodenal dose constraints of 50 Gy (0.5 cc)/31 Gy (0.1 cc) for conventional/SBRT with prescriptions of 30 Gy/5 fractions (SBRT) and 40–50 Gy/25 fractions (conventional). Daily volumetric MR images were acquired under treatment conditions on a clinical MR-IGRT system. The correlation was assessed between interfractional GTV-to-duodenum positional variation and daily recalculations of duodenal dose metrics. Positional variation was quantified as the interfraction difference in Hausdorff distance from simulation baseline (ΔHD) between the GTV and proximal duodenal surface, or volume overlap between GTV and duodenum for cases with HD{sub 0}=0 (GTV abutting duodenum). Adaptation was considered indicated when daily positional variations enabled dose escalation to the target while maintaining duodenal constraints. Results: For fractions with ΔHD>0 (n=14, SBRT only), the mean interfraction duodenum dose decrease from simulation to treatment was 44±53 cGy (maximum 136 cGy). A correlation was found between ΔHD and dosimetric difference (R{sup 2}=0.82). No correlation was found between volume of overlap and dosimetric difference (R{sup 2}=0.31). For 89% of fractions, the duodenum remained overlapped with the target and the duodenal dose difference was negligible. The maximum observed indication for adaptation was for interfraction ΔHD=11.6 mm with potential for adaptive dose escalation of 136 cGy. Conclusion: This assessment showed that Hausdorff distance was a reasonable

  7. Comparison between steel and lead shieldings for radiotherapy rooms regarding neutron doses to patients

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.G.; Rebello, W.F.; Andrade, E.R.; Medeiros, M.P.C.; Mendes, R.M.S.; Braga, K.L.; Gomes, R.G., E-mail: eng.cavaliere@gmail.com, E-mail: ggrprojetos@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, A.X., E-mail: ademir@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The NCRP Report No. 151, Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities, considers, in shielding calculations for radiotherapy rooms, the use of lead and/or steel to be applied on bunker walls. The NCRP Report calculations were performed foreseeing a better protection of people outside the radiotherapy room. However, contribution of lead and steel to patient dose should be taken into account for radioprotection purposes. This work presents calculations performed by MCNPX code in analyzing the Ambient Dose Equivalent due to neutron, H *(10){sub n}, within a radiotherapy room, in the patients area, considering the use of additional shielding of 1 TVL of lead or 1 TVL of steel, positioned at the inner faces of walls and ceiling of a bunker. The head of the linear accelerator Varian 2100/2300 C/D was modeled working at 18MeV, with 5 x 5 cm{sup 2}, 10 x 10 cm{sup 2}, 20 x 20 cm{sup 2}, 30 x 30 cm{sup 2} and 40 x 40 cm{sup 2} openings for jaws and MLC and operating in eight gantry's angles. This study shows that the use of lead generates an average value of H *(10){sub n} at patients area, 8.02% higher than the expected when using steel. Further studies should be performed based on experimental data for comparison with those from MCNPX simulation. (author)

  8. Comparison between steel and lead shieldings for radiotherapy rooms regarding neutron doses to patients

    International Nuclear Information System (INIS)

    Silva, M.G.; Rebello, W.F.; Andrade, E.R.; Medeiros, M.P.C.; Mendes, R.M.S.; Braga, K.L.; Gomes, R.G.

    2015-01-01

    The NCRP Report No. 151, Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities, considers, in shielding calculations for radiotherapy rooms, the use of lead and/or steel to be applied on bunker walls. The NCRP Report calculations were performed foreseeing a better protection of people outside the radiotherapy room. However, contribution of lead and steel to patient dose should be taken into account for radioprotection purposes. This work presents calculations performed by MCNPX code in analyzing the Ambient Dose Equivalent due to neutron, H *(10) n , within a radiotherapy room, in the patients area, considering the use of additional shielding of 1 TVL of lead or 1 TVL of steel, positioned at the inner faces of walls and ceiling of a bunker. The head of the linear accelerator Varian 2100/2300 C/D was modeled working at 18MeV, with 5 x 5 cm 2 , 10 x 10 cm 2 , 20 x 20 cm 2 , 30 x 30 cm 2 and 40 x 40 cm 2 openings for jaws and MLC and operating in eight gantry's angles. This study shows that the use of lead generates an average value of H *(10) n at patients area, 8.02% higher than the expected when using steel. Further studies should be performed based on experimental data for comparison with those from MCNPX simulation. (author)

  9. Radiotherapy and high-dose chemotherapy in advanced Ewing's tumors

    International Nuclear Information System (INIS)

    Pape, H.; Glag, M.; Gripp, S.; Wittkamp, M.; Schmitt, G.; Laws, H.J.; Kaik, B. van; Goebel, U.; Burdach, S.; Juergens, H.

    1999-01-01

    Background: Ewing's tumors are sensitive to radio- and chemotherapy. Patients with multifocal disease suffer a poor prognosis. Patients presenting primary bone marrow involvement or bone metastases at diagnosis herald a 3-year disease-free survival below 15%. The European Intergroup Cooperative Ewing's Sarcoma Study (EICESS) has established the following indications for high-dose therapy in advanced Ewing's tumors: Patients with primary multifocal bone disease, patients with early ( [de

  10. Uterine cervix cancer treatment in IIB, IIIA and IIIB stages with external radiotherapy versus external radiotherapy and scintiscanning of low dose. ION SOLCA. Years 1998-2000

    International Nuclear Information System (INIS)

    Sanchez, Doris; Falquez, Roberto

    2002-01-01

    We realized study of retrospective accomplished in course of years 1998-2000, reviewing clinical charts of statistical department of ION SOLCA. We reviewed 544 cases in 1998, 603 patients in 1999, and 630 cases in 2000. In the radiotherapy service, 133 patients received treatment with external radiotherapy between February 1998 to February 1999 in IIB, IIIA, IIIB stages and only 80 patients were treated with external radiotherapy and scintiscanning of low dose rate in the same stages between March 1999 to March 2000. (The author)

  11. Measuring dose from radiotherapy treatments in the vicinity of a cardiac pacemaker.

    Science.gov (United States)

    Peet, Samuel C; Wilks, Rachael; Kairn, Tanya; Crowe, Scott B

    2016-12-01

    This study investigated the dose absorbed by tissues surrounding artificial cardiac pacemakers during external beam radiotherapy procedures. The usefulness of out-of-field reference data, treatment planning systems, and skin dose measurements to estimate the dose in the vicinity of a pacemaker was also examined. Measurements were performed by installing a pacemaker onto an anthropomorphic phantom, and using radiochromic film and optically stimulated luminescence dosimeters to measure the dose in the vicinity of the device during the delivery of square fields and clinical treatment plans. It was found that the dose delivered in the vicinity of the cardiac device was unevenly distributed both laterally and anteroposteriorly. As the device was moved distally from the square field, the dose dropped exponentially, in line with out-of-field reference data in the literature. Treatment planning systems were found to substantially underestimate the dose for volumetric modulated arc therapy, helical tomotherapy, and 3D conformal treatments. The skin dose was observed to be either greater or lesser than the dose received at the depth of the device, depending on the treatment site, and so care should be if skin dose measurements are to be used to estimate the dose to a pacemaker. Square field reference data may be used as an upper estimate of absorbed dose per monitor unit in the vicinity of a cardiac device for complex treatments involving multiple gantry angles. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Quantification of dose uncertainties for the bladder in prostate cancer radiotherapy based on dominant eigenmodes

    Science.gov (United States)

    Rios, Richard; Acosta, Oscar; Lafond, Caroline; Espinosa, Jairo; de Crevoisier, Renaud

    2017-11-01

    In radiotherapy for prostate cancer the dose at the treatment planning for the bladder may be a bad surrogate of the actual delivered dose as the bladder presents the largest inter-fraction shape variations during treatment. This paper presents PCA models as a virtual tool to estimate dosimetric uncertainties for the bladder produced by motion and deformation between fractions. Our goal is to propose a methodology to determine the minimum number of modes required to quantify dose uncertainties of the bladder for motion/deformation models based on PCA. We trained individual PCA models using the bladder contours available from three patients with a planning computed tomography (CT) and on-treatment cone-beam CTs (CBCTs). Based on the above models and via deformable image registration (DIR), we estimated two accumulated doses: firstly, an accumulated dose obtained by integrating the planning dose over the Gaussian probability distribution of the PCA model; and secondly, an accumulated dose obtained by simulating treatment courses via a Monte Carlo approach. We also computed a reference accumulated dose for each patient using his available images via DIR. Finally, we compared the planning dose with the three accumulated doses, and we calculated local dose variability and dose-volume histogram uncertainties.

  13. Image guided radiotherapy: equipment specifications and performance - an analysis of the dosimetric consequences of anatomic variations during head-and-neck radiotherapy treatment

    International Nuclear Information System (INIS)

    Marguet, Maud

    2009-01-01

    Anatomic variations during head-and-neck radiotherapy treatment may compromise the delivery of the planned dose distribution, particularly in the case of IMRT treatments. The aim of this thesis was to establish 'dosimetric indicators' to identify patients who delivered dose deviates from the planned dose, to allow an eventual re-optimisation of the patient's dosimetry, if necessary, during the course of their radiotherapy treatment. These anatomic variations were monitored by regular acquisition of 3D patient images using an onboard imaging system, for which a rigorous quality control program was implemented. The patient dose distribution analysis and comparison was performed using a modified gamma index technique which was named gammaLSC3D. This improved gamma index technique quantified and identified the location of changes in the dose distribution in a stack of 2D images, with particular reference to the target volume (PTV) or organs at risk (parotids). The changes observed in the dose distribution for the PTV or parotids were then analysed and presented in the form of gamma-volume histograms in order to facilitate the follow up of dosimetric changes during the radiotherapy treatment. This analysis method has been automated, and is applicable in clinical routine to follow dose variations during head and neck radiotherapy treatment. (author) [fr

  14. Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments

    International Nuclear Information System (INIS)

    Tilly, David; Tilly, Nina; Ahnesjö, Anders

    2013-01-01

    Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions. A framework was developed where the dose mapping can be associated with a variable known uncertainty to simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to also study the dose mapping sensitivity to penumbra widths. The planning parameter most sensitive to the DIR uncertainty was found to be the target D 95 . We found that the registration mean absolute error needs to be ≤0.20 cm to obtain an uncertainty better than 3% of the calculated D 95 for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk. The DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the accumulated dose

  15. Image guided radiotherapy with the Cone Beam CT kV (ElektaTM): Experience of the Leon Berard Centre

    International Nuclear Information System (INIS)

    Pommier, P.; Gassa, F.; Lafay, F.; Claude, L.

    2009-01-01

    Image guide radiotherapy with the Cone Beam CT kV (C.B.C.T.-kV) developed by Elekta has been implemented at the centre Leon Berard in November 2006. The treatment procedure is presented and detailed for prostate cancer I.G.R.T. and non small cell lung cancer (N.S.C.L.C.) stereotactic radiotherapy (S.R.T.). C.B.C.T.-kV is routinely used for S.R.T., selected paediatric cancers, all prostate carcinomas, primitive brain tumours and head and neck cancers that do not require nodes irradiation. Thirty-five to 40 patients are treated within a daily 11-hours period. The general procedure for 3-dimensional images acquisition and their analysis is described. The C.B.C.T.-kV permitted to identify about 10% of prostate cancer patients for whom a positioning with bone-based 2-dimensional images only would have led to an unacceptable dose distribution for at least one session. S.R.T. is now used routinely for inoperable N.S.C.L.C.. The easiness of implementing C.B.C.T.-kV imaging and its expected medical benefit should lead to a rapid diffusion of this technology that is also submitted to prospective and multi centric medico-economical evaluations. (authors)

  16. Dermatologic radiotherapy and thyroid cancer. Dose measurements and risk quantification

    International Nuclear Information System (INIS)

    Goldschmidt, H.; Gorson, R.O.; Lassen, M.

    1983-01-01

    Thyroid doses for various dermatologic radiation techniques were measured with thermoluminescent dosimeters and ionization rate meters in an Alderson-Rando anthropomorphic phantom. The effects of changes in radiation quality and of the use or nonuse of treatment cones and thyroid shields were evaluated in detail. The results indicate that the potential risk of radiogenic thyroid cancer is very small when proper radiation protection measures are used. The probability of radiogenic thyroid cancer developing and the potential mortality risk were assessed quantitatively for each measurement. The quantification of radiation risks allows comparisons with risks of other therapeutic modalities and the common hazards of daily life

  17. Low-Dose Involved-Field Radiotherapy as Alternative Treatment of Nodular Lymphocyte Predominance Hodgkin's Lymphoma

    International Nuclear Information System (INIS)

    Haas, Rick L.M.; Girinsky, Theo; Aleman, Berthe; Henry-Amar, Michel; Boer, Jan-Paul de; Jong, Daphne de

    2009-01-01

    Purpose: Nodular lymphocyte predominance Hodgkin's lymphoma is a very rare disease, characterized by an indolent clinical course, with sometimes very late relapses occurring in a minority of all patients. Considerable discussion is ongoing on the treatment of primary and relapsed disease. Patients and Methods: A group of 9 patients were irradiated to a dose of 4 Gy on involved areas only. Results: After a median follow-up of 37 months (range, 6-66), the overall response rate was 89%. Six patients had complete remission (67%), two had partial remission (22%), and one had stable disease (11%). Of 8 patients, 5 developed local relapse 9-57 months after radiotherapy. No toxicity was noted. Conclusion: In nodular lymphocyte predominance Hodgkin's lymphoma, low-dose radiotherapy provided excellent response rates and lasting remissions without significant toxicity.

  18. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  19. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Chris; Wierzbicki, Marcin [McMaster University, Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITV dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.

  20. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    Science.gov (United States)

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  1. Fetal dose in radiology, nuclear medicine and radiotherapy; Dosis fetal en radiodiagnostico, medicina nuclear y radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, F. J.; Martinez, L. C.; Candela, C.

    2015-07-01

    Sometimes irradiation of the fetus in the mother's womb is inevitable in the field of diagnostic radiology, nuclear medicine and radiotherapy, either through ignorance a priori status of this pregnancy, either because for clinical reasons it is necessary to perform the radiological study or treatment. In the first cases, know the dose at which it has exposed the fetus is essential when assessing the associated risk, while in the second it is when assessing the justification of the test. (Author)

  2. Defining a dose-response relationship for prostate external beam radiotherapy

    International Nuclear Information System (INIS)

    Trada, Yuvnik; Plank, Ash; Martin, Jarad

    2013-01-01

    We aimed to quantify a relationship between radiotherapy dose and freedom from biochemical failure (FFBF) in low- and intermediate-risk prostate cancer. To reduce confounding we used data with a standardised end–point, mature follow-up, low competing risk of metastatic failure, conventional fractionation and separate reporting for outcomes with hormonal therapy (HT). A systematic review of the literature was carried out. Studies that reported the use of radiotherapy alone in 1.8–2Gy fractions in low- and intermediate-risk prostate cancer were included. The primary end–point was Phoenix definition 5-year FFBF. A logistic regression was used to quantify the dose–response relationship. Data from eight studies with 3037 patients met the inclusion criteria. The data from 810 low-risk patients and 2245 intermediate-risk patients were analysed. A strong association between radiotherapy dose and FFBF was found in low- and intermediate-risk patients managed with radiotherapy alone. In low-risk patients not treated with HT the dose required to achieve 50% biochemical tumour control (TCD 50 ) is 52.0 Gy and the slope of the dose–response curve at TCD 50 (γ 50 ) is 2.1%/Gy. At 78Gy this represented a FFBF of 90.3%. In intermediate-risk patients not treated with HT the TCD 50 is 64.7Gy and γ 50 is 3.2%/Gy. At 78 Gy this translated into a FFBF of 84.3%. HT had a small effect for low-risk patients and an inconsistent effect for intermediate-risk men. A strong association was found between radiation dose and biochemical outcome in both low- and intermediate-risk patients. Standardised reporting of results from future studies will make future analyses more robust.

  3. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  4. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Ivkovic, A.; Faj, D.; Rajevac, V.; Sobat, H.; Jurkovic, S.

    2011-01-01

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CI P TV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CI P TV fell under 97 %. Surprisingly, HI was not as sensitive as CI P TV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  5. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  6. Radiotherapy

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kulikov, V.A.; Mardynskij, Yu.S.

    1984-01-01

    The technique for roentgenotopometric and medicamentous preparation of patients for radiotherapy has been reported in detail. The features of planning and performing of remote, intracavitary and combined therapy in urinary bladder cancer are considered. The more effective methods of radiotherapy have been proposed taking into account own experience as well as literature data. The comparative evaluation of treatment results and prognosis are given. Radiation pathomorphism of tumors and tissues of urinary bladder is considered in detail. The problems of diagnosis, prophylaxis and treatment of complications following radiodiagnosis and radiotherapy in patients with urinary bladder cancer are illustrated widely

  7. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    Science.gov (United States)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original

  8. Efficacy of bio-effect dose and overall treatment time in radiotherapy of carcinoma of cervix: a prospective study

    International Nuclear Information System (INIS)

    Umbarkar, Rahul B.; Singh, Sanjay; Singh, K.K.; Shrivastava, Rajeev; Sarje, Mukund; Supe, Sanjay S.

    2008-01-01

    To study the response of tumour and early rectal complications in patients of cervical cancer who underwent radiotherapy on the basis of biological effective dose (BED) and overall treatment time (OTT)

  9. Radiation dose to contra lateral breast during treatment of breast malignancy by radiotherapy

    Directory of Open Access Journals (Sweden)

    Chougule Arun

    2007-01-01

    Full Text Available Aims: External beam radiotherapy is being used regularly to treat the breast malignancy postoperatively. The contribution of collimator leakage and scatter radiation dose to contralateral breast is of concern because of high radio sensitivity of breast tissue for carcinogenesis. This becomes more important when the treated cancer breast patient is younger than 45 years and therefore the contralateral breast must be treated as organ at risk. Quantification of contralateral dose during primary breast irradiation is helpful to estimate the risk of radiation induced secondary breast malignancy. Materials and Methods: In present study contralateral breast dose was measured in 30 cancer breast patients undergoing external beam therapy by Co-60 teletherapy machine. Postoperative radiotherapy was delivered by medial and lateral tangential fields on alternate days in addition to supraclavicle field daily with 200 cGy/F to a total dose of 5000 cGy in 25 fractions. CaSO4: Dy themoluminescence dosimeter discs were employed for these measurements. Three TLD discs were put on the surface of skin of contra lateral breast, one at the level of nipple and two at 3 cms away from nipple on both side along the midline for each field. At the end treatment of each filed, TLD discs were removed and measured for dose after 24h on Thelmador - 6000 TLD reader. Results: The dose at the contra lateral breast nipple was to be 152.5 to 254.75 cGy for total primary breast dose of 5000 cGy in 25 equal fractions which amounted to 3.05-6.05% of total dose to diseased breast. Further it was observed that the maximum contribution of contralateral breast dose was due to medical tangential half blocked field. Conclusion: CaSO4; Dy thermoluminescence dosimetry is quite easy, accurate and convenient method to measure the contra lateral breast dose.

  10. High-dose radiotherapy alone for patients with T4-stage laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mucha-Malecka, A. [Maria Sklodowska-Curie Memorial Institute, Krakow (Poland). Dept. of Radiation Oncology; Skladowski, K. [Maria Sklodowska-Curie Memorial Institute, Gliwice (Poland). Dept. of Radiation Oncology

    2013-08-15

    Background and purpose: The purpose of this retrospective study was to report on the efficacy of radiotherapy alone in patients with T4-stage laryngeal cancer and to establish the prognostic value of (a) the size and location of the extralaryngeal tumor extensions and (b) of emergency tracheostomy. Patients and methods: A group of 114 patients were treated with definitive radiotherapy between 1990 and 1996. The piriform recess was involved in 37 cases (33 %), the base of the tongue and glosso-epiglottic vallecula in 34 cases (30 %), and the hypopharyngeal wall in 10 cases (9 %). In 16 cases (14 %), emergency tracheostomy was performed before radiotherapy. The mean total dose was 68 Gy (range, 60-77.6 Gy). The mean treatment time was 49 days (range, 42-74 days). Results: Actuarial 3-year local control (LC) was noted in 42 % of patients, disease-free survival (DFS) in 35 %, and overall survival (OS) in 40 %. The best prognosis was for the lesion suspected of cartilage infiltration: 56 % 3-year LC. The worst results were noted in the cases with massive infiltrations spreading from the larynx through the hypopharynx: 13 % 3-year LC. Emergency tracheostomy before radiotherapy was significantly connected with the worst treatment results (p = 0.000): 3-year LC in patients with tracheostomy was 0 % vs. 48 % in patients without tracheostomy. Conclusion: Conventional radiotherapy of T4 laryngeal cancer is a method of treatment with limited effectiveness. The efficacy of radiotherapy is dependent on the location and extent of extralaryngeal infiltrations. Emergency tracheostomy is a prognostic factor connected with the worst prognosis. (orig.)

  11. High-dose radiotherapy alone for patients with T4-stage laryngeal cancer

    International Nuclear Information System (INIS)

    Mucha-Malecka, A.; Skladowski, K.

    2013-01-01

    Background and purpose: The purpose of this retrospective study was to report on the efficacy of radiotherapy alone in patients with T4-stage laryngeal cancer and to establish the prognostic value of (a) the size and location of the extralaryngeal tumor extensions and (b) of emergency tracheostomy. Patients and methods: A group of 114 patients were treated with definitive radiotherapy between 1990 and 1996. The piriform recess was involved in 37 cases (33 %), the base of the tongue and glosso-epiglottic vallecula in 34 cases (30 %), and the hypopharyngeal wall in 10 cases (9 %). In 16 cases (14 %), emergency tracheostomy was performed before radiotherapy. The mean total dose was 68 Gy (range, 60-77.6 Gy). The mean treatment time was 49 days (range, 42-74 days). Results: Actuarial 3-year local control (LC) was noted in 42 % of patients, disease-free survival (DFS) in 35 %, and overall survival (OS) in 40 %. The best prognosis was for the lesion suspected of cartilage infiltration: 56 % 3-year LC. The worst results were noted in the cases with massive infiltrations spreading from the larynx through the hypopharynx: 13 % 3-year LC. Emergency tracheostomy before radiotherapy was significantly connected with the worst treatment results (p = 0.000): 3-year LC in patients with tracheostomy was 0 % vs. 48 % in patients without tracheostomy. Conclusion: Conventional radiotherapy of T4 laryngeal cancer is a method of treatment with limited effectiveness. The efficacy of radiotherapy is dependent on the location and extent of extralaryngeal infiltrations. Emergency tracheostomy is a prognostic factor connected with the worst prognosis. (orig.)

  12. The Effect of Breast Reconstruction Prosthesis on Photon Dose Distribution in Breast Cancer Radiotherapy

    Directory of Open Access Journals (Sweden)

    fatemeh sari

    2017-12-01

    Full Text Available Introduction: Siliconeprosthetic implants are commonlyutilizedfor tissue replacement and breast augmentation after mastectomy. On the other hand, some patients require adjuvant radiotherapy in order to preventlocal-regional recurrence and increment ofthe overall survival. In case of recurrence, the radiation oncologist might have to irradiate the prosthesis.The aim of this study was to evaluate the effect of silicone prosthesis on photon dose distribution in breast radiotherapy. Materials and Methods: The experimental dosimetry was performed using theprosthetic breast phantom and the female-equivalent mathematical chest phantom. A Computerized Tomographybased treatment planning was performedusing a phantom and by CorePlan Treatment Planning System (TPS. For measuring the absorbed dose, thermoluminescent dosimeter(TLD chips (GR-207A were used. Multiple irradiations were completed for all the TLD positions, and the dose absorbed by the TLDs was read by a lighttelemetry (LTM reader. Results: Statistical comparisons were performed between the absorbed dosesassessed by the TLDs and the TPS calculations forthe same sites. Our initial resultsdemonstratedanacceptable agreement (P=0.064 between the treatment planning data and the measurements. The mean difference between the TPS and TLD resultswas 1.99%.The obtained findings showed that radiotherapy is compatible withsilicone gel prosthesis. Conclusion: It could be concludedthat the siliconbreast prosthesis has no clinicallysignificant effectondistribution of a 6 MV photon beam for reconstructed breasts.

  13. Dose characteristics of in-house-built collimators for stereotactic radiotherapy with a linear accelerator

    International Nuclear Information System (INIS)

    Norrgaard, F. Stefan E.; Kulmala, Jarmo A.J.; Minn, Heikki R.I.; Sipilae, Petri M.

    1998-01-01

    Dose characteristics of a stereotactic radiotherapy unit based on a standard Varian Clinac 4/100 4 MV linear accelerator, in-house-built Lipowitz collimators and the SMART stereotactic radiotherapy treatment planning software have been determined. Beam collimation is constituted from the standard collimators of the linear accelerator and a tertiary collimation consisting of a replaceable divergent Lipowitz collimator. Four collimators with isocentre diameters of 15, 25, 35 and 45 mm, respectively, were constructed. Beam characteristics were measured in air, acrylic or water with ionization chamber, photon diode, electron diode, diamond detector and film. Monte Carlo simulation was also applied. The radiation leakage under the collimators was less than 1% at 50 mm depth in water. Specific beam characteristics for each collimator were imported to SMART and dose planning with five non-coplanar converging 140 deg. arcs separated by 36 deg. angles was performed for treatment of a RANDO phantom. Dose verification was made with TLD and radiochromic film. The in-house-built collimators were found to be suitable for stereotactic radiotherapy and patient treatments with this system are in progress. (author)

  14. SU-F-T-59: The Effect of Radiotherapy Dose On Immunoadjuvants

    International Nuclear Information System (INIS)

    Moreau, M; Yasmin-Karim, S; Hao, Y; Ngwa, W

    2016-01-01

    Purpose: Combining radiotherapy with immunotherapy is a promising approach to enhance treatment outcomes for cancer patients. This in-vitro study investigated which radiotherapy doses could adversely affect the function of anti-CD40 mAb, which is one of the key immunoadjuvants under investigations for priming such combination therapy. Methods: Human monocyte derived THP-1 cells were treated with 100ng/mL of PMA in chamber slides to differentiate into macrophage. The THP-1 differentiated macrophages were treated with 2uL/ml of the anti-CD40 mAb and incubated at 37°C and 5% CO2 for 24 hours. Anti-CD40 mAb treated cells were then irradiated at different doses of x-rays: (0, 2, 4, 6, 8, and 12) Gy using the Small Animal Radiotherapy Research Platform (SARRP). After radiation, the cells were left at 4°C for 2 hours followed by immunofluorescence assay. A Nikon inverted live-cell imaging system with fluorescence microscope was used to image the cells mounted on a slide fixed with Dapi. For comparison, an ELISA assay was performed with the antibody added to 3mL of PBS in multiple 10mm dishes. The 10mm dishes were irradiated at different x-ray dose: (0, 2, 4, 6, 8. 10, 12, and 15) Gy using the SARRP. Results: The anti-CD40 mAb activating the macrophages starts to lose their viability due to radiation dose between 8Gy to 12Gy as indicated by the immunofluorescence assay. The ELISA assay, also indicated that such high doses could lead to loss of the mAb’s viability. Conclusion: This work suggests that high doses like those employed during Stereotactic Ablative Radiotherapy may affect the viability of immunoadjuvants such as anti-CD 40. This study avails in-vivo experiments combining radiotherapy with anti-cd40 to get synergistic outcomes, including in the treatment of metastatic disease.

  15. SU-F-T-59: The Effect of Radiotherapy Dose On Immunoadjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, M [Dana Farber Cancer Institute, Boston, MA (United States); Yasmin-Karim, S [Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Hao, Y [University of Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Combining radiotherapy with immunotherapy is a promising approach to enhance treatment outcomes for cancer patients. This in-vitro study investigated which radiotherapy doses could adversely affect the function of anti-CD40 mAb, which is one of the key immunoadjuvants under investigations for priming such combination therapy. Methods: Human monocyte derived THP-1 cells were treated with 100ng/mL of PMA in chamber slides to differentiate into macrophage. The THP-1 differentiated macrophages were treated with 2uL/ml of the anti-CD40 mAb and incubated at 37°C and 5% CO2 for 24 hours. Anti-CD40 mAb treated cells were then irradiated at different doses of x-rays: (0, 2, 4, 6, 8, and 12) Gy using the Small Animal Radiotherapy Research Platform (SARRP). After radiation, the cells were left at 4°C for 2 hours followed by immunofluorescence assay. A Nikon inverted live-cell imaging system with fluorescence microscope was used to image the cells mounted on a slide fixed with Dapi. For comparison, an ELISA assay was performed with the antibody added to 3mL of PBS in multiple 10mm dishes. The 10mm dishes were irradiated at different x-ray dose: (0, 2, 4, 6, 8. 10, 12, and 15) Gy using the SARRP. Results: The anti-CD40 mAb activating the macrophages starts to lose their viability due to radiation dose between 8Gy to 12Gy as indicated by the immunofluorescence assay. The ELISA assay, also indicated that such high doses could lead to loss of the mAb’s viability. Conclusion: This work suggests that high doses like those employed during Stereotactic Ablative Radiotherapy may affect the viability of immunoadjuvants such as anti-CD 40. This study avails in-vivo experiments combining radiotherapy with anti-cd40 to get synergistic outcomes, including in the treatment of metastatic disease.

  16. The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results

    International Nuclear Information System (INIS)

    Ott, O.J.; Hertel, S.; Gaipl, U.S.; Frey, B.; Schmidt, M.; Fietkau, R.

    2014-01-01

    To evaluate the long-term efficacy of pain reduction by two dose-fractionation schedules for radiotherapy of painful shoulder syndrome. Between February 2006 and February 2010, 312 evaluable patients were recruited for this prospective trial. All patients received low-dose orthovoltage radiotherapy. One course consisted of 6 fractions in 3 weeks. In the case of insufficient pain remission after 6 weeks, a second course was administered. Patients were randomly assigned to one of two groups to receive single doses of either 0.5 or 1.0 Gy. Endpoint was pain reduction. Pain was measured before radiotherapy, as well as immediately after (early response), 6 weeks after (delayed response) and approximately 3 years after (long-term response) completion of radiotherapy using a questionnaire-based visual analogue scale (VAS) and a comprehensive pain score (CPS). Median follow-up was 35 months (range 11-57). The overall early, delayed and long-term response rates for all patients were 83, 85 and 82%, respectively. The mean VAS scores before treatment and those for early, delayed and long-term response in the 0.5- and 1.0-Gy groups were 56.8±23.7 and 53.2±21.8 (p=0.16); 38.2±36.1 and 34.0±24.5 (p=0.19); 33.0±27.2 and 23.7±22.7 (p=0.04) and 27.9±25.8 and 32.1±26.9 (p=0.25), respectively. The mean CPS values before treatment and those for early, delayed and long-term response were 9.7±3.0 and 9.5±2.7 (p=0.31); 6.1±3.6 and 5.4±3.6 (p=0.10); 5.3±3.7 and 4.1±3.7 (p=0.05) and 4.0±3.9 and 5.3±4.4 (p=0.05), respectively. No significant differences in the quality of the long-term response were found between the 0.5- and 1.0-Gy arms (p=0.28). Radiotherapy is an effective treatment for the management of benign painful shoulder syndrome. For radiation protection reasons, the dose for a radiotherapy series should not exceed 3.0 Gy. (orig.)

  17. MRI-guided tumor tracking in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Jiang, Steve B [Center for Advanced Radiotherapy Technology and Department of Radiation Oncology, University of California San Diego, 3960 Health Sciences Dr., La Jolla, CA 92093-0865 (United States); Du, Jiang, E-mail: lcervino@ucsd.edu [Department of Radiology, University of California San Diego, 200 West Arbor Dr., San Diego, CA 92103-8226 (United States)

    2011-07-07

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error e and the error at 95% confidence level e{sub 95} were evaluated for each model. The ANN model led to e = 1.5 mm and e{sub 95} = 4.2 mm, while TM led to e = 0.6 mm and e{sub 95} = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  18. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  19. Dose deviations caused by positional inaccuracy of multileaf collimator in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Wang, H.C.; Chui, C.S.; Tsai, H.Y.; Chen, C.H.; Tsai, L.F.

    2008-01-01

    Introduction: Multileaf collimator (MLC) is currently a widely used system in the delivery of intensity modulated radiotherapy (IMRT). The accuracy of the multileaf position plays an important role in the final outcome of the radiation treatment. According to ICRU recommendation, a dose inaccuracy over than 5% of prescribed dose affects treatment results. In order to quantify the influence of leaf positional errors on dose distribution, we set different MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases. Two-dimensional dose distributions of radiotherapy plans with different leaf displacements generated with a commercial treatment planning system. And verification films were used to measure two-dimensional dose distributions. Then a computerized dose comparison system will be introduced to analyze the dose deviations. Materials/methods: We assumed MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases by simulating the different leaf displacements with a commercial treatment planning system. Then we transferred the treatment plans with different leaf offset that may be happened in clinical situation to linear accelerator. Verification films (Kodat EDR2) were well positioned within solid water phantoms to be irradiated by the simulated plans. The films were scanned to display two-dimensional dose distributions. Finally, we compared with the dose distributions with MLC positional inaccuracy by a two-dimensional dose comparison software to analyze the deviations in Gamma indexes and normalized agreement test (NAT) values. Results: In general, the data show that larger leaf positional error induces larger dose error. More fields used for treatment generate lesser errors. Besides, leaf position relative to a field influences the degree of dose error. A leaf lying close to the border of a field leads to a more significant dose deviation than a leaf in the center. Algorithms for intensity modulation also affect

  20. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    International Nuclear Information System (INIS)

    Holmes, Timothy W.; Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-01-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management

  1. Risk of a second malignant neoplasm after cancer in childhood treated with radiotherapy: correlation with the integral dose

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, F.; Rubino, C.; Guerin, S.; de Vathaire, F. [National Institute of Public Health and Medical Research (INSERM) Unit 605, Institut Gustave-Roussy, Villejuif (France); Diallo, I.; Samand, A. [National Institute of Public Health and Medical Research (INSERM) Unit 605, Institut Gustave-Roussy, Villejuif, (France); Medical Physics and Radiotherapy Departments, Institut Gustave-Roussy, Villejuif (France); Hawkins, M. [Centre for Childhood Cancer Survivor Studies, University of Birmingham, Birmingham (United Kingdom); Oberlin, O. [Paediatrics Department, Institut Gustave-Roussy, Villejuif (France); Lefkopoulos, D. [Medical Physics and Radiotherapy Departments, Institut Gustave-Roussy, Villejuif (France)

    2006-07-01

    In the cohort, among patients who had received radiotherapy, only those who had received the highest integral dose had a higher risk. Among the other patients, including 80% of the variability of the integral dose, no increased risk was evidenced. Thus, the integral dose in the study cannot be considered as a good predictor of later risk. (N.C.)

  2. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage

    DEFF Research Database (Denmark)

    Aarup, Lasse Rye; Nahum, Alan E; Zacharatou, Christina

    2009-01-01

    PURPOSE: To evaluate against Monte-Carlo the performance of various dose calculations algorithms regarding lung tumour coverage in stereotactic body radiotherapy (SBRT) conditions. MATERIALS AND METHODS: Dose distributions in virtual lung phantoms have been calculated using four commercial Treatm...... target dose, the AAA(Ecl) and CCC(OMP) algorithms appear to be adequate alternatives to MC....

  3. Risk of a second malignant neoplasm after cancer in childhood treated with radiotherapy: correlation with the integral dose

    International Nuclear Information System (INIS)

    Nguyen, F.; Rubino, C.; Guerin, S.; de Vathaire, F.; Diallo, I.; Samand, A.; Hawkins, M.; Oberlin, O.; Lefkopoulos, D.

    2006-01-01

    In the cohort, among patients who had received radiotherapy, only those who had received the highest integral dose had a higher risk. Among the other patients, including 80% of the variability of the integral dose, no increased risk was evidenced. Thus, the integral dose in the study cannot be considered as a good predictor of later risk. (N.C.)

  4. Extreme Hypofractionated Image-Guided Radiotherapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Carlo Greco

    2013-09-01

    Full Text Available An emerging body of data suggests that hypofractionated radiation schedules, where a higher dose per fraction is delivered in a smaller number of sessions, may be superior to conventional fractionation schemes in terms of both tumour control and toxicity profile in the management of adenocarcinoma of the prostate. However, the optimal hypofractionation scheme is still the subject of scientific debate. Modern computer-driven technology enables the safe implementation of extreme hypo fractionation (often referred to as stereotactic body radiation therapy [SBRT]. Several studies are currently being conducted to clarify the yet unresolved issues regarding treatment techniques and fractionation regimens. Recently, the American Society for Radiation Oncology (ASTRO issued a model policy indicating that data supporting the use of SBRT for prostate cancer have matured to a point where SBRT could be considered an appropriate alternative for select patients with low-to-intermediate risk disease. The present article reviews some of the currently available data and examines the impact of tracking technology to mitigate intra-fraction target motion, thus, potentially further improving the clinical outcomes of extreme hypofractionated radiation therapy in appropriately selected prostate cancer patients. The Champalimaud Centre for the Unknown (CCU’s currently ongoing Phase I feasibility study is described; it delivers 45 Gy in five fractions using prostate fixation via a rectal balloon, and urethral sparing via catheter placement with on-line intra-fractional motion tracking through beacon transponder technology.

  5. Mutant frequency of radiotherapy technicians appears to be associated with recent dose of ionizing radiation

    International Nuclear Information System (INIS)

    Messing, K.; Ferraris, J.; Bradley, W.E.; Swartz, J.; Seifert, A.M.

    1989-01-01

    The frequency of hypoxanthine phosphoribosyl transferase (HPRT) mutants among peripheral T-lymphocytes of radiotherapy technicians primarily exposed to 60Co was measured by the T-cell cloning method. Mutant frequencies of these technicians in 1984 and 1986 were significantly higher than those of physiotherapy technicians who worked in a neighboring service, and correlated significantly with thermoluminescence dosimeter readings recorded during the 6 mo preceding mutant frequency determination. Correlations decreased when related to dose recorded over longer time intervals. HPRT mutant frequency determination in peripheral lymphocytes is a good measure of recently received biologically effective radiation dose in an occupationally exposed population

  6. Mutant frequency of radiotherapy technicians appears to be associated with recent dose of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Messing, K.; Ferraris, J.; Bradley, W.E.; Swartz, J.; Seifert, A.M. (Universite du Quebec a Montreal (Canada))

    1989-10-01

    The frequency of hypoxanthine phosphoribosyl transferase (HPRT) mutants among peripheral T-lymphocytes of radiotherapy technicians primarily exposed to 60Co was measured by the T-cell cloning method. Mutant frequencies of these technicians in 1984 and 1986 were significantly higher than those of physiotherapy technicians who worked in a neighboring service, and correlated significantly with thermoluminescence dosimeter readings recorded during the 6 mo preceding mutant frequency determination. Correlations decreased when related to dose recorded over longer time intervals. HPRT mutant frequency determination in peripheral lymphocytes is a good measure of recently received biologically effective radiation dose in an occupationally exposed population.

  7. Salvage high-dose-rate brachytherapy for local prostate cancer recurrence after radical radiotherapy

    Directory of Open Access Journals (Sweden)

    V. A. Solodkiy

    2016-01-01

    Full Text Available Studies salvage interstitial radiation therapy for recurrent prostate cancer, launched at the end of the XX century. In recent years, more and more attention is paid to high-dose-rate brachytherapy (HDR-BT as a method of treating local recurrence.The purpose of research – preliminary clinical results of salvage high-dose-rate brachytherapy applied in cases of suspected local recurrence or of residual tumour after radiotherapy.Preliminary findings indicate the possibility of using HDR-BT, achieving local tumor control with low genitourinary toxicity.

  8. Evaluation of a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Imae, Toshikazu; Takenaka, Shigeharu; Saotome, Naoya

    2016-01-01

    The purpose of this study was to evaluate a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT). VMAT is capable of acquiring respiratory signals derived from projection images and machine parameters based on machine logs during VMAT delivery. Dose distributions were reconstructed from the respiratory signals and machine parameters in the condition where respiratory signals were without division, divided into 4 and 10 phases. The dose distribution of each respiratory phase was calculated on the planned four-dimensional CT (4DCT). Summation of the dose distributions was carried out using deformable image registration (DIR), and cumulative dose distributions were compared with those of the corresponding plans. Without division, dose differences between cumulative distribution and plan were not significant. In the condition Where respiratory signals were divided, dose differences were observed over dose in cranial region and under dose in caudal region of planning target volume (PTV). Differences between 4 and 10 phases were not significant. The present method Was feasible for evaluating cumulative dose distribution in VMAT-SBRT using 4DCT and DIR. (author)

  9. In vivo measurement of radiation dose during radiotherapy in breast cancer patients using MOSFET dosimeter

    International Nuclear Information System (INIS)

    Wang Lili; Tu Yu; Zhou Juying; Lu Ye; Xu Xiaoting; Li Li; Qin Songbing

    2011-01-01

    Objective: The purpose of the study was to observe and analysis the actual dosage of patients with breast cancer using metal oxide semiconductor field effect transistor (MOSFET) detector. Methods: First, Phantom measurements were performed to investigate dose distribution in the area of the junction in a half-field matching method and the influence of factors related to the accelerator. In vivo dose measurements were performed for patients with breast cancer to investigate the skin dose and the junction of supraclavicular-axillary field and tangential field in 6 MV X-ray beams. Results: Phantom measurements showed that the relative deviation in the junction were within ±3%, and the dose distributions in the junction area depended on the matching field direction (x or y). In vivo measurement of tangential region for patients showed that, the maximum dose deviation between measurement and calculation was -30.39%,the minimum deviation was -18.85%, the average dose deviation was -24.76%. The dose deviation of tangential fields for patients with breast-conserving surgery was larger than that patients with radical surgery (t =2.40, P<0.05), while dose deviation of supraclavicular-axillary fields was not significantly different. The average values of 15 fraction in the junction area showed more stable than one individual measurement. Conclusions: It is important to real-time, in vivo measurement of radiation dose during radiotherapy in patients with breast cancer, and change treatment plan in time, to ensure the accuracy of target dose. (authors)

  10. Clinical Outcomes of Patients Receiving Integrated PET/CT-Guided Radiotherapy for Head and Neck Carcinoma

    International Nuclear Information System (INIS)

    Vernon, Matthew R.; Maheshwari, Mohit; Schultz, Christopher J.; Michel, Michelle A.; Wong, Stuart J.; Campbell, Bruce H.; Massey, Becky L.; Wilson, J. Frank; Wang Dian

    2008-01-01

    Purpose: We previously reported the advantages of 18 F-fluorodeoxyglucose-positron emission tomography (PET) fused with CT for radiotherapy planning over CT alone in head and neck carcinoma (HNC). The purpose of this study was to evaluate clinical outcomes and the predictive value of PET for patients receiving PET/CT-guided definitive radiotherapy with or without chemotherapy. Methods and Materials: From December 2002 to August 2006, 42 patients received PET/CT imaging as part of staging and radiotherapy planning. Clinical outcomes including locoregional recurrence, distant metastasis, death, and treatment-related toxicities were collected retrospectively and analyzed for disease-free and overall survival and cumulative incidence of recurrence. Results: Median follow-up from initiation of treatment was 32 months. Overall survival and disease-free survival were 82.8% and 71.0%, respectively, at 2 years, and 74.1% and 66.9% at 3 years. Of the 42 patients, seven recurrences were identified (three LR, one DM, three both LR and DM). Mean time to recurrence was 9.4 months. Cumulative risk of recurrence was 18.7%. The maximum standard uptake volume (SUV) of primary tumor, adenopathy, or both on PET did not correlate with recurrence, with mean values of 12.0 for treatment failures vs. 11.7 for all patients. Toxicities identified in those patients receiving intensity modulated radiation therapy were also evaluated. Conclusions: A high level of disease control combined with favorable toxicity profiles was achieved in a cohort of HNC patients receiving PET/CT fusion guided radiotherapy plus/minus chemotherapy. Maximum SUV of primary tumor and/or adenopathy was not predictive of risk of disease recurrence

  11. Feasibility of Tomotherapy-based image-guided radiotherapy to reduce aspiration risk in patients with non-laryngeal and non-pharyngeal head and neck cancer.

    Directory of Open Access Journals (Sweden)

    Nam P Nguyen

    Full Text Available PURPOSE: The study aims to assess the feasibility of Tomotherapy-based image-guided radiotherapy (IGRT to reduce the aspiration risk in patients with non-laryngeal and non-hypopharyngeal cancer. A retrospective review of 48 patients undergoing radiation for non-laryngeal and non-hypopharyngeal head and neck cancers was conducted. All patients had a modified barium swallow (MBS prior to treatment, which was repeated one month following radiotherapy. Mean middle and inferior pharyngeal dose was recorded and correlated with the MBS results to determine aspiration risk. RESULTS: Mean pharyngeal dose was 23.2 Gy for the whole group. Two patients (4.2% developed trace aspiration following radiotherapy which resolved with swallowing therapy. At a median follow-up of 19 months (1-48 months, all patients were able to resume normal oral feeding without aspiration. CONCLUSION AND CLINICAL RELEVANCE: IGRT may reduce the aspiration risk by decreasing the mean pharyngeal dose in the presence of large cervical lymph nodes. Further prospective studies with IGRT should be performed in patients with non-laryngeal and non-hypopharyngeal head and neck cancers to verify this hypothesis.

  12. The precision of radiotherapy in Gliwice, Poland, estimated by in vivo dose measurements

    International Nuclear Information System (INIS)

    Orlef, A.; Lobodziec, W.; Maniakowski, Z.

    1995-01-01

    The aim of this work was to evaluate the precision of irradiation using gamma Co-60 Philips Unites and linear accelerators Neptun 10p and Saturne II+ which generate X-rays of 9MV and 23MV respectively. This work has been undertaken for the reason that the effect of radiotherapy of cancer is strongly dependent of the precision of the dose delivery to a patient. The in vivo dose measurements were performed using a p-type silicon diodes (EDE-5, EDP-20, EDP-30) connected to a DPD-510 electrometer (Scanditronix). The diodes were calibrated by comparison their response to a 0.6cm 3 ionization chamber (NE 2571) placed at the relevant depth in the phantom. The entrance and exit dose calibration factors have been determined for reference conditions (constant SSD, field, temperature, ...). For conditions different from reference one the correction factors have been evaluated. The 855 in vivo dose measurements of entrance dose were performed. The histograms of percentage differences between measured and planed entrance dose has been constructed and analyzed. The average values of such differences were: -1.3%, 4.0%, -0.9% for gamma Co-60, X 9MV, X 23MV, respectively. These values can be interpreted as systematic uncertainties. The standard deviations (SD) were found as: 3.1%, 4.1%, 3.5%. These parameters can be considered as a random uncertainties. The 546 cases of dose at the reference point for head and neck cancer have been evaluated taking into account the entrance and exit measured doses. The average difference between those values and planned one was 1.3% and SD = 5.1%. There were observed the changes of the dimensions of the irradiated tissue block during the radiotherapy. This had a significant influence on the differences between delivered (measured) and planed doses at reference point

  13. Agreement of quadratic and CRE models in predicting the late effects of continuous low dose-rate radiotherapy; and reply

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.

    1986-01-01

    These letters discuss the problems associated with the fact that the normal tissue isoeffect formulae based on the Ellis equation (1969) do not correctly account for the late-occurring effects of fractionated radiotherapy, and with the extension of the linear quadratic model to include continuous low dose-rate radiotherapy with constant or decaying sources by R.G. Dale (1985). J.A. O'Donoghue points out that the 'late effects' and CRE curves correspond closely, whilst the 'acute effects; and CRE curves are in obvious disagreement. For continuous low-dose-rate radiotherapy, the CRE and late effects quadratic model are in agreement. Useful bibliography. (U.K.)

  14. Environmental dose level survey of radiotherapy center in large cancer hospital

    International Nuclear Information System (INIS)

    Wan Bin; Zhong Hailuo; Wu Dake; Li Jian; Wang Pei; Qi Guohai; Huang Renbing; Lang Jinyi

    2009-01-01

    Objective: To investigate and analyze the radiation dosage around the working environment in radiotherapy centre affiliated to Sichuan cancer hospital in the western China. Methods: In 60 days, we have continuously monitored the accumulated dose that absorbed by doctors, nurses, technicians, physicists and engineers, and investigated the working environment ( 60 Co unit, accelerator, after loading unit, X-ray simulator, CT simulator, gamma knife, MRI and doctor's office) and external environment by using TLD, and compared our results to those released by relevant departments. Results: The average dosage in the working environment is 1.96 μC ·kg -1 ·month -1 , 1.61 μC ·kg -1 ·month -1 in external environment. Conclusion: In the past 25 years, the radiotherapy center constructed strictly by the criterions of environment and protection departments required, so the radiation dosage in or outside the radiotherapy center has reached the national standard, which is safe for the staff and patients. Its instatement that the radiotherapy sites constructed by the related laws well accorded with the safety standards regulated. (authors)

  15. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  16. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Directory of Open Access Journals (Sweden)

    Tsuicheng D Chiu

    Full Text Available Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT imaging alone. In this study, we characterized a research magnetic resonance (MR scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This

  17. Interactive Rapid Dose Assessment Model (IRDAM): user's guide

    International Nuclear Information System (INIS)

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This User's Guide provides instruction in the setup and operation of the equipment necessary to run IRDAM. Instructions are also given on how to load the magnetic disks and access the interactive part of the program. Two other companion volumes to this one provide additional information on IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios

  18. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Andersen, C.E.

    2015-01-01

    Modern megavoltage x-ray radiotherapy with high spatial and temporal dose gradients puts high demands on the entire delivery system, including not just the linear accelerator and the multi-leaf collimator, but also algorithms used for optimization and dose calculations, and detectors used for quality assurance and dose verification. In this context, traceable in-phantom dosimetry using a well-characterized point detector is often an important supplement to 2D-based quality assurance methods based on radiochromic film or detector arrays. In this study, an in-house developed dosimetry system based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors of different scintillator length were thus employed to quantify volume averaging effects by direct measurement. The dosimetric evaluation comprised several complex-shape static fields as well as simplified dynamic deliveries using RapidArc, a volumetric-modulated arc therapy modality often used at the participating clinic. The static field experiments showed that the smallest scintillator detectors were in the best agreement with dose calculations, while needing the smallest volume averaging corrections. Concerning total dose measured during RapidArc, all detectors agreed with dose calculations within 1.1 ± 0.7% when positioned in regions of high homogenous dose. Larger differences were observed for high dose gradient and organ at risk locations, were differences between measured and calculated dose were as large as 8.0 ± 5.5%. The smallest differences were generally seen for the small-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response

  19. Dose-Effect Relationships for Individual Pelvic Floor Muscles and Anorectal Complaints After Prostate Radiotherapy

    International Nuclear Information System (INIS)

    Smeenk, Robert Jan; Hoffmann, Aswin L.; Hopman, Wim P.M.; Lin, Emile N.J. Th. van; Kaanders, Johannes H.A.M.

    2012-01-01

    Purpose: To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). Methods and Materials: In 48 patients treated for localized prostate cancer, the internal anal sphincter (IAS) muscle, the external anal sphincter (EAS) muscle, the puborectalis muscle (PRM), and the levator ani muscles (LAM) in addition to the anal wall (Awall) and rectal wall (Rwall) were retrospectively delineated on planning computed tomography scans. Dose parameters were obtained and compared between patients with and without fecal urgency, incontinence, and frequency. Dose-effect curves were constructed. Finally, the effect of an endorectal balloon, which was applied in 28 patients, was investigated. Results: The total volume of the pelvic floor muscles together was about three times that of the Awall. The PRM was exposed to the highest RT dose, whereas the EAS received the lowest dose. Several anal and rectal dose parameters, as well as doses to all separate pelvic floor muscles, were associated with urgency, while incontinence was associated mainly with doses to the EAS and PRM. Based on the dose-effect curves, the following constraints regarding mean doses could be deduced to reduce the risk of urgency: ≤30 Gy to the IAS; ≤10 Gy to the EAS; ≤50 Gy to the PRM; and ≤40 Gy to the LAM. No dose-effect relationships for frequency were observed. Patients treated with an endorectal balloon reported significantly less urgency and incontinence, while their treatment plans showed significantly lower doses to the Awall, Rwall, and all pelvic floor muscles. Conclusions: Incontinence-related complaints show specific dose-effect relationships to individual pelvic floor muscles. Dose constraints for each muscle can be identified for RT planning. When only the Awall is delineated, substantial components of the continence apparatus are

  20. Assessment of skin dose modification caused by application of immobilizing cast in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Soleymanifard, Shokouhozaman; Toossi, Mohammad T.B.; Khosroabadi, Mohsen; Noghreiyan, Atefeh Vejdani; Shahidsales, Soodabeh; Tabrizi, Fatemeh Varshoee

    2014-01-01

    Skin dose assessment for radiotherapy patients is important to ensure that the dose received by skin is not excessive and does not cause skin reactions. Immobilizing casts may have a buildup effect, and can enhance the skin dose. This study has quantified changes to the surface dose as a result of head and neck immobilizing casts. Medtech and Renfu casts were stretched on the head of an Alderson Rando-Phantom. Irradiation was performed using 6 and 15 MV X-rays, and surface dose was measured by thermoluminescence dosimeters. In the case of 15MV photons, immobilizing casts had no effect on the surface dose. However, the mean surface dose increase reached up to 20 % when 6MV X-rays were applied. Radiation incidence angle, thickness, and meshed pattern of the casts affected the quantity of dose enhancement. For vertical beams, the surface dose increase was more than tangential beams, and when doses of the points under different areas of the casts were analysed separately, results showed that only doses of the points under the thick area had been changed. Doses of the points under the thin area and those within the holes were identical to the same points without immobilizing casts. Higher dose which was incurred due to application of immobilizing casts (20 %) would not affect the quality of life and treatment of patients whose head and neck are treated. Therefore, the benefits of head and neck thermoplastic casts are more than their detriments. However, producing thinner casts with larger holes may reduce the dose enhancement effect.

  1. Dose-effect relationships for individual pelvic floor muscles and anorectal complaints after prostate radiotherapy.

    Science.gov (United States)

    Smeenk, Robert Jan; Hoffmann, Aswin L; Hopman, Wim P M; van Lin, Emile N J Th; Kaanders, Johannes H A M

    2012-06-01

    To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). In 48 patients treated for localized prostate cancer, the internal anal sphincter (IAS) muscle, the external anal sphincter (EAS) muscle, the puborectalis muscle (PRM), and the levator ani muscles (LAM) in addition to the anal wall (Awall) and rectal wall (Rwall) were retrospectively delineated on planning computed tomography scans. Dose parameters were obtained and compared between patients with and without fecal urgency, incontinence, and frequency. Dose-effect curves were constructed. Finally, the effect of an endorectal balloon, which was applied in 28 patients, was investigated. The total volume of the pelvic floor muscles together was about three times that of the Awall. The PRM was exposed to the highest RT dose, whereas the EAS received the lowest dose. Several anal and rectal dose parameters, as well as doses to all separate pelvic floor muscles, were associated with urgency, while incontinence was associated mainly with doses to the EAS and PRM. Based on the dose-effect curves, the following constraints regarding mean doses could be deduced to reduce the risk of urgency: ≤ 30 Gy to the IAS; ≤ 10 Gy to the EAS; ≤ 50 Gy to the PRM; and ≤ 40 Gy to the LAM. No dose-effect relationships for frequency were observed. Patients treated with an endorectal balloon reported significantly less urgency and incontinence, while their treatment plans showed significantly lower doses to the Awall, Rwall, and all pelvic floor muscles. Incontinence-related complaints show specific dose-effect relationships to individual pelvic floor muscles. Dose constraints for each muscle can be identified for RT planning. When only the Awall is delineated, substantial components of the continence apparatus are excluded. Copyright © 2012 Elsevier Inc. All rights

  2. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    Science.gov (United States)

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  3. The HYP-RT Hypoxic Tumour Radiotherapy Algorithm and Accelerated Repopulation Dose per Fraction Study

    Directory of Open Access Journals (Sweden)

    W. M. Harriss-Phillips

    2012-01-01

    Full Text Available The HYP-RT model simulates hypoxic tumour growth for head and neck cancer as well as radiotherapy and the effects of accelerated repopulation and reoxygenation. This report outlines algorithm design, parameterisation and the impact of accelerated repopulation on the increase in dose/fraction needed to control the extra cell propagation during accelerated repopulation. Cell kill probabilities are based on Linear Quadratic theory, with oxygenation levels and proliferative capacity influencing cell death. Hypoxia is modelled through oxygen level allocation based on pO2 histograms. Accelerated repopulation is modelled by increasing the stem cell symmetrical division probability, while the process of reoxygenation utilises randomised pO2 increments to the cell population after each treatment fraction. Propagation of 108 tumour cells requires 5–30 minutes. Controlling the extra cell growth induced by accelerated repopulation requires a dose/fraction increase of 0.5–1.0 Gy, in agreement with published reports. The average reoxygenation pO2 increment of 3 mmHg per fraction results in full tumour reoxygenation after shrinkage to approximately 1 mm. HYP-RT is a computationally efficient model simulating tumour growth and radiotherapy, incorporating accelerated repopulation and reoxygenation. It may be used to explore cell kill outcomes during radiotherapy while varying key radiobiological and tumour specific parameters, such as the degree of hypoxia.

  4. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Cheng, Suzan; Donald, Paul J.; Purdy, James A.

    2011-01-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651 daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 ± 1.25 mm, 1.79 ± 1.45 mm, and 1.98 ± 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.

  5. Feasibility of preference-driven radiotherapy dose treatment planning to support shared decision making in anal cancer

    DEFF Research Database (Denmark)

    Rønde, Heidi S; Wee, Leonard; Pløen, John

    2017-01-01

    PURPOSE/OBJECTIVE: Chemo-radiotherapy is an established primary curative treatment for anal cancer, but clinically equal rationale for different target doses exists. If joint preferences (physician and patient) are used to determine acceptable tradeoffs in radiotherapy treatment planning, multipl...... that preference-informed dose planning is feasible for clinical studies utilizing shared decision making....... dose plans must be simultaneously explored. We quantified the degree to which different toxicity priorities might be incorporated into treatment plan selection, to elucidate the feasible decision space for shared decision making in anal cancer radiotherapy. MATERIAL AND METHODS: Retrospective plans.......7%-points; (0.3; 30.6); p decision space available in anal cancer radiotherapy to incorporate preferences, although tradeoffs are highly patient-dependent. This study demonstrates...

  6. SU-F-T-529: Dosimetric Investigation of a Rotating Gamma Ray System for ImagedGuided Modulated Arc Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Chibani, O; Eldib, A; Chen, L [Fox Chase Cancer Center, Philadelphia, PA (United States); Li, J [Cyber Medical Inc, Xian (China)

    2016-06-15

    Purpose: Because of their effectiveness and efficiency, rotational arc radiotherapy (MAT) techniques have been developed on both specialty machines such as Tomotherapy and conventional linear accelerators. This work investigates a new rotating Gamma therapy system for image guided MAT and SBRT of intra/extracranial tumors. Methods: The CyberMAT system (Cyber Medical Corp., China) consists of a ring gantry with a gamma source (effective source size 1cm and 1.7cm respectively), a 120-leaf MLC, a kV CBCT and an EPID. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV CBCT system has a spatial resolution of 0.4mm for target localization. The maximum dose rate is >4.0 Gy/min and the maximum field size is 40cm × 40cm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 125 previously treated SBRT patients was performed to evaluate the dosimetric characteristics of CyberMAT in comparison with existing VMAT systems. Results: Monte Carlo results confirmed the CyberMAT design parameters including output factors and 3D dose distributions. Its beam penumbra is 5mm to 10mm for field sizes 1cm to 10cm, respectively and its isocenter accuracy is <0.5mm. Compared to the 6 MV photons of Tomotherapy and conventional linacs, Cobalt beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Cobalt beams are ideal for peripheral lung tumors with half-arc arrangements to spare the opposite lung and other critical structures. Superior dose distributions have been obtained for brain, head and neck, breast, spine and lung tumors with half/full arc arrangements. Conclusion: Because of the unique dosimetric properties of Cobalt sources and its accurate stereotaxy/dose delivery CyberMAT is ideally suited for image guided MAT and SBRT. Full-arc arrangements are superior for brain and H&N treatments while half-arc arrangements produce best dose

  7. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices

    International Nuclear Information System (INIS)

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-01-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan

  8. The evaluation of composite dose using deformable image registration in adaptive radiotherapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chul Hwan; Ko, Seong Jin; Kim, Chang Soo; Kim, Jung Hoon; Kim, Dong Hyun; Choi, Seok Yoon; Ye, Soo Young; Kang, Se Sik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Pusan (Korea, Republic of)

    2013-09-15

    In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible(48.95±3.89 vs 49.10±3.55 Gy), oral cavity(36.93±4.03 vs 38.97±5.08 Gy), parotid gland(35.71±6.22 vs 36.12±6.70 Gy) and temporomandibular joint(18.41±9.60 vs 20.13±10.42 Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

  9. The evaluation of composite dose using deformable image registration in adaptive radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Hwang, Chul Hwan; Ko, Seong Jin; Kim, Chang Soo; Kim, Jung Hoon; Kim, Dong Hyun; Choi, Seok Yoon; Ye, Soo Young; Kang, Se Sik

    2013-01-01

    In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible(48.95±3.89 vs 49.10±3.55 Gy), oral cavity(36.93±4.03 vs 38.97±5.08 Gy), parotid gland(35.71±6.22 vs 36.12±6.70 Gy) and temporomandibular joint(18.41±9.60 vs 20.13±10.42 Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy

  10. On a new method to compute photon skyshine doses around radiotherapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.; Facure, A. [Comissao Nacional de Eenrgia Nuclear, Rio de Janeiro (Brazil); Xavier, A. [PEN/Coppe -UFRJ, Rio de Janeiro (Brazil)

    2006-07-01

    Full text of publication follows: Nowadays, in a great number of situations constructions are raised around radiotherapy facilities. In cases where the constructions would not be in the primary x-ray beam, 'skyshine' radiation is normally accounted for. The skyshine method is commonly used to to calculate the dose contribution from scattered radiation in such circumstances, when the roof shielding is projected considering there will be no occupancy upstairs. In these cases, there will be no need to have the usual 1,5-2,0 m thick ceiling, and the construction costs can be considerably reduced. The existing expression to compute these doses do not accomplish to explain mathematically the existence of a shadow area just around the outer room walls, and its growth, as we get away from these walls. In this paper we propose a new method to compute photon skyshine doses, using geometrical considerations to find the maximum dose point. An empirical equation is derived, and its validity is tested using M.C.N.P. 5 Monte Carlo calculation to simulate radiotherapy rooms configurations. (authors)

  11. Successful treatment of chronic recurrent multifocal osteomyelitis using low-dose radiotherapy. A case report

    International Nuclear Information System (INIS)

    Dietzel, Christian T.; Vordermark, Dirk; Schaefer, Christoph

    2017-01-01

    Chronic recurrent multifocal osteomyelitis (CRMO) is a rare autoinflammatory disease, which lacks an infectious genesis and predominantly involves the metaphysis of long bones. Common treatments range from nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids at first onset of disease, to immunosuppressive drugs and bisphosphonates in cases of insufficient remission. The therapeutic use of low-dose radiotherapy for CRMO constitutes a novelty. A 67-year-old female patient presented with radiologically proven CRMO affecting the right tibia/talus and no response to immunosuppressive therapy. Two treatment series of radiation therapy were applied with an interval of 6 weeks. Each series contained six fractions (three fractions per week) with single doses of 0.5 Gy, thus the total applied dose was 6 Gy. Ten months later, pain and symptoms of osteomyelitis had completely vanished. Radiotherapy seems to be an efficient and feasible complementary treatment option for conventional treatment refractory CRMO in adulthood. The application of low doses per fraction is justified by the inflammatory pathomechanism of disease. (orig.) [de

  12. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone-beam CT

    International Nuclear Information System (INIS)

    Rampado, Osvaldo; Giglioli, Francesca Romana; Rossetti, Veronica; Ropolo, Roberto; Fiandra, Christian; Ragona, Riccardo

    2016-01-01

    Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution in an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K_a_i_r), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses

  13. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  14. Cardiovascular effects after low-dose exposure and radiotherapy: what research is needed?

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, Jan [International Atomic Energy Agency, Applied Radiation Biology and Radiotherapy Section, Division of Human Health, Department of Nuclear Sciences and Applications, Vienna (Austria); Boerma, Marjan [University of Arkansas for Medical Sciences, Division of Radiation Health, Department of Pharmaceutical Sciences, Little Rock, AR (United States); Kodama, Kazunori [Radiation Effects Research Foundation, Hiroshima (Japan); Stewart, Fiona A. [Netherlands Cancer Institute, Biological Stress Response (H3), Amsterdam (Netherlands); Trott, Klaus R.

    2013-11-15

    The authors of this report met at the Head Quarter of the International Atomic Energy Agency (IAEA) in Vienna, Austria, on 2-4 July 2012, for intensive discussions of an abundance of original publications on new epidemiological studies on cardiovascular effects after low-dose exposure and radiotherapy and radiobiological experiments as well as several comprehensive reviews that were published since the previous meeting by experts sponsored by the IAEA in June 2006. The data necessitated a re-evaluation of the situation with special emphasis on the consequences current experimental and clinical data may have for clinical oncology/radiotherapy and radiobiological research. The authors jointly arrived at the conclusions and recommendations presented here. (orig.)

  15. Cardiovascular effects after low-dose exposure and radiotherapy: what research is needed?

    International Nuclear Information System (INIS)

    Wondergem, Jan; Boerma, Marjan; Kodama, Kazunori; Stewart, Fiona A.; Trott, Klaus R.

    2013-01-01

    The authors of this report met at the Head Quarter of the International Atomic Energy Agency (IAEA) in Vienna, Austria, on 2-4 July 2012, for intensive discussions of an abundance of original publications on new epidemiological studies on cardiovascular effects after low-dose exposure and radiotherapy and radiobiological experiments as well as several comprehensive reviews that were published since the previous meeting by experts sponsored by the IAEA in June 2006. The data necessitated a re-evaluation of the situation with special emphasis on the consequences current experimental and clinical data may have for clinical oncology/radiotherapy and radiobiological research. The authors jointly arrived at the conclusions and recommendations presented here. (orig.)

  16. Characteristics and performance of a micro-MOSFET: An 'imageable' dosimeter for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Rowbottom, Carl G.; Jaffray, David A.

    2004-01-01

    The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 deg. of rotation in the axial plane to the micro-MOSFET was ±2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams

  17. An image-guided radiotherapy decision support framework incorporating a Bayesian network and visualization tool.

    Science.gov (United States)

    Hargrave, Catriona; Deegan, Timothy; Bednarz, Tomasz; Poulsen, Michael; Harden, Fiona; Mengersen, Kerrie

    2018-05-17

    To describe a Bayesian network (BN) and complementary visualization tool that aim to support decision-making during online cone-beam computed tomography (CBCT)-based image-guided radiotherapy (IGRT) for prostate cancer patients. The BN was created to represent relationships between observed prostate, proximal seminal vesicle (PSV), bladder and rectum volume variations, an image feature alignment score (FAS TV _ OAR ), delivered dose, and treatment plan compliance (TPC). Variables influencing tumor volume (TV) targeting accuracy such as intrafraction motion, and contouring and couch shift errors were also represented. A score of overall TPC (FAS global ) and factors such as image quality were used to inform the BN output node providing advice about proceeding with treatment. The BN was quantified using conditional probabilities generated from published studies, FAS TV _ OAR /global modeling, and a survey of IGRT decision-making practices. A new IGRT visualization tool (IGRT REV ), in the form of Mollweide projection plots, was developed to provide a global summary of residual errors after online CBCT-planning CT registration. Sensitivity and scenario analyses were undertaken to evaluate the performance of the BN and the relative influence of the network variables on TPC and the decision to proceed with treatment. The IGRT REV plots were evaluated in conjunction with the BN scenario testing, using additional test data generated from retrospective CBCT-planning CT soft-tissue registrations for 13/36 patients whose data were used in the FAS TV _ OAR /global modeling. Modeling of the TV targeting errors resulted in a very low probability of corrected distances between the CBCT and planning CT prostate or PSV volumes being within their thresholds. Strength of influence evaluation with and without the BN TV targeting error nodes indicated that rectum- and bladder-related network variables had the highest relative importance. When the TV targeting error nodes were excluded

  18. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xue-lian, E-mail: duxuelian23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Jiang, Tao, E-mail: melody23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Sheng, Xiu-gui, E-mail: jnsd2000@yahoo.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Li, Qing-shui, E-mail: lqs1966@126.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Wang, Cong, E-mail: jnwc1981@hotmail.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Yu, Hao, E-mail: jnyh2200@sina.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China)

    2012-11-15

    Objective: This study was undertaken to evaluate the clinical contribution of positron emission tomography using {sup 18}F-fluorodeoxyglucose and integrated computer tomography (FDG-PET/CT) guided intensity-modulated radiotherapy (IMRT) for treatment of recurrent ovarian cancer. Materials and methods: Fifty-eight patients with recurrent ovarian cancer from 2003 to 2008 were retrospectively studied. In these patients, 28 received PET/CT guided IMRT (PET/CT-IMRT group), and 30 received CT guided IMRT (CT-IMRT group). Treatment plans, tumor response, toxicities and survival were evaluated. Results: Changes in GTV delineation were found in 10 (35.7%) patients based on PET-CT information compared with CT data, due to the incorporation of additional lymph node metastases and extension of the metastasis tumor. PET/CT guided IMRT improved tumor response compared to CT-IMRT group (CR: 64.3% vs. 46.7%, P = 0.021; PR: 25.0% vs. 13.3%, P = 0.036). The 3-year overall survival was significantly higher in the PET-CT/IMRT group than control (34.1% vs. 13.2%, P = 0.014). Conclusions: PET/CT guided IMRT in recurrent ovarian cancer patients improved the delineation of GTV and reduce the likelihood of geographic misses and therefore improve the clinical outcome.

  19. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Batista, Delano V.S., E-mail: delano@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2011-07-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm{sup 2}, incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  20. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    International Nuclear Information System (INIS)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X.; Batista, Delano V.S.

    2011-01-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm 2 , incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  1. Measurement of Thyroid Dose by TLD arising from Radiotherapy of Breast Cancer Patients from Supraclavicular Field

    Directory of Open Access Journals (Sweden)

    Farhood B.

    2016-06-01

    Full Text Available Background: Breast cancer is the most frequently diagnosed cancer and the leading global cause of cancer death among women worldwide. Radiotherapy plays a significant role in treatment of breast cancer and reduces locoregional recurrence and eventually improves survival. The treatment fields applied for breast cancer treatment include: tangential, axillary, supraclavicular and internal mammary fields. Objective: In the present study, due to the presence of sensitive organ such as thyroid inside the supraclavicular field, thyroid dose and its effective factors were investigated. Materials and Methods: Thyroid dose of 31 female patients of breast cancer with involved supraclavicular lymph nodes which had undergone radiotherapy were measured. For each patient, three TLD-100 chips were placed on their thyroid gland surface, and thyroid doses of patients were measured. The variables of the study include shield shape, the time of patient’s setup, the technologists’ experience and qualification. Finally, the results were analyzed by ANOVA test using SPSS 11.5 software. Results: The average age of the patients was 46±10 years. The average of thyroid dose of the patients was 140±45 mGy (ranged 288.2 and 80.8 in single fraction. There was a significant relationship between the thyroid dose and shield shape. There was also a significant relationship between the thyroid dose and the patient’s setup time. Conclusion: Beside organ at risk such as thyroid which is in the supraclavicular field, thyroid dose possibility should be reduced. For solving this problem, an appropriate shield shape, the appropriate time of the patient’s setup, etc. could be considered.

  2. Optimal dose and volume for postoperative radiotherapy in brain oligometastases from lung cancer: a retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Yeun; Kim, Hye Ryun; Cho, Byoung Chul; Lee, Chang Geol; Suh, Chang Ok [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chang, Jong Hee [Dept. of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    To evaluate intracranial control after surgical resection according to the adjuvant treatment received in order to assess the optimal radiotherapy (RT) dose and volume. Between 2003 and 2015, a total of 53 patients with brain oligometastases from non-small cell lung cancer (NSCLC) underwent metastasectomy. The patients were divided into three groups according to the adjuvant treatment received: whole brain radiotherapy (WBRT) ± boost (WBRT ± boost group, n = 26), local RT/Gamma Knife surgery (local RT group, n = 14), and the observation group (n = 13). The most commonly used dose schedule was WBRT (25 Gy in 10 fractions, equivalent dose in 2 Gy fractions [EQD2] 26.04 Gy) with tumor bed boost (15 Gy in 5 fractions, EQD2 16.25 Gy). The WBRT ± boost group showed the lowest 1-year intracranial recurrence rate of 30.4%, followed by the local RT and observation groups, at 66.7%, and 76.9%, respectively (p = 0.006). In the WBRT ± boost group, there was no significant increase in the 1-year new site recurrence rate of patients receiving a lower dose of WBRT (EQD2) <27 Gy compared to that in patients receiving a higher WBRT dose (p = 0.553). The 1-year initial tumor site recurrence rate was lower in patients receiving tumor bed dose (EQD2) of ≥42.3 Gy compared to those receiving <42.3 Gy, although the difference was not significant (p = 0.347). Adding WBRT after resection of brain oligometastases from NSCLC seems to enhance intracranial control. Furthermore, combining lower-dose WBRT with a tumor bed boost may be an attractive option.

  3. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Kim, Jung In; Park, Jong Min; Park, Yang Kyun; Ye, Sung Joon [Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cho, Kun Woo; Cho, Woon Kap [Radiation Research, Korean Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lim, Chun Il [Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2010-11-15

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within {+-}2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance ({+-}3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be {+-}1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  4. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  5. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman; de Blanck, Steen Riisgaard; Josipovic, Mirjana

    2017-01-01

    Purpose: The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath hold (DISH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients.Methods: Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course...... of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm.Results: A mean...... small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. (C) 2017 Elsevier B.V. All rights reserved....

  6. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-01-01

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  7. Testicular shield for para-aortic radiotherapy and estimation of gonad doses.

    Science.gov (United States)

    Ravichandran, R; Binukumar, J P; Kannadhasan, S; Shariff, M H; Ghamrawy, Kamal El

    2008-10-01

    For radiotherapy of para-aortic and abdominal regions in male patients, gonads are to be protected to receive less than 2% of the prescribed dose. A testicular shield was fabricated for abdominal radiotherapy with 15 MV X-rays ((Clinac 2300 CD, Varian AG) with low melting point alloy (Cerroband). The dimensions of the testicular shield were 6.5 cm diameter and 3.5 cm depth with 1.5 cm wall thickness. During treatment, this shield was held in position by a rectangular sponge and Styrofoam support. Phantom measurement was carried out with a humanoid phantom and a 0.6 cc ion chamber. The mean energy of the scattered photon was calculated for single scattering at selected distances from the beam edge and with different field dimensions. One patient received radiotherapy with an inverted Y field and gonad doses were estimated using calibrated thermo-luminescent detector (TLD) chips. Measured doses with the ion chamber were 7.1 and 3.5% of the mid-plane doses without a shield at 3 and 7.5 cm off-field respectively. These values decreased to 4.6 and 1.7% with the bottom shield alone, and to 1.7 and 0.8% with both bottom and top shields covering the ion chamber. The measured doses at the gonads during the patient's treatment were 0.5-0.92% for the AP field (0.74 +/- 0.17%, n = 5) and 0.5-1.2% for the PA field (0.88 +/- 0.24%, n = 5). The dose received by the testis for the full course of treatment was 32 cGy (0.8%) for a total mid-plane dose of 40 Gy. The first-scatter energy estimated at the gonads is around 1.14 MeV for a primary beam of 15 MV for a long axis dimension of 37 cm of primary field. During the patient's treatment, the estimated absorbed doses at the gonads were comparable with reported values in similar treatments. The testicular shield reported in this study is of light weight and could be used conveniently in treatments of abdominal fields.

  8. Testicular shield for para-aortic radiotherapy and estimation of gonad doses

    Directory of Open Access Journals (Sweden)

    Ravichandran R

    2008-01-01

    Full Text Available For radiotherapy of para-aortic and abdominal regions in male patients, gonads are to be protected to receive less than 2% of the prescribed dose. A testicular shield was fabricated for abdominal radiotherapy with 15 MV X-rays ((Clinac 2300 CD, Varian AG with low melting point alloy (Cerroband. The dimensions of the testicular shield were 6.5 cm diameter and 3.5 cm depth with 1.5 cm wall thickness. During treatment, this shield was held in position by a rectangular sponge and Styrofoam support. Phantom measurement was carried out with a humanoid phantom and a 0.6 cc ion chamber. The mean energy of the scattered photon was calculated for single scattering at selected distances from the beam edge and with different field dimensions. One patient received radiotherapy with an inverted Y field and gonad doses were estimated using calibrated thermo-luminescent detector (TLD chips. Measured doses with the ion chamber were 7.1 and 3.5% of the mid-plane doses without a shield at 3 and 7.5 cm off-field respectively. These values decreased to 4.6 and 1.7% with the bottom shield alone, and to 1.7 and 0.8% with both bottom and top shields covering the ion chamber. The measured doses at the gonads during the patient′s treatment were 0.5-0.92% for the AP field (0.74 ± 0.17%, n = 5 and 0.5-1.2% for the PA field (0.88 ± 0.24%, n = 5. The dose received by the testis for the full course of treatment was 32 cGy (0.8% for a total mid-plane dose of 40 Gy. The first-scatter energy estimated at the gonads is around 1.14 MeV for a primary beam of 15 MV for a long axis dimension of 37 cm of primary field. During the patient′s treatment, the estimated absorbed doses at the gonads were comparable with reported values in similar treatments. The testicular shield reported in this study is of light weight and could be used conveniently in treatments of abdominal fields.

  9. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldeen, A [RMIT university, Docklands, Vic (Australia); Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia); Geso, M [RMIT University, Bundoora, Melbourne (Australia)

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  10. SU-E-J-14: A Novel Approach to Evaluate the Dosimetric Effect of Rectal Variation During Image Guided Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J [The Institute of Cancer Research, London (United Kingdom); McQuaid, D; Dunlop, A; Nill, S; Gulliford, S [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden, London (United Kingdom); Buettner, F [Helmholtz Zentrum Munchen - German Research Center for Environmental Healt, Neuherberg (Germany); Hall, E [Clinical Trials and Statistics Unit, The Institute of Cancer Research, London (United Kingdom); Dearnaley, D [The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2014-06-01

    Purpose: Deformable registration establishes the spatial correspondence back to the reference image in order to accumulate dose. However, in prostate radiotherapy the changing shape and volume of the rectum present a challenge to accurate deformable registration and consequently calculation of delivered dose. We explored an alternative approach to calculating accumulated dose to the rectum, independent of deformable registration. Methods: This study was performed on three patients who received online image-guided radiotherapy (IGRT) with daily CBCT (XVI-system,Elekta) and target localization using intraprostatic fiducials. On each CBCT, the rectum was manually contoured and bulk density assignments were made allowing dose to be calculated for each fraction. Dose-surface maps (DSM) were generated (MATLAB,Mathworks,Natick,MA) by considering the rectum as a cylinder and sampling the dose at 21-equispaced points on each CT slice. The cylinder was “cut” at the posterior-most position on each CT and unfolded to generate a DSM. These were normalised in the longitudinal direction by interpolation creating maps of 21×21 pixels. A DSM was produced for each CBCT and the dose was accumulated. Results: The mean accumulated delivered rectal surface dose was on average 7.5(+/−3.5)% lower than the planned dose. The dose difference maps consistently show that the greatest variation in dose between planned and delivered dose is away from where the rectal surface is adjacent to the prostate. Conclusion: Estimation of dose accumulation using DSM provides an alternative method for determining actual delivered dose to the rectum. The dose difference is greatest in areas away from the region where the rectal surface abuts the prostate, the region where set-up is verified. The change in size and shape of the rectum was shown to resultin a change in the accumulated dose compared to the planned dose and this will have an impact on determining the relationships between dose delivered

  11. Long-term decision regret after post-prostatectomy image-guided intensity-modulated radiotherapy.

    Science.gov (United States)

    Shakespeare, Thomas P; Chin, Stephen; Manuel, Lucy; Wen, Shelly; Hoffman, Matthew; Wilcox, Shea W; Aherne, Noel J

    2017-02-01

    Decision regret (DR) may occur when a patient believes their outcome would have been better if they had decided differently about their management. Although some studies investigate DR after treatment for localised prostate cancer, none report DR in patients undergoing surgery and post-prostatectomy radiotherapy. We evaluated DR in this group of patients overall, and for specific components of therapy. We surveyed 83 patients, with minimum 5 years follow-up, treated with radical prostatectomy (RP) and post-prostatectomy image-guided intensity-modulated radiotherapy (IG-IMRT) to 64-66 Gy following www.EviQ.org.au protocols. A validated questionnaire identified DR if men either indicated that they would have been better off had they chosen another treatment, or they wished they could change their mind about treatment. There was an 85.5% response rate, with median follow-up post-IMRT 78 months. Adjuvant IG-IMRT was used in 28% of patients, salvage in 72% and ADT in 48%. A total of 70% of patients remained disease-free. Overall, 16.9% of patients expressed DR for treatment, with fourfold more regret for the RP component of treatment compared to radiotherapy (16.9% vs 4.2%, P = 0.01). DR for androgen deprivation was 14.3%. Patients were regretful of surgery due to toxicity, not being adequately informed about radiotherapy as an alternative, positive margins and surgery costs (83%, 33%, 25% and 8% of regretful patients respectively). Toxicity caused DR in the three radiotherapy-regretful and four ADT-regretful patients. Patients were twice as regretful overall, and of surgery, for salvage vs adjuvant approaches (both 19.6% vs 10.0%). Decision regret after RP and post-prostatectomy IG-IMRT is uncommon, although patients regret RP more than post-operative IG-IMRT. This should reassure urologists referring patients for post-prostatectomy IG-IMRT, particularly in the immediate adjuvant setting. Other implications include appropriate patient selection for RP (and

  12. Improving dose homogeneity in head and neck radiotherapy with custom 3-D compensation

    International Nuclear Information System (INIS)

    Brock, Linda K.; Harari, Paul M.; Sharda, Navneet N.; Paliwal, Bhudatt R.; Kinsella, Timothy J.

    1996-01-01

    Purpose/Objective: Anatomic contour irregularities and tissue inhomogeneities can lead to significant radiation dose variation across complex treatment volumes. Such dose non-uniformity occurs routinely in radiation of the head and neck (H and N) despite beam shaping with blocks or beam modification with wedges. Small dose variations are amplified by the high total doses delivered (often >70 Gy) which can thereby influence late normal tissue complications as well as tumor control. We have therefore implemented the routine use of 3-D custom tissue compensators for our H and N cancer patients fabricated directly from CT scan contour data obtained in the treatment position. The capacity of such compensators to improve dose uniformity in patients with tumors of the H and N is herein reported. Materials and Methods: Between July 1992 and March 1995, 80 patients receiving H and N radiotherapy had 3-D custom compensators fabricated for their treatment course. Detailed dosimetric records have been reviewed for thirty cases to date (60 custom compensators). Dose uniformity across the treatment volume, peak dose delivery and maximum doses to selected, clinically relevant, anatomic subsites were analyzed and compared with uncompensated and wedged plans. Dose-volume histograms were generated and volumes receiving greater than 5% and 10% of the prescribed dose noted. Phantom dose measurements were performed for compensated fields using a water chamber and were compared to calculated doses in order to evaluate the accuracy of isodoses generated by the Theraplan treatment planning system. Accuracy of the fabrication and positioning of the custom compensators was verified by direct measurement. Results: Custom compensators resulted in an average reduction of dose variance across the treatment volume from 13.8% (7-20%) for the uncompensated plans to 4.5% (2-7%) with the compensators. Wedged plans were variable but on average an 8% (3-15%) dose variance was noted. Maximum doses

  13. Dose Distribution over Different Parts of Cancer Patients During Radiotherapy Treatment in Bangladesh

    International Nuclear Information System (INIS)

    Miah, F.K.; Ahmed, M.F.; Begum, Z.; Alam, B.; Chowdhury, Q.

    1998-01-01

    Measurements have been carried out to determine the dose distribution over different parts of the body of 12 cancer patients during radiotherapy treatment. Patients with breast cancer, lung cancer, cervix and larynx cancer treated with either X ray therapy or 60 Co therapy were particularly considered. The doses to the organs and tissues outside the primary beam of the patients under treatment were found to vary with a maximum value of 9096 ± 25 mSv at the neck of a lung cancer patient to a minimum value of 2 ± 0.5 mSv at the right leg of a breast cancer patient. The variation of doses was well explained by the exposure and patient data given for each patient. The measured data in each part of the body have been found to be consistent indicating confidence in the measurements. (author)

  14. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  15. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Lübeck Christiansen, Rasmus; Jensen, Henrik R.; Brink, Carsten

    2017-01-01

    Background: Current state of the art radiotherapy planning of prostate cancer utilises magnetic resonance (MR) for soft tissue delineation and computed tomography (CT) to provide an electron density map for dose calculation. This dual scan workflow is prone to setup and registration error....... This study evaluates the feasibility of an MR-only workflow and the validity of dose calculation from an MR derived pseudo CT. Material and methods: Thirty prostate cancer patients were CT and MR scanned. Clinical treatment plans were generated on CT using a single 18 MV arc volumetric modulated arc therapy...... was successfully delivered to one patient, including manually performed daily IGRT. Conclusions: Median gamma pass rates were high for pseudo CT and proved superior to uniform density. Local differences in dose calculations were concluded not to have clinical relevance. Feasibility of the MR-only workflow...

  16. Alanine dosimetry at NPL - the development of a mailed reference dosimetry service at radiotherapy dose levels

    International Nuclear Information System (INIS)

    Sharpe, P.H.G.; Sephton, J.P.

    1999-01-01

    In this paper we describe the work that has been carried out at National Physical Laboratory (NPL) to develop a mailed alanine reference dosimetry service for radiotherapy dose levels. The service is based on alanine/paraffin wax dosimeters produced at NPL. Using a data analysis technique based on spectrum fitting, it has been possible to achieve a precision of dose measurement better than ±0.05 Gy (1σ). A phantom set has been developed for use in high energy photon beams, which enables simultaneous irradiation of alanine dosimeters and ionisation chambers in a well defined geometry. Studies in photon beams of energies between 60 Co and 20 MeV have shown no significant energy dependence (<1%) for alanine relative to dose determination using a graphite calorimeter. Work is underway to extend the service to electron beams, and preliminary results are presented on the direct calibration of alanine in electron beams using a graphite calorimeter. (author)

  17. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    International Nuclear Information System (INIS)

    Hargrave, C; Deegan, T; Gibbs, A; Poulsen, M; Moores, M; Harden, F; Mengersen, K

    2014-01-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  18. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    Science.gov (United States)

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  19. From conventional averages to individual dose painting in radiotherapy for human tumors: challenge to non-uniformity

    International Nuclear Information System (INIS)

    Maciejewski, B.; Rodney Withers, H.

    2004-01-01

    The exploitation of a number of current clinical trials and reports on outcomes after radiation therapy (i.e. breast, head and neck, prostate) in clinical practice reflects many limitations for conventional techniques and dose-fractionation schedules and for 'average' conclusions. Even after decades of evolution of radiation therapy we still do not know how to optimize treatment for the individual patient and only have 'averages' and ill-defined 'probabilities' to guide treatment prescription. Wide clinical and biological heterogeneity within the groups of patients recruited into clinical trials with a few-fold variation in tumour volume within one stage of disease is obvious. Basic radiobiological guidelines concerning average cell killing of uniformly distributed and equally radiosensitive tumour cells arose from elegant but idealistic in vitro experiments and seem to be of uncertain validity. Therefore, we are confronted with more dilemmas than dogmas. Nonlinearity and in homogeneity of human tumour pattern and response to irradiation are discussed. The purpose of this paper is to present and discuss various aspects of non-uniform tumour cell targeted radiotherapy using conformal and dose intensity modulated techniques. (author)

  20. WE-FG-206-08: Pulmonary Functional Imaging Biomarkers of NSCLC to Guide and Optimize Functional Lung Avoidance Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Khadija; Capaldi, Dante PI; Parraga, Grace [Robarts Research Institute (Canada); Hoover, Douglas A; Palma, David A [Department of Medical Biophysics, Department of Oncology, The University of Western Ontario, London (Canada); Yaremko, Brian P [Department of Oncology, The University of Western Ontario, London (Canada)

    2016-06-15

    Purpose: Functional lung avoidance radiotherapy promises optimized therapy planning by minimizing dose to well-functioning lung and maximizing dose to the rest of the lung. Patients with NSCLC commonly present with co-morbid COPD and heterogeneously distributed ventilation abnormalities stemming from emphysema, airways disease, and tumour burden. We hypothesized that pulmonary functional imaging methods may be used to optimize radiotherapy plans to avoid regions of well-functioning lung and significantly improve outcomes like quality-of-life and survival. To ascertain the utility of functional lung avoidance therapy in clinical practice, we measured COPD phenotypes in NSCLC patients enrolled in a randomized-controlled-clinical-trial prior to curative intent therapy. Methods: Thirty stage IIIA/IIIB NSCLC patients provided written informed consent to a randomized-controlled-clinical-trial ( http://clinicaltrials.gov/ct2/show/NCT02002052 ) comparing outcomes in patients randomized to standard or image-guided radiotherapy. Hyperpolarized noble gas MRI ventilation-defect-percent (VDP) (Kirby et al, Acad Radiol, 2012) as well as CT-emphysema measurements were determined. Patients were stratified based on quantitative imaging evidence of ventilation-defects and emphysema into two subgroups: 1) tumour-specific ventilation defects only (TSD), and, 2) tumour-specific and other ventilation defects with and without emphysema (TSD{sub VE}). Receiver-operating-characteristic (ROC) curves were used to characterize the performance of clinical measures as predictors of the presence of non-tumour specific ventilation defects. Results: Twenty-one out of thirty subjects (70%) had non-tumour specific ventilation defects (TSD{sub VE}) and nine subjects had ONLY tumour-specific defects (TSD). Subjects in the TSD{sub VE} group had significantly greater smoking-history (p=.006) and airflow obstruction (FEV{sub 1}/FVC) (p=.001). ROC analysis demonstrated an 87% classification rate for

  1. Dose-response relations for stricture in the proximal oesophagus from head and neck radiotherapy

    International Nuclear Information System (INIS)

    Alevronta, Eleftheria; Ahlberg, Alexander; Mavroidis, Panayiotis; Al-Abany, Massoud; Friesland, Signe; Tilikidis, Aris; Laurell, Goeran; Lind, Bengt K.

    2010-01-01

    Background and purpose: Determination of the dose-response relations for oesophageal stricture after radiotherapy of the head and neck. Material and methods: In this study 33 patients who developed oesophageal stricture and 39 patients as controls are included. The patients received radiation therapy for head and neck cancer at Karolinska University Hospital, Stockholm, Sweden. For each patient the 3D dose distribution delivered to the upper 5 cm of the oesophagus was analysed. The analysis was conducted for two periods, 1992-2000 and 2001-2005, due to the different irradiation techniques used. The fitting has been done using the relative seriality model. Results: For the treatment period 1992-2005, the mean doses were 49.8 and 33.4 Gy, respectively, for the cases and the controls. For the period 1992-2000, the mean doses for the cases and the controls were 49.9 and 45.9 Gy and for the period 2001-2005 were 49.8 and 21.4 Gy. For the period 2001-2005 the best estimates of the dose-response parameters are D 50 = 61.5 Gy (52.9-84.9 Gy), γ = 1.4 (0.8-2.6) and s = 0.1 (0.01-0.3). Conclusions: Radiation-induced strictures were found to have a dose response relation and volume dependence (low relative seriality) for the treatment period 2001-2005. However, no dose response relation was found for the complete material.

  2. Dose distribution of chest wall electron beam radiotherapy for patients with breast cancer after radical mastectomy

    International Nuclear Information System (INIS)

    Cong Yetong; Chen Dawei; Bai Lan; Zhou Yinhang; Piao Yongfeng; Wang Xi; Qu Yaqin

    2006-01-01

    Objective: To study the dose distribution of different bolus after different energy electron beam irradiation to different chest wall radiotherapy for the patients with breast cancer. Methods: The paper simulated the dose distribution of women's left breast cancer after radical mastectomy by 6 and 9 MeV electron beam irradiation, and TLD was used to measure. Results: The dose of skin became higher and the dose of lung was less when 0.5 and 1.0 cm bolus were used on the body; with the increasing of the energy of electron beam, the high dose field became larger; and with the same energy of electron beam, the high dose field moved to surface of the body when the bolus was thicker. Conclusion: When different energy electron ray irradiates different thickness bolus, the dosage of skin surface increases and the dosage of anterior margin of lung reduces. With electron ray energy increasing, the high dosage field is widen, when the electron ray energy is identity, the high dosage field migrates to the surface after adding bolus. Using certain depth bolus may attain the therapeutical dose of target area. (authors)

  3. Influence of Routine MV CBCT Usage on Dose Distribution in Pelvic Radiotherapy

    International Nuclear Information System (INIS)

    Faj, D.; Kasabasic, M.; Ivkovic, A.; Tomas, I.; Jurkovic, S.

    2013-01-01

    The pelvic radiotherapy is a standard treatment for patients with cervical, uterine and rectal carcinomas. During radiation treatment open tabletop device or bellyboard is used to reduce the side effects of healthy surrounding tissue. Patients are continually adjusting to the bellyboard during the treatment which causes geometrical and dosage uncertainties and influences the results of the treatment. Therefore, to reduce these uncertainties, megavoltage cone-beam computed tomography (MV CBCT) system is used. The objective of this research was to evaluate the image acquisition dose delivered to patients from MV CBCT. MV CBCT imaging was simulated on 15 patients using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The influence of the routine MV CBCT usage on treatment plan was investigated by analyzing the changes in dose volume histograms, mean values and maximum doses in the planning volumes. Simulations have shown that daily usage of MV CBCT causes differences in the dose volume histograms. Moreover, for every patient mean value exceeded prescribed tolerance (±1% of the prescribed dose) and maximum value exceeded recommended maximum of 107% of the prescribed dose. The results have shown that MV CBCT dose to the patient should be a part of the RT plan.(author)

  4. Optimization of dose distributions for adjuvant locoregional radiotherapy of gastric cancer by IMRT

    International Nuclear Information System (INIS)

    Lohr, F.; Dobler, B.; Mai, S.; Hermann, B.; Tiefenbacher, U.; Wieland, P.; Steil, V.; Wenz, F.

    2003-01-01

    Background and Purpose: Locoregional relapse is a problem frequently encountered with advanced gastric cancer. Data from the randomized Intergroup trial 116 suggest effectiveness of adjuvant radiochemotherapy, albeit with significant toxicity. The potential of intensity-modulated radiotherapy (IMRT) to reduce toxicity by significantly reducing maximum and median doses to organs at risk while still applying sufficient dose to the target volume in the upper abdomen was studied. Patient and Methods: For a typical configuration of target volumes and organs, a step-and-shoot IMRT plan (eight beam orientations), developed as a class solution for treatment of tumors in the upper abdomen (Figures 1 to 3), a conventional plan, a combination of the conventional plan with a kidney-sparing boost plan, and a conventional plan with noncoplanar ap and pa fields for improved kidney sparing were compared with respect to coverage of target volume and dose to organs at risk with a dose of 45 Gy delivered as the median dose to the target volume. Results: When using the conventional three-dimensionally planned box techniques, the right kidney could be kept below tolerance, but median dose to the left kidney amounted to between 14.8 and 26.9 Gy, depending on the plan. IMRT reduced the median dose to the left kidney to 10.5 Gy, while still keeping the dose to the right kidney 90% of prescription dose were delivered to > 90% of target volume with IMRT (Table 1). Conclusion: IMRT has the potential to deliver efficient doses to target volumes in the upper abdomen, while delivering dose to organs at risk in a more advantageous fashion than a conventional technique. For clinical implementation, the possibility of extensive organ motion in the upper abdomen has to be taken into account for treatment planning and patient positioning. The multitude of potential risks related to its application has to be the subject of thorough follow-up and further studies. (orig.)

  5. On-line MR imaging for dose validation of abdominal radiotherapy

    International Nuclear Information System (INIS)

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant.In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur.The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions.In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose.Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  −2.3–1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  −2.5 to 1.9 Gy could be traced back. (paper)

  6. On-line MR imaging for dose validation of abdominal radiotherapy

    Science.gov (United States)

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Kontaxis, C.; Prins, F. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-11-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  -2.5 to 1.9 Gy could be traced back.

  7. Second malignancies in high-dose areas of previous tumor radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Welte, Birgitta; Suhr, Peter; Bottke, Dirk; Bartkowiak, Detlef; Wiegel, Thomas [Dept. of Radiotherapy and Radiation Oncology, Univ. of Ulm (Germany); Doerr, Wolfgang [Dept. of Radiotherapy and Radiation Oncology, Radiobiology Lab., Univ. of Technology Dresden (Germany); Trott, Klaus Ruediger [UCL Cancer Centre, Univ. Coll. London (United Kingdom)

    2010-03-15

    Purpose: To characterize second tumors that developed in or near the high-dose areas of a previous radiotherapy, regarding their frequency, entities, latency, and dose dependence. Patients and Methods: 9,995/15,449 tumor patients of the Radiation Oncology Department in Ulm, Germany, treated between 1981 and 2003, survived at least 1 year after radiotherapy. By long-term follow-up and review of treatment documentation, 100 of them were identified who developed an independent second cancer in or near the irradiated first tumor site. Results: Major primary malignancies were breast cancer (27%), lymphoma (24%), and pelvic gynecologic tumors (17%). Main second tumors were carcinomas of the upper (18%) and lower (12%) gastrointestinal tract, head and neck tumors (10%), lymphoma (10%), breast cancer (9%), sarcoma (9%), and lung cancer (8%). Overall median second tumor latency was 7.4 years (1-42 years). For colorectal cancer it was 3.5 and for leukemia 4.3 years, but for sarcoma 11.7 and for breast cancer 17.1 years. The relatively frequent second tumors of the upper gastrointestinal tract were associated with median radiation doses of 24 Gy. By contrast, second colorectal cancer and sarcoma developed after median doses of 50 Gy. Conclusion: The 5- and 15-year probability to develop a histopathologically independent second tumor in or near the irradiated first tumor site, i.e., after intermediate or high radiation doses, was 0.5% and 2.2%, respectively. To identify potentially radiogenic second malignancies, a follow-up far beyond 5 years is mandatory. The incidence and potential dose-response relationship intermediate will be analyzed by a case-case and a case-control study of the Ulm data. (orig.)

  8. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  9. Accelerated Deformable Registration of Repetitive MRI during Radiotherapy in Cervical Cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Kiritsis, Christian

    2006-01-01

    Tumour regression and organ deformations during radiotherapy (RT) of cervical cancer represent major challenges regarding accurate conformation and calculation of dose when using image-guided adaptive radiotherapy. Deformable registration algorithms are able to handle organ deformations, which can...... be useful with advanced tools such as auto segmentation of organs and dynamic adaptation of radiotherapy. The aim of this study was to accelerate and validate deformable registration in MRI-based image-guided radiotherapy of cervical cancer.    ...

  10. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Satomi; Moore, Kevin L., E-mail: kevinmoore@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-15

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D{sub clin} − D{sub pred}. The mean (〈δD{sub r}〉), standard deviation (σ{sub δD{sub r}}), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r{sub PTV}) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r{sub PTV} ∈ [ − 6, 30] mm. The

  11. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    International Nuclear Information System (INIS)

    Shiraishi, Satomi; Moore, Kevin L.

    2016-01-01

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D clin − D pred . The mean (〈δD r 〉), standard deviation (σ δD r ), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r PTV ) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r PTV ∈ [ − 6, 30] mm. The average prediction error was less

  12. 3D in radiotherapy - pushing the dose envelope to improve cure

    International Nuclear Information System (INIS)

    Leibel, Steven A.

    1996-01-01

    Approximately one in four newly diagnosed cancer patients receive radiation in the initial attempt to cure the tumor. In terms of the 1996 cancer incidence data, this comprises more than 350,000 patients. Inasmuch as 25% of these patients initially relapse at primary tumor sites, the issue of improving local control remains a major challenge to the profession. Recent improvements in treatment planning and delivery have enhanced the precision of radiotherapy, but radiation resistance remains a critical issue that confounds the potential for cure in many tumors. Chemical and biological modifiers of the radiation response have provided an approach with clinical promise, but their therapeutic impact remains to be established. Hence, tumor dose escalation continues to represent the most viable approach to improve local control. Recent experience with new conformal radiotherapy techniques has demonstrated that significant tumor dose escalation is feasible with concomitant reduction in normal tissue toxicity. This experience provides the best hope for immediate improvement in the rates of local tumor control. It remains, nonetheless, unclear how far the dose envelope can be pushed and whether this would be sufficient to overcome the problem of local failure. It may turn out that biological modification of the radiation response may still be necessary to provide a maximal control in certain types of tumors

  13. Quality assurance in radiotherapy

    International Nuclear Information System (INIS)

    2003-03-01

    Good radiotherapy results and safety of treatment require the radiation to be optimally applied to a specified target area and the correct dose. According to international recommendations, the average uncertainty in therapeutic dose should not exceed 5%. The need for high precision in therapeutic dose requires quality assurance covering the entire radiotherapy process. Besides the physical and technical characteristics of the therapy equipment, quality assurance must include all radiotherapy equipment and procedures that are significant for the correct magnitude and precision of application of the therapeutic dose. The duties and responsibilities pertaining to various stages of treatment must also be precisely defined. These requirements may be best implemented through a quality system. The general requirements for supervision and quality assurance of medical radiation apparatus are prescribed in section 40 of the Radiation Act (592/1991, amendment 1142/1998) and in sections 18 and 32 of the Decree of the Ministry of Social Affairs and Health on the medical use of radiation (423/2000). Guide ST 2.2 imposes requirements on structural radiation shielding of radiotherapy equipment and the premises in which it is used, and on warning and safety arrangements. Guide ST 1.1 sets out the general safety principles for radiation practices and regulatory control procedure for the use of radiation. Guide ST 1.6 provides general requirements for operational measures in the use of radiation. This Guide sets out the duties of responsible parties (the party running a radiation practice) in respect of arranging and maintaining radiotherapy quality assurance. The principles set out in this Guide and Guide ST 6.3 may be applied to radionuclide therapy

  14. Intermediate-term results of image-guided brachytherapy and high-technology external beam radiotherapy in cervical cancer: Chiang Mai University experience.

    Science.gov (United States)

    Tharavichitkul, Ekkasit; Chakrabandhu, Somvilai; Wanwilairat, Somsak; Tippanya, Damrongsak; Nobnop, Wannapha; Pukanhaphan, Nantaka; Galalae, Razvan M; Chitapanarux, Imjai

    2013-07-01

    To evaluate the outcomes of image-guided brachytherapy combined with 3D conformal or intensity modulated external beam radiotherapy (3D CRT/IMRT) in cervical cancer at Chiang Mai University. From 2008 to 2011, forty-seven patients with locally advanced cervical cancer were enrolled in this study. All patients received high-technology (3D CRT/IMRT) whole pelvic radiotherapy with a total dose of 45-46 Gy plus image-guided High-Dose-Rate intracavitary brachytherapy 6.5-7 Gy × 4 fractions to a High-Risk Clinical Target Volume (HR-CTV) according to GEC-ESTRO recommendations. The dose parameters of the HR-CTV for bladder, rectum and sigmoid colon were recorded, as well as toxicity profiles. In addition, the endpoints for local control, disease-free, metastasis-free survival and overall survival were calculated. At the median follow-up time of 26 months, the local control, disease-free survival, and overall survival rates were 97.9%, 85.1%, and 93.6%, respectively. The mean dose of HR-CTV, bladder, rectum and sigmoid were 93.1, 88.2, 69.6, and 72 Gy, respectively. In terms of late toxicity, the incidence of grade 3-4 bladder and rectum morbidity was 2.1% and 2.1%, respectively. A combination of image-guided brachytherapy and IMRT/3D CRT showed very promising results of local control, disease-free survival, metastasis-free survival and overall survival rates. It also caused a low incidence of grade 3-4 toxicity in treated study patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  16. WE-EF-BRD-01: Past, Present and Future: MRI-Guided Radiotherapy From 2005 to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Lagendijk, J. [University Medical Center Utrecht (Netherlands)

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapy from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.

  17. Low dose combined chemotherapy/radiotherapy in the management of locally advanced urethral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Johnson, D.W.; Kessler, J.F.; Ferrigni, R.G.; Anderson, J.D.

    1989-01-01

    The successful treatment of a patient with bulky squamous cell carcinoma of the urethra using low dose preoperative radiation therapy and concurrent chemotherapy is described. Dramatic rapid tumor response facilitated surgical resection of the remaining microscopic disease. This clinical behavior is remarkably similar to that seen with squamous cell carcinoma of the anal canal and esophagus when a similar regimen is used. At the latter tumor sites the successful use of combination radiotherapy and chemotherapy has reduced the morbidity of subsequent surgery, and in selected cases has obviated the need for a radical operation. Further investigation of such combination treatment is warranted for urethral carcinoma

  18. Radiation dose verification using real tissue phantom in modern radiotherapy techniques

    International Nuclear Information System (INIS)

    Gurjar, Om Prakash; Mishra, S.P.; Bhandari, Virendra; Pathak, Pankaj; Patel, Prapti; Shrivastav, Garima

    2014-01-01

    In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as 'head phantom' and goat meat as 'tissue phantom'. The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD): 0.74), 2.36 (SD: 0.77), 3.62 (SD: 1.05), and 3.31 (SD: 0.78) for three-dimensional conformal radiotherapy (3DCRT) (head phantom), intensity modulated radiotherapy (IMRT; head phantom), 3DCRT (tissue phantom), and IMRT (tissue phantom), respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%), but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body. (author)

  19. Radiation dose verification using real tissue phantom in modern radiotherapy techniques

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2014-01-01

    Full Text Available In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as "head phantom" and goat meat as "tissue phantom". The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD: 0.74, 2.36 (SD: 0.77, 3.62 (SD: 1.05, and 3.31 (SD: 0.78 for three-dimensional conformal radiotherapy (3DCRT (head phantom, intensity modulated radiotherapy (IMRT; head phantom, 3DCRT (tissue phantom, and IMRT (tissue phantom, respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%, but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body.

  20. Measurement of the absorbed dose in the very small size photon beams used in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Derreumaux, S.; Huet, C.; Robbes, I.; Trompier, F.; Boisserie, G.; Brunet, G.; Buchheit, I.; Sarrazin, T.; Chea, M.

    2008-01-01

    After the radiotherapy accident in Toulouse, the French authority of nuclear safety and the French agency of health products safety have asked the IR.S.N. to establish, together with experts from the French society of medical physics and the French society of radiotherapy and oncology, a national protocol on dose calibration for the very small beams used in stereotactic radiotherapy. The research and reflexions of the working group 'GT minifaisceaux ' set up by the I.R.S.N. are presented in this final report. A review of the international literature has been performed. A national survey has been done to know the present practices in the dosimetry of small fields. A campaign of measurements of the data needed to characterize the small beams for the different stereotactic systems has started, using different types of detectors acquired by the I.R.S.N.. In this report are presented a deep synthesis on the problems related to the dosimetry of small fields, the results of the national survey, the first results of the campaign of measurements and the recommendations of the GT. (authors)

  1. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    International Nuclear Information System (INIS)

    Hurkmans, Coen W.; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Sangen, Maurice J. van der; Cassee, Jorien

    2006-01-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced

  2. Development and experimental validation of a tool to determine out-of-field dose in radiotherapy

    International Nuclear Information System (INIS)

    Bessieres, I.

    2013-01-01

    Over the last two decades, many technical developments have been achieved on intensity modulated radiotherapy (IMRT) and allow a better conformation of the dose to the tumor and consequently increase the success of cancer treatments. These techniques often reduce the dose to organs at risk close to the target volume; nevertheless they increase peripheral dose levels. In this situation, the rising of the survival rate also increases the probability of secondary effects expression caused by peripheral dose deposition (second cancers for instance). Nowadays, the peripheral dose is not taken into account during the treatment planning and no reliable prediction tool exists. However it becomes crucial to consider the peripheral dose during the planning, especially for pediatric cases. Many steps of the development of an accurate and fast Monte Carlo out-of-field dose prediction tool based on the PENELOPE code have been achieved during this PhD work. To this end, we demonstrated the ability of the PENELOPE code to estimate the peripheral dose by comparing its results with reference measurements performed on two experimental configurations (metrological and pre-clinical). During this experimental work, we defined a protocol for low doses measurement with OSL dosimeters. In parallel, we highlighted the slow convergence of the code for clinical use. Consequently, we accelerated the code by implementing a new variance reduction technique called pseudo-deterministic transport which is specifically with the objective of improving calculations in areas far away from the beam. This step improved the efficiency of the peripheral doses estimation in both validation configurations (by a factor of 20) in order to reach reasonable computing times for clinical application. Optimization works must be realized in order improve the convergence of our tool and consider a final clinical use. (author) [fr

  3. Collateral patient doses in the Varian 21iX radiotherapy Linac

    International Nuclear Information System (INIS)

    Barquero, R.; Castillo, A. del

    2008-01-01

    Full text: The radiotherapy aim is to irradiate the patient tumor cells while the doses in healthy tissue remains as low as possible. Nevertheless, when high photon energy accelerators are used, collateral undesired photon and neutron doses are always implied during the treatments and became more important with the new accelerators and techniques as IMRT. To assess secondary cancer risk outside the treatment volume as a long-term medical consequence of treatments, the total doses received by each patient outside the primary field during his treatment must be estimated. To achieve this purpose photon and neutron dose equivalents Hp(10) and H*(10) has been measured in a new Varian 21iX with maximum photon energy of 15 MV placed recently in our radiotherapy department. Three devices: 1) a neutron dose rate meter BERTHOLD LB 4111 calibrated recently in the German PTB laboratory, 2) a calibrated environmental pressurized photon ionization chamber (IC) VICTOREEN 450-PI n/s 1020, and 3) a calibrated personal electronic photon dosimeter GAMMACOM 4200M, were placed above the treatment couch outside the primary field while the Varian 21iX reference test were done. In particular the photon and neutron doses in the couch were measured while a water phantom was irradiated during automatic beam data acquisition for a 15 MV beam. A complete set of measurements changing field size are made. These 15 MV results are compared with data measured previously by thermoluminescence and bubble dosimeters in the same facility for an Elekta Precise and a Siemens KDS both with maximum photon energy of 18 MV. From this the benefits in the patient collateral doses of decreasing the maximum treatment photon energy are discussed. The patient doses obtained in the Varian 21iX had values that go from 80 to 800 uSv per treatment Gray. As the Varian 21iX therapy Linac is operated in pulsed mode with short pulse length the discussion of the results includes: 1. The correction of dead time in the GM

  4. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    Science.gov (United States)

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  5. Standard-Fractionated Radiotherapy for Optic Nerve Sheath Meningioma: Visual Outcome Is Predicted by Mean Eye Dose

    Energy Technology Data Exchange (ETDEWEB)

    Abouaf, Lucie [Neuro-Ophthalmology Unit, Pierre-Wertheimer Hospital, Hospices Civils de Lyon, Lyon (France); Girard, Nicolas [Radiotherapy-Oncology Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon (France); Claude Bernard University, Lyon (France); Lefort, Thibaud [Neuro-Radiology Department, Pierre-Wertheimer Hospital, Hospices Civils de Lyon, Lyon (France); D' hombres, Anne [Claude Bernard University, Lyon (France); Tilikete, Caroline; Vighetto, Alain [Neuro-Ophthalmology Unit, Pierre-Wertheimer Hospital, Hospices Civils de Lyon, Lyon (France); Claude Bernard University, Lyon (France); Mornex, Francoise, E-mail: francoise.mornex@chu-lyon.fr [Claude Bernard University, Lyon (France)

    2012-03-01

    Purpose: Radiotherapy has shown its efficacy in controlling optic nerve sheath meningiomas (ONSM) tumor growth while allowing visual acuity to improve or stabilize. However, radiation-induced toxicity may ultimately jeopardize the functional benefit. The purpose of this study was to identify predictive factors of poor visual outcome in patients receiving radiotherapy for ONSM. Methods and Materials: We conducted an extensive analysis of 10 patients with ONSM with regard to clinical, radiologic, and dosimetric aspects. All patients were treated with conformal radiotherapy and subsequently underwent biannual neuroophthalmologic and imaging assessments. Pretreatment and posttreatment values of visual acuity and visual field were compared with Wilcoxon's signed rank test. Results: Visual acuity values significantly improved after radiotherapy. After a median follow-up time of 51 months, 6 patients had improved visual acuity, 4 patients had improved visual field, 1 patient was in stable condition, and 1 patient had deteriorated visual acuity and visual field. Tumor control rate was 100% at magnetic resonance imaging assessment. Visual acuity deterioration after radiotherapy was related to radiation-induced retinopathy in 2 patients and radiation-induced mature cataract in 1 patient. Study of radiotherapy parameters showed that the mean eye dose was significantly higher in those 3 patients who had deteriorated vision. Conclusions: Our study confirms that radiotherapy is efficient in treating ONSM. Long-term visual outcome may be compromised by radiation-induced side effects. Mean eye dose has to be considered as a limiting constraint in treatment planning.

  6. Treatment Planning for Pulsed Reduced Dose-Rate Radiotherapy in Helical Tomotherapy

    International Nuclear Information System (INIS)

    Rong Yi; Paliwal, Bhudatt; Howard, Steven P.; Welsh, James

    2011-01-01

    Purpose: Pulsed reduced dose-rate radiotherapy (PRDR) is a valuable method of reirradiation because of its potential to reduce late normal tissue toxicity while still yielding significant tumoricidal effect. A typical method using a conventional linear accelerator (linac) is to deliver a series of 20-cGy pulses separated by 3-min intervals to give an effective dose-rate of just under 7 cGy/min. Such a strategy is fraught with difficulties when attempted on a helical tomotherapy unit. We investigated various means to overcome this limitation. Methods and Materials: Phantom and patient cases were studied. Plans were generated with varying combinations of field width (FW), pitch, and modulation factor (MF) to administer 200 cGy per fraction to the planning target in eight subfractions, thereby mimicking the technique used on conventional linacs. Plans were compared using dose-volume histograms, homogeneity indices, conformation numbers, and treatment time. Plan delivery quality assurance was performed to assess deliverability. Results: It was observed that for helical tomotherapy, intrinsic limitations in leaf open time in the multileaf collimator deteriorate plan quality and deliverability substantially when attempting to deliver very low doses such as 20-40 cGy. The various permutations evaluated revealed that the combination of small FW (1.0 cm), small MF (1.3-1.5), and large pitch (∼0.86), along with the half-gantry-angle-blocked scheme, can generate clinically acceptable plans with acceptable delivery accuracy (±3%). Conclusion: Pulsed reduced dose-rate radiotherapy can be accurately delivered using helical tomotherapy for tumor reirradiation when the appropriate combination of FW, MF, and pitch is used.

  7. Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Sempau, J.; Bielajew, A.F.

    2000-01-01

    The Monte Carlo calculation of dose for radiotherapy treatment planning purposes introduces unavoidable statistical noise into the prediction of dose in a given volume element (voxel). When the doses in these voxels are summed to produce dose volume histograms (DVHs), this noise translates into a broadening of differential DVHs and correspondingly flatter DVHs. A brute force approach would entail calculating dose for long periods of time - enough to ensure that the DVHs had converged. In this paper we introduce an approach for deconvolving the statistical noise from DVHs, thereby obtaining estimates for converged DVHs obtained about 100 times faster than the brute force approach described above. There are two important implications of this work: (a) decisions based upon DVHs may be made much more economically using the new approach and (b) inverse treatment planning or optimization methods may employ Monte Carlo dose calculations at all stages of the iterative procedure since the prohibitive cost of Monte Carlo calculations at the intermediate calculation steps can be practically eliminated. (author)

  8. Interindividual registration and dose mapping for voxelwise population analysis of rectal toxicity in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dréan, Gaël; Acosta, Oscar, E-mail: Oscar.Acosta@univ-rennes1.fr; Simon, Antoine; Haigron, Pascal [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Lafond, Caroline; Crevoisier, Renaud de [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Département de Radiothérapie, Center Eugène Marquis, Rennes F-35000 (France)

    2016-06-15

    Purpose: Recent studies revealed a trend toward voxelwise population analysis in order to understand the local dose/toxicity relationships in prostate cancer radiotherapy. Such approaches require, however, an accurate interindividual mapping of the anatomies and 3D dose distributions toward a common coordinate system. This step is challenging due to the high interindividual variability. In this paper, the authors propose a method designed for interindividual nonrigid registration of the rectum and dose mapping for population analysis. Methods: The method is based on the computation of a normalized structural description of the rectum using a Laplacian-based model. This description takes advantage of the tubular structure of the rectum and its centerline to be embedded in a nonrigid registration-based scheme. The performances of the method were evaluated on 30 individuals treated for prostate cancer in a leave-one-out cross validation. Results: Performance was measured using classical metrics (Dice score and Hausdorff distance), along with new metrics devised to better assess dose mapping in relation with structural deformation (dose-organ overlap). Considering these scores, the proposed method outperforms intensity-based and distance maps-based registration methods. Conclusions: The proposed method allows for accurately mapping interindividual 3D dose distributions toward a single anatomical template, opening the way for further voxelwise statistical analysis.

  9. In vivo dosimetry with thermoluminescent dosimeters in radiotherapy: entrance and exit doses

    International Nuclear Information System (INIS)

    Alves, C.; Lopes, M.C.

    2000-01-01

    In vivo dosimetry, by entrance and exit dose measurements, is a vital part of a radiotherapy quality assurance program. The uncertainty associated with dose delivery is internationally accepted to be within 5% or inferior depending on the tumor pathology. Thermoluminescent dosimetry is one of the dosimetric techniques used to verify the agreement between delivered and prescribed doses. Nevertheless, it requires a very accurate calibration methodology. We have used LiF chips (4.5 mm diameter and 0.8 mm thick) calibrated towards a PTW ionization chamber of 0.3 cc, in three photon energies: Co-60, 4 and 6 MeV. The TLD reader used was a Rialto 688 from NE Technology and the annealing oven the Eurotherm type 815. The calibration methodology relies on the experimental determination of individual correction factors and on a correction factor derived from a control group of dosimeters. The exit and entrance dose measurements are performed in quite different situations. To be able to achieve those two quantities with TLD, these should be independently calibrated according to the measurement conditions. Alternatively, we can use a single calibration, in entrance dose, and convert the result to the exit dose value by introducing some correction factors. These corrections are related to the different measurement depths and to the different backscattering contributions. We have proved that within an acceptable error we can perform a single calibration and adopt the correction factors which are energy and field size dependent. (author)

  10. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  11. Comparison between evaluating methods about the protocols of different dose distributions in radiotherapy

    International Nuclear Information System (INIS)

    Ju Yongjian; Chen Meihua; Sun Fuyin; Zhang Liang'an; Lei Chengzhi

    2004-01-01

    Objective: To study the relationship between tumor control probability (TCP) or equivalent uniform dose (EUD) and the heterogeneity degree of the dose changes with variable biological parameter values of the tumor. Methods: According to the definitions of TCP and EUD, calculating equations were derived. The dose distributions in the tumor were assumed to be Gaussian ones. The volume of the tumor was divided into several voxels, and the absorbed doses of these voxels were simulated by Monte Carlo methods. Then with the different values of radiosensitivity (α) and potential doubling time of the clonogens (T p ), the relationships between TCP or EUD and the standard deviation of dose (S d ) were evaluated. Results: The TCP-S d curves were influenced by the variable α and T p values, but the EUD-S d curves showed little variation. Conclusion: When the radiotherapy protocols with different dose distributions are compared, if the biological parameter values of the tumor have been known exactly, it's better to use the TCP, otherwise the EUD will be preferred

  12. Radiotherapy

    International Nuclear Information System (INIS)

    Pistenma, D.A.

    1980-01-01

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  13. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    Science.gov (United States)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  14. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.H.; Lim, D.H.; Kim, S.; Hong, S.; Kim, B.K.; Kang, W-S.; Wu, H.G.; Ha, S.W.; Park, C.I. [Seoul National University College of Medicine, Department of Therapeutic Radiology (Korea)

    2000-05-01

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07{+-}4.27 Gy (0.31{+-}0.16% Mean{+-}S.D.) at the upper eyelids, 6.13{+-}4.32 Gy (0.24{+-}0.16%) at the submental jaw, 7.80{+-}5.44 Gy (0.33{+-}0.26%) at thyroid, 1.78{+-}0.64 Gy (0.07{+-}0.02%) at breast, 0.75{+-}0.38 Gy (0.03{+-}0.02%) at umbilicus, 0.40{+-}0.07 Gy (0.02{+-}0.01%) at perineum, and 0.46{+-}0.39 Gy (0.02{+-}0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures

  15. Evaluation of surface and shallow depth dose reductions using a Superflab bolus during conventional and advanced external beam radiotherapy.

    Science.gov (United States)

    Yoon, Jihyung; Xie, Yibo; Zhang, Rui

    2018-03-01

    The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Inaniwa, T., E-mail: taku@nirs.go.jp; Kanematsu, N. [Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555 (Japan); Tsuji, H.; Kamada, T. [Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  17. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    Science.gov (United States)

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness

  18. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution.

    Science.gov (United States)

    Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel

    2017-03-01

    Radiation therapy, in conjunction with surgical implant fixation, is a common combined treatment in cases of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced Polyetheretherketone (CFR-PEEK) material has been recently introduced for production of intramedullary nails and plates. The purpose of this work was to investigate the perturbation effects of the new CFR-PEEK screws on radiotherapy dose distributions and to evaluate these effects in comparison with traditional titanium screws. The investigation was performed by means of Monte Carlo (MC) simulations for a 6 MV photon beam. The project consisted of two main stages. First, a comparison of measured and MC calculated doses was performed to verify the validity of the MC simulation results for different materials. For this purpose, stainless steel, titanium, and CFR-PEEK plates of various thicknesses were used for attenuation and backscatter measurements in a solid water phantom. For the same setup, MC dose calculations were performed. Next, MC dose calculations for titanium, CFR-PEEK screws, and CFR-PEEK screws with ultrathin titanium coating were performed. For the plates, the results of our MC calculations for all materials were found to be in good agreement with the measurements. This indicates that the MC model can be used for calculation of dose perturbation effects caused by the screws. For the CFR-PEEK screws, the maximum dose perturbation was less than 5%, compared to more than 30% perturbation for the titanium screws. Ultrathin titanium coating had a negligible effect on the dose distribution. CFR-PEEK implants have good prospects for use in radiotherapy because of minimal dose alteration and the potential for more accurate treatment planning. This could favorably influence treatment efficiency and decrease possible over- and underdose of adjacent tissues. The use of such implants has potential clinical advantages

  19. Effect of Radiotherapy Volume and Dose on Secondary Cancer Risk in Stage I Testicular Seminoma

    International Nuclear Information System (INIS)

    Zwahlen, Daniel R.; Martin, Jarad M.; Millar, Jeremy L.; Schneider, Uwe

    2008-01-01

    Purpose: To estimate and compare the secondary cancer risk (SCR) due to para-aortic (PA), dogleg field (DLF), or extensive field (EF) radiotherapy (RT) at different dose levels for Stage I testicular seminoma. Methods and Materials: The organ equivalent dose concept with a linear, plateau, and linear-exponential dose-response model was applied to the dose distributions to estimate the SCR. The dose distributions were calculated in a voxel-based anthropomorphic phantom. Three different three-dimensional plans were computed: PA, DLF, and EF. The plans were calculated with 6-MV photons and two opposed fields, using 20 Gy in 10 fractions. Results: The estimated cumulative SCR for a 75-year-old patient treated with PA-RT at age 35 was 23.3% (linear model), 20.9% (plateau model), and 20.8% (linear-exponential model) compared with 19.8% for the general population. Dependent on the model, PA-RT compared with DLF-RT reduced the SCR by 48-63% or 64-69% when normalized to EF-RT. For PA-RT, the linear dose-response model predicted a decrease of 45% in the SCR, using 20 Gy instead of 30 Gy; the linear-exponential dose-response model predicted no change in SCR. Conclusion: Our model suggested that the SCR after PA-RT for Stage I testicular seminoma is reduced by approximately one-half to two-thirds compared with DLF-RT, independent of the dose-response model. The SCR is expected to be equal or lower with 20 Gy than with 30 Gy. In the absence of mature patient data, the organ equivalent dose concept offers the best potential method of estimating the SCR when discussing treatment options with patients

  20. WE-FG-BRA-09: Using Graphene Oxide Nano Flakes During Image Guided Radiotherapy to Minimize the Potential of Cancer Recurrence Or Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Toomeh, D; Sajo, E; Hao, Y; Gadoue, S [University Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [University Massachusetts Lowell, Lowell, MA (United States); Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: An increasing number of studies show that cancer stem cells (CSCs) become more invasive (metastatic) and may escape into the blood stream and lymph nodes during radiotherapy (RT), before they have received a lethal dose during RT. Other Studies have shown that Graphene oxide (GO) can selectively inhibit the proliferative expansion of CSCs across multiplicative tumor types. In this study we investigate the feasibility of using GO during radiotherapy (RT) to minimize the escape of CSCs towards preventing cancer metastasis or recurrence. Methods: We hypothesize that sufficient amount of GO nano-flakes (GONFs) released from new design radiotherapy biomaterials (fiducials or spacers) loaded with the GONFs can reach all tumor cells within typical times of 14 or 21days before the beginning of image-guided radiotherapy (IGRT) following implantation. To test this hypothesis, the space-time diffusion of the GONFs was investigated. Knudsen’s and Cunningham’s numbers were calculated to get the Stokes’ velocities and mobility values, according to these values, diffusion coefficients were calculated. In a previous study it was shown that GONFs concentration of 50 µg/ml were effective. In the diffusion study, 100 µg/ml was chosen as an initial concentration because it has been shown to be relatively non-toxic. Results: The 50 µg/ml concentration in a 2 cm diameter volume of lung tumor could be only achieved using 2 nm and 6 nm GONFs with respective diffusion times of 14 and 21 days. As expected, increased nanoflake size requires longer times to achieve the target 50 µg/ml concentration. Conclusion: The preliminary results indicate the potential of using GONFs delivered via new design radiotherapy biomaterials (e.g. fiducials) to inhibit the proliferative expansion of CSCs. The study avails ongoing in-vivo studies on using GONFs to enhance treatment outcomes for cancer patients.

  1. Five-year follow-up using a prostate stent as fiducial in image-guided radiotherapy of prostate cancer.

    Science.gov (United States)

    Carl, Jesper; Sander, Lotte

    2015-06-01

    To report results from the five-year follow-up on a previously reported study using image-guided radiotherapy (IGRT) of localized or locally advanced prostate cancer (PC) and a removable prostate stent as fiducial. Patients with local or locally advanced PC were treated using five-field 3D conformal radiotherapy (3DRT). The clinical target volumes (CTV) were treated to 78 Gy in 39 fractions using daily on-line image guidance (IG). Late genito-urinary (GU) and gastro-intestinal (GI) toxicities were scored using the radiotherapy oncology group (RTOG) score and the common toxicity score of adverse events (CTC) score. Urinary symptoms were also scored using the international prostate symptom score (IPSS). Median observation time was 5.4 year. Sixty-two of the 90 patients from the original study cohort were eligible for toxicity assessment. Overall survival, cancer-specific survival and biochemical freedom from failure were 85%, 96% and 80%, respectively at five years after radiotherapy. Late toxicity GU and GI RTOG scores≥2 were 5% and 0%. Comparing pre- and post-radiotherapy IPSS scores indicate that development in urinary symptoms after radiotherapy may be complex. Prostate image-guided radiotherapy using a prostate stent demonstrated survival data comparable with recently published data. GU and GI toxicities at five-year follow-up were low and comparable to the lowest toxicity rates reported. These findings support that the precision of the prostate stent technique is at least as good as other techniques. IPSS revealed a complex development in urinary symptoms after radiotherapy.

  2. Atomic force microscopy and mechanical testing of bovine pericardium irradiated to radiotherapy doses

    International Nuclear Information System (INIS)

    Daar, Eman; Kaabar, W.; Woods, E.; Lei, C.; Nisbet, A.; Bradley, D.A.

    2014-01-01

    Within the context of radiotherapy our work investigates the feasibility of identifying changes in structural and biomechanical properties of pericardium resulting from exposure to penetrating photon irradiation. Collagen fibres extracted from bovine pericardium were chosen as a model of pericardium extracellular matrix as these form the main fibrous component of the medium. Tests of mechanical properties, controlled by the various structural elements of the tissues, were performed on frontal pericardium, including uni-axial tests and atomic force microscopy (AFM). While the irradiated collagen fibres showed no significant change in D-band spacing up to doses of 80 Gy, the fibre width was found to increase by 34±9% at 80 Gy when compared with that for un-irradiated samples. - Highlights: • Methods for identifying changes in tissue biophysical properties following photon irradiation. • Tests made using collagen fibres extracted from bovine pericardium. • Sensitivity of uni-axial tests and atomic force microsc