WorldWideScience

Sample records for dose fractionated radiation

  1. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  2. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  3. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  4. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  5. Clinicopathological study of high-dose fractionated radiation therapy in the treatment of glioblastoma

    International Nuclear Information System (INIS)

    Tamura, Masaru; Inoue, Hiroshi; Kunimine, Hideo; Nakamura, Masaru; Ono, Nobuo; Zama, Akira; Ohye, Chihiro; Niibe, Hideo; Ishida, Yoichi

    1988-01-01

    Twenty-six adults with glioblastoma multiforme (grade 4 astrocytoma) were postoperatively given high-dose fractionated radiation therapy (5 Gy twice weekly) with Linac X-rays. The results were compared with those in 26 patients treated by conventional fractionated radiation therapy (2 Gy 5 times weekly). The survival rates following treatment with high-dose fractionated radiation therapy and conventional fractionated radiation therapy were 65 % vs. 65 % at 1 year, 31 % vs. 8 % at 2 years, 14 % vs. 4 % at 3 years, and 4 % vs. 0 % at 5 years. The difference in length of survival between the two treatment groups was not statistically significant (p = 0.423). Autopsies were performed on 11 patients given high-dose radiation therapy and 13 who received conventional irradiation. In the high-dose group one patient had no residual tumor (vs. none in the conventional group); four had small residual tumors (vs. three); one had extensive coagulative necrosis of the tumor and surrounding brain tissue (vs. four); four had proliferative tumor growth (vs. four); and one had mixed glioblastoma and fibrosarcoma (vs. two). Complete cure may be possible in some cases, if extensive tumor removal is feasible and is followed by high-dose fractionated radiation therapy. The biological effect appears to be much greater with high-dose than with conventional fractionated radiation therapy. Therefore, in cases of tumor recurrence, a second course of radiation therapy must be undertaken cautiously. (author)

  6. First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy

    International Nuclear Information System (INIS)

    Serduc, Raphael; Braeuer-Krisch, Elke; Bouchet, Audrey; Brochard, Thierry; Bravin, Alberto; Le Duc, Geraldine; Renaud, Luc; Laissue, Jean Albert

    2009-01-01

    The technical feasibility of temporal and spatial fractionations of the radiation dose has been evaluated using synchrotron microbeam radiation therapy for brain tumors in rats. A significant increase in lifespan (216%, p<0.0001) resulted when three fractions of microbeam irradiation were applied to the tumor through three different ports, orthogonal to each other, at 24 h intervals. However, there were no long-term survivors, and immunohistological studies revealed that 9 L tumors were not entirely ablated. (orig.)

  7. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiotherapy and Radiooncology, Muenster (Germany); Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette [University Hospital of Muenster, Department of Phoniatrics and Pediatric Audiology, Muenster (Germany)

    2017-11-15

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D{sub mean}), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D{sub mean} was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m{sup 2}, with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D{sub mean} exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [German] Analyse von Inzidenz und Schweregrad einer sensorineuralen Schwerhoerigkeit (''sensorineural hearing loss'', SNHL) infolge der Wirkung unterschiedlicher Bestrahlungstechniken, Fraktionierungen, mittlerer

  8. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Kal, H.B.; Bijman, J.Th.

    1981-01-01

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min -1 . The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  9. Effects of fractionated doses of ionizing radiation on small intestinal motor activity

    International Nuclear Information System (INIS)

    Otterson, M.F.; Sarna, S.K.; Moulder, J.E.

    1988-01-01

    The small intestinal motor effects of fractionated doses of ionizing radiation were studied in 6 conscious dogs. Eight strain-gauge transducers were implanted on the small intestine and a single gauge on the ascending colon, of each dog. After control recordings, an abdominal dose of 250 cGy was administered three times a week on alternate days for 3 successive weeks (total dose, 2250 cGy). Recordings were then made for 4 wk of follow-up. Giant migrating contractions occurred 11 times in 520 h of control recordings in the fasted and fed state, with a mean distance of origin of 55 +/- 16 cm from the ileocolonic junction. Abdominal field irradiation significantly increased the incidence and distance of origin of these giant contractions to 438 in 745 recording hours and 158 +/- 7 cm from the ileocolonic junction, respectively. The incidence of giant migrating contractions peaked after the second dose of radiation. The amplitude ratio of radiation-induced giant migrating contractions to phase III contractions, and their duration and velocity of migration, were similar to the control state. The dogs developed diarrhea and vomiting as early as the first fraction of radiation. Irradiation also increased the incidence of retrograde giant contractions from 8 in 520 h of control recording to 42 in 745 h of recording during the radiation schedule. The radiation-induced retrograde giant contractions peaked in incidence on the day of the first fraction of radiation and were more likely to be associated with a vomiting episode than those occurring in the control period. Migrating motor complex cycling persisted during radiation and its cycle length was not different from the control or postradiation values

  10. Preoperative chemoradiation for locally advanced rectal cancer: comparison of three radiation dose and fractionation schedules

    Energy Technology Data Exchange (ETDEWEB)

    Park, Shin Hyung; Kim, Jae Chul [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2016-06-15

    The standard radiation dose for patients with locally rectal cancer treated with preoperative chemoradiotherapy is 45–50 Gy in 25–28 fractions. We aimed to assess whether a difference exists within this dose fractionation range. A retrospective analysis was performed to compare three dose fractionation schedules. Patients received 50 Gy in 25 fractions (group A), 50.4 Gy in 28 fractions (group B), or 45 Gy in 25 fractions (group C) to the whole pelvis, as well as concurrent 5-fluorouracil. Radical resection was scheduled for 8 weeks after concurrent chemoradiotherapy. Between September 2010 and August 2013, 175 patients were treated with preoperative chemoradiotherapy at our institution. Among those patients, 154 were eligible for analysis (55, 50, and 49 patients in groups A, B, and C, respectively). After the median follow-up period of 29 months (range, 5 to 48 months), no differences were found between the 3 groups regarding pathologic complete remission rate, tumor regression grade, treatment-related toxicity, 2-year locoregional recurrence-free survival, distant metastasis-free survival, disease-free survival, or overall survival. The circumferential resection margin width was a prognostic factor for 2-year locoregional recurrence-free survival, whereas ypN category was associated with distant metastasis-free survival, disease-free survival, and overall survival. High tumor regression grading score was correlated with 2-year distant metastasis-free survival and disease-free survival in univariate analysis. Three different radiation dose fractionation schedules, within the dose range recommended by the National Comprehensive Cancer Network, had no impact on pathologic tumor regression and early clinical outcome for locally advanced rectal cancer.

  11. Gamma radiation-induced Impairment of hippocampal neurogenesis, comparison of single and fractionated dose regimens

    International Nuclear Information System (INIS)

    Khoshbin khoshnazar, A. R; Jahanshahi, M; Azami, N. S

    2012-01-01

    Radiation therapy of the brain is associated with many consequences, including cognitive disorders. Pathogenesis of radiation induced cognitive disorder is not clear, but reduction of neurogenesis in hippocampus may be an underlying reason. 24 adult male rats entered to study. Radiation absorbed dose to midbrain was 10 Gy, delivered by routine cobalt radiotherapy machine which its output was measured 115.24 cGy/min. The rats were divided in four groups of sixes, including groups of control, single fraction 10 Gy, fractionated 10 Gy and finally anaesthesia sham group. Number of pyramidal nerve cells was counted in two regions of hippocampus formation (CA1 and CA3). The radiation could reduce the number of cells in two regions of hippocampus significantly (p=0.000). It seems fractionated 10 Gy irradiation to more efficient than single fraction, while role of anaesthesia drug should be cautiously assessed. Moreover the rate of neurogenesis reduction was determined the same in these regions of hippocampus meaning the same radiosensitivity of cells

  12. Time-dose response of human tumors and normal tissues during and after fractionated radiation treatment

    International Nuclear Information System (INIS)

    Van de Geijn, J.

    1988-01-01

    The background and some results of initial applications of a new model of time-dose response of tumors as well as fast-renewing normal tissues to fractionated radiation therapy are presented. Both the linear-quadratic and the single-hit/single-target, single-hit/multi-target model may be used for the single-dose survival of both the viable stem cells and the clonogenic tumor cells. Normal tissue tolerance is expressed as a minimum acceptable level of normal tissue functionality, due to insufficient production of replacement cells, which in turn is caused by radiation-induced depletion of the viable stem cell population. A logistic function describes the homeostatically controlled inter-fraction and post-treatment normal tissue stem cell repopulation. The onset of stem cell repopulation may be delayed, and the doubling rate of clonogenic tumor cells may increase, upon the onset of treatment. Criteria for the selection of acceptable parameter values for normal tissue as well as tumors are described. An interactive Fortran77 program has been developed to assist in the search for acceptable parameter values, the simulation of the time-dose response of normal tissues and tumors to conventional clinical fractionation schemes and the exploration of alternative schedules, including hyperfractionation. Some provisional results are presented. 29 refs.; 11 figs.; 2 tabs

  13. Neuropsychological function in adults after high dose fractionated radiation therapy of skull base tumors

    International Nuclear Information System (INIS)

    Glosser, Guila; McManus, Pat; Munzenrider, John; Austin-Seymour, Mary; Fullerton, Barbara; Adams, Judy; Urie, Marcia M.

    1997-01-01

    Purpose: To evaluate the long term effects of high dose fractionated radiation therapy on brain functioning prospectively in adults without primary brain tumors. Methods and Materials: Seventeen patients with histologically confirmed chordomas and low grade chondrosarcomas of the skull base were evaluated with neuropsychological measures of intelligence, language, memory, attention, motor function and mood following surgical resection/biopsy of the tumor prior to irradiation, and then at about 6 months, 2 years and 4 years following completion of treatment. None received chemotherapy. Results: In the patients without tumor recurrence or radiation necrosis, there were no indications of adverse effects on cognitive functioning in the post-acute through the late stages after brain irradiation. Even in patients who received doses of radiation up to 66 Cobalt Gy equivalent through nondiseased (temporal lobe) brain tissue, memory and cognitive functioning remained stable for up to 5 years after treatment. A mild decline in psycho-motor speed was seen in more than half of the patients, and motor slowing was related to higher radiation doses in midline and temporal lobe brain structures. Conclusion: Results suggest that in adults, tolerance for focused radiation is relatively high in cortical brain structures

  14. The Effects of Radiation and Dose-Fractionation on Cancer and Non-Tumor Disease Development

    Directory of Open Access Journals (Sweden)

    Gayle E. Woloschak

    2012-12-01

    Full Text Available The Janus series of radiation experiments, conducted from 1970 to 1992, explored the effects of gamma and neutron radiation on animal lifespan and disease development. Data from these experiments presents an opportunity to conduct a large scale analysis of both tumor and non-tumor disease development. This work was focused on a subset of animals from the Janus series of experiments, comparing acute or fractionated exposures of gamma or neutron radiation on the hazards associated with the development of tumor and non-tumor diseases of the liver, lung, kidney or vascular system. This study also examines how the co-occurrence of non-tumor diseases may affect tumor-associated hazards. While exposure to radiation increases the hazard of dying with tumor and non-tumor diseases, dose fractionation modulates these hazards, which varies across different organ systems. Finally, the effect that concurrent non-cancer diseases have on the hazard of dying with a tumor also differs by organ system. These results highlight the complexity in the effects of radiation on the liver, lung, kidney and vascular system.

  15. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers; The Canadian fluoroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Howe, G.R. (Toront Univ., ON (Canada). Dept. of Preventive Medicine and Biostatistics)

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author).

  16. The effects of high dose and highly fractionated radiation on distraction osteogenesis in the murine mandible

    International Nuclear Information System (INIS)

    Monson, Laura A; Cavaliere, Christi M; Deshpande, Sagar S; Ayzengart, Alexander L; Buchman, Steven R

    2012-01-01

    The ability of irradiated tissue to support bony growth remains poorly defined, although there are anecdotal cases reported showing mixed results for the use of mandibular distraction osteogenesis after radiation for head and neck cancer. Many of these reports lack objective measures that would allow adequate analysis of outcomes or efficacy. The purpose of this experiment was to utilize a rat model of mandibular distraction osteogenesis after high dose and highly fractionated radiation therapy and to evaluate and quantify distracted bone formation under these conditions. Male Sprague–Dawley rats underwent 12 fractions of external beam radiation (48 Gray) of the left mandible. Following a two week recovery period, an external frame distractor was applied and gradual distraction of the mandible was performed. Tissue was harvested after a twenty-eight day consolidation period. Gross, radiologic and histological evaluations were undertaken. Those animals subjected to pre-operative radiation showed severe attenuation of bone formation including bone atrophy, incomplete bridging of the distraction gap, and gross bony defects or non-union. Although physical lengthening was achieved, the irradiated bone consistently demonstrated marked damaging effects on the normal process of distraction osteogenesis. This murine model has provided reliable evidence of the injurious effects of high dose radiation on bone repair and regeneration in distraction osteogenesis utilizing accurate and reproducible metrics. These results can now be used to assist in the development of therapies directed at mitigating the adverse consequences of radiation on the regeneration of bone and to optimize distraction osteogenesis so it can be successfully applied to post-oncologic reconstruction

  17. Investigations of the dependence of radiation effects on the stem cells of the small intestine mucous membrane on dose fractionation

    International Nuclear Information System (INIS)

    Gindele, S.

    1984-01-01

    For the study of the dependence of the radiation effects on the stem cells of the small intestine mucous membrane on dose fractionation mice from the strain C3H were exposed to a one-time irradiation, an irradiation in three fractions, five fractions on one day, five fractions on two days and an irradiation in ten fractions. It was shown, that the survival curves for the higher fractionation numbers were shifted to the right from the ones with higher total doses and have a lower slope than the curves lying more to the left. The accumulation of a total dose for an iso-effect is not proportional to the increase in the number of fractions, but instead in the area above 5 fractions reaches a plateau. The survival curve of the one-time dose which I constructed in the shoulder area showed a strong agreement with the survival curve which was given by Withers and Hussey. (orig.) [de

  18. Clinical applicability of biologically effective dose calculation for spinal cord in fractionated spine stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jinho; Ahn, So Hyun; Lee, Seok Ho; Sung, Ki Hoon; Kil, Se Hee

    2015-01-01

    The aim of the study was to investigate whether biologically effective dose (BED) based on linear-quadratic model can be used to estimate spinal cord tolerance dose in spine stereotactic body radiation therapy (SBRT) delivered in 4 or more fractions. Sixty-three metastatic spinal lesions in 47 patients were retrospectively evaluated. The most frequently prescribed dose was 36 Gy in 4 fractions. In planning, we tried to limit the maximum dose to the spinal cord or cauda equina less than 50% of prescription or 45 Gy 2/2 . BED was calculated using maximum point dose of spinal cord. Maximum spinal cord dose per fraction ranged from 2.6 to 6.0 Gy (median 4.3 Gy). Except 4 patients with 52.7, 56.4, 62.4, and 67.9 Gy 2/2 , equivalent total dose in 2-Gy fraction of the patients was not more than 50 Gy 2/2 (12.1–67.9, median 32.0). The ratio of maximum spinal cord dose to prescription dose increased up to 82.2% of prescription dose as epidural spinal cord compression grade increased. No patient developed grade 2 or higher radiation-induced spinal cord toxicity during follow-up period of 0.5 to 53.9 months. In fractionated spine SBRT, BED can be used to estimate spinal cord tolerance dose, provided that the dose per fraction to the spinal cord is moderate, e.g. < 6.0 Gy. It appears that a maximum dose of up to 45–50 Gy 2/2 to the spinal cord is tolerable in 4 or more fractionation regimen

  19. Overcoming the barrier of radiation-resistance in advanced cancer by using high dose spatially fractionated radiation

    International Nuclear Information System (INIS)

    Mohiuddin, Mohammed; Fujita, Mihoko; Regine, William F.; Meigooni, Ali S.

    1997-01-01

    Purpose/Objective: With the advent of megavoltage radiation, spatially fractionated radiation (SFR) has been abandoned for the last several decades. Yet it has been proved safe and effective in delivering large cumulative doses (> 100 Gy) of radiation. At our institution, SFR has been adapted to megavoltage beams. This study evaluates the toxicity and effectiveness of this approach in treatment of advanced bulky cancers. Material and Methods: From January, 1995 through December, 1996, 48 patients with advanced cancers (tumor sizes > 10 cm) were treated with spatially fractionation high-dose external beam radiation using a GRID technique. 8 patients received GRID treatments to multiple sites and a total of 58 sites were irradiated. A 50:50 GRID (open to closed areas) was utilized and a single fraction of 1000-2000 cGy (median 1500 cGy) to dmax was delivered utilizing 6MV photons. 42 patients received high dose GRID therapy for palliation (main, mass, bleeding and dyspnea) with (48) or without (10) fractionated external beam irradiation. In 6 patients, GRID therapy was given as part of a definitive treatment combined with conventionally fractionated external beam irradiation (dose range 4000-7000 cGy) with or without subsequent surgery. 24 treatments were delivered to the abdomen and pelvis, 20 to the head and neck region, 9 to the thorax and 5 to the extremities. Follow-up in these patients ranged from 2 months to 24 months. Results: For palliative treatment, a 76.9% response rate was observed for pain including complete response (CR) of 26.9% and partial response (PR) of 50% in these large bulky tumors. A 64.5% response rate was observed for mass effect (CR 22.6%, PR 41.9%). The response rate observed for bleeding and dyspnea was 100% (66.6% CR, 33.3% PR) and 50% (50% PR) respectively. A relatively higher response rate (CR 30%, PR 55%) was observed in patients who received GRID treatment in the head and neck area. No Grade 3 late skin, subcutaneous, mucosal, or GI

  20. Chromosome aberration yields in human lymphocytes induced by fractionated doses of x-radiation

    International Nuclear Information System (INIS)

    Purrott, R.J.; Reeder, E.

    1976-01-01

    Unstimulated (G 0 ) human peripheral blood lymphocytes were exposed at 37degC to doses of 200 or 500 rad of X-rays delivered in two equal fractions. The dose fractions were separated by intervals of up to 7 h in the 200 rad study and up to 48 h for 500 rad. In both studies the mean levels of dicentrics and total unstable aberrations began to decline when fractions were delivered with intervals of greater than 2 h. With 200 rad the yield had decreased to an additive baseline (i.e. equal to only twice the yield of a single 100-rad fraction) by an interval of 4 h. Following 500 rad the yield declined until 8 h and then remained 20% above the expected additive baseline even when 48 h separated the fractions. Possible explanations for this discrepancy are discussed. In a second experiment PHA stimulated lymphocyte cultures were exposed to 2 doses of 125 rad of X-rays up to 7 h apart in an attempt to demonstrate the late peak in aberration yield originally reported by Lane. Control cultures received unsplit doses of 250 rad at the time of the corresponding second 125-rad fraction. No evidence of a late peak in dicentric yield was observed. The yield remained approximately the same irrespective of the time interval between fractions but these split dose yields were significantly different from the accompanying unsplit controls

  1. The different biological effects of single, fractioned and continuous low dose rate radiation on CL187 colorectal cancer cell line

    International Nuclear Information System (INIS)

    Wang Hao; Wang Junjie; Qu Ang; Li Jin'na; Liu Jingjia

    2012-01-01

    Objective: To investigate the effect and underlying mechanism of single, fractioned and continuous low dose rate radiation on CL187 colorectal cancer cell line. Methods: CL187 cells were exposed to 6 MV X-rays at a high dose rate of 4 Gy/min and 125 I seed at a low dose rate of 2.77 cGy/h with three groups:single dose radiation group (SDR), fractioned dose radiation group (FDR) by 2 Gy/f, and continuous low dose rate radiation group (CLDR). The radiation doses were 0, 2, 4 and 8 Gy. Total cell number and cell viability were determined by trypan blue. Clone forming assay was used to evaluate the cell proliferation ability. The percentage of apoptosis cells was analyzed by flow cytometry. Western blot was used to detect the protein expression levels of PHLPP2, PTEN and Bax. Results: Compared with SDR and FDR groups, the total cell number and survival fraction of CLDR group decreased. The relative biological effect (RBE) for 125 I seeds compared with 6 MV X-rays was 1.41. The percentage of apoptosis cells of CLDR group was significantly increased (t=-15.08, -11.99, P<0.05). The expression level of Bax increased in CLDR group, while no obvious changes were observed on PHLPP2 and PTEN among three groups. Conclusions: The expression level of PHLPP2 increases in SDR, FDR and CLDR group, while it seems that it was not influenced by dose rate. The expression level of Bax increased in three groups, while more colorectal CL187 cells in CLDR group may be killed due to the increase of Bax expression. (authors)

  2. Impact of Fractionation and Dose in a Multivariate Model for Radiation-Induced Chest Wall Pain

    International Nuclear Information System (INIS)

    Din, Shaun U.; Williams, Eric L.; Jackson, Andrew; Rosenzweig, Kenneth E.; Wu, Abraham J.; Foster, Amanda; Yorke, Ellen D.; Rimner, Andreas

    2015-01-01

    Purpose: To determine the role of patient/tumor characteristics, radiation dose, and fractionation using the linear-quadratic (LQ) model to predict stereotactic body radiation therapy–induced grade ≥2 chest wall pain (CWP2) in a larger series and develop clinically useful constraints for patients treated with different fraction numbers. Methods and Materials: A total of 316 lung tumors in 295 patients were treated with stereotactic body radiation therapy in 3 to 5 fractions to 39 to 60 Gy. Absolute dose–absolute volume chest wall (CW) histograms were acquired. The raw dose-volume histograms (α/β = ∞ Gy) were converted via the LQ model to equivalent doses in 2-Gy fractions (normalized total dose, NTD) with α/β from 0 to 25 Gy in 0.1-Gy steps. The Cox proportional hazards (CPH) model was used in univariate and multivariate models to identify and assess CWP2 exposed to a given physical and NTD. Results: The median follow-up was 15.4 months, and the median time to development of CWP2 was 7.4 months. On a univariate CPH model, prescription dose, prescription dose per fraction, number of fractions, D83cc, distance of tumor to CW, and body mass index were all statistically significant for the development of CWP2. Linear-quadratic correction improved the CPH model significance over the physical dose. The best-fit α/β was 2.1 Gy, and the physical dose (α/β = ∞ Gy) was outside the upper 95% confidence limit. With α/β = 2.1 Gy, V NTD99Gy was most significant, with median V NTD99Gy  = 31.5 cm 3 (hazard ratio 3.87, P<.001). Conclusion: There were several predictive factors for the development of CWP2. The LQ-adjusted doses using the best-fit α/β = 2.1 Gy is a better predictor of CWP2 than the physical dose. To aid dosimetrists, we have calculated the physical dose equivalent corresponding to V NTD99Gy  = 31.5 cm 3 for the 3- to 5-fraction groups

  3. Radiation-induced rectal complications are not influenced by age: a dose fractionation study in the rat.

    Science.gov (United States)

    van den Aardweg, Gerard J M J; Olofsen-van Acht, Manouk J J; van Hooije, Christel M C; Levendag, Peter C

    2003-05-01

    Radiation-induced complications of the rectum are an important dose-limiting factor in radiotherapy of pelvic malignancies. In general, animal studies demonstrated no differences in acute and late normal tissue toxicity with age, but little is known about rectal complications in relation to age. For this purpose, an extensive histological and dose fractionation study was carried out on the rectum of young (12 weeks) and older (77-80 weeks) rats. In this paper, the results of dose fractionation are presented in relation to age at the time of irradiation. Young and older animals were irradiated with single and fractionated doses. After irradiation, rectal complications could lead to occlusion and stenosis, eventually resulting in the clinical symptoms of a megacolon and a possible fistula. For each dose group, cumulative survival rates were obtained with Kaplan-Meier analysis, from which dose-effect curves and the associated LD(50) values for a megacolon/fistula were calculated. The majority of responders died between 8 and 24 weeks after irradiation, irrespective of age. For both age groups, only the fractionation data showed a reduction in the mean latency with increasing dose. In the older age group, 39% of the responders developed a fistula compared to 26% for the younger animals. The LD(50) values increased from around 30 Gy after single doses to nearly 65 Gy after 10 fractions. The increases in LD(50) values with the number of fractions were independent of the age of the rats. For each of the dose fractionation schedules, log-rank testing indicated no significant differences in cumulative survival rates between younger and older animals (P > 0.10). The high alpha/beta ratios obtained for both the young and older animals strongly suggested that the late rectal complications were a consequence of early epithelial injury. Associated histological findings indicated that blood vessel damage, which was already evident at a high incidence at 4 weeks after irradiation

  4. Effect of action of fractioned ionizing radiation in small dose on thyroid gland of rats

    OpenAIRE

    О. О. Prykhodko; V. V. Lizogubov; V. S. Usenko

    2005-01-01

    The effect of fractionated X-irradiation by 0.25 Gy dose to rat thyroid gland was studied . It was shown the decrease of thyrocyte proliferative activity that can induce the late effect of pathogenesis to thyroid land and biochemical pathways that control by thyroid hormones. Additional effect by any mutagenic factor may induce thyroid tumor development.

  5. Role of Immunomodulators in Tumor Regression in Mice Exposed to Fractionated Low Dose of Gamma Radiation

    International Nuclear Information System (INIS)

    Rokaya Elsayed Maaroaf Elsayed

    2015-01-01

    Immunotherapy is one of the most promising approaches of cancer treatment. The present study was designed to examine the role of irradiated tumor cell lysate vaccine, IFNα-2b and low dose of gamma irradiation as immunomodulators either alone or combined in tumor regression. Ehrlich ascite carcinoma (EAC) cells and 9 groups of female mice were used. Mice were immunized intramuscularly by tumor cell lysate vaccine one time/week for 3 weeks in the right thigh of mice. After two weeks from last immunization, all mice were challenged with normal viable EAC cells at count of 2.5 ×10 6 /mouse in the opposite left thigh for Ehrlich carcinoma (EC) production. Mice were subcutaneously injected with 10.000 units of IFNα-2b 3 times/week for 4 weeks and others were exposed to fractionated dose of γ- radiation (0.5 Gy/day x 4, day after day). Tumor size, serum tumor markers (TNF-α and CEA), tumor DNA fragmentation and Caspase-3 were evaluated. Oxidative stress (MDA and NO) markers and antioxidants (GSH, GPX and SOD) were determined in spleen and tumor tissues. Histopathological examinations, apoptosis and necrosis in spleen and tumor tissues were also examined. The results revealed significant inhibition in tumor size throughout the observation period either for treatments with vaccine or IFNα-2b either alone or combined with γ-irradiation. DNA fragmentation and Caspase-3 enzyme activities were significantly elevated in immunized mice as compared with EC group along with diminished tumor size while, tumor markers were significantly decreased. MDA and NO were significantly increased in tumor tissue.while, tumor GSH content, GPX and SOD activities were significantly decreased. Combined treatments of female mice bearing EC with IFN-α-2b, tumor cell lysate vaccine and low dose of γ-radiation cause a highly significant decrease in serum TNF-α and CEA levels, increase in Cas-3 activity, no DNA fragmentation, significant increase in MDA, decrease in SOD activity and decreased

  6. Impact of Fraction Size on Lung Radiation Toxicity: Hypofractionation may be Beneficial in Dose Escalation of Radiotherapy for Lung Cancers

    International Nuclear Information System (INIS)

    Jin Jinyue; Kong Fengming; Chetty, Indrin J.; Ajlouni, Munther; Ryu, Samuel; Ten Haken, Randall; Movsas, Benjamin

    2010-01-01

    Purpose: To assess how fraction size impacts lung radiation toxicity and therapeutic ratio in treatment of lung cancers. Methods and Materials: The relative damaged volume (RDV) of lung was used as the endpoint in the comparison of various fractionation schemes with the same normalized total dose (NTD) to the tumor. The RDV was computed from the biologically corrected lung dose-volume histogram (DVH), with an α/β ratio of 3 and 10 for lung and tumor, respectively. Two different (linear and S-shaped) local dose-effect models that incorporated the concept of a threshold dose effect with a single parameter D L50 (dose at 50% local dose effect) were used to convert the DVH into the RDV. The comparison was conducted using four representative DVHs at different NTD and D L50 values. Results: The RDV decreased with increasing dose/fraction when the NTD was larger than a critical dose (D CR ) and increased when the NTD was less than D CR . The D CR was 32-50 Gy and 58-87 Gy for a small tumor (11 cm 3 ) for the linear and S-shaped local dose-effect models, respectively, when D L50 was 20-30 Gy. The D CR was 66-97 Gy and 66-99 Gy, respectively, for a large tumor (266 cm 3 ). Hypofractionation was preferred for small tumors and higher NTDs, and conventional fractionation was better for large tumors and lower NTDs. Hypofractionation might be beneficial for intermediate-sized tumors when NTD = 80-90 Gy, especially if the D L50 is small (20 Gy). Conclusion: This computational study demonstrated that hypofractionated stereotactic body radiotherapy is a better regimen than conventional fractionation in lung cancer patients with small tumors and high doses, because it generates lower RDV when the tumor NTD is kept unchanged.

  7. Effect of single and fractionated doses of gamma radiation on pupariation of housefly

    International Nuclear Information System (INIS)

    Srinivasan, A.; Kesavan, P.C.

    1979-01-01

    Larvae of different ages from 40 hr to 72 hr were exposed to γ-rays ranging between 500 R and 10000 R; all ages of the larvae showed dose-dependence pupariation delay up to 4000 R. The shape of the puparia were not normal in the larvae irradiated with higher doses. Sparing effect of dose fractionation (SDF) was demonstrated for the pupariation delay. Sparing effect was quite marked at low dose-rate (15 R/second) than at high dose-rate (80 R/second) and maximum SDF was found with 2 hr interfraction interval as compared to 4.5 and 6.5 hr. The magnitude of SDF was comparatively less at 15 0 C than at 35 0 C indicating the occurrence of repair. Furthermore, the metabolic requirement of repair processes was evidenced by the abolition of SDF by inhibitors of energy metabolism, DNA binding agents and protein synthesis inhibitors. (author)

  8. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect

    International Nuclear Information System (INIS)

    Song, William; Battista, Jerry; Van Dyk, Jake

    2004-01-01

    The convolution method can be used to model the effect of random geometric uncertainties into planned dose distributions used in radiation treatment planning. This is effectively done by linearly adding infinitesimally small doses, each with a particular geometric offset, over an assumed infinite number of fractions. However, this process inherently ignores the radiobiological dose-per-fraction effect since only the summed physical dose distribution is generated. The resultant potential error on predicted radiobiological outcome [quantified in this work with tumor control probability (TCP), equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and generalized equivalent uniform dose (gEUD)] has yet to be thoroughly quantified. In this work, the results of a Monte Carlo simulation of geometric displacements are compared to those of the convolution method for random geometric uncertainties of 0, 1, 2, 3, 4, and 5 mm (standard deviation). The α/β CTV ratios of 0.8, 1.5, 3, 5, and 10 Gy are used to represent the range of radiation responses for different tumors, whereas a single α/β OAR ratio of 3 Gy is used to represent all the organs at risk (OAR). The analysis is performed on a four-field prostate treatment plan of 18 MV x rays. The fraction numbers are varied from 1-50, with isoeffective adjustments of the corresponding dose-per-fractions to maintain a constant tumor control, using the linear-quadratic cell survival model. The average differences in TCP and EUD of the target, and in NTCP and gEUD of the OAR calculated from the convolution and Monte Carlo methods reduced asymptotically as the total fraction number increased, with the differences reaching negligible levels beyond the treatment fraction number of ≥20. The convolution method generally overestimates the radiobiological indices, as compared to the Monte Carlo method, for the target volume, and underestimates those for the OAR. These effects are interconnected and attributed

  9. The impact of radiation dose and fractionation on the risk factor of radiation pneumonitis on four radiation therapy oncology group (RTOG) lung cancer trials

    International Nuclear Information System (INIS)

    Roach, Mack; Pajak, Thomas F; Byhardt, Roger; Graham, Mary L; Asbell, Sucha O; Russell, Anthony H; Fu, Karen K; Urtasun, Raul C; Herskovic, Arnold M; Cox, James D

    1997-01-01

    Purpose/Objective: To assess the relationship between total dose of radiation delivered, the fractionation scheme used, age, and Karnofsky Performance Status (KPS) on the risk of moderate to severe (≥ Grade 2) radiation pneumonitis in patients treated with radiotherapy alone for lung cancer on four RTOG Trials. Materials and Methods: Between February of 1984 and April of 1989, 1701 patients with clinically localized (I-IIIb) lung cancer were entered on clinical trials employing radiotherapy alone. Twelve hundred and forty-seven patients were entered on RTOG 8311 or 8407 (phase I/II trials) and 454 patients were entered on RTOG 8321 or 8403 (phase III trials). RTOG 8403 and 8321 patients received once-a-day irradiation to 60 Gy. Patients treated on RTOG 8407 were treated with a concomitant boost technique in a non-randomized fashion to 64.8, 69.6, 74.4 or 79.2 Gy. Patients treated on RTOG 8407 were treated with a concomitant boost technique in a non-randomized fashion to 63 Gy or 70.2 Gy. All patients were assessed for the incidence of Grade 2-5, radiation pneumonitis. One hundred and seven (6%) of patients were either ineligible or canceled (n=60), or were excluded because of incomplete data (n=47). The factors evaluated included total dose of radiation, the fractionation scheme, age and pre-treatment KPS. Patients treated to doses ≥ 72 Gy were considered to have received high doses (72.0 - 81.6 Gy), while the remaining patients treated to doses < 72 Gy (57.6 - 71.9 Gy) were considered to have received standard dose radiation. For the this analysis, information regarding field size and baseline pulmonary function was not available. Results: Age, sex, stage distribution, and the percentage of patients with a KPS ≥90 were similar among the patients treated on these four studies. Patients receiving hyperfractionated radiotherapy to doses ≥ 72 Gy experienced a higher incidence of radiation pneumonitis ≥ Grade 2, than patients treated with standard doses < 72

  10. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    2009-10-01

    Full Text Available Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease at low radiation doses in various occupationally exposed groups receiving small daily radiation doses. Assuming that they are causal, the mechanisms for effects of chronic fractionated radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for atherosclerosis and perform stability analysis, based wherever possible on human data. We show that a predicted consequence of multiple small radiation doses is to cause mean chemo-attractant (MCP-1 concentration to increase linearly with cumulative dose. The main driver for the increase in MCP-1 is monocyte death, and consequent reduction in MCP-1 degradation. The radiation-induced risks predicted by the model are quantitatively consistent with those observed in a number of occupationally-exposed groups. The changes in equilibrium MCP-1 concentrations with low density lipoprotein cholesterol concentration are also consistent with experimental and epidemiologic data. This proposed mechanism would be experimentally testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The Japanese A-bomb survivor data implies that cardiovascular disease and cancer mortality contribute similarly to radiogenic risk. The major uncertainty in assessing the low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in the Japanese data. The analysis of the present paper suggests that linear extrapolation would be appropriate for this endpoint.

  11. High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers

    International Nuclear Information System (INIS)

    Mohiuddin, Mohammed; Fujita, Mihoko; Regine, William F.; Megooni, Ali S.; Ibbott, Goeffrey S.; Ahmed, Mansoor M.

    1999-01-01

    Purpose: With the advent of megavoltage radiation, the concept of spatially-fractionated (SFR) radiation has been abandoned for the last several decades; yet, historically, it has been proven to be safe and effective in delivering large cumulative doses (> 100 Gy) of radiation in the treatment of cancer. SFR radiation has been adapted to megavoltage beams using a specially constructed grid. This study evaluates the toxicity and effectiveness of this approach in treatment of advanced and bulky cancers. Methods and Materials: From January 1995 through March 1998, 71 patients with advanced bulky tumors (tumor sizes > 8 cm) were treated with SFR high-dose external beam megavoltage radiation using a GRID technique. Sixteen patients received GRID treatments to multiple sites and a total of 87 sites were irradiated. A 50:50 GRID (open to closed area) was utilized, and a single dose of 1,000-2,000 cGy (median 1,500 cGy) to D max was delivered utilizing 6 MV photons. Sixty-three patients received high-dose GRID therapy for palliation (pain, mass, bleeding, or dyspnea). In 8 patients, GRID therapy was given as part of a definitive treatment combined with conventionally-fractionated external beam irradiation (dose range 5,000-7,000 cGy) followed by subsequent surgery. Forty-seven patients were treated with GRID radiation followed by additional fractionated external beam irradiation, and 14 patients were treated with GRID alone. Thirty-one treatments were delivered to the abdomen and pelvis, 30 to the head and neck region, 15 to the thorax, and 11 to the extremities. Results: For palliative treatments, a 78% response rate was observed for pain, including a complete response (CR) of 19.5%, and a partial response (PR) of 58.5% in these large bulky tumors. A 72.5% response rate was observed for mass effect (CR 14.6%, PR 52.9%). The response rate observed for bleeding was 100% (50% CR, 50% PR) and for dyspnea, a 60% PR rate only. A relatively higher response rate (CR 23.3%, PR 60

  12. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    International Nuclear Information System (INIS)

    Horton, Janet K.; Blitzblau, Rachel C.; Yoo, Sua; Geradts, Joseph; Chang, Zheng; Baker, Jay A.; Georgiade, Gregory S.; Chen, Wei; Siamakpour-Reihani, Sharareh; Wang, Chunhao; Broadwater, Gloria; Groth, Jeff; Palta, Manisha; Dewhirst, Mark; Barry, William T.; Duffy, Eileen A.

    2015-01-01

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  13. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Janet K., E-mail: janet.horton@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Blitzblau, Rachel C.; Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Geradts, Joseph [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Chang, Zheng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Baker, Jay A. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Georgiade, Gregory S. [Department of Surgery, Duke University Medical Center, Durham, North Carolina (United States); Chen, Wei [Department of Bioinformatics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Siamakpour-Reihani, Sharareh; Wang, Chunhao [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Broadwater, Gloria [Department of Biostatistics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Groth, Jeff [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha; Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Barry, William T. [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Duffy, Eileen A. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); and others

    2015-07-15

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  14. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers.

    Science.gov (United States)

    Horton, Janet K; Blitzblau, Rachel C; Yoo, Sua; Geradts, Joseph; Chang, Zheng; Baker, Jay A; Georgiade, Gregory S; Chen, Wei; Siamakpour-Reihani, Sharareh; Wang, Chunhao; Broadwater, Gloria; Groth, Jeff; Palta, Manisha; Dewhirst, Mark; Barry, William T; Duffy, Eileen A; Chi, Jen-Tsan A; Hwang, E Shelley

    2015-07-15

    Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Women aged ≥55 years with clinically node-negative, estrogen receptor-positive, and/or progesterone receptor-positive HER2-, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should be tested in future clinical trials because it has the potential to

  15. Influence of radiation dose rate and lung dose on interstitial pneumonitis after fractionated total body irradiation: acute parotitis may predict interstitial pneumonitis.

    Science.gov (United States)

    Oya, Natsuo; Sasai, Keisuke; Tachiiri, Seiji; Sakamoto, Takashi; Nagata, Yasushi; Okada, Takashi; Yano, Shinsuke; Ishikawa, Takayuki; Uchiyama, Takashi; Hiraoka, Masahiro

    2006-01-01

    This study evaluated patients for the influence of the dose rate and lung dose of fractionated total body irradiation (TBI) in preparation for allogeneic bone marrow transplantation (BMT) on the subsequent development of interstitial pneumonitis (IP). Sixty-six patients at our institute were treated with TBI followed by BMT. All of the patients received a total TBI dose of 12 Gy given in 6 fractions over 3 days and were divided into 3 groups according to the radiation dose rate and lung dose: group A, lung dose of 8 Gy (n = 18); group B, lung dose of 12 Gy at 8 cGy/min (n = 25); and group C, lung dose of 12 Gy at 19 cGy/min (n = 23). The overall survival rate, the cumulative incidence of relapse, and the cumulative incidence of IP were evaluated in relation to various potential indicators of future IP. There were no significant differences in survival and relapse rates between patient group A and combined groups B and C. Clinically significant IP occurred in 13 patients. The cumulative incidence of IP was significantly higher in patients who developed acute parotitis as indicated by either an elevation in the serum amylase level or parotid pain of grade 1 to 2. There was no difference in IP incidence among groups A, B, and C. There was no significant difference in IP incidence between lung dose values of 8 Gy (with lung shielding) and 12 Gy (without lung shielding) and between dose rate values of 8 cGy/min and 19 cGy/ min, at least when TBI was given in 6 fractions. The presence of acute parotitis during or just after TBI may be a predictor of IP.

  16. Fractionated stereotactic radiation therapy and single high-dose radiosurgery for acoustic neuroma: early results of a prospective clinical study

    International Nuclear Information System (INIS)

    Meijer, O.W.M.; Wolbers, J.G.; Baayen, J.C.; Slotman, B.J.

    2000-01-01

    Purpose: To prospectively assess the local control and toxicity rate in acoustic neuroma patients treated with linear accelerator-based radiosurgery and fractionated stereotactic radiation therapy. Methods and Materials: We evaluated 37 consecutive patients treated with stereotactic radiation therapy for acoustic neuroma. All patients had progressive tumors, progressive symptoms, or both. Mean tumor diameter was 2.3 cm (range 0.8-3.3) on magnetic resonance (MR) scan. Dentate patients were given a dose of 5 x 4 Gy or 5 x 5 Gy and edentate patients were given a dose of 1 x 10 Gy or 1 x 12.50 Gy prescribed to the 80% isodose. All patients were treated with a single isocenter. Results: With a mean follow-up period of 25 months (range 12-61), the actuarial local control rate at 5 years was 91% (only 1 patient failed). The actuarial rate of hearing preservation at 5 years was 66% in previously-hearing patients. The actuarial rate of freedom from trigeminal nerve toxicity was 97% at 5 years. No patient developed facial nerve toxicity or other complications. Conclusion: In this unselected series, fractionated stereotactic radiation therapy and linear accelerator-based radiosurgery give excellent local control in acoustic neuroma. It combines a high rate of preservation of hearing with a very low rate of other toxicity, although follow-up is relatively short

  17. Effect of Fractionated Low Doses of Gamma Radiation on Some Haematological and Immunological Parameters in Albino Rat

    International Nuclear Information System (INIS)

    Bahgat, M.M.; Abdel-Khalek, L.G.

    2003-01-01

    This study was performed on 30 mature male albino rats to evaluate the direct effect of fractionated low doses (0.5 Gy twice weekly) gamma radiation and delayed effect (one month post-irradiation) on some haematological and immunological parameters. The rats were divided into three equal groups, Control and two whole body gamma-irradiated groups the irradiated groups were subjected to total doses of 4 and 8 Grays over a period of one and two months, respectively. The blood samples and peritoneal macrophages were taken twice from each irradiated rats at the end of their irradiation period and after one month post irradiation. Activated peritoneal macrophages in all groups showed significant decrease as compared to control group denoting that irradiation may cause receptor alteration and/or decrease in the phagocytic power of macrophages lasting for a longer time. Throughout the whole experiment there was wide variation in platelet count with no significant or minimal changes in other blood elements. Moreover, in the post irradiation group after two months irradiation, all the haematological parameters tested, except the Hct, were increased as compared to the control group. These results pointed to that the bone marrow and lymphoid organs of the animals can tolerate fractionated low dose irradiation through rapid recovery and/or compensatory stimulation. The presence of many target cells in the post irradiated group increases the red blood cell fragility

  18. Radiation therapy in cancer patients with psoriasis. The fractionated daily dose and the Koebner phenomenon

    International Nuclear Information System (INIS)

    Ben-Yosef, Rami; Soyfer, Vyacheslav; Vexler, Akiva

    2005-01-01

    Skin side effects following XRT take place more often in patients with skin disorders. In this study six patients with psoriatic lesions were evaluated. The total/daily XRT dose to the tumor site was 50-70/1.8-2.0 Gy. No debilitating effect of XRT was observed in both the psoriatic lesions and in the surrounding normal skin

  19. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  20. Maximizing Tumor Immunity With Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2012-07-15

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma} enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  1. Maximizing Tumor Immunity With Fractionated Radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-01-01

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4 + CD25 hi Foxp3 + T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  2. Inter fractional dose variation during intensity-modulated radiation therapy for cervical cancer assessed by weekly CT evaluation

    International Nuclear Information System (INIS)

    Han, Youngyih; Shin, Eun Hyuk; Huh, Seung Jae; Lee, Jung Eun; Park, Won

    2006-01-01

    Purpose: To investigate the inter fractional dose variation of a small-bowel displacement system (SBDS)-assisted intensity-modulated radiation therapy (IMRT) for the treatment of cervical cancer. Methods: Four computed tomography (CT) scans were carried out in 10 patients who received radiotherapy for uterine cervical cancer. The initial CT was taken by use of the SBDS, before the beginning of radiotherapy, and 3 additional CT scans with the SBDS were done in subsequent weeks. IMRT was planned by use of the initial CT, and the subsequent images were fused with the initial CT set. Dose-volume histogram (DVH) changes of the targets (planning target volume [PTV] = clinical target volume [CTV] + 1.5 cm) and of the critical organs were evaluated after obtaining the volumes of each organ on 4 CT sets. Results: No significant differences were found in PTV volumes. Changes on the DVH of the CTVs were not significant, whereas DVH changes of the PTVs at 40% to 100% of the prescription dose level were significant (V 90% ; 2nd week: p = 0.0091, 3rd week: p = 0.0029, 4th week: p = 0.0050). The changes in the small-bowel volume included in the treatment field were significant. These were 119.5 cm 3 (range, 26.9-251.0 cm 3 ), 126 cm 3 (range, 38.3-336 cm 3 ), 161.9 cm 3 (range, 37.7-294.6 cm 3 ), and 149.1 cm 3 (range, 38.6-277.8 cm 3 ) at the 1st, 2nd, 3rd, and 4th weeks, respectively, and were significantly correlated with the DVH change in the small bowel, which were significant at the 3rd (V 80% ; p = 0.0230) and 4th (V 80% ; p = 0.0263) weeks. The bladder-volume change correlated to the large volume change (>20%) of the small-bowel volume. Conclusions: Significant DVH differences for the small bowel can result because of interfractional position variations, whereas the DVH differences of the CTV were not significant. Strict bladder-filling control and an accurate margin for the PTV, as well as image-guided position verification, are important to achieve the goal of IMRT

  3. Secondary malignancies in patients with stage IA-IIIA Hodgkin's lymphoma after radiation (chemoradiation) therapy using accelerated dose fractionation

    International Nuclear Information System (INIS)

    Sinajko, V.V.; Minajlo, I.I.; Veyakin, I.V.

    2010-01-01

    The incidence of secondary malignancies was investigated in 367 patients with stage IA-IIIA Hodgkin's lymphoma after radiation therapy using accelerated fractionation. For 20 years of the observation 24 of them developed 27(7.4%) tumors, besides their frequency did not depend on the disease stage and method of treatment.

  4. Dose and Fractionation in Radiation Therapy of Curative Intent for Non-Small Cell Lung Cancer: Meta-Analysis of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, Johanna; Cutter, David J.; Darby, Sarah C. [Nuffield Department of Population Health, University of Oxford, Oxford, Oxfordshire (United Kingdom); Higgins, Geoff S. [Department of Oncology, University of Oxford, Oxford, Oxfordshire (United Kingdom); McGale, Paul [Nuffield Department of Population Health, University of Oxford, Oxford, Oxfordshire (United Kingdom); Partridge, Mike [CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, Oxfordshire (United Kingdom); Taylor, Carolyn W., E-mail: carolyn.taylor@ndph.ox.ac.uk [Nuffield Department of Population Health, University of Oxford, Oxford, Oxfordshire (United Kingdom)

    2016-11-15

    Purpose: The optimum dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer remains uncertain. We undertook a published data meta-analysis of randomized trials to examine whether radiation therapy regimens with higher time-corrected biologically equivalent doses resulted in longer survival, either when given alone or when given with chemotherapy. Methods and Materials: Eligible studies were randomized comparisons of 2 or more radiation therapy regimens, with other treatments identical. Median survival ratios were calculated for each comparison and pooled. Results: 3795 patients in 25 randomized comparisons of radiation therapy dose were studied. The median survival ratio, higher versus lower corrected dose, was 1.13 (95% confidence interval [CI] 1.04-1.22) when radiation therapy was given alone and 0.83 (95% CI 0.71-0.97) when it was given with concurrent chemotherapy (P for difference=.001). In comparisons of radiation therapy given alone, the survival benefit increased with increasing dose difference between randomized treatment arms (P for trend=.004). The benefit increased with increasing dose in the lower-dose arm (P for trend=.01) without reaching a level beyond which no further survival benefit was achieved. The survival benefit did not differ significantly between randomized comparisons where the higher-dose arm was hyperfractionated and those where it was not. There was heterogeneity in the median survival ratio by geographic region (P<.001), average age at randomization (P<.001), and year trial started (P for trend=.004), but not for proportion of patients with squamous cell carcinoma (P=.2). Conclusions: In trials with concurrent chemotherapy, higher radiation therapy doses resulted in poorer survival, possibly caused, at least in part, by high levels of toxicity. Where radiation therapy was given without chemotherapy, progressively higher radiation therapy doses resulted in progressively longer survival, and no

  5. Radiotherapy Dose Fractionation under Parameter Uncertainty

    International Nuclear Information System (INIS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-01-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  6. Cell and Tissue Damage after Skin Exposure to Ionizing Radiation: Short- and Long-Term Effects after a Single and Fractional Doses.

    Science.gov (United States)

    Kinoshita, Kahori; Ishimine, Hisako; Shiraishi, Kenshiro; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kanayama, Koji; Mineda, Kazuhide; Mashiko, Takanobu; Feng, Jingwei; Nakagawa, Keiichi; Kurisaki, Akira; Itami, Satoshi; Yoshimura, Kotaro

    2014-01-01

    Ionizing radiation is often used to treat progressive neoplasms. However, the consequences of long-term radiation exposure to healthy skin tissue are poorly understood. We aimed to evaluate the short- and long-term radiation damage to healthy skin of the same irradiation given either as single or fractional doses. C57BL/J6 mice were randomly assigned to one of three groups: a control and two exposure groups (5 Gy ×2 or 10 Gy ×1). The inguinal area was irradiated (6-MeV beam) 1 week after depilation in the treatment groups. Skin samples were evaluated macroscopically and histologically for up to 6 months after the final exposure. After anagen hair follicle injury by irradiation, hair cycling resumed in both groups, but hair graying was observed in the 10 Gy ×1 group but not in the 5 Gy ×2 group, suggesting the dose of each fractional exposure is more relevant to melanocyte stem cell damage than the total dose. On the other hand, in the long term, the fractional double exposures induced more severe atrophy and capillary reduction in the dermis and subcutis, suggesting fractional exposure may cause more depletion of tissue stem cells and endothelial cells in the tissue. Thus, our results indicated that there were differences between the degrees of damage that occurred as a result of a single exposure compared with fractional exposures to ionizing radiation: the former induces more severe acute injury to the skin with irreversible depigmentation of hairs, while the latter induces long-term damage to the dermis and subcutis. © 2015 S. Karger AG, Basel.

  7. Nuclear accumulation of cyclin D1 following long-term fractionated exposures to low-dose ionizing radiation in normal human diploid cells.

    Science.gov (United States)

    Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki

    2014-01-01

    Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G 1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G 1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation.

  8. Preliminary Results of a Phase 1 Dose-Escalation Trial for Early-Stage Breast Cancer Using 5-Fraction Stereotactic Body Radiation Therapy for Partial-Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Asal, E-mail: asal.rahimi@utsouthwestern.edu [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Thomas, Kimberly; Spangler, Ann [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Rao, Roshni; Leitch, Marilyn; Wooldridge, Rachel; Rivers, Aeisha [Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Seiler, Stephen [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Albuquerque, Kevin; Stevenson, Stella [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Goudreau, Sally [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Garwood, Dan [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Haley, Barbara [Department of Medical Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Euhus, David [Department of Surgery, Johns Hopkins University, Baltimore, Maryland (United States); Heinzerling, John [Department of Radiation Oncology, Levine Cancer Institute, Charlotte, North Carolina (United States); Ding, Chuxiong [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Gao, Ang; Ahn, Chul [Department of Statistics, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Timmerman, Robert [University of Texas Southwestern Medical Center, Dallas, Texas (United States)

    2017-05-01

    Purpose: To evaluate the tolerability of a dose-escalated 5-fraction stereotactic body radiation therapy for partial-breast irradiation (S-PBI) in treating early-stage breast cancer after partial mastectomy; the primary objective was to escalate dose utilizing a robotic stereotactic radiation system treating the lumpectomy cavity without exceeding the maximum tolerated dose. Methods and Materials: Eligible patients included those with ductal carcinoma in situ or invasive nonlobular epithelial histologies and stage 0, I, or II, with tumor size <3 cm. Patients and physicians completed baseline and subsequent cosmesis outcome questionnaires. Starting dose was 30 Gy in 5 fractions and was escalated by 2.5 Gy total for each cohort to 40 Gy. Results: In all, 75 patients were enrolled, with a median age of 62 years. Median follow-up for 5 cohorts was 49.9, 42.5, 25.7, 20.3, and 13.5 months, respectively. Only 3 grade 3 toxicities were experienced. There was 1 dose-limiting toxicity in the overall cohort. Ten patients experienced palpable fat necrosis (4 of which were symptomatic). Physicians scored cosmesis as excellent or good in 95.9%, 100%, 96.7%, and 100% at baseline and 6, 12, and 24 months after S-PBI, whereas patients scored the same periods as 86.5%, 97.1%, 95.1%, and 95.3%, respectively. The disagreement rates between MDs and patients during those periods were 9.4%, 2.9%, 1.6%, and 4.7%, respectively. There have been no recurrences or distant metastases. Conclusion: Dose was escalated to the target dose of 40 Gy in 5 fractions, with the occurrence of only 1 dose-limiting toxicity. Patients felt cosmetic results improved within the first year after surgery and stereotactic body radiation therapy. Our results show minimal toxicity with excellent cosmesis; however, further follow-up is warranted in future studies. This study is the first to show the safety, tolerability, feasibility, and cosmesis results of a 5-fraction dose-escalated S-PBI treatment for

  9. Preliminary Results of a Phase 1 Dose-Escalation Trial for Early-Stage Breast Cancer Using 5-Fraction Stereotactic Body Radiation Therapy for Partial-Breast Irradiation

    International Nuclear Information System (INIS)

    Rahimi, Asal; Thomas, Kimberly; Spangler, Ann; Rao, Roshni; Leitch, Marilyn; Wooldridge, Rachel; Rivers, Aeisha; Seiler, Stephen; Albuquerque, Kevin; Stevenson, Stella; Goudreau, Sally; Garwood, Dan; Haley, Barbara; Euhus, David; Heinzerling, John; Ding, Chuxiong; Gao, Ang; Ahn, Chul; Timmerman, Robert

    2017-01-01

    Purpose: To evaluate the tolerability of a dose-escalated 5-fraction stereotactic body radiation therapy for partial-breast irradiation (S-PBI) in treating early-stage breast cancer after partial mastectomy; the primary objective was to escalate dose utilizing a robotic stereotactic radiation system treating the lumpectomy cavity without exceeding the maximum tolerated dose. Methods and Materials: Eligible patients included those with ductal carcinoma in situ or invasive nonlobular epithelial histologies and stage 0, I, or II, with tumor size <3 cm. Patients and physicians completed baseline and subsequent cosmesis outcome questionnaires. Starting dose was 30 Gy in 5 fractions and was escalated by 2.5 Gy total for each cohort to 40 Gy. Results: In all, 75 patients were enrolled, with a median age of 62 years. Median follow-up for 5 cohorts was 49.9, 42.5, 25.7, 20.3, and 13.5 months, respectively. Only 3 grade 3 toxicities were experienced. There was 1 dose-limiting toxicity in the overall cohort. Ten patients experienced palpable fat necrosis (4 of which were symptomatic). Physicians scored cosmesis as excellent or good in 95.9%, 100%, 96.7%, and 100% at baseline and 6, 12, and 24 months after S-PBI, whereas patients scored the same periods as 86.5%, 97.1%, 95.1%, and 95.3%, respectively. The disagreement rates between MDs and patients during those periods were 9.4%, 2.9%, 1.6%, and 4.7%, respectively. There have been no recurrences or distant metastases. Conclusion: Dose was escalated to the target dose of 40 Gy in 5 fractions, with the occurrence of only 1 dose-limiting toxicity. Patients felt cosmetic results improved within the first year after surgery and stereotactic body radiation therapy. Our results show minimal toxicity with excellent cosmesis; however, further follow-up is warranted in future studies. This study is the first to show the safety, tolerability, feasibility, and cosmesis results of a 5-fraction dose-escalated S-PBI treatment for

  10. Patterns of Local Recurrence and Dose Fractionation of Adjuvant Radiation Therapy in 462 Patients With Soft Tissue Sarcoma of Extremity and Trunk Wall

    Energy Technology Data Exchange (ETDEWEB)

    Jebsen, Nina L., E-mail: nina.louise.jebsen@helse-bergen.no [Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway); Department of Oncology, Haukeland University Hospital, Bergen (Norway); Engellau, Jacob [Department of Oncology, Skåne University Hospital, Lund (Sweden); Engström, Katarina [Department of Oncology, Sahlgrenska University Hospital, Gothenburg (Sweden); Bauer, Henrik C. [Department of Molecular Medicine and Surgery, Section for Orthopaedics and Sports Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm (Sweden); Monge, Odd R. [Department of Oncology, Haukeland University Hospital, Bergen (Norway); Muren, Ludvig P. [Department of Physics and Technology, University of Bergen, Bergen (Norway); Department of Medical Physics, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Eide, Geir E. [Centre for Clinical Research, Haukeland University Hospital, Bergen (Norway); Department of Public Health and Primary Health Care, University of Bergen, Bergen (Norway); Trovik, Clement S. [Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway); Department of Oncology, Haukeland University Hospital, Bergen (Norway); Bruland, Øyvind S. [Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway)

    2013-08-01

    Purpose: To study the impact of dose fractionation of adjuvant radiation therapy (RT) on local recurrence (LR) and the relation of LR to radiation fields. Methods and Materials: LR rates were analyzed in 462 adult patients with soft tissue sarcoma who underwent surgical excision and adjuvant RT at five Scandinavian sarcoma centers from 1998 to 2009. Medical records were reviewed for dose fractionation parameters and to determine the location of the LR relative to the radiation portals. Results: Fifty-five of 462 patients developed a LR (11.9%). Negative prognostic factors included intralesional surgical margin (hazard ratio [HR]: 7.83, 95% confidence interval [CI]: 3.08-20.0), high malignancy grade (HR: 5.82, 95% CI: 1.31-25.8), age at diagnosis (HR per 10 years: 1.27, 95% CI: 1.03-1.56), and malignant peripheral nerve sheath tumor histological subtype (HR: 6.66, 95% CI: 2.56-17.3). RT dose was tailored to margin status. No correlation between RT dose and LR rate was found in multiple Cox regression analysis. The majority (65%) of LRs occurred within the primary RT volume. Conclusions: No significant dose–response effect of adjuvant RT was demonstrated. Interestingly, patients given 45-Gy accelerated RT (1.8 Gy twice daily/2.5 weeks) had the best local outcome. A total dose of 50 Gy in 25 fractions seemed adequate following wide margin surgery. The risk of LR was associated with histopathologic subtype, which should be included in the treatment algorithm of adjuvant RT in soft tissue sarcoma.

  11. Registration of radiation doses

    International Nuclear Information System (INIS)

    2000-02-01

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  12. High-Dose Spatially Fractionated GRID Radiation Therapy (SFGRT): A Comparison of Treatment Outcomes With Cerrobend vs. MLC SFGRT

    International Nuclear Information System (INIS)

    Neuner, Geoffrey; Mohiuddin, Majid M.; Vander Walde, Noam; Goloubeva, Olga; Ha, Jonathan; Yu, Cedric X.; Regine, William F.

    2012-01-01

    Purpose: Spatially fractionated GRID radiotherapy (SFGRT) using a customized Cerrobend block has been used to improve response rates in patients with bulky tumors. The clinical efficacy of our own multileaf collimator (MLC) technique is unknown. We undertook a retrospective analysis to compare clinical response rates attained using these two techniques. Methods and Materials: Seventy-nine patients with bulky tumors (median diameter, 7.6 cm; range, 4–30 cm) treated with SFGRT were reviewed. Between 2003 and late 2005, the Cerrobend block technique (n = 39) was used. Between late 2005 and 2008, SFGRT was delivered using MLC-shaped fields (n = 40). Dose was prescribed to dmax (depth of maximum dose) and was typically 15 Gy. Eighty percent of patients in both groups received external beam radiotherapy in addition to SFGRT. The two-sided Fisher-Freeman-Halton test was used to compare pain and mass effect response rates between the two groups. Results: Sixty-one patients (77%) were treated for palliative intent and 18 (23%) for curative intent. The majority of patients had either lung or head-and-neck primaries in both groups; the most frequent site of SFGRT application was the neck. The majority of patients complained of either pain (65%) or mass effect (58%) at intake. Overall response rates for pain and mass response were no different between the Cerrobend and MLC groups: pain, 75% and 74%, respectively (p = 0.50), and mass effect, 67% and 73%, respectively (p = 0.85). The majority of toxicities were Grade 1 or 2, and only 3 patients had late Grade 3-4 toxicities. Conclusions: MLC-based and Cerrobend-based SFGRT have comparable and encouraging response rates when used either in the palliative or curative setting. MLC-based SGFRT should allow clinics to more easily adopt this novel treatment approach for the treatment of bulky tumors.

  13. Ionizing radiation and autoimmunity: Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells

    International Nuclear Information System (INIS)

    Sakaguchi, N.; Sakaguchi, S.; Miyai, K.

    1992-01-01

    Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and the peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4 + T cells mediated the autoimmune prevention but CD8 + T cells did not. CD4 + T cells also appeared to mediate the TLI-induced autoimmune disease because CD4 + T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs

  14. Implication of fractionated dose exposures in therapeutic gain

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Lee, Min-Ho; Kim, Eun-Hee

    2016-01-01

    Radiation therapy pursues killing tumor cells while sparing normal cells from the radiation exposure. Stereotactic radiosurgery (SRS) is a cancer treatment modality that delivers a high dose in a single operation. This high-dose single operation shortens the treatment course, but can increase the risk of normal cell damage. Normal cell damage can be reduced by employing multi-directional exposures for an increasing number of isocenters. In this study, we investigated whether therapeutic benefits would be expected by employing new dose fractionation patterns at a high-dose single operation. The conventional single-dose operation in brain tumor radiosurgery is performed by delivering fractionated uniform doses. According to Figs. 2 and 3, the conventional radiosurgery might have obtained some therapeutic benefit by employing the fractionated uniform-dose exposures instead of a single-dose exposure. We suggest that further therapeutic gain be expected by employing the fractionated radiation exposures in an increasing dose pattern. Until ensuring our suggestion, the significance in gain of cell surviving should be verified for all three dose patterns with both normal and tumor cells. The investigation whether normal and tumor cells show the same responses to the fractionated dose exposures at lower and higher than 15 Gy of total dose is also reserved for future work

  15. Fractionated perineal high-dose-rate temporary brachytherapy combined with external beam radiation in the treatment of localized prostate cancer: is lymph node sampling necessary?

    International Nuclear Information System (INIS)

    Gyorgy, Kovacs; Razvan, Galalae

    2003-01-01

    To study the influence of imaging based nodal staging and local dose escalation by a high-dose-rate brachytherapy (HDR-BT) boost in the treatment of locally confined prostate cancer in terms of prostate specific antigen (PSA) recurrence-free survival (biochemical non-evidence of disease (bNED)), treatment toxicity and prognostic variables. The prospectively recorded files of 144 men aged in a median of 68 years with a mean follow-up of 8 years (60-171 months) receiving curatively intended, transrectal ultrasound guided high-dose-rate 192-iridium-brachytherapy (HDR-BT) combined with external beam radiation therapy (EBRT) for locally confined prostate cancer were analyzed. T-stages were defined by digital rectal investigation and transrectal sonography (TRUS), nodal staging was performed with computed tomography (CT)/magnetic resonance imaging (MRI) (UICC/AJCR 1992). Twenty-nine patients (20.1%) had T1b-T2a tumors, and 115 patients had T2b-T3 tumors. Median initial PSA (iPSA) was 12.15 ng mL -1 (mean 25.61 ng mL -1 ). The total planned dose applied by external beam radiation was 50 Gy in the pelvis, and 40 Gy in the prostate by in-field-dose modification by individual compensators. The perineal, TRUS guided HDR-BT was delivered in two fractions of 15 Gy each. The target of BT boost was the peripheral zone of the prostate. The overall survival was 71.5%o and that of the disease free survival 82.6%. Freedom from distant metastases in T3 stage was 91.3%, whereas for G3 lesions, it was 88.23%. The bNED rate was 72.9%. Regarding treatment related late toxicity according to the EORTC/RTOG score, we observed grade 1, 2, 3 proctitis in 9.72%, 6.94%, 4.10% as well as grade 1, 2, 3 cystitis in 12.5%, 4.16%2.08%, respectively. Grade 4 and 5 proctitis or cystitis were not registered. The minimum 5-year and mean 8-year results confirm that local dose escalation by TRUS guided perineal HDR-BT and complementary external beam radiation of the pelvic lymphatics has curative potential

  16. Single-Fraction High-Dose-Rate Brachytherapy and Hypofractionated External Beam Radiation Therapy in the Treatment of Intermediate-Risk Prostate Cancer - Long Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Cury, Fabio L., E-mail: fabio.cury@muhc.mcgill.ca [Department of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada); Duclos, Marie [Department of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada); Aprikian, Armen [Department of Urology, McGill University Health Centre, Montreal, QC (Canada); Patrocinio, Horacio [Department of Medical Physics, McGill University Health Centre, Montreal, QC (Canada); Kassouf, Wassim [Department of Urology, McGill University Health Centre, Montreal, QC (Canada); Shenouda, George; Faria, Sergio; David, Marc; Souhami, Luis [Department of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada)

    2012-03-15

    Purpose: We present the long-term results of a cohort of patients with intermediate-risk prostate cancer (PC) treated with single-fraction high-dose-rate brachytherapy (HDRB) combined with hypofractionated external beam radiation therapy (HypoRT). Methods and Materials: Patients were treated exclusively with HDRB and HypoRT. HDRB delivered a dose of 10 Gy to the prostate surface and HypoRT consisted of 50 Gy delivered in 20 daily fractions. The first 121 consecutive patients with a minimum of 2 years posttreatment follow-up were assessed for toxicity and disease control. Results: The median follow-up was 65.2 months. No acute Grade III or higher toxicity was seen. Late Grade II gastrointestinal toxicity was seen in 9 patients (7.4%) and Grade III in 2 (1.6%). Late Grade III genitourinary toxicity was seen in 2 patients (1.6%). After a 24-month follow-up, a rebiopsy was offered to the first 58 consecutively treated patients, and 44 patients agreed with the procedure. Negative biopsies were found in 40 patients (91%). The 5-year biochemical relapse-free survival rate was 90.7% (95% CI, 84.5-96.9%), with 13 patients presenting biochemical failure. Among them, 9 were diagnosed with distant metastasis. Prostate cancer-specific and overall survival rates at 5 years were 100% and 98.8% (95% CI, 96.4-100%), respectively. Conclusion: The combination of HDRB and HypoRT is well tolerated, with acceptable toxicity rates. Furthermore, results from rebiopsies revealed an encouraging rate of local control. These results confirm that the use of conformal RT techniques, adapted to specific biological tumor characteristics, have the potential to improve the therapeutic ratio in intermediate-risk PC patients.

  17. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  18. Fractionated dose skews differentiation of Glial progenitor cells into immature oligodendrocytes and astrocytes, with lower mature oligodendrocytes formation, as compared to singe low dose of low and high LET radiation

    International Nuclear Information System (INIS)

    Sanchez, Zina; Pena, Louis; Naidu, Mamta

    2010-01-01

    In the proposed study, the effect of fractionated, low dose versus single low dose of low LET X-rays and charged particles on induction of base excision repair enzyme Apurinic Endonuclease-1 (Ape1) are determined, which is known to inhibit cell differentiation, and found that at lower doses of 10,25 and 50 cGy there was a very significant induction of Apel which correlated to number of fractions, whereas at 100 cGy this induction was significantly lower. Also, there was a clear correlation between increase in fractions and higher immature OL and astrocyte formation

  19. A dose-surviving fraction curve for mouse colonic mucosa

    International Nuclear Information System (INIS)

    Tucker, S.L.; Thames, H.D. Jr.; Withers, H.R.; Mason, K.A.

    1983-01-01

    A dose-surviving fraction curve representing the response of the mouse colonic mucosa to single doses of 137 Cs gamma radiation was obtained from the results of a multifraction in vivo colony assay. Construction of the curve required an estimated of the average number of clonogens initially present per colonic crypt. The estimated clonogen count (88) was determined by a statistical method based on the use of doses per fraction common to different fractionation protocols. Parameters for the LQ and TC models of cell survival were obtained by weighted least-squares fits to the data. A comparison of the survival characteristics of cells from the mouse colonic and jejunal crypts suggested that the epithelium of the colon is less radiosensitive than that of the jejunum. (author)

  20. Labour cost of radiation dose

    International Nuclear Information System (INIS)

    Cook, A.; Lockett, L.E.

    1978-01-01

    In order to optimise capital expenditure on measures to protect workers against radiation it would be useful to have a means to measure radiation dose in money terms. Because labour has to be employed to perform radiation work there must be some relationship between the wages paid and the doses received. Where the next increment of radiation dose requires additional labour to be recruited the cost will at least equal the cost of the extra labour employed. This paper examines some of the factors which affect the variability of the labour cost of radiation dose and notes that for 'in-plant' exposures the current cost per rem appears to be significantly higher than values quoted in ICRP Publication 22. An example is given showing how this concept may be used to determine the capital it is worth spending on installed plant to prevent regular increments of radiation dose to workers. (author)

  1. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  2. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  3. Risk after low radiation doses

    International Nuclear Information System (INIS)

    Streffer, C.

    1989-01-01

    The high-level data measured in radiation doses need to be extrapolated to lower dose ranges in order to be able to state the risk of leukaemia and cancer in low radiation doses. The assumption is that there is no threshold dose although there has been no scientific verification for this yet. Conceptual considerations concerning the radiation action mechanisms suggest that a threshold dose does not exist. The assumption is that leukaemia and cancer are induced by the fact that individual transformed and malignant cells possess a certain though low potential to cause a malignant disease (leukaemia or cancer). It is assumed that radiation exposure produces damage to the genetic material of the cell which results in a malignant transformation. The number of these events is greatly reduced by a highly effective repair mechanism. However, these repair processes at the DNA are not complete or may even result in a misrepair; even low radiation doses (less than 10 mSv, 1 rem) apparently may trigger such cellular effects (transformation). (orig./HSCH) [de

  4. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  5. Radiation therapy of malignant melanomas: an evaluation of clinically used fractionation schemes

    International Nuclear Information System (INIS)

    Strauss, A.; Dritschilo, A.; Nathanson, L.; Piro, A.J.

    1981-01-01

    To assess the importance of radiation dose fraction size in the treatment of malignant melanomas, the records of 48 patients (83 sites) treated at Tufts-New England Medical Center from 1971 to 1979 have been retrospectively reviewed. During this period, the dose fractionation schemes evolved from standard fraction size to large-dose techniques. Radiation fraction size was observed to be the major factor in the clinical response of melanoma. Fractions of 600-800 rad resulted in the best overall response (80%). The rapid fractionation scheme of 800-400-400 rad on successive days resulted in intermediate response (58%) and may be useful for the palliative treatment of selected patients

  6. Oxygenation of spontaneous canine tumors during fractionated radiation therapy

    International Nuclear Information System (INIS)

    Achermann, R.E.; Ohlerth, S.M.; Bley, C.R.; Inteeworn, N.; Schaerz, M.; Wergin, M.C.; Kaser-Hotz, B.; Gassmann, M.; Roos, M.

    2004-01-01

    Background and purpose: tumor oxygenation predicts treatment outcome, and reoxygenation is considered important in the efficacy of fractionated radiation therapy. Therefore, the purpose of this study was to document the changes of the oxygenation status in spontaneous canine tumors during fractionated radiation therapy using polarographic needle electrodes. Material and methods: tumor oxygen partial pressure (pO 2 ) measurements were performed with the eppendorf-pO 2 -Histograph. The measurements were done under general anesthesia, and probe tracks were guided with ultrasound. pO 2 was measured before radiation therapy in all dogs. In patients treated with curative intent, measurements were done sequentially up to eight times (total dose: 45-59.5 Gy). Oxygenation status of the palliative patient group was examined before each fraction of radiation therapy up to five times (total dose: 24-30 Gy). Results: 15/26 tumors had a pretreatment median pO 2 ≤ 10 mmHg. The pO 2 values appeared to be quite variable in individual tumors during fractionated radiation therapy. The pO 2 of initially hypoxic tumors (pretreatment median pO 2 ≤ 10 mmHg) remained unchanged during fractionated radiotherapy, whereas in initially normoxic tumors the pO 2 decreased. Conclusion: hypoxia is common in spontaneous canine tumors, as 57.7% of the recorded values were ≥ 10 mmHg. The data of this study showed that initially hypoxic tumors remained hypoxic, whereas normoxic tumors became more hypoxic. (orig.)

  7. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  8. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  9. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  10. Dose limits for ionising radiation

    International Nuclear Information System (INIS)

    Gifford, D.

    1989-01-01

    Dose limits for exposure to ionising radiation are assessed to see if they give sufficient protection both for the occupationally exposed and for the general public. It is concluded that current limits give a level of safety that satisfies the necessary criteria in the light of present knowledge and further reductions would be unlikely to improve standards of safety. (author)

  11. RADIATION DOSE IN PAEDIATRIC COMPUTED TOMOGRAPHY ...

    African Journals Online (AJOL)

    This CT facility at the time of writing also did not use a documented guideline and protocol for imaging children. RADIATION DOSE. The amount of radiation energy deposited in a medium is called the radiation dose. Different x-ray modalities address radiation dose in different ways. For example, in chest radiography it is the ...

  12. Natural radiation dose to Gammarus

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1975-01-01

    The natural radiation dose rate to whole body and components of the Gammarus species (i.e., G. Tigrinus, G. Fasciatus and G. Daiberi) that occurs in the Hudson River is evaluated and the results compared with the upper limits of dose rates from man made sources to the whole body of the organisms. Methods were developed to study the distribution of alpha emitters from 226 Ra plus daughter products in Gammarus using autoradiographic techniques, taking into account the amount of radon that escapes from the organisms. This methodology may be adapted to study the distribution of alpha emitters in contaminated tissues of plants and animals

  13. Oxygenation of spontaneous canine tumors during fractionated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Achermann, R.E.; Ohlerth, S.M.; Bley, C.R.; Inteeworn, N.; Schaerz, M.; Wergin, M.C.; Kaser-Hotz, B. [Section of Diagnostic Imaging and Radiation Oncology, Veterinary School, Univ. of Zurich (Switzerland); Gassmann, M. [Inst. for Veterinary Physiology, Univ. of Zurich (Switzerland); Roos, M. [Inst. for Social and Preventive Medicine, Univ. of Zurich (Switzerland)

    2004-05-01

    Background and purpose: tumor oxygenation predicts treatment outcome, and reoxygenation is considered important in the efficacy of fractionated radiation therapy. Therefore, the purpose of this study was to document the changes of the oxygenation status in spontaneous canine tumors during fractionated radiation therapy using polarographic needle electrodes. Material and methods: tumor oxygen partial pressure (pO{sub 2}) measurements were performed with the eppendorf-pO{sub 2}-Histograph. The measurements were done under general anesthesia, and probe tracks were guided with ultrasound. pO{sub 2} was measured before radiation therapy in all dogs. In patients treated with curative intent, measurements were done sequentially up to eight times (total dose: 45-59.5 Gy). Oxygenation status of the palliative patient group was examined before each fraction of radiation therapy up to five times (total dose: 24-30 Gy). Results: 15/26 tumors had a pretreatment median pO{sub 2} {<=} 10 mmHg. The pO{sub 2} values appeared to be quite variable in individual tumors during fractionated radiation therapy. The pO{sub 2} of initially hypoxic tumors (pretreatment median pO{sub 2} {<=} 10 mmHg) remained unchanged during fractionated radiotherapy, whereas in initially normoxic tumors the pO{sub 2} decreased. Conclusion: hypoxia is common in spontaneous canine tumors, as 57.7% of the recorded values were {>=} 10 mmHg. The data of this study showed that initially hypoxic tumors remained hypoxic, whereas normoxic tumors became more hypoxic. (orig.)

  14. Dependence of early therapy results and complications on radiation dose values and their fractionation in pre-operative ''afterloading'' technique brachyradiotherapy applied to cervix uteri carcinoma patients

    International Nuclear Information System (INIS)

    Kaminska, G.; Kawczynska, M.

    1984-01-01

    The ''afterloading'' technique with use of Curietron (41 cases) or Selectron (43 cases) apparatus was applied in 83 cervix uteri carcinoma patients in phase 1b (79 cases) and 2a (4 cases). The Wertheim-Magis operation was performed after several weeks. Post-operative histologic investigation showed complete destruction of the tumour in 72% cases; persistent cancer cells in cervix uteri were stated in 11 patients (13%), while lymphatic node metastasis was seen in 14 patients (17%). Supplementary teleradiotherapy was performed in those cases. 39 patients (95%) of the 41 observed during 3 years survived without any cancer symptoms. No explicit relationship between dose administered to vaginal disc and cancer persistence frequency in the cervix uteri was stated. However, such relationship was stated for the dose in point A. In the group of 19 patients who received point A dose of the least 6000 rads, with average TDF value of 135, presence of cancer cells in cervix uteri was not stated in any of the cases. In 7 patients (17%) observed for over 3 years light and medium heavy postradiation complications were stated; in that 5 rectum side complications were stated in patients additionally irradiated from external fields, where the dose absorbed by rectum wall exceeded 8000 rads, with TDF - 150. No complications were observed when the dose was less than 5000 rads and TDF below 100. 16 refs., 1 fig. (author)

  15. Low-dose radiation-induced endothelial cell retraction

    International Nuclear Information System (INIS)

    Kantak, S.S.; Onoda, J.M.; Diglio, C.A.; Harper Hospital, Detroit, MI

    1993-01-01

    The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema. (author)

  16. Single dose versus fractionated stereotactic radiotherapy for meningiomas

    International Nuclear Information System (INIS)

    Lo, S.S.; Cho, K.H.; Hall, W.A.

    2002-01-01

    To evaluate the safety and efficacy of stereotactic radiosurgery (SRS) compared to fractionated stereotactic radiation therapy (FSRT) for meningiomas treated over a seven year period. Of the 53 patients (15 male and 38 female) with 63 meningiomas, 35 were treated with SRS and the 18 patients with tumors adjacent to critical structures or with large tumors were treated with FSRT. The median doses for the SRS and the FSRT groups were 1400 cGy (500- 4500 cGy) and 5400 cGy (4000-6000 cGy) respectively. Median target volumes for SRS and FSRT were 6.8 ml and 8.8 ml respectively. The median follow-up for the SRS and FSRT groups were 38 months (4.1-97 months) and 30.5 months (6.0-63 months) respectively. The five-year tumor control probability (TC) for benign versus atypical meningiomas were 92.7% vs. 31% (P=.006). The three-year TC were 92.7% vs. 93.3% for SRS vs. FSRT groups respectively (P=.62). For benign meningiomas, the three-year TC were 92.9% vs. 92.3% for the SRS group (29 patients) vs. FSRT group (14 patients) respectively (P=.77). Two patients in the SRS group and one in the FSRT group developed late complications. Preliminary data suggest that SRS is a safe and effective treatment for patients with benign meningiomas. Fractionated stereotactic radiation therapy with conventional fractionation appeared to be an effective and safe treatment alternative for patients not appropriate for SRS. A longer follow-up is required to determine the long-term efficacy and the toxicity of these treatment modalities. (author)

  17. Biochemical and immunological responses to low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Shabon, M.H.; Sayed, Z.S.; Mahdy, E.M.; El-Gawish, M.A.; Shosha, W.

    2006-01-01

    Malondialdehyde, lactate dehydrogenase, iron concentration, IL-6 and IL-1b concentration, hemoglobin content, red cells, white cells and platelet counts were determined in seventy-two male albino rats divided into two main groups. The first one was subdivided into 7 subgroups; control and 6 irradiated subgroups with 0.1, 0.2, 0.3, 0.5, 0.7 and 1 Gy single dose of gamma radiation. The other was subdivided into 4 subgroups irradiated with fractionated doses of gamma radiation; three groups were irradiated with 0.3, 0.7 and 1 Gy (0.1 Gy/day) and the last subgroup with 1 Gy (0.2 Gy/day). All animals were sacrificed after three days of the last irradiation dose. The results revealed that all biochemical parameters were increased in rats exposed to fractionated doses more than the single doses. Hematological parameters were decreased in rats exposed to single doses more than the fractionated ones. In conclusion, the data of this study highlights the stimulatory effect of low ionizing radiation doses (= 1 Gy), whether single or fractionated, on some biochemical and immunological parameters

  18. Anti-tumor activities of direct current (DC) therapy combined with fractionated radiation or chemotherapy

    International Nuclear Information System (INIS)

    Nakayama, Toshitake; Ito, Hisao; Hashimoto, Shozo

    1988-01-01

    Anti-tumor activities of direct current (DC) therapy combined with fractionated radiation or cyclophosphamide were studied in mice which were transplanted with murine fibrosarcoma (FSa) in the right thighs. Using TCD 50 assay, DC therapy, given in a single fraction, enhanced the effect of a single dose of radiation with the dose-modifying factor of 1.3. Tumor control rates were more improved by the combination therapy with the smaller doses of radiation than the larger ones. When DC therapy was applied one time immediately after the first radiation of fractionated ones, the combination therapy still showed the enhanced effect. However, both of DC therapy and radiation were divided in three fractions and DC therapy was applied everytime after radiation, tumor growth retardation were not different between the combination therapy and radiation alone. This result suggests that there is a minimum amount of Coulombs to improve the effect of radiation alone. On the other hand, DC therapy combined with cyclophosphamide given in one fraction showed the same enhancement effect as those divided in three fractions. These results suggest that DC therapy combined with radiation or cyclophosphamide is effective to improve tumor control, but the mechanisms to enhance the effect of radiation or cyclophosphamide are different. (author)

  19. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional radiolo- gists, radiographers and nurses ...

  20. Radiation dose to the lens and cataract formation

    International Nuclear Information System (INIS)

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M.

    1993-01-01

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab

  1. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  2. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  3. Commentary 2 to Cox and Little: radiation-induced oncogenic transformation: the interplay between dose, dose protraction, and radiation quality

    Science.gov (United States)

    Brenner, D. J.; Hall, E. J.

    1992-01-01

    There is now a substantial body of evidence for end points such as oncogenic transformation in vitro, and carcinogenesis and life shortening in vivo, suggesting that dose protraction leads to an increase in effectiveness relative to a single, acute exposure--at least for radiations of medium linear energy transfer (LET) such as neutrons. Table I contains a summary of the pertinent data from studies in which the effect is seen. [table: see text] This phenomenon has come to be known as the "inverse dose rate effect," because it is in marked contrast to the situation at low LET, where protraction in delivery of a dose of radiation, either by fractionation or low dose rate, results in a decreased biological effect; additionally, at medium and high LET, for radiobiological end points such as clonogenic survival, the biological effectiveness is independent of protraction. The quantity and quality of the published reports on the "inverse dose rate effect" leaves little doubt that the effect is real, but the available evidence indicates that the magnitude of the effect is due to a complex interplay between dose, dose rate, and radiation quality. Here, we first summarize the available data on the inverse dose rate effect and suggest that it follows a consistent pattern in regard to dose, dose rate, and radiation quality; second, we describe a model that predicts these features; and, finally, we describe the significance of the effect for radiation protection.

  4. Energies, health, medicine. Low radiation doses

    International Nuclear Information System (INIS)

    2004-01-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  5. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  6. Radiation therapy of malignant melanomas: an evaluation of clinically used fractionation schemes

    International Nuclear Information System (INIS)

    Strauss, A.; Dritschilo, A.; Nathanson, L.; Piro, A.J.

    1981-01-01

    To assess the importance of radiation dose fraction size in the treatment of malignant melanomas, the records of 48 patients (83 sites) treated at Tufts-New England Medical Center from 1971 to 1979 have been retrospectively reviewed. During this period, the dose fractionation schemes evolved from standard fraction size to large-dose techniques. Radiation fraction size was observed to be the major factor in the clinical response of melanoma. Fractions of 600 to 800 rad resulted in the best overall response (80%). The rapid fractionation scheme of 800 to 400 to 400 rad on successive days resulted in intermediate response (58%) and may be useful for the palliative treatment of selected patients

  7. Dose fractionation theorem in 3-D reconstruction (tomography)

    International Nuclear Information System (INIS)

    Glaeser, R.M.

    1997-01-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens

  8. Comparative assessment of single-dose and fractionated boron neutron capture therapy

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Fisher, C.D.

    1995-01-01

    The effects of fractionating boron neutron capture therapy (BNCT) were evaluated in the intracerebral rat 9L gliosarcoma and rat spinal cord models using the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam. The amino acid analog p-boronophenylalanine (BPA) was administered prior to each exposure to the thermal neutron beam. The total physical absorbed dose to the tumor during BNCT using BPA was 91% high-linear energy transfer (LET) radiation. Two tumor doses of 5.2 Gy spaced 48 h apart (n = 14) or three tumor doses of 5.2 Gy, each separated by 48 h (n = 10), produced 50 and 60% long-term (>1 year) survivors, respectively. The outcome of neither the two nor the three fractions of radiation was statistically different from that of the corresponding single-fraction group. In the rat spinal cord, the ED 50 for radiation myelopathy (as indicated by limb paralysis within 7 months) after exposure to the thermal beam alone was 13.6 ± 0.4 Gy. Dividing the beam-only irradiation into two or four consecutive daily fractions increased the ED 50 to 14.7 ± 0.2 Gy and 15.5 ± 0.4 Gy, respectively. Thermal neutron irradiation in the presence of BPA resulted in an ED 50 for myelopathy of 13.8 ± 0.6 Gy after a single fraction and 14.9 ± 0.9 Gy after two fractions. An increase in the number of fractions to four resulted in an ED 50 of 14.3 ± 0.6 Gy. The total physical absorbed dose to the blood in the vasculature of the spinal cord during BNCT using BPA was 80% high-LET radiation. It was observed that fractionation was of minor significance in the amelioration of damage to the normal central nervous system in the rat after boron neutron capture irradiation. 30 refs., 5 figs., 3 tabs

  9. Late effects of various dose-fractionation regimens

    International Nuclear Information System (INIS)

    Turesson, I.; Notter, G.

    1983-01-01

    These clinical investigations of various dose-fractionation regimens on human skin show that: The late reactions cannot be predicted from the early reactions; The dose-response curves for late reactions are much steeper than for early reactions; Equivalent doses for various fractionation schedules concerning late effects can be calculated by means of a corrected CRE (NSD) formula; the correction must be considered preliminary because further follow-up is needed. A clinical fractionation study of this type requires: Extremely careful dosimetry; Study of the same anatomical region; Very long follow-up; Studies at different effect levels; Skin reaction is the only end point we have studied systematically for different fractionation regimens. Experience with the CRE formula as a model for calculating isoeffect doses for different fractionation schedules in routine clinical use can be summarized as follows: The CRE formula has been used prospectively since 1972 in all patients; CRE-equivalent weekly doses to 5 x 2.0 Gy per week has been used. (Although the fractionation schedule is changed, the overall treatment time is still the same); The CRE range was 18 to 21 for curative radiotherapy on carcinomas; No irradiation was applied during pronounced acute reactions. No unexpected complications have been observed under these conditions

  10. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  11. Modulation of haemopoietic radiation response of mice by diclofenac in fractionated treatment

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Pipalova, I.; Hola, J.

    1996-01-01

    The effects were studied of diclofenac, an inhibitor of prostaglandin synthesis, on the acute radiation syndrome elicited in mice by fractionated irradiation. Several hematological parameters were evaluated in mice irradiated with 5x 2 Gy and 3x, 4x, or 5x 3 Gy (intervals between fractions 24 h) from a 60 Co gamma source. The animals were treated with diclofenac either before each fraction or only once before the last fraction. The survival of mice was recorded after the irradiation regimen of 5x 3 Gy followed by a ''top-up'' dose of 3.5 Gy given 24 h after the last radiation fraction. Statistically significant enhancement of the endogenous spleen colony and of leukopoiesis was found in mice treated with diclofenac repeatedly, as compared with both saline-treated irradiated controls and animals administered a single diclofenac dose, if a sublethal total radiation dose had been accumulated. However, following accumulation of a lethal radiation dose, slightly impaired survival was observed in mice given diclofenac. It follows from the results that diclofenac is a suitable drug for enhancing leukopoisesis impaired by sublethal fractionated irradiation. Nevertheless, the undesirable side effects of this drug affect adversely the survival of the experimental animals following a lethal accumulated radiation dose. 3 tabs., 3 figs.,32 refs

  12. Potential Increased Risk of Ischemic Heart Disease Mortality With Significant Dose Fractionation in the Canadian Fluoroscopy Cohort Study

    Science.gov (United States)

    Zablotska, Lydia B.; Little, Mark P.; Cornett, R. Jack

    2014-01-01

    Risks of noncancer causes of death, particularly cardiovascular disease, associated with exposures to high-dose ionizing radiation, are well known. Recent studies have reported excess risk in workers who are occupationally exposed to low doses at a low dose rate, but the risks of moderately fractionated exposures, such as occur during diagnostic radiation procedures, remain unclear. The Canadian Fluoroscopy Cohort Study includes 63,707 tuberculosis patients exposed to multiple fluoroscopic procedures in 1930–1952 and followed-up for death from noncancer causes in 1950–1987. We used a Poisson regression to estimate excess relative risk (ERR) per Gy of cumulative radiation dose to the lung (mean dose = 0.79 Gy; range, 0–11.60). The risk of death from noncancer causes was significantly lower in these subjects compared with the Canadian general population (P < 0.001). We estimated small, nonsignificant increases in the risk of death from noncancer causes with dose. We estimated an ERR/Gy of 0.176 (95% confidence interval: 0.011, 0.393) (n = 5,818 deaths) for ischemic heart disease (IHD) after adjustment for dose fractionation. A significant (P = 0.022) inverse dose fractionation effect in dose trends of IHD was observed, with the highest estimate of ERR/Gy for those with the fewest fluoroscopic procedures per year. Radiation-related risks of IHD decreased significantly with increasing time since first exposure and age at first exposure (both P < 0.05). This is the largest study of patients exposed to moderately fractionated low-to-moderate doses of radiation, and it provides additional evidence of increased radiation-associated risks of death from IHD, in particular, significantly increased radiation risks from doses similar to those from diagnostic radiation procedures. The novel finding of a significant inverse dose-fractionation association in IHD mortality requires further investigation. PMID:24145888

  13. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  14. Charpak, Garwin, propose unit for radiation dose

    CERN Multimedia

    Feder, Toni

    2002-01-01

    Becquerels, curries, grays, rads, rems, roentgens, sieverts - even for specialists the units of radiation can get confusing. That's why two eminent physicists, Georges Charpak of France, and Richard Garwin, are proposing the DARI as a unit of radiation dose they hope will help the public evaluate the risks associated with low-level radiation exposure (1 page)

  15. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  16. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.

    1993-01-01

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  17. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  18. Wound Trauma Alters Ionizing Radiation Dose Assessment

    Science.gov (United States)

    2012-06-11

    reconstructing radiation dose and calculating risk assessment after a nuclear accident . Results Wounding Enhanced Radiation-Induced Mortality, body weight...approaches usually apply for assessment of whole-body irradiation alone. However, frequently, individuals involved in radiation accidents and cancer...concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy . Int J Radiat Oncol Biol Phys 2004, 58:758–67. 34. Peterson VM

  19. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  20. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E., E-mail: claudia.ruebe@uks.eu

    2015-08-01

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis of testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.

  1. Radiation dose optimization in thoracic imaging.

    Science.gov (United States)

    Tack, D

    2010-01-01

    Guidelines for reduction of CT radiation dose were introduced in 1997 and are now more than 12 years old. The process initiated by the European Regulatory authorities to reduce the excess of radiation from CT has however not produced the expected results. Reference diagnostic levels (DRL) from surveys are still twice as high as needed in most European countries and were not significantly reduced as compared to the initial European ones. Many factors may at least explain partially the lack of dose reduction. One of them is the complexity of the dose optimization process while maintaining image quality at a diagnostically acceptable level. Chest is an anatomical region where radiation dose could be substantially reduced because of high natural contrasts between structures, such as air in the lungs and fat in the mediastinum. In this article, the concept of CT radiation dose optimization and the factors that contribute to maintain global excess in radiation dose are reviewed and a brief summary of results from research in the field of chest CT radiation dose is given.

  2. Radiation-induced hypopituitarism is dose-dependent

    International Nuclear Information System (INIS)

    Littley, M.D.; Shalet, S.M.; Beardwell, C.G.; Robinson, E.L.; Sutton, M.L.

    1989-01-01

    Radiation-induced hypopituitarism has been studies prospectively for up to 12 years in 251 adult patients treated for pituitary disease with external radiotherapy, ranging in dose from 20 Gy in eight fractions over 11 days to 45 Gy in 15 fractions over 21 days. Ten further patients were studied 2-4 years after whole-body irradiation for haematological malignancies using 12 Gy in six fractions over 3 days and seven patients were studied 3-11 years after whole-brain radiotherapy for a primary brain tumour (30 Gy, eight fractions, 11 days). Five years after treatment, patients who received 20 Gy had an incidence of TSH deficiency of 9% and in patients treated with 35-37 Gy, 40 Gy and 42-45 Gy, the incidence of TSH deficiency increased significantly with increasing dose. A similar relationship was observed for both ACTH and gonadotrophin deficiencies when the 20 Gy group was compared to patients treated with 35-45 Gy. Growth hormone deficiency was universal by 5 years over the dose range 35-45 Gy. In seven patients who were treated with 30 Gy in eight fractions over 11 days, deficiencies were observed at a similar frequency to the 40 Gy group (15 fractions, 21 days). No evidence of pituitary dysfunction was detected in the ten patients who received 12 Gy (six fractions, 3 days). (author)

  3. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  4. Effect of time, dose and fractionation on local control of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lee, Anne W.M.; Chan, David K.K.; Poon, Y.F.; Foo, William; Law, Stephen C.K.; O, S.K.; Tung, Stewart Y.; Fowler, Jack F.; Chappell, Rick

    1995-01-01

    To study the effect of radiation factors on local control of nasopharyngeal carcinoma, 1008 patients with similarly staged T1N0-3M0 disease (Ho's classification) were retrospectively analyzed. All patients were treated by megavoltage irradiation alone using the same technique. Four different fractionation schedules had been used sequentially during 1976-1985: with total dose ranging from 45.6 to 60 Gy and fractional dose from 2.5 to 4.2 Gy. The median overall time was 39 days (range = 38-75 days). Both for the whole series and 763 patients with nodal control, total dose was the most important radiation factor. The hazard of local failure decreased by 9% per additional Gy (p < 0.01). Biological equivalents expressed in terms of Biologically Effective Dose or Nominal Standard Dose also showed strong correlation. Fractional dose had no significant impact. The effect of overall treatment time was insignificant for the whole series, but almost reached statistical significance for those with nodal control (p = 0.06). Further study is required for elucidation, as 85% of patients completed treatment within a very narrow range (38-42 days), and the possible hazard is clinically too significant to be ignored

  5. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  6. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    Hori, Y.; Yoshikawa, N.; Ohmori, S.

    1975-01-01

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  7. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  8. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' Series presents information on the numerous sources and magnitude of exposure of man to radiation. These include the medical use of radiation, radioactive discharges to the environment, cosmic rays, gamma rays from the ground and buildings, radon gas and food and drink. A Pie chart represents the percentage contribution of each of those sources. Finally, the terms becquerel, microsievert and millisievert are explained. (U.K.)

  9. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  10. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  11. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... York Northern California Northern Ohio Rio Grande Savannah River State of Texas Southern California Susquehanna Valley Virginia ... patient's metabolism), and other issues. Typical Doses from Diagnostic Radiology Exams As noted above, the tables below ...

  12. Gamma Radiation Doses In Sweden

    International Nuclear Information System (INIS)

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-01-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222 Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings

  13. Dose rate-dependent marrow toxicity of TBI in dogs and marrow sparing effect at high dose rate by dose fractionation.

    Science.gov (United States)

    Storb, R; Raff, R F; Graham, T; Appelbaum, F R; Deeg, H J; Schuening, F G; Sale, G; Seidel, K

    1999-01-01

    We evaluated the marrow toxicity of 200 and 300 cGy total-body irradiation (TBI) delivered at 10 and 60 cGy/min, respectively, in dogs not rescued by marrow transplant. Additionally, we compared toxicities after 300 cGy fractionated TBI (100 cGy fractions) to that after single-dose TBI at 10 and 60 cGy/min. Marrow toxicities were assessed on the basis of peripheral blood cell count changes and mortality from radiation-induced pancytopenia. TBI doses studied were just below the dose at which all dogs die despite optimal support. Specifically, 18 dogs were given single doses of 200 cGy TBI, delivered at either 10 (n=13) or 60 (n=5) cGy/min. Thirty-one dogs received 300 cGy TBI at 10 cGy/min, delivered as either single doses (n=21) or three fractions of 100 cGy each (n=10). Seventeen dogs were given 300 cGy TBI at 60 cGy/min, administered either as single doses (n=5) or three fractions of 100 cGy each (n=10). Within the limitations of the experimental design, three conclusions were drawn: 1) with 200 and 300 cGy single-dose TBI, an increase of dose rate from 10 to 60 cGy/min, respectively, caused significant increases in marrow toxicity; 2) at 60 cGy/min, dose fractionation resulted in a significant decrease in marrow toxicities, whereas such a protective effect was not seen at 10 cGy/min; and 3) with fractionated TBI, no significant differences in marrow toxicity were seen between dogs irradiated at 60 and 10 cGy/min. The reduced effectiveness of TBI when a dose of 300 cGy was divided into three fractions of 100 cGy or when dose rate was reduced from 60 cGy/min to 10 cGy/min was consistent with models of radiation toxicity that allow for repair of sublethal injury in DNA.

  14. Local control after fractionated stereotactic radiation therapy for brain metastases.

    Science.gov (United States)

    Rajakesari, Selvan; Arvold, Nils D; Jimenez, Rachel B; Christianson, Laura W; Horvath, Margaret C; Claus, Elizabeth B; Golby, Alexandra J; Johnson, Mark D; Dunn, Ian F; Lee, Eudocia Q; Lin, Nancy U; Friesen, Scott; Mannarino, Edward G; Wagar, Matthew; Hacker, Fred L; Weiss, Stephanie E; Alexander, Brian M

    2014-11-01

    Stereotactic radiosurgery (SRS) is frequently used in the management of brain metastases, but concerns over potential toxicity limit applications for larger lesions or those in eloquent areas. Fractionated stereotactic radiation therapy (SRT) is often substituted for SRS in these cases. We retrospectively analyzed the efficacy and toxicity outcomes of patients who received SRT at our institution. Seventy patients with brain metastases treated with SRT from 2006-2012 were analyzed. The rates of local and distant intracranial progression, overall survival, acute toxicity, and radionecrosis were determined. The SRT regimen was 25 Gy in 5 fractions among 87 % of patients. The most common tumor histologies were non-small cell lung cancer (37 %), breast cancer (20 %) and melanoma (20 %), and the median tumor diameter was 1.7 cm (range 0.4-6.4 cm). Median survival after SRT was 10.7 months. Median time to local progression was 17 months, with a local control rate of 68 % at 6 months and 56 % at 1 year. Acute toxicity was seen in 11 patients (16 %), mostly grade 1 or 2 with the most common symptom being mild headache. Symptomatic radiation-induced treatment change was seen on follow-up MRIs in three patients (4.3 %). SRT appears to be a safe and reasonably effective technique to treat brain metastases deemed less suitable for SRS, though dose intensification strategies may further improve local control.

  15. The influence of dose fractionation and dose rate on normal tissue responses

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1982-01-01

    An analysis of responses of a variety of normal tissues in animals to fractionated irradiations has been made with the aim of developing a formalism for the prediction of tolerance doses as a function of the dose per fraction and the overall treatment time. An important feature of the formalism is that it is directly based on radiological insights and therefore provides a logical concept to account for the diversity of tissue responses. (Auth.)

  16. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2010-01-01

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  17. Analysis of T101 outage radiation dose

    International Nuclear Information System (INIS)

    Li, Zhonghua

    2008-01-01

    Full text: Collective radiation dose during outage is about 80% of annual collective radiation dose at nuclear power plants (NPPs). T 101 Outage is the first four-year outage of Unit 1 at Tianwan Nuclear Power Station (TNPS) and thorough overhaul was undergone for the 105-day's duration. Therefore, T 101 Outage has significant reference meaning to reducing collective radiation dose at TNPS. This paper collects the radiation dose statistics during T 101 Outage and analyses the radiation dose distribution according to tasks, work kinds and varying trend of the collective radiation dose etc., comparing with other similar PWRs in the world. Based on the analysis this paper attempts to find out the major factors in collective radiation dose during T 101 Outage. The major positive factor is low radiation level at workplace, which profits from low content of Co in reactor construction materials, optimised high-temperature p H value of the primary circuit coolant within the tight range and reactor operation without trips within the first fuel cycle. One of the most negative factors is long outage duration and many person-hours spent in the radiological controlled zone, caused by too many tasks and inefficient work. So besides keeping good performance of reducing radioactive sources, it should be focused on how to improve implementation of work management including work selection, planning and scheduling, work preparation, work implementation, work assessment and feedback, which can lead to reduced numbers of workers needed to perform a task, of person-hours spent in the radiological controlled zone. Moreover, this leads to reduce occupational exposures in an ALARA fashion. (author)

  18. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...... mapping. The paper further gives recommendations for effective dose mapping including traceable dosimetry, documented procedures for placement of dosimeters, and evaluation of measurement uncertainties. (C) 1999 Elsevier Science Ltd. All rights reserved....

  19. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  20. Radiation Dose from Reentrant Electrons

    Science.gov (United States)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  1. Assessment of radiation dose awareness among pediatricians

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada); Haidar, Salwa [Mubarak Al-Kabeer Hospital, Department of Radiology, Salmiya (Kuwait); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada)

    2006-08-15

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  2. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  3. Reducing Radiation Dose in Pediatric Diagnostic Fluoroscopy.

    Science.gov (United States)

    Ghodadra, Anish; Bartoletti, Stefano

    2016-01-01

    To assess radiation dose in common pediatric diagnostic fluoroscopy procedures and determine the efficacy of dose tracking and dose reduction training to reduce radiation use. Fluoroscopy time and radiation dose area product (DAP) were recorded for upper GIs (UGI), voiding cystourethrograms (VCUGs), and barium enemas (BEs) during a six-month period. The results were presented to radiologists followed by a 1-hour training session on radiation dose reduction methods. Data were recorded for an additional six months. DAP was normalized to fluoroscopy time, and Wilcoxon testing was used to assess for differences between groups. Data from 1,479 cases (945 pretraining and 530 post-training) from 9 radiologists were collected. No statistically significant difference was found in patient age, proportion of examination types, or fluoroscopy time between the pre- and post-training groups (P ≥ .1), with the exception of a small decrease in median fluoroscopy time for VCUGs (1.0 vs 0.9 minutes, P = .04). For all examination types, a statistically significant decrease was found in the median normalized DAP (P < .05) between pre- and post-training groups. The median (quartiles) for pretraining and post-training normalized DAPs (μGy·m(2) per minute) were 14.36 (5.00, 38.95) and 6.67 (2.67, 17.09) for UGIs; 13.00 (5.34, 32.71) and 7.16 (2.73, 19.85) for VCUGs; and 33.14 (9.80, 85.26) and 17.55 (7.96, 46.31) for BEs. Radiation dose tracking with feedback, paired with dose reduction training, can reduce radiation dose during diagnostic pediatric fluoroscopic procedures by nearly 50%. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Radiation degradation of molasses pigment. 2. Molecular weight fraction

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Tanabe, Hiroko

    1996-01-01

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water sources within the city, Tokyo is dependent on water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. The degradation of molasses pigments in waste water from yeast factory by radiation was investigated. The dialyzed molasses pigments and non-dialyzed samples in waste waters were compared in chromaticity, UV absorption, color different and COD. The dialysis and fractionation by permeable membrane were carried out with Seamless Cellulose tubing (Union Carbide Corporation) and spectra/Por membrane (Spectrum Medical Industries INC.) The TOC values decreased and the dark brown color faded with increasing dose. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and decomposed to carbon dioxide. The relationships between the value of chromaticity/TOC and molecular weight of molasses pigments were obtained by radiation. (author)

  5. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  6. Decreased uptake after fractionated ablative doses of iodine-131

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hurng-Sheng [Show Chwan Memorial Hospital, Department of Surgery, Changhua, Taiwan (Taiwan); Hseu, Huey-Herng [Taichung Veterans General Hospital, Department of Medical Education and Research, Taichung (Taiwan); Lin, Wan-Yu; Wang, Shyh-Jen [Taichung Veterans General Hospital, Department of Nuclear Medicine, Taichung, Taiwan (Taiwan); Liu, Yao-Chi [Department of Surgery, General Surgery, National Defense Medical Center, Taipe (Taiwan)

    2005-02-01

    In an attempt to obviate the necessity for hospitalisation, the ablative dose of {sup 131}I in the treatment of thyroid cancer is divided into two or three fractions at weekly intervals in some hospitals with no special bed for {sup 131}I treatment. Thyroid stunning has been observed in patients receiving a {sup 131}I dose between 74 and 370 MBq (2-10 mCi). However, the influence of {sup 131}I uptake after administration of a higher dose, such as 1,110-1,850 MBq of {sup 131}I, has never been reported. In this study, we evaluated the degree of reduction in {sup 131}I uptake after patients received 1,480 MBq of {sup 131}I and evaluated the clinical value of fractionated ablative doses of {sup 131}I. Thirty-five patients with functional thyroid cancer received a total of 4,440 MBq (120 mCi) of {sup 131}I which was divided into three fractions administered at weekly intervals. In all patients two {sup 131}I whole-body scans were performed. The first scan was performed directly prior to the second dose of {sup 131}I (7 days after the first administration of {sup 131}I), and the second scan was performed 7 days after the second administration of {sup 131}I and directly prior to the third administration. Regions of interest including the neck and lungs were drawn to calculate the uptake of {sup 131}I in the thyroid remnant and possible cervical lymph node and lung metastases. The mean uptake of {sup 131}I was 2.73% 7 days after the first administration, and decreased significantly to 0.26% 7 days after the second administration. The mean decrease was as high as 80.7%. The decrease in {sup 131}I uptake was significant in all patients except the two with lung metastases. In the two patients with lung metastases, no definite evidence of decreased uptake was noted; the uptake of {sup 131}I in the lung metastases even increased on the second {sup 131}I image in one of these patients. After administration of 1,480 MBq of {sup 131}I, the decreased uptake was significant in all

  7. The influence of fractionation and repair kinetics on radiation tolerance

    International Nuclear Information System (INIS)

    Rongen, E. van.

    1989-01-01

    The effect of irradiation of biological tissues is described as the sum of a linear and a quadratic function of the radiation dose, in which α and β and β are denoted as the coefficients of the linear and quadratic terms respectively. The rate of repair of radiation damage is expressed by the half-life time T 1 / 2. The purpose of the study described in this thesis was to determine the α/β and T 1 / 2 values for early and late effects in lungs and kidneys of the rat. Rats have been irradiated upon one of both organs in various numbers of fractions, which have been administered with long or short time intervals in order to obtain respectively complete and incomplete repair. From the results values for α/β and T 1 / 2 could be obtained by means of computer codes. The results of this investigation indicate that for the lung differences exist in α/β for early and late effects. The α/β value for early effects being larger: 3.5 Gy, than the one for late effecfts: 2.3 Gy. The values for T 1 / 2 were respectively 1.0 hour for early and 1.1 hour for late effects. The kidney experiments resulted in equal α/β values for early and late effects: resp. 1.7 and 1.8 Gy. The T 1 / 2 values, however, differed being resp. 1.6 hour and 2.1 hour. Also the influence of the fraction dose upon the α/β and T 1 / 2 values was investigated. For the lung such effects have not been found. In the kidney only between 20 and 40 weeks after the irradiation differences were observed, which disappeared after this period. The results of this investigation indicate that, in radiotherapy of tumors where lungs and kidneys are contained in the radiation field, a scheme following which a large number of small fractions are administered, would give therapeutical advantage with respect to standard therapy. (H.W.). 240 refs.; 38 figs.; 37 tabs

  8. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    Drobnik, J.

    1987-01-01

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  9. Estimation of Fetal Dose during Radiation Therapy of Pregnant Patient

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chi Hoon; Kim, Chan Yong; Kim, Bo Gyum; Seo, Suk Jin; Yoo, Sook Hyun; Park, Heung Deuk [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2007-03-15

    To evaluate the effectiveness of a simple and practical shielding device to reduce the fetal dose for a pregnant patient undergoing radiation therapy of brain metastasis. The dose to the fetus was evaluated by simulating the treatments using the anthropomorphic phantom. The prescription dose at mid-brain is 300 cGy x 10 fractions with 6 MV photon with 18 x 22 cm{sup 2} field size. The additional shielding devices to reduce the fetal dose are a shielding wall, cerrobend plates and lead (Pb) sheets over acrylic bridge. Various points of measurement with off-field distance were detected by using ion-chamber (30, 40, 50, and 60 cm) with and without the shielding devices and TLD (30, 40, 50, 60, and 70 cm) only with the shielding devices. The doses to the fetus without shielding were 3.20, 3.21, 1.44, 0.90 cGy at the distances of 30, 40, 50, and 60 cm from the treatment field edge. With shielding, the doses were reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy (70 cm). The total dose to the fetus was expected to be under 1 cGy during the entire treatment. The essential point during radiation therapy of pregnant patient would be minimizing the fetal dose. 10 cGy to 20 cGy is the threshold dose for fetal radiation effects. Our newly developed device reduced the fetal dose far below the safe level. Therefore, our additional shielding devices are useful and effective to reduce the fetal dose.

  10. High-dose-rate brachytherapy for uterine cervical cancer: the results of different fractionation regimen

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Won Sup; Kim, Tae Hyun; Yang, Dae Sik; Choi, Myung Sun; Kim, Chul Yong [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2002-09-15

    Although high-dose-rate (HDR) brachytherapy regimens have been practiced with a variety of modalities and various degrees of success, few studies on the subject have been conducted. The purpose of this study was to compare the results of local control and late complication rate according to different HDR brachytherapy fractionation regimens in uterine cervical cancer patients. From November 1992 to March 1998, 224 patients with uterine cervical cancer were treated with external beam irradiation and HDR brachytherapy. In external pelvic radiation therapy, the radiation dose was 45 {approx} 54 Gy (median dose 54 Gy) with daily fraction size 1.8 Gy, five times per week. In HDR brachytherapy, 122 patients (Group A) were treated with three times weekly with 3 Gy to line-A (isodose line of 2 cm radius from source) and 102 patients (Group B) underwent the HDR brachytherapy twice weekly with 4 or 4.5 Gy to line-A after external beam irradiation. Iridium-192 was used as the source of HDR brachytherapy. Late complication was assessed from grade 1 to 5 using the RTOG morbidity grading system. The local control rate (LCR) at 5 years was 80% in group A and 84% in group B ({rho} = 0.4523). In the patients treated with radiation therapy alone, LCR at 5 years was 60.9% in group A and 76.9% in group B ({rho} = 0.2557). In post-operative radiation therapy patients, LCR at 5 years was 92.6% in group A and 91.6% in group B ({rho} 0.8867). The incidence of late complication was 18% (22 patients) and 29.4% (30 patients), of bladder complication was 9.8% (12 patients) and 14.7% (15 patients), and of rectal complication was 9.8% (12 patients) and 21.6% (22 patients), in group A and B, respectively. Lower fraction sized HDR brachytherapy was associated with decrease in late complication ({rho} =0.0405) (rectal complication, {rho} = 0.0147; bladder complication, {rho} =0.115). The same result was observed in postoperative radiation therapy patients ({rho} = 0.0860) and radiation only

  11. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by individual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this radioactivity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  12. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-01-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged ≤7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  13. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  14. High dose dosimetry for radiation processing

    International Nuclear Information System (INIS)

    1991-01-01

    Radiation processing today offers various advantages in the field of sterilization of medical and pharmaceutical products, food preservation, treatment of chemical materials and a variety of other products widely used in modern society, all of which are of direct relevance to health and welfare. The safety and economic importance of radiation processing is clearly recognized. It is understood that reliable dosimetry is a key parameter for quality assurance of radiation processing and irradiated products. Furthermore, the standardization of dosimetry can provide a justification for the regulatory approval of irradiated products and form the basis of international clearance for free trade. After the initiation of the Agency's high dose standardization programme (1977), the first IAEA Symposium on High Dose Dosimetry was organized in 1984. As a result, concern as to the necessity of reliable dosimetry has greatly escalated not only in the scientific community but also in the radiation processing industry. The second International Symposium on High Dose Dosimetry for Radiation Processing was held in Vienna from 5 to 9 November, 1990, with a view to providing an international forum for the exchange of technical information on up to date developments in this particular field. The scientific programme held promises for an authoritative account of the status of high dose dosimetry throughout the world in 1990. Forty-one papers presented at the meeting discussed the development of new techniques, the improvement of reference and routine dosimetry systems, and the quality control and assurance of dosimetry. Refs, figs and tabs

  15. Radiation dose optimization in thoracic imaging

    OpenAIRE

    Tack, D

    2010-01-01

    Guidelines for reduction of CT radiation dose were introduced in 1997 and are now more than 12 years old. The process initiated by the European Regulatory authorities to reduce the excess of radiation from CT has however not produced the expected results. Reference diagnostic levels (DRL) from surveys are still twice as high as needed in most European countries and were not significantly reduced as compared to the initial European ones. Many factors may at least explain partially the lack of ...

  16. Radiation-included brachial plexus injury; Follow-up of two different fractionation schedules

    Energy Technology Data Exchange (ETDEWEB)

    Powell, S.; Cooke, J.; Parsons, C. (Royal Marsden Hospital, London (UK))

    1990-07-01

    All 449 breast cancer patients treated with post-operative radiotherapy to the breast and lymph nodes between 1982 and 1984 have been followed for 3-5.5 years. In this group two different fractionation schedules were used, one five times a fortnight and one daily, both over 6 weeks. The calculated dose to the brachial plexus was 45 Gy in 15 fractions or 5e Gy in 30 fractions. These schedules are equivalent doses using the standard NSD formula. The diagnosis of a brachial plexus injury was made clinically and computed tomography from recurrent disease. The actuarial incidence of a radiation-induced brachial plexus injury for the whole group was 4.9% at 5.5 years. No cases were seen in the first 10 months following radiotherapy. The incidence rises between 1 and 4 years and then starts to plateau. When the large fraction size group is compared with the small fraction size group the incidence at 5.5 years is 5.9% and 1.0%, respectively (p 0.09). Two different treatment techniques were used in this group but were not found to contribute to the probability of developing a brachial plexud injury. It is suggested that radiation using large doses per fraction are less well tolerated by the brachial plexus than small doses per fraction; a commonly used fractionation schedule such as 45 Gy in 15 fractions may give unacceptably high brachial plexus morbidity; and the of small doses per fraction or avoiding lymphatic irradiation is advocated. (author). 13 refs.; 6 figs.; 1 tab.

  17. VARIATIONS IN RADIATION SENSITIVITY AND REPAIR AMONG DIFFERENT HEMATOPOIETIC STEM-CELL SUBSETS FOLLOWING FRACTIONATED-IRRADIATION

    NARCIS (Netherlands)

    DOWN, JD; BOUDEWIJN, A; VANOS, R; THAMES, HD; PLOEMACHER, RE

    1995-01-01

    The radiation dose-survival of various hematopoietic cell subsets in murine bone marrow (BM) was determined in the cobblestone area forming cell (CAFC) assay under conditions of single-, split-, and multiple-dose irradiation. A greater recovery in cell survival with decreasing dose per fraction, or

  18. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  19. Radiation dose-response of human tumors

    International Nuclear Information System (INIS)

    Okunieff, P.; Morgan, D.; Niemierko, Andrzej; Suit, H.D.

    1995-01-01

    The dose of radiation that locally controls human tumors treated electively or for gross disease is rarely well defined. These doses can be useful in understanding the dose requirements of novel therapies featuring inhomogeneous dosimetry and in an adjuvant setting. The goal of this study was to compute the dose of radiation that locally controls 50% (TCD 50 ) of tumors in human subjects. Logit regression was used with data collected from single institutions or from combinations of local control data accumulated from several institutions treating the same disease. 90 dose response curves were calculated: 62 of macroscopic tumor therapy, 28 of elective therapy with surgery for primary control. The mean and median TCD 50 for gross disease were 50.0 and 51.9 Gy, respectively. The mean and median TCD 50 for microscopic disease control were 39.3 and 37.9 Gy, respectively. At the TCD 50 , an additional dose of 1 Gy controlled an additional 2.5% (median) additional patients with macroscopic disease and 4.2% (median) additional patients with microscopic disease. For both macro- and microscopic disease, an increase of 1% of dose at the TCD 50 increased control rates ∼ 1% (median) or 2-3% (mean). A predominance of dose response curves had shallow slopes accounting for the discrepancy between mean and median values. Doses to control microscopic disease are approximately 12 Gy less than that required to control macroscopic disease and about 79% of the dose required to control macroscopic disease. The percentage increase in cures expected for a 1% increase in dose is similar for macroscopic and microscopic disease, with a median value of ∼ 1%/% and a mean of ∼ 2.7%/%. 94 refs., 4 figs., 6 tabs

  20. Five-Year Outcomes of High-Dose Single-Fraction Spinal Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Moussazadeh, Nelson [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York (United States); Lis, Eric [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Katsoulakis, Evangelia [Department of Radiation Oncology, New York Methodist Hospital, Brooklyn, New York (United States); Kahn, Sweena; Svoboda, Marek; DiStefano, Natalie M.; McLaughlin, Lily [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bilsky, Mark H. [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York (United States); Yamada, Yoshiya [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Laufer, Ilya, E-mail: lauferi@mskcc.org [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York (United States)

    2015-10-01

    Purpose: To characterize local tumor control and toxicity risk in very long-term survivors (>5 years) after high-dose spinal image guided, intensity modulated radiation therapy delivered as single-dose stereotactic radiosurgery (SRS). Previously published spinal SRS outcome analyses have included a heterogeneous population of cancer patients, mostly with short survival. This is the first study reporting the long-term tumor control and toxicity profiles after high-dose single-fraction spinal SRS. Methods and Materials: The study population included all patients treated from June 2004 to July 2009 with single-fraction spinal SRS (dose 24 Gy) who had survived at least 5 years after treatment. The endpoints examined included disease progression, surgical or radiation retreatment, in-field fracture development, and radiation-associated toxicity, scored using the Radiation Therapy Oncology Group radiation morbidity scoring criteria and the Common Terminology Criteria for Adverse Events, version 4.0. Local control and fracture development were assessed using Kaplan-Meier analysis. Results: Of 278 patients, 31 (11.1%), with 36 segments treated for spinal tumors, survived at least 5 years after treatment and were followed up radiographically and clinically for a median of 6.1 years (maximum 102 months). The histopathologic findings for the 5-year survivors included radiation-resistant metastases in 58%, radiation-sensitive metastases in 22%, and primary bone tumors in 19%. In this selected cohort, 3 treatment failures occurred at a median of 48.6 months, including 2 recurrences in the radiation field and 1 patient with demonstrated progression at the treatment margins. Ten lesions (27.8%) were associated with acute grade 1 cutaneous or gastrointestinal toxicity. Delayed toxicity ≥3 months after treatment included 8 cases (22.2%) of mild neuropathy, 2 (5.6%) of gastrointestinal discomfort, 8 (22.2%) of dermatitides, and 3 (8.3%) of myalgias/myositis. Thirteen

  1. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors

    International Nuclear Information System (INIS)

    Meyn, R.E.; Hunter, N.R.; Milas, L.

    1994-01-01

    The purpose of this investigation was to follow up our previous studies on the development of apoptosis in irradiated murine tumors by testing whether an apoptotic subpopulation of cells reemerges between fractionated exposures. Mice bearing a murine ovarian carcinoma, OCa-I, were treated in vivo with two fractionation protocols: two doses of 12.5 Gy separated by various times out to 5 days and multiple daily fractions of 2.5 Gy. Animals were killed 4 h after the last dose in each protocol, and the percent apoptosis was scored from stained histological sections made from the irradiated tumors according to the specific features characteristic of this mode of cell death. The 12.5+12.5 Gy protocol yielded a net total percent apoptosis of about 45% when the two doses were separated by 5 days (total dose = 25 Gy), whereas the 2.5 Gy per day protocol yielded about 50% net apoptotic cells when given for 5 days (total dose = 12.5 Gy). These values are to be compared to the value of 36% apoptotic cells that is yielded by large single doses (> 25 Gy). Thus, these results indicate that an apoptotic subpopulation of cells reemerged between the fractions in both protocols, but the kinetics appeared to be delayed in the 12.5+12.5 Gy vs. the multiple 2.5 Gy protocol. This reemergence of cells with the propensity for radiation-induced apoptosis between fractionated exposures is consistent with a role for this mode of cell death in the response of tumors to radiotherapy and may represent the priming of a new subpopulation of tumor cells for apoptosis as part of normal tumor homeostasis to counterbalance cell division. 25 refs., 3 figs., 1 tab

  2. Intracavitary radiation treatment planning and dose evaluation

    International Nuclear Information System (INIS)

    Anderson, L.L.; Masterson, M.E.; Nori, D.

    1987-01-01

    Intracavitary radiation therapy with encapsulated radionuclide sources has generally involved, since the advent of afterloading techniques, inserting the sources in tubing previously positioned within a body cavity near the region to be treated. Because of the constraints on source locations relative to the target region, the functions of treatment planning and dose evaluation, usually clearly separable in interstitial brachytherapy, tend to merge in intracavitary therapy. Dose evaluation is typically performed for multiple source-strength configurations in the process of planning and thus may be regarded as complete when a particular configuration has been selected. The input data for each dose evaluation, of course, must include reliable dose distribution information for the source-applicator combinations used. Ultimately, the goal is to discover the source-strength configuration that results in the closest possible approach to the dose distribution desired

  3. The Radiation Dose-Response of the Human Spinal Cord

    International Nuclear Information System (INIS)

    Schultheiss, Timothy E.

    2008-01-01

    Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and α/β ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The α/β = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of α/β is smaller than usually quoted, but values this small were found in some studies. Using α/β = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation

  4. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  5. Method to account for dose fractionation in analysis of IMRT plans: Modified equivalent uniform dose

    International Nuclear Information System (INIS)

    Park, Clinton S.; Kim, Yongbok; Lee, Nancy; Bucci, Kara M.; Quivey, Jeanne M.; Verhey, Lynn J.; Xia Ping

    2005-01-01

    Purpose: To propose a modified equivalent uniform dose (mEUD) to account for dose fractionation using the biologically effective dose without losing the advantages of the generalized equivalent uniform dose (gEUD) and to report the calculated mEUD and gEUD in clinically used intensity-modulated radiotherapy (IMRT) plans. Methods and Materials: The proposed mEUD replaces the dose to each voxel in the gEUD formulation by a biologically effective dose with a normalization factor. We propose to use the term mEUD D o /n o that includes the total dose (D o ) and number of fractions (n o ) and to use the term mEUD o that includes the same total dose but a standard fraction size of 2 Gy. A total of 41 IMRT plans for patients with nasopharyngeal cancer treated at our institution between October 1997 and March 2002 were selected for the study. The gEUD and mEUD were calculated for the planning gross tumor volume (pGTV), planning clinical tumor volume (pCTV), parotid glands, and spinal cord. The prescription dose for these patients was 70 Gy to >95% of the pGTV and 59.4 Gy to >95% of the pCTV in 33 fractions. Results: The calculated average gEUD was 72.2 ± 2.4 Gy for the pGTV, 54.2 ± 7.1 Gy for the pCTV, 26.7 ± 4.2 Gy for the parotid glands, and 34.1 ± 6.8 Gy for the spinal cord. The calculated average mEUD D o /n o using 33 fractions was 71.7 ± 3.5 Gy for mEUD 70/33 of the pGTV, 49.9 ± 7.9 Gy for mEUD 59.5/33 of the pCTV, 27.6 ± 4.8 Gy for mEUD 26/33 of the parotid glands, and 32.7 ± 7.8 Gy for mEUD 45/33 of the spinal cord. Conclusion: The proposed mEUD, combining the gEUD with the biologically effective dose, preserves all advantages of the gEUD while reflecting the fractionation effects and linear and quadratic survival characteristics

  6. Radioprotective Effect of Lidocaine on Function and Ultrastructure of Salivary Glands Receiving Fractionated Radiation

    International Nuclear Information System (INIS)

    Hakim, Samer George; Benedek, Gèza Attila; Su Yuxiong; Jacobsen, Hans Christian; Klinger, Matthias; Dendorfer, Andreas; Hemmelmann, Claudia; Meller, Birgit; Nadrowitz, Roger; Rades, Dirk; Sieg, Peter

    2012-01-01

    Purpose: Radiation-induced xerostomia still represents a common side effect after radiotherapy for head-and-neck malignancies. The aim of the present study was to examine the radioprotective effect of lidocaine hydrochloride during fractionated radiation in an experimental animal model. Methods and Materials: To evaluate the influence of different radiation doses on salivary gland function and the radioprotective effect of lidocaine, rabbits were irradiated with 15, 25, 30, and 35 Gy (equivalent doses in 2-Gy fractions equivalent to 24, 40, 48, and 56 Gy, respectively). Lidocaine hydrochloride (10 and 12 mg/kg) was administered before every radiation fraction in the treatment groups. Salivary gland function was assessed by flow sialometry and sialoscintigraphy, and the morphologic changes were evaluated using transmission electron microscopy. Results: Functional impairment was first observed after 35 Gy and pretreatment with lidocaine improved radiation tolerance of both parotid and submandibular glands. The use of 12 mg/kg lidocaine was superior and displayed significant radioprotection with regard to flow sialometry and sialoscintigraphy. The ultrastructure was largely preserved after pretreatment with both lidocaine doses. Conclusions: Lidocaine represents an effective radioprotective agent and a promising approach for clinical application to avoid radiation-induced functional impairment of salivary glands.

  7. Radioprotective Effect of Lidocaine on Function and Ultrastructure of Salivary Glands Receiving Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Samer George, E-mail: samer.hakim@mkg-chir.mu-luebeck.de [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Benedek, Geza Attila [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Su Yuxiong [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Department of Oral and Maxillofacial Surgery, Sun Yat-Sen University, Guanghua School of Stomatology, Guanghua (China); Jacobsen, Hans Christian [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Klinger, Matthias [Institute of Anatomy, University of Luebeck, Luebeck (Germany); Dendorfer, Andreas [Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck (Germany); Hemmelmann, Claudia [Institute of Medical Biometry and Statistics, University of Luebeck, Luebeck (Germany); Meller, Birgit [Department of Radiology and Nuclear Medicine, University of Luebeck, Luebeck (Germany); Nadrowitz, Roger; Rades, Dirk [Department of Radiation Oncology, University of Luebeck, Luebeck (Germany); Sieg, Peter [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany)

    2012-03-15

    Purpose: Radiation-induced xerostomia still represents a common side effect after radiotherapy for head-and-neck malignancies. The aim of the present study was to examine the radioprotective effect of lidocaine hydrochloride during fractionated radiation in an experimental animal model. Methods and Materials: To evaluate the influence of different radiation doses on salivary gland function and the radioprotective effect of lidocaine, rabbits were irradiated with 15, 25, 30, and 35 Gy (equivalent doses in 2-Gy fractions equivalent to 24, 40, 48, and 56 Gy, respectively). Lidocaine hydrochloride (10 and 12 mg/kg) was administered before every radiation fraction in the treatment groups. Salivary gland function was assessed by flow sialometry and sialoscintigraphy, and the morphologic changes were evaluated using transmission electron microscopy. Results: Functional impairment was first observed after 35 Gy and pretreatment with lidocaine improved radiation tolerance of both parotid and submandibular glands. The use of 12 mg/kg lidocaine was superior and displayed significant radioprotection with regard to flow sialometry and sialoscintigraphy. The ultrastructure was largely preserved after pretreatment with both lidocaine doses. Conclusions: Lidocaine represents an effective radioprotective agent and a promising approach for clinical application to avoid radiation-induced functional impairment of salivary glands.

  8. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  9. Radiation doses and risks from internal emitters

    International Nuclear Information System (INIS)

    Harrison, John; Day, Philip

    2008-01-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  10. Radiation Doses in Patient Eye Lenses during Interventional Neuroradiology Procedures.

    Science.gov (United States)

    Sánchez, R M; Vañó, E; Fernández, J M; Rosati, S; López-Ibor, L

    2016-03-01

    Eye lenses are among the most sensitive organs to x-ray radiation and may be considered at risk during neurointerventional radiology procedures. The threshold dose to produce eye lens opacities has been recently reduced to 500 mGy by the International Commission on Radiologic Protection. In this article, the authors investigated the radiation doses delivered to patients' eyes during interventional neuroradiology procedures at a university hospital. Small optically stimulated luminescence dosimeters were located over patients' eyes during 5 diagnostic and 31 therapeutic procedures performed in a biplane x-ray system. Phantom measurements were also made to determine the level of radiation to the eye during imaging runs with conebeam CT. The left eye (located toward the lateral C-arm x-ray source) received a 4.5 times greater dose than the right one. The average dose during embolization in the left eye was 300 mGy, with a maximum of 2000 mGy in a single procedure. The patient who received this maximum eye dose needed 6 embolization procedures to treat his high-volume AVM. If one took into account those 6 embolizations, the eye dose could be 2-fold. Sixteen percent of the embolizations resulted in eye doses of >500 mGy. A relevant fraction of patients received eye doses exceeding the threshold of 500 mGy. A careful optimization of the procedures and follow-up of these patients to evaluate potential lens opacities should be considered. © 2016 by American Journal of Neuroradiology.

  11. Radiation doses from radioactivity in incandescent mantles

    International Nuclear Information System (INIS)

    1985-01-01

    Thorium nitrate is used in the production of incandescent mantles for gas lanterns. In this report dose estimates are given for internal and external exposure that result from the use of the incandescent mantles for gas lanterns. The collective, effective dose equivalent for all users of gas mantles is estimated to be about 100 Sv per annum in the Netherlands. For the population involved (ca. 700,000 persons) this is roughly equivalent to 5% to 10% of the collective dose equivalent associated with exposure to radiation from natural sources. The major contribution to dose estimates comes from inhalation of radium during burning of the mantles. A pessimistic approach results in individual dose estimates for inhalation of up to 0.2 mSv. Consideration of dose consequences in case of a fire in a storage department learns that it is necessary for emergency personnel to wear respirators. It is concluded that the uncontrolled removal of used gas mantles to the environment (soil) does not result in a significant contribution to environmental radiation exposure. (Auth.)

  12. The health detriment associated with low doses of ionising radiation

    International Nuclear Information System (INIS)

    Smith, H.

    1991-01-01

    Some of the problems and uncertainties in using available data to derive risk estimates are discussed in relation to low dose irradiation. Topics considered are:- dose and dose response relationships for stochastic effects following low doses of low LET radiation, estimates of probability of human radiation-induced cancer at low doses, proposed estimates of probability of fatal cancer for low dose, low dose rate, low-LET radiation, natural incidence of severe hereditary diseases, estimates of probability of radiation-induced severe hereditary diseases at low doses, deterministic effects resulting from low dose prenatal exposure, cancer induction including leukemia following human in utero irradiation, mental retardation, and total health detriment. (UK)

  13. Patient radiation doses from neuroradiology procedures

    International Nuclear Information System (INIS)

    Garcia-Roman, M.J.; Abreu-Luis, J.; Hernandez-Armas, J.; Prada-Martinez, E.

    2001-01-01

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm 2 in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  14. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Egeblad, M.; Gottlieb, E.

    1975-01-01

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections [fr

  15. Radiation dose to the nuclear medicine nurses

    International Nuclear Information System (INIS)

    Sattari, A.; Dadashzadeh, S.; Nasirgholi, G.; Firoozabadi, H.

    2004-01-01

    Background: people who have been administrated radiopharmaceuticals could be a source of radiation to their relatives, medical nurses, and people who are in contact with them. The aim of this work was to estimate radiation dose received by nuclear medicine nurses. Materials and methods: in this study, the dose rates at various distances of 5-100 cm from 70 patients, who were administrated diagnostic of 201 T1-Chloride and 99m Tc-MIBI , were measured using an ionization chamber. For determination of external radiation dose to the nurses, three different time intervals were used for measurements. Results: The maximum values of external dose rates of 201 T1 and 99m Tc-MIBI were 11.2 μ Sv/h ±2.3 and 43.1μSv/h ±11.9 respectively, at 5cm from the patients. Significant exposure from patients after injection of 99m Tc-MIBI was limited to the day of administration. Departure dose rate of 201 T1 fell gradually; so, it became significant by 3 days after administration. Maximum and average absorbed dose of nuclear medicine staff from 201 T1, was 4.6 and 2.7μSv/h, and for 9 '9 m Tc-MIBI was 18.1 and 9.8 μSv/h in each scan. Conclusion: significant exposure from the patients is limited to the few hours after administration, therefore patients should be recommended to urinate frequently before leaving the nuclear medicine department

  16. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  17. Patient radiation dose during mammography procedures

    International Nuclear Information System (INIS)

    Mohamed, Swsan Awd Elkriem

    2015-11-01

    The objectives of this study were to estimate the patient dose in term of mean glandular dose and assist in optimization of radiation protection in mammographic procedures in Sudan. A total number of 107 patients were included. Four mammographic units were participated. Only one center was using automatic exposure control (AEC). The mean doses in (mGy) for the CC projection were 3.13, 1.24, 2.45 and 0.98 and for the MLO projection was 2.13, 1.26, 1.99 and 1.02 for centers A, B, C, and D, respectively. The total mean dose per breast from both projections was 5.26, 2.50, 4.44 and 1.99 mGy for centers A, B, C and D, respectively. The minimum mean glandular dose was found between the digital system which was operated under AEC and one of the manual selected exposure factors systems, this highlight possible optimization of radiation protection in the other manual selected systems. The kilo volt and the tube current time products should be selected correctly according to the breast thickness in both centers A and C. (author)

  18. Contribution of maternal radionuclide burdens to prenatal radiation doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 μCi into a woman's blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors

  19. Contribution of maternal radionuclide burdens to prenatal radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 {mu}Ci into a woman`s blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors.

  20. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  1. Dose calculation algorithms for radiation therapy with an MRI-Integrated radiation device

    International Nuclear Information System (INIS)

    Pfaffenberger, Asja

    2013-01-01

    Image-guided adaptive radiation therapy (IGART) aims at improving therapy outcome on the basis of more precise knowledge of the anatomical and physiological situation during treatment. By integration of magnetic resonance imaging (MRI), better differentiation is possible between the target volume to be irradiated and healthy surrounding tissues. In addition, changes that occur either between or during treatment fractions can be taken into account. On the basis of this information, a better conformation of radiation dose to the target volume may be achieved, which may in turn improve prognosis and reduce radiation side effects. This requires a precise calculation of radiation dose in a magnetic field that is present in these integrated irradiation devices. Real-time adaptation of the treatment plan is aimed at for which fast dose calculation is needed. Kernel-based methods are good candidates to achieve short calculation times; however, they presently only exist for radiation therapy in the absence of magnetic fields. This work suggests and investigates two approaches towards kernel-based dose calculation algorithms. One of them is integrated into treatment plan optimisation and applied to four clinical cases.

  2. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  3. Radiation dose and risk assessment in hysterosalpingography

    Directory of Open Access Journals (Sweden)

    Plećaš Darko V.

    2010-01-01

    Full Text Available Hysterosalpingography is an important diagnostic method for the evaluation of the female reproductive tract involving the exposure of patients to ionizing radiation. The irradiation of ovaries is unavoidable and radiation exposure of the patient and the associated radiological risk for the foetus and born child during the period of growth should be considered, as well. The purpose of this work is to evaluate organ and patient doses and radiation risks during hysterosalpingography procedures performed in a dedicated gynecological hospital. The entrance surface air kerma was measured for a total of 31 patients during hysterosalpingography. Based on the results obtained, the radiogenic risk for hereditary effects and cancer induction was estimated. The patient dose levels are in the range of 3-15 mGy, with a median value of 10 mGy, in terms of entrance surface air kerma. Estimated median ovarian and uterus doses are 1.7 and 2.3 mGy, respectively. The risk for fatal cancer and hereditary effects is estimated to be 5.5×10-5 and 3.4 ×10-6, respectively. Although low compared to the natural incidence of genetic effects and cancer, it can be elevated in cases of prolonged or repeated procedures or procedures where the non-optimized protocol is used.

  4. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    Bernhardt, Philipp; Lendl, Markus; Deinzer, Frank

    2006-01-01

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  5. Radiation Dose to Post-Chernobyl Cleanup Workers

    Science.gov (United States)

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  6. Low radiation doses - Book of presentations (slides)

    International Nuclear Information System (INIS)

    2013-03-01

    This document brings together all the available presentations (slides) of the conference on low radiation doses organised by the 'research and health' department of the French society of radiation protection (SFRP). Ten presentations are available and deal with he following topics: 1 - Cyto-toxicity, geno-toxicity: comparative approach between ionizing radiations and other geno-toxic agents (F. Nesslany, Institut Pasteur, Lille); Succession of events occurring after a radio-induced DNA damage (D. Averbeck, IRSN/CEA); Importance of stem cells in the response to ionizing radiations (J. Lebeau, CEA); Relation between energy deposition at the sub-cell scale and early biological effects (C. Villagrasa, IRSN); Natural history of breast cancer: predisposition, susceptibility with respect to irradiation (S. Rivera, IGR); Pediatrics scanner study and the EPI-CT project (M.O Bernier, IRSN); What future for an irradiated cell: survival or apoptosis? (E. Sage, Institut Curie); Differential effect of a 137 Cs chronic contamination on the different steps of the atheromatous pathology (T. Ebrahimian, IRSN); Variability of the individual radiosensitivity (S. Chevillard, CEA); What definitions for individual sensitivity? (A. Schmidt, CEA); Low doses: some philosophical remarks (A. Grinbaum, CEA)

  7. Radiation dose measurement and alarm equipment

    International Nuclear Information System (INIS)

    Girle, H.D.

    1977-01-01

    This portable radiation personal dosemeter contains only commercially available electronic components and is light, easy to operate, stable and requires practically no maintenance. The radiation which is present produces electrical impulses in a detector in the well known way, whose frequency is propertional to the intensity of radiation. The added number of pulses is therefore a measure of the incoming radiation dose. After passing through a pulse forming circuit the pulses are stored in a digital counter, i.e. they are added. An AND circuit connected to the counter output produces the excitation of the sound generator through a subsequent bistable circuit, if a number of pulses preset in the counter is reached. The sound generator feeds a warning signal to a loudspeaker. A second output after the digital counter converts the added number of pulses to an instrument reading in a digital - analogue converter. This makes it possible to read the instantaneous value of dose while the digital value is not indicated but only used for setting off the alarm. (HP) [de

  8. The effects of low doses of different radiation qualities on Vicia faba bean root meristems

    International Nuclear Information System (INIS)

    Marshall, I.

    1982-01-01

    The effects of low doses of different radiation qualities have been investigated using the micronuclei induction in Vicia faba bean roots as an indicator. The radiation qualities used were: 60 Co-gamma rays, high energy neutrons (maximum energy 600 MeV), low energy neutrons (mean energy 2.35 MeV), negative pions in the plateau region and negative pions in the stopping region. It was found that the best fit to the gamma ray data was obtained by using a linear+quadratic relationship, while in the case of the other radiation qualities a linear equation, represented the best fit, implying the non-existence of a threshold dose. No dose-rate, fractionation or oxygen effect was found for gamma radiation in the low dose region (below 20cGy) where the linear dependence between effect and dose is dominant. In contrast, in the high dose region these effects were present as normally expected. Fractionation experiments were carried out using high energy neutrons and pion radiation. No recovery was observed after neutron radiation while some recovery was found for the pion radiation. The RBE values found for the two neutron energies were in the high dose region 4.7 +- 0.4 and 11.8 +- 1.3. In the low dose region the RBE value approached a constant value of 25.4 +- 4.4 for the high energy neutrons and 63.7 +- 12.0 for the low energy neutrons. (orig./MG) [de

  9. Natural radiation dose estimates from soils

    International Nuclear Information System (INIS)

    Silveira, M.A.G.R.; Moreira, H.; Medina, N.H.

    2009-01-01

    In this work the natural radiation from soils of southeastern Brazil has been studied. Soil samples from Interlagos, Sao Paulo; parks and Billings dam, in Sao Bernardo do Campo city; Santos, Sao Vicente and Sao Sebastiao beaches, Sao Paulo and sands from Ilha Grande beaches, Rio de Janeiro, were analyzed. The results show that the main contribution to the effective dose is due to elements of the 232 Th decay chain, with a smaller contribution from the radionuclide 40 K and the elements of the series of 238 U. The obtained values found in the studied regions, are around the average international dose due to external exposure to gamma rays (0.48 mSv/yr), except in Praia Preta, Ilha Grande, where the effective dose exceeds the average value. (author)

  10. Transperineal high-dose-rate interstitial radiation therapy in the management of gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itami, Jun; Hara, Ryuseke; Kozuka, Takuyou; Yamashita, Hideomi; Nakajima, Kaori; Shibata, Kouji; Abe, Yoshihisa; Fuse, Masashi; Ito, Masashi [International Medical Center of Japan, Tokyo (Japan). Dept. of Radiation Therapy and Oncology

    2003-11-01

    Background: High-dose-rate interstitial radiation therapy is a newly introduced modality, and its role in the management of gynecologic malignancies remains to be studied. Clinical experience in high-dose-rate interstitial radiation therapy was retrospectively investigated. Patients and Methods: Eight patients with primary and nine with recurrent gynecologic malignancies underwent high-dose-rate interstitial radiation therapy with/without external-beam irradiation. Fractional dose of the high-dose-rate interstitial radiation therapy ranged between 4 and 6 Gy with total doses of 15-54 Gy. Interstitial irradiation was performed twice daily with an interval of > 6 h. Results: 2-year local control rate was 75% for primary treatment and 47% for treatment of recurrence (p = 0.46). Maximum tumor size had a statistically significant impact on local control (p < 0.002). Grade 2 and 4 late complications were seen in five patients, and the incidence was significantly higher in patients with a larger volume enclosed by the prescribed fractional dose of high-dose-rate interstitial radiation therapy. The incidence of grade 2 and 4 complications at 18 months was 78% and 0% with a volume > 100 cm{sup 3} and {<=} 100 cm{sup 3}, respectively (p < 0.04). Conclusion: Although high-dose-rate interstitial radiation therapy is a promising modality, it must be applied cautiously to patients with bulky tumors because of the high incidence of serious complications. (orig.)

  11. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    International Nuclear Information System (INIS)

    Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L.; Date, Hiroyuki

    2015-01-01

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation

  12. Direct determination of internal radiation dose in human blood

    OpenAIRE

    Tanır, Ayse Güneş; Güleç, Özge

    2014-01-01

    The purpose of this study is to measure the internal radiation dose using a human blood sample. In the literature, there is no process that allows the direct measurement of the internal radiation dose received by a person. The luminescence counts from a blood sample having a laboratory-injected radiation dose and the waste blood of the patient injected with a radiopharmaceutical for diagnostic purposes were both measured. The decay and dose-response curves were plotted for the different doses...

  13. Mathematical models for calculating radiation dose to the fetus

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    Estimates of radiation dose from radionuclides inside the body are calculated on the basis of energy deposition in mathematical models representing the organs and tissues of the human body. Complex models may be used with radiation transport codes to calculate the fraction of emitted energy that is absorbed in a target tissue even at a distance from the source. Other models may be simple geometric shapes for which absorbed fractions of energy have already been calculated. Models of Reference Man, the 15-year-old (Reference Woman), the 10-year-old, the five-year-old, the one-year-old, and the newborn have been developed and used for calculating specific absorbed fractions (absorbed fractions of energy per unit mass) for several different photon energies and many different source-target combinations. The Reference woman model is adequate for calculating energy deposition in the uterus during the first few weeks of pregnancy. During the course of pregnancy, the embryo/fetus increases rapidly in size and thus requires several models for calculating absorbed fractions. In addition, the increases in size and changes in shape of the uterus and fetus result in the repositioning of the maternal organs and in different geometric relationships among the organs and the fetus. This is especially true of the excretory organs such as the urinary bladder and the various sections of the gastrointestinal tract. Several models have been developed for calculating absorbed fractions of energy in the fetus, including models of the uterus and fetus for each month of pregnancy and complete models of the pregnant woman at the end of each trimester. In this paper, the available models and the appropriate use of each will be discussed. (Author) 19 refs., 7 figs

  14. Effect of radiation dose on the properties of natural rubber nanocomposite

    International Nuclear Information System (INIS)

    Khalid, M.; Ismail, A.F.; Ratnam, C.T.; Faridah, Y.; Rashmi, W.; Al Khatib, M.F.

    2010-01-01

    Effect of radiation dose and carbon nanotubes (CNT) on the mechanical properties of standard Malaysian rubber (SMR) was investigated in this study. SMR nanocomposites containing 1-7 phr CNT were prepared using the solvent casting method and the nanocomposites were radiated at doses of 50-200 kGy. The change in mechanical properties, especially, tensile strength (Ts), elongation at break (Eb), hardness and tensile modulus at 100% elongation (M 100 ) were studied as a function of radiation dose. The structure and morphology of reinforced natural rubber was investigated by FESEM, TEM and AFM in order to gain further evidence on the radiation-induced crosslinking. It was found that the Ts, M 100 and the hardness of the SMR/CNT nanocomposites significantly increased with radiation dose; the elongation at break exhibited an increase up to 100 kGy, and a downward trend thereafter. Results on gel fraction further confirmed the crosslinking of SMR/CNT nanocomposites upon radiation.

  15. BCC and Childhood Low Dose Radiation

    Directory of Open Access Journals (Sweden)

    Arash Beiraghi Toosi

    2014-10-01

    Full Text Available Skin cancer is a late complication of ionizing radiation. Two skin neoplasms prominent Basal Cell Carcinoma (BCC and Squamous Cell Carcinoma (SCC are the most famous complications of radiotherapy. Basal Cell Carcinoma (BCC is the most common human malignant neoplasm. Many genetic and environmental factors are involved in its onset. BCC is observed in sun-exposed areas of skin. Some patients with scalp BCC have had a history of scalp radiation for the treatment of tinea capitis in childhood. Evidence that ionizing radiation is carcinogenic first came from past reports of nonmelanoma skin cancers on the hands of workers using radiation devices. The total dose of radiation and irradiated site exposed to sunlight can lead to a short incubation period. It is not clear whether BCC in these cases has a more aggressive nature and requires a more aggressive resection of the lesion. The aim of this review was to evaluate the differences between BCC specification and treatment results between irradiated and nonirradiated patients.

  16. Effects of low dose radiation on repair processes in human lymphocytes

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Egg, D.; Guenther, R.

    1978-10-01

    DNA excision repair was investigated in lymphocytes of persons occupationally exposed to low dose radiation of 222 Rn. Autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine incorporation by repair replication into double stranded and single-strand containing DNA fractions obtained by BND cellulose chromatography seem to indicate a stimulatory effect of repeated low dose radiation on repair enzymes. (author)

  17. Radiation sensitive medium for recording an absorbed dose distribution

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a radiation sensitive medium for recording an absorbed dose distribution from an external radiation source such as e.g. a linear particle accelerator used for e.g. cancer treatment or radiation processing. The invention further relates to a method for measuring the absorbed...... doses distribution in a radiation sensitive medium....

  18. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  19. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    Nelson, Gregory A.

    2016-01-01

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  20. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  1. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    Liu, Jian-xiang; Huang, Min-yan; Ruan, Jian-lei; Bai, Yu-shu; Xu, Su

    2008-01-01

    Full text: a) On July 5 and 8, 2005, Two patients with bone marrow suppression were successively hospitalized by the First Affiliated Hospital of Haerbin Medical University. Examination results showed that the patients seemed to get suspicious radiation disease. On July 13, 2005, a radioactive source was found in the patients' dwelling. The radiation source is Iridium-192 with 0.5 Ci(1.85 x 10 10 Bq) radioactivity. The radiation source is a metal bar which is a kind of radioactive industrial detection source for welding. The source is currently stored in the urban radioactive waste storehouse of Heilongjiang province. After finding the radioactive source on July 13, The Haerbin municipal government initiated an emergency response plan and developed medical rescue, radioactive source examination and case detection through organizing ministries involving health, environmental protection and public security. After receiving a report at 17:00 on July 14, 2005, Chinese Ministry of Health immediately sent experts to the spot for investigation, dose estimation and direction of patients' rescue. Health authority carried out physical examination twice on 113 residents within 30 meters to the source, among which 4 got radiation sickness, 5 showed abnormal hemotogram, and others showed no abnormal response. Of 4 patients with radiation sickness, one 81 year old patient has died of severe bone marrow form of sub acute radiation sickness coupled with lung infection and prostrate apparatus at 13:00 on Oct., 20. Two children have been treated in Beitaiping Road Hospital in Beijing, another patient has been treated in local hospital. b) Biological dosimetry using conventional chromosome aberration analysis in human peripheral blood lymphocytes has been shown as a reliable and useful tool in medical management of radiation accident victims. Peripheral blood lymphocytes of the victims were cultured using conventional culture medium with colchicine added at the beginning. Chromosome

  2. Development of a multi-fraction radiation protocol for intracerebral human glioblastoma xenografts

    International Nuclear Information System (INIS)

    Ozawa, T.; Santos, R.A.; Hu, L.H.; Faddegon, B.A.; Lamborn, K.R.; Deen, D.F.

    2003-01-01

    Patients with malignant gliomas are typically treated by surgery, radiation therapy and chemotherapy. Fractionated radiotherapy consists of 30 daily doses of 1.8 to 2 Gy given over a 6-week period. We have investigated a multi-fraction radiation protocol in which rats bearing intracerebral tumors are irradiated once daily for 10 days with a 2-day break in the middle. This scheme simulates the first third of a typical human radiation protocol, and it is a practical scheme to conduct in the laboratory. U-87 MG or U-251 MG human glioblastoma cells were implanted into the right caudate-putamens of male athymic rats. We irradiated rats using an irradiation jig that allowed us to deliver Cesium-137 photons at a dose rate of 280 cGy/minute selectively to the portion of the head containing the tumor. This device adequately shields all other parts of rat, including the critically sensitive oropharynx. Animals received the first radiation dose when intracerebral tumors were ∼20 mg in size. Untreated U-87 MG tumor-bearing rats died with a median survival of 23 days, while tumor bearing rats that were given ten 1-Gy doses died with a median survival of 28.5 days. Untreated U-251 MG tumor-bearing rats died with a median survival of 34.5 days, while tumor-bearing rats that were given ten 1-Gy doses died with a median survival of 58 days. However, 5 of 14 of these rats had a lifespan >68 days and were considered cured. A daily dose of 0.75 Gy produced a median survival of 43 days, but again 2 rats had a lifespan >70 days. Currently, we are seeking a dose that causes reproducible tumor growth delay of 1 to 2 weeks, without curing any animals, to use in future studies that combine radiation with other anti-tumor agents

  3. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla

    2015-01-01

    Radiation Dose to the Eye Lens: Does Positioning Really Matter? C. Baun1, K. Falch1, K.D. Nielsen2, S. Shanmuganathan1, O. Gerke1, P.F. Høilund-Carlsen1 1Department of Nuclear Medicine, Odense University Hospital, Odense C, Denmark. 2University College Lillebaelt, Odense, Denmark. Aim: The scan...... field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...

  4. Long-term Evaluation of Radiation-Induced Optic Neuropathy After Single-Fraction Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Jacqueline A., E-mail: leavitt.jacqueline@mayo.edu [Department of Ophthalmology, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Stafford, Scott L. [Department of Radiation Oncology, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Link, Michael J. [Department of Neurosurgery, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Pollock, Bruce E. [Department of Radiation Oncology, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Department of Neurosurgery, Mayo Clinic and Foundation, Rochester, Minnesota (United States)

    2013-11-01

    Purpose: To determine the long-term risk of radiation-induced optic neuropathy (RION) in patients having single-fraction stereotactic radiosurgery (SRS) for benign skull base tumors. Methods and Materials: Retrospective review of 222 patients having Gamma Knife radiosurgery for benign tumors adjacent to the anterior visual pathway (AVP) between 1991 and 1999. Excluded were patients with prior or concurrent external beam radiation therapy or SRS. One hundred twenty-nine patients (58%) had undergone previous surgery. Tumor types included confirmed World Health Organization grade 1 or presumed cavernous sinus meningioma (n=143), pituitary adenoma (n=72), and craniopharyngioma (n=7). The maximum dose to the AVP was ≤8.0 Gy (n=126), 8.1-10.0 Gy (n=39), 10.1-12.0 Gy (n=47), and >12 Gy (n=10). Results: The mean clinical and imaging follow-up periods were 83 and 123 months, respectively. One patient (0.5%) who received a maximum radiation dose of 12.8 Gy to the AVP developed unilateral blindness 18 months after SRS. The chance of RION according to the maximum radiation dose received by the AVP was 0 (95% confidence interval [CI] 0-3.6%), 0 (95% CI 0-10.7%), 0 (95% CI 0-9.0%), and 10% (95% CI 0-43.0%) for patients receiving ≤8 Gy, 8.1-10.0 Gy, 10.1-12.0 Gy, and >12 Gy, respectively. The overall risk of RION in patients receiving >8 Gy to the AVP was 1.0% (95% CI 0-6.2%). Conclusions: The risk of RION after single-fraction SRS in patients with benign skull base tumors who have no prior radiation exposure is very low if the maximum dose to the AVP is ≤12 Gy. Physicians performing single-fraction SRS should remain cautious when treating lesions adjacent to the AVP, especially when the maximum dose exceeds 10 Gy.

  5. Reducing the radiation dose in fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thijssen, M.A.O.; Rosenbusch, G.; Gerlach, H.J.

    1988-01-01

    Hitherto, there was only one standard reference curve available for fluoroscopic examination. The novel POLYMATIC system now offers the possibility of randomly choosing kV/mA combinations. Measurements of dose rate, contrast, and resolving power made with phantoms and the results of patient examinations with subsequent comparison of the images obtained using two different standard reference curves have shown that with the curve through 100 kV, image quality is equal to or only slightly less than that obtained following the usual standard curve, but the radiation dose is lower. Hence the application of the new standard reference curve can be recommended for examinations of the digestive tract or of other organs. (orig./GDG).

  6. Radiation risk factors and dose limits

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1979-01-01

    The contents of the ICRP publications 9 (1965) and 26 (1977) are outlined and the research conducted during these years considered. Expressions are derived for the frequency for induction of cancer from the most common irradiations - X rays, gamma rays and electrons. The dose limits advised by the ICRP are discussed and the first two fundamental principles are presented - that no one should be subjected to radiation without useful cause and that in those cases where irradiation is thought necessary, the medical, scientific, social and economic advantages need to be carefully considered with respect to the possible disadvantages. (C.F.)

  7. Radiation doses to neonates requiring intensive care

    International Nuclear Information System (INIS)

    Robinson, A.; Dellagrammaticas, H.D.

    1983-01-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered. (author)

  8. Radiation doses from mammography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Young, B.F.; Young, J.G.; Tingey, D.R.C.

    1991-05-01

    During 1989-90 the Australian Radiation Laboratory conducted a postal survey of at least 90% of the mammographic facilities in Australia. The primary aim of the survey was to measure the mean glandular dose (MGD) and the X-ray beam half value layer (HVL) for a typical mammograph. The MGD and HVL were measured with a specially designed tissue equivalent monitor. In all, 258 mammographic centres were surveyed. It was found that for centres using film-screen imaging, the average mean glandular dose was 1.83 mGy for centres using grids and 0.84 mGy for centres not using grids. In addition to the MGD and HVL, comprehensive statistical information was collected and data is presented on the types of equipment and techniques used, the number and age of patients and demographic distribution of centres. Results indicate that the use of a grid is the major factor determining dose and several other factors appear to have minor effects. In view of the distribution of MGD, it is recommended that the mean glandular dose per image, for a 5 cm compressed breast thickness, should not exceed 2.0 mGy when a grid is used and 1.0 mGy without a grid. 63 refs., 11 tabs., 15 figs

  9. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  10. Contribution of maternal radionuclide burdens to prenatal radiation doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.; Meznarich, H.K.; Thrall, K.D.

    1992-03-01

    This report discusses approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radionuclides in chemical forms that provided a spectrum of metabolic and dosimetric characteristics. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were estimated for these materials, and were combined with data from biokinetic transfer models to predict radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. Medical Internal Radiation Dosimetry (MIRD) methodologies were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed for representative situations; introduction of 1 μCi into a woman's blood at successive months of pregnancy was assumed to accommodate the stage dependence of geometric relationships and biological behaviors. Summary tables of results, correlations, and dosimetric relations, and of tentative generalized categorizations, are provided in the report

  11. The treatment of fish meal with gamma radiation - effect on protein fraction

    International Nuclear Information System (INIS)

    Uchman, W.; Konieczny, P.; Zabielski, J.

    1996-01-01

    The aim of this study was determination of the gamma radiation effect on changes of protein fraction of fish meal. For determination of the changes seven dose levels (0-20 kGy) were applied. The doses up to 5 kGy did not influence significantly on solubility, aminoacids composition, content of amino-nitrogen and enzymatic digestibility of proteins in vitro. For 5-10 kGy doses an insignificant decrease of the content of tryptophan was observed. The dose of 5 kGy is quite satisfactory in elimination of vegetative forms of most pathogens. For elimination of yeasts and moulds, the doses up to 10 kGy have to be applied. In this situation supplementation the fish meal with tryptophan is recommended

  12. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  13. The development of wireless radiation dose monitoring using smart phone

    International Nuclear Information System (INIS)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong; Kim, Chong Yeal; Lim, Chai Wan

    2016-01-01

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced

  14. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  15. Fallout and radiation doses in Norway after the Chernobyl accident

    International Nuclear Information System (INIS)

    Henriksen, T.

    1987-08-01

    Due to southeasterly wind and rainfall during the critical days after the Chernobyl accident, Norway got a substantial part of the cesium isotopes released. The radioactive fallout followed closely the rainfall and was mainly concentrated to some thin populated areas in the central parts of the country. The total fallout of the cesium isotopes was approximately 2300 TBq (Cs-137) and 1200 TBq (Cs-134). The average for the country was 11 kBq/m 2 with a variation from 1.5 to 40 kBq/m 2 for the 19 different counties of the country. The fallout resulted in contamination of food products from some areas, mainly meat from reindeer and sheep, as well as freshwater fish. A small fraction of the food produced in 1986 was not sold due to the regulations enforced. The average radiation dose to the Norwegian population during the first year after the accident was approximately 0.3 mSv (0.1 mSv from external radiation and about 0.2 mSv from foodstuff). This first year extra dose is approximately 5% of the average normal background dose in Norway

  16. TU-H-BRC-02: Biological Dose Escalation for Liver SBRT Through Spatiotemporal Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, J; Perko, Z; Wolfgang, J; Hong, T [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulative BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.

  17. Dose painting to treat single-lobe prostate cancer with hypofractionated high-dose radiation using targeted external beam radiation: Is it feasible?

    International Nuclear Information System (INIS)

    Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.; Ryan, Nicole; Raben, David

    2015-01-01

    Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V 70 (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V 70 was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB

  18. Influence of fractionation of dose on 3 year results of X-ray therapy of skin cancer

    International Nuclear Information System (INIS)

    Szymczyk, W.; Radziszewska, J.; Cyplik, I.; Glinska, H.

    1985-01-01

    Three-year results of X-ray therapy of skin cancer in 345 patients are presented. The dependence of results on the size of irradiated field and the method of dose fractionation is analysed. The clinical usefulness of a cumulative radiation effect (CRE) is evaluated. 96.5% of three-year cures were obtained. Recurrences amounted to 1.6% and necroses to 1.9% of treated lesions. It has been shown that treatment of small fields with 8-fractions gave equally positive results as with 15-fractions whereas in the treatment of large lesions the selection of CRE value, a number of fractions and dose should let the value of CRE minimally exceeds the level of tolerance of healthy tissues. The regard to CRE value in the treatment of large lesions or the introduction of additional dosimetric acts seems to be useful. 10 refs., 1 fig., 5 tabs. (author)

  19. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    International Nuclear Information System (INIS)

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua; Liu, Songtao; Sibley, Christopher T.; Bluemke, David A.; Nacif, Marcelo S.

    2013-01-01

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use

  20. Excellent local tumor response after fractionated stereotactic radiation therapy for locally recurrent nasopharynx cancer

    International Nuclear Information System (INIS)

    Ahn, Y. C.; Lim, D. H.; Choi, D. R.; Kim, D. K.; Kim, D. Y.; Huh, S. J.; Baek, C. H.; Chu, K. C.; Yoon, S. S.; Park, K. C.

    1997-01-01

    This study is to report experience with Fractionated Stereotactic Radiation Therapy (FSRT) for locally recurrent nasopharynx cancer after curative conventional radiation therapy. Three patients with locally recurrent and symptomatic nasopharynx cancer were given FSRT as reirradiation method between the period of September of 1995 and August of 1996. For two patients, application of FSRT is their third radiation therapy directed to the nasopharynx. Two patients were given low dose chemotherapy as radiation sensitizer concurrently with FSRT. Authors used 3-dimensional coordinate system by individually made, relocatable Gill-Thomas-Cosman (GTC) stereotactic frame and multiple non-coplanar arc therapy dose planning was done using XKnife-3. Total of 45 Gy/18 fractions or 50 Gy/20 fractions were given. Authors observed satisfactory symptomatic improvement and remarkable objective tumor size decrease by follow-up MR images taken 1 month post-FSRT in all three patients, while no neurologic side effect attributable to reirradiation was noticed. Two died at 7 and 9 months with loco-regional and distant seeding outside FSRT field, while one patient is living for 4 month. Authors experienced satisfactory therapeutic effectiveness and safety of FSRT as reirradiation method for locally recurrent nasopharynx cancer. Development of more effective systemic chemotherapeutic regimen is desired for distant metastasis. (author)

  1. Risk of radiation at low doses

    International Nuclear Information System (INIS)

    Beninson, D.

    1996-01-01

    Risk and risk sources have been increasingly studied in recent years. The essentials of risk consist of a combination of the idea of loss with that of chance or probability. The idea of chance is crucial: the inevitable can be utterly unpleasant but, lacking the element of chance, is not a risk. Even without analyzing the different components of the concept of 'loss', it should be recognized that to be exposed to risk is not necessarily bad. The achievements of modern life imply the exposure to several sources of risk, and past evolution would have been impossible without the risk incurred by our ancestors. A special type of risk, pertinent to our discussion, is exemplified by the health threats due to low levels of natural or man-made chemicals and low radiation levels. It constitutes a risk very difficult to analyze, not because the effects are unknown but because they are already very familiar, and exposed groups only manifest a slightly increased frequency of such effects. The linear non-threshold relationship, is at present the best tool to predict the risk probability of radiation at low doses. It fulfills all the requirements to be considered 'realistically representative', using modeling terminology. Practical decisions can be made under this relationship, and the radiation protection system, recommended by the ICRP provides a method for such decisions. (author)

  2. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  3. Design of radiation dose tumor response assays

    International Nuclear Information System (INIS)

    Suit, H.D.; Hwang, T.; Hsieh, C.; Thames, H.

    1985-01-01

    The efficient utilization of animals in a radiation dose response assay for tumor control requires a definition of the goal, e.g., TCD50 or slope. A series of computer modelled ''experiments'' have been performed for each of a number of allocations of dose levels (DL) and number of animals/DL. The authors stipulated that the assumed TCD50 was .85 of true value; assumed slope was correct. They stipulated a binominal distribution of observed tumor control results at each dose level. A pilot assay used 6 tumors at 7 DL (from TCD1-TCD97). The second assay used 30 tumors assigned to 2,3,5 or 9 DL and to selected tumor control probabilities (TCP derived from the pilot run. Results from 100 test runs were combined with the pilot run for each of the combination of DL and TCP values. Logit regression lines were fitted through these ''data'' and the 95% CL around the TCD50 and the TCD37 values and the variances of the slopes were computed. These experiments were repeated using the method suggested by Porter (1980). Results show that a different strategy is needed depending upon the goal, viz. TCD50 or TCD37 vs slope. The differences between the two approaches are discussed

  4. Dose effect relationships in cervical and thoracic radiation myelopathies

    International Nuclear Information System (INIS)

    Holdorff, B.

    1980-01-01

    The course and prognosis of radiation myelopathies are determined by 3 factors: the segmental (vertical) location of the lesion, the extent of the transverse syndrome (complete or incomplete) and the radiation dose. The median spinal dose in cervical radiation myelopathies with fatal outcome was higher than in survivals with an incomplete transverse syndrome. In thoracic radiation myelopathies a dose difference between complete and incomplete transverse syndromes could be found as well. Incomplete transverse syndromes as submaximum radiation injuries are more suitable for the determination of the spinal tolerance dose than complete transverse syndromes. The lowest threshold could be stated for cases following high-volume irradiation of the lymphatic system. (Auth.)

  5. Radiation injuries of the gastrointestinal tract in Hodgkin's disease: the role of exploratory laparotomy and fractionation

    International Nuclear Information System (INIS)

    Gallez-Marchal, D.; Fayolle, M.; Henry-Amar, M.; Le Bourgeois, J.P.; Rougier, P.; Cosset, J.M.

    1984-01-01

    Out of 134 patients irradiated below the diaphragm to a dose of 40 Gy for Hodgkin's disease at the Institut Gustave-Roussy, 19 (14%) were subsequently found to present with radiation injuries of the gastrointestinal tract. Since five patients presented with two different injuries, 24 radiolesions were observed. Most of them (17 out of 24) were gastric or duodenal. Twelve (out of 24) were ulcers. Nine patients required surgery. A complete cure of the radiation injuries was obtained in 15 out of 19 patients. Sex, age, stage, histology or initial chemotherapy were not found to play a role in the occurrence of radiation damage. On the contrary, the role of a previous exploratory laparotomy appeared important; for the patients who underwent laparotomy and irradiation, the complication rate was 23%. For the patients treated by irradiation alone, the complication rate was 7% (p < 0.01). Fractionation was found to be another important parameter: for 52 patients treated using 3 weekly fractions of 3.3 Gy, the complication rate was 25% compared to 8% (p < 0.01) for 76 patients treated using 4 weekly fractions of 2.5 Gy. Combining these two factors, the authors found a 42% complication rate for the group of patients who underwent laparotomy and who were treated by means of 3 fractions of 3.3 Gy per week, whereas patients irradiated using 4 weekly fractions of 2.5 Gy, without any previous laparotomy, has only a 5% complication risk (p < 0.001). (Auth.)

  6. Modelling the variation in rectal dose due to inter-fraction rectal wall deformation in external beam prostate treatments

    International Nuclear Information System (INIS)

    Booth, Jeremy; Zavgorodni, Sergei

    2005-01-01

    Prostate radiotherapy inevitably deposits radiation dose in the rectal wall, and the dose delivered to prostate is limited by the expected rectal complications. Accurate evaluation of the rectal dose is non-trivial due to a number of factors. One of these is variation of the shape and position of the rectal wall (with respect to the clinical target volume (CTV)), which may differ daily from that taken during planning CT acquisition. This study uses data currently available in the literature on rectal wall motion to provide estimates of mean population rectal wall dose. The rectal wall geometry is characterized by a population mean radius of the rectum as well as inter-patient and inter-fraction standard deviations in rectum radius. The model is used to evaluate the range of inter-fraction and inter-patient rectal dose variations. The simulation of individual patients with full and empty rectum in the planning CT scan showed that large variations in rectal dose (>15 Gy) are possible. Mean calculated dose accounting for treatment and planning uncertainties in the rectal wall surface was calculated as well as the map of planning dose over/underpredictions. It was found that accuracy of planning dose is dependent on the CTV-PTV margin size with larger margins producing more accurate estimates. Over a patient population, the variation in rectal dose is reduced by increasing the number of pre-treatment CT scans

  7. In vivo dosimetry of high-dose fractionated irradiation in an experimental set-up with rats

    Energy Technology Data Exchange (ETDEWEB)

    Fortan, L.; Van Hecke, H.; Van Duyse, B.; De Neve, W.; De Meerleer, B. [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Pattyn, P.; Van Renthergem, K. [Ghent University (Belgium). Dept. of Surgery

    1995-12-01

    The feasibility to irradiate a limited section of a rat abdomen with well-defined edges was assessed. Because of the relative small volume involved, in vivo dosimetry with TLDs was necessary in providing us information about the accuracy of the irradiation method. Three to five days prior to the start of the radiotherapy treatment, two plastic strips - each containing a TLD-dosimeter (Harshaw TLD10 LiF rods, 1 mm dia x 6 mm) sealed in polyethylene tubing, and a lead bean - were implanted in the rat abdomen. The plastic strips made a closed loop around the bowel, through the mesenterium, and were fixed with a single stitch on the inner abdominal wall. One loop was made in the hepatic area; another was made in the lower abdomen, around the rectosigmoid. Conscious animals were irradiated using a purpose-build plexi-holder, with rear legs immobilised to avoid longitudinal movements. The implanted lead beans enabled us to simulate the rat prior to each radiation session. This way, the radiation field could be set up individually for each rat, in such way that the rectosigmoid area received full dose and the hepatic area received no irradiation dose at all. Irradiation was carried out, using 5 MV photons of a linear accelerator. Fifteen animals per group were irradiated according a conventional (2.0 Gy / fraction; 5 fractions / week) or a hyperfractionated (1.6 Gy / fraction; 2 daily fractions; 5 days / week) schedule, with different total doses. Prior to implantation, TLDs were individually calibrated and checked for stability. After removal from the abdomen . TLDs were tested again for accuracy. TLDs with an unacceptable read-out curve were rejected (about 2 to 4 TLDs per group of 15). The obtained accumulated doses - as determined by TLD read-outs-were comparable to the theoretical doses, indicating that fractionated radiation of small fields, with well defined mark off, in rats is feasible.

  8. In vivo dosimetry of high-dose fractionated irradiation in an experimental set-up with rats

    International Nuclear Information System (INIS)

    Fortan, L.; Van Hecke, H.; Van Duyse, B.; De Neve, W.; De Meerleer, B.; Pattyn, P.; Van Renthergem, K.

    1995-01-01

    The feasibility to irradiate a limited section of a rat abdomen with well-defined edges was assessed. Because of the relative small volume involved, in vivo dosimetry with TLDs was necessary in providing us information about the accuracy of the irradiation method. Three to five days prior to the start of the radiotherapy treatment, two plastic strips - each containing a TLD-dosimeter (Harshaw TLD10 LiF rods, 1 mm dia x 6 mm) sealed in polyethylene tubing, and a lead bean - were implanted in the rat abdomen. The plastic strips made a closed loop around the bowel, through the mesenterium, and were fixed with a single stitch on the inner abdominal wall. One loop was made in the hepatic area; another was made in the lower abdomen, around the rectosigmoid. Conscious animals were irradiated using a purpose-build plexi-holder, with rear legs immobilised to avoid longitudinal movements. The implanted lead beans enabled us to simulate the rat prior to each radiation session. This way, the radiation field could be set up individually for each rat, in such way that the rectosigmoid area received full dose and the hepatic area received no irradiation dose at all. Irradiation was carried out, using 5 MV photons of a linear accelerator. Fifteen animals per group were irradiated according a conventional (2.0 Gy / fraction; 5 fractions / week) or a hyperfractionated (1.6 Gy / fraction; 2 daily fractions; 5 days / week) schedule, with different total doses. Prior to implantation, TLDs were individually calibrated and checked for stability. After removal from the abdomen . TLDs were tested again for accuracy. TLDs with an unacceptable read-out curve were rejected (about 2 to 4 TLDs per group of 15). The obtained accumulated doses - as determined by TLD read-outs-were comparable to the theoretical doses, indicating that fractionated radiation of small fields, with well defined mark off, in rats is feasible

  9. Radiation processing studies on residual fractions of Olowi petroleum crude oil

    International Nuclear Information System (INIS)

    Sarfo, A.K.

    2011-01-01

    Residual fuel oil is an inexpensive boiler fuel that can replace diesel in some industrial boilers. The viscous waxy nature of residual fuel oil makes it very difficult to use in industries where fuel storage tanks have no heating elements to keep the fuel at temperatures at which it would easily flow. Irradiation is currently being studied as a cost effective means of cracking heavy petroleum crude oil into lighter and more valuable products. Research has shown that irradiation can replace the conventional methods of cracking petroleum with economical benefits. Gamma radiation from a cobalt-60 source was applied to the residue obtained after refining crude oil in this research study, with the intention of causing a similar cracking phenomenon. The main objective of the study was to evaluate the possibility of using gamma radiation to reduce the viscosity of residual fractions of crude oil used as residual fuel oil. This was done by exposing samples of residual fuel oil in glass jars to 9 different doses of gamma radiation, at room temperature and an elevated temperature of 60 degrees Celsius to determine and quantify the effect of radiation on residual fuel oil obtained from the Tema Oil Refinery. The pour points of the irradiated samples were not affected by radiation doses up to 200 kGy while the changes in viscosity for irradiation at room temperature were not significant. Irradiation at 60 degrees Celsius induced a small but significant increase in viscosity at 1 kGy and 200 kGy absorbed doses of irradiation. Irradiation fuels were stable in relation to viscosity, density and pour point over a period of 20 days after exposure. The flash point of irradiated samples, however, decreased by 5.26, 10.53 and 11.34% for 30, 50 and 80 kGy absorbed doses of radiation respectively. Cumulative and continuous doses gave similar results for pour point, density, viscosity and flash point measurements up to 50 kGy. Comparative cost analysis of methods used in maintaining low

  10. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  11. Radiation dose reduction in paediatric cranial CT

    International Nuclear Information System (INIS)

    Chan Choyin; Wong Yiuchung; Chau Luenfai; Yu Siuki; Lau Pochung

    1999-01-01

    Background. There is no consensus about the optimal milliamperage-second (mAs) settings for computed tomography (CT). Most operators follow the recommended settings of the manufacturers, but these may not be the most appropriate settings. Objective. To determine whether a lower radiation dose technique could be used in CT of the paediatric brain without jeopardising the diagnostic accuracy of the images. Materials and methods. A randomised prospective trial. A group of 53 children underwent CT using manufacturer's default levels of 200 or 250 mAs; 47 underwent scanning at 125 or 150 mAs. Anatomical details and the confidence level in reaching a diagnosis were evaluated by two radiologists in a double-blinded manner using a 4-point scoring system. Results. For both readers there was no statistically significant difference in the confidence level for reaching a diagnosis between the two groups. The 95 % confidence intervals and P values were -0.9-1.1 and 0.13 (reader 1) and -1.29-1.37 and 0.70 (reader 2), respectively. Reliability tests showed the results were consistent. Conclusions. The recommended level may not be the optimum setting. Dose reduction of 40 % is possible on our system in paediatric brain CT without affecting the diagnostic quality of the images. (orig.)

  12. Impact of radiation therapy fraction size on local control of early glottic carcinoma

    International Nuclear Information System (INIS)

    Yu, Edward; Shenouda, George; Beaudet, Marie P.; Black, Martin J.

    1997-01-01

    Purpose: Different radiotherapy fractionation schedules were used over a 10-year period to treat patients with early squamous cell carcinoma of the vocal cords at McGill University. A retrospective analysis was performed to study the effect of fraction size on local control in this group of patients. Methods and Materials: A total of 126 previously untreated patients with T1 invasive squamous cell carcinoma of the true vocal cords were irradiated between January 1978 and December 1988 in the Department of Radiation Oncology at McGill University. All patients received megavoltage irradiation, 94 patients received daily fractions > 2 Gy (64 patients received 50 Gy with once-daily 2.5-Gy fractions, and 30 received 65.25 Gy in 29 fractions of 2.25 Gy each), and 32 patients were treated to a dose of 66 Gy in 33 fractions with 2 Gy/fraction. Patients' characteristics of prognostic importance were equally distributed between the two fractionation groups. Results: At a median follow-up of 84 months, the 10-year disease-free survival and overall survival were 76% and 93%, respectively. Local control for patients treated with > 2 Gy fraction was 84%, compared to 65.6% for those treated with 2-Gy fractions (p = 0.026). Among the prognostic factors tested, such as gender, age, stage, anterior and posterior commissure involvement, smoking history, and fraction size, the latter was the only significant predictor of local control for the whole group of patients in univariate (p = 0.041) and multivariate (p = 0.023) analysis. There was no observed difference in the incidence of complications between the two fraction groups. Conclusions: From the results of this retrospective review of patients treated with radiotherapy for T1 true vocal cord cancer, and within the range of total doses and overall treatment times used in our patients, it was found that fractionation schedules using daily fraction size > 2 Gy are associated with a better local control than schedules delivering 2 Gy/fraction

  13. Measurement of radiation dose in multi-slice computed tomography

    OpenAIRE

    Surendra Maharjan; Sudil Prajapati; Om Biju Panta

    2016-01-01

    The aim of this study was to measure the radiation doses for computed tomography (CT) examinations of the head, chest and abdomen in adult patients in Nepal in comparison to international standard. Dose length products (DLP) and effective doses for standard patient sizes were calculated from the reported volume CT dose index (CTDIVol). Details were obtained from approximately 90 CT examinations carried out in 128 slice CT scan. Effective dose was calculated for each examination using CT dose ...

  14. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  15. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  16. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    International Nuclear Information System (INIS)

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Schumacher, D.; Shulman, H.; Graham, T.; Thomas, E.D.

    1981-01-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs died from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors

  17. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy.

    Science.gov (United States)

    Wang, Jian Z; Huang, Zhibin; Lo, Simon S; Yuh, William T C; Mayr, Nina A

    2010-07-07

    Conventional radiation therapy for cancer usually consists of multiple treatments (called fractions) with low doses of radiation. These dose schemes are planned with the guidance of the linear-quadratic (LQ) model, which has been the most prevalent model for designing dose schemes in radiation therapy. The high-dose fractions used in newer advanced radiosurgery, stereotactic radiation therapy, and high-dose rate brachytherapy techniques, however, cannot be accurately calculated with the traditional LQ model. To address this problem, we developed a generalized LQ (gLQ) model that encompasses the entire range of possible dose delivery patterns and derived formulas for special radiotherapy schemes. We show that the gLQ model can naturally derive the traditional LQ model for low-dose and low-dose rate irradiation and the target model for high-dose irradiation as two special cases of gLQ. LQ and gLQ models were compared with published data obtained in vitro from Chinese hamster ovary cells across a wide dose range [0 to approximately 11.5 gray (Gy)] and from animals with dose fractions up to 13.5 Gy. The gLQ model provided consistent interpretation across the full dose range, whereas the LQ model generated parameters that depended on dose range, fitted only data with doses of 3.25 Gy or less, and failed to predict high-dose responses. Therefore, the gLQ model is useful for analyzing experimental radiation response data across wide dose ranges and translating common low-dose clinical experience into high-dose radiotherapy schemes for advanced radiation treatments.

  18. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  19. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  20. Single-Fraction Spine Stereotactic Body Radiation Therapy for the Treatment of Chordoma.

    Science.gov (United States)

    Jung, Edward W; Jung, David L; Balagamwala, Ehsan H; Angelov, Lilyana; Suh, John H; Djemil, Toufik; Magnelli, Anthony; Chao, Samuel T

    2017-06-01

    Chordoma is a radioresistant tumor that presents a therapeutic challenge with spine involvement, as high doses of radiation are needed for local control while limiting dose to the spinal cord. The purpose of this study is to determine the efficacy and safety of single-fraction spine stereotactic body radiation therapy for the treatment of spine chordoma. A retrospective review of our institutional database from 2006 to 2013 identified 8 patients (12 cases) with chordoma of the spine who were treated with spine stereotactic body radiation therapy. Surgical resection was performed in 7 of the 12 cases. The treatment volume was defined by the bony vertebral level of the tumor along with soft tissue extension appreciated on magnetic resonance imaging fusion. Medical records and imaging were assessed for pain relief and local control. Treatment toxicity was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Median age was 59 years (range, 17-91). Median target volume was 48 cm 3 (1-304), and median prescription dose was 16 Gy (11-16). Median conformality index was 1.44 (1.14-3.21), and homogeneity index was 1.12 (1.05-1.19). With a median follow-up time of 9.7 months (.5-84), local control was achieved in 75% of the cases treated. One patient developed limited grade 2 spinal cord myelopathy that resolved with steroids. There were no other treatment toxicities from spine stereotactic body radiation therapy. Single-fraction spine stereotactic body radiation therapy can be safely delivered to treat chordoma of the spine with the potential to improve pain symptoms. Although the early data are suggestive, long-term follow-up with more patients is necessary to determine the efficacy of spine stereotactic body radiation therapy in the treatment of chordoma of the spine.

  1. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Alzimami, K.; Habeeballa, B.; Osman, H.; Abdelaziz, I.; Sassi, S.A.; Sam, A.K.

    2015-01-01

    This study intends to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (DHS) and (ii) Dynamic Cannula Screw (DCS) and to evaluate entrance surface Air kerma (ESAK) dose and organ doses and effective doses. Calibrated Thermoluminescence dosimeters (TLD-GR200A) were used. The mean patients’ doses were 0.46 mGy and 0.07 mGy for DHS and DCS procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean organ and effective dose for patients and staff were higher in DHS compared to DCS. Orthopedic surgeons were exposed to unnecessary radiation doses due to the lack of protection measures. The radiation dose per hip procedure is within the safety limit and less than the previous studies

  2. Fractionation Spares Mice From Radiation-Induced Reductions in Weight Gain But Does Not Prevent Late Oligodendrocyte Lineage Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Begolly, Sage [Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Shrager, Peter G. [Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Olschowka, John A. [Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Williams, Jacqueline P. [Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); O' Banion, M. Kerry, E-mail: Kerry_OBanion@URMC.Rochester.edu [Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States)

    2016-10-01

    Purpose: To determine the late effects of fractionated versus single-dose cranial radiation on murine white matter. Methods and Materials: Mice were exposed to 0 Gy, 6 × 6 Gy, or 1 × 20 Gy cranial irradiation at 10 to 12 weeks of age. Endpoints were assessed through 18 months from exposure using immunohistochemistry, electron microscopy, and electrophysiology. Results: Weight gain was temporarily reduced after irradiation; greater loss was seen after single versus fractionated doses. Oligodendrocyte progenitor cells were reduced early and late after both single and fractionated irradiation. Both protocols also increased myelin g-ratio, reduced the number of nodes of Ranvier, and promoted a shift in the proportion of small, unmyelinated versus large, myelinated axon fibers. Conclusions: Fractionation does not adequately spare normal white matter from late radiation side effects.

  3. Fractionation Spares Mice From Radiation-Induced Reductions in Weight Gain But Does Not Prevent Late Oligodendrocyte Lineage Side Effects

    International Nuclear Information System (INIS)

    Begolly, Sage; Shrager, Peter G.; Olschowka, John A.; Williams, Jacqueline P.; O'Banion, M. Kerry

    2016-01-01

    Purpose: To determine the late effects of fractionated versus single-dose cranial radiation on murine white matter. Methods and Materials: Mice were exposed to 0 Gy, 6 × 6 Gy, or 1 × 20 Gy cranial irradiation at 10 to 12 weeks of age. Endpoints were assessed through 18 months from exposure using immunohistochemistry, electron microscopy, and electrophysiology. Results: Weight gain was temporarily reduced after irradiation; greater loss was seen after single versus fractionated doses. Oligodendrocyte progenitor cells were reduced early and late after both single and fractionated irradiation. Both protocols also increased myelin g-ratio, reduced the number of nodes of Ranvier, and promoted a shift in the proportion of small, unmyelinated versus large, myelinated axon fibers. Conclusions: Fractionation does not adequately spare normal white matter from late radiation side effects.

  4. Scattered fractions of dose from 18 and 25 MV X-ray radiotherapy linear accelerators

    International Nuclear Information System (INIS)

    Shobe, J.; Rodgers, J.E.; Taylor, P.L.; Jackson, J.; Popescu, G.

    1996-01-01

    Over the years, measurements have been made at a few energies to estimate the scattered fraction of dose from the patient in medical radiotherapy operations. This information has been a useful aid in the determination of shielding requirements for these facilities. With these measurements, known characteriztics of photons, and various other known parameters, Monte Carlo codes are being used to calculate the scattered fractions and hence the shielding requirements for the photons of other energies commonly used in radiotherapeutic applications. The National Institute of Standards and Technology (NIST) acquired a Sagittaire medical linear accelerator (linac) which was previously located at the Yale-New Haven Hospital. This linac provides an X-ray beam of 25 MV photons and electron beams with energies up to 32 MeV. The housing on the gantry was permanently removed from the accelerator during installation. A Varian Clinac 1800 linear accelerator was used to produce the 18 MV photons at the Frederick Memorial Hospital Regional Cancer Therapy Center in Frederick, MD. This paper represents a study of the photon dose scattered from a patient in typical radiation treatment situations as it relates to the dose delivered at the isocenter in water. The results of these measurements will be compared to Monte Carlo calculations. Photon spectral measurements were not made at this time. Neutron spectral measurements were made on this Sagittaire machine in its previous location and that work was not repeated here, although a brief study of the neutron component of the 18 and 25 MV linacs was performed utilizing thermoluminescent dosimetry (TLD) to determine the isotropy of the neutron dose. (author)

  5. Intensity modulated radiation therapy with field rotation--a time-varying fractionation study.

    Science.gov (United States)

    Dink, Delal; Langer, Mark P; Rardin, Ronald L; Pekny, Joseph F; Reklaitis, Gintaras V; Saka, Behlul

    2012-06-01

    This paper proposes a novel mathematical approach to the beam selection problem in intensity modulated radiation therapy (IMRT) planning. The approach allows more beams to be used over the course of therapy while limiting the number of beams required in any one session. In the proposed field rotation method, several sets of beams are interchanged throughout the treatment to allow a wider selection of beam angles than would be possible with fixed beam orientations. The choice of beamlet intensities and the number of identical fractions for each set are determined by a mixed integer linear program that controls jointly for the distribution per fraction and the cumulative dose distribution delivered to targets and critical structures. Trials showed the method allowed substantial increases in the dose objective and/or sparing of normal tissues while maintaining cumulative and fraction size limits. Trials for a head and neck site showed gains of 25%-35% in the objective (average tumor dose) and for a thoracic site gains were 7%-13%, depending on how strict the fraction size limits were set. The objective did not rise for a prostate site significantly, but the tolerance limits on normal tissues could be strengthened with the use of multiple beam sets.

  6. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  7. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    Knoeoes, T.

    1991-01-01

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  8. Derivation of mean dose tolerances for new fractionation schemes and treatment modalities

    Science.gov (United States)

    Perkó, Zoltán; Bortfeld, Thomas; Hong, Theodore; Wolfgang, John; Unkelbach, Jan

    2018-02-01

    Avoiding toxicities in radiotherapy requires the knowledge of tolerable organ doses. For new, experimental fractionation schemes (e.g. hypofractionation) these are typically derived from traditional schedules using the biologically effective dose (BED) model. In this report we investigate the difficulties of establishing mean dose tolerances that arise since the mean BED depends on the entire spatial dose distribution, rather than on the dose level alone. A formula has been derived to establish mean physical dose constraints such that they are mean BED equivalent to a reference treatment scheme. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 24 liver cancer patients for whom both proton and photon IMRT treatment plans were available. The results show that the standard BED equation—neglecting the spatial dose distribution—can overestimate mean dose tolerances for hypofractionated treatments by up to 20%. The shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having identical mean BEDs. Converting hypofractionated, 5/15-fraction proton doses to mean BED equivalent photon doses in traditional 35-fraction regimens resulted in up to 10 Gy higher doses than applying the standard BED formula. The dose shape effect should be accounted for to avoid overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. Additionally, tolerances established for one treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions, such as proton therapy. Last, protons may only allow marginal (5–10%) dose escalation if a fraction-size adjusted organ mean dose is constraining instead of a physical dose.

  9. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  10. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  11. Late radiation damage in bone, bone marrow and brain vasculature, with particular emphasis upon fractionation models

    International Nuclear Information System (INIS)

    Pitkaenen, Maunu.

    1986-04-01

    X-ray induced changes in rat and human bone and bone marrow vasculature and in rat brain vasculature were measured as a function of time after irradiation and absorbed dose. The absorbed dose in the organ varied from 5 to 25 Gy for single dose irradiations and from 19 to 58 Gy for fractionated irradiations.The number of fractions varied from 3 to 10 for the rats and from 12 to 25 for the human. Blood flow changes were measured using an ''1''2''5I antipyrine or ''8''6RbCl extraction technique. The red blood cell (RBC) volume was examined by ''5''1Cr labelled red cells. Different fractionation models have been compared. Radiation induced reduction of bone and bone marrow blood flow were both time and dose dependent. Reduced blood flow 3 months after irradiation would seem to be an important factor in the subsequent atrophy of bones. With a single dose of 10 Gy the bone marrow blood flow returned to the control level by 7 months after irradiation. In the irradiated bone the RBC volume was about same as that in the control side but in bone marrow the reduction was from 32 to 59%. The dose levels predicted by the nominal standard dose (NSD) formula produced about the same damage to the rat femur seven months after irradiation when the extraction of ''8''6Rb chloride and the dry weight were concerned as the end points. However, the results suggest that the NSB formula underestimates the late radiation damage in bone marrow when a small number of large fractions are used. In the irradiated brains of the rats the blood flow was on average 20.4% higher compared to that in the control group. There was no significant difference in brain blood flow between different fractionation schemes. The value of 0.42 for the exponent of N corresponds to the average value for central nervous system tolerance in the literature. The model used may be sufficiently accurate for clinical work provided the treatment schemes used do not depart too radically from standard practice

  12. Radiation induced oxidative degradation of polymers—IV. Dose rate effects on chemical and mechanical properties

    Science.gov (United States)

    Seguchi, T.; Arakawa, K.; Hayakawa, N.; Machi, S.

    The dose rate effects on the radiation induced oxidative degradation of crosslinked polyethylene and ethylene-propylene copolymer was investigated by the tensile property, gel fraction, and dielectric loss tangent. The polymer films crosslinked by chemical agent were irradiated with various dose rates from 5×10 5 to 5×10 3{rad}/{hr} in oxygen under pressure from 5 to 0.2 atm at room temperature. It was found that the degradation at a given dose depends on the dose rate; {Deg}/{r} = k·I {-1}/{3}, where Deg is degradation, r dose, I dose rate, and k constant. For the polymers containing antioxidant the dose rate effects was not observed, then the degradation was only dependent on the total dose.

  13. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  14. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  15. Multi-detector computed tomography radiation doses in the follow ...

    African Journals Online (AJOL)

    Objectives: The primary objectives were to determine the radiation dose exposure in paediatric patients subjected to MDCT imaging following neurosurgery and to compare these values with references in current literature. Our secondary objective was to assess the relationship between radiation dose and clinical scenario.

  16. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  17. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  18. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  19. Low dose radiation and plant growth

    International Nuclear Information System (INIS)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated

  20. Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction

    International Nuclear Information System (INIS)

    Dasu, Alexandru; Denekamp, Juliana

    1999-01-01

    Purpose: A dose 'window of opportunity' has been identified in an earlier modeling study if the inducible repair variant of the LQ model is adopted instead of the pure LQ model, and if all survival curve parameters are equally modified by the presence or absence of oxygen. In this paper we have extended the calculations to consider survival curve parameters from 15 sets of data obtained for cells tested at low doses using clonogenic assays. Methods and Materials: A simple computer model has been used to simulate the response of each cell line to various doses per fraction in multifraction schedules, with oxic and hypoxic cells receiving the same fractional dose. We have then used pairs of simulated survival curves to estimate the effective hypoxic protection (OER') as a function of the dose per fraction. Results: The resistance of hypoxic cells is reduced by using smaller doses per fraction than 2 Gy in all these fractionated clinical simulations, whether using a simple LQ model, or the more complex LQ/IR model. If there is no inducible repair, the optimum dose is infinitely low. If there is inducible repair, there is an optimum dose per fraction at which hypoxic protection is minimized. This is usually around 0.5 Gy. It depends on the dose needed to induce repair being higher in hypoxia than in oxygen. The OER' may even go below unity, i.e. hypoxic cells may be more sensitive than oxic cells. Conclusions: If oxic and hypoxic cells are repeatedly exposed to doses of the same magnitude, as occurs in clinical radiotherapy, the observed hypoxic protection varies with the fractional dose. The OER' is predicted to diminish at lower doses in all cell lines. The loss of hypoxic resistance with superfractionation is predicted to be proportional to the capacity of the cells to induce repair, i.e. their intrinsic radioresistance at a dose of 2 Gy

  1. Clinical results of definitive-dose (50 Gy/25 fractions) preoperative chemoradiotherapy for unresectable esophageal cancer

    International Nuclear Information System (INIS)

    Ishikawa, Kazuki; Nakamatsu, Kiyoshi; Shiraishi, Osamu; Yasuda, Takushi; Nishimura, Yasumasa

    2015-01-01

    The clinical results of definitive-dose preoperative chemoradiotherapy (CRT) of 50 Gy/25 fractions/5 weeks for unresectable esophageal cancer were analyzed. Inclusion criteria were unresectable esophageal squamous cell carcinoma with T4b or mediastinal lymph nodes invading to the trachea or aorta. Radiation therapy of 50 Gy/25 fractions/5 weeks was combined concurrently with two courses of FP therapy (CDDP 70 mg/m 2 + 5-FU 700 mg/m 2 /d x 5 days: day 1-5, day 29-33). Tumor response was evaluated 4 weeks after completion of RT. Subtotal esophagectomy was planned 6-8 weeks after RT. Thirty patients (26 male and 4 female) aged from 50-78 years (median 66) were enrolled between 2008 and 2011. The clinical stages according to the 7th edition of UICC were stages II/III/IV, 1/23/6; T1/2/3/4, 1/1/4/24; and N0/1/2/3, 3/25/1/1. All 30 patients completed RT of 50 Gy/ 25 fractions. Initial tumor responses were 21 patients with resectable disease, 7 with unresectable disease, and 2 with progressive disease. Subtotal esophagectomy was performed in 18 (60%) of the 30 patients. Pathological complete response was obtained in five (28%) patients. There were two patients with hospitalization death after surgery (11%). Six of the 7 patients who still had unresectable disease were treated with 1-3 courses of docetaxel, CDDP and 5-FU. Three patients treated without surgery showed long-term survival. The 3-year locoregional control rate and the 3-year overall survival rate for the 30 patients were 70 and 49%, respectively. Definitive-dose preoperative CRT was feasible, and is a promising treatment strategy for unresectable esophageal cancer. (author)

  2. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.

    1995-01-01

    Purpose/Objective: In a previous publication we reported that laboratory assays of tumor clonogen number, in combination with intrinsic radiosensitivity measured in-vitro, accurately predicted the rank-order of single fraction 50% tumor control doses, in six rodent and xenografted human tumors. In these studies, tumor hypoxia influenced the absolute value of the tumor control doses across tumor types, but not their rank-order. In the present study we hypothesize that determinants of the single fraction tumor control dose, may also strongly influence the fractionaled tumor control doses, and that knowledge of tumor clonogen number and their sensitivity to fractionated irradiation, may be useful for predicting the relative sensitivity of tumors treated by conventional fractionated irradiation. Methods/Materials: Five tumors of human origin were used for these studies. Special care was taken to ensure that all tumor control dose assays were performed over the same time frame, i.e., in-vitro cells of a similar passage were used to initiate tumor sources which were expanded and used in the 3rd or 4th generation. Thirty fraction tumor control doses were performed in air breathing mice, under normal blood flow conditions (two fractions/day). The results of these studies have been previously published. For studies under uniformly (clamp) hypoxic conditions, tumors arising from the same transplantation were randomized into single or fractionated dose protocols. For estimation of the fractionated TCD50 under hypoxic conditions, tumors were exposed to six 5.4 Gy fractions (∼ 2 Gy equivalent under air), followed by graded 'top-up' dose irradiation for determination of the TCD50; the time interval between doses was 6-9 hours. The single dose equivalent of the six 5.4 Gy doses was used to calculate an extrapolated 30 fraction hypoxic TCD50. Results: Fractionation substantially increased the dose required for tumor control in 4 of the 5 tumors investigated. For these 4 tumors

  4. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    Osman, H; Elzaki, A.; Sam, A.K.; Sulieman, A.

    2013-01-01

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  5. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Richard P. [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  6. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain

  7. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  8. Radiosensitivity of Nicotiana protoplasts. Action on cell; cycle effects of low dose and fractionated irradiations; biological repair

    International Nuclear Information System (INIS)

    Magnien, E.

    1981-10-01

    Leaf protoplasts of Nicotiana plumbaginifolia and Nicotiana sylvestris demonstrate five main qualities: they can be maintained as haploid lines; they constitute starting populations with a remarkable cytological homogeneity; they show a transient initial lag-phase; they yield very high plating efficiencies and retain permanently a complete differentiation capacity; being derived of a cell wall, they appear well adapted for fusion experiments or enzymatic dosages. The resumption of mitotic activity was followed by cytophotometric measurements, labelling experiments, nuclear sizing and enzymatic assays. The action of 5 Gy gamma-ray irradiations delayed entrance in the S-phase, provoked an otherwise not verified dependency between transcription, translation and protein synthesis, increased nuclear volumes in the G2-phase, and slightly stimulated the activity of a repair enzyme. The plating efficiency was a sensitive end-point which allowed the evaluation of the biological effectiveness of low to medium radiation-doses after gamma-ray and fast neutron irradiations. The neutron dose-RBE relationship increased from 3 to 25 when the dose decreased from 5 Gy to 5 mGy. When fractionated into low single doses only, a neutron dose of 300 mGy markedly increased its biological effectiveness: this phenomenon could not be explained by cell progression, and necessitated additional hypotheses involving other mechanisms in the specific action of low radiation doses. Radiation-induced UDS was measured in presence of aphidicolin. A beta-like DNA-polymerase was shown to be definitely involved in nuclear repair synthesis [fr

  9. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  10. High dose per fraction dosimetry of small fields with Gafchromic EBT2 film

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Basavatia, Amar; Bayliss, Adam; Tome, Wolfgang A.

    2011-01-01

    Purpose: Small field dosimetry is prone to uncertainties due to the lack of electronic equilibrium and the use of the correct detector size relative to the field size measured. It also exhibits higher sensitivity to setup errors as well as large variation in output with field size and shape. Radiochromic film is an attractive method for reference dosimetry in small fields due to its ability to provide 2D dose measurements while having minimal impact on the dose distribution. Gafchromic EBT2 has a dose range of up to 40 Gy; therefore, it could potentially be useful for high dose reference dosimetry with high spatial resolution. This is a requirement in stereotactic radiosurgery deliveries, which deliver high doses per fraction to small targets. Methods: Targets of 4 mm and 12 mm diameters were treated to a minimum peripheral dose of 21 Gy prescribed to 80% of the maximum dose in one fraction. Target doses were measured with EBT2 film (both targets) and an ion chamber (12 mm target only). Measured doses were compared with planned dose distributions using profiles through the target and minimum peripheral dose coverage. Results: The measured target doses and isodose coverage agreed with the planned dose within ±1 standard deviation of three measurements, which were 2.13% and 2.5% for the 4 mm and 12 mm targets, respectively. Conclusions: EBT2 film is a feasible dosimeter for high dose per fraction reference 2D dosimetry.

  11. Radiation risk evaluation and reference doses in interventional radiology

    International Nuclear Information System (INIS)

    Faulkner, K.; Vano, E.; Padovani, R.; Zoetelief, J.

    2001-01-01

    In interventional radiology, there are two potential hazards to the patient. These are somatic risks and, for certain procedures, deterministic injuries. The task of radiation protection in interventional radiology is to minimise somatic risks and avoid deterministic injuries. Radiation protection tools and protocols must be developed to achieve these two objectives. Reference doses have been proposed as a method of identifying high dose centres and equipment. The role of reference doses in interventional radiology will be discussed. There are two approaches to reference doses in interventional radiology. These are the measurement of patient entrance skin dose or skin dose rate, or image intensifier input dose rate. Alternatively, dose area product or effective dose to the patient may be monitored. These two main approaches have their advantages and disadvantages. (author)

  12. Optimization of brain tumor dose using intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Elbakery, Andaria Elhanfi Elmaki

    2016-04-01

    Intensity Modulated Radiation Therapy (IMRT) become an essential technique that achieves the goal of radiation therapy, maximum target dose and minimum dose for healthy tissues. Dose optimization was applied for brain tumor through as set of constrains given to the software. Fifteen patients were selected for IMRT planning and delineation was done using special software (fical). All data was tranferred to the treatment planning system. Kon Rad planning system was used in this work. The planning was evaluated with homogeneity index and dose volume histogram ( DVH). The 0ptimization was achieved from converge of target volume with 5% as maxim dose and 95% as the minimum dose. The homogeneity index that calculated for most of patients was approcimately equal to 1. It means that converge was good and the optimization fulfilled. For organs at risk (OAR) the dose was below the tolerances and the mean dose and maxim dose were calculated. (Author)

  13. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Abdel Hamid, S. M.

    2010-12-01

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  14. Patient radiation dose in conventional and xerographic cephalography

    International Nuclear Information System (INIS)

    Copley, R.L.; Glaze, S.A.; Bushong, S.C.; West, D.C.

    1979-01-01

    A comparison of the radiation doses for xeroradiographic and conventional film screen cephalography was made. Alderson tissue-equivalent phantoms were used for patient simulation. An optimum technique in terms of patient dose and image quality indicated that the dose for the Xerox process ranged from five to eleven times greater than that for the conventional process for entrance and exit exposures, respectively. This dose, however, falls within an acceptable range for other dental and medical radiation doses. It is recommended that conventional cephalography be used for routine purposes and that xeroradiography be reserved for situations requiring the increased image quality that the process affords

  15. Gamma-radiation induced damage of proteins in the thick fraction of egg white

    Directory of Open Access Journals (Sweden)

    MARIJA VUCKOVIC

    2005-11-01

    Full Text Available The thick fraction of egg white saturated with either N2O or Ar was irradiated in the dose range 1.5–45 kGy at 60Co gamma source. The gel structure decomposition and other processes accompanied with changes in protein molecular mass were followed by Sephadex G-200 exclusion chromatography, denaturing SDS-polyacrylamide gel electrophoresis, viscosity and turbidity measurements. The complex behaviour of viscosity was observed in the N2O saturated sample (where the hydrated electron was converted into the OH radical; the initial abrupt decrease that radually slows down reaching the minimum at 12 kGy (hmin = 2.7 mPa s followed by the slow rise was measured. The Ar saturated sample ([eaq-] ~ [OH] showed both the significantly faster initial decrease and lower viscosity minimum (hmin = 2.2 mPa s. The combined Sephadex G-200 exclusion chromatography and denaturing SDS-polyacrylamide gel electrophoresis data revealed that the three-dimensional egg white (hydrated gel structure was (efficiently decomposed even in the N2O saturated sample. The protein scission was detected in the entire dose range studied, while the protein agglomeration is not noticed at low doses (around 1.5 kGy; however, it dominates at higher doses. In the highest dose region studied, the loss of structure in SDS-PAGE chromatograms indicates that the agglomerates are formed from protein fragments rather than from intact proteins. The continuous linear increase in turbidity was measured. The results obtained indicate that ionizing radiation causes the breakdown of the protein network of the thick fraction of egg white via the reduction of S–S bridges by the hydrated electron and the protein fragmentation due to the direct action of ionizing radiation. The protein agglomeration is initiated by the reaction of the OH radical; its inefficiency at low doses is attributed to the glucose antioxidant properties and radical immobility.

  16. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  17. 10 CFR 20.1004 - Units of radiation dose.

    Science.gov (United States)

    2010-01-01

    ... beta radiation 1 1 Alpha particles, multiple-charged particles, fission fragments and heavy particles... convenient to measure the neutron fluence rate than to determine the neutron dose equivalent rate in rems per... measured tissue dose in rads to dose equivalent in rems. Table 1004(b).2—Mean Quality Factors, Q, and...

  18. Clinical practitioners' knowledge of ionizing radiation doses in ...

    African Journals Online (AJOL)

    Background: Observation has shown a preponderance of irrelevant, unjustified and perhaps unnecessary radiological requests in the study area. The consequences of this on the patients' doses and population collective dose may be dire. Objective: To assess Clinicians/Referrers' knowledge of radiation doses of patients ...

  19. Radiation dose-volume effects in the lung

    DEFF Research Database (Denmark)

    Marks, Lawrence B; Bentzen, Soren M; Deasy, Joseph O

    2010-01-01

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects.......The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects....

  20. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation

    International Nuclear Information System (INIS)

    Begnozzi, L.; Gentile, F.P.; Di Nallo, A.M.; Chiatti, L.; Zicari, C.; Consorti, R.; Benassi, M.

    1994-01-01

    Since volumetric dose distributions are available with 3-dimensional radiotherapy treatment planning they can be used in statistical evaluation of response to radiation. This report presents a method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. The mathematical expression for the calculation of normal tissue complication probability has been derived combining the Lyman model with the histogram reduction method of Kutcher et al. and using the normalized total dose (NTD) instead of the total dose. The fitting of published tolerance data, in case of homogeneous or partial brain irradiation, has been considered. For the same total or partial volume homogeneous irradiation of the brain, curves of normal tissue complication probability have been calculated with fraction size of 1.5 Gy and of 3 Gy instead of 2 Gy, to show the influence of fraction size. The influence of dose distribution inhomogeneity and α/β value has also been simulated: Considering α/β=1.6 Gy or α/β=4.1 Gy for kidney clinical nephritis, the calculated curves of normal tissue complication probability are shown. Combining NTD calculations and histogram reduction techniques, normal tissue complication probability can be estimated taking into account the most relevant contributing factors, including the volume effect. (orig.) [de

  1. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  2. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  3. High Dose Rate Brachytherapy in Two 9 Gy Fractions in the Treatment of Locally Advanced Cervical Cancer - a South Indian Institutional Experience.

    Science.gov (United States)

    Ghosh, Saptarshi; Rao, Pamidimukkala Bramhananda; Kotne, Sivasankar

    2015-01-01

    Although 3D image based brachytherapy is currently the standard of treatment in cervical cancer, most of the centres in developing countries still practice orthogonal intracavitary brachytherapy due to financial constraints. The quest for optimum dose and fractionation schedule in high dose rate (HDR) intracavitary brachytherapy (ICBT) is still ongoing. While the American Brachytherapy Society recommends four to eight fractions of each less than 7.5 Gy, there are some studies demonstrating similar efficacy and comparable toxicity with higher doses per fraction. To assess the treatment efficacy and late complications of HDR ICBT with 9 Gy per fraction in two fractions. This is a prospective institutional study in Southern India carried on from 1st June 2012 to 31st July 2014. In this period, 76 patients of cervical cancer satisfying our inclusion criteria were treated with concurrent chemo-radiation following ICBT with 9 Gy per fraction in two fractions, five to seven days apart. The median follow-up period in the study was 24 months (range 10.6 - 31.2 months). The 2 year actuarial local control rate, disease-free survival and overall survival were 88.1%, 84.2% and 81.8% respectively. Although 38.2% patients suffered from late toxicity, only 3 patients had grade III late toxicity. In our experience, HDR brachytherapy with 9 Gy per fraction in two fractions is an effective dose fractionation for the treatment of cervical cancer with acceptable toxicity.

  4. Trends in doses to some UK radiation workers

    International Nuclear Information System (INIS)

    Best, R.J.; Kendall, G.M.; Pook, E.A.; Saunders, P.J.

    1990-01-01

    The NRPB runs a Personal Monitoring Service which issues dosemeters and keeps radiation dose records for over 10 000 workers. This database is a valuable source of information on occupational exposure to radiation though it is likely that in future the Central Index of Dose Information (CIDI) will provide more comprehensive statistics, albeit restricted to radiation workers in the sense of Ionising Radiation Regulations. This note describes doses incurred to the end of 1987 with some preliminary figures for 1988. It does not cover the same ground as earlier reports but gives more details of the structure of the monitored population by age and sex and examines evidence that mean radiation doses are decreasing with time. (author)

  5. Low or High Fractionation Dose {beta}-Radiotherapy for Pterygium? A Randomized Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Viani, Gustavo Arruda, E-mail: gusviani@gmail.com [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil); De Fendi, Ligia Issa; Fonseca, Ellen Carrara [Department of Ophthalmology, Marilia Medicine School, Sao Paulo, SP (Brazil); Stefano, Eduardo Jose [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil)

    2012-02-01

    Purpose: Postoperative adjuvant treatment using {beta}-radiotherapy (RT) is a proven technique for reducing the recurrence of pterygium. A randomized trial was conducted to determine whether a low fractionation dose of 2 Gy within 10 fractions would provide local control similar to that after a high fractionation dose of 5 Gy within 7 fractions for surgically resected pterygium. Methods: A randomized trial was conducted in 200 patients (216 pterygia) between February 2006 and July 2007. Only patients with fresh pterygium resected using a bare sclera method and given RT within 3 days were included. Postoperative RT was delivered using a strontium-90 eye applicator. The pterygia were randomly treated using either 5 Gy within 7 fractions (Group 1) or 2 Gy within 10 fractions (Group 2). The local control rate was calculated from the date of surgery. Results: Of the 216 pterygia included, 112 were allocated to Group 1 and 104 to Group 2. The 3-year local control rate for Groups 1 and 2 was 93.8% and 92.3%, respectively (p = .616). A statistically significant difference for cosmetic effect (p = .034), photophobia (p = .02), irritation (p = .001), and scleromalacia (p = .017) was noted in favor of Group 2. Conclusions: No better local control rate for postoperative pterygium was obtained using high-dose fractionation vs. low-dose fractionation. However, a low-dose fractionation schedule produced better cosmetic effects and resulted in fewer symptoms than high-dose fractionation. Moreover, pterygia can be safely treated in terms of local recurrence using RT schedules with a biologic effective dose of 24-52.5 Gy{sub 10.}.

  6. Audit of radiation dose during balloon mitral valvuloplasty procedure

    International Nuclear Information System (INIS)

    Livingstone, Roshan S; Chandy, Sunil; Peace, B S Timothy; George, Paul; John, Bobby; Pati, Purendra

    2006-01-01

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm 2 and from the other was 21.19 Gy cm 2 . Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm 2

  7. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  8. Response of rat spinal cord to very small doses per fraction: lack of enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Shun, Wong C.; Yong, Hao; Hill, Richard P.

    1995-01-01

    Our previous work with rat spinal cord demonstrated that the linear quadratic (LQ) model based on data for large fraction sizes ((α(β)) of 2.4 Gy) failed to predict isoeffective doses between 1 and 2 Gy per fraction, and under-estimated the sparing effect of small doses per fraction given once daily. In contrast, data from mouse skin and kidney, and recent in vitro results revealed a paradoxical increase in radiosensitivity at below 1 Gy per fraction. To assess whether enhanced radiosensitivity is present in the spinal cord below 1 Gy per fraction, the rat spinal cord (C2-T2) was irradiated initially with three daily doses of 10.25 Gy (top-up doses representing 90% of tolerance), followed by graded single doses or fractionated doses in 1.5, 1.0, 0.8, 0.6 or 0.4 Gy fractions given once daily. To limit the overall treatment time to ≤ 8 weeks, a small number of the 0.6- and 0.4-Gy fractions were given twice daily with an interfraction interval of 16 h. The end-point was forelimb paralysis secondary to white matter necrosis, confirmed histologically. The ED 50 values, excluding the top-up doses, were 5.8, 10.6, 14.8, 15.2, 15.9 and 19.1 Gy for a single dose and doses in 1.5-, 1.0-, 0.8-, 0.6- and 0.4-Gy fractions, respectively. The data gave an (α(β)) of 2.1 Gy (95% CI, 1.4, 2.7 Gy). Pooling the data separately, the (α(β)) value was 2.3 Gy (95% CI, 0.82, 3.7 Gy) for fraction sizes ≥ 1 Gy, and 1.2 Gy (95% CI, 0.16, 2.3 Gy) for the 0.8-, 0.6- and 0.4-Gy experiments. These results in which top-up doses were given initially are consistent with a large sparing effect of very small fraction sizes in rat spinal cord provided sufficient time is allowed for repair of sublethal damage between fractions, and provide no evidence for a paradoxical increase in radiosensitivity in the rat spinal cord below 1 Gy down to 0.4 Gy per fraction

  9. Occupational Radiation Dose for Medical Workers at a University Hospital

    Directory of Open Access Journals (Sweden)

    M.H. Nassef

    2017-11-01

    Full Text Available Occupational radiation doses for medical workers from the departments of diagnostic radiology, nuclear medicine, and radiotherapy at the university hospital of King Abdul-Aziz University (KAU were measured and analysed. A total of 100 medical radiation workers were monitored to determine the status of their average annual effective dose. The analysis and the calibration procedures of this study were carried out at the Center for Radiation Protection and Training-KAU. The monitored workers were classified into subgroups, namely, medical staff/supervisors, technicians, and nurses, according to their responsibilities and specialties. The doses were measured using thermo luminescence dosimeters (TLD-100 (LiF:Mg,Ti placed over the lead apron at the chest level in all types of workers except for those in the cath lab, for whom the TLD was placed at the thyroid protective collar. For nuclear medicine, a hand dosimeter was used to measure the hand dose distribution. The annual average effective doses for diagnostic radiology, nuclear medicine, and radiotherapy workers were found to be 0.66, 1.56, and 0.28 mSv, respectively. The results of the measured annual dose were well below the international recommended dose limit of 20 mSv. Keywords: Occupational radiation dose, radiation workers, TLD, radiation protection

  10. Mean annual and collective radiation doses of Perm' province personnel

    International Nuclear Information System (INIS)

    Poplavskij, K.K.; Rotenberg, L.I.

    1978-01-01

    The average annual and collective doses of radiation received by personnel of radiologic facilities and by the population of the region under study as a whole are estimated. Tabular data on radiation loads are presented according to the age and sex of personnel and to the type of radiation sources used. The procedure employed in this study allows one to evaluate objectively the conditions of work with sources of ionizing radiation

  11. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron......Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...

  12. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  13. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  14. Staff radiation doses from patients undergoing Indium-111 investigations

    International Nuclear Information System (INIS)

    Sylvain, I.; Rabenandrasana, H.; Bruno, I.; Amaral, A.; Bonnin, F.; Bok, B.

    2002-01-01

    Aim: The purpose of this study was to estimate the whole-body radiation doses to NM technical (radiation exposed personals) and to the nursing staff of the gastroenterology (GE) department (non radiation workers by radiation protection regulations) deriving from in patients undergoing 111 In octreotide ( 111 In-OCT) scintigraphy. Material and Methods: Doses were measured using electronic personal dosimeters from 6 patients who had received an intravenous injection of 160 ± 15 MBq 111 In-OCT. Real time measurements were separately performed for each task of NM personals during their contact with the radiopharmaceutical and/or the patient; and for the GE staff up to 24 h after administration of 111 In-OCT. Results: Individual radiation doses among the GE staff varied from 0.01 to 1.03 μSv (for 3 to 25 min close to the patient) during a working day for just one totally autonomous adult patient. The average dose rate was then 4.0 μSv/h. Radiation exposure of the NM technologists is presented. Conclusion: The injection is the more exposed task for NM personals. Extrapolating our results, the maximum radiation exposure to both the NM and GE staff remains far below the respective annual dose limits for radiation exposed and non exposed persons. The high sensitivity and real time responses of electronic dosimeters may help optimising practical radiation protection

  15. Equivalence in Dose Fall-Off for Isocentric and Nonisocentric Intracranial Treatment Modalities and Its Impact on Dose Fractionation Schemes

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Descovich, Martina; Cho, Y.-B.; Chuang, Cynthia; Huang, Kim; Laperriere, Normand J.; Shrieve, Dennis C.; Larson, David A.

    2010-01-01

    Purpose: To investigate whether dose fall-off characteristics would be significantly different among intracranial radiosurgery modalities and the influence of these characteristics on fractionation schemes in terms of normal tissue sparing. Methods and Materials: An analytic model was developed to measure dose fall-off characteristics near the target independent of treatment modalities. Variations in the peripheral dose fall-off characteristics were then examined and compared for intracranial tumors treated with Gamma Knife, Cyberknife, or Novalis LINAC-based system. Equivalent uniform biologic effective dose (EUBED) for the normal brain tissue was calculated. Functional dependence of the normal brain EUBED on varying numbers of fractions (1 to 30) was studied for the three modalities. Results: The derived model fitted remarkably well for all the cases (R 2 > 0.99). No statistically significant differences in the dose fall-off relationships were found between the three modalities. Based on the extent of variations in the dose fall-off curves, normal brain EUBED was found to decrease with increasing number of fractions for the targets, with α/β ranging from 10 to 20. This decrease was most pronounced for hypofractionated treatments with fewer than 10 fractions. Additionally, EUBED was found to increase slightly with increasing number of fractions for targets with α/β ranging from 2 to 5. Conclusion: Nearly identical dose fall-off characteristics were found for the Gamma Knife, Cyberknife, and Novalis systems. Based on EUBED calculations, normal brain sparing was found to favor hypofractionated treatments for fast-growing tumors with α/β ranging from 10 to 20 and single fraction treatment for abnormal tissues with low α/β values such as α/β = 2.

  16. Effective dose equivalents from external radiation due to Chernobyl accident

    International Nuclear Information System (INIS)

    Erkin, V.G.; Debedev, O.V.; Balonov, M.I.; Parkhomenko, V.I.

    1992-01-01

    Summarized data on measurements of individual dose of external γ-sources in 1987-1990 of population of western areas of Bryansk region were presented. Type of distribution of effective dose equivalent, its significance for various professional and social groups of population depending on the type of the house was discussed. Dependences connecting surface soil activity in the populated locality with average dose of external radiation sources were presented. Tendency of dose variation in 1987-1990 was shown

  17. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  18. Long-term safety and efficacy of fractionated stereotactic body radiation therapy for spinal metastases

    International Nuclear Information System (INIS)

    Mantel, Frederick; Glatz, Stefan; Toussaint, Andre; Flentje, Michael; Guckenberger, Matthias

    2014-01-01

    Patients with long life expectancy despite metastatic status might benefit from long-term local control of spinal metastases. Dose-intensified radiotherapy (RT) is believed to control tumor growth better and thus offers longer pain relief. This single-institution study reports on fractionated stereotactic body radiation therapy (SBRT) for spinal metastases in patients with good life expectancy based on performance status, extent of metastases, histology, and time to metastasis. Between 2004 and 2010, 36 treatment sites in 32 patients (median age 55 years; male 61 %; median Karnofsky performance score 85) were treated with fractionated SBRT. The median treatment dose was 60 Gy (range, 48.5-65 Gy) given in a median of 20 fractions (range, 17-33); the median maximum dose to the planning risk volume for the spinal cord (PRV-SC) was 46.6 Gy. All patients suffering from pain prior to RT reported pain relief after treatment; after a median follow-up of 20.3 months, 61 % of treatment sites were pain-free, another 25 % associated with mild pain. In 86 % of treatments, patients were free from neurological symptoms at the time of the last clinical follow-up. Acute grade 1 toxicities (CTCAE 3.0) were observed in 11 patients. Myelopathy did not occur in any patient. Radiologically controlled freedom from local progression was 92 and 84 % after 12 and 24 months, respectively. Median overall survival (OS) was 19.6 months. Patient selection resulted in long OS despite metastatic disease, and dose-intensified fractionated SBRT for spinal metastases was safe and achieved long-term local tumor control and palliation of pain. (orig.) [de

  19. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  20. Health Benefits of Exposure to Low-dose Radiation.

    Science.gov (United States)

    Rithidech, Kanokporn Noy

    2016-03-01

    Although there is no doubt that exposure to high doses of radiation (delivered at a high dose-rate) induces harmful effects, the health risks and benefits of exposure to low levels (delivered at a low dose-rate) of toxic agents is still a challenging public health issue. There has been a considerable amount of published data against the linear no-threshold (LNT) model for assessing risk of cancers induced by radiation. The LNT model for risk assessment creates "radiophobia," which is a serious public health issue. It is now time to move forward to a paradigm shift in health risk assessment of low-dose exposure by taking the differences between responses to low and high doses into consideration. Moreover, future research directed toward the identification of mechanisms associated with responses to low-dose radiation is critically needed to fully understand their beneficial effects.

  1. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  2. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  3. Not traditional regimes of radiotherapeutic dose fractionation as modifier of radiotherapy for carcinoma of lungs

    International Nuclear Information System (INIS)

    Artemova, N.A.

    2008-01-01

    The efficiency of applying various of radiotherapeutic dose fractionation was analyzed. The results of the own studies performed at the Scientific and Research Institute of Oncology and Medical Radiology for elaborating not traditional regimes of radiotherapeutic dose fractionation (a dynamic fractionation applying enlarged regimes at the first stage and the classic ones at the second stage) were presented. Appliance of the modified radiotherapy for the epidermoid carcinoma of the lungs allowed to increase the objective response from 45,3+-3% to 80+-5% the tumor disappearing completely in 40+-6% of patients as compared with 10+-2%. Appliance of the intensive not traditional variant of the radiotherapy dynamic fractionation in case of a small cell carcinoma of the lungs resulted in the therapy duration reduction from 6 to 4 weeks. Thus the not traditional dose fractionation might become a mechanism for the improving the radiotherapy of persons suffering from the carcinoma of the lungs. (authors)

  4. Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer

    International Nuclear Information System (INIS)

    Simnor, Tania; Li, Sonia; Lowe, Gerry; Ostler, Peter; Bryant, Linda; Chapman, Caroline; Inchley, Dave; Hoskin, Peter J.

    2009-01-01

    Background and purpose: Fractionated high dose-rate (HDR) brachytherapy in the treatment of prostate cancer relies on reproducible catheter positions for each fraction to ensure adequate tumour coverage while minimising dose to normal tissues. Peri-prostatic oedema may cause caudal displacement of the catheters relative to the prostate gland between fractions. This can be corrected for by changing source dwell positions or by physical re-advancement of catheters before treatment. Materials and methods: Data for 20 consecutive monotherapy patients receiving three HDR fractions of 10.5 Gy per fraction over 2 days were analysed retrospectively. Pre-treatment CT scans were used to assess the effect of catheter movement between fractions on implant quality, with and without movement correction. Implant quality was evaluated using dosimetric parameters. Results: Compared to the first fraction (f1) the mean inter-fraction caudal movement relative to the prostate base was 7.9 mm (f2) (range 0-21 mm) and 3.9 mm (f3) (range 0-25.5 mm). PTV D90% was reduced without movement correction by a mean of 27.8% (f2) and 32.3% (f3), compared with 5.3% and 5.1%, respectively, with catheter movement correction. Dose to 2 cc of the rectum increased by a mean of 0.69 (f2) and 0.76 Gy (f3) compared with an increase of 0.03 and 0.04 Gy, respectively, with correction. The urethra V12 also increased by a mean of 0.36 (f2) and 0.39 Gy (f3) compared with 0.06 and 0.16 Gy, respectively, with correction. Conclusions: Inter-fraction correction for catheter movement using pre-treatment imaging is critical to maintain the quality of an implant. Without movement correction there is significant risk of tumour under-dosage and normal tissue over-dosage. The findings of this study justify additional imaging between fractions in order to carry out correction.

  5. Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer.

    Science.gov (United States)

    Simnor, Tania; Li, Sonia; Lowe, Gerry; Ostler, Peter; Bryant, Linda; Chapman, Caroline; Inchley, Dave; Hoskin, Peter J

    2009-11-01

    Fractionated high dose-rate (HDR) brachytherapy in the treatment of prostate cancer relies on reproducible catheter positions for each fraction to ensure adequate tumour coverage while minimising dose to normal tissues. Peri-prostatic oedema may cause caudal displacement of the catheters relative to the prostate gland between fractions. This can be corrected for by changing source dwell positions or by physical re-advancement of catheters before treatment. Data for 20 consecutive monotherapy patients receiving three HDR fractions of 10.5 Gy per fraction over 2 days were analysed retrospectively. Pre-treatment CT scans were used to assess the effect of catheter movement between fractions on implant quality, with and without movement correction. Implant quality was evaluated using dosimetric parameters. Compared to the first fraction (f1) the mean inter-fraction caudal movement relative to the prostate base was 7.9 mm (f2) (range 0-21 mm) and 3.9 mm (f3) (range 0-25.5 mm). PTV D90% was reduced without movement correction by a mean of 27.8% (f2) and 32.3% (f3), compared with 5.3% and 5.1%, respectively, with catheter movement correction. Dose to 2 cc of the rectum increased by a mean of 0.69 (f2) and 0.76 Gy (f3) compared with an increase of 0.03 and 0.04 Gy, respectively, with correction. The urethra V12 also increased by a mean of 0.36 (f2) and 0.39 Gy (f3) compared with 0.06 and 0.16 Gy, respectively, with correction. Inter-fraction correction for catheter movement using pre-treatment imaging is critical to maintain the quality of an implant. Without movement correction there is significant risk of tumour under-dosage and normal tissue over-dosage. The findings of this study justify additional imaging between fractions in order to carry out correction.

  6. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    the shoulder or thyroid guard, and on the hand.7. Radiologists receive larger radia- tion doses during abdominal studies than during cerebral studies, even though the .... body reading. The sitting position and the radiographer's physical build would also influence the reading. An ineffective thyroid guard, openings on.

  7. Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique

    International Nuclear Information System (INIS)

    Carvalho, F. P.; Matine, O. F.; Taimo, S.; Oliveira, J. M.; Silva, L.; Malta, M.

    2014-01-01

    Sites at the littoral of Mozambique with heavy mineral sands exploited for ilmenite, rutile and zircon and inland mineral deposits exploited for tantalite, uranium and bauxite were surveyed for ambient radiation doses, and samples were collected for the determination of radionuclide concentrations. In heavy mineral sands, 238 U and 232 Th concentrations were 70±2 and 308±9 Bq kg -1 dry weight (dw), respectively, whereas after separation of minerals, the concentrations in the ilmenite fraction were 2240±64 and 6125±485 Bq kg -1 (dw), respectively. Tantalite displayed the highest concentrations with 44 738±2474 Bq kg -1 of 238 U. Radiation exposure of workers in mining facilities is likely to occur at levels above the dose limit for members of the public (1 mSv y -1 ) and therefore radiation doses should be assessed as occupational exposures. Local populations living in these regions in general are not exposed to segregated minerals with high radionuclide concentrations. However, there is intensive traditional mining and a large number of artisan miners and their families may be exposed to radiation doses exceeding the dose limit. A radiation protection programme is therefore needed to ensure radiation protection of the public and workers of developing mining projects. (authors)

  8. Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique.

    Science.gov (United States)

    Carvalho, Fernando P; Matine, Obete F; Taímo, Suzete; Oliveira, João M; Silva, Lídia; Malta, Margarida

    2014-01-01

    Sites at the littoral of Mozambique with heavy mineral sands exploited for ilmenite, rutile and zircon and inland mineral deposits exploited for tantalite, uranium and bauxite were surveyed for ambient radiation doses, and samples were collected for the determination of radionuclide concentrations. In heavy mineral sands, (238)U and (232)Th concentrations were 70±2 and 308±9 Bq kg(-1) dry weight (dw), respectively, whereas after separation of minerals, the concentrations in the ilmenite fraction were 2240±64 and 6125±485 Bq kg(-1) (dw), respectively. Tantalite displayed the highest concentrations with 44 738±2474 Bq kg(-1) of (238)U. Radiation exposure of workers in mining facilities is likely to occur at levels above the dose limit for members of the public (1 mSv y(-1)) and therefore radiation doses should be assessed as occupational exposures. Local populations living in these regions in general are not exposed to segregated minerals with high radionuclide concentrations. However, there is intensive artisanal mining and a large number of artisanal miners and their families may be exposed to radiation doses exceeding the dose limit. A radiation protection programme is therefore needed to ensure radiation protection of the public and workers of developing mining projects.

  9. Radiation doses in buildings containing coal

    International Nuclear Information System (INIS)

    Somlai, J.; Kanyar, B.; Nenyei, A.; Nemeth, Z.; Nemeth, Cs.

    2001-01-01

    Using coal-slag with high concentration of 226 Ra as building material could result excess dose of people living in these dwellings. The gamma dose rate, the radon concentration and the radionuclide concentration of built-in slags were measured in kindergartens, schools and homes of three towns (Ajka, Tatabanya, Varpalota). The absorbed dose rates exceeded significantly the world average (80 nGy/h) and the annual dose reached 3-4 mSv in some cases. The dose coming from radon is significant in the case of slags, which did not originate from power plants but from smaller stoves and furnaces because in these cases the burning temperature is lower, so the radon emanation is higher. The dose in the latter cases could reach 10-20 mSv/year. (author)

  10. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Amini Arya

    2012-03-01

    Full Text Available Abstract Background While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. Methods This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1 and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2. Results There were 119 (39.7% patients in the ACRT group, 90 (30.0% in STRT1 and 91 (30.3% in STRT2. More patients in the ACRT group had KPS ≤ 60 (p 5% (p = 0.002, and had stage 3B disease (p Conclusions Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC.

  11. The effect of ginkgo biloba extract on the fractionated radiation therapy in C3H mouse fibrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hoon; Ha, Sung Whan; Park, Charn Il [Seoul National University, College of Medicine, Seoul (Korea, Republic of)

    2002-06-15

    A gingko biloba extract (GBE) has been known as a hypoxic cell radiosensitizer. Its mechanisms of action are increase of the red blood cell deformability, decrease the blood viscosity, and decrease the hypoxic cell fraction in the tumor. The aims of this study were to estimate the effect of GBE on fractionated radiotherapy and to clarify the mechanism of action of the GBE by estimating the blood flow in tumor and normal muscle. Fibrosarcoma (FSall) growing in a C3H mouse leg muscle was used as the tumor model. When the tumor size reached 7 mm in diameter, the GBE was given intraperitoneally at 1 and 25 hours prior to irradiation. The tumor growth delay was measured according to the various doses of radiation (3, 6, 9, 12, Gy and 15 Gy) and to the fractionation (single and fractionated irradiation) with and without the GBE injection. The radiation dose to the tumor the response relationships and the enhancement ratio of the GBE were measured. In addition, the blood flow of a normal muscle and a tumor was compared by laser Doppler flowmetry according to the GBE treatment. When the GBE was used with single fraction irradiation with doses ranging from 3 to 12 Gy, GBE increased the tumor growth delay significantly ({rho} < 0.05) and the enhancement ratio of the GBE was 1.16. In fractionated irradiation with 3 Gy per day, the relationships between the radiation dose (D) and the tumor growth delay (TGD) were TGD (days) = 0.26 x D (Gy)+0.13 in the radiation alone group, and the TGD (days) = 0.30 x D (Gy) + 0.13 in the radiation with GBE group. As a result, the enhancement ratio was 1.19 (95% confidence interval; 1.13 {approx} 1.27). Laser Doppler flowmetry was used to measure the blood flow. The mean blood flow was higher in the muscle (7.78 mL/100 g/min in tumor and the 10.15 mL/100 g/min in muscle, {rho} = 0.0001) and the low blood flow fraction (less than 2 mL/100 g/min) was higher in the tumor (0.5% vs. 5.2%, {rho} = 0.005). The blood flow was not changed with the GBE

  12. The effect of ginkgo biloba extract on the fractionated radiation therapy in C3H mouse fibrosarcoma

    International Nuclear Information System (INIS)

    Kim, Jong Hoon; Ha, Sung Whan; Park, Charn Il

    2002-01-01

    A gingko biloba extract (GBE) has been known as a hypoxic cell radiosensitizer. Its mechanisms of action are increase of the red blood cell deformability, decrease the blood viscosity, and decrease the hypoxic cell fraction in the tumor. The aims of this study were to estimate the effect of GBE on fractionated radiotherapy and to clarify the mechanism of action of the GBE by estimating the blood flow in tumor and normal muscle. Fibrosarcoma (FSall) growing in a C3H mouse leg muscle was used as the tumor model. When the tumor size reached 7 mm in diameter, the GBE was given intraperitoneally at 1 and 25 hours prior to irradiation. The tumor growth delay was measured according to the various doses of radiation (3, 6, 9, 12, Gy and 15 Gy) and to the fractionation (single and fractionated irradiation) with and without the GBE injection. The radiation dose to the tumor the response relationships and the enhancement ratio of the GBE were measured. In addition, the blood flow of a normal muscle and a tumor was compared by laser Doppler flowmetry according to the GBE treatment. When the GBE was used with single fraction irradiation with doses ranging from 3 to 12 Gy, GBE increased the tumor growth delay significantly (ρ < 0.05) and the enhancement ratio of the GBE was 1.16. In fractionated irradiation with 3 Gy per day, the relationships between the radiation dose (D) and the tumor growth delay (TGD) were TGD (days) = 0.26 x D (Gy)+0.13 in the radiation alone group, and the TGD (days) = 0.30 x D (Gy) + 0.13 in the radiation with GBE group. As a result, the enhancement ratio was 1.19 (95% confidence interval; 1.13 ∼ 1.27). Laser Doppler flowmetry was used to measure the blood flow. The mean blood flow was higher in the muscle (7.78 mL/100 g/min in tumor and the 10.15 mL/100 g/min in muscle, ρ = 0.0001) and the low blood flow fraction (less than 2 mL/100 g/min) was higher in the tumor (0.5% vs. 5.2%, ρ = 0.005). The blood flow was not changed with the GBE in normal

  13. Inter-Fraction Tumor Volume Response during Lung Stereotactic Body Radiation Therapy Correlated to Patient Variables.

    Directory of Open Access Journals (Sweden)

    Samer Salamekh

    Full Text Available Analyze inter-fraction volumetric changes of lung tumors treated with stereotactic body radiation therapy (SBRT and determine if the volume changes during treatment can be predicted and thus considered in treatment planning.Kilo-voltage cone-beam CT (kV-CBCT images obtained immediately prior to each fraction were used to monitor inter-fraction volumetric changes of 15 consecutive patients (18 lung nodules treated with lung SBRT at our institution (45-54 Gy in 3-5 fractions in the year of 2011-2012. Spearman's (ρ correlation and Spearman's partial correlation analysis was performed with respect to patient/tumor and treatment characteristics. Multiple hypothesis correction was performed using False Discovery Rate (FDR and q-values were reported.All tumors studied experienced volume change during treatment. Tumor increased in volume by an average of 15% and regressed by an average of 11%. The overall volume increase during treatment is contained within the planning target volume (PTV for all tumors. Larger tumors increased in volume more than smaller tumors during treatment (q = 0.0029. The volume increase on CBCT was correlated to the treatment planning gross target volume (GTV as well as internal target volumes (ITV (q = 0.0085 and q = 0.0039 respectively and could be predicted for tumors with a GTV less than 22 mL. The volume increase was correlated to the integral dose (ID in the ITV at every fraction (q = 0.0049. The peak inter-fraction volume occurred at an earlier fraction in younger patients (q = 0.0122.We introduced a new analysis method to follow inter-fraction tumor volume changes and determined that the observed changes during lung SBRT treatment are correlated to the initial tumor volume, integral dose (ID, and patient age. Furthermore, the volume increase during treatment of tumors less than 22mL can be predicted during treatment planning. The volume increase remained significantly less than the overall PTV expansion, and radiation

  14. The effects of weak-dose nuclear radiation

    International Nuclear Information System (INIS)

    Errera, M.

    1987-01-01

    The potential risk of increasing radiation on human health and biological effects of low dose radiation were discussed. The effects of ionizing radiation on DNA and on hypersensitivity, and how low doses are related to genetic disorders and to cancers were explained. The role of radiation on the abnormal morphogenesis of human embryo during in utero life and on mental retardation was studied. Some of the problems encountered in the use of nuclear power for peaceful and military purposes, and the painful consequences of radioactive pollution on the welfare of a human being were pointed out

  15. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  16. Dose Response for Radiation Cataractogenesis: A Meta-Regression of Hematopoietic Stem Cell Transplantation Regimens

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew D. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Schultheiss, Timothy E., E-mail: schultheiss@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Smith, David D. [Division of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Nguyen, Khanh H. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Department of Radiation Oncology, Bayhealth Cancer Center, Dover, Delaware (United States); Wong, Jeffrey Y.C. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States)

    2015-01-01

    Purpose/Objective(s): To perform a meta-regression on published data and to model the 5-year probability of cataract development after hematopoietic stem cell transplantation (HSCT) with and without total body irradiation (TBI). Methods and Materials: Eligible studies reporting cataract incidence after HSCT with TBI were identified by a PubMed search. Seventeen publications provided complete information on radiation dose schedule, fractionation, dose rate, and actuarial cataract incidence. Chemotherapy-only regimens were included as zero radiation dose regimens. Multivariate meta-regression with a weighted generalized linear model was used to model the 5-year cataract incidence and contributory factors. Results: Data from 1386 patients in 21 series were included for analysis. TBI was administered to a total dose of 0 to 15.75 Gy with single or fractionated schedules with a dose rate of 0.04 to 0.16 Gy/min. Factors significantly associated with 5-year cataract incidence were dose, dose times dose per fraction (D•dpf), pediatric versus adult status, and the absence of an ophthalmologist as an author. Dose rate, graft versus host disease, steroid use, hyperfractionation, and number of fractions were not significant. Five-fold internal cross-validation showed a model validity of 83% ± 8%. Regression diagnostics showed no evidence of lack-of-fit and no patterns in the studentized residuals. The α/β ratio from the linear quadratic model, estimated as the ratio of the coefficients for dose and D•dpf, was 0.76 Gy (95% confidence interval [CI], 0.05-1.55). The odds ratio for pediatric patients was 2.8 (95% CI, 1.7-4.6) relative to adults. Conclusions: Dose, D•dpf, pediatric status, and regimented follow-up care by an ophthalmologist were predictive of 5-year cataract incidence after HSCT. The low α/β ratio indicates the importance of fractionation in reducing cataracts. Dose rate effects have been observed in single institution studies but not in the

  17. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  18. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  19. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Directory of Open Access Journals (Sweden)

    Leeman Jonathan E

    2012-07-01

    Full Text Available Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SRT/SRS of brainstem metastases. Methods We retrospectively reviewed 38 tumors in 36 patients treated with SRT/SRS between February 2003 and December 2011. Treatment was delivered with the Cyberknife™ or Trilogy™ radiosurgical systems. The median age of patients was 62 (range: 28–89. Primary pathologies included 14 lung, 7 breast, 4 colon and 11 others. Sixteen patients (44% had received whole brain radiation therapy (WBRT prior to SRT/SRS; ten had received prior SRT/SRS at a different site (28%. The median tumor volume was 0.94 cm3 (range: 0.01-4.2 with a median prescription dose of 17 Gy (range: 12–24 delivered in 1–5 fractions. Results Median follow-up for the cohort was 3.2 months (range: 0.4-20.6. Nineteen patients (52% had an MRI follow-up available for review. Of these, one patient experienced local failure corresponding to an actuarial 6-month local control of 93%. Fifteen of the patients with available follow-up imaging (79% experienced intracranial failure outside of the treatment volume. The median time to distant intracranial failure was 2.1 months. Six of the 15 patients with distant intracranial failure (40% had received previous WBRT. The actuarial overall survival rates at 6- and 12-months were 27% and 8%, respectively. Predictors of survival included Graded Prognostic Assessment (GPA score, greater number of treatment fractions, and higher prescription dose. Three patients experienced acute treatment-related toxicity consisting of

  20. Radiation Doses Received by the Irish Population 2014

    International Nuclear Information System (INIS)

    O'Connor, C.; Currivan, L.; Cunningham, N.; Kelleher, K.; Lewis, M.; Long, S.; McGinnity, P.; Smith, V.; McMahon, C.

    2014-06-01

    People are constantly exposed to a variety of sources of both natural and artificial radioactivity. The radiation dose received by the population from such sources is periodically estimated by the Radiological Protection Institute of Ireland RPII. This report is an update of a population dose assessment undertaken in 2008 and includes the most recent data available on the principal radiation exposure pathways. Wherever possible the collective dose and the resulting average annual dose to an individual living in Ireland, based on the most recently published figure for the population of Ireland, have been calculated for each of the pathways of exposure

  1. Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eugene [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Corbett, James R. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B.; Feng, Mary; Jagsi, Reshma; Kessler, Marc L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ficaro, Edward C. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-03-15

    Purpose: To quantify cardiac radiation therapy (RT) exposure using sensitive measures of cardiac dysfunction; and to correlate dysfunction with heart doses, in the setting of adjuvant RT for left-sided breast cancer. Methods and Materials: On a randomized trial, 32 women with node-positive left-sided breast cancer underwent pre-RT stress single photon emission computed tomography (SPECT-CT) myocardial perfusion scans. Patients received RT to the breast/chest wall and regional lymph nodes to doses of 50 to 52.2 Gy. Repeat SPECT-CT scans were performed 1 year after RT. Perfusion defects (PD), summed stress defects scores (SSS), and ejection fractions (EF) were evaluated. Doses to the heart and coronary arteries were quantified. Results: The mean difference in pre- and post-RT PD was −0.38% ± 3.20% (P=.68), with no clinically significant defects. To assess for subclinical effects, PD were also examined using a 1.5-SD below the normal mean threshold, with a mean difference of 2.53% ± 12.57% (P=.38). The mean differences in SSS and EF before and after RT were 0.78% ± 2.50% (P=.08) and 1.75% ± 7.29% (P=.39), respectively. The average heart Dmean and D95 were 2.82 Gy (range, 1.11-6.06 Gy) and 0.90 Gy (range, 0.13-2.17 Gy), respectively. The average Dmean and D95 to the left anterior descending artery were 7.22 Gy (range, 2.58-18.05 Gy) and 3.22 Gy (range, 1.23-6.86 Gy), respectively. No correlations were found between cardiac doses and changes in PD, SSS, and EF. Conclusions: Using sensitive measures of cardiac function, no clinically significant defects were found after RT, with the average heart Dmean <5 Gy. Although a dose response may exist for measures of cardiac dysfunction at higher doses, no correlation was found in the present study for low doses delivered to cardiac structures and perfusion, SSS, or EF.

  2. Absorbed radiation dose on LHC interconnects

    CERN Document Server

    Versaci, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    Here we present the results of our FLUKA simulations devoted to the evaluation of the peak dose absorbed by the busbar insulator in the LHC Interaction Region 7 interconnects. The peak dose absorbed by the cold magnet coils are also presented.

  3. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  4. Two fractions of high-dose-rate brachytherapy in the management of cervix cancer: clinical experience with and without chemotherapy

    International Nuclear Information System (INIS)

    Sood, Brij M.; Gorla, Giridhar; Gupta, Sajel; Garg, Madhur; Deore, Shivaji; Runowicz, Carolyn D.; Fields, Abbie L.; Goldberg, Gary L.; Anderson, Patrick S.; Vikram, Bhadrasain

    2002-01-01

    Purpose: In recent years, high-dose-rate brachytherapy has become popular in the management of carcinoma of the uterine cervix, because it eliminates many of the problems associated with low-dose-rate brachytherapy. However, the optimum time-dose-fractionation remains controversial. Two fractions of high-dose-rate brachytherapy are convenient for patients, but most radiation oncologists in the United States do not use them, because of fear that they could lead to excessive rectal or bladder toxicity. Here we present our experience, which suggests that a two-fraction regimen is indeed safe and effective. Methods: We treated 49 patients with Stages I-III biopsy-proven carcinoma of the uterine cervix by external beam radiation therapy (EBRT), plus two fractions of high-dose-rate brachytherapy. The histology was squamous cell carcinoma in 43 patients (88%) and nonsquamous in 6 (12%). The median size of the primary tumor was 6 cm (range: 3-10 cm). Each patient received EBRT to the pelvis to a median dose of 45 Gy (range: 41.4-50.4 Gy), followed by a parametrial boost when indicated. Thirty patients (61%) also received irradiation to the para-aortic lymph nodes to a dose of 45 Gy. After EBRT, each patient underwent two applications of high-dose-rate brachytherapy, 1 week apart. The dose delivered to point A was 9 Gy per application for 49 applications (50%) and 9.4 Gy for 43 applications (44%), and it varied from 7 to 11 Gy for the rest (6%). The total dose to the rectum from both high-dose-rate brachytherapy applications ranged from 4.7 to 11.7 Gy (median: 7.1 Gy), and the total dose to the bladder from 3.8 to 15.5 Gy (median: 10.5 Gy). Twenty-five of the 49 patients (51%) received concomitant chemotherapy (cisplatin 20 mg/m 2 /day for 5 days) during the first and fourth weeks of EBRT and once after the second high-dose-rate brachytherapy application. Chemotherapy was not assigned in a randomized fashion. The use of chemotherapy increased during the time period spanned

  5. Radiation doses to patients in haemodynamic procedures

    International Nuclear Information System (INIS)

    Canadillas-Perdomo, B.; Catalan-Acosta, A.; Hernandez-Armas, J.; Perez-Martin, C.; Armas-Trujillo, D. de

    2001-01-01

    Interventional radio-cardiology gives high doses to patients due to high values of fluoroscopy times and large series of radiographic images. The main objective of the present work is the determination of de dose-area product (DAP) in patients of three different types of cardiology procedures with X-rays. The effective doses were estimated trough the organ doses values measured with thermoluminescent dosimeters (TLDs-100), suitable calibrated, placed in a phantom type Rando which was submitted to the same radiological conditions corresponding to the procedures made on patients. The values for the effective doses in the procedures CAD Seldinger was 6.20 mSv on average and 1.85mSv for pacemaker implants. (author)

  6. Fractional dosing of yellow fever vaccine to extend supply: a modelling study.

    Science.gov (United States)

    Wu, Joseph T; Peak, Corey M; Leung, Gabriel M; Lipsitch, Marc

    2016-12-10

    The ongoing yellow fever epidemic in Angola strains the global vaccine supply, prompting WHO to adopt dose sparing for its vaccination campaign in Kinshasa, Democratic Republic of the Congo, in July-August, 2016. Although a 5-fold fractional-dose vaccine is similar to standard-dose vaccine in safety and immunogenicity, efficacy is untested. There is an urgent need to ensure the robustness of fractional-dose vaccination by elucidation of the conditions under which dose fractionation would reduce transmission. We estimate the effective reproductive number for yellow fever in Angola using disease natural history and case report data. With simple mathematical models of yellow fever transmission, we calculate the infection attack rate (the proportion of population infected over the course of an epidemic) with various levels of transmissibility and 5-fold fractional-dose vaccine efficacy for two vaccination scenarios, ie, random vaccination in a hypothetical population that is completely susceptible, and the Kinshasa vaccination campaign in July-August, 2016, with different age cutoff for fractional-dose vaccines. We estimate the effective reproductive number early in the Angola outbreak was between 5·2 and 7·1. If vaccine action is all-or-nothing (ie, a proportion of vaccine recipients receive complete protection [VE] and the remainder receive no protection), n-fold fractionation can greatly reduce infection attack rate as long as VE exceeds 1/n. This benefit threshold becomes more stringent if vaccine action is leaky (ie, the susceptibility of each vaccine recipient is reduced by a factor that is equal to the vaccine efficacy). The age cutoff for fractional-dose vaccines chosen by WHO for the Kinshasa vaccination campaign (2 years) provides the largest reduction in infection attack rate if the efficacy of 5-fold fractional-dose vaccines exceeds 20%. Dose fractionation is an effective strategy for reduction of the infection attack rate that would be robust with a

  7. Radiation dose measurement of paediatric patients in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, K. [Training Centre of Medical Physics and Biomedical Engineering, University of Tartu (Estonia); Lintrop, M. [Department of Radiology, Tartu University Hospital, Tartu (Estonia); Servomaa, A.; Parviainen, T. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Eek, V.; Filippova, I. [Estonian Radiation Protection Centre, Tallinn (Estonia)

    2003-06-01

    According to the Medical Exposure Directive (97/43/Euratom) the radiation doses to patients should be measured in every hospital and doses should be compared to the reference doses established by the competent authorities. Special attention should be paid to the paediatric x-ray examinations, because the paediatric patients are more radiosensitive than adult patients. The requirement of measurements of radiation dose to patients is not yet included in the Estonian radiation act, but the purpose to join the European Communities makes the quality control in radiology very actual in Estonia. The necessity exists to introduce suitable measurement methods in the Xray departments of Estonian hospitals for establishing feedback system for radiologists, radiographers and medical physicists in optimising the radiation burden of patients and image quality. (orig.)

  8. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  9. The Spanish National Dose Registry and Spanish radiation passbooks

    International Nuclear Information System (INIS)

    Hernandez, A.; Martin, A.; Villanueva, I.; Amor, I.; Butragueno, J.L.

    2001-01-01

    The Spanish National Dose Registry (BDN) is the Nuclear Safety Council's (CSN) national database of occupational exposure to radiation. Each month BDN receives records of individual external doses from approved dosimetry services. The dose records include information regarding the occupational activities of exposed workers. The dose information and the statistical analysis prepared by the BDN are a useful tool for effective operational protection of occupationally exposed workers and a support for the CSN in the development and application of the ALARA principle. The Spanish radiation passbook was introduced in 1990 and since then CSN, as regulatory authority, has required that all outside workers entering controlled areas should have radiation passbooks. Nowadays, CSN has implemented improvements in the Spanish radiation Passbooks, taking into account previous experience and Directive 96/29/EURATOM. (author)

  10. The current situation of personal dose monitoring in Chinese medicine radiation and undamaged detection

    International Nuclear Information System (INIS)

    Zhang Liangan; Zhang Wenyi; Yuan Shuyu; Song Shijun; Chang Hexin; Sun Kai

    1993-01-01

    The situation of personal dose monitoring in γ(X) external exposure in China is mainly outlined. Thermoluminescent dosimetry (TLD) was adopted for personal dose measurement of the radiation workers. The computer software and data base for the work have been developed and applied. National intercomparison of TLD, monitoring control of personal dose monitoring in field, and technical training were carried out for quality control. In China, the dominant occupational exposures is X-ray diagnosis and it increases year by year, the highest values is about 22.6%. The highest values of annual collective dose and annual average of individual dose (AAID) are 272.8 man·Sv and 3.21 mSv respectively. This work shows that the fraction of the population receiving high dose is decreased with time rapidly. The situation for whole occupational exposures is also described. (3 tabs.)

  11. Painting Dose: The ART of Radiation

    International Nuclear Information System (INIS)

    Roberts, Hannah J.; Zietman, Anthony L.; Efstathiou, Jason A.

    2016-01-01

    The discovery of X rays in 1895 captivated society like no other scientific advance. Radiation instantly became the subject not only of numerous scientific papers but also of circus bazaars, poetry, fiction, costume design, comics, and marketing for household items. Its spread was “viral.” What is not well known, however, is its incorporation into visual art, despite the long tradition of medicine and surgery as a subject in art. Using several contemporary search methods, we identified 5 examples of paintings or sculpture that thematically feature radiation therapy. All were by artists with exhibited careers in art: Georges Chicotot, Marcel Duchamp, David Alfaro Siqueiros, Robert Pope, and Cookie Kerxton. Each artist portrays radiation differently, ranging from traditional healer, to mysterious danger, to futuristic propaganda, to the emotional challenges of undergoing cancer therapy. This range captures the complex role of radiation as both a therapy and a hazard. Whereas some of these artists are now world famous, none of these artworks are as well known as their surgical counterparts. The penetration of radiation into popular culture was rapid and pervasive; yet, its role as a thematic subject in art never fully caught on, perhaps because of a lack of understanding of the technology, radiation's intangibility, or even a suppressive effect of society's ambivalent relationship with it. These 5 artists have established a rich foundation upon which pop culture and art can further develop with time to reflect the extraordinary progress of modern radiation therapy.

  12. Painting Dose: The ART of Radiation.

    Science.gov (United States)

    Roberts, Hannah J; Zietman, Anthony L; Efstathiou, Jason A

    2016-11-15

    The discovery of X rays in 1895 captivated society like no other scientific advance. Radiation instantly became the subject not only of numerous scientific papers but also of circus bazaars, poetry, fiction, costume design, comics, and marketing for household items. Its spread was "viral." What is not well known, however, is its incorporation into visual art, despite the long tradition of medicine and surgery as a subject in art. Using several contemporary search methods, we identified 5 examples of paintings or sculpture that thematically feature radiation therapy. All were by artists with exhibited careers in art: Georges Chicotot, Marcel Duchamp, David Alfaro Siqueiros, Robert Pope, and Cookie Kerxton. Each artist portrays radiation differently, ranging from traditional healer, to mysterious danger, to futuristic propaganda, to the emotional challenges of undergoing cancer therapy. This range captures the complex role of radiation as both a therapy and a hazard. Whereas some of these artists are now world famous, none of these artworks are as well known as their surgical counterparts. The penetration of radiation into popular culture was rapid and pervasive; yet, its role as a thematic subject in art never fully caught on, perhaps because of a lack of understanding of the technology, radiation's intangibility, or even a suppressive effect of society's ambivalent relationship with it. These 5 artists have established a rich foundation upon which pop culture and art can further develop with time to reflect the extraordinary progress of modern radiation therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Painting Dose: The ART of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Hannah J. [College of Physicians & Surgeons, Columbia University, New York, New York (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Efstathiou, Jason A., E-mail: jefstathiou@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

    2016-11-15

    The discovery of X rays in 1895 captivated society like no other scientific advance. Radiation instantly became the subject not only of numerous scientific papers but also of circus bazaars, poetry, fiction, costume design, comics, and marketing for household items. Its spread was “viral.” What is not well known, however, is its incorporation into visual art, despite the long tradition of medicine and surgery as a subject in art. Using several contemporary search methods, we identified 5 examples of paintings or sculpture that thematically feature radiation therapy. All were by artists with exhibited careers in art: Georges Chicotot, Marcel Duchamp, David Alfaro Siqueiros, Robert Pope, and Cookie Kerxton. Each artist portrays radiation differently, ranging from traditional healer, to mysterious danger, to futuristic propaganda, to the emotional challenges of undergoing cancer therapy. This range captures the complex role of radiation as both a therapy and a hazard. Whereas some of these artists are now world famous, none of these artworks are as well known as their surgical counterparts. The penetration of radiation into popular culture was rapid and pervasive; yet, its role as a thematic subject in art never fully caught on, perhaps because of a lack of understanding of the technology, radiation's intangibility, or even a suppressive effect of society's ambivalent relationship with it. These 5 artists have established a rich foundation upon which pop culture and art can further develop with time to reflect the extraordinary progress of modern radiation therapy.

  14. Stereotactic Radiosurgery and Fractionated Stereotactic Radiation Therapy for the Treatment of Uveal Melanoma

    International Nuclear Information System (INIS)

    Yazici, Gozde; Kiratli, Hayyam; Ozyigit, Gokhan; Sari, Sezin Yuce; Cengiz, Mustafa; Tarlan, Bercin; Mocan, Burce Ozgen; Zorlu, Faruk

    2017-01-01

    Purpose: To evaluate treatment results of stereotactic radiosurgery or fractionated stereotactic radiation therapy (SRS/FSRT) for uveal melanoma. Methods and Materials: We retrospectively evaluated 181 patients with 182 uveal melanomas receiving SRS/FSRT between 2007 and 2013. Treatment was administered with CyberKnife. Results: According to Collaborative Ocular Melanoma Study criteria, tumor size was small in 1%, medium in 49.5%, and large in 49.5% of the patients. Seventy-one tumors received <45 Gy, and 111 received ≥45 Gy. Median follow-up time was 24 months. Complete and partial response was observed in 8 and 104 eyes, respectively. The rate of 5-year overall survival was 98%, disease-free survival 57%, local recurrence-free survival 73%, distant metastasis-free survival 69%, and enucleation-free survival 73%. There was a significant correlation between tumor size and disease-free survival, SRS/FSRT dose and enucleation-free survival; and both were prognostic for local recurrence-free survival. Enucleation was performed in 41 eyes owing to progression in 26 and complications in 11. Conclusions: The radiation therapy dose is of great importance for local control and eye retention; the best treatment outcome was achieved using ≥45 Gy in 3 fractions.

  15. Stereotactic Radiosurgery and Fractionated Stereotactic Radiation Therapy for the Treatment of Uveal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Gozde [Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara (Turkey); Kiratli, Hayyam [Department of Ophthalmology, Faculty of Medicine, Hacettepe University, Ankara (Turkey); Ozyigit, Gokhan; Sari, Sezin Yuce; Cengiz, Mustafa [Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara (Turkey); Tarlan, Bercin [Bascom Palmer Eye Institute, Miami, Florida (United States); Mocan, Burce Ozgen [Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara (Turkey); Zorlu, Faruk, E-mail: fzorlu@hacettepe.edu.tr [Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara (Turkey)

    2017-05-01

    Purpose: To evaluate treatment results of stereotactic radiosurgery or fractionated stereotactic radiation therapy (SRS/FSRT) for uveal melanoma. Methods and Materials: We retrospectively evaluated 181 patients with 182 uveal melanomas receiving SRS/FSRT between 2007 and 2013. Treatment was administered with CyberKnife. Results: According to Collaborative Ocular Melanoma Study criteria, tumor size was small in 1%, medium in 49.5%, and large in 49.5% of the patients. Seventy-one tumors received <45 Gy, and 111 received ≥45 Gy. Median follow-up time was 24 months. Complete and partial response was observed in 8 and 104 eyes, respectively. The rate of 5-year overall survival was 98%, disease-free survival 57%, local recurrence-free survival 73%, distant metastasis-free survival 69%, and enucleation-free survival 73%. There was a significant correlation between tumor size and disease-free survival, SRS/FSRT dose and enucleation-free survival; and both were prognostic for local recurrence-free survival. Enucleation was performed in 41 eyes owing to progression in 26 and complications in 11. Conclusions: The radiation therapy dose is of great importance for local control and eye retention; the best treatment outcome was achieved using ≥45 Gy in 3 fractions.

  16. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  17. Iodine 131 therapy patients: radiation dose to staff

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.; Beh, R.A.; Veilleux, N.M.

    1986-01-01

    Metastasis to the skeletal system from follicular thyroid carcinoma may be treated with an oral dose of 131 I-NaI. Radiation exposures to hospital personnel attending these patients were calculated as a function of administered dose, distance from the patient and time after administration. Routine or emergency patient handling tasks would not exceed occupational radiation protection guidelines for up to 30 min immediately after administration. The emergency handling of several patients presents the potential for exceeding these guidelines. (author)

  18. Monitoring of radiation exposure and registration of doses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.).

  19. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1996-01-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  20. Radiation dose received by TAMVEC neutron therapy staff

    International Nuclear Information System (INIS)

    Smathers, J.B.; Graves, R.G.; Sandel, P.S.; Almond, P.R.; Otte, V.A.; Grant, W.H.

    1978-01-01

    Based on over 5 years of experience in fast neutron radiotherapy, the activation radiation source origins and magnitudes are discussed and the staff radiation exposures reviewed. Source magnitudes were determined using ionization chamber survey instruments and staff doses by commercial TLD and film badge service reports. It is concluded that while staff doses exceed those obtained in conventional therapy, the levels received are well within published guidelines for occupational exposure. (author)

  1. Low dose rate radiation favors apoptosis as a mechanism of cell death

    International Nuclear Information System (INIS)

    Murtha, Albert D.; Rupnow, Brent; Knox, Susan J.

    1997-01-01

    Purpose/Objective: Radioimmunotherapy (RIT) has demonstrated promising results in the treatment of chemotherapy refractory non-Hodgkin's lymphoma. The radiation associated with this therapy is emitted in a continuous fashion at low dose rates (LDR). Results from studies comparing the relative efficacy of LDR radiation and high dose rate (HDR) radiation on malignant cell killing have been variable. This variability may be due in part to the relative contribution of different mechanisms of cell killing (apoptosis or necrosis) at different dose rates. Materials and Methods: In order to test this hypothesis, the relative efficacy of LDR (16.7 cGy/hr) and HDR radiation (422 cGy/min) were compared using a human B cell lymphoma cell line (PW) and a PW clone (c26) stably transfected to overexpress the anti-apoptotic gene Bcl-2. The endpoints evaluated included the relative amount of cell killing, the fraction of cell killing attributable to apoptosis versus necrosis, and the impact of Bcl-2 overexpression on both overall cell killing and the fraction of killing attributable to apoptosis. Results: HDR and LDR radiation resulted in similar overall cell killing in the PW wild type cell line. In contrast, killing of clone c26 cells was dose rate dependent. One third less killing was seen following LDR irradiation of c26 cells compared with equivalent doses of HDR radiation. Analysis of the relative mechanisms of killing following LDR irradiation revealed a relative increase in the proportion of killing attributable to apoptosis. Conclusion: These findings support the hypothesis that in PW cells, LDR radiation appears to be highly dependent on apoptosis as a mechanism of cell death. These findings may have implications for the selection of patients for RIT, and for the treatment of tumors that overexpress Bcl-2. They may also help form the basis for future rational design of effective combined modality therapies utilizing RIT

  2. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  3. Evaluation of occupational and patient radiation doses in orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O. Box 422, Alkharj (Saudi Arabia); Habiballah, B.; Abdelaziz, I. [Sudan Univesity of Science and Technology, College of Medical Radiologic Sciences, P.O. Box 1908, Khartoum (Sudan); Alzimami, K. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P.O. Box 10219, 11433 Riyadh (Saudi Arabia); Osman, H. [Taif University, College of Applied Medical Science, Radiology Department, Taif (Saudi Arabia); Omer, H. [University of Dammam, Faculty of Medicine, Dammam (Saudi Arabia); Sassi, S. A., E-mail: Abdelmoneim_a@yahoo.com [Prince Sultan Medical City, Department of Medical Physics, Riyadh (Saudi Arabia)

    2014-08-15

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  4. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Habiballah, B.; Abdelaziz, I.; Alzimami, K.; Osman, H.; Omer, H.; Sassi, S. A.

    2014-08-01

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  5. Imaging doses in radiation therapy from kilovoltage cone-beam computed tomography

    Science.gov (United States)

    Hyer, Daniel Ellis

    Advances in radiation treatment delivery, such as intensity modulated radiation therapy (IMRT), have made it possible to deliver large doses of radiation with a high degree of conformity. While highly conformal treatments offers the advantage of sparing surrounding normal tissue, this benefit can only be realized if the patient is accurately positioned during each treatment fraction. The need to accurately position the patient has led to the development and use of gantry mounted kilovoltage cone-beam computed tomography (kV-CBCT) systems. These systems are used to acquire high resolution volumetric images of the patient which are then digitally registered with the planning CT dataset to confirm alignment of the patient on the treatment table. While kV-CBCT is a very useful tool for aligning the patient prior to treatment, daily use in a high fraction therapy regimen results in a substantial radiation dose. In order to quantify the radiation dose associated with CBCT imaging, an anthropomorphic phantom representing a 50th percentile adult male and a fiber-optic coupled (FOC) dosimetry system were both constructed as part of this dissertation. These tools were then used to directly measure organ doses incurred during clinical protocols for the head, chest, and pelvis. For completeness, the dose delivered from both the X-ray Volumetric Imager (XVI, Elekta Oncology Systems, Crawley, UK) and the On-Board Imager (OBI, Varian Medical Systems, Palo Alto, CA) were investigated. While this study provided a direct measure of organ doses for estimating risk to the patient, a practical method for estimating organ doses that could be performed with phantoms and dosimeters currently available at most clinics was also desired. To accomplish this goal, a 100 mm pencil ion chamber was used to measure the "cone beam dose index" (CBDI) inside standard CT dose index (CTDI) acrylic phantoms. A weighted CBDI (CBDIw), similar to the weighted CT dose index (CTDIw), was then calculated to

  6. Effects of local single and fractionated X-ray doses on rat bone marrow blood flow and red blood cell volume

    International Nuclear Information System (INIS)

    Pitkaenen, M.A.; Hopewell, J.W.

    1985-01-01

    Time and dose dependent changes in blood flow and red blood cell volume were studied in the locally irradiated bone marrow of the rat femur after single and fractionated doses of X-rays. With the single dose of 10 Gy the bone marrow blood flow although initially reduced returned to the control levels by seven months after irradiation. With doses >=15 Gy the blood flow was still significantly reduced at seven months. The total dose levels predicted by the nominal standard dose equation for treatments in three, six or nine fractions produced approximately the same degree of reduction in the bone marrow blood flow seven months after the irradiation. However, the fall in the red blood cell volume was from 23 to 37% greater in the three fractions groups compared with that in the nine fractions groups. Using the red blood cell volume as a parameter the nominal standard dose formula underestimated the severity of radiation damage in rat bone marrow at seven months for irradiation with small numbers of large dose fractions. (orig.) [de

  7. Accelerated repopulation of mouse tongue epithelium during fractionated irradiations or following single doses

    International Nuclear Information System (INIS)

    Doerr, W.; Kummermehr, J.

    1990-01-01

    Mouse tongue mucosa was established as an animal model to study repopulation after large single doses or during continuous irradiation. A top-up irradiation technique was used employing priming doses or fractionated treatment to the whole snout (300 kV X-rays) followed by local test doses (25 kV X-rays) to elicit denudation in a confined field of the inferior tongue surface. Clearcut quantal dose-response curves of ulcer incidence were obtained to all protocols; animal morbidity, i.e. body weight loss was minimal. Repopulation following priming doses of 10 and 13 Gy started with a delay of at least 3 days and then progressed rapidly to nearly restore original tissue tolerance by day 11. During continuous fractionation over 1 to 3 weeks with 5 fractions/week and doses per fraction of 2.5, 3 and 3.5 Gy, repopulation was small in week one but subsequently increased to fully compensate the weekly dose at all dose levels. Additional measurements of cell density during a 4 weeks course of 5 x 3 Gy or 5 x 4 Gy per week showed only moderate depletion to 67% of the control figures. The fact that rapid repopulation is achieved at relatively moderate damage levels should be taken into account when the timing of a treatment split is considered. (author). 18 refs.; 7 figs.; 1 tab

  8. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  9. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  10. High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Willis, Callen [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Banerjee, Debarshi [Department of Pediatrics, Columbia University Medical Center, New York, New York (United States); Mitchell, Jason [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Hernandez, Sonia L. [Department of Surgery, University of Chicago, Chicago, Illinois (United States); Hei, Tom [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Kadenhe-Chiweshe, Angela [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Yamashiro, Darrell J. [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Department of Pediatrics, Columbia University Medical Center, New York, New York (United States); Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (United States); Connolly, Eileen P., E-mail: epc2116@cumc.columbia.edu [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States)

    2016-04-01

    Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis of tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.

  11. Brain radiation doses to patients in an interventional neuroradiology laboratory.

    Science.gov (United States)

    Sanchez, R M; Vano, E; Fernández, J M; Moreu, M; Lopez-Ibor, L

    2014-07-01

    In 2011, the International Commission on Radiologic Protection established an absorbed-dose threshold to the brain of 0.5 Gy as likely to produce cerebrovascular disease. In this paper, the authors investigated the brain doses delivered to patients during clinical neuroradiology procedures in a university hospital. The radiation dose delivered to the brain was investigated in 99 diagnostic and therapeutic interventional neuroradiology procedures. Brain doses were calculated in a mathematic model of an adult standard anthropomorphic phantom by using the technical and radiation dose data of an x-ray biplane system submitted to regular quality controls and calibration programs. For cerebral embolizations, brain doses resulted in a maximum value of 1.7 Gy, with an average value of 500 mGy. Median and third quartile resulted in 400 and 856 mGy, respectively. For cerebral angiography, the average dose in the brain was 100 mGy. This work supports the International Commission on Radiologic Protection recommendation on enhancing optimization when doses to the brain could be higher than 0.5 Gy. Radiation doses should be recorded for all patients and kept as low as reasonably achievable. For pediatric patients and young adults, an individual evaluation of brain doses could be appropriate. © 2014 by American Journal of Neuroradiology.

  12. Terrestrial gamma radiation dose rate in Cienfuegos (Cuba))

    International Nuclear Information System (INIS)

    Alonso-Hernandez, C.M.; Sanchez-Llull, M.; Cartas-Aguila, H.; Diaz-Asencio, M.; Munoz-Caravaca, A.; Morera-Gomez, Y.; Acosta-Melian, R.

    2016-01-01

    This study assesses the level of background radiation for Cienfuegos Province, Cuba. Measurements of outdoor gamma radiation (of terrestrial and cosmic origin) in air were performed at 198 locations using a GPS navigator and a dose meter (SRP-68-01, 30 x 25 mm NaI detector). The average absorbed dose was found to be 73.9 nGy h -1 (17.2-293.9 nGy h -1 ), corresponding to an annual effective dose of 74.7 μSv (21-324 μSv). When compared with the data available for other places, the absorbed gamma doses obtained in this study indicate a background radiation level that falls within natural limits for the Damuji, Salado and Caonao watersheds; however, the Arimao and Gavilanes watersheds present levels of the absorbed dose and annual effective dose comparable with high background radiation areas. An isodose map of the terrestrial gamma dose rate in Cienfuegos was drawn using the GIS application 'Arc View'. This study provides important baseline data of radiation exposure in the area. (authors)

  13. Effect of low doses of ionizing radiation on human health

    International Nuclear Information System (INIS)

    Kovalenko, A.N.

    1990-01-01

    Data are reported on the possible mechanism of biological effects of low doses of ionizing radiation on the human body. The lesioning effect of this radiation resulted in some of the persons in the development of disorders of the function of information and vegetative-regulatory systems determined as a desintegration syndrome. This syndrome is manifested in unspecific neuro-vegetative disorders of the function of most important physiological and homeostatic system of the body leading to weakening of the processes of compensation and adaptation. This condition is characterized by an unspecific radiation syndrome as distinct from acute or chronic radiation disease which is a specific radiation syndrome

  14. Internal dose assessment in radiation accidents

    International Nuclear Information System (INIS)

    Toohey, R.E.

    2003-01-01

    Although numerous models have been developed for occupational and medical internal dosimetry, they may not be applicable to an accident situation. Published dose coefficients relate effective dose to intake, but if acute deterministic effects are possible, effective dose is not a useful parameter. Consequently, dose rates to the organs of interest need to be computed from first principles. Standard bioassay methods may be used to assess body contents, but, again, the standard models for bioassay interpretation may not be applicable because of the circumstances of the accident and the prompt initiation of decorporation therapy. Examples of modifications to the standard methodologies include adjustment of biological half-times under therapy, such as in the Goiania accident, and the same effect, complicated by continued input from contaminated wounds, in the Hanford 241 Am accident. (author)

  15. Pediatric radiation dose management in digital radiography

    International Nuclear Information System (INIS)

    Neitzel, U.

    2004-01-01

    Direct digital radiography (DR) systems based on flat-panel detectors offer improved dose management in pediatric radiography. Integration of X-ray generation and detection in one computer-controlled system provides better control and monitoring

  16. Individual radiation doses. Annual report 1995

    International Nuclear Information System (INIS)

    Bergman, L.

    1995-05-01

    During the year we measured whole body doses on 10226 bearers, distributed as follows: 0-0,5 mSv on 8816 persons, 0,6-1,0 mSv on 693 persons, 1,1-5,0 on 678 persons, >5 mSv on 39 persons. At higher dose than 4 mSv/4 weeks, the reason to the irradiation will be investigated. 2 figs, 2 tabs

  17. Radiation dose assessment for occupationally exposed workers in ...

    African Journals Online (AJOL)

    2017-01-31

    Jan 31, 2017 ... This situation therefore brings uncertainty on workers' safety and potential occupational exposure to ionising radiation such as X-rays. This study was hence conducted with the aim of finding out the radiation dose levels currently being received by occupationally exposed workers in radiology departments.

  18. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  19. Environmental policy. Ambient radioactivity levels and radiation doses in 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB) [de

  20. Malignant melanoma of the tongue following low-dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  1. Malignant melanoma of the tongue following low-dose radiation

    International Nuclear Information System (INIS)

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-01-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented

  2. Epidemiology and effects on health of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Rodriguez Artalejo, F.; Andres Manzano, B. de; Rel Calero, J. del

    1997-01-01

    This article describes the concept and aims of epidemiology, its methods and contribution to the knowledge of the effects of low ionizing radiation doses on health. The advantages of epidemiological studies for knowing the consequences of living near nuclear facilities and the effects of occupational exposure to radiations are also described. (Author) 43 refs

  3. Dose to radiation therapists from activation at high-energy accelerators used for conventional and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Rawlinson, J. Alan; Islam, Mohammad K.; Galbraith, Duncan M.

    2002-01-01

    The increased beam-on times which characterize intensity-modulated radiation therapy (IMRT) could lead to an increase in the dose received by radiation therapists due to induced activity. To examine this, gamma ray spectrometry was used to identify the major isotopes responsible for activation at a representative location in the treatment room of an 18 MV accelerator (Varian Clinac 21EX). These were found to be 28 Al, 56 Mn, and 24 Na. The decay of the dose rate measured at this location following irradiation was analyzed in terms of the known half-lives to yield saturation dose rates of 9.6, 12.4, and 6.2 μSv/h, respectively. A formalism was developed to estimate activation dose (μSv/week) due to successive patient irradiation cycles, characterized by the number of 18 MV fractions per week, F, the number of MU per fraction, M, the in-room time between fractions, t d (min), and the treatment delivery time t r ' (min). The results are represented by the sum of two formulas, one for the dose from 28 Al≅1.8x10 -3 F M (1-e -0.3t r ' )/t r ' and one for the dose from the other isotopes ≅1.1x10 -6 F 1.7 Mt d . For conventional therapy doses are about 60 μ Sv/week for an 18 MV workload of 60 000 MU/week. Irradiation for QA purposes can significantly increase the dose. For IMRT as currently practiced, lengthy treatment delivery times limit the number of fractions that can be delivered per week and hence limit the dose to values similar to those in conventional therapy. However for an IMRT regime designed to maximize patient throughput, doses up to 330 μSv/week could be expected. To reduce dose it is recommended that IMRT treatments should be delivered at energies lower than 18 MV, that in multienergy IMRT, high-energy treatments should be scheduled in the latter part of the day, and that equipment manufacturers should strive to minimize activation in the design of high-energy accelerators

  4. The choice of food consumption rates for radiation dose assessments

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Webb, G.A.M.

    1981-01-01

    The practical problem in estimating radiation doses due to radioactive contamination of food is the choice of the appropriate food intakes. To ensure compliance or to compare with dose equivalent limits, higher than average intake rates appropriate to critical groups should be used. However for realistic estimates of health detriment in the whole exposed population, average intake rates are more appropriate. (U.K.)

  5. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    International Nuclear Information System (INIS)

    Karim, M.K.A.; Hashim, S.; Bradley, D.A; Bakar, K.A.; Haron, M.R.; Kayun, Z.

    2016-01-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDI w ), dose length product (DLP) and effective dose (E). The mean values of CTDI w , DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts. - Highlights: • We investigate radiation doses received by patients from CT scan examinations. • We compare data with current national diagnostic reference levels and other references. • Radiation doses from CT were influenced by CT parameter, scanning techniques and patient characteristics.

  6. establishment of background radiation dose rate in the vicinity

    African Journals Online (AJOL)

    nb

    ABSTRACT. The absorbed dose rate in air in the vicinity of the proposed Manyoni uranium mining project located in Singida region, Tanzania, was determined so as to establish the baseline data for background radiation dose rate data prior to commencement of uranium mining activities. Twenty stations in seven villages ...

  7. Mutation process at low or high radiation doses

    International Nuclear Information System (INIS)

    Abrahamson, S.; Wisconsin Univ., Madison

    1976-01-01

    A concise review is given of the status of research on the genetic effects of low-level radiation in general. The term ''low dose'' is defined and current theories on low dose are set out. Problems and their solutions are discussed. (author)

  8. Risks to health from radiation at low dose rates

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1997-01-01

    Our focus is on whether, using a balance-of-evidence approach, it is possible to say that at a low enough dose, or at a sufficiently low dose rate, radiation risk reduces to zero in a population. We conclude that insufficient evidence exists at present to support such a conclusion. In part this reflects statistical limitations at low doses, and in part (although mechanisms unquestionably exist to protect us against much of the damage induced by ionizing radiation) the biological heterogeneity of human populations, which means these mechanisms do not act in all members of the population at all times. If it is going to be possible to demonstrate that low doses are less dangerous than we presently assume, the evidence, paradoxically, will likely come from studies of higher dose and dose rate scenarios than are encountered occupationally. (author)

  9. The Effect of NPP's Stack Height to Radiation Dose

    International Nuclear Information System (INIS)

    Pandi, Liliana Yetta; Rohman, Budi

    2003-01-01

    The purpose of dose calculation for accidents is to analyze the capability of NPP to maintain the safety of public and workers in case an accident occurs on the Plant in a site. This paper calculates the Loss of Coolant Accident in PWR plant. The calculation results shows that no risks of serious radiation exposure are given to the neighboring public even if such a large accident occurred, and the effect of stack height can be predicted by analysis of the calculation results. The whole dose is calculated for some location (100 m, 300 m, 500 m, 700 m, 900 m, 1500 m, and 2000 m) with three difference stack height i.e. 0 m, 40 m and 100 m. The result of the whole dose calculation is under permitted criteria for whole dose : 0.25 Sv and thyroid dose : 3.0 Sv. The calculation of radiation dose in this paper use EEDCDQ code

  10. SU-D-16A-03: A Radiation Pneumonitis Dose-Response Model Incorporating Non- Local Radiation-Induced Bystander Effect

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J; Snyder, K; Zhong, H; Chetty, I [Henry Ford Health System, Dept. Radiation Oncology, Detroit, MI (United States)

    2014-06-01

    Purpose: Dose-response models that can reliably predict radiation pneumonitis (RP) to guide radiation therapy (RT) for lung cancer presently do not exist. A model is proposed that incorporates non-local radiationinduced bystander effect (RIBE). Methods: A single sigmoid response function, derived from published data for whole lung irradiation, relates RP probability to cumulative lung damage, regardless of fractionation scheme. Lung damage is assumed to be caused by direct local radiation damage, quantified via the linear-quadratic (LQ) model, and RIBE. Based on published data, RIBE is assumed to be activated when per-fraction dose rises above ∼0.6 Gy, but is constant with dose above that threshold. Integral RIBE damage is assumed proportional to lung volume irradiated above ∼0.6 Gy per fraction. Key model parameters include LQ α and β, and two RIBE parameters: the single-fraction probability δ of damage, and a proportionality parameter κ that relates the potential for RIBE damage to irradiated lung volume. All parameters are tentatively fitted from published data, the RIBE parameters from published RP rates for conventionally fractionated RT (CFRT) and stereotactic body RT (SBRT). Results: The model predicts dose-response curves that are consistent with clinical experience. It provides a tentative explanation for why V20 (33 fractions), V13 (20 fractions) and V5 (<10 fractions) are observed to be correlated with RP. It also provides a plausible explanation for the success of SBRT — RIBE damage increases with the number of fractions, so penalizes CFRT relative to SBRT. Conclusion: The proposed model is relatively simple, extrapolates from published data, plausibly explains several clinical observations, and produces dose-response curves that are consistent with clinical experience. While capable of elaboration, its ability to explain doseresponse experience with different fractionation schemes using a small number of assumptions and parameters is an

  11. SU-D-16A-03: A Radiation Pneumonitis Dose-Response Model Incorporating Non- Local Radiation-Induced Bystander Effect

    International Nuclear Information System (INIS)

    Gordon, J; Snyder, K; Zhong, H; Chetty, I

    2014-01-01

    Purpose: Dose-response models that can reliably predict radiation pneumonitis (RP) to guide radiation therapy (RT) for lung cancer presently do not exist. A model is proposed that incorporates non-local radiationinduced bystander effect (RIBE). Methods: A single sigmoid response function, derived from published data for whole lung irradiation, relates RP probability to cumulative lung damage, regardless of fractionation scheme. Lung damage is assumed to be caused by direct local radiation damage, quantified via the linear-quadratic (LQ) model, and RIBE. Based on published data, RIBE is assumed to be activated when per-fraction dose rises above ∼0.6 Gy, but is constant with dose above that threshold. Integral RIBE damage is assumed proportional to lung volume irradiated above ∼0.6 Gy per fraction. Key model parameters include LQ α and β, and two RIBE parameters: the single-fraction probability δ of damage, and a proportionality parameter κ that relates the potential for RIBE damage to irradiated lung volume. All parameters are tentatively fitted from published data, the RIBE parameters from published RP rates for conventionally fractionated RT (CFRT) and stereotactic body RT (SBRT). Results: The model predicts dose-response curves that are consistent with clinical experience. It provides a tentative explanation for why V20 (33 fractions), V13 (20 fractions) and V5 (<10 fractions) are observed to be correlated with RP. It also provides a plausible explanation for the success of SBRT — RIBE damage increases with the number of fractions, so penalizes CFRT relative to SBRT. Conclusion: The proposed model is relatively simple, extrapolates from published data, plausibly explains several clinical observations, and produces dose-response curves that are consistent with clinical experience. While capable of elaboration, its ability to explain doseresponse experience with different fractionation schemes using a small number of assumptions and parameters is an

  12. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jun Won, E-mail: JUNWON@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoo, Hyun, E-mail: gochunghee@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kwak, Woori, E-mail: asleo02@snu.ac.kr [Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Won Hoon, E-mail: wonhoon@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Cho, Seoae, E-mail: seoae@cnkgenomics.com [C& K Genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919 (Korea, Republic of); Choi, Yu Jeong, E-mail: yunk9275@daum.net [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Yoon-Jin, E-mail: yjlee8@kirams.re.kr [Division of Radiation Effects, Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences, Seoul 139-760 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL

  13. Use of the LQ model with large fraction sizes results in underestimation of isoeffect doses

    International Nuclear Information System (INIS)

    Sheu, Tommy; Molkentine, Jessica; Transtrum, Mark K.; Buchholz, Thomas A.; Withers, Hubert Rodney; Thames, Howard D.; Mason, Kathy A.

    2013-01-01

    Purpose: To test the appropriateness of the linear-quadratic (LQ) model to describe survival of jejunal crypt clonogens after split doses with variable (small 1–6 Gy, large 8–13 Gy) first dose, as a model of its appropriateness for both small and large fraction sizes. Methods: C3Hf/KamLaw mice were exposed to whole body irradiation using 300 kVp X-rays at a dose rate of 1.84 Gy/min, and the number of viable jejunal crypts was determined using the microcolony assay. 14 Gy total dose was split into unequal first and second fractions separated by 4 h. Data were analyzed using the LQ model, the lethal potentially lethal (LPL) model, and a repair-saturation (RS) model. Results: Cell kill was greater in the group receiving the larger fraction first, creating an asymmetry in the plot of survival vs size of first dose, as opposed to the prediction of the LQ model of a symmetric response. There was a significant difference in the estimated βs (higher β after larger first doses), but no significant difference in the αs, when large doses were given first vs small doses first. This difference results in underestimation (based on present data by approximately 8%) of isoeffect doses using LQ model parameters based on small fraction sizes. While the LPL model also predicted a symmetric response inconsistent with the data, the RS model results were consistent with the observed asymmetry. Conclusion: The LQ model underestimates doses for isoeffective crypt-cell survival with large fraction sizes (in the present setting, >9 Gy)

  14. Population Dose From Medical Radiation Applications in The Netherlands

    OpenAIRE

    Bijwaard, Harmen

    2016-01-01

    Purpose: All the European member states have to collect data on patient dose from medical diagnostic imaging. This information contributes to making conscious choices in medical practice, taking into account the risks and benefits of the use of radiation. The Netherlands collects this information on a yearly base to show the development in medical radiation exposure. Materials & Methods: This study was held among all the Dutch hospitals and institutions that use medical radiation applications...

  15. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  16. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  17. Radiation Dose-Response Relationships and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-07-05

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of

  18. Hypofractionated stereotactic radiation therapy in three to five fractions for vestibular schwannoma

    International Nuclear Information System (INIS)

    Morimoto, Masahiro; Yoshioka, Yasuo; Kotsuma, Tadayuki

    2013-01-01

    The objective of this study was to retrospectively examine the outcomes of hypofractionated stereotactic radiation therapy in three to five fractions for vestibular schwannomas. Twenty-five patients with 26 vestibular schwannomas were treated with hypofractionated stereotactic radiation therapy using a CyberKnife. The vestibular schwannomas of 5 patients were associated with type II neurofibromatosis. The median follow-up time was 80 months (range: 6-167); the median planning target volume was 2.6 cm 3 (0.3-15.4); and the median prescribed dose (≥D90) was 21 Gy in three fractions (18-25 Gy in three to five fractions). Progression was defined as ≥2 mm 3-dimensional post-treatment tumor enlargement excluding transient expansion. Progression or any death was counted as an event in progression-free survival rates, whereas only progression was counted in progression-free rates. The 7-year progression-free survival and progression-free rates were 78 and 95%, respectively. Late adverse events (≥3 months) with grades based on Common Terminology Criteria for Adverse Events, v4.03 were observed in 6 patients: Grade 3 hydrocephalus in one patient, Grade 2 facial nerve disorders in two and Grade 1-2 tinnitus in three. In total, 12 out of 25 patients maintained pure tone averages ≤50 dB before hypofractionated stereotactic radiation therapy, and 6 of these 12 patients (50%) maintained pure tone averages at this level at the final audiometric follow-up after hypofractionated stereotactic radiation therapy. However, gradient deterioration of pure tone average was observed in 11 of these 12 patients. The mean pure tone averages before hypofractionated stereotactic radiation therapy and at the final follow-up for the aforementioned 12 patients were 29.8 and 57.1 dB, respectively. Treating vestibular schwannomas with hypofractionated stereotactic radiation therapy in three to five fractions may prevent tumor progression with tolerable toxicity. However, gradient

  19. A conceptual framework for managing radiation dose to patients in diagnostic radiology using reference dose levels

    International Nuclear Information System (INIS)

    Almen, Anja; Baath, Magnus

    2016-01-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. (authors)

  20. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Insect radiosensitivity: dose curves and dose-fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species

    International Nuclear Information System (INIS)

    LaChance, L.E.; Graham, C.K.

    1984-01-01

    Males of 4 species of insects: Musca domestica L. (housefly) (Diptera), Oncopeltus fasciatus (Dallas) (milkweed bug) (Hemiptera), Anagasta kuhniella (Zeller) (mealmoth) (Lepidoptera) and Heliothis virescens (Fab.) (tobacco budworm) (Lepidoptera) were irradiated as adults. Dose-response curves for the induction of dominant lethal mutations in the mature sperm were constructed. The curves were analyzed mathematically and compared with theoretical computer simulated curves requiring 1, 2, 4, 8 and 16 'hits' for the induction of a dominant lethal mutation. The 4 species belonging to 3 different orders of insects showed a wide range in radiation sensitivity and vastly different dose-response curves. When the data were analyzed by several mathematical models the authors found that a logistic response curve gave reasonably good fit with vastly different parameters for the 4 species. Dose-fractionation experiments showed no reduction in the frequency of lethal mutations induced in any species when an acute dose was fractionated into 2 equal exposures separated by an 8-h period. (Auth.)

  2. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1993-01-01

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  3. Recovery of cytogenetic damage in plant cells with unequal fractionation of damaging action. 2. Sparsely ionizing radiation effect

    Energy Technology Data Exchange (ETDEWEB)

    Stepanyan, N.S.; Seregina, T.V.; Krupnova, G.F.; Zhestyanikov, V.D. (AN SSSR, Leningrad. Inst. Tsitologii)

    1984-01-01

    In case of unequal fractionation of X-irradiation dose (1, 6 and 3 Gy) in Vicia faba cells the fractionation effect (decrease of chromosomal breaks frequency as compared with their frequency in case of non fractionated effect total in dose) takes place in cells being at the irradiation moment mostly in the S phase, but is not observed in case of irradiation of cells being mostly in the G/sub 2/ phase. Introduction in cells in the interval between fractions of chloramphenical protein synthesis inhibitor increases the chromosomal aberrations frequency in the G/sub 2/ phase cells (in the S phase in irradiated cells the antibiotic blocks up the advance of cells by cycle) only at irradiation in integral dose 1.6 Gy. The strengthening of damaging radiation effect by chloramphenicol is observed in case of its combination with caffeine, DNA reparation inhibitor, however on no account the combination effect exceeds the total sum of both agents effects. In case of non-uniform fractionation of gamma irradiation the treatment of V. faba cells by chloramphenicol in the interval between fractions leads to a slight but certain reparation attenuation of DNA one-strand ruptures. Inhibitor treatment before irradiation in non fractionated total dose sharply suppresses and after irradiation does not change the DNA one-strand breaks reparation. The data testify that in V faba cells in case of sparsely ionizing radiation effect probably the DNA inducible DNA reparation functionates which is responsible for elimination of a small number of DNA one-strand ruptures and a certain part of chromosomal aberrations.

  4. Microscopic analysis of the effect of fractionated radiation therapy on submandibular gland of rats

    International Nuclear Information System (INIS)

    Vier-Pelisser, Fabiana Vieira; Amenabar, Jose Miguel; Cherubini, Karen; Figueiredo, Maria Antonia Zancanaro de; Yurgel, Liliane Soares

    2005-01-01

    Objective: The aim of this study was to quantitatively evaluate the histological changes produced by radiation therapy both on the stroma and the parenchyma of submandibular gland in rats. Materials and methods: The sample size consisted of 30 Wistar rats, divided in two groups: test and control. The 15 animals of the test group were irradiated daily on the head and neck region with a dose of 2 Gy for six weeks using a rotational fractionated modality of 60 Co-gamma rays. At the end of the experimental period the animals had received a total dose of 60 Gy. Sixty hours after the last radiation therapy session the submandibular glands of the animals from both groups were excised, processed using paraffin technique, stained with hematoxyline-eosin and analyzed by optical microscopy. Results: The mean proportional volume of the glandular parenchyma and stroma was obtained using a stereological method of manual point counting. The proportional volume of the acini on the irradiated group (60.67%±6.43) was significantly lower than the control group (67.42%±10.90) (p = 0.048), however there was no statistical difference between the groups for parenchyma, ducts and stroma (Student t test, p > 0.05). Conclusion: The radiation therapy produced acinar atrophy in submandibular glands. No total quantitative changes in the stroma or in the parenchyma were observed. (author)

  5. Radiation Doses to Skin from Dermal Contamination

    Science.gov (United States)

    2010-10-01

    face; spray-wash 1-7 / 5.00 1.6 0.032 19 CFM; forearms; spray-wash plus rubbing 10-6 / 7.00 1.1 0.16 135 CFM; forearms and hands, spray-wash 1-7...skinskin DRFtCtD   where ) = dose rate to skin at time t (rem h–1); ( tD  Cskin(t) = activity concentration of radionuclides on skin at time t...and dose-rate factor are specific to deposition on clothing: (5-1)     clothingclothing DRFtCtD   where )( tD  = dose rate to skin at

  6. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  7. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  8. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  9. Assessment of patient radiation doses during routine diagnostic radiography examinations

    International Nuclear Information System (INIS)

    Adam, Asim Karam Aldden Adam

    2015-11-01

    Medical applications of radiation represent the largest source of exposure to general population. Accounting for 3.0 mSv against an estimated 2.4 mSv from a natural back ground in United States. The association of ionizing radiation an cancer risk is assumed to be continuos and graded over the entire range of exposure, The objective of this study is to evaluate the patient radiation doses in radiology departments in Khartoum state. A total of 840 patients ? during two in the following hospitals Khartoum Teaching Hospital (260 patients), Fedail specialized hospital ( 261 patients). National Ribat University hospital ( 189 patients) and Engaz hospital (130 patients). Patient doses were measured for 9 procedures. The Entrance surface Air Kerma (ESAK) was quantified using x-ray unit output by Unifiers xi dose rate meter( Un fore inc. Billdal. Sweden) and patient exposure parameters. The mean patient age. Weight and Body Mass index (BMI) were 42.6 year 58/4 kg and 212 kg/m respectively. The mean patient doses, kv and MAS and E.q was 0.35 mGy per procedures 59.9 volt 19.8 Ampere per second 0.32 Sv . Patient doses were comparable with previous studies. Patient radiation doses showed considerable difference between hospitals due to x- ray systems exposure settings and patient weight. Patient are exposed to unnecessary radiation.(Author)

  10. Plants as warning signal for exposure to low dose radiation

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Norhafiz Talib

    2012-01-01

    The stamen-hair system of Tradescantia for flower colour has proven to be one of the most suitable materials to study the frequency of mutations induced by low doses of various ionizing radiations and chemical mutagens. The system has also been used successfully for detecting mutagenic synergisms among chemical mutagens and ionizing radiations as well as for studying the variations of spontaneous mutation frequency. In this study of radiobiology, the main objective is to observe somatic mutation (occurrence of pink cells from blue cells) induced on stamen hairs of five Tradescantia sp. available in Malaysia after exposure to low doses of chronic gamma irradiation using Gamma Green House. Pink cells appeared only on Tradescantia Pallida Purpurea stamen hairs after 13 days of exposure to irradiation with different doses of gamma rays. The highest number of stamens with pink cells was recorded from flowers irradiated with the highest dose of 6.37 Gy with 0.07 Gy/ h of dose rate. The lowest number of stamens with pink cells was recorded with an average of 0.57, irradiated with the lowest dose of 0.91 Gy with 0.01 Gy/ h of dose rate. There were no pink cells observed on Tradescantia Spathaceae Discolor after exposure to different doses of gamma rays. Similar negative results were observed for the control experiments. The principal cells in this assay are the mitotic stamen hair cells developing in the young flower buds. After exposure to radiation, the heterozygous dominant blue character of the stamen hair cell is prevented, resulting in the appearance of the recessive pink color. Furthermore, no pink cell appears on all species of Tradescantia spathaceae after irradiated with different doses of gamma rays. The sensitivity of the Tradescantia has been used widely and has demonstrated the relation between radiation dose and frequency of mutation observed at low doses which can contribute to the effects of low doses and their consequences for human health. This system

  11. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    Eleveld, H.; Pruppers, M.

    2002-01-01

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  12. One-staged and fractionated high-voltage radiation of xenografted gynaecological malignomas

    International Nuclear Information System (INIS)

    Zeller, M.

    1987-01-01

    Mice from a nu/nu strain subjected to thymoplasty were used to examine nine different types of gynaecological malignoma (made up of two carcinomas of the endometrium, two carcinomas of the breast, one ovarian carcinoma, one vaginal carcinoma, one carcinoma of the cervix, one uterine sarcoma and one ovarian sarcoma) that were heterogeneously propped onto the animals in the form of subcutaneous grafts. After a previously determined tumour size had been achieved, high-voltage radiation was carried out using 60 Co rays. For this purpose, the animals were assigned to different treatment groups receiving 10 Gy, 20 Gy or 40 Gy as a single dose or, alternatively, 8 subsequent treatments with 10 Gy (distributed over 8 weeks). Thereafter, the further tumour behaviour was assessed on the basis of size determinations. Histological evaluations of the tumour tissue were carried out as a supplementary measure. It was found that all nine tumours showed a definite response to high-voltage radiation. The growth rate, as compared to that seen in the control animals, was slowed down to different degrees, with a reduction in tumour size being observed in two cases and a cessation of tumour growth in a further four cases. The patterns of the growth curves observed for the individual types of tumour at the different dose levels tested mostly followed a uniform course. Due to this fact any changes in the growth behaviour of a tumour occurring after low dosage treatment could be extrapolated to predict its behaviour after radiation using high single or fractionated doses. A link between the effects of radiation and tumour histology or tumour growth rate could not be established. (orig./MG) [de

  13. CONDOS-II, Radiation Dose from Consumer Product Distribution Chain

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Description of problem or function: This code was developed under sponsorship of the Nuclear Regulatory Commission to serve as a tool for assessing radiation doses that may be associated with consumer products that contain radionuclides. The code calculates radiation dose equivalents resulting from user-supplied scenarios of exposures to radionuclides contained in or released from sources that contain radionuclides. Dose equivalents may be calculated to total body, skin surface, skeletal bone, testes, ovaries, liver, kidneys, lungs, and maximally exposed segments of the gastrointestinal tract from exposures via (1) direct, external irradiation by photons (including Bremsstrahlung) emitted from the source, (2) external irradiation by photons during immersion in air containing photon-emitting radionuclides that have escaped from the source, (3) internal exposures by all radiations emitted by inhaled radionuclides that have escaped from the source, and (4) internal exposures by all radiations emitted by ingested radionuclides that have escaped from the source. 2 - Method of solution: Organ dose equivalents are approximated in two ways, depending on the exposure type. For external exposures, energy specific organ-to-skin-surface dose conversion ratios are used to approximate dose equivalents to specific organs from doses calculated to a point on the skin surface. The organ-to-skin ratios are incorporated in organ- and nuclide-specific dose rate factors, which are used to approximate doses during immersion in contaminated air. For internal exposures, 50 year dose equivalents are calculated using organ- and nuclide-specific, 50 year dose conversion factors. Doses from direct, external exposures are calculated using the energy-specific dose conversion ratios, user supplied exposure conditions, and photon flux approximations for eleven source geometries. Available source geometries include: point, shielded and unshielded; line, shielded and unshielded; disk, shielded

  14. Radiation doses of commonly used dental radiographic surveys.

    Science.gov (United States)

    Freeman, J P; Brand, J W

    1994-03-01

    The purpose of this study was to evaluate and to compare the radiation dose associated with commonly used dental radiographic surveys including the following: (1) 20 film full-mouth survey, (2) bite-wing radiographs, (3) panoramic survey supplemented with bite-wing radiographs and (4) a common orthodontic radiographic survey (a lateral cephlometric radiograph supplemented with a panoramic radiograph). The effects of collimation and faster radiographic film speeds on dose were also investigated. The effective doses to selected anatomic sites were calculated from measured absorbed doses with the use of an improved, tissue-equivalent phantom fitted with lithium fluoride thermoluminescent dosimeters. It was demonstrated that converting from round to rectangular collimation reduced the radiation exposure by a factor of four. A panoramic survey supplemented with bite-wing radiographs uses approximately one third of the radiation exposure needed to expose a full-mouth survey made with E-speed film and rectangular collimation.

  15. Lung and Heart Dose Variability During Radiation Therapy of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Jan, Nuzhat; Guy, Christopher; Reshko, Leonid B; Hugo, Geoffrey D; Weiss, Elisabeth

    2017-07-01

    To investigate the hypothesis that positional and anatomic variations during radiation therapy induce changes in lung and heart volumes and associated radiation doses. In this longitudinal investigation, variations in lung and heart volumes and standard dose parameters of mean lung dose, lung V 20Gy , mean heart dose, and heart V 40Gy were analyzed on weekly 4-dimensional CT scans of 15 lung cancer patients during conventionally fractionated radiochemotherapy. Tumor, individual lung lobes, and heart were delineated on the mid-ventilation phase of weekly 4-dimensional CT scans. Lung lobes and heart were also contoured on individual breathing phases of pre-, mid-, and end-of-treatment scans. Planning dose was transferred to consecutive scans via rigid registration. Volume and dose variations were assessed relative to the initial planning scan. Interfraction lung volume variability relative to week 0 was twice as large as tidal volume variability (8.0% ± 5.3% vs 4.0% ± 3.3%, P=.003). Interfraction lung volume variation ranged between 0.8% and 17.1% for individual patient means. Lower lung lobes had larger volume variability compared with upper lobes (13.5% ± 8.1% vs 7.0% ± 5.0%, Pheart volume variation was 7.2% (range, 3.4%-12.6%). Average mean heart dose variation was 1.2 Gy (range, 0.1-3.0 Gy) and average heart V 40Gy variation 1.4% (range, 0%-4.2%). Anatomic and positional variations during radiation therapy induce changes in radiation doses to lung and heart. Repeated lung and heart dose assessment will provide a better estimate of the actual delivered dose and will improve prediction models for normal tissue toxicity, if assessed in larger cohorts. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Uncertainty of dose measurement in radiation processing

    DEFF Research Database (Denmark)

    Miller, A.

    1996-01-01

    to the running debate and presents the author's view, which is based upon experience in radiation processing dosimetry. The origin of all uncertainty components must be identified and can be classified according to Type A and Type B, but it is equally important to separate the uncertainty components into those...

  17. Automated extraction of radiation dose information for CT examinations.

    Science.gov (United States)

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  18. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  19. The influence of radiation dose on the magnitude and kinetics of reoxygenation in a C3H mammary carcinoma

    International Nuclear Information System (INIS)

    Grau, C.; Overgaard, J.

    1990-01-01

    The variation in hypoxic fraction as a function of time after various priming doses of radiation has been investigated in a C3H mouse mammary carcinoma in situ. The hypoxic fraction was calculated from data for local tumor control. Untreated tumors were found to contain 4.8% radiobiologically hypoxic cells. Within minutes after a priming dose of 20 Gy given in air, the hypoxic fraction increased to a value not significantly different from 100%. After 4 h, reoxygenation was complete (hypoxic fraction 1.3%), and the hypoxic fraction stabilized at a level significantly below the untreated value. Following a priming dose of 40 Gy the reoxygenation pattern was different: The hypoxic fraction stayed above the pretreatment value for 4 h, and pronounced reoxygenation occurred after 12 h (hypoxic fraction 0.4%). At longer time intervals the hypoxic fraction again increased to--and slightly above--the oxygenation level of untreated tumors. The present findings show that reoxygenation in solid tumors is a function of radiation dose, and the data suggest that mechanisms other than a decrease in tumor cell O2 consumption are involved in tumor reoxygenation

  20. Radiation doses and radiation risk in foreign nuclear objects

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2001-01-01

    Data on levels of irradiation on NPP operating in different regions of the world obtained from the data of the International Information System ISOE created by IAEA in association with the Nuclear Energetic Agency OECD are performed. Effect of commissioning new NPP, sacrifice of radiation situation at the Ignalina NPP in 1996, importance of the development and introduction of programs on perfecting of radiation protection and culture of safety are noted [ru

  1. Radiation doses to children with shunt-treated hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Holmedal, Lise J. [Helse Fonna, Department of Radiology, Stord Hospital, Stord (Norway); Friberg, Eva G.; Boerretzen, Ingelin; Olerud, Hilde [The Norwegian Radiation Protection Authority, Oesteraas (Norway); Laegreid, Liv [Haukeland University Hospital, Department of Paediatrics, Bergen (Norway); Rosendahl, Karen [University of Bergen, Department of Surgical Sciences, Radiology Section, Bergen (Norway); Great Ormond Street Hospital for Children, Department of Diagnostic Radiology, London (United Kingdom)

    2007-12-15

    Children with shunt-treated hydrocephalus are still followed routinely with frequent head CT scans. To estimate the effective dose, brain and lens doses from these examinations during childhood, and to assess dose variation per examination. All children born between 1983 and 1995 and treated for hydrocephalus between 1983 and 2002 were included. We retrospectively registered the number of examinations and the applied scan parameters. The effective dose was calculated using mean conversion factors from the CT dose index measured free in air, while doses to the lens and brain were estimated using tabulated CT dose index values measured in a head phantom. A total of 687 CT examinations were performed in 67 children. The mean effective dose, lens dose and brain dose to children over 6 months of age were 1.2 mSv, 52 mGy and 33 mGy, respectively, and the corresponding doses to younger children were 3.2 mSv, 60 mGy and 48 mGy. The effective dose per CT examination varied by a factor of 64. None of the children was exposed to doses known to cause deterministic effects. However, since the threshold for radiation-induced damage is not known with certainty, alternative modalities such as US and MRI should be used whenever possible. (orig.)

  2. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  3. Review on patients radiation dose and frequency of procedures during medical exposure in Sudan

    International Nuclear Information System (INIS)

    Abu Baker, Samah Mohamed Nasr

    2015-09-01

    The aim of this study was to estimate patient dose, the annual frequency and the number of staff and devices in the medical applications of ionizing radiation in Sudan. Survey was conducted on diagnostic radiology, nuclear medicine and radiotherapy. With respect to diagnostic radiology, only patient radiation dose was estimated. The data for diagnostic radiology was obtained from 24 peer reviewed scientific published literatures during the years ( 2006 - 2015). The collected publications included about 64 Sudanese hospitals covering different types of diagnostic exams. A values of the effective dose for pediatrics and adult patients were within the ranges of similar worldwide values published by UNSCEAR report in 2008 with exceptional to fluoroscopy hysterosalpingography for adult patients. For nuclear medicine procedures, questionnaires were distributed to five hospitals representing the whole existing NM department in Sudan at the time of of study. The estimated total annual frequency of diagnostic procedures was 0.2 per 1000 population. The estimated total annual collective and annual per caput effective dose from all NM procedures were 16.268 man Sv and 0.5 μSv, respectively. Comparing the annual per caput effective dose with UNSCEAR value our results was less than the worldwide value and greater than the value for heath care level 111-1 v countries. Questionnaires were also distributed to collect data on radiotherapy procedures performed in the two existing radioisotopes Sudanese hospitals. The prescribed dose and the number of fractions were comparable between the two hospitals. The minimum prescribed dose was 20 Gy with 5 fractions for nasopharynx (NPH) palliative and the maximum prescribed dose was 64 Gy with 32 fractions for prostate.(Author)

  4. Space radiation absorbed dose distribution in a human phantom

    Science.gov (United States)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  5. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  6. Radiation dose assessments for materials with elevated natural radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.

    1995-11-01

    The report provides practical information needed for evaluating the radiation dose to the general public and workers caused by materials containing elevated levels of natural radionuclides. The report presents criteria, exposure scenarios and calculations used to assess dose with respect to the safety requirements set for construction materials in accordance with the Finnish Radiation Act. A method for calculating external gamma exposure from building materials is presented in detail. The results for most typical cases are given as specific dose rates in table form to enable doses to be assessed without computer calculation. A number of such dose assessments is presented, as is the corresponding computer code. Practical investigation levels for the radioactivity of materials are defined. (23 refs.).

  7. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  8. Hyperspectral estimation of corn fraction of photosynthetically active radiation

    International Nuclear Information System (INIS)

    Yang Fei; Zhang Bai; Song Kaishan

    2008-01-01

    Fraction of absorbed photosynthetically active radiation (FPAR) is one of the important variables in many productivity and biomass estimation models, this analyzed the effect of FPAR estimation with hyperspectral information, which could provide the scientific support on the improvement of FPAR estimation, remote sensing data validation, and the other ecological models. Based on the field experiment of corn, this paper analyzed the correlations between FPAR and spectral reflectance or the differential coefficient, and discussed the mechanism of FPAR estimation, studied corn FPAR estimation with reflectance, first differential coefficient, NDVI and RVI. The reflectance of visible bands showed much better correlations with FPAR than near-infrared bands. The correlation curve between FPAR and differential coefficient varied more frequently and greatly than the curve of FPAR and reflectance. Reflectance and differential coefficient both had good regressions with FPAR of the typical single band, with the maximum R2 of 0.791 and 0.882. In a word, differential coefficient and vegetation index were much effective than reflectance for corn FPAR estimating, and the stepwised regression of multibands differential coefficient showed the best regression with R2 of 0.944. 375 nm purpled band and 950 nm near-infraed band absorbed by water showed prodigious potential for FPAR estimating precision. On the whole, vegetation index and differential coefficient have good relationships with FPAR, and could be used for FAPR estimation. It would be effective of choosing right bands and excavating the hyperspectral data to improve FPAR estimating precision

  9. Radiation dose to contra lateral breast during treatment of breast malignancy by radiotherapy

    Directory of Open Access Journals (Sweden)

    Chougule Arun

    2007-01-01

    Full Text Available Aims: External beam radiotherapy is being used regularly to treat the breast malignancy postoperatively. The contribution of collimator leakage and scatter radiation dose to contralateral breast is of concern because of high radio sensitivity of breast tissue for carcinogenesis. This becomes more important when the treated cancer breast patient is younger than 45 years and therefore the contralateral breast must be treated as organ at risk. Quantification of contralateral dose during primary breast irradiation is helpful to estimate the risk of radiation induced secondary breast malignancy. Materials and Methods: In present study contralateral breast dose was measured in 30 cancer breast patients undergoing external beam therapy by Co-60 teletherapy machine. Postoperative radiotherapy was delivered by medial and lateral tangential fields on alternate days in addition to supraclavicle field daily with 200 cGy/F to a total dose of 5000 cGy in 25 fractions. CaSO4: Dy themoluminescence dosimeter discs were employed for these measurements. Three TLD discs were put on the surface of skin of contra lateral breast, one at the level of nipple and two at 3 cms away from nipple on both side along the midline for each field. At the end treatment of each filed, TLD discs were removed and measured for dose after 24h on Thelmador - 6000 TLD reader. Results: The dose at the contra lateral breast nipple was to be 152.5 to 254.75 cGy for total primary breast dose of 5000 cGy in 25 equal fractions which amounted to 3.05-6.05% of total dose to diseased breast. Further it was observed that the maximum contribution of contralateral breast dose was due to medical tangential half blocked field. Conclusion: CaSO4; Dy thermoluminescence dosimetry is quite easy, accurate and convenient method to measure the contra lateral breast dose.

  10. CT colonography at different radiation dose levels: Feasibility of dose reduction

    NARCIS (Netherlands)

    van Gelder, Rogier E.; Venema, Henk W.; Serlie, Iwo W. O.; Nio, C. Yung; Determann, Rogier M.; Tipker, Corinne A.; Vos, Frans M.; Glas, Afina S.; Bartelsman, Joep F. W.; Bossuyt, Patrick M. M.; Laméris, Johan S.; Stoker, Jaap

    2002-01-01

    PURPOSE: To investigate the sensitivity and specificity of polyp detection and the image quality of computed tomographic (CT) colonography at different radiation dose levels and to study effective doses reported in literature on CT colonography. MATERIALS AND METHODS: CT colonography and colonoscopy

  11. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  12. Radiation-dose consequences of acid rain

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Sheppard, M.I.; Mitchell, J.H.

    1987-01-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially Ra and Cs, are among these materials. Generally, a decrease in soil pH by 1 unit will cause increases in mobility and plant uptake by factors of 2 to 7. Several simulation models were tested with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modelled a typical, acid rain sensitive soil using meterological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed direct proportionality between the mobility of the nuclides and dose. Based on the literature available, a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor or 2 or more. This will lead to increases in plant uptake and ultimate dose to man of about the same extent

  13. Radiation-induced cancer from low doses of ionizing radiation: risk analysis using the cell dose concept

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.

    1990-01-01

    High doses of ionizing radiations are known to bear the risk of cancer to the exposed individual. In order to appreciate potential carcinogenesis from low doses also, the action of ionizing radiation in the human body has to be considered in holistic approach: energy depositions to individual cells trigger effects within a hierachical structure of interacting levels of biological systems, consisting consecutively of atoms, molecules, cells and organ tissue. The present paper describes the cell dose concept which is an essential factor in assessing the risk due to the ionizing radiation to the cells and tissues. Low dose of ionizing radiation induces adaptive response in individual cells which could be linked to the action of molecular radicals. Enzyme activities in bone marrow cells and bilayer lipid membranes and radicals are directly related to radiation effects. Temporary improvements of the detoxification of molecular radicals also improve the cellular defence. The risk analysis calls for more attention as it is important for radiation protection and other beneficial effects due to low doses of irradiation. (author). 18 refs

  14. Radiation Therapy Dose Escalation for Glioblastoma Multiforme in the Era of Temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Badiyan, Shahed N.; Markovina, Stephanie; Simpson, Joseph R.; Robinson, Clifford G.; DeWees, Todd [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Tran, David D.; Linette, Gerry [Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri (United States); Jalalizadeh, Rohan [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Dacey, Ralph; Rich, Keith M.; Chicoine, Michael R.; Dowling, Joshua L.; Leuthardt, Eric C.; Zipfel, Gregory J.; Kim, Albert H. [Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri (United States); Huang, Jiayi, E-mail: jhuang@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2014-11-15

    Purpose: To review clinical outcomes of moderate dose escalation using high-dose radiation therapy (HDRT) in the setting of concurrent temozolomide (TMZ) in patients with newly diagnosed glioblastoma multiforme (GBM), compared with standard-dose radiation therapy (SDRT). Methods and Materials: Adult patients aged <70 years with biopsy-proven GBM were treated with SDRT (60 Gy at 2 Gy per fraction) or with HDRT (>60 Gy) and TMZ from 2000 to 2012. Biological equivalent dose at 2-Gy fractions was calculated for the HDRT assuming an α/β ratio of 5.6 for GBM. Results: Eighty-one patients received SDRT, and 128 patients received HDRT with a median (range) biological equivalent dose at 2-Gy fractions of 64 Gy (61-76 Gy). Overall median follow-up time was 1.10 years, and for living patients it was 2.97 years. Actuarial 5-year overall survival (OS) and progression-free survival (PFS) rates for patients that received HDRT versus SDRT were 12.4% versus 13.2% (P=.71), and 5.6% versus 4.1% (P=.54), respectively. Age (P=.001) and gross total/near-total resection (GTR/NTR) (P=.001) were significantly associated with PFS on multivariate analysis. Younger age (P<.0001), GTR/NTR (P<.0001), and Karnofsky performance status ≥80 (P=.001) were associated with improved OS. On subset analyses, HDRT failed to improve PFS or OS for those aged <50 years or those who had GTR/NTR. Conclusion: Moderate radiation therapy dose escalation above 60 Gy with concurrent TMZ does not seem to improve clinical outcomes for patients with GBM.

  15. 108: Modeling of the macro-response of tumors and surrounding normal tissues for the fractionated radiation treatment

    International Nuclear Information System (INIS)

    Van de Geijn, J.

    1987-01-01

    An attempt at modeling the combined macro behavior of tumors and normal tissue functionality as a function of the fractionation parameters, including the volume aspect, is presented. For the immediate single-dose effect both the combined single hit-single target, single hit-multi target concept as well as the linear-quadratic model are optional. The inter-fraction and post-treatment response to radiation damage of the involved normal tissue functionality may be delayed, but is otherwise assumed to be governed, at any time, by the density of remaining viable stem cells and by homeostatic control. Tumors are similarly assumed to be susceptible to single-dose damage and their inter-fraction and post-treatment behavior is assumed to be determined by the number of remaining viable cells. An interactive Fortran77 simulation program has been developed, and some provisional results are included. 4 refs.; 4 figs

  16. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  17. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  18. Radiation doses to the staff of a nuclear cardiology department

    International Nuclear Information System (INIS)

    Tsapaki, V.; Koutelou, M.; Theodorakos, A.; Kouzoumi, A.; Kitziri, S.; Tsiblouli, S.; Vardalaki, E.; Kyrozi, E.; Kouttou, S.

    2002-01-01

    The last years, new radiopharmaceuticals are used in a Nuclear Medicine (NM) Department. Nowadays, Single Photon Emission Computed Tomography (SPECT) is a method of routine imaging, a fact that has required increased levels of radioactivity in certain patient examinations. The staff that is more likely to receive the greatest radiation dose in a NM Department is the technologist who deals with performance of patient examination and injection of radioactive material and the nurse who is caring for the patients visiting the Department some of which being totally helpless. The fact that each NM Dept possesses equipment with certain specifications, deals with various kind of patients, has specific design and radiation protection measures which can differ from other NM Depts and uses various examination protocols, makes essential the need to investigate the radiation doses received by each member of the staff, so as to continuously monitor doses and take protective measures if required, control less experienced staff and ensure that radiation dose levels are kept as low as possible at all times. The purpose of the current study was to evaluate radiation dose to the nuclear cardiology department staff by thermoluminescent dosemeters (TLDs) placed on the the skin at thyroid and abdominal region as well as evaluating protection measures taken currently in the Dept

  19. Radiation-induced apoptosis in human tumor cell lines: adaptive response and split-dose effect.

    Science.gov (United States)

    Filippovich, I V; Sorokina, N I; Robillard, N; Lisbona, A; Chatal, J F

    1998-07-03

    Irradiation of human ovarian carcinoma cells (OVCAR 3) and myeloma cells (RPMI 8226) with graded doses of 137Cs-gamma-rays led to a 35-40% increase in time-dependent apoptosis 72 hr after 6-8 Gy irradiation. Large individual variations in sensitivity to radiation-induced apoptosis were noted in human lymphocytes obtained from 5 donors. Pretreatment of OVCAR 3 and RPMI 8226 cells with 0.01 Gy increased their resistance to apoptosis after subsequent 6 Gy irradiation several hours or 48 and 72 hr later. A dose of 4 or 8 Gy given in 2 equal fractions at an interval of a few hours produced a low level of apoptosis compared to that resulting from a single administration of the same total dose. Adaptive response was demonstrated in 2 out of 3 samples of human lymphocytes isolated from different donors, and no split-dose effect for apoptosis was noted in 2 other donors. In split-dose experiments, there was no correlation between the sensitivity of cells to apoptosis and their position in the cell cycle, after the first half-dose. No G1 block was observed in irradiated cell lines. Adaptive response and split-dose effect were prevented by 3-aminobenzamide and okadaic acid which inhibit poly(ADP-ribose)polymerase and protein phosphatase, respectively. These results imply a common mechanism for acquired resistance to radiation-induced apoptosis in adaptive response and the split-dose effect.

  20. Radiation dose reduction in the invasive cardiovascular laboratory: implementing a culture and philosophy of radiation safety.

    Science.gov (United States)

    Fetterly, Kenneth A; Mathew, Verghese; Lennon, Ryan; Bell, Malcolm R; Holmes, David R; Rihal, Charanjit S

    2012-08-01

    This paper investigates the effects of sustained practice and x-ray system technical changes on the radiation dose administered to adult patients during invasive cardiovascular procedures. It is desirable to reduce radiation dose associated with medical imaging to minimize the risk of adverse radiation effects to both patients and staff. Several clinical practice and technical changes to elevate radiation awareness and reduce patient radiation dose were implemented under the guidance of a cardiovascular invasive labs radiation safety committee. Practice changes included: intraprocedure radiation dose announcements; reporting of procedures for which the air-kerma exceeded 6,000 mGy, including procedure air-kerma in the clinical report; and establishing compulsory radiation safety training for fellows. Technical changes included establishing standard x-ray imaging protocols, increased use of x-ray beam spectral filters, reducing the detector target dose for fluoroscopy and acquisition imaging, and reducing the fluoroscopy frame rate to 7.5 s(-1). Patient- and procedure-specific cumulative skin dose was calculated from air-kerma values and evaluated retrospectively over a period of 3 years. Data were categorized to include all procedures, percutaneous coronary interventions, coronary angiography, noncardiac vascular angiography and interventions, and interventions to treat structural heart disease. Statistical analysis was based on a comparison of the cumulative skin dose for procedures performed during the first and last quarters of the 3-year study period. A total of 18,115 procedures were performed by 27 staff cardiologists and 65 fellows-in-training. Considering all procedures, the mean cumulative skin dose decreased from 969 to 568 mGy (40% reduction) over 3 years. This work demonstrates that a philosophy of radiation safety, implemented through a collection of sustained practice and x-ray system changes, can result in a significant decrease in the radiation dose

  1. Review of European research trends of low dose radiation risk

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Yoshida, Kazuo

    2010-01-01

    Large research projects on low dose radiation effects in Europe and US over the past decade have provided limited scientific knowledge which could underpin the validation of radiation protection systems. Recently in Europe, there have been repeated discussions and dialogues to improve the situation, and as the consequence, the circumstances surrounding low dose radiation risks are changing. In 2009, Multidisciplinary European Low Dose Initiative (MELODI) was established as a trans-national organization capable of ensuring appropriate governance of research in the pursuit of a long term shared vision, and Low Dose Research towards Multidisciplinary Integration (DoReMi) network was launched in 2010 to achieve fairly short term results in order to prove the validity of the MELODI approach. It is expected to be very effective and powerful activities to facilitate the reduction of uncertainties in the understanding of low dose risks, but the regulatory requests rushing the reinforcement of radiological protection regulations based on the precautional principles are more increasing. To develop reasonable radiological protection systems based on scientific evidences, we need to accelerate to collect scientific evidences which could directly underpin more appropriate radiation protection systems even in Japan. For the purpose, we Japan need to develop from an independent standpoint and share as a multidisciplinary vision a long term and holistic research strategy which enables to enhance Japanese advantages such as low dose rate facilities and animal facilities, as soon as possible. (author)

  2. Capture and analysis of radiation dose reports for radiology.

    Science.gov (United States)

    Midgley, S M

    2014-12-01

    Radiographic imaging systems can produce records of exposure and dose parameters for each patient. A variety of file formats are in use including plain text, bit map images showing pictures of written text and radiation dose structured reports as text or extended markup language files. Whilst some of this information is available with image data on the hospital picture archive and communication system, access is restricted to individual patient records, thereby making it difficult to locate multiple records for the same scan protocol. This study considers the exposure records and dose reports from four modalities. Exposure records for mammography and general radiography are utilized for repeat analysis. Dose reports for fluoroscopy and computed tomography (CT) are utilized to study the distribution of patient doses for each protocol. Results for dosimetric quantities measured by General Radiography, Fluoroscopy and CT equipment are summarised and presented in the Appendix. Projection imaging uses the dose (in air) area product and derived quantities including the dose to the reference point as a measure of the air kerma reaching the skin, ignoring movement of the beam for fluoroscopy. CT uses the dose indices CTDIvol and dose length product as a measure of the dose per axial slice, and to the scanned volume. Suitable conversion factors are identified and used to estimate the effective dose to an average size patient (for CT and fluoroscopy) and the entrance skin dose for fluoroscopy.

  3. Effective doses and standardised risk factors from paediatric diagnostic medical radiation exposures: Information for radiation risk communication

    International Nuclear Information System (INIS)

    Bibbo, Giovanni

    2018-01-01

    In the paediatric medical radiation setting, there is no consistency on the radiation risk information conveyed to the consumer (patient/carer). Each communicator may convey different information about the level of risk for the same radiation procedure, leaving the consumer confused and frustrated. There is a need to standardise risks resulting from medical radiation exposures. In this study, paediatric radiographic, fluoroscopic, CT and nuclear medicine examination data have been analysed to provide (i) effective doses and radiation induced cancer risk factors from common radiological and nuclear medicine diagnostic procedures in standardised formats, (II) awareness of the difficulties that may be encountered in communicating risks to the layperson, and (iii) an overview of the deleterious effects of ionising radiation so that the risk communicator can convey with confidence the risks resulting from medical radiation exposures. Paediatric patient dose data from general radiographic, computed tomography, fluoroscopic and nuclear medicine databases have been analysed in age groups 0 to <5 years, 5 to <10 years, 10 to <15 years and 15 to <18 years to determine standardised risk factors. Mean, minimum and maximum effective doses and the corresponding mean lifetime risks for general radiographic, fluoroscopic, CT and nuclear medicine examinations for different age groups have been calculated. For all examinations, the mean lifetime cancer induction risk is provided in three formats: statistical, fraction and category. Standardised risk factors for different radiological and nuclear medicine examinations and an overview of the deleterious effects of ionising radiation and the difficulties encountered in communicating the risks should facilitate risk communication to the patient/carer.

  4. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  5. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  6. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  7. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Chadha, M.

    1996-01-01

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT

  8. Recombinant AAV9-TLK1B Administration Ameliorates Fractionated Radiation-Induced Xerostomia

    Science.gov (United States)

    Shanmugam, Prakash Srinivasan Timiri; Dayton, Robert D.; Palaniyandi, Senthilnathan; Abreo, Fleurette; Caldito, Gloria; Klein, Ronald L.

    2013-01-01

    Abstract Salivary glands are highly susceptible to radiation, and patients with head and neck cancer treated with radiotherapy invariably suffer from its distressing side effect, salivary hypofunction. The reduction in saliva disrupts oral functions, and significantly impairs oral health. Previously, we demonstrated that adenoviral-mediated expression of Tousled-like kinase 1B (TLK1B) in rat submandibular glands preserves salivary function after single-dose ionizing radiation. To achieve long-term transgene expression for protection of salivary gland function against fractionated radiation, this study examines the usefulness of recombinant adeno-associated viral vector for TLK1B delivery. Lactated Ringers or AAV2/9 with either TLK1B or GFP expression cassette were retroductally delivered to rat submandibular salivary glands (1011 vg/gland), and animals were exposed, or not, to 20 Gy in eight fractions of 2.5 Gy/day. AAV2/9 transduced predominantly the ductal cells, including the convoluted granular tubules of the submandibular glands. Transgene expression after virus delivery could be detected within 5 weeks, and stable gene expression was observed till the end of study. Pilocarpine-stimulated saliva output measured at 8 weeks after completion of radiation demonstrated >10-fold reduction in salivary flow in saline- and AAV2/9-GFP-treated animals compared with the respective nonirradiated groups (90.8% and 92.5% reduction in salivary flow, respectively). Importantly, there was no decrease in stimulated salivary output after irradiation in animals that were pretreated with AAV2/9-TLK1B (121.5% increase in salivary flow; pgland histology was better preserved after irradiation in TLK1B-treated group, though not significantly, compared with control groups. Single preemptive delivery of AAV2/9-TLK1B averts salivary dysfunction resulting from fractionated radiation. Although AAV2/9 transduces mostly the ductal cells of the gland, their protection against radiation

  9. Techniques and radiation dose in CT examinations of adult patients

    International Nuclear Information System (INIS)

    Elameen, S. E. A.

    2010-06-01

    The use of CT in medical diagnosis delivers radiation dose to patients that are higher than those from other radiological procedures. Lake of optimized protocols could be an additional source of increased dose. The aim of this study was to measure radiation doses in CT examination of the adults in three Sudanese hospitals. Details were obtained from approximately 160 CT examination carried out in 3 hospitals (3 CT scanners). Effective dose was calculated for each examination using CT dose indices. exposure related parameters and CT D1- to- effective dose conversion factors. CT air kerma index (CT D1) and dose length products (DLP) determined were below the established international reference dose levels. The mean effective doses in this study for the head, chest, and abdomen are 0.82, 3.7 and 5.4 mGy respectively. These values were observed that the effective dose per examination was lower in Sudan than in other countries. The report of a CT survey done in these centers indicates that the mean DLP values for adult patients were ranged from 272-460 mGy cm (head) 195-995 mGy cm (chest), 270-459 mGy cm (abdomen). There are a number of observed parameters that greatly need optimization, such as minimize the scan length, without missing any vital anatomical regions, modulation of exposure parameters (kV, mA, exposure time, and slice thickness) based on patient size and age. Another possible method is through use of contrast media only to optimize diagnostic yield. The last possible method is the use of radio protective materials for protection however, in order to achieve the above optimization strategies: there is great demand to educate CT personnel on the effects of scan parameter settings on radiation dose to patients and image quality required for accurate diagnosis. (Author)

  10. Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial

    DEFF Research Database (Denmark)

    Colvill, Emma; Booth, Jeremy T; O'Brien, Ricky T

    2015-01-01

    collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction......PURPOSE: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. METHODS AND MATERIALS: Multileaf...

  11. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)

    Science.gov (United States)

    Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah

    2017-11-01

    The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.

  12. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  13. Metaphase chromosome aberrations as markers of radiation exposure and dose

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with [sup 144]Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to [sup 60]Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  14. Metaphase chromosome aberrations as markers of radiation exposure and dose

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ``paints`` to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with {sup 144}Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to {sup 60}Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  15. Metaphase chromosome aberrations as markers of radiation exposure and dose

    International Nuclear Information System (INIS)

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ''paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with 144 Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to 60 Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness

  16. Radiation oncology: what can we achieve by optimized dose delivery?

    International Nuclear Information System (INIS)

    Lawrence, T.

    2003-01-01

    Spectacular technical advances have marked the last twenty years in radiation oncology. This revolution began with CT-based planning which was followed by 3D conformal therapy. The latter approach produced two important capabilities. The most obvious was that tumors could be viewed in their true location with respect to normal tissues and treated with beams that were not in the axial plane. A second equally important advance was the development of 3D planning tools such as dose volume histograms. These tools permitted quantitative comparison of treatment plans and have supported the development of models relating normal tissue irradiation to the risk of complication. The '3D hypothesis' - that 3D treatment planning would permit higher doses of radiation to be safely delivered-has been proven. Dose escalation studies have been successfully conducted in the lung (= 100 Gy), liver (= 90 Gy), brain (= 90 Gy), and prostate (= 78 Gy). Prospective phase II and phase III trials suggest improved outcome using these higher doses for tumors in the liver and prostate compared to doses considered acceptable in the 2D era. The next technical revolution is underway, with advances in '4D' radiotherapy (accounting fully for organ motion) and in intensity-modulated radiation therapy (IMRT) to further improve the conformality and accuracy of treatment. Proton therapy will improve dose distributions still further. These improved dose distributions can be combined with more accurate tumor delineation provided by functional imaging to offer the potential for additional dose escalation without toxicity and for improved tumor control. These developments permit us to ask if we are approaching the limits of dose optimization and how (if?) research in radiation delivery should proceed

  17. Study of national registration systems for health records of radiation workers. National radiation dose registration system

    International Nuclear Information System (INIS)

    Nakagawa, Haruo; Kanda, Keiji

    1999-01-01

    A national radiation dose registration system is proposed in this paper. In Japan, only one radiation dose registration system is partly effective. It is applied for workers in nuclear power plants which are under control of regulatory laws for nuclear reactors. The total system was proposed previously by the Committee for Compensation Claims of Nuclear Accidents. The reason for the delay in establishing a registration system for all radiation workers is supposedly a lack of effort to adjust differences among items in radiation protection laws and the promotion of public acceptance to atomic power. Items about dose recordings, record keeping and dose-record reporting in all of the radiation regulatory laws are compared to each other, and items were extracted for revision. (author)

  18. The principles of dose limitation in radiation protection

    International Nuclear Information System (INIS)

    Kaul, A.

    1988-01-01

    The aim of radiation protection is to protect individuals, their offspring and the population as a whole against harmful effects from ionizing radiation and radioactive substances. Harmful effects may be either somatic, i.e. occurring in the exposed person himself/herself, or hereditary, i.e. occurring in the exposed person's offspring. Successful radiation protection involves (a) protective measures based on the results of research into the biological and biophysical effects of radiation and (b) ensuring that activities necessitating exposure are justified and that the degree of exposure is minimal. This benefit/risk principle ceases to apply if a radiation source is out of control, since the main aim is then to introduce risk limitation measures, provided that these are of positive net benefit to the individual and the population as a whole. This paper discusses the principles of dose limitation as a function of exposure conditions, i.e. controlled or uncontrolled exposure to a source of radiation

  19. Reconstitution of ionizing radiation doses received during pediatrics medical examinations

    International Nuclear Information System (INIS)

    Baysson, Helene

    2013-01-01

    The issue of cancer risk associated with exposure to medical diagnostic during childhood is particularly relevant in the context of an increasing use of radiological examinations, including CT scans, in pediatrics. Recently, the results of an epidemiological study carried out in UK (7) showed a significant excess risk of leukemia and brain tumors after repeated examinations by CT scans during childhood. However, this study did not include individual exposure data. The article by Thierry-Chef et al. presents an innovative work, within the European project EPI-CT, to estimate individual organ doses due to pediatrics CT scans. The article of Yakoumakis et al. shows doses values received by children exposed to ionizing radiation during cardiac catheterization and an estimate of radiation-induced risk. In both articles, organ doses are estimated on an individual basis in order to improve the evaluation of the risk of radiation-induced cancer in the long term. (author)

  20. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Nicolucci, Patricia

    2014-01-01

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  1. Fractionation in medium dose rate brachytherapy of cancer of the cervix

    International Nuclear Information System (INIS)

    Leborgne, Felix; Fowler, Jack F.; Leborgne, Jose H.; Zubizarreta, Eduardo; Chappell, Rick

    1996-01-01

    Purpose: To establish an optimum fractionation for medium dose rate (MDR) brachytherapy from retrospective data of patients treated with different MDR schedules in comparison with a low dose rate (LDR) schedule. Methods and Materials: The study population consists of consecutive Stage IB-IIA-IIB patients who received radiotherapy alone with full dose brachytherapy plus external beam pelvic and parametrial irradiation from 1986-1993. Patients also receiving surgery or chemotherapy were excluded. The LDR group (n = 102, median follow-up: 80 months) received a median dose to Point A of two 32.5 Gy fractions at 0.44 Gy/h plus 18 Gy of external whole pelvic irradiation. The MDR1 group (n = 30, median follow-up: 45 months) received a mean dose of two 32 Gy fractions at 1.68 Gy/h. An individual dose reduction of 12.5% was planned for this group according to the Manchester experience, but only a 4.8% dose reduction was achieved. The MDR2 group (n = 10, median follow-up: 36 months) received a dose of two 24 Gy fractions at 1.65 Gy/h. The MDR3 group (n = 10, median follow-up 33 months) received a mean dose of three 15.3 Gy fractions at 1.64 Gy/h. And finally, the MDR4 group (n = 38, median follow-up: 24 months) received six 7.7 Gy fractions from two pulses 6 h apart in each of three insertions at 1.61 Gy/h. The median external pelvic dose to MDR schedules was between 12 and 20 Gy. The linear quadratic (LQ) formula was used to calculate the biologically effective dose (BED) to tumor (Gy 10 ) and rectum (Gy 3 ), assuming T(1(2)) for repair = 1.5 h. Results: The crude central recurrence rate was 6% for LDR (mean BED = 95.4 Gy 10 ) and 10% for MDR4 (mean BED = 77.0 Gy 10 ) (p = NS). The remaining MDR groups had no recurrences. Grade 2 and 3 rectal or bladder complications were 0% for LDR (rectal BED = 109 Gy 3 ), 83% for MDR1 (BED = 206 Gy 3 ), and 30% for MDR3 (BED = 127 Gy 3 ). The MDR2 and MDR4 groups presented no complications (BED, 123 Gy 3 , and 105 Gy 3 , respectively

  2. INFLUENCE OF DOSE RATE ON THE CELLULAR RESPONSE TO LOW- AND HIGH-LET RADIATIONS

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eWozny

    2016-03-01

    Full Text Available Nowadays, head and neck squamous cell carcinoma (HNSCC treatment failure is mostly explained by loco-regional progression or intrinsic radioresistance. Radiotherapy has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy which modify the dose-rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional radiotherapy or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72MeV/n carbon ions at a dose rate of 0.5, 2 or 10Gy/min.For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure, this variation of radiosensitivity was associated to the number of initial and residual DNA double-strand breaks. By contrast, the dose rate change did not affect neither cell survival nor the residual DNA double-strand breaks after carbon ion irradiation. As a result, the Relative Biological Efficiency at 10% survival increased when the dose rate decreased.In conclusion, in the radiotherapy treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes towards altered-fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation

  3. Radiation dose reduction in parasinus CT by spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Sedlmair, Martin; Allmendinger, Thomas [Siemens Healthcare GmbH, Forchheim (Germany)

    2017-02-15

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR{sub eye} {sub globe/air} did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  4. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    Science.gov (United States)

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After

  5. Evaluation of occupational radiation dose of extremities on hysterosalpingography

    International Nuclear Information System (INIS)

    Filipov, D.; Kotowski, S.T.A.

    2017-01-01

    In the Hysterosalpingography (HSG) exam there is always a professional present with their hands very close to the radiation field. Based on CNEN, individuals occupationally exposed to radiation have equivalent dose limit values for the extremities (500 mSv / year). The objective of the study was to verify the equivalent dose in the hand region of an IOE (Occupationally Exposed Individual) that performs the HSG test and to compare it with the CNEN limit and with similar studies. A humanoid phantom was used to simulate the patient and an ionization chamber, which was placed in the place commonly occupied by the professional. The equivalent hand dose result (∼ 30 mSv / year) equals 6% of the CNEN annual dose limit, but is close to most studies using fluoroscopes. Therefore, the optimization of radiological protection is necessary to reduce these results

  6. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  7. Calibration of high-dose radiation facilities (Handbook)

    International Nuclear Information System (INIS)

    Gupta, B.L.; Bhat, R.M.

    1986-01-01

    In India at present several high intensity radiation sources are used. There are 135 teletheraphy machines and 65 high intensity cobalt-60 sources in the form of gamma chambers (2.5 Ci) and PANBIT (50 Ci). Several food irradiation facilities and a medical sterilization plant ISOMED are also in operation. The application of these high intensity sources involve a wide variation of dose from 10 Gy to 100 kGy. Accurate and reproducible radiation dosimetry is essential in the use of these sources. This handbook is especially compiled for calibration of high-dose radiation facilities. The first few chapters discuss such topics as interaction of radiation with matter, radiation chemistry, radiation processing, commonly used high intensity radiation sources and their special features, radiation units and dosimetry principles. In the chapters which follow, chemical dosimeters are discussed in detail. This discussion covers Fricke dosimeter, FBX dosimeter, ceric sulphate dosimeter, free radical dosimetry, coloured indicators for irrdiation verification. A final chapter is devoted to practical hints to be followed in calibration work. (author)

  8. Environmental policy. Ambient radioactivity levels and radiation doses in 1998

    International Nuclear Information System (INIS)

    1999-11-01

    The report contains information on the natural (background) radiation exposure (chapter II), the natural radiation exposure as influenced by anthropogenic effects (chapter III), the anthropogenic radiation exposure (chapter IV), and the radiation doses to the environment and the population emanating from the Chernobyl fallout (chapter V). The natural radiation exposure is specified referring to the contributions from cosmic and terrestrial background radiation and intake of natural radioactive substances. Changes of the natural environment resulting from anthropogenic effects (technology applications) inducing an increase in concentration of natural radioactive substances accordingly increase the anthropogenic radiation exposure. Indoor air radon concentration in buildings for instance is one typical example of anthropogenic increase of concentration of natural radioactivity, primarily caused by the mining industry or by various materials processing activities, which may cause an increase in the average radiation dose to the population. Measurements so far show that indoor air concentration of radon exceeds a level of 200 Bq/m 3 in less than 2% of the residential buildings; the EUropean Commission therefore recommends to use this concentration value as a maximum value for new residential buildings. Higher concentrations are primarily measured in areas with relevant geological conditions and abundance of radon, or eg. in mining areas. (orig./CB) [de

  9. Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy

    Science.gov (United States)

    Donzelli, Mattia; Bräuer-Krisch, Elke; Oelfke, Uwe; Wilkens, Jan J.; Bartzsch, Stefan

    2018-02-01

    Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.

  10. Radiographic fallopian tube recanalization: Absorbed ovarian radiation dose

    International Nuclear Information System (INIS)

    Hedgpeth, P.L.; Thurmond, A.S.; Fry, R.; Schmidgall, J.R.; Roesch, J.

    1991-01-01

    Absorbed radiation dose to the ovaries during radiographic fallopian tube recanalization was estimated in 29 patients with use of thermoluminescent dosimeters placed in the vaginal fornix. With an average fluoroscopic time of 8.5 minutes ± 5.5 and an average of 14 ± 5 105-mm spot radiographs obtained, the average absorbed dose to the ovaries was 8.5 mGy ± 5.6 (0.85 rad ± 0.56). Technical guidelines for keeping patient radiation exposure to a minimum during this new interventional procedure are suggested

  11. Radiographic fallopian tube recanalization: Absorbed ovarian radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Hedgpeth, P.L.; Thurmond, A.S.; Fry, R.; Schmidgall, J.R.; Roesch, J. (Department of Diagnostic Radiology, Oregon Health Sciences University, Portland (USA))

    1991-07-01

    Absorbed radiation dose to the ovaries during radiographic fallopian tube recanalization was estimated in 29 patients with use of thermoluminescent dosimeters placed in the vaginal fornix. With an average fluoroscopic time of 8.5 minutes {plus minus} 5.5 and an average of 14 {plus minus} 5 105-mm spot radiographs obtained, the average absorbed dose to the ovaries was 8.5 mGy {plus minus} 5.6 (0.85 rad {plus minus} 0.56). Technical guidelines for keeping patient radiation exposure to a minimum during this new interventional procedure are suggested.

  12. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  13. Induction of chromosomal instability in human lymphoblasts by low doses of γ-radiation

    International Nuclear Information System (INIS)

    Gibbons, C.F.; Grosovsky, A.J.

    2003-01-01

    Full text: Genomic instability is a hallmark of tumorigenic progression, and a similar phenotype is also observed in a high fraction (10 - 50%) of cells that survive exposure to ionizing radiation. In both cases unstable clones are characterized by non-clonal chromosomal rearrangements, which are indicative of a high rate of genetic change during the outgrowth of an unstable parental cell. We postulate that the remarkably high frequency of radiation-induced genomic instability is incompatible with a mutational mechanism for a specific gene, or even a large family of genes. Rather, we hypothesize that a major portion of instability is attributable to the formation of chromosomal rearrangement junction sequences that act as de novo chromosomal breakage hotspots. We further suggest that critical target sequences, which represent at least 10% of the genome and include repetitive DNA sequences such as those found in centromeric heterochromatin, can be involved in breakage and rearrangement hotspots that drive persistent genomic instability and karyotypic heterogeneity. Since chromosomal damage is induced even by low dose radiation exposure, we hypothesize that this phenotype can be efficiently induced at doses that are relevant to environmental, occupational, or medical exposure. In the present study, TK6 human B-lymphoblastoid cells were irradiated with 0, 10, 20 and 200cGy, in order to provide a set of data points for single, low dose exposures. Independent clones were analyzed karyotypically approximately 40 generations after radiation exposure. Preliminary results suggest that the fraction of clones exhibiting genomic instability after 20 cGy (0.16) is similar to and statistically indistinguishable from the fraction of unstable clones following 200 cGy (0.2) exposure. These findings support the hypothesis that instability following radiation, and perhaps also in cancer, primarily reflects non-mutational mechanisms

  14. Management of pediatric radiation dose using Agfa computed radiography

    International Nuclear Information System (INIS)

    Schaetzing, R.

    2004-01-01

    Radiation dose to patients and its management have become important considerations in modern radiographic imaging procedures, but they acquire particular significance in the imaging of children. Because of their longer life expectancy, children exposed to radiation are thought to have a significantly increased risk of radiation-related late sequelae compared to adults first exposed to radiation later in life. Therefore, current clinical thinking dictates that dose in pediatric radiography be minimized, while simultaneously ensuring sufficient diagnostic information in the image, and reducing the need for repeat exposures. Dose management obviously starts with characterization and control of the exposure technique. However, it extends farther through the imaging chain to the acquisition system, and even to the image processing techniques used to optimize acquired images for display. Further, other factors, such as quality control procedures and the ability to handle special pediatric procedures, like scoliosis exams, also come into play. The need for dose management in modern radiography systems has spawned a variety of different solutions, some of which are similar across different manufacturers, and some of which are unique. This paper covers the techniques used in Agfa Computed Radiography (CR) systems to manage dose in a pediatric environment. (orig.)

  15. Management of pediatric radiation dose using Agfa computed radiography

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzing, R. [Agfa Corp., Greenville, SC (United States)

    2004-10-01

    Radiation dose to patients and its management have become important considerations in modern radiographic imaging procedures, but they acquire particular significance in the imaging of children. Because of their longer life expectancy, children exposed to radiation are thought to have a significantly increased risk of radiation-related late sequelae compared to adults first exposed to radiation later in life. Therefore, current clinical thinking dictates that dose in pediatric radiography be minimized, while simultaneously ensuring sufficient diagnostic information in the image, and reducing the need for repeat exposures. Dose management obviously starts with characterization and control of the exposure technique. However, it extends farther through the imaging chain to the acquisition system, and even to the image processing techniques used to optimize acquired images for display. Further, other factors, such as quality control procedures and the ability to handle special pediatric procedures, like scoliosis exams, also come into play. The need for dose management in modern radiography systems has spawned a variety of different solutions, some of which are similar across different manufacturers, and some of which are unique. This paper covers the techniques used in Agfa Computed Radiography (CR) systems to manage dose in a pediatric environment. (orig.)

  16. Patient radiation exposure and dose tracking: a perspective.

    Science.gov (United States)

    Rehani, Madan M

    2017-07-01

    Much of the emphasis on radiation protection about 2 decades ago accrued from the need for protection of radiation workers and collective doses to populations from medical exposures. With the realization that individual patient doses were rising and becoming an issue, the author had propagated the concept of a smart card for radiation exposure history of individual patients. During the last 7 years, much has happened wherein radiation exposure and the dose history of individual patients has become a reality in many countries. In addition to dealing with overarching questions, such as "Why track, what to track, and how to track?," this review elaborates on a number of points such as attitudes toward tracking, review of practices in large parts of the world, description of various elements for exposure and dose tracking, how to use the information available from tracking, achievements and stumbling blocks in implementation to date, templates for implementation of tracking at different levels of health care, the role of picture archiving and communication systems and eHealth, the role of tracking in justification and optimization of protection, comments on cumulative dose, how referrers can use this information, current provisions in international standards, and future actions.

  17. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Schell, W.R.; Linkov, I.; Belinkaia, E.; Rimkevich, V.; Zmushko, Yu.; Lutsko, A.; Fifield, F.W.; Flowers, A.G.; Wells, G.

    1996-01-01

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  18. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  19. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.